
TRUSTED COMMUNICATION USING SOFTWARE

DEFINED DISTRIBUTED NETWORKS

A PROJECT REPORT

Submitted by

NAMAN ARORA [Reg No: RA1511003010235]
NIKHIL GUPTA [Reg No: RA1511003010245]

Under the guidance of

Ms. Vaishnavi Moorthy
(Asst. Professor, Department of Computer Science & Engineering)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY
in

COMPUTER SCIENCE & ENGINEERING
of

FACULTY OF ENGINEERING AND TECHNOLOGY

S.R.M. Nagar, Kattankulathur, Kancheepuram District

April 2019

SRM INSTITUTE OF SCIENCE & TECHNOLOGY
(Under Section 3 of UGC Act, 1956)

BONAFIDE CERTIFICATE

Certified that this project report titled “TRUSTED COMMUNICA-
TION USING SOFTWARE DEFINED DISTRIBUTED NETWORKS”

is the bonafide work of “NAMAN ARORA [Reg No: RA1511003010235],
NIKHIL GUPTA [Reg No: RA1511003010245]”, who carried out the

project work under my supervision. Certified further, that to the best of

my knowledge the work reported herein does not form any other project

report or dissertation on the basis of which a degree or award was con-

ferred on an earlier occasion on this or any other candidate.

SIGNATURE

Ms. Vaishnavi Moorthy
GUIDE
Asst. Professor
Dept. of Computer Science & Engi-
neering

Signature of the Internal Examiner

SIGNATURE

Dr. B. AMUTHA
HEAD OF THE DEPARTMENT
Dept. of Computer Science & Engi-
neering

Signature of the External Examiner

ABSTRACT

The internet, since the advent of ARPANET, has come along a very long

way. It has undoubtedly changed millions of lives and even now is in its

infancy. Software Defined Networking (SDN) is presented as a paradigm

shift in this regard. It strives to standardize the networking on all levels.

This is an initiative to redesign the current networking stack and compart-

mentalize into three main planes, the data plane, the control plane and the

management plane, respectively moving from bottom up. Here, an effort

is exhibited to augment the idea of SDN to a more distributed framework.

Using a cleverly designed topology, the interconnection of controllers us-

ing the relay concept is demonstrated. This effort also acknowledges the

need to secure such translations and tries to mitigate Denial of Service

(DoS) attacks on the control plane.

ACKNOWLEDGEMENTS

We express our humble gratitude to Dr. Sandeep Sancheti, Vice Chancellor, SRM
Institute of Science and Technology, for the facilities extended for the project work and
his continued support.

We extend our sincere thanks to Dr. C. Muthamizhchelvan, Director, Faculty of
Engineering and Technology, SRM Institute of Science and Technology, for his invalu-
able support.

We wish to thank Dr. B. Amutha, Professor & Head, Department of Computer
Science and Engineering, SRM Institute of Science and Technology, for her valuable
suggestions and encouragement throughout the period of the project work.

We are extremely grateful to our Academic Advisor Dr. K. Annapurani, Associate
Professor, Department of Computer Science and Engineering, SRM Institute of Science
and Technology, for her great support at all the stages of project work.

We would like to convey our thanks to our Panel Head, Dr. Revathi Venkatara-
man, Assistant Professor, Department of Computer Science and Engineering, SRM
Institute of Science and Technology, for her inputs during the project reviews.

We register our immeasurable thanks to our Faculty Advisor, Ms. A.L. Amutha,
Assistant Professor, Department of Computer Science and Engineering, SRM Institute
of Science and Technology, for leading and helping us to complete our course.

Our inexpressible respect and thanks to our guide, Ms. Vaishnavi Moorthy , As-
sistant Professor, Department of Computer Science and Engineering, SRM Institute of
Science and Technology, for providing me an opportunity to pursue our project under
his mentorship. She provided me the freedom and support to explore the research topics
of our interest. Her passion for solving the real problems and making a difference in
the world has always been inspiring.

We sincerely thank staff and students of the Computer Science and Engineering De-
partment, SRM Institute of Science and Technology, for their help during our research.
Finally, we would like to thank our parents, our family members and our friends for
their unconditional love, constant support and encouragement.

