
Are we ready for SDN? - Implementation Challenges for

Software-Defined Networks

Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan

CSIT, Queen’s University Belfast

Barbara Fraser, David Lake - Cisco Systems

Jim Finnegan, Niel Viljoen - Netronome

Marc Miller, Navneet Rao - Tabula

ABSTRACT

Cloud services are exploding and organizations are converging their data centres in

order to take advantage of the predictability, continuity, and quality of service delivered

by virtualization technologies. In parallel, energy-efficient and high-security networking

is of increasing importance. Network operators, service and product providers require a

new network solution to efficiently tackle the increasing demands of this changing network

landscape. Software-Defined Networking has emerged as an efficient network technology

capable of supporting the dynamic nature of future network functions and intelligent appli-

cations while lowering operating costs through simplified hardware, software, and manage-

ment. In this article, the question of how to achieve a successful carrier grade network with

Software-Defined Networking is raised. Specific focus is placed on the challenges of net-

work performance, scalability, security and interoperability with the proposal of potential

solution directions.

1 INTRODUCTION - What is Software-Defined Networking?

Network configuration and installation requires highly-skilled personnel adept at configuration

of many network elements. Where interactions between network nodes (e.g. switches, routers,

etc.) are complex, a more systems-based approach encompassing elements of simulation is

required. With the current programming interfaces on much of today’s networking equipment,

this is difficult to achieve.

In addition, operational costs involved in provisioning and managing large, multi-vendor

networks covering multiple technologies have been increasing over recent years, whilst the pre-

dominant trend in revenue for operations has been decreasing. Coupled with increasing scarcity

1



of human resources and increasing costs of real-estate, this “perfect storm” for service providers

is leading to renewed interest in solutions that can unify network management and provisioning

across multiple domains. A new network model is required to support this.

The term Software-Defined Networking (SDN) has been coined in recent years. However,

the concept behind SDN has been evolving since 1996 driven by the desire to provide user-

controlled management of forwarding in network nodes. Implementations by research and

industry groups include Ipsilon (proposed General Switch Management protocol, 1996), The

Tempest (a framework for safe, resource-assured, programmable networks, 1998) and IETF

Forwarding and Control Element Separation, 2000, and Path Computation Element, 2004.

Most recently, Ethane (2007) and OpenFlow (2008) have brought the implementation of SDN

closer to reality. Ethane is a security management architecture combining simple flow-based

switches with a central controller managing admittance and routing of flows. OpenFlow enables

entries in the Flow Table to be defined by a server external to the switch. SDN is not, however,

limited to any one of these implementations, but is a general term for the platform.

For clarity, SDN is described in this article with the Open Networking Foundation (ONF) [1]

definition: “In the SDN architecture, the control and data planes are decoupled, network intelli-

gence and state are logically centralized, and the underlying network infrastructure is abstracted

from the applications.”

SDN focuses on four key features:

• Separation of the control plane from the data plane,

• A centralized controller and view of the network,

• Open interfaces between the devices in the control plane and the data plane, and

• Programmability of the network by external applications.

Our vision of the future SDN architecture is described in Figure 1. This architecture en-

compasses the complete network platform.

The bottom tier of Figure 1 involves the physical network equipment including Ethernet

switches and routers. This forms the data plane.

The central tier consists of the controllers that facilitate setting up and tearing down flows

and paths in the network. The controllers use information about capacity and demand obtained

from the networking equipment through which the traffic flows. The central tier links with the

bottom tier via an Application Programming Interface (API) referred to as the southbound

API. Connections between controllers operate with east and westbound APIs. The controller-

application interface is referred to as the northbound API.

Functional applications such as energy-efficient networking, security monitoring and access

control for operation and management of the network are represented at the top of Figure 1

highlighting the user-control/management separation from the data-plane. An application in

this article refers to a service provided by the network operator. A detailed insight into every

2



Figure 1: SDN Functional Architecture illustrating the infrastructure, control and application

elements of which the network is comprised.

element of the architecture in Figure 1 is beyond the scope of this article. Instead, the transition

from the traditional network to state-of-the-art in SDN today is presented.

A key challenge of SDN relates to separation of the control and data plane and maintaining

carrier grade service within this framework. The architecture requirements to meet operational

expectation in carrier grade networks are scalability, reliability, Quality-of-Service (QoS) and

service management [2]. Four specific questions arising from the control-data plane separation

challenge are discussed in Section 3. A series of solutions to these identified issues are studied

and the article concludes with the outline of our vision for the future of SDN.

