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PROBLEM STATEMENT 

 

The purpose of this project was to control the angular rate of the 

load (shaft position) of a DC motor by varying the applied input 

voltage. 

 

For a step input of 1 rad/sec, we will design a controller to 

manipulate motor speed as per our need. 

 

 

 

 

 

 



 

INTRODUCTION 

A common actuator in control systems is the DC motor. It directly provides 

rotary motion and, coupled with wheels or drums and cables, can provide 

translational motion. The electric equivalent circuit of the armature and the 

free-body diagram of the rotor are shown in the below figure. 

 

For this example, we will assume that 

the input of the system is the voltage 

source ( ) applied to the motor's 

armature, while the output is the 

rotational speed of the shaft . The 

rotor and shaft are assumed to be 

rigid. We further assume a viscous 

friction model, that is, the friction 

torque is proportional to shaft angular 

velocity. 

The physical parameters for our example are: 

• moment of inertia of the rotor (J) = 0.02 kg.m2/sec2 

• motor viscous friction constant (b) = 0.2 N.m.sec 

• electromotive force constant (Ke) = 0.02 V/rad/sec 

• motor torque constant (Kt) = 0.02 N.m/Amp 

• electric resistance (R) = 2 Ohm 

• electric inductance (L) = 0.4 H 

 

System Equations: 

In general, the torque generated by a DC motor is proportional to the 

armature current and the strength of the magnetic field. In this example we 

will assume that the magnetic field is constant and, therefore, that the motor 

torque is proportional to only the armature current  by a constant 

factor  as shown in the equation below. This is referred to as an armature-

controlled motor. 

                                                       [1] 

 



The back emf, , is proportional to the angular velocity of the shaft by a 

constant factor . 

                                                    [2] 

 

In SI units, the motor torque and back emf constants are equal, that 

is,  ; therefore, we will use  to represent both the motor torque 

constant and the back emf constant. 

From the figure above, we can derive the following governing equations 

based on Newton's 2nd law and Kirchhoff's voltage law. 

                                                [3] 

 

                                           [4] 

 

 

Block diagram of the closed loop system labelling all the signals 

 

T 
Closed 

loop block 

diagram 

 

Transfer Function: 

Applying the Laplace transform, the above 

modelling equations can be expressed in 

terms of the Laplace variable s. 

                                 [5] 

                  [6]          A simple model of a DC motor driving an inertial load 

 

We arrive at the following open-loop transfer function by 

eliminating  between the two above equations, where the rotational 

speed is considered the output and the armature voltage is considered the 

input. 

                 [7] 



 
 

The closed loop transfer function that indicates the relationship between 

ፅref and ፅ(t) can be determined from the following block diagram in the 

below figure. 

 

 

State Space Representation: 

We can also represent the system using the state-space equations. The 

following additional MATLAB commands create a state-space model of the 

motor and produce the output shown below when run in the MATLAB 

command window. 
 

 

 

 

 

 % State Space representation  
o A = [-(R/L) -(ke/L) ; (kt/J) -(b/J)];  
o B = [1/L; 0];  
o C = [0 1];  
o D = 0;     
o motor_ss = ss(A , B , C , D) 



The above state-space model can also be generated by converting your 

existing transfer function model into state-space form. This is again 

accomplished with the ss command as shown below. 

motor_ss = ss(TF_DC); 

The open loop and closed loop responses of the DC motor without any 

controller are shown in below figures: 

 

 

 

 

 

 

As it can be seen from the system response, we need a controller to greatly 

improve performance, i.e. steady state and settling time. Before designing 

the controller, we need to check the stability of the system as well as 

controllability and observability. 

 

Check the stability of the open-loop and closed-loop 

systems: 

The Routh-Hurwitz criterion which uses the coefficients of the characteristic 

equation was used to test the stability of the system. For this reason, the 

following Matlab code was written and used. 

 ======================================================= 
 %Routh-Hurwitz Stability Criterion  
 % The Routh-Hurwitz criterion states that the number of roots of D(s) 

with positive real part is equal to the number of changes in sign of the 
first column of the root array.  