Naman Arora
Nikhil Gupta

iv

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

ABBREVIATIONS ix

1 INTRODUCTION 1

1.1 Overview . 1

2 LITERATURE SURVEY 3

2.1 Overview . 3

2.1.1 Proprietary Defense Systems in Software defined Networks 3

2.1.2 Threat categorization and identification in Software Defined Net-
works (SDN) . 3

2.1.3 Research in SDN and usage in cloud computing 3

2.1.4 DOS attacks mitigation strategies 4

2.1.5 SDN, Cloud computing and vulnerabilities 4

2.1.6 Implementation of SDN networks in a global perspective . . 5

2.1.7 Behavioural Detection of malicious traffic in the SDN . . . 5

2.1.8 Data forwarding policies in SDN 5

2.2 Inference from the survey . 6

3 PROPOSED SYSTEM 7

3.1 Scalability . 7

3.1.1 Data Plane . 7

3.1.2 Controller Plane . 8

v

3.1.3 Sub-Relay . 10

4 Distributed Denial Of Service Attacks 11

4.1 Proposed methodology . 11

4.2 Mitigation of the attack . 11

4.2.1 Blacklisting . 11

4.2.2 Whitelisting . 12

5 TESTING DATA 14

5.1 Data Description . 14

5.2 The Selected Parameters . 14

5.3 Methodology adopted for test data analysis 15

5.4 Test Result Data . 16

5.4.1 Test values to benchmark topology 16

5.4.2 Test Values to benchmark attack detection and mitigation . . 17

5.4.3 Graphical Comparision . 18

5.4.4 Test Values to benchmark attack strategy against the Attack 19

5.4.5 Graphical Comparision . 19

5.4.6 Screenshots . 20

6 CONCLUSION 21

A Submission of paper 23

B Plagiarism Report 24

C Contribution of each Student 27

D CODE 29

D.1 Python code . 29

E Future Perspectives 67

LIST OF TABLES

5.1 Test Values to Benchmark topology 16

5.2 Test Values to Benchmark Attack detection and mitigation 17

5.3 Illegitimate packet drop percentage 19

vii

LIST OF FIGURES

1.1 Standard SDN Architecture . 2

3.1 Data Plane Bird’s eye view . 8

3.2 Controller Plane Bird’s eye view 9

3.3 A subnet . 9

3.4 The Relay . 10

4.1 DDoS attack Depiction . 12

5.1 Graphical Comparision . 18

5.2 Graph of processed vs total illegitimate packets 19

5.3 Blacklisting.PNG . 20

5.4 DDoS attack . 20

B.1 DDoS attack . 25

viii

ABBREVIATIONS

IR Incident Response

HTTP Hypertext Transfer Protocol

SDN Software Defined Networks

DOS Denial of Service

DDoS Distributed Denial of Service

QoS Quality of Service

CAM Content Addressable Memory

TCP Transmission Control Protocol

ix

CHAPTER 1

INTRODUCTION

1.1 Overview

A centralized system in Software Defined Networks is based on one controller that man-

ages all the network devices. This reduces the work of Network Management but also

decreases the scalability of the network severely. Having a single controller makes the

whole network dependent on one point of failure. Moreover, this restricts the number

of devices that can be handled under a single network due to the processing power lim-

itation and the communication load on a particular controller. Latency also becomes an

issue in case of a large network where the packet forwarding devices may be physically

far from controller.

In a distributed (SDN) environment all the above mentioned inadequacies are over-

come. A number of different domains, each of which is under the control of a single

controller. Using multiple controllers also increases the scalability factor of the (SDN)

Network. It makes it easy to manage large networks by dividing the control among dif-

ferent controllers and also balancing the load from a single controller. Physical Distance

of each controller is lesser in a distributed environment and hence latency between the

devices is also reduced when compared to a centralized (SDN) Network.

A transparent behavior is mandatory in a distributed network so that the structure

of the network is synchronized at all points among the controllers through some agreed

upon protocol. The topology decided must be know at each controller for taking proper

routing decisions.

As, all the controllers are inter-connected and each controller has a number of

switches and hosts, it is of utmost importance that the topology update be distributed

among the controllers for appropriate routing decisions and avoiding improper routing

of packets.

Trust is a very important factor for defending against any attacks that happen in the

network and measure the credibility of a host connected in the network. The consistency

in the behavior of the trustor and the trustee can define the degree of trust in a network.

