
Lab Course: Distributed Data Analytics

Exercise Sheet 1 – Group 2 (Monday)

Raaghav Radhakrishnan (246097)

Exercise 0: Explain your system:

 The hardware and software setup are listed as follows:

 Hardware setup:

Processor Intel® Core ™ i5-5200 CPU @
2.20GHz

RAM 12 GB

OS Windows 8

Cores 2

 Software setup:

 Python: 3.5.3

Exercise 1: Basic Parallel Vectors Operations with MPI:

 In this exercise, it is required to add two given vectors and store the result

in a third vector using MPI. The parallelization strategy used is similar to

threading but in form of message passing i.e., Point to Point Communication.

Here, I’ve chose rank 0 as master who assigns work to other workers. Also, the

master performs a part of the work along with the workers.

Steps:

1. The data is divided based on the size of the process provided in the

execution command

2. When the worker is master, it performs the vector addition operation and

also sends copies of the data to the workers and receives the same from

them

3. Once the vectors are received through communication, the master

appends them to the final vector and the corresponding time are

calculated and tabulated below:

Verifying Results:

The above mentioned steps are followed for the finding the

average of the vector. Instead of adding the two vectors, this program

takes a vector as input, splits them between the cores and finds

separate average which in the end is averaged to get the vector average.

Question 2: Parallel Matrix Vector Multiplication using MPI

In this exercise, it is required to add multiply the given matrix with a

vector and store the result in a third vector using MPI. The parallelization

strategy used is similar to threading but in form of message passing i.e., Point to

Point Communication. Here, I’ve chose rank 0 as master who assigns work to

other workers. Also, the master performs a part of the work along with the

workers.

Steps:

1. The data is divided based on the size of the process provided in the

execution command

2. When the worker is master, it performs the matrix vector multiplication

and also sends copies of the data to the workers and receives the same

from them

3. Once the multiplied vectors are received through communication, the

master appends them to the final vector and the corresponding time are

calculated and tabulated below:

Exercise 3: Parallel Matrix Operation using MPI:

In this exercise, it is required to perform parallel matrix operation on

given matrices and store the result in a third matrix using MPI. The

parallelization strategy used is similar to threading but in form of message

passing i.e., Collective Communication. Here, I’ve chose rank 0 as master who

assigns work to other workers. Also, the master performs a part of the work

along with the workers.

Steps:

1. The data is divided based on the size of the process provided in the

execution command

2. When the worker is master, it creates the input matrices and the workers

create an empty matrix

3. Using comm.Scatter, the master splits the data and shares them to the

workers

4. Using comm.Bcast, the master sends a copy of the matrix to the workers

5. With the received matrices, the workers perform the parallel matrix

operations

6. Once the operation is performed, the results are gathered by the master

and stored in the resulting matrix. The code and time taken are as follows:

