
qpSWIFT: A Sparse Quadratic Programming
Solver

Abhishek Pandala, Yanran Ding and Hae-Won Park

1

Contents

1 Introduction 3

2 Features 3

3 Download 3

4 Installation 4
4.1 C/C++ . 4

4.1.1 Linux . 4
4.1.2 macOS . 4
4.1.3 Windows . 4
4.1.4 Adding qpSWIFT to your project . 5

4.2 Matlab . 5
4.3 Python . 6
4.4 Simulink . 6

5 Demos 7
5.0.1 Problem Setup - 1 . 7
5.0.2 Problem Setup - 2 . 7

5.1 C/C++ Interface . 7
5.1.1 C/C++ Interface via Sparse Matrices . 7
5.1.2 C/C++ Interface via Dense Matrices . 10
5.1.3 Integration with Eigen . 12

5.2 Matlab Interface . 12
5.3 Python Interface . 14
5.4 Simulink Interface . 15

6 Acknowledgement and License 16

7 Citing qpSWIFT 16

8 Contact 16

9 Known Issues 17

10 Tips 17

11 Appendix 18
11.1 Compressed Column Storage format . 18

11.1.1 Example . 18
11.2 Permutation vector . 18

2

Introduction

This document provides an introduction to qpSWIFT [1], a Real-Time Sparse Quadratic Programming Solver.
qpSWIFT solves quadratic programs of the following form

min
x

1

2
xTPx+ cTx

s.t. Ax = b

Gx ≤ h

Here, it is assumed that P is a symmetric, positive semi-definite matrix, and A is of full row-rank. The solver
employs Primal-Dual Interior Point method with Mehrotra Predictor corrector steps and Nesterov-Todd scaling.
For solving the linear system of equations, sparse LDLT factorization is used along with the approximate minimum
degree (AMD) heuristic to minimize fill-in of the factorizations.

Features

qpSWIFT boasts the following features

• Written in ANSI-C

• Fully functional Quadratic Programming solver for embedded applications

• Tested on multiple target architectures

– x86

– x86 64

– ARM

• Support for multiple interfaces

– C/C++

– Python

– Matlab

– Simulink (in progress ...)

Download

qpSWIFT can be downloaded from the following � link as

git clone https://github.com/qpSWIFT/qpSWIFT

3

https://github.com/qpSWIFT/qpSWIFT

Installation

4.1 C/C++

4.1.1 Linux

To build the qpSWIFT library from source on your system, download the qpSWIFT
repository and type the following commands from the qpSWIFT project source
directory

cmake -S . -B build -DCMAKE_BUILD_TYPE=Release

cmake --build build --config Release

To install the libraries, type

sudo cmake --build build --target install

or

cd build

sudo make install

You can now add qpSWIFT into your project. Instructions for this can be found in
Section - 4.1.4 . Take a look at the demo files in Section - 5.1

4.1.2 macOS

To build the qpSWIFT library from source on your system, download the qpSWIFT
repository and type the following commands from the qpSWIFT project source
directory

cmake -S . -B build -DCMAKE_BUILD_TYPE=Release

cmake --build build --config Release

To install the libraries, type

sudo cmake --build build --target install

or

cd build

sudo make install

You can now add qpSWIFT into your project. Instructions for this can be found in
Section - 4.1.4 . Take a look at the demo files in Section - 5.1

4.1.3 Windows

On Windows machine, download the qpSWIFT repository and type the following
commands from the qpSWIFT project source directory in the command prompt or
windows powershell

Prerequisites

H cmake

H c, c++ compiler

4

cmake -S . -B build

To generate build files for a specific MSVC version (e.g., Visual Studio 15 compiler),
use

cmake -S . -B build -G "Visual Studio 15 2017"

This creates the necessary build files to generate qpSWIFT libraries. Alternatively,
you can use the cmake-gui to generate build files. To compile the libraries, type

cmake --build build -j8 --config Release

Please ensure that you have the permissions to install libraries on your system. The
install folder can be set via CMAKE_INSTALL_PREFIX. To install the libraries,

cmake --build build --target install

You can now add qpSWIFT into your project. Instructions for this can be found in
Section - 4.1.4 . Take a look at the demo files in Section - 5.1

4.1.4 Adding qpSWIFT to your project

To incorporate qpSWIFT into your project, add the following lines into your cmake
file

find_package(qpSWIFT)

