
The GPLEX Scanner Generator
(Version 1.0.0 November 2008)

John Gough QUT

November 11, 2008

New in this release
Compared to the v0.9 (August 2008) release this version has the following signifi-
cant changes and new features —

* New options for unicode scanners allow the user to specify the fallback code-
page to use if an input file does not have a validUTF prefix.

* New facilities for unicode scanners allow the host application to set the fall-
back codepage at scanner runtime.

* New facilities for unicode scanners allow the scanner to scan the input file to
determine the probable encoding used.

* New options for byte-mode scanners allow the user to specify the codepage
mapping that is used to define the meaning of character set predicates.

* A separate documentation file “Codepage.pdf ” collects the details of the
unicode-specific features in one place.

* The change log information has been separated out into a separate documen-
tation file “ChangeLog.pdf ”.

* Multiple input sources are now allowed, using user-supplied overrides of the
defaultyywrappredicate. Use-examples are included.

* Start condition scopes have been introduced, so that pattern rules may share
the same start state conditionals. These scopes may be nested.

* C#-style single line comments may be used anywhere in the specification file,
and are treated as white space.

1 Overview

This paper is the documentation for thegplexscanner generator.
Gardens PointLEX (gplex) is a scanner generator which accepts a “LEX-like” spec-

ification, and produces aC# output file. The implementation shares neither code nor

1

1 OVERVIEW 2

algorithms with previous similar programs. The tool does not attempt to implement the
whole of thePOSIXspecification forLEX, however the program moves beyondLEX
in some areas, such as support for unicode.

The scanners produce bygplexare thread safe, in that all scanner state is carried
within the scanner instance. The variables that are global in traditionalLEXare instance
variables of the scanner object. Most are accessed through properties which expose
only a getter.

The implementation ofgplexmakes heavy use of the facilities of the 2.0 version of
C#. There is no prospect of making it run on earlier versions of the framework.

There are two main ways in whichgplex is used. In the most common case the
scanner implements or extends certain types that are defined by the parser on whose
behalf it works. Scanners may also be produced that are independent of any parser, and
perform pattern matching on character streams. In this “stand-alone” case thegplex
tool inserts the required supertype definitions into the scanner source file.

The code of the scanner derives from three sources. There is an invariant part which
defines the class structure of the scanner, and the machinery of the pattern recognition
engine. This part is defined in a “frame” file. The second part contains the tables which
define the finite state machine that performs the pattern recognition, and the semantic
actions that are invoked when each pattern is recognized. This part is created bygplex
from the user-specified “*.lex ” input file. Finally, there is user-specified code that
may be embedded in the input file. All such code is inserted in the main scanner class
definition, as is explained in more detail in section 5.2. Since the generated scanner
class is declaredpartial it is also possible for the user to specify code for the scanner
class in aC#file separate from theLEX specification.

If you would like to begin by reviewing the input file format, then go to section 3.

1.1 Typical Usage

A simple typical application using agplexscanner consists of two parts. A parser is
constructed usinggppg invoked with the /gplexoption, and a scanner is constructed
usinggplex. The parser object always has a field “scanner” of an abstractIScanner
type (see figure 3). The scanner specification file will include the line —

%using ParserNamespace

whereParserNamespaceis the namespace of the parser module defined in the parser
specification. TheMain method of the application will open an input stream, construct
a parser and a scanner object using code similar to the snippet in Figure 1.

Figure 1: Typical Main Program Structure

static void Main(string [] args)
{

Stream file;
// parse input args, and open input file
parser = new Parser ();
parser.scanner = new Scanner (file);
parser.Parse();
// and so on ...

}

1 OVERVIEW 3

For simple applications the parser and scanner may interleave their respective error
messages on the console stream. However when error messages need to be buffered
for later reporting and listing-generation the scanner and parser need to each hold a
reference to some shared error handler object. If we assume that the scanner has a field
named “yyhdlr ” to hold this reference, the body of the main method could resemble
Figure 2.

Figure 2: Main with Error Handler

parser = new Parser ();
parser.handler = new ErrorHandler ();
parser.scanner = new Scanner (file);
parser.scanner.yyhdlr = parser.handler; // share handler ref.
parser.Parse();
// and so on ...

1.2 The Interfaces

All of the code of the scanner is defined within a single class “Scanner” inside the
user-specified namespace. All user-specified code is inserted into this class. The in-
variant code supplied by the frame file specifies several buffer classes nested within
the scanner class. One,Scanner.StreamBuff, deals with byte-stream inputs of type
System.IO.Stream, while others deal with text files with various encodings. Finally,
Scanner.StringBuffandScanner.LineBuffdeal with inputs of typeSystem.String. For
more detail on the available options, see section 5.3.

For the user ofgplexthere are several separate views of the facilities provided by
the scanner module. First, there are the facilities that are visible to the parser and the
rest of the application program. These include calls that create new scanner instances,
attach input texts to the scanner, invoke token recognition, and retrieve position and
token-kind information.

Next, there are the facilities that are visible to the semantic action code and other
user-specified code embedded in the specification file. These include properties of the
current token, and facilities for accessing the input buffer.

Finally, there are facilities that are accessible to the error reporting mechanisms that
are shared between the scanner and parser.

Each of these views of the scanner interface are described in turn. The special case
of stand-alone scanners is treated in section 5.6.

The Parser Interface

The parser “interface” is that required by theYACC-like parsers generated by the Gar-
dens Point Parser Generator (gppg) tool. Figure 3 shows the signatures. Despite its
name,IScanneris an abstract base class, rather than an interface. This abstract base
class defines theAPI required by the runtime component ofgppg, the libraryShift-
ReduceParser.dll. The semantic actions of the generated parser may use the richerAPI
of the concreteScannerclass (Figure 4), but the parsing engine needs onlyIScanner.

1 OVERVIEW 4

Figure 3: Scanner Interface ofGPPG

public abstract class IScanner <YYSTYPE, YYLTYPE>
where YYLTYPE : IMerge <YYLTYPE>

{
public YYSTYPE yylval;
public virtual YYLTYPE yylloc {

get { return default (YYLTYPE); }
set { /* skip */ }

}
public abstract int yylex();
public virtual void yyerror(string msg,

params object [] args) {}
}

IScanneris a generic class with two type parameters. The first of these,YYSTYPE
is the “SemanticValueType” of the tokens of the scanner. If the grammar specification
does not define a semantic value type then the type defaults toint .

The second generic type parameter,YYLTYPE, is the location type that is used
to track source locations in the text being parsed. Most applications will either use
the parser’s default typegppg.LexLocation, shown in Figure 10, or will not perform
location tracking and ignore the field.

The abstract base class defines two variables through which the scanner passes
semantic and location values to the parser. The first, the field “yylval”, is of whatever
“SemanticValueType” the parser defines. The second, the property “yylloc”, is of the
chosen location-type.

The first method ofIScanner, yylex, returns the ordinal number corresponding to
the next token. This is an abstract method, which the code of the frame file overrides.

The second method, the low-level error reporting routineyyerror, is called by the
parsing engine during error recovery. This method is provided for backward compata-
bility. The default method in the base class is empty. User code in the scanner is able to
override the emptyyyerror. If it does so the default error messages of the shift-reduce
parser may be used. Alternatively the low levelyyerror method may be ignored com-
pletely, and error messages explicitly created by the semantic actions of the parser and
scanner. In this case the actions use theErrorHandler class, theYYLTYPElocation
objects, and numeric error codes. This is almost always the preferred approach, since
this allows for localization of error messages.

All gppg-produced parsers define an abstract “wrapper” class that instantiates the
genericIScannerclass with whatever type arguments are implied by the “*.y ” file.
This wrapper class is namedScanBase. The inheritance hierarchy for the case ofgppg
and gplex used together is shown in figure 5. For this example it is assumed that
the parser specification has declared “%namespace MyParser ” and the scanner
specification has declared “%namespace MyLexer ”.

ClassScanBasealways defines a default predicate methodyywrapwhich is called
whenever an end-of-file is detected in the input. The default method always returns
true , and may be overridden by the user to support multiple input sources (see Sec-
tion 5.5).

1 OVERVIEW 5

Figure 4: Features of theScannerClass

public sealed partial class Scanner : Parser. ScanBase {
public ScanBuff buffer;
public void SetSource(string s, int ofst);
...

}

public abstract class ScanBuff {
...
public abstract int Pos { get ; set ; }
public abstract int ReadPos { get ; }
public abstract string GetString(int begin, int end);

}

Figure 5: Inheritance hierarchy of the Scanner class

IScanner<YYSTYPE,YYLTYPE>

ScanBase

Scanner

Generic Abstract Class

Abstract Class
: IScanner<int,LexLocation>

: ScanBase
Sealed Class

gppg.IScanner
defined in
ShiftReduceParser

MyParser.ScanBase
generated by GPPG
when invoked with
/gplex option

MyLexer.Scanner
generated by
GPLEX

The scanner class extendsScanBaseand declares a public buffer field of theScan-
Buff type. ScanBuffis the abstract base class of the stream and string buffers of the
scanners. The important public features of this class are the property that allows setting
and querying of the buffer position, and the creation of strings corresponding to all the
text between given buffer positions. ThePosproperty returns the current position of
the underlying input stream. TheReadPosproperty, new for version 0.6.0, returns the
stream position of the “current character”. For some kinds of text streams this is not
simply related to the currentPosvalue.

There are two public constructors defined in the frame file, and user code may
specify others if required. The default “no-arg” constructor creates a scanner instance
that initially has no buffer. The buffer may be added later using one of theSetSource
methods. Another constructor takes aSystem.IO.Streamargument, and creates a stream
buffer initialized with the given stream.

There is a group of four overloaded methods namedSetSourcethat attach new

1 OVERVIEW 6

buffers to the current scanner instance. The first of these attaches a string buffer to the
scanner, and is part of theIColorScaninterface (see Figure 8). This method provides
the only way to pass a string to the scanner.

Scanners that take file input usually have a file attached by the scanner constructor,
as shown in Figure 1. However, when the input source is changedSetSourcewill be
used. The signatures of theSetSourcemethod group are shown in Figure 6.

Figure 6: Signatures ofSetSourcemethods

// Create a string buffer and attach to the scanner. Start reading from offsetofst
public void SetSource(string source, int ofst);

// Create a line buffer from a list of strings, and attach to the scanner
public void SetSource(IList <string > source);

// Create a stream buffer for a byte-file, and attach to the scanner
public void SetSource(Stream source);

// Create a text buffer for an encoded file, with the specified default encoding
public void SetSource(Stream src, int fallbackCodepage);

The Internal ScannerAPI

The semantic actions and user-code of the scanner can access all of the features of the
IScannerandScanBasesuper types. The frame file provides additional methods shown
in Figure 7. The first few of these areYACCcommonplaces, and report information

Figure 7: Additional Methods for Scanner Actions

public string yytext { get ; } // text of the current token
int yyleng { get ; } // length of the current token
int yypos { get ; } // buffer position at start of token
int yyline { get ; } // line number at start of token
int yycol { get ; } // column number at start of token
void yyless(int n); // move input position to yypos + n

internal void BEGIN(int next);
internal void ECHO(); // writes yytext to StdOut
internal int YY START { get ; set ; } // get and set start condition

about the current token.yyleng, yyposandyytextreturn the length of the current to-
ken, the position in the current buffer, and the text of the token. The text is created
lazily, avoiding the overhead of an object creation when not required.yytextreturns
an immutable string, unlike the usual array or pointer implementations.yylessmoves
the input pointer backward so that all but the firstn characters of the current token are
rescanned by the next call ofyylex.

2 RUNNING THE PROGRAM 7

There is no implementation, in this version, ofyymore. Instead there is a general
facility which allows the buffer position to be read or set within the input stream or
string, as the case may be.ScanBuff.GetStringreturns a string holding all text between
the two given buffer positions. This is useful for capturing all of the text between the
beginningof one token andendof some later token.

The final three methods are only useful within the semantic actions of scanners.
The traditionalBEGIN sets the start condition of the scanner. The start condition is
an integer variable held in the scanner instance variable namedcurrentScOrd. Be-
cause the names of start conditions are visible in the context of the scanner, theBE-
GIN method may be called using the names known from the lex source file, as in
“BEGIN(INITIAL)”1.

1.2.1 The IColorScan Interface

If the scanner is to be used with theVisual Studio SDKas a colorizing scanner for a
new language service, thengppgis invoked with the /babeloption. In this case, as well
as defining the scanner base class,gppgalso defines theIColorScaninterface. Figure 8
is this “colorizing scanner” interface.Visual Studiopasses the source to be scanned to

Figure 8: Interface to the colorizing scanner

public interface IColorScan
{

void SetSource(string source, int offset);
int GetNext(ref int state, out int start, out int end);

}

theSetSourcemethod, one line at a time. An offset into the string defines the logical
starting point of the scan. TheGetNextmethod returns an integer representing the
recognized token. The set of valid return values forGetNextmay contain values that
the parser will never see. Some token kinds are displayed and colored in an editor that
are just whitespace to the parser.

The three arguments returned from theGetNextmethod define the bounds of the
recognized token in the source string, and update the state held by the client. In most
cases the state will be just the start-condition of the underlying finite state automaton
(FSA), however there are other possibilities, discussed below.

