
The GPPG Parser Generator
(Version 1.3.0 October 2008)

John Gough, Wayne Kelly QUT

November 11, 2008

New in this release
Compared to the v1.2.1 (August 2008) release this version has the following sig-
nificant changes and new features —

* The new release has a completely new frontend. The scanner and parser are
constructed bygplexandgppgrespectively.

* The documentation has been expanded in an attempt to make it more self-
contained. It now has a more complete description of the input syntax, and
explains (for example) how production precedencereally works.

* Error handling is based around an error buffer and a listing generator, and
the parser attempts error recovery. Most error messages have changed, and a
number of syntactic errors that were previously undetected are now reported.

* Type declarations forYYSTYPEand the%union declaration now allow ar-
bitrary syntax including (even nested) generic types, and arrays. When both
%union andYYSTYPEare definedYYSTYPEmust be a simple identifier,
naming the “union” type. OtherwiseYYSTYPEmay define be an arbitrary
type declaration.

* An extended syntax for token list declarations has been implemented. Every
token has the option of declaring a “display form” that is used in all diag-
nostic messages. All token declaration constructs allow for optional “kind”
markers.

* Hexadecimal and unicode escapes are allowed in strings and character liter-
als. Character literals are canonicalized before insertion in the dictionary.

* Literal strings for filenames may use either the verbatim or normal form, and
escape characters are interpretted in filenames. However, the*.y input file
is still an 8-bit byte-file.

1

1 OVERVIEW 2

1 Overview

These notes are brief documentation for the Gardens Point Parser Generator (gppg).
gppg is a parser generator which accepts a “YACC-like” specification, and pro-

duces aC# output file. Both the parser generator and the runtime components are
implemented entirely inC#. They make extensive use of the generic collection classes,
and so requireversion 2.0of the.NET framework.

Gardens Point Parser Generator (gppg) is normally distributed with the scanner
generator Gardens PointLEX (gplex). The two are designed to work together, although
each may be used separately.

If you want to begin by reviewing the input grammar accepted bygppg, then go
directly to section 2.

1.1 Installing GPPG

gppg is distributed as a zip archive. The archive should be extracted into any conve-
nient folder. The distribution contains three subdirectories. The “bin ” directory con-
tains twoPE-files: gppg.exeandShiftReduceParser.dll. Both of these must be on the
executable path. The “source ” directory contains all of the source code forgppg. The
“doc ” directory contains the files “gppg.pdf ” and the file “GPPGcopyright.rtf ”.

Application programs that use parsers generated bygppgrely on the presence of the
runtime componentShiftReduceParser.dll. ThisPE-file should be in the same directory
as the assembly that contains the parser.

The application requires version 2.0 of theMicrosoft .NETruntime.

1.2 RunningGPPG

gppgis invoked by the command —

gppg [options] inputFile> outputFile

the available options are —

* /babel — causesgppg to emit the additional interface required by theMan-
aged Babelpackage of theVisual Studio SDK, (see “Colorizing Scanners and
Managed Babel” in section 2.3.1).

* /conflicts — writes a file “basename.conflicts ” with detailed informa-
tion about any parser conflicts (see section 3.4).

* /defines — writes a file “basename.tokens ” with one token name per line.

* /gplex — makesgppgcustomize its output for the Gardens PointLEX (gplex)
scanner generator.

* /help — displays the usage message.

* /listing — causegppgto always produce a listing file. Without this option
gppgproduces a listing only if there are errors or warnings.

* /no-lines — suppresses emission of output#line directives.

* /report — generates a file “basename.report.html ” with LALR(1) state
information.

1 OVERVIEW 3

* /verbose — sends more detailed information to the concole, and to the con-
flict andLALRreports.

* /version — displays version information.

The behavior ofgppgwhen the/reportoption is used with and without the/verbose
option is described in Section 3.5.

