
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

OpenFlow Flow Table Overflow Attacks and
Countermeasures

Ying Qian
Dept. of Computer Science

East China Normal University
Shanghai, China

yqian@cs.ecnu.edu.cn

Wanqing You
Dept. of Computer Science

Southern Polytechnic State University
Marietta, GA, USA

wyou@spsu.edu

Kai Qian
Dept. of Computer Science
Kennesaw State University

Marietta, GA, USA
kqian@kennesaw.edu

 Abstract— Software-defined Network (SDN) is proposed as a
new concept in computer networks, which separates the control
plane from data plane. And it provides a programmable network
architecture that could facilitate network innovation rapidly.
OpenFlow is a network protocol that standardizes the
communications between OpenFlow controllers and OpenFlow
switches. It is considered as an enabler of SDN. The flow table in
OpenFlow switches plays a critical role in OpenFlow-based SDN,
which stores the rules populated by the controllers for controlling
and directing the packet flows in SDN. Nevertheless, they also
become a new target of malicious attacks. This paper analyzes
the flow table overflow attack, a type of denial of service attacks,
and proposes a systematic way to mitigate the overflow in flow
table.

Keywords—OpenFlow; flow table; overflow; attack; mitigation

I. INTRODUCTION
Software Defined Networks (SDN) separates the control

plane from data plane and provides open, scalable, secure, and
programmable network architecture, which can facilitate
network innovation and can operate with different types of
switches and at different protocol layers. SDN controllers and
different types of switches can be implemented at different
layers (L2-L4). The OpenFlow protocol is an open standard
for SDN that specifies the communications between
controllers in control plane and switches in data plane.
OpenFlow controller has a global view of the whole network,
while OpenFlow switch consists of a flow table for flow
entries and secure channel for communicating with controller.
The protocol of OpenFlow was proposed in 2009 and it has
been receiving increasing adaptation by commercial
networking devices and increasing deployment in campus and
enterprise networks [1]. The controller is the heart of
OpenFlow network and decides the packet flows in the data
plane by assigning flow rule entries in the OpenFlow
switches’ flow tables. The data path of each OpenFlow switch
has its flow table and each flow table consists of a finite set of
flow entries. The flow table is a key component of OpenFlow
switch. The performance of entire network can be severely
affected by the malfunction of the flow table, such as resource
exhaustion, rule conflicts, and malicious rule manipulation.

The performance and the security of the OpenFlow flow table
shall be well addressed.

Switches follow the flow rules in flow tables populated by
the controller. The flow rules can either be set by the
controller proactively, or generated by controller reactively
per request from switch where a packet failing to match any
existing rules. Each flow rule consists of three parts: (1) rule
matching pattern section, which specifies the packet flow
delivery from source to destination; (2) associated actions on
packet process, e.g., controller may generate a new flow entry
with “forward” action for the first packet in a new flow, with
“drop” action to reduce traffic, or with a “modify” action to
rewrite the packet header; and (3) statistics data that keep
track of the number of times the rule has been used, length of
each flow, and the recent time when the rule is used for
removal reference.

OpenFlow SDN revolutionizes the network management
and enables network innovations. There are more and more
SDN security research activities on the deployment of novel
security applications over OpenFlow network. For example,
Gu et al [2] proposed the OpenFlow-based CloudWatcher for
network security monitoring for secure dynamic cloud
environment. However, the security of SDN network is also a
very important and challenging task and few research works
have been conducted on the security of key SDN components
such as flow table.

In this paper, we focus on flow table overflow attack
analysis, propose systematic method to mitigate flow table
overflow and evaluate its efficiency and effectiveness. The
paper is organized as follows: Section II gives an overview of
related work. Section III provides the flow table attack
analysis. Section IV presents our solution to the overflow
attacks and its implementation. Section V performs an
evaluation of the defense approach and discusses the results.
Section VI concludes the paper.

II. RELATED WORK
Security analysis for SDN is still an active research area.

A number of related works had analyzed the SDN or
OpenFlow vulnerability and identified security threats [3-7, 8-

EuCNC2016-SoftDefInfra 1570248444

1

11] and some of them also summarized general possible
solutions to malicious attacks, such as FortNox and FRESCO
[12-15] that extended NOX [15] with a security kernel and
security programming interface. Kreutz et al. [6] analyzed and
identified several threat vectors that might enable the exploit
of SDN vulnerabilities. They have summarized SDN security
kernel work that is capable of ensuring prioritized switch flow
rules for security related applications. Wen at al. [16] also
argued that minimum privilege should be put on applications.
However, none of these works enforces the security of SDN
itself such as flow table components.

