Exercise 9 Raaghav Radhakrishnan (246097)

Lab Course - Distributed Data Analytics
Exercise 9

Exercise 1: Preparing the Hadoop infrastructure:

Hadoop infrastructure was successfully set in the local machine and due to some issues with
the calling function, | carried out the experiments in a virtual machine, cloudera platform. The results
and experiments performed are noted and tabulated.

Had00p Overview Datanodes Datanode Volume Failures Snapshot Startup Progress Utilities ~

Datanode Information

+ In service © Down @ Decommissioned © Decommissioned & dead In Maintenance & dead
Datanode usage n STOQ;‘HRW
1
T T T T T T T T T
0 10 20 30 .40 50 60 70 80 %0 100
Disk usaae of each DataNode (%)
in O;)B?'Fll@!":
Show | 25 :I entries Search:
k Block pool
Node Last contact Capaclty Blocks used Version
v/ quickstart.cloudera Mon Jul 08 54.51 GB - 1044 890.29 MB 2.6.0-cdh5.13.0
(192.168.58.128:50010) 00:56:45 -0700 (1.59%)

2019

Hadoop Overview Datanodes Datanode Volume Failures Snapshot Startup Progress Utilities ~

Overview ‘quickstart.cloudera:8020' (active)

Started: Sun Jul 07 22:30:26 -0700 2019

Version: 2.6.0-cdh5.13.0, r42e8860b182e55321bd5f5605264da4adc8882be
Compiled: Wed Oct 04 11:08:00 -0700 2017 by jenkins from Unknown
Cluster ID: CID-768feab0-9bd0-4e04-a0ae-8787b64d9475

Block Pool ID: BP-333635372-127.0.0.1-1508779710286

Page | 1

Exercise 9

Summary

Security is off.
Safemode is off.

1,224 files and directories, 1,046 blocks = 2,270 total filesystem object(s).

Raaghav Radhakrishnan (246097)

Heap Memory used 243.66 MB of 348.5 MB Heap Memory. Max Heap Memory is 889 MB.

Non Heap Memory used 39.47 MB of 39.94 MB Commited Non Heap Memory. Max Non Heap Memory is 130 MB.

Configured Capacity:
DFS Used:

Non DFS Used:

DFS Remaining:

Block Pool Used:

54.51 GB
890.29 MB (1.59%)
18.03 GB
41.85 GB (76.77%)

890.29 MB (1.59%)

DataNod ges% (Min/Median/Max/stdDev): 1.59%/1.59%/ 1.59% / 0.00%

Live Nodes 1 (Decommissioned: 0, In Maintenance: 0)
Dead Nodes 0 (Decommissioned: 0, In Maintenance: 0)
Decommissioning Nodes 0

Entering Maintenance Nodes 0

Total Datanode Volume Failures 0(0B)

Number of Under-Replicated Blocks 0

Number of Blocks Pending Deletion 0

Block Deletion Start Time Sun Jul 07 22:30:26 -0700 2019

Last Checkpoint Time Mon Jul 08 00:29:54 -0700 2019

NameNode Journal Status

Current transaction ID: 24156

Journal Manager State
FileJournalManager(root=/var/lib/hadoop-hdfs/cache EditLogFileOutputStream(/var/lib/hadoop-hdfs/cache/hdfs/dfs/name/current
/hdfs/dfs/name) /edits_inprogress_0000000000000024075)

NameNode Storage

Storage Directory Type State

/var/lib/hadoop-hdfs/cache/hdfs/dfs/name IMAGE_AND_EDITS Active

DFS Storage Types

Storage Type Configured Capacity Capacity Used Capacity Remaining Block Pool Used Nodes In Service

DISK 109.02 GB 1.74 GB (1.59%) 83.45 GB (76.54%) 1.74 GB 2

Hadoop, 2017.