1.3 UsingGPPGParsers

Parsers constructed bygppg expose a simple interface to the user. Instances of the
parser may be created by calling any of the constructor methods defined in the user
code. The name of the parser class isParser, unless the default is overridden (see
Section 2.3). Typically other code will attach a scanner and error handler object to the
parser instance. The scanner, in turn, will have been provided with some input text to
read from.

The parser instance is invoked by calling theParsemethod, inherited from the ab-
stract base classShiftReduceParser. TheParsemethod has the following signature —

public bool Parse() { ... }

This method returns false if the parse is unsuccessful, and true for a successful parse.
Note that the success or otherwise of the parse is distinct from the issue as to whether
errors were detected. False implies that the parse terminated abnormally.

In general the parser is expected to do more than just return true or false. In many
cases the parser will be expected to construct some kind of abstract syntax tree and/or
symbol tables as a side effect of a successful parse. When this is the case, the parser
result is normally attached to some accessible field of the parser instance from where
it may be retrieved by the invoking process.

1.4 Outputs

The parser generator reads a grammar specification input file and produces aC#output
file containing —

* an enumeration type declaring symbolic tokens

public enum Tokens {error=127, EOF=128, ... }

The ordinal sequence of the tokens in the enumeration will start above the or-
dinal numbers of any literal characters appearing in the grammar specification.
Be aware that the use of unicode escapes for character literals may push this
boundary very high.

* a type definition for the “semantic value” type specified in the grammar. In the
case of a union type,gppgwill emit —

public partial struct ValType{ ... }

The semantic value type is the type that is returned by the scanner in the in-
stance fieldyylval. This type argument thus corresponds to theYYSTYPEof tra-
ditional implementations ofYACC-like tools. The struct is partial if the marker
“%partial ” appears in the definitions part of the parser specification “*.y ” file.

* a definition for the class that implements the parser

1 OVERVIEW 4

public partial class
Parser : ShiftReduceParser <ValType, LocType> {

...
}

The class is partial if the marker “%partial ” appears in the definitions part of
the parser specification “*.y ” file. This class definition provides an instantiation
for the generic classShiftReduceParserwith the actual type argumentsValType
andLocType, inferred from the grammar specification, substituted for the type
parametersYYSTYPEandYYLTYPErespectively.

The generatedC# source file, as well as defining the above types, also contains the
parsing tables for the parser and the code for the user-specified semantic actions. The
parser implements a “bottom-upLALR(1)” shift-reduce algorithm, and relies for its
operation on an invariant runtime component “ShiftReduceParser.dll”. The main class
of the runtime is a generic class of two parameters which is instantiated with the two
type arguments determined from the grammar specification.

If the command line option “/defines” is used, or the input file contains the “%de-
fines” marker then an additional output file is created. This file will have the name
“basename.tokens” wherebasenameis the name of the input file, without a filename
extension. This file contains a list of all of the symbolic (that is,non-character-literal)
tokens, one per output line. The names are syntactically correct references to the un-
derlying enumeration constants.

1.5 Scanner Interface

Parser instances contain a public field namedscanner. The parser expects this field
to be assigned a reference to a scanner that implements the class shown in Figure 1.
Despite its name,IScanneris the abstract base class of the scanners, rather than an
interface. The base class provides theAPI required by the runtime component ofgppg,
the libraryShiftReduceParser.dll. Of course scanners will usually implement other

Figure 1: Scanner Interface ofGPPG

public abstract class IScanner <YYSTYPE, YYLTYPE>
where YYLTYPE : IMerge <YYLTYPE>

{
public YYSTYPE yylval;
public YYLTYPE yylloc { get ; set ; }
public abstract int yylex();
public virtual void yyerror(string msg,

param object [] args) {}
}

facilities that are required by the scanner semantic actions. These actions will use the
richerAPI that the concrete scanner class supports, but the shift-reduce parsing engine
itself needs only the subset defined in the base class.

User code of the parser may also access the richerAPI of the concrete scanner class
by casting the scanner reference from the abstract type to the actual concrete type.