 % The necessary and sufficient requirement for a system to be "Stable" 
is that there should be no changes in sign in the first column of the 
Routh array. ======================================================== 

o clc;  
o disp('         ')  
o D=input('Input coefficients of characteristic equation,i.e:[an an-1 an-2 

... a0]= ');  
o l=length (D); 
o  disp(' ')  
o disp('----------------------------------------')  
o disp('Roots of characteristic equation is:')  
o roots(D)  

 %%=======================Program Begin=========================  
 

o if mod(l,2)==0  
o m=zeros(l,l/2);  
o [cols,rows]=size(m); 



 

 

 

 

 

 %%=======================Program Begin=========================  
 %%-----------------Begin of Building array---------------------  

o if mod(l,2)==0  
o m=zeros(l,l/2);  
o [cols,rows]=size(m); 
o for i=1:rows  
▪ m(1,i)=D(1,(2*i)-1);  
▪ m(2,i)=D(1,(2*i));  

end  

else  

m=zeros(l,(l+1)/2);  

[cols,rows]=size(m);  

for i=1:rows  

m(1,i)=D(1,(2*i)-1); 

end  

o   
o for i=1:((l-1)/2) 
o   m(2,i)=D(1,(2*i)); 
o  end 
o end 
o for j=3:cols 
o  if m(j-1,1)==0 
o   m(j-1,1)=0.001; 
o   end 
o   for i=1:rows-1 
o   m(j,i)=(-1/m(j-1,1))*det([m(j-2,1) m(j2,i+1);m(j-1,1) m(j-1,i+1)]); 
o  end 
o end 
o  
o disp('--------The Routh-Hurwitz array is:--------'),m 

 % --------------------End of Bulding array-------------- 
 % Checking for sign change 

o  
o Temp=sign(m);a=0; 
o for j=1:cols 
o   a=a+Temp(j,1); 
o end 
o if a==cols 
o   disp(' ----> System is Stable <----') 
o else 
o   disp(' ----> System is Unstable <----') 
o end 



Checking for controllability and observability 

The following Matlab code was written to test the controllability and 

observability of the system.  

The system is both Controllable and Observable. 

 

 

Draw the root locus of the given system 

The root locus of the DC motor transfer function is shown in Figure 9. It can 

be seen that we have two real poles at P1 = -5.01 and P2 = -9.99 which 

repel each other at -7.5 and one goes to positive infinity and the other goes 

to negative infinity. 

 

 

Root locus plot of DC motor 

transfer function 

 

 

 

 

 

 

 % Drawing Root Locus of the 
given System  

o >> rlocus(num,den) 
o  



Design a Lead-Lag Compensator 

 

From the closed loop block diagram in the above figure and the system 

transfer function, the actual characteristic equation of the closed loop 

system is: 

 

Design criteria are: 
Settling time ≤ 1sec 

Overshoot ≤ 5%  

Steady-state error ≤ 0.4%.  

Using the equations for settling time and percent overshot. We can 

determine the desired damping ratio (ζ) and natural frequency (𝜔n). 

 

The calculated values of Damping ratio and Natural Frequency are: 

ζ = 0.69010673                   𝜔n = 5.7962 

 
 

Using the desired natural frequency and damping ration, the desired 

characteristic equation to achieve 1 second settling time and maximum 5% 

of overshoot will become: 

 

 

Now our goal is to place closed loop poles at S1,2 = -4 ± 4.194j. In order to 

do that, we should first check if we need a simple constant gain (K) or a 

lead/lag compensator to place poles at the desired locations. This can be 

checked either from root-locus or angle condition. It can be seen from root 

locus diagram, that the root locus does not go through the desired poles. 



Using the angle condition, we can also see that the desired poles does not 

satisfy the angle condition for the actual characteristic equation. 

 

Using coefficient matching, we can place the closed loop poles at the 

desired locations; 

 

 



 

 

Final value theorem: 

 

Since the steady state error is more than the design limit, we need to add another lag 

compensator to achieve the design criteria. The transfer function of the 2nd lag 

compensator is of the form: 

 

 

 

 

 

 

 

So, the transfer function of the overall lag compensator becomes: 

 

 

 

 

 



Testing the performance of the lag controller: 

The following Matlab code was written to test the performance of the system 

with the designed lag controller. The corresponding plots are shown in 

figure 6 through 12. 

 

 % Design Criteria 
o Ts=1;                   % Settling time < 1 second 
o PO=0.05;                % Overshoot < 5% 
o SSE=0.4;                % Steady state error < 0.4% 
o  
o abs(roots([1+(((-log(PO))/pi)^2) 0 -(((- 
o log(PO))/pi)^2)]));     % Damping ratio 
o Damp=ans(1); 
o Wn=4/(Ts*Damp);         % Natural frequency 
o  
o disp('Desired Damping ratio is:'),Damp 
o disp('Desired Natural Frequency is:'),Wn 
o  

 % Desired Characteristic Equation: 
o dend=[1 2*Wn*Damp Wn^2]; 
o disp('Desired Characteristic Equation is:'),dend 
o  

 % Desired Poles location 
o Dp=roots(dend); 
o disp('Desired Pole locations:'),Dp 
o  

 % From root locus and the location of desired closed loop pole,  
 it can be found that a lag compensator is needed to shift the 
 current root locus to right.  
  
