
2013 Fifth International Conference on Advanced Computing (ICoAC)

A Literature Review on Software-Defined

Networking (SDN) Research Topics, Challenges

and Solutions
Kannan Govindarajan., Kong Chee Meng., Hong Ong!

1 Advance Computing Lab,
MIMOS BERHAD,

Malaysia
kannan.darajan@mimos.my, cm.kong@mimos.my, hh.ong@mimos.my

Abstract- Cloud computing data centers are becoming

increasingly popular for the provisioning of computing resources.

In the past, most of the research works focused on the effective

use of the computational and storage resources by employing the

Virtualization technology. Network automation and

virtualization of data center LAN and WAN were not the

primary focus. Recently, a key emerging trend in Cloud

computing is that the core systems infrastructure, including

compute resources, storage and networking, is increasingly

becoming Software-Defined. In particular, instead of being

limited by the physical infrastructure, applications and platforms

will be able to specify their fine-grained needs, thus precisely

defining the virtual environment in which they wish to run.

Software-Defined Networking (SDN) plays an important role in

paving the way for effectively virtualizing and managing the

network resources in an on demand manner. Still, many research

challenges remain: how to achieve network Quality of Service

(QoS), optimal load balancing, scalability, and security. Hence, it

is the main objective of this article to survey the current research

work and describes the ongoing efforts to address these

challenging issues.

Keywords - Cloud Computing; Virtualization; Software

Defined Networking; OpenFlow; Quality of Service; Load

Balancing; Security; Scalability.

I. Introduction
Cloud Computing [1] is generally categorized into

Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS). Virtualization technology
acts as the backbone for IaaS service delivery model to
virtualize and provide the Cloud resources in an effective
manner. However, most of the existing research efforts in the
recent past years mainly focused on the effective use of the
compute and storage resources using the virtualization
technology such as Xen [2], Kernel Virtual Machine (KVM)
[3], VMWare [4] and etc. Network automation and
virtualization of data center LAN and WAN were not the
primary focus of most researchers and users. However,
virtualization and cloud computing are pushing data center
operators to think beyond their traditional network set up.

978-1-4799-3448-5/13/$31.00 ©2013 IEEE

293

Ethernet networks have evolved significantly since
their inception in the late 1980s, with many evolutionary
changes leading to the various switch categories that are
available today. Data center LAN and WAN switching has
emerged as a unique category, with highly dense 10Gbps,
40Gbps, and now 100Gbps port-to-port wire-rate switching as
one of the leading Ethernet networking product areas. Beyond
these considerable speed progressions, the other significant
advancements are I) data center switching offers sub
microsecond switch latency (measured in nanoseconds) and
zero-drop packet failover when failing over to redundant links
for addressing QoS, 2) sophisticated traffic load balancing
algorithms are developed for addressing increased asset
optimization, 3) scaling in support of large carrier-class
virtualized infrastructures, and 4) built-in network security
mechanisms to enforce policy and reduce cyber-threat
incidents. While these state-of-the-art switching features
leverage 30 years of progressive hardware and software
technology evolution, successful implementation of network
virtualization and automation requires a fundamental shift
from closed, vendor-specific proprietary network operating
systems to open, extensible, externally programmable
operating systems. This open extensibility requirement is
driven by the guiding principles of cloud data centers in which
resources are managed dynamically as one integrated system
made up of compute, network, and storage.