2 INPUT GRAMMAR 5

The abstract scanner class is a generic class with two type parameters. The first
of these,YYSTYPEis the “SemanticValueType” of the tokens of the scanner. If the
grammar specification does not define a semantic value type (see section 2.3.1) then
the type defaults toint . From version 1.2 ofgppgthe semantic value type can be any
CLR type. Previous versions required a value-type.

The second generic type parameter,YYLTYPE, is the location type that is used to
track source locations in the text being parsed. In almost all applications it is sufficient
to use the default location type,LexLocation, shown in Figure 3. Location-tracking is
discussed further in section 2.6

The abstract base class defines two variables through which the scanner passes
semantic and location values to the parser. The first, the fieldyylval, is of whatever
“SemanticValueType” the parser defines. The second, the propertyyylloc, is of the
chosen location-type.

The first method,yylex, returns the ordinal number corresponding to the next token.
This is an abstract method, the actual scannermustsupply a method to override this.

The second method, the low-level error reporting routineyyerror, is called by the
parsing engine during error recovery. The default method in the base class is empty.
The scanner has the choice of overridingyyerroror not. If the scanner overridesyyerror
it may use that method to emit error messages. Alternatively the semantic actions of
the parser may explicitly generate error messages, possibly using the location tracking
facilities of the parser, and leaveyyerror empty. Error handling in the parser is treated
in more detail in section 4.

If gppgis used with the/gplexoption the parser file defines a wrapper classScan-
Basewhich instantiates the genericIScannerclass, and several other features. Full
details of this and other convenience features of this option are given in thegplexdoc-
umentation.

UsingGPPGParsers with Non-LEX Scanners

gppghas been successfully used with both hand-written scanners, and with scanners
produced by tools such asCOCO/Rthat are not at allLEX-like. In the case of newly
hand-written scanners the code is written to conform to theIScannerinterface. In the
case of existing scanners, or scanners produced by other tools it is usually necessary to
write adapter code to wrap the scannerAPI to conform to the expected interface.

2 Input Grammar

The input grammar forgppg is based on the traditionalYACC language. There are
a number of unimplemented constructs in the current version, and a small number of
extensions for theC#programming environment.

The rules of the grammar are specified in terms ofterminal symbols1 and non-
terminal symbols. The terminal symbols correspond to the various lexemes recognized
by the scanner. When each lexeme is recognized the scanner passes the parser atoken
and optionally a semantic value and a location object. Tokens are integer values that
correspond either to members of a parser-defined enumeration, or are the ordinal values

1“Terminal” symbols are so named because they appear at theleavesof derivation trees, thus terminating
the substitution process. They may correspond to a single input source sequence, such as a semicolon char-
acter ‘; ’, or may denote an unboundedlexical categorysuch as “identifier” in most programming language
lexicons.

2 INPUT GRAMMAR 6

of single characters. The single character tokens do not need to be declared in the parser
specification, but the enumeration names must be declared. In cases where enumeration
tokens correspond to fixed strings in the scanner input it is possible use the fixed string
to denote the terminal symbol in the grammar rules.

Non-terminal symbols denote thesyntactic categoriesof the phrase-structured gram-
mar. They are implicitly defined by their appearance in a production rule of the gram-
mar.

gppgperforms a small number of checks on the validity of the grammar that it is
given. If a particular symbol does not appear in a token declaration, and does not appear
as the left-hand-side of at least one production, then the grammar is non-terminating.
gppg issues a error message naming the symbol that is involved. This is a fatal error,
as parser production fails under such circumstances.

As well as the terminating test,gppg checks that every non-terminal symbol is
reachable from the start symbol. Any such symbols attract a warning, but their presence
is not fatal to parser production.

Errors of both type most commonly arise because of typographical errors in the
grammar. Remember that symbol names are case sensitive ingppg.

2.1 Input Grammar Structure

The overall structure of the grammar is described by the following production rules

Grammar
: DefinitionSequenceopt “%%” RulesSection UserSectionopt
;

DefinitionSequence
: DefinitionSequenceopt Declaration
| DefinitionSequenceopt “%{” CodeBlock “%}”
;

UserSection
: “%%” CodeBlock
;

All of the tokens begining with the “percent” character must occur alone at the start of
a line.CodeBlockis any fragment of well formedC#code.

