
SDN-Guard: DoS Attacks Mitigation
in SDN Networks

Lobna Dridi, Mohamed Faten Zhani

Department of Software and IT Engineering

École de Technologie Supérieure (ÉTS), Montreal, Quebec, Canada

email: lobna.dridi.1@ens.etsmtl.ca, mfzhani@etsmtl.ca

Abstract—Software Defined Networking (SDN) has
recently emerged as a new networking technology offering
an unprecedented programmability that allows network
operators to dynamically configure and manage their
infrastructures. The main idea of SDN is to move the control
plane into a central controller that is in charge of taking
all routing decisions in the network. However, despite all the
advantages offered by this technology, Deny-of-Service (DoS)
attacks are considered a major threat to such networks as they
can easily overload the controller processing and communication
capacity and flood switch CAM tables, resulting in a critical
degradation of the overall network performance. To address
this issue, we propose in this paper SDN-Guard, a novel
scheme able to efficiently protect SDN networks against DoS
attacks by dynamically (1) rerouting potential malicious traffic,
(2) adjusting flow timeouts and (3) aggregating flow rules.
Realistic experiments using Mininet show that the proposed
solution succeeds in minimizing by up to 32% the impact
of DoS attacks on the controller performance, switch memory
usage and control plane bandwidth and thereby maintaining
acceptable network performance during such attacks.

Keywords-Software-Defined Networking (SDN); Security; IDS
attacks;

I. INTRODUCTION

Software Defined Networking (SDN) is a new paradigm

transforming the way IT networking infrastructures are

managed, controlled and configured. The SDN perspective

relies on the separation of the control plane (i.e., the network

intelligence) from the data plane (i.e., packet forwarding).

The control plane comes then under the responsibility

of a centralized controller that takes all flow forwarding

decisions in the network. The communication between the two

planes is achieved through the OpenFlow protocol specified

by the Open Networking Foundation (ONF) [1].

Typically, in an OpenFlow-based SDN network, when

a switch receives a new packet, it checks first its flow

table (i.e., called also TCAM table) to determine the output

port (Fig. 1). If the packet does not match an existing entry

in the flow table, a packet-in message is transferred by the

switch to the controller inquiring a new flow rule entry.

The controller decides of the routing path and instructs all

the involved switches with the rules to handle this new flow.

Each flow entry is characterized by a hard timeout after which

the switch automatically deletes the entry. Fig. 1 illustrates

a typical SDN deployment and the described steps.

OpenFlow Switch

SDN controller

Flow setup:
(1) New flow
(2) Packet -in
message
(3) Flow rule

(1)

(2)
(3)

Fig. 1. Typical SDN deployment

As SDN technology is gaining momentum and several

Internet providers are gradually embracing it, there is

a growing attention to the security concerns that might

arise when it comes to its real-world deployment [2].

In this context, Deny-of-Service Attacks (DoS) are the most

popular and inevitable threats to SDN networks as they have

always been to traditional networks. Usually, DoS attacks

aim at overloading network links and the targeted servers

by aggressively flooding them with the traffic until they fail

to serve legitimate users.

Due to the centralized control of the SDN architecture,

DoS attacks might have severe impacts on the network

performance leading to cases where the entire control plane

becomes completely crippled. More specifically, a DoS attack

in an SDN network can lead to the following issues:

• Overloading the SDN controller: if the controller

is overloaded, packet-in messages will be stuck

in the controller’s queue and no more routing decisions

can be taken for the new incoming flows. In this

case, flows with no forwarding entries will be

stuck in the switches.

• Exhausting the control plane bandwidth

(i.e., switch-to-controller bandwidth): this problem

is tightly related to the previous one. However,

in this case, the switch-to-controller links are congested,

2016 5th IEEE International Conference on Cloud Networking

978-1-5090-5093-2/16 $31.00 © 2016 IEEE

DOI 10.1109/CloudNet.2016.9

212

some packet-in messages might then be lost, which will

delay the decision regarding the waiting flows.

• Switch TCAM memory overflow: DoS attacks can

purposely create a large number of new flows that might

saturate the flow forwarding tables of the switches.

When this happens, switches are forced to constantly

add and remove flow entries and to send more packet-in

messages towards the controller.