2 BACKGROUND -Why SDN?

The fundamental purpose of the communication network is to transfer information from one

point to another. Within the network the data travels across multiple nodes and efficient and

effective data transfer (forwarding) is supported by the control provided by network applica-

tions/services.

Networking - The Old Way:

In traditional networks, as shown in Figure 2, the control and data planes are combined in

a network node.

The control plane is responsible for configuration of the node and programming the paths

that will be used for data flows. Once these paths have been determined they are pushed down

3



to the data plane. Data forwarding at the hardware level is based on this control information.

In this traditional approach, once the flow management (forwarding policy) has been defined,

the only way to make an adjustment to the policy is via changes to the configuration of the

devices. This has proven restrictive for network operators who are keen to scale their networks

in response to changing traffic demands, increasing use of mobile devices and the impact of

“Big Data”.

Figure 2: Traditional Network View compared with SDN Network View

Networking - The SDN Way:

From these service-focussed requirements, SDN has emerged. Control is moved out of the

individual network nodes and into the separate, centralized controller. SDN switches are con-

trolled by a Network Operating System (NOS) that collects information using the API shown in

Figure 2B and manipulates their forwarding plane, providing an abstract model of the network

topology to the SDN controller hosting the applications.

The controller can therefore exploit complete knowledge of the network to optimize flow

management and support service-user requirements of scalability and flexibility. For example,

bandwidth can be dynamically allocated into the dataplane from the application.

In Figure 3, once the first packet of a new flow arrives at the switch from the sender (Step

1) the switch checks for a flow rule for this packet in the SDN cache (Step 2). If a matching

entry is found, the instructions associated with the specific flow entry are executed e.g. update

counter, packet/match fields, action set, metadata. Packets are then forwarded to the receiver

(Step 5).

If no match is found in the flow table, (Step 3) the packet may be forwarded to the controller

over a secure channel. Using the southbound API (e.g. OpenFlow, ForCES, PCEP etc.), the

controller can add, update, and delete flow entries, both reactively (in response to packets) and

proactively. The controller executes the routing algorithm and (Step 4) adds a new forwarding

4



Figure 3: The Operation of SDN (Controller-Node)

entry to the flow table in the switch and to each of the relevant switches along the flow path.

The switch then forwards the packet to the appropriate port to send the packet to the receiver

(Step 5).

Where does SDN take us?

SDN implementation opens up means for new innovation and new applications. Dynamic

topology control i.e. adjusting switch usage depending on load and traffic mapping becomes

possible with the global network view. This introduces scope for network-wide access control,

power management and home networking, for which the network view is not beneficial but

absolutely necessary.

Furthermore, the network programmability possible in SDN allows seamless communication

at all levels, from hardware to software and ultimately to end users (network operators). Pro-

grammability makes applications aware of the network and the network aware of applications.

This enables greatly improved use of resources and opens up the potential for new applications

with the associated potential for revenue-generation e.g. flow-metering in which cost plans can

be defined based on a level of service provision.

3 KEY CHALLENGES

SDN holds great promise in terms of simplifying network deployment and operation along with

lowering the total cost of managing enterprise and carrier networks by providing programmable

network services. However, a number of challenges remain to be addressed. This section focuses

on four specific questions arising from the challenges of SDN.

Performance vs. Flexibility: How can the programmable switch be

achieved?

One fundamental challenge of SDN is how to handle high touch, high security, high per-

5



formance packet processing flows in an efficient manner. There are two elements to consider;

performance and programmability/flexibility.

In this section, performance refers specifically to the processing speed of the network node

considering both throughput and latency. Programmability means the capability to change

and/or accept a new set of instructions in order to alter functional behaviour. Flexibility is

the ability to adapt systems to support new unforeseen features (e.g. applications, protocols,

security measures).

There are a number of initiatives [3, 4] underway to allow programmability of existing

network technologies in a manner conformant with the goals of SDN. Beyond these, the SDN

programmability and performance problem remains a challenge to achieve node bandwidth

beyond 100 Gbps.

Figure 4 outlines the main technologies used for network processing in terms of their rela-

tionship (trade-off) between programmability/flexibility and performance.