III. FLOW TABLE OVERFLOW ATTACK ANALYSIS
An asset-centric approach was utilized to help identify

security threats in OpenFlow networks. We first identified
essential assets in the networks, figured out possible security
threats/vulnerabilities, and then analyzed the potential impacts
on the network once the vulnerabilities were employed by
malicious attackers. Some other methodologies can also be
used to analyze the security threats of SDN, such as
Microsoft’s STRID method [3-5] and attack path [17].

Two security threats related to OpenFlow flow table and
their potential consequences are shown in Table 1. The first
threat involves the exhaustion of flow entries and the flow table
overflows. The consequence of the threat affects the
availability of the system, e.g. denial of new rule installation
and thus causing packet loss. Another threat is related to the
malicious manipulation of the rules in the flow table and its
consequences affect the availability, integrity and
confidentiality of the system. For example, a malicious app
deployed in controller can insert a purposed flow rule into flow
table or rewrite packet header proactively that would lead to
rule conflict.

TABLE I. TWO SECURITY THREATS RELATED TO FLOW TABLE

Asset Threat Consequence

Flow
Table

Overflow
Availability
Denial of New Rule Installation;
Packet loss.

Rule Insertion &
Manipulation

Integrity: Rule Conflicts
Confidentiality: flow sniffing
Availability: packet loss

In this paper we focus on the flow table overflow attacks
that would lead to denial of service both on switches and
controllers. When the flow table is overflowed, the switches
can not take any more flow entries and the controller would not
be able to reply to legitimate clients’ requests in time or even
worse, the controller can become unavailable due to the great
volume of requests from attackers. As the controller only
installs rules for packets that have no matched rules in flow
table, it is only necessary to permute some packet header to
cause the installation of new flow entries. The following are
two ways that may cause overflow in flow table.

A. Attacks from Malicious App on Controller
OpenFlow controller is the heart of entire network and takes
charge of the packets that have no matched entries in flow table.

After making decision to deal with the requests from switches,
controller would install a new flow rule for each packet into
flow table. Attacks would take place if a malicious app is
deployed in controller to take care of messages from switches.
Therefore, to reduce the chance that attack might come from
internal, it is recommended to test applications carefully before
deploying them on controller. Kostic et al. [18] proposed a
NICE way to do such inspections. In a typical internal DoS
attack a malicious app starts an infinite loop to install multiple
new flow rules into flow table when receiving a Switch-
Connected message. To overflow flow table, the source IP
address and destination IP address are permuted in our
experimentation so that a large number of new rules can be
inserted.

B. Attacks from Packets
While an internal threat is possible, such as the malicious

app analyzed above, more often, attacks come from external
attackers. External attackers can have more flexible methods to
launch DoS attack, even to make DDoS if there are multiple
attackers. To cause overflow in flow table, attackers can
generate a large number of new packets and send them to the
controller to result in installation of new rules for each packet,
thus exhausting the flow table. In our experiment, we make use
of Scapy [19] to craft a great number of UDP packets by
permuting the source and destination port fields in packet
header, and the send out the packets at user-defined rate.

IV. EVICTION CONTERMEASURES

A. General strategy such as rate limit, timeout adjustment,
etc.
The objective of DoS attacks in OpenFlow is to over-

consume the resources of controller and/or switch, as well as
the communication bandwidth between nodes in network, and
thus makes the normal function of the network unavailable.
For this purpose, a great volume of traffic is involved. The
QoS framework is based on queues and rate limiters.
OpenFlow 1.0 already implements queues to support slicing
feature, which can be achieved via FlowVisor to slice the
whole network into multiple logical sub-networks. The other
aspect of QoS is rate limiting. A rate limiter controls the rate
of packets passing through it. In order to mitigate overflow of
the assets listed in previous section, several use cases of rate
limiting can be taken into consideration, such as limiting the
amount of traffic that a single port can send to the switch,
limiting the amount of packets sent to the controller, or
limiting the number of rules that controller insert into switch
in a short period time. In our experiment, we also notice that
flow timeout, which decides how long a flow entry can inhabit
in flow table, can be adjusted to mitigate the negative effect of
DoS. It is discovered that a longer timeout lends itself to the
flow’s time-to-live property, thus making flow tables easier to
be overflowed.