2 Running the Program

From the command linegplexmay be executed by the command —

gplex [options] filename

If no filename extension is given, the program appends the string “.lex ” to the given
name.

1Note however that these names denote constantint values of the scanner class, and must have names
that are validC# identifiers, which do not clash withC# keywords. This is different to thePOSIX LEX
specification, where such names live in the macro namespace, and may have spellings that include hyphens.

2 RUNNING THE PROGRAM 8

2.1 Gplex Options

This section lists all of the command line options recognized bygplex. Options may
be preceded by a ‘–’ character instead of the ‘/’ character.

/babel

With this option the produced scanner class implements the additional interfaces that
are required by theManaged Babelframework of theVisual Studio SDK. This option
may also be used with /noparser. Note that the Babel scanners may be unsafe unless
the /unicodeoption is also used (see section 5.7).

/check

With this option the automaton is computed, but no output is produced. A listing will
still be produced in the case of errors, or if/listing is specified. This option allows
syntactic checks on the input to be performed without producing an output file.

/classes

For almost everyLEX specification there are groups of characters that always share the
same next-state entry. We refer to these groups as “character equivalence classes”, or
classesfor short. The number of equivalence classes is typically very much less that
the cardinality of the symbol alphabet, so next-state tables indexed on the class are
much smaller than those indexed on the raw character value. There is a small speed
penalty for using classes since every character must be mapped to its class before every
next-state lookup. This option produces scanners that use classes. Unicode scanners
implicitly use this option.

/codepagehelp

The codepage option list is sent to the console. Any option that contains the strings
“codepage” and either “help” or “?” is equivalent.

/codepage:Number

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the codepage with the specified number. If there is
no such codepage, or the codepage is unsuitable, an exception is thrown and processing
terminates. For version 1.0 ofgplexthe specified codepage must have the single-byte
property2, or must be one of 1200 (utf-16), 1201 (unicodeFFFE) or 65001 (utf-8).

/codepage:Name

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the codepage with the specified name. If there is no
such codepage, or the codepage is unsuitable, an exception is thrown and processing
terminates. For version 1.0 ofgplexthe specified codepage must have the single-byte

2An encoding has the single byte property if each byte of the input file delivers a unicode codepoint to
the scanner. For example, all of the iso-8859 encodings have this property. For this version ofgplexinput in
multi-byte encodings must use one of theUTF formats.

2 RUNNING THE PROGRAM 9

property, or must be one of “utf-16” (Little-Endian Unicode), “unicodeFFFE” (Big-
Endian Unicode) or “utf-8”.

/codepage:default

In the event that an input file does not have a unicode prefix, the scanner will map
the bytes of the input file according to the default codepage of the host machine. This
codepage must have the single-byte property. This option is the default for unicode
scanners, if no codepage option is specified.

/codepage:guess

In the event that an input file does not have a unicode prefix, the scanner will rapidly
scan the file to see if it contains any byte sequences that suggest that the file is either
utf-8 or that it uses some kind of single-byte codepage. On the basis of this scan result
the scanner will use either the default codepage on the host machine, or interpret the
input as autf-8file. See Section 6.4 for more detail.

/codepage:raw

In the event that an input file does not have a unicode prefix, the scanner will use the
uninterpreted bytes of the input file. In effect, only codepoints from 0 to u+00ff will be
delivered to the scanner.

/frame:frame-file-path

Normally gplex looks for a template (“frame”) file namedgplexx.framein the current
working directory, and if not found there then in the directory from which the exe-
cutable was invoked. This option allows the user to override this strategy by looking
for the named file first. If the nominated file is not found, thengplexstill looks for the
usual file in the executable directory. Using an alternative frame file is only likely to be
of interest togplex-developers.

/help

In this case the usage message is produced. “/? ” is a synonym for “/help ”.

/listing

In this case a listing file is produced, even if there are no errors or warnings issued. If
there are errors, the error messages are interleaved in the listing output.

/nocompress

gplexcompresses its scanner next-state tables by default. In the case of scanners that
use character equivalence classes (see above) it compresses the character class-map by
default in the /unicodecase. This option turns off both compressions. (See Section 5.8
for more detail of compression options.)

2 RUNNING THE PROGRAM 10

/nocompressmap

This option turns off compression of the character equivalence-class map, independent
of the compression option in effect for the next-state tables.

/nocompressnext

This option turns off compression of the next-state tables, independent of the compres-
sion option in effect for the character equivalence-class map table.

/nofiles

This option declares that the scanner does not require file input, but reads its input
from a string. For suitable cases this reduces the memory footprint of the scanner by
omitting all of the file IO classes.

/nominimize

By default gplex performs state minimization on theDFSA that it computes. This
option disables minimization.

/noparser

By defaultgplexdefines a scanner class that conforms to an interface defined in an
imported parser module. With this optiongplexproduces a stand-alone scanner that
does not rely on any externally defined scanner super-classes.

/out:out-file-path

Normallygplexwrites an outputC#file with the same base-name as the input file. With
this option the name and location of the output file may be specified.

/out:–

With this option the generated output is sent toConsole.Out. If this option is used
together with /verbosethe usual progress information is sent toConsole.Error.

/parseonly

With this option theLEX file is checked for correctness, but no automaton is computed.

/squeeze

This option specifies that thegplex should attempt to produce the smallest possible
scanner, even at the expense of runtime speed.

/stack

This option specifies that the scanner should provide for the stacking of start conditions.
This option makes available all of the methods described in Section 3.5.

3 THE INPUT FILE 11

/summary

With this option a summary of information is written to the listing file. This gives
statistics of the automaton produced, including information on the number of back-
track states. For each backtrack state a sample character is given that may lead to a
backtracking episode. It is the case that if there is even a single backtrack state in the
automaton the scanner will run slower, since extra information must be stored during
the scan. These diagnostics are discussed further in section 3.4.

/unicode

By defaultgplexproduces scanners that use 8-bit characters, and which read input files
byte-by-byte. This option allows for unicode-capable scanners to be created. Using
this option implicitly uses character classes. (See Section 5.7 for more detail.)

/UTF8default

This option is deprecated. Use “/codepage:utf-8 ” instead. The deprecated “/no-

UTF8default ” option is equivalent to “/codepage:raw ”.

/verbose

In this case the program chatters on to the console about progress, detailing the various
steps in the execution. It also annotates each table entry in theC# automaton file with
a shortest string that leads to that state from the associated start state.

/version

The program sends its characteristic version string to the console.

3 The Input File

An overview of the input file specification is given in this section. The most impor-
tant information is the relationship betweenC# source code locations in the input file
and the place in the scanner file that the code ends up. It is important to note that the
specification file for the current version ofgplexis always an 8-bit file. The specifica-
tion may specify literal unicode characters using the usual unicode escapes\u xxxxand
\U xxxxxxxxwherex denotes a hexadecimal character.

A lex file consists of three parts: thedefinitionssection, therulessection, and the
user-codesection3.

LexInput
: DefinitionSequence “%%” RulesSection UserCodeSectionopt ;

UserCodeSection
: “%%” UserCodeopt ;

TheUserCodesection may be left out, and if is absent the dividing mark “%%” may be
left out as well.

3 Grammar fragments in this documentation will follow the meta-syntax used forgppgand other bottom-
up parsers.

3 THE INPUT FILE 12

3.1 The Definitions Section

The definitions section contains “using” and “namespace” declarations, option mark-
ers, start condition declarations, lexical category definitions, character class predicate
definitions and user code.

The namespacesSystem, System.IO, System.Collections.Genericare included by
default. Other namespaces that are needed must be specified in the specification file.
Two non-standard markers in the input file are used to generateusing andnamespace

declarations in the scanner file. The syntax is —
“%using ” DottedName“ ; ”
“%namespace” DottedName

whereDottedNameis a possibly qualifiedC# identifier. As usual, for syntactic markers
starting with “%” the keywords must be at the start of the line.

Option Markers

The definitions section may include option markers with the same meanings as the
command line options described in Section 2.1. Lines of option markers have the
format –

“%option ” OptionList

Options within the definitions section begin with the “%option ” marker followed
by one or more option specifiers. The options may be comma or white-space separated.

The options correspond to the command line options. Options within the definitions
section take precedence over the command line options. The following options cannot
be negated —

help
codepagehelp
out: out-file-path
frame: frame-file-path
codepage: codepage-arg

The following options can all be negated by prefixing “no” to the command name.
babel // default is nobabel
check // default is nocheck
classes // default is classes for unicode
compress // default is compress
compressmap // default is compressmap for unicode
compressnext // default is compressnext
files // default is files
listing // default is nolisting
minimize // default is minimize
parseonly // default is noparseonly
parser // default is parser
stack // default is nostack
squeeze // default is nosqueeze
summary // default is nosummary
unicode // default is nounicode
verbose // default is noverbose
version // default is noversion

Some of these options make more sense on the command line than as hard-wired defi-
nitions, but all commands are available in both modalities.

3 THE INPUT FILE 13

Start Condition Declarations

Start condition declarations define names for variousstart conditions. The declarations
consist of a marker: “%x” for exclusive conditions, and “%s” for inclusive conditions,
followed by one or more start condition names. If more than one name follows a
marker, the names are comma-separated. The markers, as usual, must occur on a line
starting in column zero.

Here is the full grammar for start condition declarations —

StartConditions
: Marker NameList ;

Marker
: “%x” | “%s” ;

NameList
: ident
| NameList ‘ , ’ ident
;

Such declarations are used in the rules section, where they predicate the application
of various patterns. At any time the scanner is in exactly one start condition, with
each start condition name corresponding to a unique integer value. On initialization a
scanner is in the pre-defined start condition “INITIAL” which always has value 0.

When the scanner is set to anexclusivestart conditiononly patterns predicated on
that exclusive condition are “active”. Conversely, when the scanner is set to aninclusive
start condition patterns predicated on that inclusive condition are active, and so are all
of the patterns that are unconditional4.

Lexical Category Definitions

Lexical category code defines named patterns that may be used in patterns in the rules
section. A typical example might be —

digits [0-9]+

which definesdigits as being a sequence of one or more characters from the character
class ‘0’ to ‘9’. The name being defined must start in column zero, and the regular
expression defined is included for used occurrences in patterns. Note that forgplex
this substitution is performed by tree-grafting in theAST, not by textual substitution,
so each defined pattern must be a well formed regular expression.

Character Class Membership Predicates

Sometimes user code of the scanner needs to test if a code-point corresponding to the
value of some variable belongs to a particular character class. If the character class
is a named lexical category, namedSetXfor example, then the following declaration
“%charClassPredicate SetX ” will causegplexto generate a public method of the
Scanner class —

public bool Is SetX(int codepoint);

This method will test the given code-point for membership of the named character
class. In general, the syntax of thecharClassPredicatedeclaration allows for a list of
character class names.

4 gplexfollows theFlexsemantics bynot adding rules explicitly markedINITIAL to inclusive start states.

3 THE INPUT FILE 14

User Code in the Definitions Section

Any indented code, or code enclosed in “%{” ... “%}” delimiters is copied to the output
file. The “%{” ... “%}” delimited formmustbe used to include code that syntactically
must start in column zero, such as “#define ” declarations. It is considered good form
to always use the delimiters for included code, so that printed listings are easier to
understand for human readers.

Comments in the Definitions Section

Comments in the definition section that begin in column zero, that isunindentedcom-
ments, are copied to the output file. Any indented comments are taken as user code,
and are also copied to the output file. Note that this is different behaviour to comments
in the rules section.

Single line “// ” comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output.

3.2 The Rules Section

Overview of Pattern Matching

The rules section specifies the regular expression patterns that the generated scanner
will recognize. Rules may be predicated on one or more of the start states from the
definitions section.

Each regular expression declaration may have an associatedSemantic Action. The
semantic action is executed whenever an input sequence matches the regular expres-
sion.gplexalways returns thelongestinput sequence that matches any of the applicable
rules of the scanner specification. In the case of a tie, that is, when two or more patterns
of the same length might be matched, the pattern which appears first in the specification
is recognized. The example in Section 6.3 illustrates this rule.

As explained in Section 3.4, the attempt to find the longest match means thatgplex-
created scanners sometimes have to “back up”. This occurs when a match has been
found and an attempt to find an even longer match then fails.

Rule Syntax

The marker “%%” delimits the boundary between the definitions and rules sections. As
in the definitions section, indented text and text within the special delimiters is included
in the output file. All code appearing before the first rule becomes part of the prolog of
theScanmethod. Code appearing after the last rule becomes part of the epilog of the
of theScanmethod. Codebetweenrules has no sensible meaning, attracts a warning,
and is ignored.

The rules have the syntax —

3 THE INPUT FILE 15

Rule
: StartConditionListopt pattern Action ;

StartConditionList
: ‘<’ NameList ‘>’ | ‘<’ ‘ * ’ ‘ >’ ;

Action
: ‘ | ’
| CodeLine
| ‘{’ CodeBlock “}”
;

Start condition lists are optional, and are only needed if the specification requires more
than one start state. Rules that are predicated with such a list are only active when (one
of) the specified condition(s) applies. Rules without an explicit start condition list are
implicitly predicated on theINITIAL start condition.