2.2 Declarations

gppg implements some of the declarations familiar from other parser generators, as
well as a number of extensions that specifically have to do with the.NETplatform.

The following symbols are recognized, with the standard meanings. Further details
are summarized in Appendix A, Section 7.1 —

%union // usual meaning, but see section 2.3.1
%prec // usual meaning, see section 2.4.1
%token // usual meaning
%type // usual meaning
%nonassoc // usual meaning
%left // usual meaning
%right // usual meaning
%start // usual meaning
%locations // usual meaning

The following are extensions to the syntax, or have modified semantics —

2 INPUT GRAMMAR 7

%output // sets the output filepath
%definitions // creates a token declaration file
%namespace // declares the namespace for the parser
%parsertype // names the parser class within namespace
%visibility // declares the visibility of the parser class
%tokentype // names the token enumeration
%YYSTYPE // names the semantic value type
%YYLTYPE // names the location value type
%partial // declares the parser class to be partial
%using // inserts a “using” clause in parser prolog

All of these extensions to the declaration syntax are described in Section 2.3.

Declaring Tokens

The%token , %left , %right and%nonassoc keywords may all be used to declare
token names. Although the tokens have different semantics according to how they
are declared, the syntax of all of these declaration forms are the same. Here are two
examples.

Declaration : ... // Productions for other declarations
| "%left" Kindopt TokenList
| "%token" Kindopt TokenList
;

Kind
: ‘<’ ident ‘>’
;

TokenList
: TokenDecl
| TokenList ‘ ,’opt TokenDecl
;

TokenDecl
: litchar
| ident numberopt litstringopt
;

In this syntaxident, number, litcharand litstring are lexical categories recognized by
thegppg-scanner.

The optionalKind clause declares that the semantic values of the following token-
list elements are accessed by using the nominated identifier as a field-selector on the
yylvalvariable.

Elements of aTokenListmay be either whitespace-separated or comma-separated.
They consist of either a literal character (enclosed in single quotes) or an identifier. Lit-
eral character tokens do notneedto be declared, unless they require a kind declaration.

In the case of named tokens the identifier must be a legalC# identifier, and may be
followed by an optional number and optional literal string. The optional number is for
compatability with other tools, but the value is ignored, with a warning to the user. The
literal string associates adisplay stringwith the token. This display string is used in
all diagnostic messages from the generated parser. This is particularly helpful so that,
for example, a user error message could say “expected “=>” symbol” instead of using
whatever cryptic identifier name that symbol has in theTokensenumeration.

Both defining and used occurrences of literal character tokens may use the character
that they denote, or any of the “usual”, octal, hexadecimal or unicode escape forms that
denote the same value. All such occurrences are canonicalized so that, for example, the
same lexical value may be referred to as ‘\n ’, ‘ \012 ’, ‘ \x0a ’, or even ‘\u000a ’.

2 INPUT GRAMMAR 8

2.2.1 Token Precedence

For expression grammars there are two ways of controlling the precedence of operators,
so as to implement the desired grouping of sub-expressions. One way is to invent a
hierarchy of syntactic categories (expression, simple-expression, term, factor, primary
and so on) to control the order in which derivation steps are invoked. This is the method
that must be used forpredictiveor top-downparsers.

The “multiple sub-expression categories” method works perfectly well for bottom
up parsers such as those generated bygppg, but it is traditional to use the second
method. In this case, the application of a particular production rule is determined by
attributes of the lookahead token.

Tokens may be declared as havingleft or right associativity, or being non-associative.
Furthermore, the relative precedence of tokens is determined by the order in which they
are declared. Tokens declared in the same list have the same precedence, while those
declared in later lists have higher precedence than those on all earlier lists.