To incorporate static library

target_link_libraries(<target_name>

PRIVATE qpSWIFT::qpSWIFT-static)

or

To incorporate shared library

target_link_libraries(<target_name>

PRIVATE qpSWIFT::qpSWIFT-shared)

4.2 Matlab

To build the qpSWIFT matlab interface from source on your system, download the
qpSWIFT repository and change the matlab working directory to qpSWIFT/matlab.
Type the following command in the command window from the qpSWIFT matlab
directory

Swift_make('qpSWIFT_mex.c')

Prerequisites

H matlab compatible c
compiler

5

https://cmake.org/runningcmake/

This creates a mex file depending on the configuration of the system. To use
qpSWIFT in your projects, copy this mex file into project working directory or add
this folder to the matlab search path. You can run the demoqp.m file to check if
the installation was successful. Instructions on using the qpSWIFT matlab interface
can be found at 5.2

4.3 Python

To build the qpSWIFT python interface from source on your system, type the
following command from the qpSWIFT python directory in the system command
line.

python setup.py install

Depending on the system, you may require administrator privileges. This builds and
installs qpSWIFT module in your system.

Prerequisites

H c compiler

H numpy

H distutils

You can run the demoqp.py file to check if the installation is successful. Instructions on using the qpSWIFT
python interface can be found at 5.3

4.4 Simulink

In Progress ...

6

Demos

We use the following two quadratic programs as an example on each of the interfaces for the rest of the docu-
mentation.

5.0.1 Problem Setup - 1

The following problem shows a standard QP with both equality and inequality constraints

min
x

1

2

x1

x2

x3

T 5 1 0
1 2 1
0 1 4

x1

x2

x3

+

12
1

T x1

x2

x3


s.t.

[
1 −2 1

] x1

x2

x3

 = 3

[
−4 −4 0
0 0 −1

]x1

x2

x3

 ≤ [−1−1
]

The solution for the above QP is
[
0.450 −0.200 1.000

]T
5.0.2 Problem Setup - 2

The following problem shows a standard QP with only inequality constraints

min
x

1

2

x1

x2

x3

T 5 1 0
1 2 1
0 1 4

x1

x2

x3

+

12
1

T x1

x2

x3


s.t.

[
−4 −4 0
0 0 −1

]x1

x2

x3

 ≤ [−1−1
]

The solution for the above QP is
[
0.833 −0.583 1.000

]T
5.1 C/C++ Interface

5.1.1 C/C++ Interface via Sparse Matrices

The demo file for C/C++ interface via sparse matrices can be found in demo/runqp.c. To interface with
qpSWIFT, add the header file

#include "qpSWIFT.h"

qpSWIFT has three main functions, QP_SETUP, QP_SOLVE and QP_CLEANUP. Initialize the QP struct with

7

QP* myQP

The basic algorithmic skeleton for qpSWIFT is as follows

QP *myQP;

myQP = QP_SETUP(n, m, p, Pjc, Pir, Ppr, Ajc, Air, Apr, Gjc, Gir, Gpr, c, h,b,

sigma_d, Permut);

/* settings can be changed at this point */

qp_int ExitCode = QP_SOLVE(myQP);

/* solution and solution statistics can be accessed now */

QP_CLEANUP(myQP);

Initially, a pointer for the QP structure is defined. The data fields of the QP structure and the necessary memory
are allocated using the first function QP_SETUP. Any custom settings, for example, the maximum number of
iterations, can be set after invoking the QP_SETUP function. The second function QP_SOLVE computes the actual
solution. At this stage, the solution is accessible using myQP->x. The third function QP_CLEANUP clears the entire
setup. The description of the input arguments for each of the functions is provided below.