The names that appear within start condition lists must exactly match names de-
clared in the definitions section, with just two exceptions. Start condition values cor-
respond to integers in the scanner, and the default start conditionINITIAL always has
number zero. Thus in start condition lists “0” may be used as an abbreviation forINI-
TIAL. All other numeric values are illegal in this context. Finally, the start condition
list may be “<*> ”. This asserts that the following rule should apply in every start state.

The Action code is executed whenever a matching pattern is detected. There are
three forms of the actions. An action may be a single line ofC#code, on the same line
as the pattern. An action may be a block of code, enclosed in braces. The left brace
must occur on the same line as the pattern, and the code block is terminated when the
matching right brace is found. Finally, the special vertical bar character, on its own,
means “the same action as the next pattern”. This is a convenient rule to use if multiple
patterns take the same action, such asECHO() , for example5.

Semantic action code typically loads up theyylval semantic value structure, and
may also manipulate the start condition by calls toBEGIN(NEWSTATE) , for example.
Note thatScanloops forever reading input and matching patterns.Scanexits only
when an end of file is detected, or when a semantic action executes a “return token”
statement, returning the integer token-kind value.

Comments in the Rules Section

Comments in the rules section that begin in column zero, that isunindentedcomments,
are not copied to the output file, and do not provoke a warning about “code between
rules”. They may thus be used to annotate the lex file itself.

Any indentedcommentsare taken as user code. If they occur before the first rule
they become part of the prolog of theScanmethod. If they occur after the last rule they
become part of the epilog of theScanmethod.

Single line “// ” comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output.

5And this is not just a matter of saving on typing. Whengplexperforms state minimization two accept
states are only able to be considered for merging if the semantic actions are the same. In this context “same”
means using the same text span in the lex file.

3 THE INPUT FILE 16

Patterns

The patterns are regular expressions. Patterns must start in column zero, or immedi-
ately following a start condition list. Patterns are terminated by whitespace. The prim-
itive elements of the expressions are single characters, the metacharacter “.” (meaning
any characterexcept‘ \n ’), literal strings (enclosed in double quote characters “" ”),
character classes and used occurrences of lexical categories from the definitions sec-
tion.

Character classes are defined between (square) brackets. A character class defines
a set of characters, and matches any character from the set. The members of the class
are specified by any one of the following mechanisms: (i) individual literal characters
appearing in the definition, (ii) sequences of characters that are contiguous in thechar

collating sequence, denoted by the first and last member of the sequence separated by
a dash character ‘-’, and (iii) characters corresponding to the character predicates from
theSystem.Charlibrary (see the next section for the syntax). Because of their special
meaning in this context literal right bracket characters must be backslash escaped. For
the same reason, literal dash characters must be backslash escaped except if the dash
occurs as the first or last member of the set6.

If the caret symbol “̂ ” is the first character of the class the set of matching charac-
ters is inverted, that is, all charactersexceptthose in the class are matched. Beyond the
first position the caret has no special meaning and denotes itself.

Used occurences of lexical categories are denoted by the name of the category
within (curly) braces. Used occurences may occur in patterns in the rules section or
within the definitions of other lexical categories. However, the defining occurence of
each category must textually precede all the used occurences of that category.

The operators of the expressions are concatenation (implicit), alternation (the ver-
tical bar), and various forms of repetition. There are also the context operators:left-
anchor“ ˆ ”, right-anchor“$”, and theright contextoperator “/ ”.

A left-anchored pattern̂R, whereR is some regular expression, matches any in-
put that matchesR, but only if the input starts at the beginning of a line. Similarly, a
right-anchored patternR$, whereR is some regular expression, matches any input that
matchesR, but only if the input finishes at the end of a line. Traditional implementa-
tions ofLEX define “end of the line” as whatever theANSI Ccompiler defines as end
of line. gplexaccepts any of the standard line-end markers “(\r\n|\r|\n) ”.

The expressionR1/ R2 matches text that matchesR1 with right context matching
the regular expressionR2. The entire string matchingR1R2 participates in finding the
longest matching string, but only the text corresponding toR1 is consumed. Similarly
for right anchored patterns, the end of line character(s) participate in the longest match
calculation, but are not consumed.

The repetition markers are: “* ” — meaning zero or more repetitions; “+” — mean-
ing one or more repetitions; “?” — meaning zero or one repetition; “{n,m} ” where
n and m are integers — meaning between n and m repetitions; “{n,} ” where n is an
integer — meaning n or more repetitions; “{n} ” where n is an integer — meaning
exactly n repetitions. Note carefully that the “{n,} ” marker must not have whitespace
after the comma. In the currentgplexscanner un-escaped white space terminates the
candidate regular expression.

Finally, there is one special marker thatgplexrecognizes. The character sequence
“<<EOF>>” denotes a pattern that matches the end-of-file. The marker may be condi-

6The case of un-escaped dashes provokes a warning, just in case the literal interpretation is not the
intended meaning.

3 THE INPUT FILE 17

tional on some starting condition, in the usual way, but cannot appear as a component of
any other pattern. Beware that pattern"<<EOF>>" (with the quotes) exactly matches
the seven-character-long pattern “<<EOF>>”, while the pattern<<EOF>> (without
the quotes) matches the end of file.

Character Predicates

Within a character class, the special syntax “[: PredicateMethod:] ” denotes all of the
characters from the selected alphabet7 for which the corresponding.NET base class
library method returns the true value. The implemented methods are —

* IsControl, IsDigit, IsLetter, IsLetterOrDigit, IsLower, IsNumber, IsPunctuation,
IsSeparator, IsSymbol, IsUpper, IsWhiteSpace

There are three additional predicates —

* IsFormatCharacter— Characters with unicode category Cf

* IdentifierStartCharacter— Valid identifier start characters forC#

* IdentifierPartCharacter— Valid continuation characters forC# identifiers, ex-
cluding category Cf

Note that the bracketing markers “[: ” and “:] ” appear within the brackets that delimit
the character class. For example, the following two character classes are equivalent.

alphanum1 [[:IsLetterOrDigit:]]
alphanum2 [[:IsLetter:][:IsDigit:]]

These classes arenot equivalent to the set —

alphanum3 [a-zA-Z0-9]

even in the 8-bit case, since this last class does not include all of the alphabetic charac-
ters from the latin alphabet that have diacritical marks, such asä andñ.

Character Predicates in Byte-Mode Scanners

In traditionalLEX, the names of the character predicates are those available in “libc ”.
In gplex the available predicates are from the.NET base class library, and apply to
unicode codepoints. If these predicates are used in byte-mode scanners some care
must be taken.

Consider the following example: a byte-mode specification declares a character set

PunctuationChars [[:IsPunctuation:]]

Now, the base class library function allows us to easily generate a set ofunicodecode-
pointsp such that the static predicate

Char .IsPunctuation(p);

returns true. Sadly, this is not quite what we need for a byte-mode scanner. Recall that
byte-mode scanners operate on uninterpreted byte-values, as shown in figure 12. What
we need is a set of byte-valuesv such that

Char .IsPunctuation(Map(v));
7In the non-unicode case, the sets will include only those byte values that correspond to unicode char-

acters for which the predicate functions return true. In the case of the /unicode option, the full sets are
returned.

3 THE INPUT FILE 18

returns true, for the mappingMapdefined by some codepage.
For example, in the Western European (Windows) character set the ellipsis charac-

ter ‘. . .’ is byte 0x85. The ellipsis is a perfectly good punctuation character, however
Char .IsPunctuation((char)0x85);

is false! The problem is that the ellipsis character is unicode codepoint u+2026, while
unicode codepoint u+0085 is the “newline” control characterNEL. All of the characters
of the iso-8859 encodings that occupy the byte-values from 0x80 to 0x9f correspond
to unicode characters from elsewhere in the space.

The character set “[:IsLetter:] ” provides another example. For a byte-mode
scanner using the Western European codepage 1252, this set will contain 126 members.
The same set has only 123 members in codepage 1253. In the uninterpreted, raw case
the set has only 121 members.

Nevertheless, it is permissible to generate character sets using character predicates
in the byte-mode case. When this is done, the user may specify the codepage that maps
between the byte-values that the generated scanner reads from the input file, and the
unicode codepoints to which they correspond.

If no codepage is specified, the mapping is taken from the default codepage of the
machine on which gplex is running. This poses no problem if the machine on which
the generated scanner will run has the same culture settings as the generating machine,
or if the codepage of the scanner host is known with certainty at scanner generation
time. Other cases may lack portability.

3.3 Start-Condition Scopes

Sometimes a number of patterns are predicated on the same list of start conditions.
In such cases it may be convenient to usestart condition scopesto structure the rules
section. Start condition scopes have the following syntax —

StartConditionScope
: StartConditionList ‘{’ RuleList ‘}’ ;

StartConditionList
: ‘<’ NameList ‘>’ | ‘<’ ‘ * ’ ‘ >’ ;

RuleList
: RuleListopt Rule
| RuleListopt StartConditionScope
;

The rules that appear within the scope are all conditional on the start condition list
which begins the scope. The opening brace of the scope must immediately follow the
start condition list, and the opening and closing braces of the scope must each be the
last non-whitespace element on their respective lines.

As before, the start condition list is a comma-separated list of known start condition
names between ‘<’ and ‘>’ characters. The rule list is one or more rules, in the usual
format, each starting on a separate line. It is common for the embedded rules within the
scope to be unconditional, but it is perfectly legal to nest either conditional rules or start
condition scopes. In nested scopes the effect of the start condition lists is cumulative.
Thus —

<one>{
<two>{

foo { FooAction(); }
bar { BarAction(); }

}
}

3 THE INPUT FILE 19

has exactly the same effect as —
<one,two>{

foo { FooAction(); }
bar { BarAction(); }

}

or indeed as the plain, old-fashioned sequence —
<one,two>foo { FooAction(); }
<one,two>bar { BarAction(); }

It is sensible to use indentation to denote the extent of the scope. So this syntax neces-
sarily relaxes the constraint that rules must start at the beginning of the line.

Note that almost any non-whitespace characters following the left brace at the start
of a scope would be mistaken for a pattern. Thus the left brace must be the last character
on the line, except for whitespace. As usual, “whitespace” includes the case of aC#-
style single-line comment.

3.4 Backtracking Information

When the “/summary ” option is sent togplexthe program produces a listing file with
information about the produced automaton. This includes the number of start condi-
tions, the number of patterns applying to each condition, the number ofNFSAstates,
DFSAstates, accept states and states that require backup.

Because an automaton that requires backup runs somewhat more slowly, some
users may wish to modify the specification to avoid backup. A backup state is a state
that is an accept state that contains at least oneout-transition that leads to a non-accept
state. The point is that if the automaton leaves a perfectly good accept state in the
hope of finding an even longer match it may fail. When this happens, the automaton
must return to the last accept state that it encountered, pushing back the input that was
fruitlessly read.

It is sometimes difficult to determine from where in the grammar the backup case
arises. When invoked with the “/summary ” option gplexhelps by giving an example
of a shortest possible string leading to the backup state, and gives an example of the
character that leads to a transition to a non-accept state. In many cases there may be
many strings of the same length leading to the backup state. In such casesgplextries
to find a string that can be represented without the use of character escapes.

Consider the grammar —
foo |
foobar |
bar { Console .WriteLine(" keyword " + yytext); }

If this is processed with the summary option the listing file notes that the automaton
has one backup state, and contains the diagnostic —

After <INITIAL>"foo" automaton could accept “foo ” in state 1
— after ‘b’ automaton is in a non-accept state and might need to backup

This case is straightforward, since after reading “foo” and seeing a ‘b’ as the next
character the possibility arises that the next characters might not be “ar”8.

In other circumstances the diagnostic is more necessary. Consider a definition of
words that allows hyphens and apostrophes, but not at the ends of the word, and not
adjacent to each other. Here is one possible grammar —

8But note that the backup is removed by adding an extra production with pattern “{ident }* ” to ensure
that all intermediate states acceptsomething.

3 THE INPUT FILE 20

alpha [a-zA-Z]
middle ([a-zA-Z][\-’]|[a-zA-Z])
%%
{middle}+{alpha} { ...

For this automaton there is just one backup state. The diagnostic is —

After <INITIAL>"AA" automaton could accept “{middle }+{alpha }” in state 1
— after ‘’ ’ automaton is in a non-accept state and might need to backup

The shortest path to the accept state requires two alphabetic characters, with “AA” a
simple example. When an apostrophe (or a hyphen) is the next character, there is al-
ways the possibility that the word will end before another alphabetic character restores
the automaton to the accept state.

3.5 Stacking Start Conditions

For some applications the use of the standard start conditions mechanism is either
impossible or inconvenient. The lex definition language itself forms such an example,
if you wish to recognize theC# tokens as well as the lex tokens. We must have start
conditions for the main sections, for the code inside the sections, and for comments
inside (and outside) the code.