Software-Defined Networking (SDN) [5] is recently an
emerging technique that paves the way for virtualizing the
network resources in an on demand manner. It provides an
abstraction of the underlying network to the applications
residing in upper layers. Conventionally, the network devices
such as switches and routers have control plane, management
plane and data plane whereas in SDN, the logic of control and
data plane is decoupled separately. The control plane logic is
implemented as a software component that is residing in a
server and data plane is located in network devices. The
decoupling of control and data plane logic has transformed the
network resources into programmable, automation and
network control, highly scalable and flexible networks based
on the business needs. Moreover, SDN [6] replaces the
functionality of networking devices as just forwarding
devices. The intelligence of where and how to make

2013 Fifth International Conference on Advanced Computing (ICoAC)

forwarding is residing in control plane. The control plane logic
is implemented in the software called controller. OpenFlow
[7] is the protocol for communicating the controller with
network devices. Some of the popular SDN controllers in the
market and research are Floodlight [8], Beacon [9], NOX [10],
and OpenDayLight [11]. The SDN architecture used in current
networking world is shown in Figure 1. The SDN application
1 to N represents the features such as Quality of Service
(QoS), Load Balancing (LB), Firewall (FW) and etc. that is
deployed on top of SDN controllers. The Controller receives
the packet and forward to OpenFlow based switches for
example OpenVSwitch [12].

Figure 1: SDN Architecture

The OpenFlow based switches maintain the flow table as
shown in Table 1. It matches the header fields in the flow table
entries, based on the entries in the flow table it makes the
decision to forward the packet to appropriate port or discard
the packet. If the packet is not matching with the entries which
are available in flow table, it encapsulates and sends back the
packet to the controller. Finally, the controller takes the
decision of how to handle the packet such as notifying the
switch to drop the packet or making an entry in the flow table
for supporting the new flow.

Although SDN has lot of advantages over conventional
networking, it has its own challenging issues. As per our
literature survey, we have identified four major research and
challenge issues in SDN such as Quality of Service (QoS),
Load Balancing (LB), Security and Scalability as shown in
Figure 2. From the identified research areas, we have
represented some of the ongoing efforts to solve those
challenging issues.

In summary, the main contributions of this research paper
are: i) Identification and classification of research and
challenging issues in SDN, ii) Survey of ongoing research
efforts to solve the identified research and challenging issues,
iii) Comparison of the presented techniques focusing on their
features related to QoS, LB, Scalability and Security.

The rest of this paper is organized as follows. Section
2 discusses the literature review on Quality of Service (QoS).
Section 4 represents the literature survey on load balancing in
SDN; Section 5 and section 6 discusses the literature reviews

294

on scalability and security respectively; Section 6 discusses
the summary of this research paper with future wok.

--- ----------1
'------:,.--.....

.........

Figure 2: Major Research Issues

II. Quality of Service (QoS)
Quality of Service (QoS) is defmed as an ability to provide a
service. It is an essential property in networks and it is
difficult to achieve the desired QoS parameters for long years.
The main QoS parameters to achieve in the network are
guaranteeing the bandwidth, minimize the delay, reduce the
packet loss and congestion control that is shown in Figure 3.
In this article, we present some of the research works which
are mainly focused on solving the QoS problems in the SDN
based networking world.

Figure 3: Quality of Service (QoS) Parameters

A. OpenQoS

Egilmez et al. [13] proposed an OpenFlow protocol based
controller namely OpenQoS to achieve end-to-end Quality of
Service (QoS) for multimedia based applications. In this work,
the traffic is classified into data flows and multimedia flows.
The multimedia flows are diverted into dynamic QoS
guaranteed routing algorithm whereas the other data flows are
following the shortest routing algorithm. The dynamic QoS
routing is defmed as Constraint Shortest Path (CSP) problem
which is NP-Complete in nature [30]. The dynamic QoS
routing calculates the shortest path based on congestion and
delay factors. The route management module is responsible
for collecting those two factors and the routing calculation
function is responsible for achieving dynamic QoS routing.

2013 Fifth International Conference on Advanced Computing (ICoAC)

The routing calculation uses the Lagrangian Relaxation Based
Aggregated Cost (LRBAC) polynomial algorithm [31].

Switch MAC MAC Eth VLAN

port src dst type ID

OpenQoS introduce three interfaces:
.