Trust can be established by using the historical experience and the observation of other

activities. Trust computation model is used to increase the security measure and vali-

date the intention of a connected host in the network.

Figure 1.1: Standard SDN Architecture

2

CHAPTER 2

LITERATURE SURVEY

2.1 Overview

2.1.1 Proprietary Defense Systems in Software defined Networks

(Radware)[6], has expressed that the scene is evolving. It isn’t just the IT framework

which is making strides in intricacy, amount and expectation, but attackers are using

latest accessible technology and the aftereffects of this are as of now being seen on the

cyber battlefield. DefenseFlow permits the service providers to effectively automate the

(Incident Response (IR)) activities in the most perplexing and profoundly distributed

environments.

2.1.2 Threat categorization and identification in SDN

Krishnan and Najeem (2017)[3], in their study found out that using (SDN) in today’s

networks supplies with the required spryness and transparency for the installation of

network solutions. Be that is it may, from the security point of view in terms of threat

and risk assessment, especially for layer 4 and layer 7 attacks such as (Distributed De-

nial of Service (DDoS)), there are yet many difficulties to be pursued in (SDN) environ-

ments. In their study, they have exhibited the categorization of threats, risks and attack

vectors that can disrupt the (SDN) network and have presented various techniques to

mitigate these issues, to deploy (SDN) securely in production environments.

2.1.3 Research in SDN and usage in cloud computing

Kannan Govindarajan (2013)[2], expressed that a key developing pattern in Cloud com-

puting is that the core frameworks to be shifting towards Software-Defined. Storage and

networks would no longer be constrained by the availability of physical hardware rather

will be able to customize according to the needs in a virtual environment. (SDN) as-

sumes a significant role in distributing the resources in the network based on the demand

and requirement. These experts reviewed the cutting edge Software-Defined Network-

ing (SDN) in four regions: Network Quality of Service (Quality of Service (QoS)),

Load Balancing, Scalability and Security. From the survey, they have recognized that,

there is no singular design/architecture for addressing all these four issues. Henceforth,

the majority of work in future will be concentrating on customized (SDN) network

architecture.

2.1.4 DOS attacks mitigation strategies

Lobna Dridi (2016)[4], expressed that regardless of the considerable number of focal

points offered by Software Defined Networks, Denial of Service (DOS) attacks are

viewed as a noteworthy risk to such systems as they can flood the network with huge

amount of invalid packets that may cause overflow in the (Content Addressable Mem-

ory (CAM)) tables ultimately resulting in the deterioration of the quality of network

service. They proposed SDN-Guard, a novel plan to effectively ensure (SDN) sys-

tems against (DOS) attacks by dynamic (1) rerouting of potentially malicious traffic,

(2) adjusting flow timeouts and (3) customizing the flow rules. Practical analyses utiliz-

ing Mininet demonstrates that the proposed arrangement prevails with regards to lim-

iting the effect of (DOS) attacks up to 1/3rd on the controller performance parameters.

Hence, maintains appropriate parameters for optimal performance of the network.

2.1.5 SDN, Cloud computing and vulnerabilities

Qiao Yan (2015)[5], have expressed that the abilities of (SDN), including traffic ex-

amination on a software level, centralized control, worldwide perspective on the net-

work, dynamic updation of sending rules, make it simpler to distinguish and respond to

(DDoS) attacks but the vulnerability of SDN is still an issue to be addressed, and po-

tential (DDoS) vulnerabilities exist crosswise over various (SDN) platforms. Qiao Yan

(2015)[5] have talked about the new patterns and qualities of DDoS attacks in dis-

4

tributed computing, and gave a far reaching study of barrier components against DDoS

attacks utilizing SDN.

2.1.6 Implementation of SDN networks in a global perspective

Sakir Sezer (2013)[7], have expressed that Software-Defined Networking has risen as an

effective network technology fit for support of the dynamic idea of future network func-

tions and smart applications while bringing down expenses through improved equip-

ment, programming, and management. They have discussed about generating a fruitful

and functional network with Software-Defined Networking. Sakir Sezer (2013)[7] have

examined the challenges in execution, modification, security and interoperability. Exist-

ing systems and current industry standards could help in resolution of a portion of these

issues and various working groups are additionally examining potential arrangements.

The goal of the model is to upgrade flow handling in SDN.

