
Trusted Communication in Software Defined

Distributed Systems

PROJECT REVIEW REPORT - III

Submitted by

Naman Arora RA1511003010235

Nikhil Gupta RA1511003010245

in partial fulfillment of the requirements for the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

FACULTY OF ENGINEERING AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

KATTANKULATHUR- 603 203

APRIL 2019

ii

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT iii

 LIST OF FIGURES iv

 1 INTRODUCTION V

 1.1 SDN Networks v

 1.2 Standard Architecture vi

 2 LITERATURE SURVEY ix-xiv

 3 MODULES xv

 3.1 Sub-Relay Modules

 3.2 Mininet modules

 3.3 Controller Modules

 APPENDIX xvi

 REFERENCES xxii

iii

ABSTRACT

The internet, since the advent of ARPANET, has come along a very

long way. It has undoubtedly changed millions of lives and even now is

in its infancy. Software Defined Networking (SDN) is presented as a

paradigm shift in this regard. It strives to standardize the networking on

all levels. This is an initiative to redesign the current networking stack

and compartmentalize into three main planes, the data plane, the control

plane and the management plane, respectively moving from bottom up.

We, here, have put an effort to augment the idea of SDN to a more

distributed framework. Using cleverly designed topologies like Spine

leaf, we demonstrate the interconnection of controllers using relay

system designed from bottom up as the first phase. The second phase,

on other hand, acknowledges the need to secure such translations and

we try to mitigate Denial of Service (DoS) attacks on the control plane.

iv

LIST OF FIGURES

FIGURE NO. TITLE PAGENO.

1.1 SDN Architecture Diagram vi

1.2 Designed SDN Architectecture(lateral view) vii

1.3 Horizontal View viii

v

Introduction

Currently SDN, as defined by OpenFlow, does not stipulate inter

controller communication. SDN, thus, is limited to single controller

and non-scalable networks. Huge trend-setters in industry rely on

topologies like Mesh Networks. Introduction of relay

communication between controllers. Facilitation of broadcast like

capabilities is proposed. Security threats to control planes in form

of DoS attacks are explored. Mitigation of pre-specified Denial of

Service (DoS) attacks on control plane. This is an initiative to

redesign the current networking stack and compartmentalize into

three main planes, the data plane, the control plane and the

management plane. Using cleverly designed hybrid topologies, we

demonstrate inter-controller connection in a distributed

environment in first phase. The second phase acknowledges the

need to secure such translations and we try to mitigate Denial of

Service (DoS) attacks on the control plane.

vi

Standard SDN Architecture

vii

Designed SDN Architecture

Figure 2 Data plane view of the architecture

Figure 3 Controller Plane view of the architecture

viii

Figure 4 Proposed Single Subnet structure

Figure 5 The relay structure

ix

Literature Survey

[1] Radware, has stated that the landscape is changing. It is not only the

IT infrastructure which is gaining ground in complexity, quantity and

expectation, but attackers are utilizing newly available technology and

the results of this are already being seen on the battlefield.

DefenseFlow allows service providers to easily automate incident

response operations in the most complex and highly-distributed

environments. The cyber command and control application maximizes

security effectiveness with minimal operational effort and overhead.

[2] Prabhakar Krishnan and Jisha S Najeem, stated that employing SDN

in modern networks provides the much needed agility and visibility to

orchestrate and deploy network solutions. But from the security

perspectives in terms of threat attack prediction and risk mitigation,

especially for the advanced persistent attacks such as DDoS and side

channel attacks in Clouds, SDN stack control plane saturation attacks,

switch flow table exhaustion attacks - there are still open challenges in

SDN environments. They have presented the taxonomy of threats, risks

and attack vectors that can disrupt the SDN stack and present various

approaches to solve these problems, to deploy SDN securely in

production environments.

[3] Kannan Govindarajan , Kong Chee Meng , Hong Ong, stated that a

key emerging trend in Cloud computing is that the core systems

infrastructure, including compute resources, becoming Software-

Defined. Storage and In networking, particularly, is increasingly instead

of being limited by the physical infrastructure, applications and

platforms will be able to specify their fine-grained needs, thus precisely

defining the virtual environment in which they wish to run. Software-

Defined Networking (SDN) plays an important role in paving the way

for effectively virtualizing and managing the

network resources in an on demand manner. They surveyed the state of

the art in Software-Defined Networking (SDN) research in four areas:

Network Quality of Service (QoS), Load Balancing, Scalability and

Security. From the literature survey, they have identified that, there is no

x

common architecture or solution to address all the four issues that

should be addressed in the context of Software-Defined

Networking (SDN). Hence, most of the future work will be mainly

focused to develop a customized Software-Defined Network.