In this paper, we propose SDN-Guard, a novel SDN

application that protects SDN networks against DoS attacks

and mitigate their impact on the SDN controller performance,

the consumption of the control plane bandwidth and the switch

TCAM usage. Unlike existing works, SDN-Guard is designed

to mitigate simultaneously these issues by dynamically

managing flow routes, rule entry timeouts and the aggregate

flow rule entries based on the flow threat probability provided

by an Intrusion Detection System (IDS).

The remaining of this paper is organized as follows.

Section II provides an overview of previous works addressing

DoS attacks in SDN networks. Section III presents the details

of our proposed solution. Experimental results are then

described in Section IV. We finally conclude in Section V.

II. RELATED WORK

With the increasing adoption of SDN technology, a growing

body of work is addressing its security issues and investigating

how they can be mitigated. A survey on these issues is

provided in [2]. However, in the following, we focus mainly

on research efforts that have recently addressed DoS attacks

in SDN networks [2], [6], [7], [3], [5], [4].

In this context, Shin et al. [6] and Kandoi et al. [7]

have analyzed the impact of DoS attacks on the network

performance and showed how such attacks may impact

on several parameters like the control plane bandwidth

(i.e., controller-switch channel), latency, switches flow tables

and the controller performance. However, they do not provide

any solution to address these issues.

L. Wei and C. Fung [3] proposed FlowRanger, a scheme

that allows to detect and mitigate DoS attacks. FlowRanger

is implemented at the controller side and consists of

three components: (1) the trust management component that

calculates a trust value for each packet-in message based

on its source, (2) the queuing management component that

places the message in the priority queue corresponding to

its trust value and (3) the message scheduling component

that process messages according to a weighted Round Robin

strategy. FlowRanger can reduce the impact of DoS attacks

on network performance by guaranteeing that legitimate flows

are served first in the controller. However, unlike SDN-Guard,

it does not prevent flooding the controller and switch CAM

tables overload.

Dao et al. [4] present a solution to protect SDN networks

against distributed DoS attacks based on IP filtering technique.

The proposed scheme analyzes user behavior and uses it

to assign the timeouts for the flow entries. Short timeout are

assigned for malicious users flows and long timeouts are used

for trusted ones. This solution forces entries of malicious

traffic to be quickly removed from switches CAM tables.

However, this may lead to new packet-in messages to be sent

to the controller if the flow duration is higher than the set

timeout. Furthermore, this solution drops all malicious traffic,

which may be problematic for false positive flows.

Sahay et al. [5] leverage the centralized design and the

programmability offered by SDN technology and propose

a self-management scheme in which an ISP and its customers

cooperate to mitigate DoS attacks. In this scheme, the ISP

collects threat information provided by customers in order

to use it to enforce security policies and update flow

tables in the network accordingly. If a flow is considered

legitimate by the customers, the ISP controller will tag it

with a high priority value so that it takes a path with higher

quality. However, if there is a doubt about the legitimacy

of the flow, the ISP controller will assign a low priority

to the flow and direct through the path designated for malicious

flow. This proposal reduces the impact of the DoS attack

on the network performance by balancing the load across

different paths but it does not mitigate the risks of overloading

the controller and flooding flow tables in the switches.

None of the aforementioned solutions is able

to simultaneously reduce the controller load,

the switch-to-controller bandwidth and also avoid flooding

the CAM tables of the OpenFlow switches. In this work,

we aim at achieving simultaneously these objectives in order

to maintain an acceptable network performance during

DoS attacks. Table I compares the proposed solution,

SDN-Guard, to the existing ones with respect to their targeted

performance objectives during DoS attacks.

III. PROPOSED SOLUTION

In this section, we present the design architecture

of the proposed solution. We discuss its main components

and major design rationales that were considered in order

to achieve the targeted objectives.

A. Architecture Overview

As depicted in Fig. 2, SDN-Guard can be seen

as an SDN application that can be plugged on top of any

SDN controller. It consists of the following three modules:

• Flow management module is responsible for selecting

the routing paths for each of the flows and deciding

the hard timeout of their corresponding TCAM entries based

on the threat probability of the flow to manage flows so as to

mitigate the impact of the DoS attack.