 Programmability 

Processing 
Performance 

(Gbps) 

NPU / NFP 

PLD / FPGA 

ASSP 

Custom ASIC 

Multi-Core CPU / GPP 

10 100 1000 

Figure 4: Network Processing - Performance vs. Programmability

General Purpose Processors (CPU/GPP) provide the highest flexibility. High-level pro-

gramming languages and design tools enable the highest design abstraction and the rapid de-

velopment of complex packet processing functions. The limitation of CPU implementation,

however, is its performance and power dissipation, constrained by the general purpose architec-

ture. Nevertheless, multi-core processors such as those of the Intel Xeon family [5] can achieve

several tens of Gigabits of throughput by load balancing traffic onto multiple cores.

Network Flow Processors (NPU/NFP) are optimized processor architectures for network

processing. Instructions and interconnects are tailored for processing packetized data. Dedi-

cated hardware accelerators and various interface technologies are used for acceleration while

reducing power dissipation. However, the flexibility of implementation is reduced as more de-

tailed knowledge of the device is required in order to define the packet/flow processing function

6



and to take full advantage of the device’s parallel processing capabilities. State-of-the-art NPUs

such as the Netronome NFP6xxx [6] offer 216 micro-cores promising flow processing performance

of over 200 Gbps line-rate per device and well over 100 Mpps.

Programmable Logic Devices (PLD) or Field Programmable Gate Arrays (FPGAs) have

evolved into a technology for telecommunication and network processing. In comparison to

microprocessors, PLDs are configured using hardware design tools. This technology is ideal for

implementing highly parallel and pipelined data paths that are tailored for individual network

processing functions. PLD technologies such as the Tabula ABAX2 [7] can achieve custom

data-path processing of over 200 Gbps per device e.g. 200 Mpps switching.

Application Specific Standard Products (ASSP) are the cornerstone of high-performance

networks. They are designed and optimized for widely used functions or products aiming for

high-volume. The drawback of ASSPs is their limited flexibility. Core ASSP domains are

physical and data-link layer products, switching and wireless products. In recent years, SDN-

specific ASSPs have been introduced by Intel, Broadcom and Marvell targeting primarily high-

performance Ethernet switching with virtualization and OpenFlow support for over 500 Gbps

switching.

Application Specific Integrated Circuits (ASIC) are proprietary devices custom-built by

system vendors (e.g. Cisco, Huawei, Juniper etc.) when standard products are unavailable and

programmable solutions are unable to meet performance constraints. As an application-specific

solution, ASICs offer the lowest flexibility while providing the highest performance, power and

cost benefits. SDN products are expected to be comprised of proprietary ASICs to implement

the SDN data plane.

Taking into account the programmability/performance trade-off of data processing tech-

nologies, it is evident that only a hybrid approach will provide an effective technology solution

for SDN. Main SDN node functions can be decomposed into clusters of sub-functions such that

feature-specific technologies (within or across nodes) are used to satisfy the best performance

versus programmability trade-off in terms of power dissipation, cost and scalability.

For example, building a platform based on custom-built devices (e.g. PLDs/ASSPs) com-

bined with NPUs/NFPs and a CPU/GPP presents a hybrid programmable architecture. Such

a platform can support fast forwarding on established flows in the network along with pro-

grammability and controlled processing for encapsulated traffic and new flows.

One goal of SDN is to develop networks built on general purpose hardware. The combination

of technologies as described in the hybrid architecture supports this goal. With a programmable

interface built on standard hardware, a multi-vendor equipped network becomes a possibility.

7



Scalability: How to enable the Controller to provide a global network

view?

Assuming that the performance requirements can be achieved within the hybrid programmable

archtitecture, a further issue that has seen some discussion but limited solution is scalability in

SDN.

The issue can loosely be split into controller scalability and network node scalability. The

focus here is on controller scalability in which three specific challenges are identified. The first

is the latency introduced by exchanging network information between multiple nodes and a

single controller. The second is how SDN controllers communicate with other controllers using

the east and westbound APIs. The third challenge is the size and operation of the controller

back-end database.

Considering the first issue, a distributed or peer-to-peer controller infrastructure would share

the communication burden of the controller. However, this approach does not eliminate the

second challenge of controller-to-controller interactions for which an overall network view is

required.

Traditional packet networks lend themselves to scalable solutions because they do not require

extensive state to be held between system units. Each network node is autonomous, requiring

only limited knowledge of its neighbours. Routing protocols have been designed to control

traffic with this in mind. In order to create resilient networks, alternative paths and secondary

equipment are required. It may then be necessary to hold some state between systems to ensure

that should a failure occur, there is little or no interruption in service. Typical systems that

require this functionality include network elements such as Load Balancers and Firewalls.