C:\Users\Raaghau>jps
11392 NameNode
7712 NodeManager

11448 Jps
10988 ResourceManager
12716 DataNode

Page | 2

Exercise 9 Raaghav Radhakrishnan (246097)

Exercise 2 : Analysis of Airport efficiency with Map Reduce

1. Compute the maximum, minimum and average departure delay for each airport.

File name: mapper_mma.py

This file maps the data and sends them as input to the reducer file for finding the maximum,
minimum and average departure delay for each airport.

import sys
input comes from STDIN (standard input)

for line in sys.stdin:
line = line.strip()
line = line.split(",")

if len(line) »=2:
dep = line[3]
delay = line[#&]

print ('%s\t%s" % (dep, delay))

File name : reducer_mma.py

This file gets the data from the mapper as input, splits the data to required tasks and finds the
maximum, minimum and average delays of departure for each airport.

#Reducer.py
import sys

dep delay = {}

for line in sys.stdin:
line = line.strip()
split = line.split('\t')
if len(split)>1:
dep = split[0]
delay = splitl[1]
else:
dep = split[0]
delay = 0

if dep in dep delay:

dep _delay[dep] .append(float(delay))
else:

dep delayl[dep] = []

dep delay[depl] .append(float(delay))

#Reducer
for dep in dep delay.keys():

ave dep = sum(dep delay[dep]l)*1.0 / len(dep delay[depl)
min dep = min(dep delay[depl)
max dep = max(dep delay[depl)

print ('%s\t%s\t%s\t%s'% (dep, ave dep,min dep,max dep))

Procedure:
1. Initially, in the mapper_mma.py, reads the data and splits each line as per the delimiter. Then, we just
consider the columns that are related to our exercise. In this case, it is departure airport and the departure

delay.

Page | 3

Exercise 9

Raaghav Radhakrishnan (246097)

2. Now, the departure airport and the delay are used as input for the reducer. The data is stored in such a

way that, the departure airport is used as key and the delays are appended for the airport in the value of the

dict.

3. Once a dictionary is created with the key and value pairs, the values appended within each key is used

and reduced to a single value as per the requirement.

4. For finding the average departure delay of each airport, the values appended are summed up and

averaged to find the same. Also, for the maximum and minimum average delays, min and max functions

are used.

Output:

[cloudera@quickstart ~]$ hdfs dfs -cat /user/cloudera/wc out mma/part*

"0TZ"
"MKG"
"DAB"
"MSY"
"ACT"
"ONT"
"CLL"
"FAT"
"DSM"
"MEM"
"VPS"
"PSP"
"MFE"
"BHM"
IITYRII
"ISN"
IIAMAII
"BRW"
"LSE"
“CLE"
"GCK"
"GSP"
"OTH"
"HOU"
"BET"
"WRG"
"PIB"
"ADK"
"XNA"
"BFL"
"RIC"
"PBG"
“THE®
"MLB"
"BRO"
"GS0"
"MCO"
"JFK"
"ELM"
"CID"
"B0S"
"GFK"
"STX"
"ILM"
PELT*
"CRP"
"BIS"
"SUN"
"ORD"

6.40983606557
1.08620689655
11.6026490066
8.47050482133
12.9519230769
12.5565371025
9.91666666667
12.0459259259
10.4956140351
10.1266149871
22.6535433071
12.983 -22.0
7.23076923077
13.7456140351
6.375 -7.0
1.47619047619
4.41532258065
-2.725 -29.0
-7.36363636364
12.0007665772
6.90322580645
11.9203539823
24.8888888889
10.1724444444
-2.48192771084
5.22580645161
4.41509433962
0.666666666667
18.2326139089
-2.51685393258
17.3078125
6.54838709677
13.5705521472
16.6754385965
7.39622641509
14.0407608696
11.7327155447
12.8124677336
26.7857142857
15.75 -21.0
9.02041032149
.21782178218
.13636363636
23902439024
.36033240997
.65829145729
10.4074074074
13.4852941176
13.5450431264

wuUmo —=

-26.
-20.
-19.
=25,
c17.
sk
-20.
-30.
-18.
221
-14.
386.
c17.
-18.
58.0
=203
~15:
160.
-16.
=25,
<25
-16.
-14.
=155
=27
=37
=15,
-34.
-20.
=20
-20.
=203
-14.
-8.0
-19.
-14.
-24.
=19
=1Ly
602.
-28.
-13.
=27
=17,
23
=17
-18.
-18.
-24.