One approach to handling the start conditions in such cases is to use astackof start
conditions, and to push and pop these in semantic actions.gplexsupports the stacking
of start conditions when the “stack ” command is given, either on the command line,
or as an option in the definitions section. This option provides the methods shown in
Figure 9. These are normally used together with the standardBEGIN method. The

Figure 9: Methods for Manipulating the Start Condition Stack

// Clear the start condition stack
internal void yy clear stack();

// Push currentScOrd, and set currentScOrd to “state”
internal void yy push state(int state);

// Pop start condition stack into currentScOrd
internal int yy pop state();

// Fetch top of stack without changing top of stack value
internal int yy top state();

first method clears the stack. This is useful for initialization, and also for error recovery
in the start condition automaton.

The next two methods push and pop the start condition values, while the final
method examines the top of stack without affecting the stack pointer. This last is useful
for conditional code in semantic actions, which may perform tests such as —

if (yy top state() == INITIAL) ...

Note carefully that the top-of-stack state is not the current start condition, but is the
value that willbecomethe start condition if “pop” is called.

3 THE INPUT FILE 21

3.6 Location Information

Parsers created bygppghave default actions to track location information in the input
text. The parsers define a classLexLocation, that is the default instantiation of the
YYLTYPEgeneric type parameter. The parsers call the merge method at each reduction,
expecting to create a location object that represents an input text span from the start of
the first symbol of the production to the end of the last symbol of the production.
gppgusers may substitute other types for the default, provided that they implement
a suitableMergemethod. Figure 10 is the definition of the default class. If agplex

Figure 10: Default Location-Information Class

public class LexLocation : IMerge <LexLocation >
{

public int sLin; // Start line
public int sCol; // Start column
public int eLin; // End line
public int eCol; // End column
public LexLocation() {};
public LexLocation(int sl; int sc; int el; int ec)
{ sLin=sl; sCol=sc; eLin=el; eCol=ec; }

public LexLocation Merge(Lexlocation end) {
return new LexLocation (sLin,sCol,end.eLin,end.eCol);

}
}

scanner ignores the existence of the location type, the parser will still be able to access
some location information using theyyline, yycolproperties, but the default text span
tracking will do nothing9.

If a gplexscanner needs to create location objects for the parser, the logical place to
do this is in the epilog of the scan method. Code after the final rule in the rules section
of a lex specification will appear in afinally clause in theScanmethod. For the
default location type, the code would simply say —

yylloc = new LexLocation (tokLin,tokCol,tokELin,tokECol)

where the arguments are internal variables of the scanner defined ingplexx.frame.
TheIMerge interface is shown in Figure 11.

Figure 11: Location Types Must ImplementIMerge

public interface IMerge <YYLTYPE> {
YYLTYPE Merge(YYLTYPE last);

}

9The parser will not crash by trying to callMergeon a null reference, because the default code is guarded
by a null test.

4 ERRORS, WARNINGS AND GOTCHAS 22

4 Errors, Warnings and Gotchas

There are a number of errors and warnings thatgplexdetects. Errors are fatal, and no
scanner source file is produced in that case. Warnings are intended to be informative,
and draw attention to suspicious constructs that may need manual checking by the user.

“Gotchas” are an informal category of potential malfunctions. These are situations
that users should treat with caution.

4.1 Errors

Errors are displayed in the listing file, with the location of the error highlighted. In
some cases the error message includes a variable text indicating the erroneous token or
the text that was expected. In the following the variable text is denoted<...>.

“ %%” marker must start at beginning of line —
An out-of-place marker was found, possibly during error recovery from an earlier
error.

Cannot set/unicode option inconsistently<...> —
Normally options are processed in order and may undo other option’s effect.
However, options that explicitly set the alphabet size such as/unicodeor /nouni-
codecannot be contradicted by later options.

Context must have fixed right length or fixed left length —
gplexhas a limitation on the implementation of patterns with right context. Either
the right context or the body of the pattern must recognize fixed length strings.

Empty semantic action, must be at least a comment—
No semantic action was found. This error also occurs due to incorrect syntax in
thepreviousrule.

Expected character<...> —
During the scanning of a regular expression an expected character was not found.
This most commonly arises from missing right hand bracketing symbols, or clos-
ing quote characters.

Expected space here—
Thegplexparser was expecting whitespace. This can arise when a lexical cate-
gory definition is empty or when the pattern of a rule is followed by an end-of-
line rather than a semantic action.

Expected end-of-line here—
Unexpected non-whitespace characters have been found at the end of a construct
when an end of line is the only legal continuation.

Illegal name for start condition <...> —
Names of start conditions must be identifiers. As a special case the number zero
may be used as a shortcut for a used occurrence of the initial start state. Any
other numeric reference is illegal.

Illegal octal character escape<...> —
Denotation of character values by escaped octal sequences must contain exactly
three octal digits, except for the special case of ‘\0 ’.

4 ERRORS, WARNINGS AND GOTCHAS 23

Illegal hexadecimal character escape<...> —
Denotation of character values by escaped hexadecimal sequences must contain
exactly two hexadecimal digits.

Illegal unicode character escape<...> —
Denotation of character values by unicode escapes must have exactly four hex-
adecimal digits, following a ‘\u ’ prefix, or exactly eight hexadecimal digits,
following a ‘\U ’ prefix.

Illegal character in this context —
The indicated character is not the start of any possiblegplextoken in the current
scanner state.

Inconsistent “%option ” command <...> —
The message argument is an option that is inconsistent with already processed
options. In particular, it is not possible to declare/noclassesfor a unicode scan-
ner.

Invalid action —
There is a syntax error in the multi-line semantic action for this pattern.

Invalid or empty namelist —
There is a syntax error in the namelist currently being parsed.

Invalid production rule —
There is a syntax error in the rule currently being parsed.

Invalid character range: lower bound > upper bound —
In a character range within a character class definition the character on the left
of the ‘–’ must have a numerically smaller codepoint than the character on the
right.

Invalid single-line action —
gplexfound a syntax error in the parsing of a single-line semantic action.

Invalid class character: ‘–’ must be escaped—
A ‘–’ character at the start or end of a character set definition is taken as a lit-
eral, single character. Everywhere else in a set definition this character must be
escaped unless it is part of a range declaration.

Lexical category<...> already defined —
The lexical category in this definition is already defined in the symbol table.

Lexical category must be a character class<...> —
In this version ofgplexcharacter set membership predicates can only be gener-
ated for lexical categories that are character classes “[...]”.

Missing matching construct<...> —
The parser has failed to find a matching right hand bracketing character. This
may mean that brackets (either ‘(’, ‘[’ or ‘{’) are improperly nested.

“namespace” is illegal, use “%namespace” instead —
C# code in the lex specification is insertedinside the generated scanner class.
The namespace of the scanner can only be set using the non-standard%name-
space command.

4 ERRORS, WARNINGS AND GOTCHAS 24

“next” action ‘ | ’ cannot be used on last pattern—
The ‘| ’ character used as a semantic action has the meaning “use the same action
as the following pattern”. This action cannot be applied to the last pattern in a
rules section.

No namespace has been defined—
The end of the definitions section of the specification was reached without find-
ing a valid namespace declaration.

Non unicode scanners allow only single-byte codepages—
For byte-mode scanners the codepage option modifies the behavior of character
set predicates. Only codepages with the single byte property make sense for this
purpose.

Non unicode scanner cannot use /codepage:guess—
For byte-mode scanners the codepage setting is used at scanner generation time
to determine the meaning of character predicates. The codepage guesser works
at scanner runtime.

Parser error <...> —
Thegplexparser has encountered a syntax error in the inputLEX file. The nature
of the error needs to be found from the information in the<...> placeholder.

Start state<...> already defined —
All start state names must be unique. The indicated name is already defined.

Start state<...> undefined —
An apparent use of a start state name does not refer to any defined start state
name.

Symbols ‘̂ ’ and ‘ $’ can only occur at ends of patterns —
The two anchor symbols can only occur at the end of regular expressions. This
error can arise when an anchor symbol is part of a lexical category which is then
used as a term in another expression. Using anchor symbols in lexical categories
should be deprecated.

This token unexpected—
The parser is expecting to find indented text, which can only be part of aC#
code-snippet. The current text does not appear to be legalC#.

Type declarations impossible in this context—
gplexallows type declarations (class, struct, enum) in the definitions sec-
tion of the specification, and in the user code section. Type declarations are not
permitted in the rules section.

“using” is illegal, use “%using ” instead —
C# code in the lex specification is insertedinside the generated scanner class.
The using list of the scanner module can only have additional namespaces added
by using the non-standard%using command.

Unknown lexical category<...> —
This name is not the name of any defined lexical category. This could be a
character case error: lexical category names are case-sensitive.

4 ERRORS, WARNINGS AND GOTCHAS 25

Unexpected symbol, skipping to<...> —
gplexhas found a syntax error in the current section. It will discard input until it
reaches the stated symbol.

Unrecognized “%option ” command <...> —
The given option is unknown.

Unknown character predicate<...> —
The character predicate name in the[: ... :] construct is not known togplex.

Unicode literal too large<...> —
The unicode escape denotes a character with a codepoint that exceeds the limit
of the unicode definition,0x10ffff .

Unterminated block comment start here —
A end of this block comment/* ... */ was not found before the end of file was
reached. The position of thestart of the unterminated comment is marked.

Unknown lex tag name —
Tags ingplexare all those commands that start with a%.... The current tag is not
known. Remember that tag names are case-sensitive.

Version of gplexx.frame is not recent enough—
The version of gplexx.frame thatgplexfound does not match thegplexversion.

4.2 Warnings

A number of characteristics of the input specification may be dangerous, or require
some additional checking by the user. In such casesgplexissues one of the following
warnings. In some cases the detected constructs are intended, and are safe.

/babel option is unsafe without/unicode option —
Scanners generated with thebabel option read their input from strings. It is
unsafe to generate such a scanner without declaring/unicodesince the input
string might contain a character beyond the Latin-8 boundary, which will cause
the scanner to throw an exception.

Code between rules, ignored—
Codebetweenrules in the rules section of a specification cannot be assigned to
any meaningful location in the generated scanner class. It has been ignored.

No upper bound to range,<...> included as set class members—
It is legal for the last character in a character set definition to be the ‘–’ character.
However, check that this was not intended to be part of a range definition.

Special case:<...> included as set class member—
It is legal for the first character in a character set definition to be the ‘–’ character.
However, check that this was not intended to be part of a range definition.

This pattern is never matched —
gplexhas detected that this pattern cannot ever be matched. This might be an
error, caused by incorrect ordering of rules. (See the next two messages for
diagnostic help).

5 THE GENERATED SCANNER 26

This pattern always overridden by<...> —
In the case that a pattern is unreachable, this warning is attached to the unreach-
able pattern. The variable text of the message indicates (one of) the patterns that
will be matched instead. If this is not the intended behavior, move the unreach-
able pattern earlier in the rule list.

This pattern always overrides pattern<...> —
This warning message is attached to the pattern that makes some other pattern
unreachable. The variable text of the message indicates the pattern that is ob-
scured.

This pattern matches the empty string, and might loop—
One of the input texts that this pattern matches is the empty string. This may be
an error, and might cause the scanner to fail to terminate. The following section
describes the circumstances under which such a construct isNOT an error.

Matching the Empty String

There are a number of circumstances under which a pattern can match the empty string.
For example, the regular expression may consist of a* -closure or may consist of a
concatenation of symbols each of which is optional. It is also possible for a pattern
with fixed-length right context to have a pattern body (variable-length left context)
which matches the empty string. All such patterns are detected bygplex.

Another way in which a pattern recognition might consume no input is for the
semantic action of a pattern to contain the commandyyless(0) . If this is the case
the semantic action will reset the input position back to thestart of the recognised
pattern.

In all cases where the pattern recognition does not consume any input, if the start
state of the scanner is not changed by the semantic action the scanner will become
stuck in a loop and never terminate.

Nevertheless, it is common and useful to include patterns that consume no input.
Consider the case where some characteristic pattern indicates a “phase change” in the
input. SupposeX denotes that pattern,S1 is the previous start condition and the new
phase is handled by start conditionS2. The following specification-pattern is a sensible
way to implement this semantic —

<S1>X { BEGIN(S2); yyless(0); }
<S2>...

Using this specification-pattern allows the regular expression patterns that belong to
the S2 start state to include patterns that begin by matching theX that logically be-
gins the new input phase. The lexical specification forgplex uses this construct no
less than three times. For scanners that use the/stackoption, callingyy pop stateor
yy pushstatealso constitute a change of start state for purposes of avoiding looping.

5 The Generated Scanner

5.1 Byte-Mode and Unicode-Mode

Every scanner generated bygplexoperates either inbyte-mode, or in unicode-mode.
The conceptual form of a byte-mode scanner is shown in Figure 12. In this mode,
the next state of the scanner automaton is determined by the next-state function from

5 THE GENERATED SCANNER 27

Figure 12: Conceptual diagram of byte-mode scanner

Nextstate
Function

Current State

Un-encoded
byte value

Next
State

the current input byte and the current state. The bytes of the input stream are used
uninterpreted.