[4] Lobna Dridi, Mohamed Faten Zhani, stated that despite all the

advantages offered by SDN technology, Denial-of-Service (DoS)

attacks are considered a major threat to such networks as they can easily

overload the controller processing and communication capacity and

flood switch CAM tables, resulting in a critical degradation of the

overall network performance.

They proposed SDN-Guard, a novel scheme able to efficiently protect

SDN networks against DoS attacks by dynamically (1) rerouting

potential malicious traffic, (2) adjusting flow timeouts and (3)

aggregating flow rules. Realistic experiments using Mininet show that

the proposed solution succeeds in minimizing by up to 32% the impact

of DoS attacks on the controller performance, switch memory usage and

control plane bandwidth and thereby maintaining acceptable network

performance during such attacks.

[5] Qiao Yan, F. Richard Yu, Senior Member, IEEE, Qingxiang Gong,

and Jianqiang Li, have stated that the capabilities of SDN, including

software-based traffic analysis, centralized control, global view of the

network, dynamic updating of forwarding rules, make it easier to detect

and react to DDoS attacks but the security of SDN itself remains to be

addressed, and potential DDoS vulnerabilities exist across SDN

platforms.

They have discussed the new trends and characteristics of DDoS attacks

in cloud computing, and provided a comprehensive survey of defense

mechanisms against DDoS attacks using SDN.

[6] Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan et al.,

have stated that Software-Defined Networking has emerged as an

efficient network technology capable of supporting the dynamic nature

of future network functions and intelligent applications while lowering

operating costs through simplified hardware, software, and

xi

management. They have raised the question of how to achieve a

successful carrier grade network with Software-Defined Networking.

They have discussed a number of challenges in the area of performance,

scalability, security and interoperability. Existing research and industry

solutions could resolve some of these problems and a number of

working groups are also discussing potential solutions.

In addition to these, the hybrid programmable architecture could be a

means to counter performance and scalability issues introduced by SDN.

The objective of the model is to optimize flow processing in the

network.

[7] Syed Akbar Mehdi , Junaid Khalid , and Syed Ali Khayam, have

argued that the advent of Software Defined Networking (SDN) provides

a unique opportunity to effectively detect and contain network security

problems in home and home office networks. They have illustrated how

four prominent traffic anomaly detection algorithms can be

implemented in an SDN context using Openflow compliant switches

and NOX as a controller. Their experiments indicated that these

algorithms are significantly more accurate in identifying malicious

activities in the home networks as compared to the ISP.

One of the key benefits of this approach is that the standardized

programmability of SDN allows these algorithms to exist in the context

of a broader framework. They have envisioned a Home Operating

System built using SDN, in which our algorithm implementations would

co-exist alongside other applications for the home network e.g. QoS and

Access Control.

[8] Lei Xu, Jeff Huang, Sungmin Hong, Jialong Zhang, and Guofei Gu,

they have introduced a novel attack against SDN networks that can

cause serious security and reliability risks by exploiting harmful race

conditions in the SDN controllers, similar in spirit to classic TOCTTOU

(Time of Check to Time of Use) attacks against file systems.

They developed a dynamic framework including a set of novel

techniques for detecting and exploiting harmful race conditions. The

tool CONGUARD has found 15 previously unknown vulnerabilities in

three mainstream SDN controllers. this work will pave a foundation for

xii

detecting concurrency vulnerabilities in the SDN control plane, and in

general will stimulate more future research to improve SDN security.

[9] Takayuki Sasaki, Christos Pappas, Taeho Lee, Torsten Hoefler,

Adrian Perrig have stated that the network operator lacks tools to

proactively ensure that policies will be followed or to reactively inspect

the behavior of the network. The distributed nature of state updates at

the data plane leads to inconsistent network behavior during

reconfigurations. And the large flow space makes the data plane

susceptible to state exhaustion attacks.