The first function, QP_SETUP, has the following input arguments

qp_int n /* number of decision Variables */

qp_int m /* number of inequality constraints */

qp_int p /* number of equality constraints */

qp_int* Pjc /* jc vector of P Matrix in CCS format */

qp_int* Pir /* ir vector of P Matrix in CCS format */

qp_real* Ppr /* pr vector of P Matrix in CCS format */

qp_int* Ajc /* jc vector of A Matrix in CCS format */

qp_int* Air /* ir vector of A Matrix in CCS format */

qp_real* Apr /* pr vector of A Matrix in CCS format */

qp_int* Gjc /* jc vector of G Matrix in CCS format */

qp_int* Gir /* ir vector of G Matrix in CCS format */

qp_real* Gpr /* pr vector of G Matrix in CCS format */

qp_real* c /* cost function vector */

qp_real* h /* inequality constraints vector */

qp_real* b /* equality constraints vector */

qp_int sigma_d /* desired sigma*/

qp_int Permut /* permutation vector of KKT Matrix */

Here, qpSWIFT accepts matrices in Compressed Column Storage format. sigma_d is set to zero. The last
argument, Permut, refers to the permutation matrix of the KKT matrix. This can be set to NULL if you want to
use the inbuilt AMD routines to compute permutation matrix. More info regarding CCS format and Permutation
matrices can be found in Section - 11. If there are no equality constraints in the QP problem, then set the
arguments Ajc, Air, Apr, B to a NULL pointer and the number of equality constraints as p = 0. After
invoking this function, the solver settings for the QP can now be changed using

myQP->settings->maxit /* Maximum number of Iterations of QP */

myQP->settings->reltol /* Relative Tolerance */

8

myQP->settings->abstol /* Absolute Tolerance */

myQP->settings->sigma /* sigma desired */

myQP->settings->verbose /* Verbose Levels || 0 :: No Print */

/* || >0 :: Print Everything */

The default for these settings can be found in include/GlobalOptions.h. The function QP_SOLVE performs
the actual solution

Exit_Code = QP_SOLVE(myQP)

The Exit_Code contains the exit flag of the qpSWIFT. The following flags are set for ExitCode

QP_OPTIMAL (0) /* optimal solution found */

QP_KKTFAIL (1) /* failure in solving LDL' factorization */

QP_MAXIT (2) /* maximum number of iterations exceeded */

QP_FATAL (3) /* unknown problem in solver */

The solution can be accessed via the pointer

myQP->x /* Primal Solution a.k.a solution of the QP */

myQP->y /* Dual Solution of the QP (equality constraints) */

myQP->z /* Dual Solution of the QP (inequality constraints) */

myQP->s /* Slack Variables of the QP */

The statistics of the solution can be accessed via myQP->stats structure and has the following fields

/* Time Statistics */

tsetup /* Setup time ; includes initialisation as well */

tsolve /* QP solve time */

kkt_time /* kkt matrix inversion time */

ldl_numeric /* kkt matrix factorization time */

/* Time Statistics */

/* Algorithmic Statistics */

IterationCount /* iteration Count */

n_rx /* norm of residual vector rx */

n_ry /* norm of residual vector ry */

n_rz /* norm of residual vector rz */

n_mu /* complementary Slackness (s'z/m) */

alpha_p /* primal step Size */

alpha_d /* dual step Size */

/* Algorithmic Statistics */

fval /* function Value */

9

Flag /* solver FLAG */

AMD_RESULT /* AMD Compilation Result */

/* >=0 means successful */

/* <0 means unsuccessful */

/* -3 means unused */

The last function to call is QP_CLEANUP.

QP_CLEANUP(myQP)

This function clears all the memory created by QP_SETUP. Please note that this function needs to be called after
copying the QP solution and relevant statistics.

5.1.2 C/C++ Interface via Dense Matrices

The demo file for C++ interface can be found at demo/runqpcpp.cpp. The dense interface is also similar to the
sparse interface, after adding the header file

#include "qpSWIFT.h"

The algorithmic skeleton for qpswift dense interface is as follows

QP *myQP;

myQP = QP_SETUP_dense(n, m, p, P, A, G, c, h, b, Permut, COLUMN_MAJOR_ORDERING);

/* settings can be changed now */

qp_int ExitCode = QP_SOLVE(myQP);

/* solution and solution statistics can be accessed now */

QP_CLEANUP_dense(myQP);

The solver can be interfaced via the same three functions, the same way as the sparse interface or can be done via
a dense interface using QP_SETUP_dense function. Initially, a pointer for the QP structure is defined. The data
fields of the QP structure and the necessary memory are allocated using the first function QP_SETUP_dense. Any
custom settings, for example, the maximum number of iterations, can be set after invoking the QP_SETUP_dense

function. The second function QP_SOLVE computes the actual solution. At this stage, the solution is accessible
using myQP->x. The third function QP_CLEANUP_dense clears the entire setup. The description of the input
arguments for each of the functions is provided below.

The inputs arguments for QP_SETUP_dense are as follows

qp_int n /* Number of decision Variables */

qp_int m /* Number of inequality constraints */

qp_int p /* Number of equality constraints */

qp_real *P /* data pointer of P Matrix */

qp_real *G /* data pointer of G Matrix */

qp_real *A /* data pointer of A Matrix */

qp_real *c /* cost function vector */

10

qp_real *h /* inequality constraints vector */

qp_real *b /* equality constraints vector */

qp_int Permut /* Permutation vector of KKT Matrix */

qp_int ordering /* Indicates row major or column major ordering of P,A,G matrices*/

/* ROW_MAJOR_ORDERING - row major indexing of matrices */

/* COLUMN_MAJOR_ORDERING - row major indexing of matrices */

Note that all the matrices P, A, and G must be in contiguous blocks of memory and must be in either
row-major or column-major ordering. If there are no equality constraints, set the A matrix to NULL pointer and
the number of equality constraints p to be 0. The argument Permut refers to the permutation matrix of the KKT
matrix. This can be set to NULL if you want to use the inbuilt AMD routines to compute permutation matrix.
More info regarding CCS format and Permutation matrices can be found in Section - 11

After invoking this function, the solver settings for the QP can now be changed using

myQP->settings->maxit /* Maximum number of Iterations of QP */

myQP->settings->reltol /* Relative Tolerance */

myQP->settings->abstol /* Absolute Tolerance */

myQP->settings->sigma /* sigma desired */

myQP->settings->verbose /* Verbose Levels || 0 :: No Print */

/* || >0 :: Print Everything */

The default for these settings can be found in include/GlobalOptions.h. The function QP_SOLVE performs
the actual solution

Exit_Code = QP_SOLVE(myQP)

The Exit_Code contains the exit flag of the qpSWIFT. The following flags are set for ExitCode

QP_OPTIMAL (0) /* optimal solution found */

QP_KKTFAIL (1) /* failure in solving LDL' factorization */

QP_MAXIT (2) /* maximum number of iterations exceeded */

QP_FATAL (3) /* unknown problem in solver */

The solution can be accessed via the pointer

myQP->x /* Primal Solution a.k.a solution of the QP */

myQP->y /* Dual Solution of the QP (equality constraints) */

myQP->z /* Dual Solution of the QP (inequality constraints) */

myQP->s /* Slack Variables of the QP */

The statistics of the solution can be accessed via myQP->stats structure and has the following fields

/* Time Statistics */

tsetup /* Setup time ; includes initialisation as well */

tsolve /* QP solve time */

11

kkt_time /* kkt matrix inversion time */

ldl_numeric /* kkt matrix factorization time */

/* Time Statistics */

/* Algorithmic Statistics */

IterationCount /* iteration Count */

n_rx /* norm of residual vector rx */

n_ry /* norm of residual vector ry */

n_rz /* norm of residual vector rz */

n_mu /* complementary Slackness (s'z/m) */

alpha_p /* primal step Size */

alpha_d /* dual step Size */

/* Algorithmic Statistics */

fval /* function Value */

Flag /* solver FLAG */

AMD_RESULT /* AMD Compilation Result */

/* >=0 means successful */

/* <0 means unsuccessful */

/* -3 means unused */

The last function to call is QP_CLEANUP_dense.

QP_CLEANUP_dense(myQP)

This function clears all the memory created by QP_SETUP_dense. Please note that this function needs to be
called after copying the QP solution and relevant statistics.

5.1.3 Integration with Eigen

qpSWIFT can be interfaced with Eigen via the dense matrix interface. Assuming that the matrices P,A,G and
the vectors c, h, b are Eigen matrices, we can invoke qpSWIFT via

myQP = QP_SETUP_dense(P.rows(),A.rows().G.rows(),P.data(),G.data(),A.data(),...

c.data(),h.data(),b.data(),NULL,COLUMN_MAJOR_ORDERING);

The rest of the steps are similar to the dense interface.

5.2 Matlab Interface

The demo file can be found in matlab/demoqp.m. To use qpSWIFT for general quadratic programs of the form

min
x

1

2
xTPx+ cTx

s.t. Ax = b

Gx ≤ h

12

type the following commands

[sol,basic_info,adv_info] = qpSWIFT(sparse(P),c,sparse(A),b,sparse(G),h)

or

[sol,basic_info,adv_info] = qpSWIFT(sparse(P),c,sparse(A),b,sparse(G),h,opts)

For inequality only quadratic programs of the form

min
x

1

2
xTPx+ cTx

s.t.Gx ≤ h

the syntax is as follows

[sol,basic_info,adv_info] = qpSWIFT(sparse(P),c,sparse(G),h)

or

[sol,basic_info,adv_info] = qpSWIFT(sparse(P),c,sparse(G),h,opts)

The input arguments and their description is given below

P is a sparse matrix of dimension (n,n)

c is a dense column vector of size n

A is a sparse matrix of size (p,n); p is the number of equality constraints

b is a dense column vector of size p

G is a sparse matrix of size (m,n); m is the number of inequality constraints

h is a dense column vector of size m

opts is a structure with the following fields

-> MAXITER : maximum number of iterations needed

-> ABSTOL : absolute tolerance

-> RELTOL : relative tolerance

-> SIGMA : maximum centering allowed

-> VERBOSE : print levels || 0 -- no print

|| >0 -- print everything

-> OUTPUT : output levels || 1 -- sol + basicInfo

|| 2 -- sol + basicInfo + advInfo

|| (otherwise) --sol

Note that opts is not mandatory and all fields of opts are also not mandatory. All input matrices must be sparse.
The output arguments have the following description

sol represents the primal solution of the QP

basic_info has four fields

-> Exit Flag : 0 : optimal solution found

: 1 : failure in factorizing KKT matrix

: 2 : maximum number of iterations reached

: 3 : unknown problem in solver

13

-> Iterations : number of iterations

-> Setup Time : setup time (involves setting up QP, solving initial guess)

-> Solve Time : solution time

adv_info has five fields

-> Fval : objective value of the QP

-> KKT_Time : time needed to solve the KKT system of equations

-> LDL_Time : time needed to perform LDL' factorization

-> y : dual variables corresponding to equality constraints

-> z : dual variables corresponding to inequality constraints

-> s : primal slack variables

5.3 Python Interface

The dsemo file can be found at python/demoqp.py. To run qpSWIFT in your python script

import qpSWIFT as qp

res = qp.run(c,h,P,G,A,b,opts)

The last three arguments A,b,opts are optional. The input arguments and their description is as follows

P is a numpy matrix of dimension (n,n)

c is a numpy column vector of size n

A is a numpy matrix of size (p,n); p is the number of equality constraints

b is a numpy column vector of size p

G is a numpy matrix of size (m,n); m is the number of inequality constraints

h is a numpy column vector of size m

opts is a dictionary with the following keys

-> MAXITER : maximum number of iterations needed

-> ABSTOL : absolute tolerance

-> RELTOL : relative tolerance

-> SIGMA : maximum centering allowed

-> VERBOSE : PRINT LEVELS || 0 -- No Print

|| >0 -- Print everything

-> OUTPUT : OUTPUT LEVELS || 1 -- sol + basicInfo

|| 2 -- sol + basicInfo + advInfo

|| otherwise -- sol

opts is not mandatory and all fields of opts are also not mandatory. The output arguments and their description
is as follows

res represents a dictionary class with the following key-value pairs

* [sol] : Basic Solution represented as numpy vector

14

* [basic_info] : Dictionary class with four key-value pairs

-> Exit Flag : 0 : Optimal Solution Found

: 1 : Failure in factorizing KKT matrix

: 2 : Maximum Number of Iterations Reached

: 3 : Unknown Problem in Solver

-> Iterations : number of Iterations

-> Setup Time : setup time (involves setting up QP and solving initial guess)

-> Solve Time : solution time

* [adv_info] : Dictionary class with five key-value pairs

-> Fval : Objective Value of the QP

-> KKT_Time : Time needed to solve the KKT system of equations

-> LDL_Time : Time needed to perform LDL' factorization

-> y : Dual Variables

-> z : Dual Variables

-> s : Primal Slack Variables

5.4 Simulink Interface

In Progress ...

15

Acknowledgement and License

The code structure of qpSWIFT is heavily inspired from ecos [2]. The algorithm details can be found in [1].
qpSWIFT is distributed with GNU General Public License v3.0.

Citing qpSWIFT

If you like qpSWIFT and are using it in your work, please cite the following paper

@article{pandala2019qpswift,

title = {qpSWIFT: A Real-Time Sparse Quadratic Program Solver for

Robotic Applications},

author = {Pandala, Abhishek Goud and Ding, Yanran and Park, Hae-Won},

journal = {IEEE Robotics and Automation Letters},

volume = {4},

number = {4},

pages = {3355--3362},

year = {2019},

publisher = {IEEE}

}

Contact

We would like to improve our code in as many aspects as possible, whether it is building new interfaces or
improving the existing code base; suggestions are always welcome. Please contact us with your valuable feedback.

