DRM

I‘N":JEH TEOFSCIENCE -h]llIJ'\{]I[J'l'l

e fio be University i

Trusted Communication in Software Defined
Distributed Systems

Under the guidance of: Presented By:
Ms. V_aishnavi Moorthy Naman Arora (RA1511003010235)
Assistant Professor Nikhil Gupta (RA1511003010245)

Department of Computer Science and
Engineering

Abstract

Software Defined Networking (SDN) is presented as a paradigm shift in regard to
the evolution of internet since its advent.

It strives to standardize the networking on all levels. This is an initiative to redesign
the current networking stack and compartmentalize into three main planes, the
data plane, the control plane and the management plane, respectively moving from
bottom up.

An effort has been to augment the idea of SDN to a more distributed framework.
Using cleverly designed topologies like Spine leaf, interconnection of controllers
using relay system designed from bottom up is demonstrated.

The latter part of the project acknowledges the need to secure such translations
and try to mitigate Denial of Service (DoS) attacks on the control plane.

Introduction

An effort to distribute controller plane in Software Defined Networking

Scalability and robustness primary focus

Provide a topology

Provide proof of scalability via benchmark testing

Provide proof of robustness via launching and mitigating a DDoS stack

Major Highlights:
* Relay
« Blacklisting
* DoS
 DDo0S
* WhiteListing

Limitations of Present Syster

Less scalability factor.

More energy consumption.

Greater expense for physical cables.

More vulnerable area to secure.

(n-1)n connections within controllers due to Mesh topology.

Survey Paper
Title

Author

Description

roprietary Defense Systems in

Software defined Networks

Radware

(Radware)[6],has expressed that the scene is evolving. It isn’t just the
IT framework which is mak"mg strides in intricacy, amount and
expectation, but attackers are using latest accessible technology and
the after effects of this are as of now being seen on the cyber
battlefield. DefenseFlow permits the service providers to effectively
automate the (Incident Response (IR)) activities in the most perplexing
and profoundly distributed environments.

Threat categorization and

identification in SDN

Krishnan and Najeem

Krishnan and Najeem (2017)[3], in their study found out that using
(SDN) in today’s networks supplies with the required spryness and
transparency for the installation of network solutions. Be that is it may,
from the security point of view in terms of threat and risk assessment,
especially for layer 4 and layer 7 attacks such as (Distributed De- nial
of Service (DDoS)), there are yet many difficulties to be pursued in
(SDN) environ- ments. In their study, they have exhibited the
categorization of threats, risks and attack vectors that can disrupt the
(SDN) network and have presented various techniques to mitigate
these issues, to deploy (SDN) securely in production environments.

Kannan Govindarajan

Kannan Govindarajan (2013)[2], expressed that a key developing
pattern in Cloud com- puting is that the core frameworks to be shifting
towards Software-Defined. Storage and networks would no longer be
constrained by the availability of physical hardware rather will be able
to customize according to the needs in a virtual environment. (SDN
as- sumes a significant role in distributing the resources in the network
based on the demand and requirement. These experts reviewed thé
cutting edge Software-Defined Network- ing (SDN) in four regions
Network Quality of Service (Quality of Service (QoS)), Loac
Balancing, Scalability and Security.

Lobna Dridi

Lobna Dridi (2016)[4], expressed that regardless of the considerablg
number of focal points offered by Software Defined Networks, Denia
of Service (DOS) attacks are viewed as a noteworthy risk to suc
systems as they can flood the network with huge amount of invalig
packets that may cause overflow in the (Content Addressable Mem
ory (CAM)) tables ultimately resulting in the deterioration of thg
quality of network service. They proposed SDN-Guard, a novel plan t¢
effectively ensure (SDN) sys- tems against (DOS) attacks by dynamid
(1) rerouting of potentially malicious traffic, (2) adjusting flow
timeouts and (3) customizing the flow rules.

—t—t—t——1
I I |
urvey Paper
Title

Author

Description

SDN, Cloud computing and
vulnerabilities

Qiao Yan

Qiao Yan (2015)[5], have expressed that the abilities of (SDN),
including traffic ex- amination on a software level, centralized control,
worldwide perspective on the a€t- work, dynamic updation of sending
rules, make it simpler to distinguish and respond to (DDoS) attacks
but the vulnerability of SDN is still an issue to be addressed, and po-
tential (DDoS) vulnerabilities exist crosswise over various (SDN)
platforms. Qiao Yan (2015)[5] have talked about the new patterns and
qualities of DDoS attacks in dis-

Implementation of SDN
networks in a global perspective

Sakir Sezer

Sakir Sezer (2013)[7], have expressed that Software-Defined
Networking has risen as an effective network technology fit for suppor
of the dynamic idea of future network func- tions and smart
applications while bringing down expenses through improved equip-
ment, programming, and management. They have discussed about
generating a fruitful and functional network with Software-Defined
Networking. S Existing systems and current industry standards could
help in resolution of a portion of these issues and various working
groups are additionally examining potential arrangements. The goal of
the model is to upgrade flow handling in SDN.