1) c�ntroll�r
controller interface that is responsible for mteractmg WIth
other OpenFlow controllers and enhance the scalability, 2)
controller-service interface to interact with multimedia and
other applications and 3) controller-forwarder interface to
interact with switches for performing various actions such as
controlling the traffic flows, enforcing the frrewall rules �nd
etc. The OpenQoS is implemented over the Floodlight
Controller which is the most stable one. The proposed
approach is evaluated by streaming of videos over User
Datagram Protocol (UDP) and Transmission C?ntrol Proto�ol
(TCP). The performance metric of Packet Slg�al to NOise
Ratio (PSNR) is calculated that reflects the qualJty loss from
the original packets.

Finally, OpenQoS has indicated that Multiple Description
Decoding, Load Balancing in Content Distribution Networks
and enabling cross layer design in the Internet and OpenFlow
wireless networks as their future works. However, OpenQoS
proposed approach does not consider resource reservation and
priority based queuing mechanisms that paves the way for
minimizing packet loss and latency.

B. OpenQFlow

Airton Ishimori et al. [14] proposed a QoS management
framework called QoSFlow that enables the QoS management
functions in Openflow based network environment. The
proposed work controls and manages the QoS parameters such
as bandwidth, queue size and delay in an on demand manner.
The QoSFlow architecture has two major modules namely
QoSFlow Controller and QoSFlow Datapath.

The QoSFlow Controller is based on NOX that is
responsible for managing and monitoring actions �n

.
d

controlling signal messages. In addition to the controller, It IS
built with the following four components namely QoSFlow
Agent, QoSFlow Manager, QoSFlow Monitor and DB
QoSFlow Client. The QoSFlow Agent establishes the
communication between management tool and QoSFlow
Monitor and QoSFlow Manager components. The QoSFlow
Monitor monitors the QoS flows and QoSFlow Manager
manages the QoS flows.

The QoSFlow Datapath component creates the low-level
actions on the networking devices. The proposed work limits
the total bandwidth to a known rate, limit the bandwidth of a
particular user, service or client, reserve bandwidth f�r a
particular application or user, manage oversubscnbed
bandwidth and it allows equitable distribution of unreserved
bandwidth. The policies which are implemented in QoSFlow
framework is responsible for handling configuration of

295

Table 1: Flow Table

IP IP IP TCP TCP

src dst prot sport dport

sWItches, scalmg and management of hundreds of swi tches
and controlling the behavior of end-to-end QoS requirements.

C. Secondnet

In Cloud it is essential to provide the guaranteed bandwidth to
the virtual machines (VMs) which are residing in different
data centers. Secondnet [15] is a data center virtualization
framework that provides an abstraction for Virtual Data
Center (V DC) that guarantees the bandwidth for user requests
allocated between every pair of virtual machines. It is
worthwhile to note that the bandwidth allocation is a NP-hard
problem. As such, the Secondnet proposed a V�C Alloca�i�n
Algorithm, which is a low time-complexIty heunstlc
algorithm.

The VDC Allocation Algorithm is scalable in nature
as it distributes the traffic from virtual to physical mapping
with guaranteed bandwidth. The VDC Allocatio� Algori�hm
works like the following: 1) servers are clustered mto vanous
sizes based on the proximity of closeness i.e. hop count value;
2) based on the proximity, the algorithm I?inimize� the
allocation time by searching the servers only m the sUitable
clusters other than the whole physical network. Essentially,
the first step in VDC allocation algorithm is selecting a cluster
Ck which are closer to satisfy the user application reque�ts.
The second step is constructing the bipartite graph by puttmg
required virtual machines in left side and the available
physical servers at right side. Then, it select: the serve

.
r �s

feasible candidate for hosting virtual machme, only If It
satisfies the processor speed, memory, disk space, and ingress
and egress bandwidth.