They presented SDNsec, an SDN security extension that provides

forwarding accountability for the SDN data plane. Forwarding rules are

encoded in the packet, ensuring consistent network behavior during

reconfigurations and limiting state exhaustion attacks due to table

lookups. They designed two mechanisms: path enforcement to ensure

that the switches forward the packets based on the instructions of the

operator and path validation to allow the operator to reactively verify

that the data plane has followed the specified policies. In addition,

SDNsec guarantees consistent policy updates such that the behavior of

the data plane is well defined during reconfigurations.

[10] Lei Wei, Carol Fung, have stated that the centralized nature of SDN

is a potential vulnerability to the system since attackers may launch

denial of services (DoS) attacks against the controller. Existing solutions

limit requests rate to the controller by dropping overflowed requests, but

they also drop legitimate requests to the controller. Hence they proposed

a system, FlowRanger, a buffer prioritizing solution for controllers to

handle routing requests based on their likelihood to be attacking

requests, which derives the trust values of the requesting sources. Based

on their trust values, FlowRanger classifies routing requests into

multiple buffer queues with different priorities. Thus, attacking requests

are served with a lower priority than regular requests.

xiii

Modules

• Sub-Relay Modules

◦ Ids_workings.py

◦ Main.py

◦ Uds_workings.py

◦ Utils.py

◦ Db_handler.py

◦ Mn_utils.py

◦ Viral.py

• Mininet modules

◦ Cust_topo.py

◦ Master.py

◦ Vec.py

◦ Zombie.py

• Controller Modules

◦ Bl.py

◦ Cfg.pyc

◦ Fwd_rel.py

◦ Utils.py

◦ Fwd.py

xiv

APPENDIX

Attack with fake MAC addresses

xv

Attack Mitigation

xvi

Source Code:

Fwd_rel.py

from ryu.base import app_manager

from ryu.controller import ofp_event

from ryu.controller.handler import MAIN_DISPATCHER

from ryu.controller.handler import set_ev_cls

from ryu.ofproto import ofproto_v1_2

from ryu.lib.packet import packet

from ryu.lib.packet import ethernet

from ryu.lib.packet import ether_types

from getpass import getpass

from importlib import import_module

from threading import Lock as lock, Thread as thread

from sys import stderr, exit

cfg=import_module('cfg', '.')

utils=import_module('utils', '.')

mtx=lock()

blackhosts=[]

class SimpleSwitch12(app_manager.RyuApp):

 OFP_VERSIONS = [ofproto_v1_2.OFP_VERSION]

 def __init__(self, *args, **kwargs):

 super(SimpleSwitch12, self).__init__(*args, **kwargs)

 #global definitions

 self.mac_to_port = {}

 self.count=0

 self.blacklist=[]

 self.rel_addr=(cfg.rel_addr, cfg.rel_port)

 #start processes

xvii

 self.dwnlnk_svr_sock=utils.sock_create((utils.get_self_ip(), 12346), 0)

 self.dwnlnk_svr_proc=thread(target=self.dwnlnk_svr_loop)

 self.dwnlnk_svr_proc.start()

 self.uplnk_sock=utils.sock_create(self.rel_addr, 1)

 #connect to db

 db_host=cfg.db_host

 uname='ctrlr' if cfg.uname==None else cfg.uname

 passwd=getpass('[>]Enter passwd for uname {}: '.format(uname))

 db_name='network' if cfg.db_name==None else cfg.db_name

 self.conn, self.cur=utils.init_db_cxn(db_host, uname, passwd, db_name)

 #get hosts (all)

 tables=utils.send_query((self.conn, self.cur), "SHOW TABLES;")

 self.hosts=[]

 for t in tables:

 ret=utils.send_query((self.conn, self.cur), "SELECT macs FROM `{}`;".format(t))

 for r in ret:

 self.hosts.append(r)

 print('[!]Self hosts are {}'.format(self.hosts))

 def add_flow(self, datapath, port, dst, src, actions):

 ofproto = datapath.ofproto

 idle_timeout=1

 hard_timeout=5

 priority=0

 if actions!=[]:

 inst = [datapath.ofproto_parser.OFPInstructionActions(

 ofproto.OFPIT_APPLY_ACTIONS, actions)]