2.1.7 Behavioural Detection of malicious traffic in the SDN

(Syed Akbar Mehdi)[8], have contended that coming of Software Defined Networking

gives a remarkable chance to identify and isolate security issues. They have outlined

how four conspicuous traffic inconsistency identification algorithms can be used in Soft-

ware Defined Networks with NOX as a controller in the controller plane and Open flow

switches in the data plane. Their investigations demonstrated that these calculations are

essentially progressively precise in keeping a check on the vindictive exercises in the

home systems when contrasted with the ISP. One of the key advantages of this method-

ology is that the compartmentalized and controlled programmability of SDN enables

these algorithms to exist with regards to a more extensive structure.

2.1.8 Data forwarding policies in SDN

Takayuki Sasaki (2016)[9] have examined that the service provider needs apparatuses

to proactively guarantee that the policies will be abode or to reactively assess the be-

haviour of the network. Any updates in the data plan are in a distributed manner and

5

hence lead to inconsistent behaviour amid reconfiguration. Also, the substantial flow

space makes the data plane powerless to state exhaustion attacks. These experts have

presented SDNsec, a security extension which provides forwarding accountability for

the SDN data plane. Forwarding rules are encoded in the packet, which makes sure that

the network behaviour is consistent amid reconfiguration and constraints state exhaus-

tion attacks due to table lookups.

2.2 Inference from the survey

It was found that the current topologies for Software Defined networks are not scalable

to a large extent and inter-controller communication is still a big challenge when the

number of controllers involved is huge as per Abubakar Siddique Muqaddas (2017)[1].

When dealing with the cyberattacks such as Denial of service or Distributed Denial

of service, the system requires a proper mechanism to stop the attack from affecting

the whole network using some anomaly detection systems or detection algorithms and

pre-defined parameters

6

CHAPTER 3

PROPOSED SYSTEM

The primary objective was to increase the scalability of Software Defined Networks

and reducing the number of connections in the current standard topology that is used

for the network which would significantly reduce the topology cost by replacing the

mesh topology by a hybrid topology. Making inter-controller communication possible

without any restriction on the type of controller is also achieved in the system removing

any dependency from the type of controller. The latter part of the project focuses on

mitigation of any Denial of Service or Distributed Denial of Service attacks by using

blacklisting methodology and keep the working of the system smooth.

3.1 Scalability

A system where is proposed where a relay acts as a bridge between the controllers in a

distributed system. These relays can be sub-relayed as per geographical requirements.

Controllers use relay as proxy to broadcast flow query in the network. A duplex con-

nection between each controller and relay facilitates simultaneous broadcast and reply.

Any bottlenecks are eliminated using frequent multi threaded constructs.

3.1.1 Data Plane

The data plane has been divided into 3 parts namely:

i) Root Switch:

A unique and mandatory entity for every controller subnet. Every host/switch within a

subnet have a connection to it.

ii) The Relay Switch:

The communicator between the subnets. Relay Switches in whole network are con-

nected via (n-1) connections. Any number of subnets can be managed by a Relay

Switch. They form a straight chain within themselves.

iii) Generic Host:

A generic host is a simple node/user agent that is connected in the topology as shown

in the Figure. 3.1.

Figure 3.1: Data Plane Bird’s eye view

3.1.2 Controller Plane

The redesigned controller plane has three separate entities, namely:

i) The Root Switch Controller:

It serves as the OpenFlow controller for every controller subnet. Are interconnected via

Relay for real time controller communication.

ii) The Relay:

This is a standalone multi-threaded Transmission Control Protocol (TCP) server which

helps in real time connection between the Root Switch Controllers and forms duplex

connections to every Root Switch Controller.

iii) The Relay Switch Controller:

A generic L2 learning switch controller template and enforces OpenFlow protocol on

8

the Relay Switches. The complete topology is shown in the Figure. 3.2 and Figure.

3.3.

Figure 3.2: Controller Plane Bird’s eye view

Figure 3.3: A subnet

9

3.1.3 Sub-Relay

Each relay can be optionally modded into a sub-relay as shown in Figure. 3.4 by sup-

plying a file with the addresses of all the super relays it need to connect to. The sub

relay connects to the super relay and this first connection becomes the downlink con-

nection for the super relay while being uplink for the sub relay. The sub relay creates

a TCP server and listens on port 12346 which is generally on which all the root switch

controllers listen on for getting a connection back from any relay. The super relay,

as in the normal code, connects back to the sub-relay, assuming it to be just another

controller, hence no new exception handling code has to be written. Now the super re-

lay forwards information to this sub-relay too, just like it would for any other controller.