In unicode mode the next state of the scanner automaton is determined by the next-
state function from the currentunicode codepointand the current state. The sequence
of codepoints may come from a string ofSystem.Charvalues, or from a file. Unicode
code-points have 21 significant bits, so some interpretation of the input is required for
either input form. The conceptual form of the scanner is shown in Figure 13 for file
input. The corresponding diagram forstring input differs only in that the input is a

Figure 13: Conceptual diagram of scanner

Character
Decoding

Nextstate
Function

Current State

Encoded
byte stream

Next
State

Codepoint

sequence ofSystem.Char.

5.2 The Scanner File

The program creates a scanner file which by default is namedfilename.cs wherefile-
nameis the base name of the given source file name.

The file defines a classScanner, belonging to a namespace specified in the lex input
file. There are a number of nested classes in this class, as well as the implementations
of the interfaces previously described.

The format of the file is defined by a template file namedgplexx.frame. User defined
and tool generated code is interleaved with this file to produce the finalC#output file10.

The overall structure of the file is shown in Figure 14. There are seven places
where user code may be inserted. These are shown in red in the figure. They are —

* Optional additional “using” declarations that other user code may require for its
proper operation.

* A namespace declaration. This is not optional.

10Later versions may hide this file away in the executable, but it is convenient to have the file explicitly
available during development ofgplex.

5 THE GENERATED SCANNER 28

Figure 14: Overall Output File Structure

using System;
using System.IO;
using System.Collections.Generic;
user defined using declarations
user defined namespace declaration
{

public sealed partial class Scanner : ScanBase
{
generated constants go here
user code from definitions goes here
int state;
... // lots more declarations
generated tables go here

... // all the other invariant code
// The scanning engine starts here
int Scan() { // Scan is the core of yylex

optional user supplied prolog
... // invariant code of scanning automaton
user specified semantic actions
optional user supplied epilog

}
user-supplied body code from “usercode” section

}
}
unicode scanners include codepage “guesser” code here

* Arbitrary code from within the definitions section of the lex file. This code
typically defines utility methods that the semantic actions will call.

* Optional prolog code in the body of theScanmethod. This is the main engine
of the automaton, so this is the place to declare local variables needed by your
semantic actions.

* User-specified semantic actions from the rules section.

* Optional epilog code. This actually sits inside afinally clause, so that all exits
from theScanmethod will execute this cleanup code. It might be important to
remember that this code executesafter the semantic action has said “return ”.

* Finally, the “user code” section of the lex file is copied into the tail of the scanner
class. In the case of stand-alone applications this is the place where “public

static void Main ” will appear.

As well as these, there is also all of the generated code inserted into the file. This may
include some tens or even hundreds of kilobytes of table initialization. There are actu-
ally several different implementations ofScanin the frame file. The fastest one is used
in the case of lexical specifications that do not require backtracking, and do not have
anchored patterns. Other versions are used for every one of the eight possible com-
binations of backtracking, left-anchored and right-anchored patterns.gplexstatically
determines which version to “#define ” out.

5 THE GENERATED SCANNER 29

Note however that theScannerclass is markedpartial . Much of the user code
that traditionally clutters up the lex specification can thus be moved into a separate
scan-helper file containing a separate part of the class definition.

5.3 Choosing the Input Buffer Class

There are a total of seven concrete implementations of the abstractScanBuffclass in
gplex. There are five flavors of file input buffer, and two string input buffers.

The File Input Buffers

There are five flavors of file buffers —

* StreamBuff. The buffer for a byte file, which reads one byte at a time. It is used
for non-unicode scanners, and by unicode scanners for files that have no prefix
when the fall-back “/codepage:raw ” is specified.

* CodePageBuff. The buffer for a text file which is encoded according to some
specified codepage. This is used by unicode scanners for files that have no prefix,
and a single-byte fallback codepage has been specified.

* TextBuff. The buffer for a text file encoded according to theUTF-8 form. This is
used by unicode scanners for files with a utf-8 prefix, of for files without a prefix
if “ /codepage:utf-8 ” has been specified.

* BigEndTextBuff. The buffer for a text file encoded according to the “big-endian”
UTF-16 form. This is used by unicode scanners for files with a utf-16 prefix, or
for files without a prefix if “/codepage:unicodeFFFE ” has been specified.

* LittleEndTextBuff. The buffer for a text file encoded according to the “little-
endian”UTF-16 form. This is used by unicode scanners for files with a utf-16
prefix, of for files without a prefix if “/codepage:utf-16 ” has been specified.

For all forms of file input, the scanner opens a file stream with code equivalent to
the following —

FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner ();
scnr.SetSource(file, . . .);

The constructor code of theScannerobject that is emitted bygplexis customized ac-
cording to the/unicodeoption. If the unicode option is not in force a scanner is gen-
erated with aStreamBuffbuffer object. In this case the single-argument version of
SetSource(third method in figure 6) will be called. This buffer reads input byte-by-
byte, and the resulting scanner will match patterns of 8-bit bytes.

If the unicode option is in force, the two-argument overload ofSetSource(last
method in figure 6) will be called. This version ofSetSourcereads the first few bytes
of the stream in an attempt to find a valid unicode prefix.

If a valid prefix is found corresponding to aUTF-8 file, or to one or otherUTF-16
file formats, then a corresponding unicode text buffer object is created. If no prefix
is found, then the form of buffer is determined by the “/codepage: ” option. In the
event that no codepage option is in force aCodePageBuffwill be created, and loaded
up with the default codepage for the host machine.

5 THE GENERATED SCANNER 30

Note that the choice of alphabet cardinality for the scanner tables is determined at
scannerconstructiontime, based on the value of the/unicodeoption. The choice of
buffer implementation, on the other hand, is determined atruntime, when the input file
is opened. It is thus possible as a corner case that a unicode scanner will open an input
file as a byte-file containing only 8-bit characters. The scanner will work correctly,
and will also work correctly with input files that contain unicode data in any of the
supported formats.

String Input Buffers

If the scanner is to receive its input as one or more string, the user code passes the input
to one of theSetSourcemethods. In the case of a single string the input is passed to the
method, together with an starting offset value —

public void SetSource(string s, int ofst);

This method will create a buffer object of theStringBuff type. Colorizing scanners for
Visual Studioalways use this method.

An alternative interface uses a data structure that implements theIList<string >
interface —

public void SetSource(IList <string > list);

This method will create a buffer object of theLineBuff type. It is assumed that each
string in the list has been extracted by a method likeReadLinethat will remove the end
of line marker. When the end of each string is reached the bufferReadmethod will
report a ‘\n ’ character, for consistency with the other buffer classes. In the case that
tokens extend over multiple strings in the listbuffer.GetStringwill return a string with
embedded end of line characters.

5.4 How Buffering Works

The scanning engine thatgplexproduces is a finite state automaton (FSA)11 This FSA
deals with code-points from either theByteor Unicodealphabets, as described in sec-
tion 5.1.

Files containing character data may require as little as one byte to encode a unicode
code-point, or as many as four bytes in the worst case of a legal unicode code-point.
gplexscanners always treat their input as byte-files, and layer any decoding on top of
the readbytemethod. This is so that arbitrary file-position seeks may be made to the
first byte of any character. When agplex-generated scanner opens a file at runtime it
will instantiate an appropriate file buffer object for the file-encoding that it has detected.

Strings containing character data from the full unicode alphabet may require two
characters to encode a single code-point. TheStringBufferobject detects surrogate
characters and reads a second character when needed.

Finally, it should be noted that textual data exported from the scanner, such as
yytext, are necessarily ofSystem.Stringtype. This means that if the sequence of code-
points contains points beyond the 64k boundary (that is, not from theBasic Multilin-
gual Plane) those points must be folded back into surrogate pairs inyytextandString-
Buff.GetSource.

11(Note for the picky reader) Well, the scanner isusuallyanFSA. However, the use of the “/stack” option
allows state information to be stacked so that in practice suchgplex-generated recognizers can have the power
of a push-down automaton.

5 THE GENERATED SCANNER 31

An example

Suppose an input text begins with a character sequence consisting of four unicode
characters: ‘\u0061 ’, ‘ \u00DF ’, ‘ \u03C0 ’, ‘ \U000100AA ’. These characters are:
lower case letter ‘a’, Latin lower casesharp sas used in German, Greek lower case
pi, and the Linear-B ideogram for “garment”. For all four characters the predicate
IsLetteris true so the four characters might form a programming language identifier in
a suitably permissive language.

Figure 15 shows what this data looks like as a UTF-8 encoded file. Figure 16 shows
what the data looks like as a big-endian UTF-16 file. In both cases the file begins with a

Figure 15: Encoding of the example as UTF-8 file

a ß π(prefix)

BF BFBB 61 C3 9F CF 80 F1 80 82 AA

yytext = “aßπ\uD800\uDCAA”

Figure 16: Encoding of the example as big-endian UTF-16 file

a ß π(prefix)

FE 00FF 61 00 DF 03 C0 D8 00 DC AA

yytext = “aßπ\uD800\uDCAA”

representation of the file prefix characteru+feff . The encoded form of this character
occupies three bytes in a UTF-8 file, and two in a UTF-16 file. Reading this prefix
allows the scanner to discover in which format the following data is encoded.

The UTF-8 file directly encodes the code-points using a variable-length represen-
tation. This example shows all encoded lengths from one to four. The UTF-16 file
consists of a sequence ofushort values, and thus requires the use of a surrogate pair
for the final code-point of the example, since this has more than sixteen significant bits.

In every case the sequence of code-points delivered to theFSAwill be: 0x61,
0xdf, 0x3c0, 0x100aa . Theyytextvalue returned by the scanner is the same in
each case, using the same surrogate pair as in the UTF-16 file. For string input, the
input string would be exactly the same as for the big-endian UTF-16 case, but without
the prefix code.

Files Without Prefix

The case of text files that do not have a prefix is problematic. What should a unicode
scanner do in the case that no prefix is found? In version 1.0 ofgplexthe decision is
made according to thefallback codepagesetting.

The default setting for the fallback codepage ofgplex-generated scanners is to read
the input byte-by-byte, and map the byte-values to unicode using the default codepage

5 THE GENERATED SCANNER 32

of the host machine. Other possible fallbacks are to use a specified codepage, to use
the byte-value uninterpreted (“raw”), or to rapidly scan the input file looking for any
characteristic patterns that indicate the encoding.

At scanner generation time the user may specify the required fallback behavior.
Generated scanners also contain infrastructure that allows the scanner’s host applica-
tion to override the generation-time default. This overriding may be done on a file-by-
file basis.

The treatment of codepages is detailed in the separate document “Codepage.pdf ”.

5.5 Multiple Input Sources

There are two common scenarios in which multiple input sources are needed. The
first occurs when multiple input sources are treated as though concatenated. Typically,
when one input source is exhausted input is taken from the next source in the sequence.

The second scenario occurs in the implementation of “include files” in which a
special marker in the current source causes input to be read from an alternative source.
At some later stage input may again be read from the remaining text of the original
source.

gplex includes facilities to enable the encoding of both of these behaviors, and
examples of both are included in Section 6.

Whenever an end-of-input event is found by the scanner,EOF processing is in-
voked. If there is an explicit user action attached to theEOF-event for the current
start-state then that specified action is executed. If there is no such action, or if the
specified action completes without returning a token value, then the defaultEOF ac-
tion is executed. The default action calls the predicateyywrap(). If yywrap returns
true the call toyylexwill return Tokens.EOFthus causing the parser to terminate. If,
on the other hand, the predicate returnsfalse then scanning continues.

The ScanBaseclass contains a default implementation ofyywrap, which always
returnstrue . Users may override this method in theirScannerclass. The user-supplied
yywrap method will determine whether there is further input to process. If so, the
method will switch input source and returnfalse 12. If there is no further input, the
user-suppliedyywrapmethod will simply returntrue .

Chaining Input Texts

When input texts are chained together, theyywrap method may be used to manage
the buffering of the sequence of sources. A structured way to do this is to place the
texts (filenames, or perhaps strings) in a collection, and fetch the enumerator for that
collection. Figure 17 is a template for theyywrapmethod. The code for creation and
initialization of the new input buffer depends on the buffer class that is appropriate for
the next input text. In the case of aStringBuffa call to the firstSetSourcemethod —

public void SetSource(string str, int ofst);

does everything that is required.
The case of a file buffer is slightly more complicated. The file stream must be

created, and a new buffer allocated and attached to the scanner. For a byte-stream the
following code isalmostsufficient.

SetSource(new FileStream (filename, FileMode .Open));
12Beware that returning falsewithout replacing the input source is yet another way of making a scanner

hang in a loop.

5 THE GENERATED SCANNER 33

Figure 17: Chaining input texts withyywrap

protected override bool yywrap() {
if (enumerator.MoveNext()) { // Is there more input to process?

SetSource(...) // Choice of four overloads here
return false

} else
return true ; // And cause yylex to return EOF

}

Of course, sensible code would open the file within atry block to catch any exceptions.
In the unicode case, a call to the fourth method in Figure 6 will create a buffer for

an encoded text file.

The BufferContext Class

Switching input sources requires replacement of thebufferobject of the executing scan-
ner. When a new input source is attached, some associated scanner state variables need
to be initialized. The buffer and associated state values form theBufferContext. It is
values of this type that need to be saved and restored for include-file handling.