There is a special mechanism that can be used for those unusual cases of tokens that
have more than one precedence. The familiar example of this occurs for the “minus”
sign of conventional arithmetic grammars, where the same token may denote subtrac-
tion (which has low precedence), and unary negation (which has very high precedence).
The special mechanism is described in Section 2.4.1.

Declaring Non-Terminal Symbol Types

Just as different tokens may pass different semantic values to the parser, so the recog-
nition of different non-terminals may create different semantic values on the parser’s
semantic value stack.

Semantic actions in the rules section can push a value onto the semantic value stack
by using the symbolic code$$ = Expression. If the semantic value type is some
named aggregate type, then the assignment will need to target one of the members of
that type.

The code to achieve this is automatically generated bygppg, after the following
declaration —

Declaration : ... // Productions for other declarations
| "%type" Kind NonTerminalList
;

Kind
: ‘<’ ident ‘>’
;

The identifier in theKind clause is the name of the member of the aggregate which
will hold the semantic value for specified symbols. Similarly, if a semantic value is
referenced using the symbolic name$N, whereN is an index, then the appropriate
member selection code will automatically be generated bygppg.

TheNonTerminalListis a list of non-terminal symbol names. Elements of the list
may be either comma-separated or whitespace-separated.

2.3 Extensions to the Declaration Grammar

Declaring an Output Filepath

The command
%output= filepath

2 INPUT GRAMMAR 9

redirectsgppgoutput to the nominated file. In the absence of this declaration the output
is sent to standard output.

It is necessary forgppg to be able to send its output to an arbitrarily named file,
including filenames that cannot be expressed in an 8-bit text file. The scanner accepts
three different forms for the filepath —

* An ordinary unquoted filename which does not contain any whitespace or es-
caped characters.

* A normal literal string usingC# conventions. This string may include whites-
pace, escape characters, or even unicode escapes.

* A verbatim literal string using theC# “@"..." ” convention. This form is par-
ticularly convenient if the path contains backslash escapes as path-component
separators.

For the last two forms the filepath string has any escape characters expanded before
use. However,gppgdoes not check the legality of the resulting filepath string.

Creating a Token Definitions File

The command
%definitions

creates a “tokens” file with a list of the symbolic tokens, one per line. The names are
written in fully qualified form, with the enumeration typename prepended. This file is
not used by the parser or scanner, but is useful for other tools.

%namespace NameSpaceName

The whole of the output ofgppgwill be enclosed in a namespace declaration with the
given name. The name is used verbatim, and may be a dotted name.

Naming Types

The name and visibility of the parser class may be defined by the “%parsertype ” and
“%visibility ” constructs. In the absence of thesegppgacts as though it had seen
the declarations —

%parsertype Parser
%visibility public

Similarly, the name of the token enumeration may be set by the “%tokentype ” dec-
laration. In the absence of such a declarationgppg acts as though it had seen the
declaration —

%tokentype Tokens

The visibility of the token type is the same as that declared for the parser class. Sim-
ilarly, the visibility of the ScanBaseabstract class thatgppgdefines when given the
/gplexoption is the same as that of the parser class.

2 INPUT GRAMMAR 10

2.3.1 Defining a Semantic Value Type

According to tradition, the semantic value type expected from the scanner,YYSTYPE,
is defined by a “union ” construct in the grammar specification file. Of course,C#does
not have a union type construct, achieving roughly the same intent by subclassing.

Nevertheless,gppgrecognizes the “%union ” construct, emitting a corresponding
struct definition to the output file. The structure will have a field corresponding to
every member of the “union”, with members selected using exactly the expected “dot”
notation. The effect is to substitute aproducttype for the usualunion, with the loss of
some storage efficiency.