B. Eviction algorithm
To decrease the impact of DoS, a more effective way is a

reactive and dynamic event-driven method. On receiving the
notification switch sends, the event handler can be triggered to
take respective actions. For example, evict rules from the flow

2

tables, vacate some flow entries for accepting new rules, and
thus mitigate the overflow of the flow table. Based on this
principle, we constructed independent modules in controller to
monitor the traffic went through controller. The modules
utilized the messages between switches and controllers. The
messages used and actions taken when receiving the messages
were summarized as Table 2 and Table 3.

TABLE II. MESSAGES USED IN LEARNING SWITCH MODULE

Message Action

PACKET_IN Monitor the changing of flow table
capacity

FLOW_MOD New rule installed

FLOW_REMOVED Count the flows removed from flow
table

STATS_REPLY Poll and analyze the statistics from
switch

TABLE III. MESSAGES USED IN FLOW CHECKING MODULE

Message Action
PACKET_IN Source address validation, calculate

parameters needed to determine if this
source address is malicious or not, find
out flows that are malicious

As a common network security issue, complete
elimination of DoS/DDoS attacks to SDN seems to be
impossible. Nevertheless, efforts shall be made to mitigate the
effect of this kind of attack, as discussed in [20].

The event-handler eviction model presented in this paper
as was shown in Fig.1. The learning switch module listened to
the events to take care of the basic monitoring. It handled
events as following:

• forwardAsLearningSwitch(): handle PACKET_IN
messages to add new rule into flow table, send out
flow-mod messages to accumulate the number of
rules inserted into flow table, and track the capacity
change of flow table.

• statsReplyHandler(): hander STATS_REPLY
messages to analyze the statistics from switch.

• flowRemovedMsgHandler(): take care of
FLOW_REMOVED messges to accumulate the
number of rules being removed out and record the
reason for removing.

A FlowChecking module was implemented to analyze
every new incoming packet. The jobs of this module: Validate
the source address by querying log and add it to black list if it
does not pass the validation and remove flows that exceed
Packet per Second (PPS) threshold and packet bytes threshold.

• monitorFlows(): handle PACKET_IN messages to
validate the source address, calculate PPS value and
count the bytes has already sent by the source.

Fig. 1. Event-handler model.

The algorithm used in FlowChecking module is quiet
straightforward, however the pre-defined thresholds should be
adjusted according to the real system settings, shown in Fig. 2.

To overflow flow table, attackers may also need to take
advantages of some fields in the flow entries’ matching fields.
The field idle_timeout and hard_timeout in the matching fields
specify the time to remove the flow rule if it is not used during
a period of time and how long a rule can stay in flow table,
respectively. An infinite idle_timeout or hard_timeout will
make a rule to stay in flow table forever. Second, the priority in
matching fields. A rule with higher priority will stay longer
than its counterparts that have lower priority. These properties
would be considered in further work.

Fig. 2. FlowChecking algorithm.

V. EVALUATION

A. Setup and Emulation Environment
In this section, we provided an overview of the simulation

environment, the packets generation tools and the network
configurations that were used for the evaluation of the DoS
attacks by external attackers.

• Simulation Environment: We used the Mininet
framework to create virtual networks, which
implements Open vSwitch that we should need in

Learning Switch
Learns the

<MAC,Port> mapping
and forwards packets

based on the destination
MAC address

FlowChecking
Validate MAC address,

Validate IP address,
Monitor traffic, and
Mitigate overflow

Switch

Messages

// Input: incoming packet
// Alert suspicious behavior and take action
checkingFlow(Switch switch, PacketIn pkt):
 if (! pkt.src is valid):
 remove flows for this address from switch;
 add new entries to drop new incoming packets from
this src;
 add pkt src to black list;
 else:
 if (exceed pre-define threshold PPS)||
 (exceed pre-define threshold bytes count):
 remove flows for this address from switch;
 add new entries to drop new incoming packets
from this src;
 add pkt src to black list;

3

emulation. Mininet is an easy and instant tool to create
virtual network, running real kernel switch and
application code, on a single machine with single
commands. It provides Command Line Interface for
developers to conveniently manipulate each specific
node in the network to help a performance analysis,
such as bandwidth, dump packets. Commands ovs-vsctl
and ovs-ofctl are most used in our case, which are used
to configure parameters in Open vSwitch and flow table
respectively.