In addition to bandwidth allocation, SecondNet also
proposed a min-cost flow algorithm for path al�ocation that
selects the best connectivity available in the physIcal network.
The proposed work is implemented with Port-Switching
Source Routing (PSSR) to allocate the routing path as a
sequence of output ports of switches. It is possible to
implement the PSSR mechanism with Mu�ti-Pro�ocol Lab�1
Switching (MPLS) to the existing commodIty SWItches. T�ls
framework is well-suited for enterprise workloads to prOVIde
guaranteed application perfonnance.

D. CloudNaaS

Benson et al. [16] presented the design, implementation and
evaluation of Cloud Networking as a Service (CloudNaaS)
framework. It extends the self-provisioning model of
providing network devices in an on demand manner in
addition to compute and storage devices. The proposed system
uses the policy language to specify the users' application
requirements, and then it translates the high-level user

2013 Fifth International Conference on Advanced Computing (ICoAC)

application requirements into communication matrix that
indicates the virtual network between source and destination
virtual machine can able to transfer packets.

The CloudNaaS architecture interfaces the two
components namely cloud controller and network controller.
The cloud controller is responsible for managing the virtual
machines and physical hosts. The network controller is
responsible for managing the configuration of network devices
and placing the virtual machines within the cloud. The
functionality of cloud controller is extended to accept the
network policy specifications for generating the
communicating matrix. The network controller is integrated
with placement algorithm that provides the input to cloud
controller for placing the virtual machines in the physical
hosts. Moreover, the proposed work provides the virtual
network functions such as network isolation, custom
addressing, service differentiation and deployment of
middleware boxes for intrusion detection, caching or
application acceleration to deploy the customer's application
in Cloud resources.

E. Automated and Scalable QoS Control for Network

Convergence

Network convergence is one of the recently emerging
concepts which received greater attention, because it is highly
desirable to serve the traffic from multiple applications on to a
single network. It has two dimensions namely convergence of
traffic from different applications and convergence of traffic
from different tenants.

Wonho Kim et al. [17] proposed a QoS control framework
for the automation and management of converged network
traffic. The proposed QoS controller creates the network slices
and assigns different traffic applications into created network
slices dynamically to satisfy the QoS requirements. The main
motivations of the proposed system are automatically fmds
and apply the best configuration for the flows; controller is a
dynamically adaptable based on the workloads, the controller
framework can able to deploy and manage the existing and
large scale networks and controller is provided with network
optimization technique to optimally use the network resources.
The proposed architecture has three main components namely
QoS controller, Adaptive Aggregator and Network-wide
Optimization. The controller invokes the adaptive aggregator
to achieve better scalability and makes the decision for QoS
configurations by measuring the states of network and
applying network wide optimization technique. QoS APIs are
provided with controller to automate the configuration and
management. The proposed work is implemented with Flow
Spec and Slice Spec which is used to represent a set of flows
in network and performance requirement in network such as
maximum bandwidth, minimum delay, etc. respectively.

III. LOAD BALANCING

Load-balancing [18] is a smart congestion aware routing in
Software-Defmed Networking (SDN). It is an essential entity

296

in SDN based network environment to improve the
availability and scalability of applications in Figure 4 which
are deployed in Cloud infrastructure that leads to achieve the
minimal response time of the applications. The load balancing
mechanisms such as Equal Cost Multi Path (ECMP) and
Valiant Load Balancing (VLB) are used in data centers. The
ECMP based routing strategy calculates the cost for multipath
and spreads the traffic over multiple paths based on the
calculated cost. VLB forwards an incoming flow to the
corresponding destination by selecting a random switch.

!!!

Figure 4: Load Balancing in SDN

A. AsterX

Nikhil Handigol et al. [18] proposed the load balancer named
Aster *x. The main objective of the proposed load balancer is
to minimize the response time of the applications by jointly
consider the server and network load. The load balancer
considers a single request or bunch of requests as flow.
Finally, it makes the decision to route as individual request or
in any combination of requests using Equal Cost Multi Path
(ECMP) [19] like oblivious load balancing. It has the
following characteristics such as distributed throughout the
network that enables scalability, logically centralized and
flexible in nature. The load balancing decision in Aster * x is
proactive versus reactive during the arrival of every request,
individual versus aggregated requests and static and dynamic.