The type declared by the union construct may be an arbitrary type. For example,
the declaration ingppg’s own parser specification is

%union { public int iVal;
public List <string > sLst;
public List <TokenInfo > tLst;
public TokenInfo info;
public Production prod;
public ActionProxy prxy;

}

Note the use of types fromSystem.Collections.Generichere.
The default name for the “union” type, in the absence of an explicit declaration will

be “ValueType”2. For an example of use of the “%union ” construct see Section 6.2.
If the grammar does not declare a “union” type, but does declare a semantic value

type name, then the semantic value stack of the parser will expect to hold values of the
named type. Thus in new grammars it is probably better todefinea semantic value type
in theC#, and declare the type’s name togppg, using the%YYSTYPEdeclaration, thus
avoiding the slightly misleading union word. In some applications it is convenient to
define the semantic value type to be the abstract base class of an abstract syntax tree
construct. This allows the semantic actions of the parser conveniently to build theAST.

%YYSTYPEValueTypeName
%YYSTYPETypeConstructor

This declaration defines the type that will be used as the semantic value type. “%value-

type ” is a deprecated synonym for the%YYSTYPEmarker. The first form simply de-
clares thenameof the type. If there is a%union declaration, then the name should be
a simple identifier, and will be the name given to the struct that implements the “union”.
If there is no%union declaration, then the name may be a qualified (“dotted”) name
that references a named type defined elsewhere.

The second form of the declaration allows an arbitrary type constructor to define the
semantic values. Using this form is the only way to declare a semantic value type that
is an array type, since inC# arrays do not have identifier names. The type-constructor
form cannot be used if there is a%union declaration.

If a grammar contains neither a valuetype declarationnor a “union” declaration,
then the semantic value type will beint .

2That is, the type name will be “MyNamespace.ValueType ” which should not be confused with the
super type of every value typeSystem.ValueType .

2 INPUT GRAMMAR 11

%YYLTYPELocationTypeName

This marker overrides the default location type name,LexLocation. The default type
is sufficient for most applications, but when additional functionality is required it is
possible to define a new type, and declare its name with this marker. Location tracking
is discussed in detail in Section 2.6

Partial Types

The “%partial ” marker, at the beginning of a line in the .y file, declares that the
generated parser class will be a partial class. This is a convenient mechanism to use, so
that the bulk of the (non semantic action) code required by the parser may be defined
in a separate file. By defaultgppgproduces a complete class.

In the case that the grammar declares the semantic value type using the “%union ”
mechanism the generated parser file will declare a struct that is alsopartial.

The use of this partial marker is a very great convenience, allowing the grammar file
to hold little but the grammar syntax, with all of the other code appearing in separate
files. This is also a big gain with the definition of the semantic value type. Typically
this type contains data and many instance methods for manipulation of the type. With-
out the partial marker all of these method bodies would need to be defined inside the
dummy “%union ” construct in the .y file.

%using UsingName

The given name is inserted into the output file, immediately before the namespace
marker. There may be as many of these directives as is necessary, and the names may
be either simple or dotted names.

Colorizing Scanners andmaxParseToken

The scanners produced bygplexrecognize a distinguished value of theTokensenumer-
ation named “maxParseToken”. If this value is defined in thegppg-input “%token ”
specification thenyylexwill only return values less than this constant.

This facility is used in colorizing scanners when the scanner has two callers: the
token colorizer, which is informed ofall tokens, and the parser which may choose to
ignore such things as comments, line endings and so on.

If for some reason you wish to define token values that are not meaningful to
thegppg-grammar, then definemaxParseTokenand place all the token values that the
parser will ignore after this value.

Scanners produced by current versions ofgplexuse runtime reflection to check if
the special value of the enumeration is defined. If the value is not defined, it is set to
Int32.MaxValue. It is always safe to leave the special value out, if it is not needed.

Colorizing Scanners andManaged Babel

TheVisual Studio SDKincludes tools to allow for easy contruction of language services
based on theManaged Package Framework (MPF). TheSDK ships with the Managed
Package Parser Generator (mppg) tool, but it is also possible to usegppgto construct a
compatible parser.

2 INPUT GRAMMAR 12

MPF-compatible parsers do not require any changes to the grammar specification,
other than possibly defining amaxParseTokenenumeration value. The changes are all
in the scanner base class definition thatgppgemits when run with the /gplexoption.