• Packet Generation: To simulate attacker, the packet
generation tool Scapy is used, which is embedded in
Mininet framework. It is a Python-based framework
that can be used to craft packets in different network
layers. It also provides a rich number of methods that
enable the developers to send packets under specific
condition, such as specify packets sending rate.

• Network Setup: The network setup consists of two parts.
One is the topology structure used in the
experimentation, which includes 20 hosts, an Open
vSwitch and a Beacon-based controller. More details
about Beacon can be obtained in Erickson’s work [21].
Each node has a unique connection to switch, and the
switch is under the control of controller. To simulate the
ways to attack flow table from client side, we have
scripts listed in Table 4. Attackers may take control of
one or more hosts. If there are several hosts being
controlled by attackers, there is DDoS attack, which
will cause a more serious attack.

B. Experimentation Description
The experiment carried out in this paper was explained in

this part. A topology with 20 hosts, one switch and one
controller was set up first. Then, the attacking scripts listed in
Table 4 were executed in a sequence. When the experiment
arrived at the fifth, tenth and fifteenth minutes during the
whole time period, they were triggered respectively. In other
words, all attacks were on-going at the fifteenth minute. While
the attacks were taking, some data were collected to analysis
packet loss and bandwidth consumed between legitimate
clients.

C. Experimentation Description
The experiment carried out in this paper was explained in

this part. A topology with 20 hosts, one switch and one
controller was set up first. Then, the attacking scripts listed in
Table 4 were executed in a sequence. When the experiment
arrived at the fifth, tenth and fifteenth minutes during the
whole time period, they were triggered respectively. In other
words, all attacks were on-going at the fifteenth minute. While
the attacks were taking, some data were collected to analysis
packet loss and bandwidth consumed between legitimate
clients.

D. Results
With a limited storage of flow table, attackers are able to

overflow flow table easily by sending out a large number of
packets to controller and causing the installation of new rules
for each packet. The results include packets loss and service

delaying, and so on. As shown in Fig.3, the flows kept
growing quickly as the attack came from outside without any
detecting or defensing strategies. The result was that the
storage space of flow table would be consumed largely by the
useless flow rules generated for attackers’ packets. With this
FlowChecking module, the useless rules would be removed to
release some of the space of flow table to mitigate flow table
overflow.

TABLE IV. SIMULATE WAYS TO DOS OPENFLOW FLOW TABLE IN CLIENT
SIDE

In Fig. 3 (FT: flow table), the number of flow entries in
flow table was polled every time when controller installed a
hundred of rules in flow table. Without the FlowChecking
module, more rule entries were inserted into flow table and
made the size of flow table grew fast, which led to the
overflow of flow table. In the pt12 of Fig.3, when all attacks
were on-going, without FlowChecking, the number of flow
entries reached a peak, while most of the useless flow entries
were removed by FlowChecking.

Fig. 3. Flow table capacity change.

If multiple client hosts are controlled by attackers and
become zombies, the attacker can initiate a Distributed DoS
attack. We collected data of packet loss and the bandwidth
consuming between legitimate clients during the attacks. In
Fig. 4, the bandwidth consuming between a pair of legitimate
clients was shown. The two lines were identical to each other;
the bandwidth was consumed mostly when all the attacks were
ongoing, in other words, in the fifteenth minute during the
whole experimentation. According to Fig. 4, we can conclude
that the event handling module has no significant impact on

Script name Attacking way Result

macflood.py Forged MAC Overflow flow
table and
information
disclosure

multidst.py Use Scapy to generate huge traffic
and send out from same source
(assume the source host is hacked)

Overflow flow
table and traffic
congestion

udp-
multi.py

Use Scapy to generate huge traffic
and send from same source
(assume hacked) to same
destination but uses different ports
every time

Overflow flow
table and traffic
congestion

4

the performance of the communications between network
nodes. Legitimate clients still communicate with each other as
if no more handling modules are involved.

Fig. 4. The impact on bandwidth.

However, it would have a trivial impact on the packet loss
excluding some noisy points, shown in Fig.5. Because the
system proposed in this paper would report any suspicious
behavior in the network and take actions. The data of packet
loss were also collected during the whole experimentation.
Data was polled every time when fifteen packets were sent to
a specific port. We made the query to get the number of
received packets. When employing the FlowChecking module,
the packets loss was a little higher.