Syed Akbar Mehdi

(Syed Akbar Mehdi)[8], have contended that coming of Software
Defined Networking gives a remarkable chance to identify and isolate
security issues. They have outlined how four conspicuous traffic
inconsistency identification algorithms can be used in Soft- ware
Defined Networks with NOX as a controller in the controller plane
and Open flow switches in the data plane. One of the key advantages
of this method- ology is that the compartmentalized and controlled
programmability of SDN enables these algorithms to exist with
regards to a more extensive structure.

Data forwarding policies in SDN

Takayuki Sasaki

Takayuki Sasaki (2016)[9] have examined that the service provider
needs apparatuses to proactively guarantee that the policies will be
abode or to reactively assess the behaviour of the network. Any
updates in the data plan are in a distributed manner hence lead to
inconsistent behaviour amid reconfiguration. Also, the substantial flo
space makes the data plane powerless to state exhaustion attacks.
These experts have presented SDNsec, a security extension which
provides forwarding accountability for the SDN data plane.
Forwarding rules are encoded in the packet, which makes sure that th
network behaviour is consistent amid reconfiguration and constraints
state exhaus- tion attacks due to table lookups.

Inference from the surve

* |t was found that the current topologies for Software Defined networks are not
scalable to a large extent and inter-controller communication is still a big
challenge when the number of controllers involved is huge as per Abubakar
Siddique Mugaddas (2017)[1].

* When dealing with the cyberattacks such as Denial of service or Distributed
Denial of service, the system requires a proper mechanism to stop the attack
from affecting the whole network using some anomaly detection systems or
detection algorithms and pre-defined parameters

Proposed System

-

Relay acts as a real time communication link between distributed controllers.
Sub relaying to surpass geographical barriers.

Discrete host congregations under one controller, numerous congregations
possible.

Relay switch to interconnect separate congregations in data plane.
Unique root switches to handle separate congregations.
Duplex connectivity.

RS(c)3

Controller Plane
Bird's eye view

Legend:

Cn(c)i: ith Congregation’s §
Controller |

RS(c)j: jth Relay Switch’s
Controller

Rk: kth relay

RSO |«

RS2
A
Y
RS1 (e——-

® 6

RS3

Data Plane
Bird's eye view

Legend:

Cni: ith controller’s
host congregation
RSj: jth Relay Switch

» Towards Relay

Towards Relay
Switch

A Congregation
of Hosts

Legend:

C: Controller
/: Root Switch
Si: ith Switch
Hj: jth Host

ULI

DL

DHi

The Relay

Legend:
I: IDS Server
U: UDS Server
B: Broadcast Thread
En: ith External entity
DLi: ith Downlink Thread
ULi: ith Uplink Thread
Dhi: ith Downlink handler

thread

Addition of sub-relay in the concept

Each relay can be optionally modded into a sub-relaf/'

* A duplex connection between super and sub relays

* The sub relay creates a TCP server and listens on port 12346
* The super relay, connects back to the sub-relay

* Now the super relay forwards information to this sub-relay too
* Both the super relay and subrelay are backwards compatible

* Heterogenity within controllers is supported

The DDoS Attack Mechanism

A host is randomly selected for being a bad server

* 10% hosts of the remaining pool of hosts are selected as
zombies

* These hosts then also form a connection to the bad acting
server.

* When the topology boots up, the attack can be triggered via
echoing 'trigger' in a named pipe on the simulation system

* All the hosts then start firing up spoofed raw ethernet frames
with generated source and destination MAC addresses.

Black listing of a node

* The controller checks the dst and src address of il-legitimate packet
* It adds a flow to drop all packets from that in port

* Adds a timeout to such a flow

White listing of a node
* Every 20 packets blackhosts is updated from the controller database
* Then legitimacy of each packet is checked
* On check pass, the reverse lookup of MAC is done in ARP cache

* MAC address sent on uplink to relay to inform others that this is a good
MAC.

* Another controller receives information that this is bad MAC, controller
database is updated through downlink server loop.