 %Designing Lag compensator to meet the desired Settling time  
 and Overshoot 
 % --------------------------------------------------% 

o z1 = 14;           % Assuming zero of the first lag compensator 
o  
o % Finding pole of the first lag compensator 
o num=num/den(1) 
o den=den/den(1) 
o ANS=inv([den(1) -dend(1) 0;den(2) -dend(2) num(1);den(3)-dend(3) 

num(1)*z1])*[dend(2)-den(2);dend(3)-den(3);0]; 
o  
o disp('Pole of the first lag compensator is:') 
o p1=ANS(1) 
o c=ANS(2); 
o disp('Gain of the first lag compensator is:') 
o K=ANS(3) 

  
 % TF of the first lag compensator G1(s)=K(s+z1)/(s+p1) 

o numlag1=K*[1 z1]; 
o denlag1=[1 p1]; 
o disp('Transfer function of the first Lag compensator to 
o improve Ts and PO%:') 
o tf(numlag1,denlag1) 
o  
o  



 

 % DC motor Transfer function with Lag compensator 
o disp('DC motor Transfer function with Lag compensator') 
o NUM=conv(numlag1,num); 
o DEN=conv(denlag1,den); 
o TF=tf(NUM,DEN) 
o figure 
o rlocus(TF),grid on 
o  

 % Open loop responce of the system with Lag compensator 1 
o figure 
o step(TF,0:0.1:5),grid on 
o title('Open loop response with lag compensator 1') 
o  

 % Closed loop responce of the system with Lag Compensator 1 
o [numc,denc]=cloop(NUM,DEN) 
o figure 
o step(numc,denc,0:0.1:5),grid on 
o title('Closed loop response with Lag compensator 1 that 
o improves Ts & PO%') 
o  

 % Improving SSE by adding a second lag compensator 
o z2=2.9;          % Assuming zero of the 2nd lag compensator 
o SSE=0.004;       % Steady State Error design criteria 
o  

 % Solving for pole of the 2nd lag compensator 
o p2=(1+((K*z1*num(1)/denlag1(2))/den(3)))*z2*SSE 
o numlag2=[1 z2]; 
o denlag2=[1 p2]; 
o NumLag=conv(numlag1,numlag2); 
o DenLag=conv(denlag1,denlag2); 
o  
o disp('The 2nd Lag compensator Transfer function to 
o improve SSE:') 
o tf(numlag2,denlag2) 
o  
o disp('The overal Lag compensator transfer function 
o (lag1*lag2):') 
o tf(NumLag,DenLag) 
o  

 % DC motor transfer function with Lag compensator that improves Ts, 
PO% & SSE 

o NumDC=conv(NumLag,num); 
o DenDC=conv(DenLag,den); 
o disp('Open loop TF of the DC motor with final Lag 
o compensator (improved Ts, PO% & SSE) ') 
o tf(NumDC,DenDC) 

o  
 % Closed loop TF of the DC motor with Lag compensator 

o [NumCLP,DenCLP]=cloop(NumDC,DenDC); 
o disp('closed loop TF of the DC motor with final Lag 
o compensator (improved Ts, PO% & SSE) ') 
o tf(NumCLP,DenCLP) 
o figure 
o step(NumCLP,DenCLP,0:0.1:5), grid on 
o title('Closed loop response with final Lag compensator') 
o  

 %-------------------End of Lag compensator Design-----% 



 

 

Result of Lag compensator: 

o Settling Time = 0.844 < 1  

o P.O. % = 1.91% < 5% 

o Final value = 0.991 (Steady state 

error < 0.4%) 

 

 

 

 

 

 



Using Bode Plots Determine the Gain and Phase Margins for 

The Closed-Loop System 

 

According to the bode plot of the closed loop system, we have infinite gain 

and infinite phase margin, which means the system will not become unstable 

with increasing gain. 

 

 

 % Bode plot, Determining gain and phase margin figure 
o margin(numclp,denclp), grid on 
o figure 

 margin(numc,denc), grid on     
 %Bode plot of closed loop TF with lag compensator 