The AsterX architecture consists of three main
modules namely Flow Manager, Net Manager and Host
Manager. Flow Manager is responsible for managing and
routing the flows based on the selected load balancing
algorithms such as disjoint, server based selection and joint
selection. Net Manager monitors the network topology and
utilization level of network. Host Manager monitors the status
and load of the available servers. The proposed work is tested
in GENI infrastructure that is spanned across three University
campuses and web servers are hosted in PlanetLab nodes
connected through OpenFlow based networking devices.

B. OpenFlow-Based Server Load Balancing Gone Wild

Richard Wang et al. [20] proposed an in-network load
balancer that installs the wildcard rules in the switches for
redirecting the requests in a proactive manner. The load

2013 Fifth International Conference on Advanced Computing (ICoAC)

balancing architecture is implemented with partItlOning
algorithm to generate the wildcard rules and transitioning
algorithm to change one set of rules to another. The
partitioning algorithm is a centralized controller program to
determine the global optimal wildcard rules. It divides the
client traffic based on the weights calculated for the client
traffic and then a binary tree is used to construct the IP
prefixes, where each node is corresponding to an IP prefix and
nodes which are closer to leaves represent longer prefixes.
Hence, the partitioning algorithm minimizes the wildcard rules
by implementing the concept of aggregating sibling nodes in
association with same server replica. The transitioning
algorithm is used to change those rules to adjust the newly
calculated load balancing weights. The proposed has been
implemented and being evaluated using OpenVswitch, NOX
and MiniNet [21].

IV. SCALABILITY

S.No. Scalability Description

Level

1 Levell It indicates the number of switches

that an SDN based controller can

able to support

2 Level 2 It describes the flow table entries

that occur for each flow

3 Level 3 It represents how SDN controller is

capable of handling the switches

which are spanned across multiple

sites.

. .
Scaiabtiity [22] tS one of the essential key factors ill SDN
based networking environment. Scalability in SDN is
classified into three levels as shown in Table 2.

Table 2: Scalability Issues in SDN

A.DIFANE

Minlan Yu et al. [23] proposed the DIstributed Flow
Architecture for Networked Enterprises (DIF ANE). The main
objective of proposed work is to avoid the bottlenecks in
controller and achieving better performance and scalability to
preserve the traffic in the data plane. The DIF ANE
architecture has two main motivations such as (i) distribute the
rules across switches called authority switches and scaling to
large number of topologies by running the partitioning
algorithm (ii) handle all packets in the data plane by diverting
packets through authority switches.

To implement the DIF ANE architecture, it is required
to change only in the control plane not in the data plane. The
proposed work is experimented on top of OpenFlow based
switches to achieve lower delay, higher throughput, and better

297

scalability in a distributed manner than directing packets
through a separate controller. It makes four high-level design
decisions for reducing the overhead of handling cache misses
and allows the system to scale to a large number of hosts,
rules, and switches. It handles wildcard rules efficiently,
reacts quickly to network dynamics such as policy and
topology changes and host mobility. The controller in
DIF ANE generates the rules and the generated rules are
allocated to the authority switches. It is the subset of available
switches which has larger memory and processing capability.
The controller first partitions the rules and distributes the
partition and authority rules to the switches. Using link-state
routing, it computes the path and caching the rules in the
authority switches.

B. Maestro

Zheng Cai et al. [24] proposed a system called Maestro to
achieve the scalability by enabling parallelism and throughput
based optimization technique. It sends and receives the
OpenFlow messages through TCP connections. Maestro is
implemented with four applications namely Discovery,
IntradomainRouting, Authentication and RouteFlow.