Figure 3.4: The Relay

10

CHAPTER 4

DISTRIBUTED DENIAL OF SERVICE ATTACKS

In a Distributed Denial Of Service(DDoS) Attack, multiple compromised systems are

used to attack a network service by flooding the network with requests more than what

can be handled by the responding system which makes the whole network unavailable

to legitimate requests that are made by a trusted host, depicted in Figure. 4.1.

4.1 Proposed methodology

i) The topology script randomly selects a host for posing like a bad actor, on which it

runs a Hypertext Transfer Protocol (HTTP) server on port 8000 and also a TCP server

on 6666 port.

ii) A random number of hosts from the topology are then selected which fetch the vec.py

(the attack vector file) from the bad acting server.

iii) They then also form a connection to the bad acting server, which the bad actor is

listening for on it port 6666.

iv) When the topology boots up, the attack can be triggered via echoing ’trigger’ in a

named pipe on the bad actor system which in turn broadcasts the ’trigger’ command to

all its connected clients (the zombie hosts).

v) All the hosts then start firing up about a 1,000,000 raw ethernet frames with spoofed

and randomly generated source and destination MAC addresses.

4.2 Mitigation of the attack

4.2.1 Blacklisting

i) Whenever a spoofed raw ethernet frame hits a openVswitch, the query to route it is

sent to the corresponding root switch controller, due to the non availability of the open

Figure 4.1: DDoS attack Depiction

flow entry for that particular route with the switch.

ii) The root switch controller acts upon the receipt of such a packet query by check-

ing the destination address and if it is found to be invalid, the controller adds a flow in

the root switch controller to drop all packets that come in from this particular port, thus

mitigating the attack all together.

4.2.2 Whitelisting

i) Every 20 packets blackhosts is updated from the controller database

ii) Packet legitimacy is then checked

iii) If packet is illegitimate then the old flow is deleted , packets will be dropped by

default, where standard packet drop timeout is 2 sec.

iv) In port search is done in ARP cache, and bad MAC address identified, MAC address

sent on uplink to relay to inform others that this is a BAD MAC.

v) Another controller receives information that this is bad MAC, controller database is

updated through downlink server loop.

vi) If a host in another controller tries to forward packets to the bad MAC address, the

packets will be dropped at its own controller end by dropping all flows to that particular

MAC address on a port, because the controller database contains the information about

12

the bad MAC address.

vii) This reduces the number of total bad packets in the network and hence decreasing

the network overhead.

viii) If a MAC address is not found in the ARP cache, the whole network is flooded

with the packets to be sent to that particular MAC address, once it reaches the MAC, a

flow is established and the controller database is updated.

Figures. 5.4 and 5.3 depict the whitelisting and blacklisting process successfully

taking place and the data in table 5.3 along with the graphical comparision in Figure.

5.1 supports the attack mitigation strategy that has been used the network with substan-

tially appreciable statistics.

13

CHAPTER 5

TESTING DATA

5.1 Data Description

For testing of the modules, testing was performed with no attacks and with DDoS at-

tacks for comparing the statistics that were observed with the mitigation strategy that

had been devised for securing the network.

5.2 The Selected Parameters

i) Throughtput:

It is the number of total packets delivered to the node in a certain amount of time in bytes

per second. The throughput of a link is measured to give the idea of sheer quantity of

similar packets delivered per sec in a link. It gives the sense of reliability of a link under

high pressure. Higher the value, more reliable the link.

Throughput =
No.oftotalpacketsdeliveredtonode

timetaken(bytes/sec)
(5.1)

ii) Bandwidth:

Bandwidth cumulative bytes in the reative time taken.It is used to quantify how fast the

data passes through a link and gives the sense of the efficiency of the routing algorithms

or the networking topology. Higher the value, more efficient the link.

Bandwidth =
Cumulativebytes

relativetime
(5.2)

iii) Delay:

Delay is the ratio of packet length to the link bandwidth. This parameter is used to

quantify the contrary of the Bandwidth as a parameter, but on a per packet ratio. So

lower the value, more efficient the link.