0

[cloNoNoNoNoNoNoNoNoNoNoNol

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNolNol ool

[cNcNoNoNoNoNoNoNoNoNoNoNoNoNol

154.0
202.
462.
879.
202.
352
418.
601.
705.
950.
1244.0

[cNoNoNoRoNoNo NNl

327.0
1068.0

296.0
298.0

2.0
1024.0
452.0
824.0
260.0
365.0
72.0
305.0
282.0
41.0
840.0
290.0
1043.0
164.
415.
958.
428.
379.
972.
1301.0
411.0

[cNoNoNoNoNo)

1545.0
195.0
239.0
389.0
1013.0
348.0
189.0
350.0
1087.0

Page | 4

Exercise 9 Raaghav Radhakrishnan (246097)
2. Compute a ranking list that contains top 10 airports by their average Arrival delay.

File name: mapper_rank.py

This file maps the data and sends them as input to the reducer file for finding the list of top 10
airports by their average Arrival delay.

impert sys
input comes from STDIN (standard input)

for line in sys.stdin:
line = line.strip()
line = line.split(",™)
if len(line) >=2:
arr = line[4]
delay = line[8]

print ('%s\t%s' % (arr,delay))

File name: reducer_rank.py

This file gets the data from the mapper as input, splits the data to required tasks and finds the
list of top 10 airports by their average arrival delay.

#Reducer.py

import sys

import operator

from collections import OrderedDict

arr_delay = {}

#Partitoner
for line in sys.stdin:
line = line.strip()
split = line.split('\t")
if len(split)>1:
arr = split[0]
delay = split[1]
else:
arr = split[0]
delay = 0

if arr in arr delay:
arr _delaylarr].append(float(delay))

else:
arr_delaylarr] = []
arr _delaylarr].append(float(delay))
#Reducer
for arr in arr delay.keys():
ave arr = sum(arr delay[arr])}*1.0 / len(arr_delay[arr])
arr_delaylarr] = ave arr

arr delay = OrderedDict (sorted(arr delay.items(),
key=operator.itemgetter(l) ,reverse=True))
delay rank = {}

print("\n%s\t%s\t3s"$("Arr","Arr Delay","Rank"))
for rank,arr in enumerate(arr_delay.keys()):
if rank <« 10:
delay rankl[arr] = arr delaylarr],rank
print("%s\tss\t\t%s"% (arr,arr delaylarr],rank+l))

Page | 5

Exercise 9
Procedure:

Raaghav Radhakrishnan (246097)

1. Initially, in the mapper_rank.py, reads the data and splits each line as per the delimiter. Then, we just

consider the columns that are related to our exercise. In this case, it is arrival airport and the arrival delay.

2. Now, the arrival airport and the delay are used as input for the reducer. The data is stored in such a way

that, the arrival airport is used as key and the delays are appended for the airport in the value of the dict.

3. Once a dictionary is created with the key and value pairs, the values appended within each key is used

and reduced to a single value as per the requirement.

4. For finding the average departure delay of each airport, the values appended are summed up and

averaged to find the same.

5. Once the average arrival delays of each airport are found, they are sorted as per the delays and a list of

top 10 delays is found from that.

Output — Ranking list of top 10 airports by their average delay:

Arr Arr Delay Rank
"ELM" 81.77 1
"BPT" 47.86 2
"GGG" 46.38 3
"BMI" 37.58 4
"ABI" 34.14 5
"LAW" 29.73 6
"LWs" 29.06 7
"GRB" 24.98 8
"CHA" 24.64 9
"ACT" 24.04 10

Performance Analysis

350 4

300 1

250 A

Time in Seconds

200 1

150 A

100 -

1.0 1.5 2.0 2.5 3.0 35
MappersxReducers

Exercise 3: Analysis of Movie dataset using Map and Reduce:

File name : mapper_rating.py

4.0

This file maps the data and sends them as input to the reducer file for finding the list of top 10

airports by their average Arrival delay.