If gppg is run with the /babeloption (which implies the /gplexoption), then the
emitted parser source file will define theIColorScaninterface. Some additional fea-
tures of the scanner base class,ScanBase, are also emitted. These allow the scanners
to operate incrementally by providing end-of-line scanner state to be persisted.

2.4 Production Rules

The production rules for each non-terminal consist of the symbol name, starting on a
new line in the first column, followed by a colon character, and zero or more right-
hand-sides. Right-hand-sides are separated by the vertical bar character ‘| ’, and the
sequence is terminated by a semicolon.

Rule
: NonTermSymbol ‘ : ’ RhsSequenceopt ‘ ; ’
;

RhsSequence
: RightHandSide
| RhsSequence‘ | ’ RightHandSide
;

With the exception of a few possible special cases discussed later, a production
right-hand-side consists of a sequence of zero or more symbols, followed by an optional
semantic action. The symbols may be terminal or non-terminal symbols, including
those terminal symbols that are denoted by a character literal. At runtime in thegppg-
generated parser, when an token sequence corresponding to that production right-hand-
side has been recognized, the semantic action, if there is one, is executed.

All of the productions for a given non-terminal symbol may occur together in the
specificatin, with separate right-hand-sides separated by the vertical bar. Alternatively,
the productions for a symbol may be spread throughout the grammar in multiple pro-
duction groups each beginning with the non-terminal name.

Semantic Action Syntax

Semantic actions consist of arbitraryC# statements enclosed in braces. The semantic
actions are not checked or interpreted in any way bygppg3. The semantic action ends
when the right brace is located that matches the left brace that began the action. Mal-
formed actions that do not have matching braces lead to syntactic errors from which it
is difficult for thegppgparser to recover.

As well as regularC# code, the semantic actions may contain a number of special
symbols that refer to attributes of the rule just matched. A summary of these special
symbols is given in Section 7.2, and their use is discussed in Section 2.5.

2.4.1 Controlling Precedence

The ordinary rules of relative precedence, and associativity for operator-like symbols
are sufficient for grammars where such symbols have an unique precedence. However,

3Except of course for recognizing literal strings and comments, so as to safeguard the matching of left
and right braces.

2 INPUT GRAMMAR 13

for those rare cases where symbols have different precedence in differing contexts a
special feature ofYACC-like grammars must be used.

As an example, we consider a simplified version of the expression grammer in the
Calc example of Section 6.1. The simplified version has only three operators, and the
following relevant productions.

expr
: ‘(’ expr ‘)’
| ‘ - ’ expr %prec UMINUS
| expr ‘ - ’ expr
| expr ‘+’ expr
| expr ‘* ’ expr
;

The token declarations for this grammar give ‘- ’ and ‘+’ a lower precedence than
‘* ’, and give the highest priority to the dummy “token”UMINUS. All of these tokens
are declared as having “%left ” associativity. The second right-hand-side has spe-
cial markers that say that that production should have the precedence of theUMINUS
dummy token.

If we generate a parser from this grammar, and another from the same grammar
but without the precedence marker we may compare them. Using the/report option of
gppgand examining the html files generated shows that only one state of the parser is
different between the two versions. The “kernel items” for that state are identical —

Kernel Items
‘ - ’ expr •
expr • ‘ - ’ expr
expr • ‘+’ expr
expr • ‘* ’ expr

In words, the kernel items show the position within the recognition of various right-
hand-sides that cause the automaton to be in this particular state. The “dot” marks the
current position. Clearly we are either about to reduce (that is, finalize) recognition of
the first production (since the dot is at the end), or we are in the middle of one of the
other productions and about to shift a binary operator.

In situations such as this, where there are both shift and reduce possibilitiesgppg
determines, for each possible lookahead token, whether the generated parser will shift
the next token or reduce a completed production. It makes this decision by comparing
the precedence of the completed right-hand-side with the precedence of each possible
lookahead symbol. Since in this case we have forced the second production to have the
highest possible priority, we will always reduce by that production when in this state.