Within a pure SDN environment, a single controller or group of controllers would provide

control plane services for a wider number of data-forwarding nodes, thus allowing a system-wide

view of network resources.

Other approaches that match the goals of SDN with existing routing protocols involve

addition of an orchestration layer exposing an API that application elements may use to request

desired performance from the transport layer.

An extension to the Application Layer Traffic Optimization (ALTO) data model has been

proposed by various organizations in which the ALTO server hosts aggregated information to

which each controller has a link. The goal of ALTO is to guide applications in their selection

of one of several hosts capable of providing the desired resource. A vertical architecture with

bi-directional information flow between each SDN controller and the ALTO server is proposed

in [8] to support the global network view. In terms of improving application performance,

ALTO with SDN would be a powerful tool.

A specific solution to controller scalability is HyperFlow [9]. HyperFlow is a controller

application that sits on the NOX controller and works with an event propagation system. The

8



HyperFlow application selectively publishes events that change the state of the system and

other controllers replay all the published events to reconstruct the state. By this means all the

controllers share the same consistent network-wide view.

Indeed, this concept of providing the network view by distributing the state over multi-

ple controllers is highlighted in [10] in which a series of solutions to controller scalability are

described. Notably, in [10], the authors conclude that the flexibility of SDN provides an oppor-

tunity in terms of network manageability and functional scalability.

On the way to achieving full scalability for SDN, an evolutionary approach to network pro-

grammability will be necessary. For example, with the hybrid architecture a volume of queries

can be resolved in the node CPU, which would otherwise be transferred to the controller for

processing. This can potentially reduce the database size at the controller and simultaneously

reduce communication between the controller and its nodes.

Security: How can the Software-Defined Network be protected from

malicious attack?

There has been limited industry and research community discussion to date on the security

issues associated with SDN. A greater focus on security is therefore required if SDN is going to

be acceptable in broader deployment. Indeed a security working group has been set up within

ONF with this in mind. A number of issues are highlighted here that underscore the need for

further study and development of security solutions.

Potential security vulnerabilities exist across the SDN platform. At the controller-application

level, questions have been raised around authentication and authorization mechanisms to enable

multiple organizations to access network resources while providing the appropriate protection

of these resources [11]. Not all applications require the same network privileges and a security

model must be put in place to isolate applications and support network protection.

One potential solution is role-based authorization. FortNox [12] is proposed to resolve the

situation when a controller receives conflicting flow rules from two different applications. Role-

based authorization alone, however, does not present a solution for the complexity of SDN

requiring isolation of applications or resources.

The controllers are a particularly attractive target for attack in the SDN architecture open to

unauthorized access and exploitation. Furthermore, in the absence of a robust, secure controller

platform, it is possible for an attacker to masquerade as a controller and carry out malicious

activities. In the past, such attacks have targeted DNS servers e.g. Kaminsky DNS attack [13].

Considerably greater damage could be done by such an attack on an SDN controller.

A security technology such as Transport Layer Security (TLS) with mutual authentication

between the controllers and their switches can mitigate these threats. Current specifications

of OpenFlow [1] describe the use of TLS. However, the security feature is optional and the

9



standard of TLS is not specified. A full security specification for the controller-switch interface

must be defined to secure the connection and protect data transmitted across it.

With a single controller controlling a set of network nodes, implementation of authentication

with TLS may provide the necessary security. However, with multiple controllers communicat-

ing with a single node or multiple control processes communicating with a single, centralized

controller, authorization and access control becomes more complex. The potential for unautho-

rized access increases and could lead to manipulation of the node configuration and/or traffic

through the node for malicious intent.

One potential malicious attack is the Denial of Service (DoS) attack. Within the operation

of SDN, as illustrated in Figure 3, there are two options for the handling of a new flow when

no flow match exists in the flow table. Either the complete packet or a portion of the packet

header is transmitted to the controller to resolve the query. With a large volume of network

traffic, sending the complete packet to the controller would absorb high bandwidth.

However, if only header information is transmitted to the controller, the packet itself must

be stored in node memory until the flow table entry is returned. In this case, it would be

easy for an attacker to execute a DoS attack on the node by setting up a number of new and

unknown flows. As the memory element of the node can be a bottleneck due to high cost, an

attacker could potentially overload the switch memory.