The Discovery application in Maestro sends out the
probe message to the neighbors whenever the new switch is
joined in the network. The flow request is first checked with
security policies implemented in authentication application.
Once the security policy is validated true, RouteFlow
application finds the path and generates a message for flow
configuration in every switch. The RouteFlow and
Authentication is called as flow process stage. Once the flow
configuration messages are sent to their destination, the flow
request packet is sent back to the origin, it is called as flow
request execution path. The task manager in the Maestro
system provides a unified interface; it generates 'n' number of
worker threads based on the number of cores in the controller
machine to complete the submitted tasks. The main design
goals of multi-threading concepts implemented in Maestro
system are to distribute the work evenly among available
core/threads, minimize the overhead introduced by cross-core
and cache synchronization and minimize the memory
consumption of system. The proposed system is evaluated by
comparing the performance with NOX in an emulated
environment using the performance metrics of throughput in
requests per second and delay experience by the flow requests.
Maestro shows better performance in all aspects compared to
NOX.

C. DevoFlow

Mogul et al. [25] proposed a model called Devolved
OpenFlow (DevoFlow). The main motivation of the proposed
work is developing a simple, cost-effective hardware and
redistribution of decisions by the switches itself. It reduces the
number of switch-controller interactions, TCAM entries and
detecting the QoS flows in an efficient manner. Additionally,

2013 Fifth International Conference on Advanced Computing (ICoAC)

it provides a mechanism for making routing decisions in
sw itches itself.

DevoFlow resolves the control issues by invoking the
controller on every flow setup and using the OpenFlow based
flow match wildcards in an aggressive manner to reduce the
control-plane load. Similarly, it resolves the statistics issues by
aggregating counters from microflows using pull-based Read
State mechanism and aggregating counters over multiple
microflows using wild-card mechanism. It is implemented
with two mechanisms namely a) rule cloning and b) local
routing actions for transferring the control to switches. The
rule cloning mechanism is integrated with a Boolean CLONE
flag value, based on the flag value, the switch makes the
decision to follow standard wildcard behavior or locally clone
the wild card rule to create a new rule. This rule exactly
matches the lookup table that reduces the cost of TCAM by
decreasing the usage of TCAM. The local routing actions
mechanism is helpful for taking decisions by the switch itself
without increasing the overhead in the controller. The
OpenFlow statistics collection efficiency is improved by
integrating sFlow [26] based sampling technique and
threshold-based triggering and reports.

V. SECURITY

Security is another major threat in SDN based network. The
fust biggest security challenge is to protect the controller
which has more intelligence for controlling the data planes.
The other securities challenges reside in the SDN based
networking environment are protecting Distributed Denial of
Service (DDoS) attacks, Intrusion Prevention and etc.

A. NetFuse

Ye Wang et al. [27] proposed a scalable mechanism named
NetFuse that resides in between OpenFlow controllers and
switches to protect the Cloud based data centers from traffic
overload. Nowadays, the data centers are largely affected by
DDoS attacks and workload changes, misconfigurations and
etc. It makes use of passively-collected OpenFlow control
messages for detecting active network flows, multi
dimensional flow aggregation to identify the network flows
overloading behavior, toxin-antitoxin mechanism to shape the
rate of traffic flow.

The monitoring component is employed with active
query and passive listening mechanism to aggregate the
network infonnation. It intercepts the control messages to
acquire the global view of the network information. If the
packet received by the switch does not match with flow table
entries it sends a PacketIn message to the controller, it replies
to the switch for installing forwarding rule using FlowMod

message. The switches send the FlowRemoved message to the
controller, once the flow time is expired. Moreover, it uses the
OpenFlow ReadState message to know the network resource
utilization. NetFuse is implemented with flow aggregation
mechanism. It is fonnulated as a NP-hard combinatorial
optimization algorithm. The flow aggregation is modeled as
threshold-based aggregation that will identify the flow which

298

overloads the behavior. NetFuse is implemented with adaptive
control mechanism to modify or reissue the new flow rules to
the switches. Finally, NetFuse has improved the scalability of
the system by implementing the flow redirection, delay
injection, and packet blocking.