Test values to benchmark topology

n(Subnets)/ Throughput Bandwidth Delay Packet Loss Flow request
n(Hosts/ (Bytes/sec) (Bytes/Sec) (Hz) (%) Rate
Subnet) (Intra-subnet) (Hz)
(inter-subnet) (Rootsw_ctrlr)
(Relsw_ctrir)
1/75 40.755 18370.830 0.261 0 457 .667
1/100 34.991 17356.51 0.368 0 421.218
1/125 33.385 16059.575 0.498 0 421.218
2/75 (39.800) 8474.048 1.147 0 (211.058)
(131.147) (178.142)
2/100 (33.654) 788.602 1.604 0 (206.138)
(33.092) (175.460)
2/125 (36.090) 7664.663 2.104 0 (204.827)
(144.687) (175.027)
3/75 (22.492) 7741.935 1.884 0 (184.219)
(65.106) (197.909)
3/100 (13.245) 7305.647 2.654 0 (176.873)
(114.217) (189.724)
3/125 (19.464) 6920.175 3.495 0 (168.550)
(56.255) (180.656)
4/75 (22.525) 6363.316 3.059 0 (143.111)
(35.294) (174.360)
4/100 (16.619) 6011.837 4.300 0 (135.744)
(41.622) (165.223)
4.125 (15.133) 5862.210 5.502 0 (125.774)
(43.412) (161.112)

Test Values to Benchmark Attack Detection and

Mitigation

Subnets/Hosts per subnet

ll-legitimate packets

Total il-legitimate packets

% processed packets

processed expected

2 subnets, 75 hosts each 25,657 1,400,000(14) 1.832

2 subnets, 100 hosts 56,284 1,900,000(19) 2.962
each

2 subnets, 125 hosts 69,142 2,400,000(24) 2.880
each

3 subnets, 75 hosts each 49,112 2,200,000(22) 2.232

3 subnets, 100 hosts 61,091 2,900,000(29) 2.104
each

3 subnets, 125 hosts 46,563 3,700,000(37) 1.258
each

4 subnets, 75 hosts each 54,311 2,900,000(29) 1.872

4 subnets, 100 hosts 82,407 3,900,000(39) 2.113
each

4 subnets, 125 hosts 114,170 4,900,000(49) 2.330

each

10

0.01 I I I I I I I
2/75 2/100 2/125 3/75 3/100 3/125 4/75 4/100 4/125

==fle=m= ||-|egitimate packets processed

==g=== T oOtal il-legitimate packets
expected

Screenshots

DoS attack

CPU: 73.6%

mininet> pingall

¥ Ping: testing ping reachability
hlsl -> h2sl h3sl hls2 h2s2 h3s2
h2sl -> hlsl h3sl hls2 h2s2 h3s2
h3sl -> hlsl h2sl hls2 h2s2 h3s2
hls2 -> hlsl h2sl h3sl h2s2 h3s2

h2s2 -> hlsl h2sl h3sl hls2 h3s2
h3s2 -> hlsl h2sl h3sl hls2 h2s2
"** Results: 0% dropped (30/30 received)
mininet> hlsl python2 utils/vec.py -i hlsl-eth0® -n 10
[!]Socket successfully bound to interface hlsl-eth0®
mininet> pingall
¥*¥¥ Ping: testing ping reachability
hlsl -> X X X X X
h2sl -> X h3sl hls2 h2s2 h3s2
h3sl -> X h2sl hls2 h2s2 h3s2
hls2 -> X h2sl h3sl h2s2 h3s2
h2s2 -> X h2sl h3sl hls2 h3s2
n3s2 -> X h2sl h3sl hls2 h2s2
"** Results: 33% dropped (20/30 received)
mininet>
0:python* 1:bash-

otar

packet in
packet in

packet in

pack in

packe

packet in
packet

pack
packe
packe
pack
pack
packe
packe
pack
pack
packe
packe
pack
pack
packe
packet in
pack i
packe
packet in

ting
- h2s2 echo t
g HTTP on
.0.4 -
0.6 -
0.1 -
0 Z -

(RIS RV T SO VT ST VU VU PO VU VU PER ST SV DV SV SV SV VIR SV SV OV

("python
[
("python
[
("python
[
("python

("python

CLI:

[
(
(
[

l3JH“|f €

l%;au|;2)lﬁ 02

and then

rer on host

type

h2s2

'BUILD" here

-m SimpleHTTPServer &',)

utils/master

-py

utils/zombie.py

utils/zombie.py

utils/zombie.py

utils/zombie.py

D= RN W B UG

W U

e N R T R = N s = Y ¥, e

-1 10.0.0.5

-a 10.0.0.5

-a 10.0.0.5

-a 10.0.0.5

-a 10.0.0.5

"GET /futil
"GET futil
"GET /utils

HIH A
Foff:ff.ff:ff
I i TT

to

&)

-n hls2 &'
-n h2sl &'
-n hlsl &'

-n h3s2 &'

‘LGET Jutils/vec

MERENNREERERERDRORERNRNRRDRN =R R

SNV WA

=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

initiate further

N

0

py HTTP/1.C
y HTTP/1.0"
y HTTP/1.0"
C.py HTTR/1.0"

topology build... packet

:51:e

i!jBiackl; port fu|

sting

[!]Blacklist
packet in 1
[T]1Blacklist
packet in 1
[!']Blacklist
packet in 1 5z
[T]1Blacklist
packet