Furthermore, with the introduction in SDN of open interfaces and known protocols to sim-

plify network programming by any application provider, the door is thrown open to attackers.

With full knowledge of how to control the network, with access to the controller, the operation

of the network can quickly and easily be subverted to the benefit of the attacker. Even at a

lower level, individual network nodes, hosts or users could be targeted undermining the desired

network performance. Such issues must receive due consideration in the SDN platform design.

On the plus side, the SDN architecture supports a highly reactive security monitoring,

analysis and response system. From the security perspective SDN can support:

• Network Forensics: facilitate quick and straightforward, adaptive threat identification

and management through a cycle of harvesting intelligence from the network, analyzing

it, updating policy and then reprogramming to optimize from network experience.

• Security Policy Alteration: allow you to define a security policy and have it pushed

out to all the infrastructure elements, reducing the frequency of mis-configuration and

conflicting policies across the infrastructure.

• Security Service Insertion: facilitate security service insertion where applications like

firewalls and Intrusion Detection Systems (IDS) can be applied to specified traffic accord-

ing to the organization’s policies.

10



However, the security of SDN will only be as good as the defined security policy. Implemen-

tation of existing authentication and authorization mechanisms can resolve some aspects of

the security challenge. Meanwhile, threat detection and protection techniques will continue

to evolve. The key, though, is for individual organizations to effectively and comprehensively

define their security policies in order to exploit the full extent of available network protection.

Interoperability: How can SDN solutions be integrated into existing

networks?

To answer this question requires consideration of interoperability andstandardization to

support the transition from the traditional network model to SDN.

It would be straightforward to deploy a completely new infrastructure based on SDN tech-

nology. For this, all elements and devices in the network would be SDN-enabled. However,

there exists a vast, installed-base of networks supporting vital systems and businesses today.

To simply “swap-out” these networks for new infrastructure is not going to be possible and is

only well suited for closed environments such as data centres and campus networks.

The transition to SDN therefore requires simultaneous support of SDN and legacy equip-

ment. The IETF Path Computation Element (PCE) [14] could help in gradual or partial

migration to SDN. With PCE, the path computation component of the network is moved from

the networking node to a centralized role while traditional network nodes not using PCE con-

tinue to use their existing path computation function. A specific protocol (PCEP) enables

communication between the network elements. However, PCE does not provide complete SDN.

The centralized SDN controller supports complete path computation for the flow across multiple

network nodes.

Further development is required to achieve a hybrid SDN infrastructure in which traditional,

SDN-enabled and hybrid network nodes can operate in harmony. Such interoperability requires

the support of an appropriate protocol which both introduces the requirements for SDN com-

munication interfaces and provides backward compatibility with existing IP routing and MPLS

control plane technologies. Such a solution would reduce the cost, risk and disruption for

enterprise and carrier networks transitioning to SDN.

Introducing a new protocol requires consideration of standardization and where this stan-

dardization will be of most benefit. ETSI Network Function Virtualisation (NFV) Industry

Specification Group [4] intends to standardize components within the core network that may

be virtualized to provide efficient scalability and placement of those services. IETF’s Forwarding

and Control Element Separation (ForCES) WG has been working on standardizing interfaces,

mechanisms and protocols with the goal of separating the control plane from the forwarding

plane of IP routers. ONF is standardizing OpenFlow as a communication protocol within the

network and is driving the standards of related protocols, such as the OpenFlow management

11



and configuration protocol. Many programming languages such as Frenetic, Procera etc. are

also being proposed to resolve the northbound API link.

The work of the IETF, ETSI, ONF and other industry working groups must be coordinated

in order to take advantage of existing standards in networking while proposing and developing

the most effective standards to support migration from the traditional network model to SDN.

4 CONCLUSION

SDN has emerged as a means to improve programmability within the network to support the

dynamic nature of future network functions. As bandwidth demand escalates, the provision of

additional capabilities and processing power with supportfor multiple 100GE channelswill be

seamless through an SDN-based update and/or upgrade. SDN promises flexibility, centralized

control and open interfaces between nodes enabling an efficient, adaptive network.

In order to achieve this goal, a number of outstanding challenges must be resolved. In this

article we have presented a discussion of a number of challenges in the area of performance,

scalability, security and interoperability. Existing research and industry solutions could resolve

some of these problems and a number of working groups are also discussing potential solutions.