• Rule aggregation module is in charge of aggregating

flow entries of malicious traffic in order to reduce the number

of entries used in the switches TCAMs.

• Monitoring module is responsible for permanently

collecting multiple statistics about flows, switches and links

(e.g., flow throughput, switch TCAM usage and link

213

TABLE I
SDN-GUARD VS. EXISTING SOLUTIONS

Objective: minimize the following metrics
Approach Controller Control plane Flow table Network bandwidth

workload bandwidth usage usage
SDN-Guard � � � �

FlowRanger [3] � � � �
IP filtering approach [4] � � � �

Self-management scheme [5] � � � �

Bouton
Monitoring

module

BoutonFlow Management Module

Bouton
Aggregation

module

SDN network

SDN-Guard

Packet-in message

Threat

Packet-out
message

Packet-in
message

IDS

BoutonSDN controller

Packet-out
message

Packet-in
message

Fig. 2. Solution architecture

bandwidth usage) so that they can be used by other modules.

SDN-Guard constantly communicates with an Intrusion

Detection System (IDS) that analyzes packet-in messages

and informs SDN-Guard about the threat probability of each

flow. It is worth noting that the IDS can be replaced

by any other system able to accurately evaluate the flow

threat probability such as the one used in [5]. It is worth

noting that investigating the accuracy of such systems is out

of the scope of this paper. However, studying the impact

of the accuracy of the provided flow threat probability on

SDN-Guard performance would be interesting and it is part

of our future work.

B. Design Considerations

In order to mitigate the impact of DoS attack on

the network and achieve the aforementioned objectives,

the proposed solution is based on the following three design

considerations:

1) Threat-based routing: In order to mitigate the impact

of DoS attacks on bandwidth consumption and queuing delays,

SDN-Guard redirects malicious traffic through the path having

the least-utilized links in terms of bandwidth consumption

and switch TCAMs. These two parameters are known

to the flow management module thanks to the statistics

collected by the monitoring module.

It is worth noting that the generated path using these

parameters may not be the shortest path; however, it ensures

a minimal impact of attack on the performance of legitimate

flows. At the same time, malicious traffic will reach

the destination (which is important in case of false positive

malicious flows) where it can potentially be further analyzed

by intrusion detection or prevention systems. We do not

opt for dropping malicious traffic in order to make sure

that false positive malicious flows get their chance to reach

the destination, even with higher delays. As to the legitimate

flows, they are always routed through the shortest paths

between the source and the destination so as to ensure

a minimal round trip time delays.

2) Timeout management: The flow management module

assigns the timeout value of each of the flow rules according

to the threat probability. As the switch will have to

communicate with the controller whenever the hard timeout

expires, a small hard timeout will result in much more

communication traffic with the controller. This will not only

increase the switch-to-controller bandwidth consumption but

also overload the controller. Hence, if the incoming flow

is considered malicious, SDN-Guard assigns its forwarding

rules a high timeout. The rationale behind this decision

is to ensure that the same flow does not trigger many

communications between the switch and the controller.

3) Malicious flow rule aggregation: As malicious flows

are assigned a large hard timeouts, such flow entries will

remain for a long time in the TCAM table of switches.

This might increase the number of used entries in the flow

tables and might overload them. In order to address this

issue, flow rules entries of malicious flows at a particular

switch are automatically aggregated by the flow aggregation

module if they have some shared properties (e.g., same source

and destination) and forwarded to the same outgoing link.

C. Solution Design
When a switch receives a new flow that cannot be matched

with any rule in its flow table, it inquires the controller for

a rule in order to efficiently forward the flow to its destination.

The packet-in messages are permanently sent to the IDS

to analyze the flows and measure their threat probabilities.

The threat probability is used by the flow management

module to take a decision about the routing of each

of the flows and the timeout for its corresponding entries

in the switches’ TCAMs. Two cases can be identified:

• Case 1: Malicious flow

214

TABLE II
FLOW MANAGEMENT DECISIONS

Flow type Threat Timeout Path Rule
probability aggregation

Legitimate low default shortest optional
malicious high high least-utilized links mandatory

If the threat probability is above a predefined threshold,

the flow is considered as malicious. In this case, the flow

management module assigns a large hard timeout value

to the flow rule and selects the least-utilized links in

terms of bandwidth consumption and switch TCAMs to

ensure that this flow does not compete with legitimate flows

and impact their performance.