::04-h

packet in 1 39:68:
[!]Blacklisting
packet in 1 5
[!']Blacklisti
packet in 1 df:
[!]1Blacklisting
t in 1 5b:56

a:14:41:6

O:4c:

||dtKL

in 1 ¢5:T8:77:17:38:
port TUI v

'Ud:'

pul_ for
:9d:3f:d3:
[']Blacklisting 2 port for M
f4:f5:f7:af
port for

port for M
d:bb:6
2 port for

:3a:bc:b3:

number

number

number

number

number

number

number

number

number

number

number

number

1687

1690

1691

1692

1693

1694

1695

1696

1697

packet 1
[!1Blacklis
t in 2

packet in 2
[!]1Blacklis
packet in 2
[T]1Blacklist
packet in 2
[!']1Blacklis
packet in 2
[T]1Blacklist
packet in 2 g
[']Blacklisting
packet in 2 l? 311
[!1Blacklisting
packet in 2
[‘]Bl1tkl

packet i
[!1Blacklist

isting 1 port for

DDoS Attack

p1cK5_ in 2 17:9f: 7h 21: ﬁf:

number

number

number

number

number

number

number

number

number

number

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

- 1658

- 1659

CPU: 38.7%

el o ".1‘_.' ":_'j -|-I_:-'L - i ., L
minis Jyjpan.oll

hlsl X
h2sl - X
h3sl - X
X
X
X

: testing ping reachability
XX X

hls2 -

h2s2 -

¥** Results: 93% dropped (2/30 received)
mininet> §

DDoS Attack Mitigation

Publication details

-~
 Submitted patent application for Indian Patent journal,
under the Indian Patent Act, 1970.

Future works

* Discover new relay applications.
 Implement a flow table overflow attack.

» Test with new topologies and compare.

Thank You!

Content Distribution

Naman
Introduction
Data Plane

Controller Plane

Sub-Relay

DDoS

Benchmark topology
Test values

Nikhil
Abstract
Proposed System

Congregation of host
architecture

Relay

Blacklisting, whitelisting

Benchmark attack
mitigation stratergy

Test Values to Benchmark Attack Detection and

Mitigation
-,
(Subnet/Host)/(pkt_sent/ No Attack Attack with Attack with proposed
sec in each Condition) no Mitigation Mitigation stratergy
2 Subnets/ 75 Hosts 160.113 2203.116 65.666
2 Subnets/ 100 Hosts 178.533 1868.416 84.416
2 Subnets/ 125 Hosts 168.716 2137.166 78.51
3 Subnets/ 75 Hosts 292.916 2077.650 89.766
3 Subnets/ 100 Hosts 271.460 1746.650 80.083
3 Subnets/ 125 Hosts 250.016 2596.266 74.233
4 Subnets/ 75 Hosts 247.883 2257.012 86.866
4 Subnets/ 100 Hosts 219.916 2122.336 89.663
4 Subnets/ 125 Hosts 250.278 2399.616 83.116

Subnets/Hosts per Total number of hosts Number of zombies! Total il-legitimate packets

subnet expected?

2 subnets, 75 hosts each 150 14 1,400,000

2 subnets, 100 hosts 200 19 1,900,000
each

2 subnets, 125 hosts 250 24 2,400,000
each

3 subnets, 75 hosts each 225 22 2,200,000

3 subnets, 100 hosts 300 29 2,900,000
each

3 subnets, 125 hosts 375 37 3,700,000
each

4 subnets, 75 hosts each 300 29 2,900,000

4 subnets, 100 hosts 400 39 3,900,000
each

4 subnets, 125 hosts 500 49 4,900,000
each

1 The zombies are calculated as following:
* Assume the topology has ‘n’ number of total hosts.
* OQOut of ‘n” hosts, one is selected for the purpose of acting like a bad HTTP server, remaing unselected
hosts (n-1).
* Now out of (n-1) remaining hosts, 10% are randomly selected for acting like zombies, i.e., if 150 hosts
are total, 149 are left after bad server selection, 10% of 149 is 14.9. After integer roundoff, it is 14,
hence the attack on such a topology will be carried out by 14 zombies simultaniously.

2 Each zombie is programmed to flood 100,000 il-legitimate packets. So number of expected il-legitimate
packets are:
100000*(int_round(10%%*(n-1)))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide27
	Slide28
	Slide26
	Slide30
	Slide31
	Slide33
	Slide34
	Slide35
	Slide 17
	Slide 18
	Slide37
	Slide38
	Slide 21
	Slide 22
	Slide 23
	page25
	Slide 25
	Slide36
	Slide 27