In addition to these, the hybrid programmable architecture could be a means to counter per-

formance and scalability issues introduced by SDN. The objective of the model is to optimize

flow processing in the network.

The original data networks were formed out of a combination of computing devices with

data and network nodes to transfer this data between the source and destination. The ability

to provide “X”-as-a-service (XaaS) through virtualization technology has increased the volume

of data in the network. This has set a baseline for a new communication method by pushing

computation into the network devices increasing machine-to-machine communications.

The future of networks will be shaped around this progression. The goal is to provide

effective communications and services where network, data and computation are fused into a

service architecture. In the future, for a specific process, data will request the computing,

storage and connection that it requires before launching the application. The location of the

network elements might be distributed physically and virtually but this will be entirely opaque

to the end user. All the user will observe is the quality of delivery of the requested service.

SDN will contribute to this vision of future communications. However, significant issues

must be addressed in order to meet expectations. Indeed consideration of the potential for

application-driven networks might lead us to wonder whether SDN as currently envisioned is

even sufficient. Nevertheless, it is certain that SDN is here to stay as an evolutionary step for

paving the way for a highly optimized ubiquitous service architecture.

12



References

[1] “Software-Defined Networking: The New Norm for Networks,” Open Networking

Foundation, White Paper. [Online]. Available: https://www.opennetworking.org

[2] “ITU.T Recommendation Y.1731 OAM Functions and Mechanisms for Ethernet based

Networks.” [Online]. Available: http://www.itu.int/itudoc/itu-t

[3] “Interface to the Routing System,” IRTF Working Group. [Online]. Available:

https://datatracker.ietf.org/wg/irs/charter/

[4] “Network Function Virtualisation,” ETSI Industry Specification Group. [Online].

Available: http://portal.etsi.org/portal/server.pt/community/NFV/367

[5] R. Ozdag, “Intel Ethernet Switch FM6000 Series - Software Defined Networking.” [On-

line]. Available: http://www.intel.co.uk/content/dam/www/public/us/en/documents/

white-papers/ethernet-switch-fm6000-sdn-paper.pdf

[6] “Netronome NFP6XXX Flow Processor.” [Online]. Available: http://netronome.com/

pages/flow-processors/

[7] “Tabula.” [Online]. Available: www.tabula.com

[8] “Use Cases for ALTO with Software Defined Networks,” Internet Engineering

Task Force ALTO Working Group. [Online]. Available: http://tools.ietf.org/pdf/

draft-xie-alto-sdn-use-cases-01.pdf

[9] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane for Open-

Flow,” in Proceedings of the 2010 Internet Network Management Conference on Research

on Enterprise Networking, 2010.

[10] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-defined network-

ing,” IEEE Communications Magazine, vol. 51, no. 2, pp. 136–141, February 2013.

[11] “”Security Requirements in the Software Defined Networking Model”,” IETF Network

Working Group Internet-Draft. [Online]. Available: https://datatracker.ietf.org/doc/

draft-hartman-sdnsec-requirements/

[12] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A Security Enforce-

ment Kernel for OpenFlow Networks,” in Proceedings of the 1st Workshop on Hot topics

in Software Defined Networks. ACM, 2012, pp. 121–126.

[13] “Kaminsky DNS Attack.” [Online]. Available: http://dankaminsky.com

[14] “Path Computation Element,” IETF Working Group. [Online]. Available: http:

//datatracker.ietf.org/wg/pce/charter/

13

https://www.opennetworking.org
http://www.itu.int/itudoc/itu-t
https://datatracker.ietf.org/wg/irs/charter/
http://portal.etsi.org/portal/server.pt/community/NFV/367
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://netronome.com/pages/flow-processors/
http://netronome.com/pages/flow-processors/
www.tabula.com
http://tools.ietf.org/pdf/draft-xie-alto-sdn-use-cases-01.pdf
http://tools.ietf.org/pdf/draft-xie-alto-sdn-use-cases-01.pdf
https://datatracker.ietf.org/doc/draft-hartman-sdnsec-requirements/
https://datatracker.ietf.org/doc/draft-hartman-sdnsec-requirements/
http://dankaminsky.com
http://datatracker.ietf.org/wg/pce/charter/
http://datatracker.ietf.org/wg/pce/charter/

	INTRODUCTION - What is Software-Defined Networking?
	BACKGROUND -Why SDN? 
	KEY CHALLENGES
	CONCLUSION

