Lab Course: Distributed Data Analytics
Exercise Sheet 1 — Group 2 (Monday)
Raaghav Radhakrishnan (246097)

Exercise 0: Explain your system:

The hardware and software setup are listed as follows:

Hardware setup:

Processor | Intel® Core ™ i5-5200 CPU @)
2.20GHz

RAM 12 GB

OS Windows 8

Cores 2

Software setup:
Python: 3.5.3

Exercise 1: Basic Parallel Vectors Operations with MPI:

In this exercise, it is required to add two given vectors and store the result
in a third vector using MPI. The parallelization strategy used is similar to
threading but in form of message passing i.e., Point to Point Communication.
Here, I've chose rank 0 as master who assigns work to other workers. Also, the

master performs a part of the work along with the workers.

Steps:

1. The data is divided based on the size of the process provided in the
execution command
2. When the worker is master, it performs the vector addition operation and

also sends copies of the data to the workers and receives the same from

them

3. Once the vectors are received through communication, the master
appends them to the final vector and the corresponding time are
calculated and tabulated below:

from mpi4|€:y import MPI
import numpy as np

#Initialize MPT

comm = MPL.COMM_WORLD

#Get rank of the communicator

rank = comm.Get_rank()

#5ize of the process
size = comm.Get_size()

#Variable Initiaglization
N = int(16)

sum_xy = []
executiontime = @

#Master Process
if rank != @:
start = MPI.Wtime()

B N: 1044 Time Total Time
b = comm.recv(source = @) Process 0 1
comm.send{a+b, dest = @, tag = 1)
end = MPT.Wtime() 0 0.0105 0.0105
comm.send{end-start,dest=0,tag=2) 1 0.003 0.003 0.006
print("Time taken by worker “,rank,"is: ", end - start) ; - ;
#ior| Proce . .
el:;er e N:10A5 | Time Total Time
start = .’-‘1PI.'~\'timE() Process 0 1
% = np.random.randint(108,size = N)
y = np.random.randint(108,size = N) 0 0.104 0.104
S 1 0.0411 0.0434 0.0845
#5plitting the dataset depending on the size of the workers
split_x = mp.array_split(x,size)
splity = np.array_split(y,size) N: 1076 Time Total Time
if rank == @: Process 0 1
#Master's work
sum_xy.extend(list(split_x[rank]+split_y[rank])) 0 0.864 0.864
i . 1 0.345 0.478 0.823
for worker in range(l,size):
#Pointopoint communication to worker
comm.send(split_x[worker], dest = worker) .10 . .
comm.send(split_y[worker], dest = worker) N: 1047 Time Total Time
sum_xy.extend(list(comm.recv(source = worker,tag=1))) Process 0 1
executiontime+=comm.recv{source=worker,tag=2) 0 9.026 9.026
end = MPI.Wtime() 1 4.583 3.99 8.573

executiontime += (end - start)

Verifying Results:

K: [94 95 57 7 238 77 343279 522 68 948 7]
¥: [56 23 78 6 68 91 52 65 42 65 26 0@ 55 64 53 2]
Sum: [15e, 118, 127, 13, 7@, 121, 129, 99, 74, 144, 31, 112, 115, 73, 11, 9]

The above mentioned steps are followed for the finding the
average of the vector. Instead of adding the two vectors, this program
takes a vector as input, splits them between the cores and finds

separate average which in the end 1s averaged to get the vector average.

from mpidpy import MPI
import numpy as np

#Initialize MPI

comm = MPI.COMM_WORLD
#Get rank of the worker
rank = comm.Get_rank()
#Get size of the process

size = comm.Get_size()

#Initialize variable
N = int(led)

average = None
average_x = []
executiontime = @

#Master Process
if rank !'= @:
start = MPI.Wtime()
a = comm.recv(source = 8)
comm. send({np.sum(a)/len(a), dest = 8, tag = 1)
end = MPI.Wtime()
comm. send(end-start,dest=8,tag=2)
print("Time taken by worker ",rank,”is: ", end - start)

#iWorker Process
else:
start = MPI.Wtime()
X = np.random.randint(16@,size=N)

#5plit data based on number of worker

split x = np.array_split(x,size)

LA

#Master's work
if rank ==
average x.append(np.sum(split_x[rank])/len(split_x[rank]))

#horker's part

for worker in range(l,size):
comm.send(split_x[worker], dest = worker)
average_x.append(comm.racv(source = worksr,tag=1))
executiontime+=comm. recv(source=worker,tag=2)