Delay =
Packetlength

Linkbandwidth(bytes/sec)
(5.3)

iv) Packet loss %:

Packet loss % is the ratio of the total packet that are not delivered i.e. lost to the total no

of packets transmitted. This is the quantification of failure rate of a link and gives the

idea of how much packets can be expected to be lost in transit, this helping in creating

the threshold of failure while designing the topology. Lower the value, lower can the

threshold be.

Packetloss% =
(Totalpackets− Totalpacketsdelivered) ∗ 100

Totalpackets
(5.4)

v) Flow request rate:

Flow request rate is the ratio of total number of packets that communicate with the

controller in a given time period. This is a method to quantify the activation of the

controller logic in a particular simulation of a SDN topology. This helps is determining

how efficient the flows are that the controller installs as well as if controller is under an

over overflow attack. Lower the value, better the controller logic.

FlowRequestrate =
No.ofpacketscommunicatingwithcontroller

second
(5.5)

5.3 Methodology adopted for test data analysis

i) For throughput, use the single ping command between hosts and add the number of

bytes divided by total time taken.

ii) For bandwidth, use pingall with "time" suffix

iii) For delay, multiply total number of hosts and ping length, divide by bandwidth.

iv) For packet loss percentage, use pingall output.

v) For flow request rate, Add a counter in controller pkt_in function to check how many

packets come in.

15

5.4 Test Result Data

5.4.1 Test values to benchmark topology

Table 5.1: Test Values to Benchmark topology

16

5.4.2 Test Values to benchmark attack detection and mitigation

Table 5.2: Test Values to Benchmark Attack detection and mitigation

17

5.4.3 Graphical Comparision

Figure 5.1: Graphical Comparision

18

5.4.4 Test Values to benchmark attack strategy against the Attack

Table 5.3: Illegitimate packet drop percentage

5.4.5 Graphical Comparision

Figure 5.2: Graph of processed vs total illegitimate packets

19

5.4.6 Screenshots

Figure 5.3: Blacklisting.PNG

Figure 5.4: DDoS attack

20

CHAPTER 6

CONCLUSION

The evaluation of results was done in two parts of testing for this SDN network model.

The former part focused on making an the network scalable by introduction of the

concept of a relay and a sub-relay. Cost reduction was proposed by opting for a hybrid

topology rather than going for a mesh topology which is used in the standard SDN

networks and the results can be seen in the table 5.1.

At last, it can be stated with finality that this project is capable of doing great justice

with the the dilemma of scalability within the realm of Software Defined Networking.

The test results are a definite proof that the aforementioned topology can surpass the

geographical limitations of setting up a fully functioning network of such sort. This net-

work successfully supplements such an observation with the aid of five mathematically

calculable parameters viz. Bandwidth, Delay, Throughput, Packet Loss percentage and

Flow request rate.

For the latter part of the project, an intentional Distributed Denial of Service attack

is was launched on the same topology based on a highly plausible and frequently en-

countered real world scenario.The mitigation strategy counters such an attack efficiently

which is evident from the situational comparison primarily based on packet request rate,

thus establishing the robustness of the topology.

REFERENCES

1. Abubakar Siddique Muqaddas, Paolo Giaccone, A. B. G. M. (2017). “Inter-controller
traffic to support consistency in onos clusters.” IEEE Transactions on Network and
Service Management, 14, 1018 – 1031.

2. Kannan Govindarajan, Kong Chee Meng, H. O. (2013). “A literature review on software
defined networks research topics, challenges and solutions.” 2013 Fifth International
Conference on Advanced Computing (ICoAC).

3. Krishnan, P. and Najeem, J. S. (2017). “A review of security threats and mitigation
solutions for sdn stack.” International Journal of pure and applied mathematics, 115.

4. Lobna Dridi, M. F. Z. (2016). “Sdn-guard: Dos mitigation in sdn networks.” 2016 5th
IEEE International Conference on Cloud Networking (Cloudnet).

5. Qiao Yan, F. Richard Yu, Q. G. J. L. (2015). “Software-defined networking (sdn) and
distributed denial of service (ddos) attacks in cloud computing environments: A survey,
some research issues, and challenges.” IEEE Communications Surveys Tutorials, 18.