The aggregation module analyzes the generated rules

for such malicious traffic and tries, when possible, to merge

the rules in order to reduce their number, and thereby minimize

the flow table usage.

• Case 2: Legitimate flow

When the flow threat probability is low, the flow

is considered legitimate. The flow management module routes

then the flow through the shortest path and assigns it a regular

hard timeout value.

Table II summarizes the main decisions taken by

SDN-Guard depending on the type of the received flow.

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental setup used

to emulate an SDN network and the tools used to generate

normal traffic and the DoS attacks. We then present

and discuss the results obtained with and without SDN-Guard.

A. Experimental setup

We run our experiments on a server running Ubuntu 14.04

with a CPU Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz x 8

and 8 GB of RAM. To emulate the network topology, we used

Mininet 2.3.0 [8] which creates a network of virtual hosts,

S1
S2

S7

S5

S8

S6

S3

S4

h3
h6

h5

h1

h4

c0

h2

Fig. 3. Emulated topology

switches, controllers, and links. OpenVSwitch (OVS) is used

as the implementation for the OpenFlow switches [9].

The created network is controlled by Floodlight 1.2

which is a widely-used java-based OpenFlow controller [10].

Furthermore, the communication between the switches

and the Floodlight controller uses OpenFlow protocol

version 1.3.

• Emulated topology: The emulated topology consists

of six hosts and eight OpenFlow switches as shown in Fig. 3.

Each switch is directly connected to the controller c0 so that

it can be instructed about forwarding decisions determined

by SDN-Guard.

• DoS attack scenario: In our experiment, the host

h1 is considered as an attacker whereas the host h6 is

the server targeted by the DoS attack (Fig. 3). We first begin

the experiment by sending normal traffic consisting of TCP

flows from all sources to all destinations. The DoS attack starts

afterward and lasts for ten minutes during which the server h6

is flooded with a large number of new TCP flows. The traffic

returns to a normal behavior later on and only a normal

amount of TCP flows is sent to the targeted server. To launch

the DoS attack, we send TCP traffic using hping3 network

tool [11] which floods the server h6 with a large number

of TCP SYN packets with different IP source addresses.

Such traffic emulates a distributed DoS attack coming from

multiple sources. In our experiments, we assume that the IDS

accuracy in detecting flow threat probability is up to 70%,

meaning that almost 30% of the malicious flows are wrongly

considered legitimate.

B. Experimental results

In our study, we focus on the analysis of four parameters,

namely: control incoming throughput, the average table size

of the switches, the end-to-end throughput and the average

Round Trip Time (RTT). To show the benefits of the proposed

scheme, we run the same experiment two times: one

time with the baseline routing algorithm and traffic

management (i.e., without SDN-Guard) and another time

with SDN-Guard activated.

• Controller incoming throughput:

To study the behavior of the controller during an attack,

we analyze the throughput of packet-in messages received

by the controller from all the switches in the network.

Fig. 4 shows the throughput of packet-in messages received

by the floodlight controller requesting for new flow rules.

It is clear that during the attack, there is a surge in the packet-in

number received by the controller. However, compared with

the baseline, we can see that SDN-Guard succeeds in reducing

this throughput by up to 32%. This is mainly because

SDN-Guard sets high hard timeouts to the forwarding rules

associated with the malicious flow, and thereby significantly

reduces the need to re-inquire the controller for new flow rules.

215

Fig. 4. Controller incoming throughput

• Average switch table size:

The switch table size can be easily flooded with DoS

attacks due to the huge amount of new flows sent to switches,

requiring a large number of flow rules to be stored.

Fig. 5. Average table size of switch s1

It is clearly shown in Fig. 5 that, with SDN-Guard,

the number of flow rules in the table of the switch S1

decreases by up to 26% compared to the baseline.

This is achieved because (i) the malicious traffic is forwarded

through the least-utilized links in terms of bandwidth

consumption and switch TCAMs, which means that flow

entries will be inserted through switches of different

paths (i.e., not only the switches of the shortest path),

(ii) the aggregation module makes sure to minimize

the number of flow entries of the malicious flow

by aggregating them using common properties (e.g., same

source and destination, same next hop). We also note

that similar results were found for the other switches

in the considered network.