 match = datapath.ofproto_parser.OFPMatch(in_port=port, eth_dst=dst, eth_src=src)

 else:

 inst = [datapath.ofproto_parser.OFPInstructionActions(

xviii

 ofproto.OFPIT_CLEAR_ACTIONS, [])]

 match = datapath.ofproto_parser.OFPMatch(in_port=port)

 idle_timeout=0

 hard_timeout=0

 priority=1

 mod = datapath.ofproto_parser.OFPFlowMod(

 datapath=datapath, cookie=0, cookie_mask=0, table_id=0,

 command=ofproto.OFPFC_ADD, idle_timeout=idle_timeout,

hard_timeout=hard_timeout,

 priority=priority, buffer_id=ofproto.OFP_NO_BUFFER,

 out_port=ofproto.OFPP_ANY,

 out_group=ofproto.OFPG_ANY,

 flags=0, match=match, instructions=inst)

 datapath.send_msg(mod)

 def find_bad_mac(self, in_port):

 vals=self.mac_to_port.values()[0]

 ports=vals.values()

 macs=vals.keys()

 return macs[ports.index(in_port)]

 def dwnlnk_svr_loop(self):

 print('[!]Started downlink server loop')

 sock=None

 try:

 sock, addr=self.dwnlnk_svr_sock.accept()

 print('[!]Got connection back from {}'.format(addr))

 i=0

 while True:

 cmdr=utils.rcv(sock, addr)

 print('[!]Received {} from relay'.format(cmdr))

 app=cmdr.split('=')[1]

xix

 with mtx:

 if app not in blackhosts:

 blackhosts.append(app)

 print('[!]Appended {} to blackhosts {}'.format(app, blackhosts))

 except Exception as e:

 stderr.write('[-]Error in dwnlnk_svr_loop: {}'.format(e))

 self.dwnlnk_svr_sock.close()

 if sock!=None:

 sock.close()

 exit(-1)

 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

 def _packet_in_handler(self, ev):

 msg = ev.msg

 datapath = msg.datapath

 ofproto = datapath.ofproto

 in_port = msg.match['in_port']

 pkt = packet.Packet(msg.data)

 eth = pkt.get_protocols(ethernet.ethernet)[0]

 if eth.ethertype == ether_types.ETH_TYPE_LLDP:

 # ignore lldp packet

 return

 dst = eth.dst

 src = eth.src

 dpid = datapath.id

 self.mac_to_port.setdefault(dpid, {})

 self.count+=1

 self.logger.info("packet in %s %s %s %s number %s", dpid, src, dst, in_port,

self.count)

 with mtx:

xx

 blackhosts_copy=blackhosts

 if dst not in self.hosts and dst!='ff:ff:ff:ff:ff:ff' and '33:33' not in dst.lower() and dst not

in self.blacklist:

 #blacklisting action

 self.blacklist.append(in_port)

 self.add_flow(datapath, in_port, dst, src, [])

 bad_mac=self.find_bad_mac(in_port)

 self.logger.info('[!]Blacklisting {} port for MAC {}'.format(in_port, bad_mac))

 utils.snd(self.uplnk_sock, 'BLACKLIST={}'.format(bad_mac), self.rel_addr)

 return

 elif dst in blackhosts_copy:

 self.logger.info('[-]Forbidden destination {}!!'.format(dst))

 self.add_flow(datapath, in_port, dst, src, [])

 return

 elif dst in self.mac_to_port[dpid]:

 out_port = self.mac_to_port[dpid][dst]

 else:

 out_port = ofproto.OFPP_FLOOD

 # learn a mac address to avoid FLOOD next time.

 self.mac_to_port[dpid][src] = in_port

 actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]

 # install a flow to avoid packet_in next time

 if out_port != ofproto.OFPP_FLOOD:

 self.add_flow(datapath, in_port, dst, src, actions)

 data = None

 if msg.buffer_id == ofproto.OFP_NO_BUFFER:

 data = msg.data

 out = datapath.ofproto_parser.OFPPacketOut(

 datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port,

xxi

 actions=actions, data=data)

 datapath.send_msg(out)

vec.py:

from socket import socket, AF_PACKET, SOCK_RAW

from argparse import ArgumentParser

from random import randint

from sys import stderr, exit

def sock_create(intf):

 sock=None

 try:

 sock=socket(AF_PACKET, SOCK_RAW)

 sock.bind((intf, 0))

 print('[!]Socket successfully bound to interface {}'.format(intf))

 return sock

 except Exception as e:

 stderr.write('[-]Error in binding the socket at {}: {}\nExiting...\n'.format(intf, e))

 if sock!=None:

 sock.close()

 exit(-1)

def rand_mac():

 mac=[]

 for i in range(6):

 mac.append(randint(0x00, 0xff))

 return mac

def pack(pkt):

 return b"".join(map(chr, pkt))

def form_pkt():

 dst_mac=rand_mac()

xxii

 src_mac=rand_mac()

 typ=[0x08, 0x00]

 return pack(dst_mac+src_mac+typ)

def flood(sock, num):

 try:

 for i in range(num):

 pkt=form_pkt()

 sock.send(pkt)

 except Exception as e:

 stderr.write('[-]Error in sending packet num {}: {}'.format(i, e))

 exit(-1)

if __name__=='__main__':

 parser=ArgumentParser()

 parser.add_argument('-i', '--intf', required=True, metavar='', dest='intf', help='The

interface to bind the socket to')

 parser.add_argument('-n', '--num', required=True, type=int, metavar='', dest='num',

help='The number of packets to send')

 args=parser.parse_args()

 #create socket

 sock=sock_create(args.intf)

 #flood

 flood(sock, args.num)

xxiii

References

[1] Radware, DefenseFlow Security Operations Model, WhitePaper

[2] A Review Of Security Threats and Mitigation Solutions for

SDN StackPrabhakar Krishnan and Jisha S Najeem, Amrita Center

for Cybersecurity Systems and Networks, Amrita School of

Engineering, Amritapuri, Amrita Vishwa Vidyapeetham, Amrita

University, India.

Email: kprabhakar@am.amrita.edu

[3] A Literature Review on Software-Defined Networking (SDN)

Research Topics, Challenges and Solutions, Kannan Govindarajan ,

Kong Chee Meng , Hong Ong Advance Computing Lab, MIMOS

BERHAD, Malaysia.

kannan.darajan@mimos.my, cm.kong@mimos.my.

[4] SDN-Guard: DoS Attacks Mitigation in SDN Networks Lobna

Dridi, Mohamed Faten Zhani Department of Software and IT

Engineering École de Technologie Supérieure (ÉTS), Montreal,

Quebec, Canada.

email: lobna.dridi.1@ens.etsmtl.ca, mfzhani@etsmtl.ca

[5] Software-Defined Networking (SDN) and Distributed Denial of

Service (DDoS) Attacks in Cloud Computing Environments: A

Survey, Some Research Issues, and Challenges Qiao Yan, F.

Richard Yu, Senior Member, IEEE, Qingxiang Gong, and

Jianqiang Li.

[6] Are we ready for SDN? - Implementation Challenges for

Software-Defined Networks Sakir Sezer, Sandra Scott-Hayward,

Pushpinder Kaur Chouhan CSIT, Queen’s University Belfast

mailto:kannan.darajan@mimos.my

xxiv

Barbara Fraser, David Lake - Cisco Systems Jim Finnegan, Niel

Viljoen – Netronome, Marc Miller, Navneet Rao – Tabula.

[7] Revisiting Traffic Anomaly Detection Using Software Defined

Networking Syed Akbar Mehdi , Junaid Khalid , and Syed Ali

Khayam ,School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan XFlow Research, Santa Clara, CA 95051,

USA

[8] Attacking the Brain: Races in the SDN Control Plane, Lei Xu,

Jeff Huang, and Sungmin Hong, Texas A&M University, Jialong

Zhang, IBM Research; Guofei Gu, Texas A&M University.

https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/xu-lei

[9] SDNsec: Forwarding Accountability for the SDN Data Plane,

Takayuki Sasaki , Christos Pappas, Taeho Lee, Torsten Hoefler,

Adrian Perrig, NEC Corporation, t-sasaki@fb.jp.nec.com

[10] FlowRanger: A Request Prioritizing Algorithm for Controller

DoS Attacks in Software Defined Networks Lei Wei, School of

Computer Engineering, Nanyang Technological University,

Singapore, Carol Fung, Dept. of Computer Science, Virginia

Commonwealth University, US.