6. Radware. “Radware defenseflow security operations.” Radware.

7. Sakir Sezer, Sandra Scott-Hayward, P. K. C. B. F. D. L. J. F. N. V. M. M. N. R. (2013).
“Are we ready for sdn?- implementation challenges for software defined networks.”
IEEE Communications Magazine, 51.

8. Syed Akbar Mehdi, Junaid Khalid, S. A. K. “Revisiting traffic anomaly detection using
software defined networking.

9. Takayuki Sasaki, Christos Pappas, T. L. T. H. A. P. (2016). “Sdnsec: Forwarding ac-
countability for the sdn data plane.” 2016 25th International Conference on Computer
Communication and Networks (ICCCN).

22

APPENDIX A

SUBMISSION OF PAPER

Project submitted for Indian patent publication, under the Indian patent act, 1970.

APPENDIX B

PLAGIARISM REPORT

Figure B.1: DDoS attack

25

26

APPENDIX C

CONTRIBUTION OF EACH STUDENT

Nikhil:

./relay/code/ids_workings.py

Desc: The module in relay that handles internet domain socket related services

Author: Nikhil

./relay/code/utils.py

Desc: Database handler functions for the mininet

Author: Nikhil

./mininet/topos/utils/master.py

Desc: The master script that runs on the one selected malicious HTTP Server

Author: Nikhil

./mininet/topos/utils/zombie.py

Desc: The script that runs of the affected hosts that request resources from seemingly

bengin HTTP server

Author: Nikhil

Naman: ./mininet/topos/mn_utils.py

Desc: The module to call mininet related functions in strategic order

Author: Naman

./mininet/topos/db_handler.py

Desc: The module for harbouring various commonly used utilities

Author: Naman

./relay/code/uds_workings.py

Desc: The module that handles all the unix domain socket services

Author: Naman

./mininet/topos/utils/vec.py

Desc:The main attack vector, run from a zombie script

Author: Naman

./mininet/topos/viral.py

Desc: The mininet helper script that randomly selectes the malicious HTTP server and

random number of random hosts

Author: Naman

Common Contributions

./controllers/ryu/apps/relsw_ctrlr/fwd.py

Desc: The controller module that handles the relay switch controller Openflow packets.

Author: Base template

./controllers/ryu/apps/rootsw_ctrlr/fwd_rel.py

Desc: The controllers that handles the root switch controller openflow packets and in-

terfaces with the relay.

Author: Common

./controllers/ryu/apps/rootsw_ctrlr/utils.py

Desc: Various umbrella utilities needed by the custom root switch controller module

Author: Common ./controllers/ryu/apps/rootsw_ctrlr/cfg.py

Desc: Configuration module to declare some controller global variables at the runtime

./relay/code/main.py

Desc: The main function calls

Author: Common

./mininet/topos/main.py

Desc: The main mininet calling script

Author: Common

28

APPENDIX D

CODE

D.1 Python code

The following sections include the functions and scripts.

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

APPENDIX E

FUTURE PERSPECTIVES

• Discover new relay applications.

• Implement a flow table overflow attack.

• Test with new topologies and compare.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Overview

	LITERATURE SURVEY
	Overview
	Proprietary Defense Systems in Software defined Networks
	Threat categorization and identification in SDN
	Research in SDN and usage in cloud computing
	DOS attacks mitigation strategies
	SDN, Cloud computing and vulnerabilities
	Implementation of SDN networks in a global perspective
	Behavioural Detection of malicious traffic in the SDN
	Data forwarding policies in SDN

	Inference from the survey

	PROPOSED SYSTEM
	Scalability
	Data Plane
	Controller Plane
	Sub-Relay

	Distributed Denial Of Service Attacks
	Proposed methodology
	Mitigation of the attack
	Blacklisting
	Whitelisting

	TESTING DATA
	Data Description
	The Selected Parameters
	Methodology adopted for test data analysis
	Test Result Data
	Test values to benchmark topology
	Test Values to benchmark attack detection and mitigation
	Graphical Comparision
	Test Values to benchmark attack strategy against the Attack
	Graphical Comparision
	Screenshots

	CONCLUSION
	Submission of paper
	Plagiarism Report
	Contribution of each Student
	CODE
	Python code

	Future Perspectives