Fig. 5. Packet loss.

In summary, the system proposed in this paper provides a
proactive event-driven method to mitigate overflow in flow
table. By applying this strategy, the advantages are as
following: the overflow frequency is reduced a lot; most of the
useless flow entries are removed; no obvious impact on the
communication between legitimate clients. The disadvantage
is that the packet loss is a little bit higher.

VI. CONCLUSION
In this paper, we analyze the flow table overflow attack,

which could significantly degrade the SDN performance, and
showed the feasibility of the attacks with experiment data. We
propose a novel cost efficient and effective dynamic solution
to defend against the attacks. The efficiency and effectiveness
of the proposed solution has been evaluated in the simulated
SDN networks using Mininet.

In the future, we will conduct the security analysis for
other important assets in the OpenFlow-based SDN, consider

the useful attributes in flow table’ matching fields, then design
defense solutions。

REFERENCES
[1] Maturing of OpenFlow and Software-Defined Networking through

Deployments, http://yuba.stanford.edu/~srini/papers/comnet13.pdf.
[2] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using

openflow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” Proc. 2012 20th IEEE International
Conference on Network Protocols (ICNP), IEEE, 2012, pp. 1–6.

[3] G. Eason, Rowan Kloti, Vasileios Kotronis, Paul Smith, OpenFlow: A
Security Analysis, IEEE ICNP 2013.

[4] R. Kloti, V. Kotronis, P. Smith, OpenFlow: A Security Analysis, IEEE
ICNP 2013.

[5] ftp://ftp.tik.ee.ethz.ch/pub/students/2012-HS/MA-2012-20.pdf, 2013.
[6] Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable

software-defined networks,” Proc. the second ACM SIGCOMM
workshop on Hot topics in software defined networking, ACM, 2013,
pp. 55–60.

[7] K. Benton, L. J. Camp, C. Small, OpenFlow Vulnerability Assessment,
SIGCOMM, 2013

[8] A. Khurshid, X. Zou, W. X. Zhou, M. Caesar, and P. B. Godfrey,
Veriflow: Verifying network-wide invariants in real time. In
Proceedings of 10th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’13, USA, April 2-5, 2013.

[9] J. H. Jafarian et al., “Openflow random host mutation: transparent
moving target defense using software defined networking,” in Proc. Of
HotSDN, 2012.

[10] A. Khurshid et al., “VeriFlow: verifying network-wide invariants in real
time,” in Proc. of HotSDN, 2012.

[11] M. Kobayashia, S. Seetharamanb, G. Parulkarc, G. Appenzellerd,
J.Littlec, J. van Reijendamc, P. Weissmannb, N. McKeownc, Maturing
of SDN Security Seminars 2012,
http://www.openflowsec.org/SDN_SecuritySeminar_Feb2012.pdf

[12] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” Proc. the first
workshop on Hot topics in software defined networks, ACM, 2012, pp.
121–126.

[13] S. Shin, et al. , “FRESCO: Modular Composable Security Service for
Software-Defined Networks, Internet Society, NDSS, 2013

[14] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“Fresco: Modular composable security services for software-defined
networks,” Proc. Network and Distributed Security Symposium, 2013.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[16] X. Wen, Y. Chen, C. Hu, C. Shi, Y. Wang, Towards a Secure Controller
Platform for OpenFlow Applications, SIGCOMM 2013.

[17] Y. Chen, B. Boehm, L. Sheppard, Value Driven Security Threat
Modeling Based on Attack Path Analysis,
http://sunset.usc.edu/events/2006/CSSE_Convocation/publications/Chen
ValueBasedSecurityThreatModel.pdf

[18] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A nice
way to test openflow applications,” Proc. the 9th USENIX conference
on Networked Systems Design and Implementation, Apr, 2012.

[19] http://www.secdev.org/projects/scapy/doc/usage.html
[20] OpenFlow (D)DoS Mitigation

http://www.delaat.net/rp/2013-2014/p42/report.pdf
SDN Solution aids DDoS attack detection and mitigation.
http://packetpushers.net/openflow-1-0-actual-use-case-rtbh-of-ddos-
traffic-while-keeping-the-target-online/

[21] D. Erickson, The Beacon OpenFlow Controller, Proc. of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking, ACM, 2013, pp. 13-18.

5