Abhishek Pandala

Graduate Research Assistant

HDSRL lab

Department of Mechanical Engineering

Virginia Polytechnic Institute and State University

Email ID: agp19@vt.edu

Yanran Ding

Postdoctoral Associate

Biomimetic Robotics Lab

Department of Mechanical Engineering

Massachusetts Institute of Technology (MIT)

Email ID: yanran@mit.edu

Hae-Won Park

Assistant Professor

Mechanical Engineering

Director, Humanoid Robot Research Center

Korea Advanced Institute of Science and Technology (KAIST)

Email ID: haewonpark@kaist.ac.kr

16

https://www.gnu.org/licenses/gpl-3.0.en.html

Known Issues

	 Input Checking for C and C++ interfaces is not done. It is assumed that the inputs provided are in the correct
format

	 qpSWIFT can run into trouble when the input data is extremely ill-conditioned. Please make sure that the
matrices are well-conditioned

	 Currently, infeasibility detection is not performed in qpSWIFT. For infeasible problems, qpSWIFT gives an
error of maximum iterations reached.

Tips

ª To access the header files of qpSWIFT library

get_target_property(qp_headers qpSWIFT::qpSWIFT-static INTERFACE_INCLUDE_DIRECTORIES)

get_target_property(qp_headers qpSWIFT::qpSWIFT-shared INTERFACE_INCLUDE_DIRECTORIES)

ª It may not always be necessary to use the maximum number of iterations while running the code. 40 iterations
is usually sufficient for most problems

ª It is always recommended to compile qpSWIFT library in ”release” mode for maximum performance

17

Appendix

11.1 Compressed Column Storage format

qpSWIFT operates on sparse matrices which are stored in Compressed Column Storage (CCS) format. In this
format, an m × n sparse matrix A that contains nnz non-zero entries is stored as an integer array of Ajc of
length n+ 1, an integer array Air of length nnz and a real array Apc of length nnz.

• The real array Apr holds all the nonzero entries of A in column major format

• The integer array Air holds the rows indices of the corresponding elements in Apr

• The integer array Ajc is defined as

– Ajc[0] = 0

– Ajc[i] = Ajc[i− 1] + number of non-zeros in ith column of A

11.1.1 Example

For the following sample matrix A,

A =


4.5 0 3.2 0
3.1 2.9 0 2.9
0 1.7 3.0 0
3.5 0.4 0 1.0


we have the following CCS representation

int Ajc ={0, 3, 6, 8, 10}
int Air ={0, 1, 3, 1, 2, 3, 0, 2, 1, 3}

double Apr ={4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 2.9, 1.0}

11.2 Permutation vector

Directly performing LDLT factorization on a sparse matrix A typically results in fill-in. A fill-in is a non-zero
entry in L but not in A. The higher the fill-in, the higher the memory required to store the matrix factors (L and
D) as well as the associated floating-point operations. To minimize fill-in, permutation matrices are used, and
the new system

PAPT

is factorized. Obtaining a perfect elimination ordering (permutation matrix with least fill-in) is an NP-hard
problem. Hence, heuristics are used to compute permutation matrices. Some of the popular ones are nested
dissection and minimum degree ordering methods. qpSWIFT uses the Approximate Minimum Degree (AMD)
ordering to compute the permutation matrix. The user can opt to use other ordering methods as well by passing
the argument Permut in each of the interfaces.

18

References

[1] A. G. Pandala, Y. Ding, and H. Park, “qpSWIFT: A real-time sparse quadratic program solver for robotic
applications,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3355–3362, Oct 2019.

[2] A. Domahidi, E. Chu, and S. Boyd, “Ecos: An socp solver for embedded systems,” in 2013 European Control
Conference (ECC). IEEE, 2013, pp. 3071–3076.

19

	Introduction
	Features
	Download
	Installation
	C/C++
	Linux
	macOS
	Windows
	Adding qpSWIFT to your project

	Matlab
	Python
	Simulink

	Demos
	Problem Setup - 1
	Problem Setup - 2

	C/C++ Interface
	C/C++ Interface via Sparse Matrices
	C/C++ Interface via Dense Matrices
	Integration with Eigen

	Matlab Interface
	Python Interface
	Simulink Interface

	Acknowledgement and License
	Citing qpSWIFT
	Contact
	Known Issues
	Tips
	Appendix
	Compressed Column Storage format
	Example

	Permutation vector