B. Fresco

Seungwon Shin et al. [28] developed an OpenFlow security
application development framework named FRESCO to
provide OpenFlow enabled detection and mitigation modules.
This framework consists of an application layer which is
implemented using python modules available in NOX and a
security enforcement kernel.

Each module is organized with five interfaces such as (1)
input (2) output (3) parameter (4) action and (5) event. The
modules are implemented as an event-driven processing
function. The FRESCO Development Environment (DE)
provides the platfonn with bunch of useful information about
security for researchers. It has four main purposes such as (1)
script to module translation (2) database management (3)
event management (4) instance execution. The script to
module translation function is responsible for translating the
FRESCO scripts to modules and creation of instances from
modules. The database management function is responsible
for aggregating the network and switch state information and
providing an interface for using that infonnation. The event
manager function is responsible to notify the previously
defined events. The instance execution is responsible for
loading the created instances into memory. The FRESCO
security enforcement kernel in this framework monitors and
keeps track the status of OpenFlow switches in a regular
interval. The security policies such as DROP, REDIRECT and
QUARANTINE are enforced by the security applications
written in the proposed framework based on the threats to the
network.

VI. CONCLUSION AND FUTURE

WORK

Cloud resources such as compute, storage and network
become the worthwhile infrastructure for computation, data
storage and hosting network based applications. Software
Defined Networking (SDN) solves the issues in the
conventional networking and virtualizes the network resources
in an on demand manner to maximize the utilization by
effectively using the network resources and satisfying the user
application constraints. In this paper, we surveyed the state of
the art in Software-Defined Networking (SDN) research in
four areas: Network Quality of Service (QoS), Load
Balancing, Scalability and Security. From the literature
survey, we have identified that, there is no common
architecture or solution to address all the four issues that
should be addressed in the context of Software-Defined
Networking (SDN). Hence, our future work is mainly focused
to develop our own Software-Defined Networking (SDN)

2013 Fifth International Conference on Advanced Computing (ICoAC)

Platform to address the above discussed four challenging
issues.

ACKNOWLEDGEMENT

The authors sincerely thank the MIMOS BERHAD, for
financially supporting the Advanced Computing Laboratory,
in MIMOS BERHAD, Kuala Lumpur, Malaysia to do
extensive research in the latest technology.

References

[1] P. Mell and T. Grance. "NIST definition of cloud computing". National
Institute of Standards and Technology. October 7, 2009.

[2] Xen (2013). [Online]. Available: http://www.xen.org/.

[3]

[4]

Vmware (2013). [Online]. Available: http://www.vmware.coml.

Kernel-based Virtual Machine (KVM) (20[3). [Online]. Available:
http://www.linux-kvm.org/.

[5] Open Networking Foundation (ONF) (2013). [Online]. Available:
"Software-Defined networking: the new norm for networks,"
https:llwww.opennetworking.org/images/stories/downloadslopenflow/w
psdn-newnorm.pdf.

[6] OpenFlow Consortium (2013). [Online]. Available:
http://openflowswitch.org

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

[8]

[9]

[10]

[II]

Rexford, S. Shenker, and 1. Turner, "OpenFlow: enabling innovation in
campus networks," SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69-74, 2008.

Floodlight (2013). [Online]. Available:
http://www.projectfloodlight.org/floodlight/.

Beacon (2013). [Online]. Available:
htt[2s:llo[2enflow.stanford.edu/dis[2lax/Beacon/Home.

NOX (2013). [Online]. Available: htt[2:llnoxre[2o.org/wp/.

OpenDayLight (2013). [Online]. Available:
http://www.opendaxlight.org/.

[12] OpenVSwitch (2013). [Online]. Available: http://openvswitch.org/.

[13] Hilmi E. Egilmez, Seyhan Civanlar, and A. Murat Tekalp, "An
Optimization Framework for QoS-Enabled Adaptive Video Streaming
Over OpenFlow Networks", [EEE TRANSACTIONS ON
MULTIMEDIA, VOL. 15, NO. 3, APRIL 2013.