Page | 6

Exercise 9 Raaghav Radhakrishnan (246097)

import sys
import operator
from collections impeort OrderedDict

mov_dat = {}

dat = []

#Partitoner

for line in sys.stdin:
line = line.strip()
split = line.split('::")
if len(split)==3:

print ("%s\tEs\t%s"% (split[0],
split[1],split[2]))

else:
print ("%s\tEs\tEs\tEs"% (split[0],
split[1],split([2],split[3]))

File name: reducer_rating.py

This file gets the data from the mapper as input, splits the data to required tasks and finds the

list of top 10 airports by their average arrival delay.

#Reducer.py gen avg = {}
import sys #Reducer:
import operator for gen in dat.keys():

from collections import OrderedDict avg_rat = sum(dat[gen]}*1.0 / len(datlgen])
gen_avgl[gen] = avg rat
mov_dat = {} gen_avg = OrderedDict(sorted(gen_avg.items(),
key=operator.itemgetter (1) ,reverse=True))
dat =.{} print("zs\txs"%("Genre","RvgRating"))
#Pa:t%tone:) for gen in gen avg:
for line in sys.stdin: if gen avglgen] == 5.0:

line = line.strip()

print ("=s\ts="%(gen,gen_avgl[gen]))

split = line.split('\t")
if len(split)==3:
mid = split[0]
tit = split[l]
genre = split[2]
mov_dat[mid]=tit,str(genre)
elif len(split)==4:
gen= mov_dat[split[1]]1[0]
rating = split[2]
if gen in dat:
dat[gen] .append(float (rating))
else:
dat[gen] = []
dat[gen].append(float (rating))

Procedure:

1. The procedure here for the mapper varies a bit because of the usage of 2 input files. Initially, in the

mapper_rating.py, reads the data and splits each line as per the delimiter. For ratings data, the size is 4 and

hence, the input data is print accordingly and also, for the movies data, the same procedure is carried out.

2. Now, the data are used as input for the reducer. The data is split into a dictionary with movie details and

another with movie id and their corresponding ratings

3. Once the dictionaries are created with the key and value pairs, the values of ratings appended within

each key is used and reduced to a single value as per the requirement.

Page | 7

Exercise 9

find the same.

Raaghav Radhakrishnan (246097)
4. For finding the average ratings of each movie id, the values appended are summed up and averaged to

5. Once the average ratings of each movie are found, they are sorted as per the delays and a list of top

movies with ratings equal to 5.0 is listed with their name being retrieved from the movie details dictionary.

Time in Seconds

10M dataset

Shadows of Forgotten Ancestors (1964)
Fighting Elegy (Kenka erejii) (1966)
Blue Light, The (Das Blaue Licht) (1932)
Sun Alley (Sonnenallee) (1999)

Satan's Tango (Satantangd) (1994)

1M dataset

File Edit View Search Terminal Help

.0

A
5
5
5
5
B
5
5
5
5
5

[cNoNoNoNoNoNo NN ol

vg.Rat Movie Name

Lured (1947)

Gate of Heavenly Peace, The (1995)

Baby, The (1973)

Smashing Time (1967)

One Little Indian (1973)

Bittersweet Motel (2000)

Ulysses (Ulisse) (1954)

Song of Freedom (1936)

Schlafes Bruder (Brother of Sleep) (1995)
Follow the Bitch (1998)

Performance Analysis

200 4

180 A

160 4

140 A

120 A

100 A

1.0

15 2.0 2.5 3.0 3.5 4.0
MappersxReducers

Page | 8

Exercise 9 Raaghav Radhakrishnan (246097)