Fig. 6. Sent and received packet throughput

• Throughput from source to destination:

We also measure the source-to-destination throughput,

which is the number of packets sent from the source h1

and received at the destination h6. Fig. 6 shows that, before

the attack, there is almost no packet loss as the throughput

of the sent packets is equal to the received one. However,

during the attack, the received throughput is much less than

the received showing a high loss rate. With SDN-Guard, the

received throughput is relatively less affected by the attack and

still higher than the baseline case (i.e., without SDN-Guard).

By analyzing the results obtained during the attack, we find

also that, with the baseline, there is 40% packet loss compared

to 35% with our solution. This decrease in the packet

loss is achieved by SDN-Guard because malicious traffic

is balanced across the least-utilized links, which reduces

congestion risks. Although this is not one of our main

objectives but it can be considered as another benefit

of SDN-Guard.

Fig. 7. Average RTT between h1 and h6

216

• Impact on average RTT:

Another important performance metric to be measured

is the source-to-destination round trip time. We hence draw

the average RTT value over time in order to study the impact

of DoS attack on this parameter with and without using

SDN-Guard. We can see from Fig. 7 that the average RTT

value decreases by up to 23% when SDN-Guard is activated.

This is because hard timeouts are set high for malicious traffic.

Hence, the switches do not have to request new flow rules

much often for the same flow. This eliminates the time needed

to send the request to the controller and waiting the flow entry.

V. CONCLUSION

In this paper, we proposed SDN-Guard, a comprehensive

SDN solution that is able to mitigate SDN-specific

threats related to DoS attacks. Indeed, SDN-Guard is

able to efficiently protect SDN networks against attacks

by dynamically rerouting potential malicious traffic, adjusting

flow timeouts and aggregating flow rules associated with

the malicious traffic. The conducted experiments using

Mininet showed that the SDN-Guard succeeds in minimizing

the impact of DoS significantly reduces by up to 32%

the controller incoming throughput and the control plane

bandwidth and cuts down by up to 26% switch memory

usage. Furthermore, we showed also that SDN-Guard reduces

packet loss and average packet round trip time in the network

during DoS attacks.

There are many promising directions we can pursue

in the future. We are planning to evaluate the performance

of the SDN-Guard for more realistic and larger-scale

deployments. Another interesting avenue would be to further

investigate the accuracy of intrusion detection systems

in estimating flow threat probability and to study the impact

of malicious flow accuracy on SDN-Guard performance.

REFERENCES

[1] “Open Networking Foundation,” https://www.opennetworking.org/,
[Online; accessed 10-May-2016].

[2] S. Scott-Hayward and S. O’Callaghan, G.and Sezer, “SDN security:
A survey,” in IEEE Conference on Network Softwarization (NetSoft),
November 2013, pp. 1–7.

[3] L. Wei and C. Fung, “FlowRanger: A request prioritizing algorithm
for controller DoS attacks in software defined networks,” in IEEE
International Conference on Communications (ICC), 2015, pp.
5254–5259.

[4] N.-N. Dao, J. Park, M. Park, and S. Cho, “A feasible method to combat
against DDoS attack in SDN network,” in International Conference on
Information Networking (ICOIN), 2015, pp. 309–311.

[5] R. Sahay, G. Blanc, Z. Zhang, and H. Debar, “Towards autonomic
DDoS mitigation using software defined networking,” in Network and
Distributed System Security (NDSS) Symposium, 2015.

[6] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, 2013, pp. 165–166.

[7] R. Kandoi and M. Antikainen, “Denial-of-service attacks in OpenFlow
SDN networks,” in IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2015, pp. 1322–1326.

[8] “Mininet Overview,” http://mininet.org/overview/, [Online; accessed
26-May-2016].

[9] “OpenVswitch,” http://openvswitch.org/, [Online; accessed
20-May-2016].

[10] “Floodlight controller,” http://www.projectfloodlight.org/, [Online;
accessed 10-March-2016].

[11] “Hping3: Network tools,” http://linux.die.net/man/8/hping3/, [Online;
accessed 10-May-2016].

217