[14] Airton Ishimori, Fernando Farias, Igor Furtado, Eduardo Cerqueira,
Antonio Abelem, Automatic QoS Management on OpenFlow Software
Defined Networks

[IS] Guo, Chuanxiong, Guohan Lu, Helen J. Wang, Shuang Yang, Chao
Kong, Peng Sun, Wenfei Wu, and Yongguang Zhang. "Secondnet: a
data center network virtualization architecture with bandwidth
guarantees." In Proceedings of the 6th [nternational Conference, p. 15.
ACM, 2010.

[16] Benson, T., Akella, A., Shaikh, A., & Sahu, S. (2011). CloudNaaS.
Proceedings of the 2nd ACM Symposium on Cloud Computing - SOCC
'11 (pp. 1-13). New York, New York, USA: ACM Press.
doi:l 0.1145/2038916. 2038924.

299

[17] Wonho Kim, Puneet Sharma, Jeongkeun Lee, Sujata Banerjee, Jean
Tourrilhes, Sung-Ju Lee, and Praveen Yalagandula "Automated and
Scalable QoS Control for Network Convergence" Proceedings of
USENIX INM/WREN 2010, San Jose, CA, April 2010.

[18] Nikhil Handigol, Srini Seetharaman, Mario Flajslik, Aaron Gember,Nick
McKeown, Guru Parulkar, Aditya Akella, Nick Feamster, Russ Clark,
Arvind Krishnamurthy, Vjekoslav Brajkovicx, Tom Anderson,
"Aster*x: Load-Balancing Web Traffic over Wide-Area Networks".

[19] Equal Cost Multi Path (ECMP) (2012). [Online]. Available:
htt[2:lllib.tkk.fi/Di[21/20 Il/urn 100416.[2df.

[20] Richard Wang, Dana Butnariu, and Jennifer Rexford, "OpenFlow-Based
Server Load Balancing Gone Wild".

[21] MiniNet. (2013). [Online]. Available: http://mininet.org/

[22] Soheil Hassas Yaganeh, Amin Tootoonchian, Yashar Ganjali, "On the
Scalability of Software-Defined Networking", IEEE Communications
Magazine Feb 2013.

[23] Minlan Yu, Jennifer Rexford, Michael 1. Freedman, Jia Wang, "Scalable
Flow-based Networking with DIFANE", Sigcomm 2010.

[24] Zheng Cai et al Zheng Cai, Alan L. Cox, T.S. Eugene Ng, "Maestro: A
System for Scalable Open Flow Control", 2011.

[25] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen
Yalagandula, Puneet Sharma, Sujata Banerjee, "DevoFlow: Scaling
Flow Management for High-performance Networks", Sigcomm 20 II.

[26] SFlow (2013). [Online]. Available: htt[2:llsflow.org/about/index.[2h[2.

[27] Ye Wang, Yueping Zhang, Vishal Singh, Cristian Lumezanu, Geoff
Jiang, "NetFuse: Short-circuiting Traffic Surges in the Cloud", ICC
2013.

[28] Seungwon Shin, Phil Porras, Vi nod Yagneswaran, Martin Fong, Guofei

[29]

[30]

[31]

Gu, Mabry Tyson, "FRESCO: Modular Composable Security Services
for Software-Defined Networks", NDSS 2013.

Rodrigo Braga, Edjard Mota, Alexandre Passito, "Lightweight DDoS
Flooding Attack Detection using NOXIOpenFlow", LCN 2010.

Jeffrey D. Ullman, NP-Complete Scheduling Problems, J. Comput. Syst.
Sci., Vol. 10, No. 3, 1975, Pp.384-393.

A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, "Lagrange relaxation

based method for the QoS routing problem," in Proc. IEEE INFOCOM,
vol. 2, Apr.2001, pp. 859-868.