There are predefined methods for creating values ofBufferContexttype from the
current scanner state, and for setting the scanner state from a suppliedBufferContext
value. The signatures are shown in Figure 18. In cases where include files may be

Figure 18: BufferContext handling methods

// Create context from current buffer and scanner state
BufferContext MkBuffCtx() { ... }

// Restore buffer value and associated state from context
void RestoreBuffCtx(BufferContext value) { ... }

nested, context values are created byMkBuffCtxand are then pushed on a stack. Con-
versely, when a context is to be resumedRestoreBuffCtxis called with the popped value
as argument.

TheBufferContexttype is used in the same way forall types of buffer. Thus it is
possible to switch from byte-files to unicode files to string-input in an arbitrary fash-
ion. However, the creation and initialization of objects of the correct buffer types is
determined by user code choosing the appropriate overload ofSetSourceto invoke.

Include File Processing

If a program allows arbitrary nesting of include file inclusion then it is necessary to
implement a stack of savedBufferContextrecords. Figure 19 is a template for the user
code in such a scanner. In this case it is assumed that the pattern matching rules of the
scanner detect the file-include command and parse the filename. The semantic action
of the pattern matcher will then callTryInclude.

5 THE GENERATED SCANNER 34

Figure 19: Nested include file handling

Stack <BufferContext > bStack = new Stack <BufferContext >();

private void TryInclude(string filename) {
try {

BufferContext savedCtx = MkBuffCtx();
SetSource(new FileStream (filename, FileMode .Open));
bStack.Push(savedCtx);

} catch { ... }; // Handle any IO exceptions
}

protected override bool yywrap() {
if (bStack.Count == 0) return true;
RestoreBuffCtx(bStack.Pop());
return false ;

}

This template leaves out some of the error checking detail. The complete code of a
scanner based around this template is shown in the distributed examples.

5.6 Class Hierarchy

The scanner file produced bygplexdefines a scanner class that extends an inherited
ScanBaseclass. Normally this super class is defined in the parser namespace, as seen
in Figure 5. As well as this base class, the scanner relies on several other types from
the parser namespace.

The enumeration for the token ordinal values is defined in theTokensenumeration
in the parser namespace. Typical scanners also rely on the presence of anErrorHandler
class from the parser namespace.

Stand-alone Scanners

gplex may be used to create stand-alone scanners that operate without an attached
parser. There are some examples of such use in theExamplessection.

The question is: if there is no parser, then where does the code ofgplexfind the
definitions ofScanBaseand theTokensenumeration?

The simple answer is that thegplexx.framefile contains minimal definitions of the
types required, which are activated by the/noparseroption on the command line or in
the lex specification. The user need never see these definitions but, just for the record,
Figure 20 shows the code.

Note that mention ofIScanneris unecessary, and does not appear. If a standalone,
colorizing scanner is required, thengplexwill supply dummy definitions of the required
features.

UsingGPLEX Scanners with Other Parsers

Whengplex-scanners are used with parsers that offer a different interface to that of
gppg, some kind of adapter classes may need to be manually generated. For example

5 THE GENERATED SCANNER 35

Figure 20: Standalone Parser Dummy Code

public enum Tokens {
EOF = 0, maxParseToken = int .MaxValue
// must have just these two, values are arbitrary

}

public abstract class ScanBase {
public abstract int yylex();
protected virtual bool yywrap() { return true ; }

}

if a parser is used that is generated bygppgbut not using the “/gplex” command line
option, then adaptation is required. In this case the adaptation required is between the
raw IScannerclass provided byShiftReduceParserand theScanBaseclass expected by
gplex.

A common design pattern is to have a tool-generated parser that creates apartial
parser class. In this way most of the user code can be placed in a separate “parse
helper” file rather than having to be embedded in the parser specification. The parse
helper part of the partial class may also provide definitions for the expectedScanBase
class, and mediate between the calls made by the parser and theAPI offered by the
scanner.

Colorizing Scanners andmaxParseToken

The scanners produced bygplex recognize a distinguished value of theTokensenu-
meration named “maxParseToken”. If this value is defined, usually in thegppg-input
specification, thenyylexwill only return values less than this constant.

This facility is used in colorizing scanners when the scanner has two callers: the
token colorizer, which is informed ofall tokens, and the parser which may choose to
ignore such things as comments, line endings and so on.

gplexuses reflection to check if the special value of the enumeration is defined. If
no such value is defined the limit is set toint .MaxValue .

Colorizing Scanners andManaged Babel

Colorizing scanners intended for use by theManaged Babelframework of theVisual
Studio SDKare created by invokinggplex with the /babel option. In this case the
Scannerclass implements theIColorScaninterface (see figure 8), andgplexsupplies
an implementation of the interface. TheScanBaseclass also defines two properties for
persisting the scanner state at line-ends, so that lines may be colored in arbitrary order.

ScanBasedefines the default implementation of a scanner property,EolState, that
encapsulates the scanner state in anint32. The default implementation is to identify
EolStateas the scanner start state, described below. Figure 21 shows the definition
in ScanBase. gplexwill supply a final implementation ofCurrentScbacked by the
scanner state fieldcurrentScOrd, the start state ordinal.

EolStateis a virtual property. In a majority of applications the automatically gener-
ated implementation of the base class suffices. For example, in the case of multi-line,

5 THE GENERATED SCANNER 36

Figure 21: TheEolStateproperty

public abstract class ScanBase {
... // Other (non-babel related) ScanBase features
protected abstract int CurrentSc { get ; set ; }
// The currentScOrd value of the scanner will be the backing field for CurrentSc

public virtual int EolState {
get { return CurrentSc; }
set { CurrentSc = value ; } }

}

non-nesting comments it is sufficient for the line-scanner to know that a line starts or
ends inside such a comment.

However, for those cases where something more expressive is required the user
must overrideEolStateso as to specify a mapping between the internal state of the
scanner and theint32 value persisted byVisual Studio. For example, in the case of
multi-line, possibly nested comments a line-scanner must know howdeepthe comment
nesting is at the start and end of each line. The user-supplied override ofEolStatemust
thus encode both theCurrentScvalueanda nesting-depth ordinal.

5.7 Unicode Scanners

gplexis able to produce scanners that operate over the whole unicode alphabet. How-
ever, theLEX specification itself is always an 8-bit file.

Specifying a Unicode Scanner

A unicode scanner may be specified either on the command line, or with an option
marker in theLEX file. Putting the option in the file is always the preferred choice,
since the need for the option is a fixed property of the specification. It is an error to
include character literals outside the 8-bit range without specifying the /unicodeoption.

Furthermore, the use of the unicode option implies the /classesoption. It is an error
to specifyunicodeand then to attempt to specify /noclasses.

Unicode characters are specified by using the usual unicode escape formats\u xxxx
and\U xxxxxxxxwherex is a hexadecimal digit. Unicode excapes may appear in literal
strings, as primitive operands in regular expressions, or in bracket-delimited character
class definitions.

Unicode Scanners and the Babel Option

Scanners generated with thebabeloption should always use theunicodeoption also.
The reason is that although theLEX specification might not use any unicode literals, a
non-unicode scanner will throw an exception if it scans a string that contains a character
beyond the latin-8 boundary.

Thus it is unsafe to use the babel option without the unicode option unless you can
absolutely guarantee that the scanner will never meet a character that is out of bounds.
gplexwill issue a warning if this dangerous combination of options is chosen.

5 THE GENERATED SCANNER 37

Unicode Scanners and the Input File

Unicode scanners that read from strings use the sameStringBuff class as do non-
unicode scanners. However, unicode scanners that read from filestreams must use a
buffer implementation that reads unicode characters from the underlying byte-file. The
current version supports three kinds of text file encodings—UTF-8, and 16-bit Uni-
code in both big-endian and little-endian variants.

When an scanner object is created with a filestream as argument, and the /unicode
option is in force, the scanner tries to read an encoding prefix from the stream. If the
prefix indicates any of the supported encodings an appropriate buffer object is created,
derived from theTextBuffclass. If no prefix is found the input stream position is reset
to the start of the file and the type of buffer that is created depends on thefallback
codepagesetting.

5.8 Choosing Compression Options

Depending on the options,gplexscanners have either one or two lookup tables. The
program attempts to choose sensible compression defaults, but in cases where a user
wishes to directly control the behavior the compression of the tables may be controlled
independently.

In order to use this flexibility, it is necessary to understand a little of how the internal
tables ofgplex are organized. Those readers who are uninterested in the technical
details can safely skip this section and confidently rely on the program defaults.

Scanners Without Character Classes

If a scanner does not use either the /classesor the /unicodeoptions, the scanner has
only a next-state table. There is a one-dimensional array, one element for each state,
which specifies for each input character what the next state shall be. In the simple,
uncompressed case each next-state element is simply an array of length equal to the
cardinality of the alphabet. States with the same next-state table share entries, so the
total number of next state entries is(|N | −R)× |S| where|N | is the number of states,
R is the number of states that reference another state’s next-state array, and|S| is the
number of symbols in the alphabet. In the case of theComponent Pascal LEXgrammar
there are 62 states and the 8-bit alphabet has 256 characters. Without row-sharing there
would be 15872 next-state entries, however 34 rows are repeats so the actual space used
is 7168 entries.

It turns out that these next-state arrays are very sparse, in the sense that there are
long runs of repeated elements. The default compression is to treat the|S| entries as
being arranged in a circular buffer and to exclude the longest run of repeated elements.
The entry in the array for each state then has a data structure which specifies: the lowest
character value for which the table is consulted, the number ofnon-default entries in the
table, the default next-state value, and finally thenon-default array itself. The length of
thenon-default array is different for different states, but on average is quite short. For
theComponent Pascalgrammar the total number of entries in all the tables is just 922.

Note that compression of the next-state table comes at a small price at runtime.
Each next-state lookup must inspect the next-state data for the current state, check the
bounds of the array, then either index into the shortened array or return the default
value.

5 THE GENERATED SCANNER 38

Non-Unicode Scanners With Equivalence Classes

If a scanner uses character equivalence classes, then conceptually there are two tables.
The first, theCharacter Map, is indexed on character value and returns the number
of the equivalence class to which that character belongs. This table thus has as many
entries as there are symbols in the alphabet,|S|. Figure 22 shows the conceptual form
of a scanner with character equivalence classes. This figure should be compared with

Figure 22: Conceptual diagram of scanner with character equivalence classes

Character
Decoding

Nextstate
Function

Current State

Encoded
byte stream

Next
State

Codepoint

Equiv.
Class

Character
Class Map

Figure 13.
The “alphabet” on which the next-state tables operate has only as many entries as

there are equivalence classes,|E|. Because the number of classes is always very much
smaller than the size of the alphabet, using classes provides a useful compression on
its own. The runtime cost of this compression is the time taken to perform the mapping
from character to class. In the case of uncompressed maps, the mapping cost is a single
array lookup.

In the case of theComponent Pascalscanner specification there are only 38 char-
acter classes, so that the size of the uncompressed next-state tables,(|N | −R)× |E|,
is just (62 − 34) states by 38 entries, or 1064 entries. Clearly, in this case the total
table size is not much larger than the case with compression but no mapping. For typi-
cal 8-bit scanners theno-compression but character classversion is similar in size and
slightly faster in execution than the default settings.

Note that although the class map often has a high degree of redundancy it is seldom
worth compressing the map in the non-unicode case. The map takes up only 256 bytes,
so the default for non-unicode scanners with character classes is tonot compress the
map.

Tables in Unicode Scanners

For scanners that use the unicode character set, the considerations are somewhat differ-
ent. Certainly, the option of using uncompressed next-state tables indexed on character
value seems unattractive, since in the unicode case the alphabet cardinality is 1114112
if all planes are considered. For theComponent Pascalgrammar this would lead to un-
compressed tables of almost seventy mega-bytes. In grammars which contain unicode
character literals spread throughout the character space the simple compression of the
next-state tables is ineffective, so unicode scannersalwaysuse character classes.

With unicode scanners the use of character classes provides good compaction of the
next-state tables, since the number of classes in unicode scanners is generally as small

5 THE GENERATED SCANNER 39

as is the case for non-unicode scanners. However the class map itself, if uncompressed,
takes up more than a megabyte on its own. This often would dominate the memory
footprint of the scanner, so the default for unicode scanners is to compress the character
map.

Whengplexcompresses the character map of a unicode scanner it considers two
strategies, and sometimes uses a combination of both. The first strategy is to use an
algorithm somewhat related to the Fraser and Hansen algorithm for compressing sparse
switch statement dispatch tables. The second is to use a “two-level” table lookup.

Compression of a sparse character map involves dividing the map into dense re-
gions which contain different values, which are separated by long runs of repeated
values. The dense regions are kept as short arrays in the tables. TheMap() function
implements a binary decision tree of depthdlog2 Re, whereR is the number of regions
in the map. After at most a number of decisions equal to the tree-depth, if the character
value has fallen in a dense region the return value is found by indexing into the appro-
priate short array, while if a long repeated region has been selected the repeated value
is returned.