File Edit View Search Terminal Help

~C[cloudera@quickstart ~]$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/ha
op-streaming-2.6.0-mrl-cdh5.13.0.jar -Dmapred.map.tasks=1 -Dmapred.reduce.tasks=1 -file /h
ome/cloudera/mapper user.py /home/cloudera/reducer user.py -mapper "python mapper user.py"
-reducer "python reducer user.py" -input /user/ratings.dat -output /user/cloudera/out 686
7 r2
19/07/08 04:00:47 WARN streaming.StreamJob: -file option is deprecated, please use generic
option -files instead.
packageJobJar: [/home/cloudera/mapper user.py, /home/cloudera/reducer user.py] [/usr/lib/h
adoop-mapreduce/hadoop-streaming-2.6.0-cdh5.13.0.jar] /tmp/streamjob3870175309004163901.ja
r tmpDir=null
:00 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
:01 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
:05 INFO mapred.FileInputFormat: Total input paths to process : 1
:06 INFO mapreduce.JobSubmitter: number of splits:2
:06 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead,
use mapreduce.job.maps
19/07/08 04:01:06 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Inste
ad, use mapreduce.job.reduces
19/07/68 04:01:08 INFO mapreduce.JobSubmitter: Submitting tokens for job: job 156256391195
5 0026
19/07/68 04:01:10 INFO impl.YarnClientImpl: Submitted application application 156256391195
5 0026
19/07/08 04:01:10 INFO mapreduce.Job: The url to track the job: http://quickstart.cloudera
:8088/proxy/application 1562563911955 0026/
04:01:10 INFO mapreduce.Job: Running job: job 1562563911955 0026
04:02:42 INFO mapreduce.Job: Job job 1562563911955 0026 running in uber mode : fa

102: INFO mapreduce.Job: map 0% reduce 0%

:03: INFO mapreduce.Job: map 3% reduce 0%
INFO mapreduce.Job: map 6% reduce 0%
INFO mapreduce.Job: map 8% reduce 0%
INFO mapreduce.Job: map 10% reduce
INFO mapreduce.Job: map 15% reduce
INFO mapreduce.Job: map 20% reduce
INFO mapreduce.Job: map 22% reduce
INFO mapreduce.Job: map 24% reduce
INFO mapreduce.Job: map 27% reduce
INFO mapreduce.Job: map 32% reduce
INFO mapreduce.Job: map 36% reduce
INFO mapreduce.Job: map 42% reduce
INFO mapreduce.Job: map 45% reduce
INFO mapreduce.Job: map 46% reduce
INFO mapreduce.Job: map 49% reduce
INFO mapreduce.Job: map 51% reduce
INFO mapreduce.Job: map 52% reduce
INFO mapreduce.Job: map reduce
INFO mapreduce.Job: map reduce
INFO mapreduce.Job: map reduce
INFO mapreduce.Job: map reduce
INFO mapreduce.Job: map 64% reduce

2. Find the user who has assigned lowest average rating among all users who rated more than 40

File name: mapper_user.py

This file maps the data and sends them as input to the reducer file for finding the list of top 10
airports by their average Arrival delay.

impoxrt sys
input comes from STDIN (standard input)
for line in sys.stdin:

line line.strip()
line line.splic("::")

if len(line) »>=2:
movieID = line[0]
rating = line[2]

print ('%s't%s' % (movieID,float({rating)))

Page | 9

Exercise 9

File name : reducer_user.py

Raaghav Radhakrishnan (246097)

This file gets the data from the mapper as input, splits the data to required tasks and finds the
list of top 10 airports by their average arrival delay.

import sys
import operator

from collections import OrderedDict

arr delay = {}
rat {}

$Partitoner
for line in sys.stdin:
line = line.strip()

split = line.split('\t")

if len(split)>1:
arr split[0]
delay = split[l]
else:
arr
delay =

split[0]

if arr in arr delay:

arr delaylarr].append(1l)
rat[arr] .append(float (delay))

else:
arr _delayl[arr]
rat[arr] []1

[]

arr delaylarr].append(1l)
rat[arr] .append(float (delay))

$Reducer
user rating={}
for arr in arr delay.keys()
if sum(arr_delaylarr])
user ratinglarr]

> 40:

sum(rat[arr])*1.0 / len(arr_delaylarr])

user rating = OrderedDict(sorted(user rating.items(),
key=operator.itemgetter(l) ,reverse=False))

for i in user rating:
print (i,user rating[il)
break

Procedure:

1. Initially, in the mapper_user.py, reads the data and splits each line as per the delimiter. Then, we just

consider the columns that are related to our exercise. In this case, it is user id and rating by the users.

2. Now, the user id and ratings are used as input for the reducer. The data is stored in such a way that, the

user id is used as key and the ratings are appended for the users in the value of the dict.