#Average of the vector
average = np.average(average x)
end = MPI.Wtime()

RIS S - o

N: 1042 Time Total Time
Process 0 1

0 0.0188 0.0188

1 0.00069 | 0.0043 0.00499
N: 1073 Time Total Time
Process 0 1

0 0.0185 0.0185

1 0.0007 0.005 0.0057
N: 1004 Time Total Time
Process 0 1

0 0.0128 0.0128

1 0.00105 0.007 0.0081

Question 2: Parallel Matrix Vector Multiplication using MPI

In this exercise, it is required to add multiply the given matrix with a
vector and store the result in a third vector using MPI. The parallelization
strategy used is similar to threading but in form of message passing i.e., Point to
Point Communication. Here, I've chose rank 0 as master who assigns work to
other workers. Also, the master performs a part of the work along with the

workers.

Steps:

1. The data is divided based on the size of the process provided in the
execution command

2. When the worker is master, it performs the matrix vector multiplication
and also sends copies of the data to the workers and receives the same
from them

3. Once the multiplied vectors are received through communication, the
master appends them to the final vector and the corresponding time are
calculated and tabulated below:

N:10A2 Time Total Time
Process 0 1

0 0.0145 0.0188

1 0.001 0.0059 0.0069
N: 1073 Time Total Time
Process 0 1

0 0.226 0.226

1 0.092 0.111 0.202
N: 1004 Time Total Time
Process 0 1

0 14.61 0.0128

1 6.37 5.221 11.581

#Import Library
from mpidpy import MPI
import numpy as np

#Initialize MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
N = int(1led)

VecMult = []
executiontime = 8

if rank != @:
start = MPI.Wtime()
A = comm.recv(source = 8)
b = comm.recv(source = 8)
comm.send(np.matmul(A,b), dest = &, tag = 1)
end = MPI.Wtime()
comm.send(end-start,dest=8,tag=2)
print(“Time taken by worker ",rank,”is: ", end - start)

else:

start = MPI.Wtime()

A = np.random.randint(188,size=(H,N))

b = np.random.randint(186,size=(N,1))

split_A= np.array_split(A,size)

if rank ==
out = np.matmul({split_A[rank],b)
VecMult.extend(out.flatten().tolist())

for worker in range(l,size):
comm.send(split A[worker], dest = worker)
comm.send(b,dest=worker)
out = comm.recv(source = worker,tag=1)
VecMult.extend(out.flatten().tolist())
executiontime+=comm.recv(source=worker,tag=2)

end = MPI.Wtime()

executiontime += (end - start)

print(“Time taken by worker ",rank,”is: ", end - start)

Exercise 3: Parallel Matrix Operation using MPI:

In this exercise, it is required to perform parallel matrix operation on
given matrices and store the result in a third matrix using MPIL. The
parallelization strategy used is similar to threading but in form of message
passing 1.e., Collective Communication. Here, I’'ve chose rank 0 as master who
assigns work to other workers. Also, the master performs a part of the work
along with the workers.

Steps:
1. The data is divided based on the size of the process provided in the
execution command
2. When the worker is master, it creates the input matrices and the workers
create an empty matrix

. Using comm.Scatter, the master splits the data and shares them to the
workers

. Using comm.Bcast, the master sends a copy of the matrix to the workers

. With the received matrices, the workers perform the parallel matrix
operations

Once the operation is performed, the results are gathered by the master
and stored in the resulting matrix. The code and time taken are as follows:

#Initialize MPT

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

#Initialize Matrices

A = None

E = None

N = int(le4)

C = np.zeros((N,N))

if rank != @:
B = np.empty({M,N}}
else:
A = np.random.rand(H,N)
B = np.random.rand(N,N)

#Receiving variable
Arecy = np.empty((int(N/size),N))
start = MPI.Wtime()

#Separate data to all workers
comm.5Scatter(A,Arecv,root=0)

L

#5end a copy of the vector to all worker

comm.Bcast(B,root=8)

#Gather the result from all workers
comm.Gather{np.matmul (Arecv,B},C,root=8)

end = MPI.Wtime()
print(“"Time taken by worker:",rank,"is: ",end-start)

N: 10482 Time Total Time
Process 0 1

0 0.0163 0.0163

1 0.002 0.007 0.009
N: 1083 Time Total Time
Process 0 1

0 0.271 0.271

1 0.367 0.265 0.632