A two-level table lookup divides the map function index into high and low bits. For
a 64k map it is usual to use the most significant eight bits to select a sub-map of 256
entries, and use the least significant eight bits to index into the selected sub-map. In a
typical case not all the sub-maps are different, so that ifN is the number of bytes in
the pointer type, andU is the number of unique sub-maps the total space required is
(256×N) bytes for the upper level map and(256× U) bytes of sub-maps. Two level
maps are fast, since they take only two array lookups to find a value, but for the sparse
case may take more space than the alternative method.

When generating a unicode scannergplex always computes a decision tree data
structure. The program tries to limit the decision-tree depth in order to safeguard per-
formance. In the case that the decision tree is too deep the program switches to two-
level lookup table for theBasic Multilingual Plane(that is for the first 64k characters)
and recursively considers a decision tree for the region beyond the 64k boundary. This
is a good strategy since 14 of the remaining 16 planes are unallocated and the other two
are almost always infrequently accessed.

For the common case where aLEX specification has no literals beyond theASCII
boundary the character space collapses into just two regions: a dense region covering
the 7 or 8-bit range, and a repeated region that repeats all the way out to the 21-bit
boundary. In this case the “decision tree” collapses into the obvious bounds-check —

sbyte MapC(int chr) {
if (chr < 127) return mapC0[chr];
else return (sbyte) 29;

}

wheremapC0is the map for the dense region from ‘\0 ’ to ‘ ˜ ’, and equivalence class
29 encodes the “no transition” class.

It is possible to forcegplex to use the decision-tree algorithm over the whole al-
phabet by using the/squeezeoption. This almost always leads to the smallest scanner
tables, but sometimes leads to very deep decision trees and poor performance.

Statistics

If the summaryoption is used, statistics related to the table compression are emitted to
the listing file. This section has data for two different scanners. One is a relatively sim-
ple specification for aComponent Pascal, and contains no unicode literal characters.

5 THE GENERATED SCANNER 40

The other is an extremely complicated specification for aC#scanner. This specification
uses character classes that range through the whole of the unicode alphabet.

Figure 23 contains the statistics for the lexical grammar for theComponent Pascal
Visual Studiolanguage service, with various options enabled. This grammar is for a
Babelscanner, and will normally get input from a string buffer. Note particularly that

Figure 23: Statistics forComponent Pascalscanners

Options nextstate
entries

char-
classes

map-
entries

tree-
depth

compress# 902 – – –
nocompress 7168 – – –

classes, nocompressmap, nocompressnext 1064 38 256 –
classes, nocompressmap, compressnext# 249 38 256 –
classes, compressmap, compressnext 249 38 127 1
classes, compressmap, nocompressnext 1064 38 127 1

unicode, nocompressmap, nocompressnext 1064 38 1.1e6 –
unicode, nocompressmap, compressnext 249 38 1.1e6 –
unicode, compressmap, compressnext# 249 38 127 1
unicode, compressmap, nocompressnext 1064 38 127 1

Default compression option

since theLEX file has no unicode character literals a unicode scanner will take up no
more space nor run any slower than a non-unicode scanner using character classes.
In return, the scanner will not throw an exception if it is passed a string containing
a unicode character beyond the Latin-8 boundary. The default compression case is
indicated in the table. Thus if no option is given the default is/compress. With option
/classesthe default is/nocompressmap /compressnext. Finally, with option/unicode
the default is/compressmap /compressnext.

For the unicode scanners that compress the map the compression used is: a table
for the single dense region covering the first 127 entries, a defaultdon’t carevalue for
the rest of the alphabet, and a decision tree that has degenerated into a simple bounds
check.

An example more typical of unicode scanners is the scanner forC#. This scanner
implements theECMA-334standard, which among other things allows identifiers to
contain characters that are located throughout the whole unicode alphabet. In this
case, the default compression if only the/unicodeoption is given is/compressmap
/compressnext. The compressed map in this case consists of: a two level lookup table
for the basic multilingual plane with a 256-entry upper map pointing to 47 unique sub-
maps. The rest of the map is implemented by a decision-tree of depth 5, with a total of
only 1280 entries in the dense arrays.

The use of the/squeezeoption generates a scanner with a map that is compressed
by a single decision-tree. The tree has depth 7, and the dense arrays contain a total of
9744 elements. Given that the decision tree itself uses up memory space, it is not clear
that in this case the overall compression is significantly better than the default.

6 EXAMPLES 41

Figure 24: Statistics forC#scanner

Options nextstate
entries

char-
classes

map-
entries

tree-
depth

unicode 1360 55 13568 5
unicode, squeeze 1360 55 9744 7

unicode, nocompressmap, nocompressnext 4675 55 1.1e6 –
unicode, nocompressmap, compressnext 1360 55 1.1e6 –
unicode, compressmap, compressnext# 1360 55 13568 5
unicode, compressmap, nocompressnext 4675 55 13568 5

Default compression option

When to use Non-Default Settings

If a non-unicode scanner is particularly time critical, it may be worth considering using
character classes and not compressing either tables. This is usually slightly faster than
the default settings, with very comparable space requirements. In even more critical
cases it may be worth considering simply leaving the next-state table uncompressed.
Without character classes this will cause some increase in the memory footprint, but
leads to the fastest scanners.

For unicode scanners, there is no option but to use character classes, in the current
release. In this case, a moderate speedup is obtained by leaving the next-states uncom-
pressed. Compressing the next-state table has roughly the same overhead as one or two
extra levels in the decision tree.

The depth of the decision tree in the compressed maps depends on the spread of
unicode character literals in the specification. Some pathological specifications are
known to have caused the tree to reach a depth of seven or eight.

Using thesummaryoption and inspecting the listing file is the best way to see
if there is a problem, although it may also be seen by inspecting the source of the
produced scannerC#file.

6 Examples

This section describes the stand-alone application examples that are part of thegplex
distribution. In practice the user code sections of such applications might need a bit
more user interface handling.

The text for all these examples is in the “Examples ” subdirectory of the distribu-
tion.

6.1 Word Counting

This application scans the list of files on the argument list, counting words, lines, in-
tegers and floating point variables. The numbers for each file are emitted, followed by
the totals if there was more than one file.

The next section describes the input, line by line.
The fileWordCount.lexbegins as follows.

6 EXAMPLES 42

%namespace LexScanner
%option noparser, verbose
%{

static int lineTot = 0;
static int wordTot = 0;
static int intTot = 0;
static int fltTot = 0;

%}

the definitions section begins with the namespace definition, as it must. We do not need
any “using ” declarations, sinceSystemandSystem.IOare needed by the invariant code
of the scanner and are imported by default. Next, four class fields are defined. These
will be the counters for the totals over all files. Since we will create a new scanner
object for each new input file, we make these counter variablesstatic .

Next we define three character classes —
alpha [a-zA-Z]
alphaplus [a-zA-Z\-’]
digits [0-9]+
%%

Alphaplusis the alphabetic characters plus hyphens (note the escape) and the apos-
trophe. Digits is one or more numeric characters. The final line ends the definitions
section and begins the rules.

First in the rules section, we define some local variables for theScanroutine. Recall
that codebeforethe first rule becomes part of the prolog.

int lineNum = 0;
int wordNum = 0;
int intNum = 0;
int fltNum = 0;

These locals will accumulate the numbers within a single file. Now come the rules —

\n|\r\n? lineNum++; lineTot++;
{alpha}{alphaplus}*{alpha} wordNum++; wordTot++;
{digits} intNum++; intTot++;
{digits}\.{digits} fltNum++; fltTot++;

The first rule recognizes all common forms of line endings. The second defines a
word as an alpha followed by more alphabetics or hyphens or apostrophes. The third
and fourth recognize simple forms of integer and floating point expressions. Note
especially that the second rule allows words to contain hyphens and apostrophes, but
only in theinterior of the word. The word must start and finish with a plain alphabetic
character.

The fifth and final rule is a special one, using the special marker denoting the end
of file. This allows a semantic action to be attached to the recognition of the file end.
In this case the action is to write out the per-file numbers.

<<EOF>> {
Console .Write(" Lines: " + lineNum);
Console .Write(" , Words: " + wordNum);
Console .Write(" , Ints: " + intNum);
Console .WriteLine(" , Floats: " + fltNum);

}
%%

6 EXAMPLES 43

Note that we could also have placed these actions as code in the epilog, to catch termi-
nation of the scanning loop. These two are equivalent in this particular case, but only
since no action performs a return. We could also have placed the per-file counters as
instance variables of the scanner object, since we construct a fresh scanner per input
file.

The final line of the last snippet marks the end of the rules and beginning of the
user code section.

The user code section is shown if Figure 25. The code opens the input files one by
one, creates a scanner instance and callsyylex.

Figure 25: User Code for Wordcount Example

public static void Main(string [] argp) {
for (int i = 0; i < argp.Length; i++) {

string name = argp[i];
try {

int tok;
FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner (file);
Console .WriteLine("File: " + name);
do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);

} catch (IOException) {
Console .WriteLine("File " + name + " not found");

}
}
if (argp.Length > 1) {

Console .Write("Total Lines: " + lineTot);
Console .Write(", Words: " + wordTot);
Console .Write(", Ints: " + intTot);
Console .WriteLine(", Floats: " + fltTot);

}
}

Building the Application

The fileWordCount.csis created by invoking —

D:\gplex\test> gplex /minimize /summary WordCount.lex

This also createsWordCount.lstwith summary information. The frame filegplexx.fr-
ameshould be in the same folder as thegplexexecutable.

This particular example, generates 26NFSAstates which reduces to just 12DFSA
states. Nine of these states areacceptstates13 and there are two backup states. Both
backup states occur on a “.” input character. In essence when the lookahead character
is dot, gplex requires an extra character of lookahead to before it knows if this is a

13These are always the lowest numbered states, so as to keep the dispatch table for the semantic action
switch statement as dense as possible.

6 EXAMPLES 44

full-stop or a decimal point. If the “/minimize ” command line option is used the two
backup states are merged and the final automaton has just nine states.

Since this is a stand-alone application, the parser type definitions are taken from
thegplexx.framefile, as described in Figure 20. In non stand-alone applications these
definitions would be accessed by “%using ” the parser namespace in the lex file. The
application is compiled by —

D:\gplex\test> csc WordCount.cs

producingWordCount.exe. Run it over its own source files —

D:\gplex\test> WordCount WordCount.cs WordCount.lex
File: WordCount.cs
Lines: 590, Words: 1464, Ints: 404, Floats: 3
File: WordCount.lex
Lines: 64, Words: 151, Ints: 13, Floats: 0
Total Lines: 654, Words: 1615, Ints: 417, Floats: 3
D:\gplex\test>

The text in plain typewriter font is console output, the slanting, bold font is user input.
Where do the three “floats” come from? Good question! The text ofWordCount.cs

quotes some version number strings in a header comment. The scanner thinks that
these look like floats. As well, one of the table entries of the automaton has a comment
that the shortest string reaching the corresponding state is “0.0 ”.

6.2 ASCII Strings in Binary Files

A very minor variation of the word-count grammar produces a version of theUNIX
“strings” utility, which searches for ascii strings in binary files. This example uses
the same user code section as the word-count example, Figure 25, with the following
definitions and rules section —

alpha [a-zA-Z]
alphaplus [a-zA-Z\-’]
%%
{alpha}{alphaplus}*{alpha} Console .WriteLine(yytext);
%%

This example is in file “strings.lex ”.

6.3 Keyword Matching

The third example demonstrates scanning ofstrings instead of files, and the way that
gplexchooses the lowest numbered pattern when there is more than one match. Here
is the file “foobar.lex ”.

%namespace LexScanner
%option noparser nofiles
alpha [a-zA-Z]
%%
foo |
bar Console .WriteLine(" keyword " + yytext);
{alpha}{3} Console .WriteLine(" TLA " + yytext);
{alpha}+ Console .WriteLine(" ident " + yytext);
%%

6 EXAMPLES 45

Figure 26: User Code for keyword matching example

public static void Main(string [] argp) {
Scanner scnr = new Scanner ();
for (int i = 0; i < argp.Length; i++) {

Console .WriteLine("Scanning \"" + argp[i] + "\"");
scnr.SetSource(argp[i], 0);
scnr.yylex();

}
}

The point is that the input text “foo” actually matches three of the four patterns. It
matches the “TLA” pattern and the general ident pattern as well as the exact match.
Altering the order of these rules will exercise the “unreachable pattern” warning mes-
sages. Try this!

Figure 26 is the string-scanning version of the user code section. This example
takes the input arguments and passes them to theSetSourcemethod. Try the program
out on input strings such as “foo bar foobar blah ” to make sure that it behaves as
expected.

One of the purposes of this example is to demonstrate one of the two usual ways
of dealing with reserved words in languages. One may specify each of the reserved
words as a pattern, with a catch-all identifier pattern at the end. For languages with
large numbers of keywords this leads to automata with very large state numbers, and
correspondingly large next-state tables.

When there are a large number of keywords it is sensible to define a single identifier
pattern, and have the semantic action delegate to a method call —

return GetIdToken(yytext);

TheGetIdTokenmethod should check if the string of the text matches a keyword, and
return the appropriate token. If there really are many keywords the method should
perform a switch on the first character of the string to avoid sequential search. Finally,
for languages for which keywords are not case sensitive theGetIdTokenmethod can do
aString.ToLowercall to canonicalize the case before matching.