3. Once a dictionary is created with the key and value pairs, the values appended within each key is used

and reduced to a single value as per the requirement.

4. For finding the average ratings of each users who rated more than 40 times, first the users are selected

whose length of total ratings is greater than 40.

up and averaged to find the same.

Now with user id as key, the values appended are summed

5. After averaging, the values are sorted in ascending order and the user is found.

1M dataset

Page | 10

Exercise 9 - _ Raaghav Radhakrishnan (246097)
[cloudera@quickstart ~]$ hdfs dfs -cat /user/cloudera/wc out user 1/part*
('3598", 1.0153846153846153)

10M dataset

File Edit View Search Terminal Help
[cloudera@quickstart ~]$ hdfs dfs -cat /user/cloudera/out 0807 r2/part*

('24176', 1.0)

Performance Analysis

140 4

135 A

130 A

125 4

Time in Seconds

120 -

115 A

110 A

T T T T T T

T
1.0 1.5 2.0 25 3.0 3.5 4.0
MappersxReducers

1. Find the highest average rated movie genre :

File name : mapper_genre.py

This file maps the data and sends them as input to the reducer file for finding the list of top 10
airports by their average Arrival delay.

import sys
import operator
from collections impeort OrderedDict

mov_dat = {}

dat = []
#Partitoner
for line in sys.stdin:
line = line.strip()
split = line.split('::")
if len(split)==3:
print ("%s\tE:s\t5s"% (split[0],
split[1],split[2]))
else:
print ("%s\tEs\tEs\tEs"% (split[0],
split[1],split([2],s5plit[3]))

File name : reducer_genre.py

This file gets the data from the mapper as input, splits the data to required tasks and finds the
list of top 10 airports by their average arrival delay.

Page | 11

Exercise 9

#Reducer.py

import sys

import operator

from collections import OrderedDict

mov_|

dat

#Par

for

dat = {}

= {}
titoner
line in sys.stdin:
line = line.strip()
split = line.split('\t")
if len(split)==3:
mid = split[0]
tit = split[1]
genre = split[2]
mov_dat[midl=tit,str(genre)
elif len(split)==4:
gen= mov_dat[split[11]1[0]
rating = split[2]
if gen in dat:

dat[gen] .append(float(rating))

else:
dat[gen] = []

dat [gen] . append (float (rating))

Procedure:

Raaghav Radhakrishnan (246097)

gen _avg = {}

#Reducer:

for gen in dat.kevs():
avg_rat = sum(dat[gen])*1.0 / len(dat[gen])
gen_avg[gen] = avg rat

gen avg = OrderedDict (sorted(gen avg.items(),
key=operator.itemgetter (1) ,reverse=True))
print ("%s\t%s"%("Genre
for gen in gen avg:
print("ss\t%5"% (gen,gen_avglgenl))
break

1. The procedure here for the mapper varies a bit because of the usage of 2 input files. Initially, in the

mapper_rating.py, reads the data and splits each line as per the delimiter. For ratings data, the size is 4 and

hence, the input data is print accordingly and also, for the movies data, the same procedure is carried out.

2. Now, the data are used as input for the reducer. The data is split into a dictionary with movie details and

another with movie id and their corresponding ratings

3. Once the dictionaries are created with the key and value pairs, the values of ratings appended within

each key is used and reduced to a single value as per the requirement.

4. For finding the average ratings of each movie id, the values appended are summed up and averaged to

find the same.

5. Once the average ratings of each movie are found, they are sorted as per the delays and a list of top

movies with ratings equal to 5.0 is listed with
their genre being retrieved from the movie details
dictionary.

s~y

Genre

10M dataset

AvgRating

Animation|IMAX|Sci-Fi 4.75

1M dataset

File Edit View Search Terminal Help

Genre

Animation|Comedy|Thriller

AvgRating

[cloudera@quickstart ~]$
[cloudera@quickstart ~1$

4.4738372093

Time in Seconds

Performance Analysis

2104

200 4

190 4

180 A

170 1

160 A

150 1

140 4

130 4

1.0 1.5 2.0 2.5 3.0 3.5 4.0
MappersxReducers

Page | 12