6.4 The Codepage Guesser

The “codepage guesser” is invoked by unicode scanners generated with thecodepage:-
guessoption if an input file is opened which has noUTF prefix. The guesser scans
the input file byte-by-byte, trying to choose between treating the file as a utf-8 file, or
presuming it to be an 8-bit byte-file encoded using the default codepage of the host
machine.

The example file “GuesserTest.lex ” is a wrapped example of the codepage
guesser. It scans the files specified in the command line, and reports the number of
significant patterns of each kind that it finds in each file.

The basic idea is to look for sequences of bytes that correspond to well-formed
utf-8 character encodings that require two or more bytes. The code also looks for bytes
in the upper-128 byte-values that are not part of any valid utf-8 character encoding. We
want to create an automaton to accumulate counts of each of these events. Furthermore,

6 EXAMPLES 46

we want the code to run as quickly as possible, since the real scanner cannot start until
the guesser delivers its verdict.

The following character sets are defined —

Utf8pfx2 [\xc0-\xdf] // Bytes with pattern 110x xxxx
Utf8pfx3 [\xe0-\xef] // Bytes with pattern 1110 xxxx
Utf8pfx4 [\xf0-\xf7] // Bytes with pattern 1111 0xxx
Utf8cont [\x80-\xbf] // Bytes with pattern 10xx xxxx
Upper128 [\x80-\xrf] // Bytes with pattern 1xxx xxxx

These sets are: all those values that are the first byte of a two, three or four-byte utf-8
character encoding respectively; all those values that are valid continuation bytes for
multi-byte utf-8 characters; and all bytes that are in the upper-128 region of the 8-bit
range.

Counts are accumulated for occurrences of two-byte, three-byte and four-byte utf-8
character patterns in the file, and bytes in the upper 128 byte-value positions that are
not part of any legal utf-8 character. The patterns are —

{Utf8pfx2}{Utf8cont} utf2++; // Increment 2-byte utf counter
{Utf8pfx3}{Utf8cont}{2} utf3++; // Increment 3-byte utf counter
{Utf8pfx4}{Utf8cont}{3} utf4++; // Increment 4-byte utf counter
{Upper128} uppr++; // Increment upper non-utf count

It should be clear from the character set definitions that this pattern matcher is defined
in a natural way in terms of symbol equivalence classes. This suggests usinggplex
with theclassesoption. The resulting automaton has six equivalence classes, and just
twelve states. Unfortunately, it also has two backup states. The first of these occurs
when aUtf8pfx3byte has been read, and the next byte is a member of theUtf8cont
class. The issue is that the first byte is a perfectly good match for theuppr pattern, so
if the bytetwo aheadis not a secondUtf8contthen we will need to back up and accept
theupprpattern. The second backup state is the cognate situation for the four-byteutf4
pattern.

Having backup states makes the automaton run slower, and speed here is at a pre-
mium. Some reflection shows that the backup states may be eliminated by defining
three extra patterns —

{Utf8pfx3}{Utf8cont} uppr += 2; // Increment uppr by two
{Utf8pfx4}{Utf8cont} uppr += 2; // Increment uppr by two
{Utf8pfx4}{Utf8cont}{2} uppr += 3; // Increment uppr by three

With these additional patterns, when the first two bytes of theutf3 or utf4 patterns
match, but the third byte does not, rather than back up, we addtwo to theuppr count.
Similarly, if the first three bytes of theutf4 pattern match but the fourth byte does not
match we addthreeto theuppr count.

The new automaton has the same number of equivalence classes, and the same
number of states, but has no backup states. This automaton can run very fast indeed.

6.5 Include File Example

The example programIncludeTestis a simple harness for exercising the include file
facilities ofgplex. The complete source of the example is the file “IncludeTest.lex ”
in the distribution.

The program is really a variant of the “strings” program of a previous example,
but has special semantic actions when it reads the string “#include ” at the start of an
input line. As expected, the file declares aBufferContextstack.

7 NOTES 47

Stack <BufferContext > bStack = new Stack <BufferContext >();

Compared to the strings example there are some additional declarations.

%x INCL // Start state while parsing include command
dotchr [ˆ\r\n] // EOL-agnostic version of traditional LEX ‘.’
eol (\r\n?|\n) // Any old end of line pattern

... // And so on ...

The rules section recognizes strings of length two or more, the include pattern, and
also processes the filenames of included files.

{alpha}{alphaplus}*{alpha} { Console .WriteLine(
" {0}{1} {2}: {3}", Indent(), yytext, yyline, yycol); }

ˆ"#include" BEGIN(INCL);
<INCL>{eol} BEGIN(0); TryInclude(null);
<INCL>[\t] /* skip whitespace */
<INCL>[ˆ \t]{dotchr}* BEGIN(0); TryInclude(yytext);

TheIndentmethod returns a blank string of length depending on the depth of the buffer
context stack. This “pretty prints” the output of this test program.

The user code in Figure 27 suppliesMain, TryIncludeandyywrapfor the example.
In this example the command line arguments are passed into aLineBuff buffer. Since
the buffers that result from file inclusion will be ofStreamBufftype, this demonstrates
the ability to mix buffers of different types using file inclusion.

Most of the error checking has been left out of the figure, but the example in the
distribution has all the missing detail.

7 Notes

7.1 Implementation Notes

Versions since 0.4.0 parse their input files using a parser constructed by Gardens Point
Parser Generator (gppg). Because it is intended to be used with a colorizing scanner
the grammar contains rules for both theLEX syntax and also many rules forC#. The
parser will match braces and other bracketing constructs within the code sections of
theLEX specification.gplexwill detect a number of syntax errors in the code parts of
the specification prior to compilation of the resulting scanner output file.

Compatibility

The current version ofgplex is not completely compatible with eitherPOSIX LEXor
with Flex. However, for those features thatare implemented the behaviour follows
Flex rather thanPOSIXwhen there is a difference.

Thusgpleximplements the “<<EOF>>” marker, and both the “%x” and “%s” mark-
ers for start states. The semantics of pattern expansion also follows theFlex model. In
particular, operators applied to named lexical categories behave as though the named
pattern were surrounded by parentheses. Forthcoming versions will continue this pref-
erence.

7 NOTES 48

Figure 27: User code forIncludeTestexample

public static void Main(string [] argp) {
if (argp.Length == 0)

Console .WriteLine("Usage: IncludeTest args");
else {

int tok;
Scanner scnr = new Scanner ();
scnr.SetSource(argp); // Create LineBuff object from args
do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);

}
}

private void TryInclude(string fName) {
if (fName == null)

Console .Error.WriteLine("#include, no filename");
else {

BufferContext savedCtx = MkBuffCtx();
SetSource(new FileStream (fName, FileMode .Open));
Console .WriteLine("Included file {0} opened" , fName);
bStack.Push(savedCtx); // Don’t push until after file open succeeds!

}
}

protected override bool yywrap() {
if (bStack.Count == 0) return true ;
RestoreBuffCtx(bStack.Pop());
Console .WriteLine("Popped include stack");
return false ;

}

Error Reporting

The default error-reporting behavior ofgppg-constructed parsers is relatively primitive.
By default the calls ofyyerror do not pass any location information. This means that
there is no flexibility in attaching messages to particular positions in the input text.
In contexts where theErrorHandler class supplies facilities that go beyond those of
yyerror it is simple to disable the default behaviour. The scanner base class created by
the parser defines an emptyyyerror method, so that if the concrete scanner class does
not overrideyyerror no error messages will be produced automatically, and the system
will rely on explicit error messages in the parser’s semantic actions.

In such cases the semantic actions of the parser will direct errors to the real error
handler, without having these interleaved with the default messages from the shift-
reduce parsing engine.

7 NOTES 49

7.2 Limitations for Version 1.0.0

Version 1.0.0 supports anchored strings but does not support variable right context.
More precisely, inR1/ R2 at least one of the regular expressionsR2 andR1 must define
strings of fixed length. Either regular expression may be of arbitrary form, provided
all accepted strings are the same constant length. As well, the standard lex character
set definitions such as “[:isalpha:] ” are not supported. Instead, the character
predicates from the base class libraries, such asIsLetterare permitted.

The default action ofLEX, echoingunmatchedinput to standard output, is not
implemented. If you really need this it is easy enough to do, but if you don’t want it,
you don’t have to turn it off.

7.3 Installing GPLEX

gplex is distributed as a zip archive. The archive should be extracted into any conve-
nient folder. The distribution contains four subdirectories. The “binaries ” directory
contains four files:gplex.exe, ShiftReduceParser.dll, gplexx.frameand Guesser.incl.
All four of these must be on the executable path, and in the same directory. In environ-
ments that have bothgplexand Gardens Point Parser Generator (gppg), it is convenient
to put the executables for both applications in the same directory.

The “project ” directory contains theVisual Studioproject from which the cur-
rent version ofgplexwas built. The “documentation ” directory contains the files
“gplex.pdf ”, “ Codepage.pdf ”, “ ChangeLog.pdf ” and the file “GPPGcopyright-

.rtf ”. The “examples ” directory contains the examples described in this documen-
tation.

The application requires version 2.0 of theMicrosoft .NETruntime.

7.4 Copyright

Gardens PointLEX (gplex) is copyright c© 2006–2008, John Gough, Queensland Uni-
versity of Technology. See the accompanying document “GPLEXcopyright.rtf ”.

7.5 Bug Reports

Gardens PointLEX (gplex) is currently being maintained and extended by John Gough.
Bug reports and feature requests forgplexshould be sent to John at “j.goughat-sign
qut.edu.au”.

8 APPENDIX A: GPLEX SPECIAL SYMBOLS 50

8 Appendix A: GPLEX Special Symbols

8.1 Keyword Commands

Keyword Meaning
%x This marker declares that the following list of

comma-separated names denote exclusive start
conditions.

%s This marker declares that the following list of
comma-separated names denote inclusive start
conditions.

%using The dotted name following the keyword will be
added to the namespace imports of the scanner
module.

%namespace This marker defines the namespace in which the
scanner class will be defined. The namespace ar-
gument is a dotted name. This marker must occur
exactly once in the definition section of every in-
put specification.

%option This marker is followed by a list of option-names,
as detailed on page 12. The list elements may be
comma or white-space separated.

%charClassPredicate This marker is followed by a comma-separated list
of character class names. The class names must
have been defined earlier in the text. A member-
ship predicate function will be generated for each
character class on the list. The names of the pred-
icate functions are generated algorithmically by
prefixing “Is ” to the name of each character class.

8.2 Semantic Action Symbols

Certain symbols have particular meanings in the semantic actions ofgplexparsers. As
well as the symbols listed here, methods defined in user code of the specification or its
helper files will be accessible.

Symbol
Meaning

yytext A read-only property which lazily constructs the text of
the currently recognized token. This text may be invali-
dated by subsequent calls ofyyless.

yyleng A read-only property returning the number of symbols of
the current token. In the unicode case this is not neces-
sarily the same as the number of characters or bytes read
from the input.

yypos A read-only property returning the buffer position at the
start of the current token.

yyline A read-only property returning the line number at the start
of the current token.

yycol A read-only property returning the column number at the
start of the current token.

8 APPENDIX A: GPLEX SPECIAL SYMBOLS 51

Semantic Action Symbols (continued)

Symbol Meaning
yyless A method that truncates the current token to the length

given as theint argument to the call.
BEGIN Set the scanner start condition to the value nominated in

the argument. The formal parameter to the call is of type
int , but the method is always called using the symbolic
name of the start state.

ECHO A no-arg method that writes the current value ofyytextto
the standard output stream.

YY_START A read-write property that gets or sets the current start
ordinal value. As withBEGIN, the symbolic name of the
start condition in normally used.

yy_clear_stack ‡ This no-arg method empties the start condition stack.
yy_push_state ‡ This method takes a start condition argument. The cur-

rent start condition is pushed and the argument value be-
comes the new start condition.

yy_pop_state ‡ This method pops the start condition stack. The previous
top of stack becomes the new start state.

yy_top_of_stack ‡ This function returns the value at the top of the start con-
dition stack. This is the value that would become current
if the stack were to be popped.

‡ This method only applies with the/stackoption.

	Overview
	Typical Usage
	The Interfaces
	The IColorScan Interface

	Running the Program
	Gplex Options

	The Input File
	The Definitions Section
	The Rules Section
	Start-Condition Scopes
	Backtracking Information
	Stacking Start Conditions
	Location Information

	Errors, Warnings and Gotchas
	Errors
	Warnings

	The Generated Scanner
	Byte-Mode and Unicode-Mode
	The Scanner File
	Choosing the Input Buffer Class
	How Buffering Works
	Multiple Input Sources
	Class Hierarchy
	Unicode Scanners
	Choosing Compression Options

	Examples
	Word Counting
	ASCII Strings in Binary Files
	Keyword Matching
	The Codepage Guesser
	Include File Example

	Notes
	Implementation Notes
	Limitations for Version 1.0.0
	Installing GPLEX
	Copyright
	Bug Reports

	Appendix A: GPLEX Special Symbols
	Keyword Commands
	Semantic Action Symbols