In the absence of the “%prec ” marker the situation is rather different. If the looka-
head is ‘* ’ we shift the operator and continue parsing, since ‘* ’ has a higher precedence
than ‘- ’. For all other lookahead symbols, the precedences of the lookahead and the
production are equal, and the parser reduces, since the ‘- ’ operator is declared to be
left-associative.

This is but one example, so we must generalize this by stating the general rules
by which precedence is determined. When both shift and reduction rules apply to a
state the precedence of theproductionand the precedence of thelookahead tokenare
compared. Here are the rules for determining precedence —

* The precedence of atokenis determined by the position of the declaration group
in which it occurs. Groups declared later in the definitions section have higher
precedence (see also Section 2.2.1).

2 INPUT GRAMMAR 14

* The precedence of aproductionis that given by the “%prec TokenName” dec-
laration, if there is one.

* Otherwise, the precedence of a production is that of the rightmost terminal sym-
bol in the right-hand-side, if there are any terminal symbols in the right-hand-
side.

* Otherwise the production has zero precedence.

And here are the rules for comparing precedence —

* If the precedence of the production is higher than the precedence of the looka-
head token, then reduce.

* Otherwise, if the precedence of the lookahead token is higher than the prece-
dence of the production, then shift.

* If the precedences are equal and the associativity of the lookahead token isleft
then reduce.

* If the precedences are equal and the associativity of the lookahead token isright
then shift.

It is important to note that these rules are applied during the generation of the parsing
tables, and not at runtime for the generated parser.

Finally, here are the rules thatgppguses for deciding when to issue conflict diag-
nostics during the generation of the parsing tables.

* If an automaton state has two or more productions that can be reduced, that is,
two or more items with the “dot” at the end, then issue a reduce/reduce conflict
warning.

* If an automaton state has a reduction and also possible shift actions, then the
conflicts are resolved as detailed above. However, if the conflict is resolved
in favor of shifting because the production has zero precedence, then issue a
shift/reduce conflict warning.

Mid-Rule Actions

It is uncommon, but nevertheless legal, to place semantic actions in the middle, or even
the beginning of production rules. In effect, the parser generator performs a transfor-
mation of the production as described below.

Suppose that we have a production —

A: B { MRA} C ;

whereMRA is some mid-rule action.
This production is treated as if transformed by replacing the mid-rule action by a

new, anonymous non-terminal symbolAnon, say. The new symbol has a single, empty
production, and takes the code of the mid-rule action as a normal, end-of-rule action.

A : B Anon C ;
Anon : /* empty */ { MRA} ;

The use of mid-rule actions sometimes leads to parser conflicts that would not occur
without the action. This may be understood by considering the example above. Con-
sider two productions —

2 INPUT GRAMMAR 15

A: B C ;
A: B D ;

We shall assume that the non-terminal symbolsC andD have overlapping first terminal
symbol sets. To be specific, let us assume that eitherC or D can start with terminal
symbolx.

The fact that these two non-terminals have overlapping first sets does not cause a
conflict between the two productions. The parser does not have to choose between the
two productions until it has seenall of the symbols that make up a completeC or a
completeD.

Suppose however that we now introduce a mid-rule action in the first of these pro-
ductions. After the transformation described above, we consider the state with the
following two items —

Kernel Items
A • Anon C
A • D

Now here is the problem: a lookahead token ofx in this state will be consistent with
the reductionAnon→empty, but is also consistent with shifting the first token of an
expectedD symbol.

Thus, introducing the mid-rule action can cause a shift/reduce conflict that was not
there before. In effect, putting in a mid-rule action sometimes forces the parser to
choose between two productions before it has seen enough of the input to make that
decision.

If introducing a mid-rule action causes a damaging shift/reduce conflict the correct
strategy is to take the action out. The idea is to perform the actionafter the whole
production has been recognized. In order to do this it may be necessary to store away
some additional information in the semantic values of the intermediate symbols to use
in the later action.

A final, important point to remember is that if a mid-rule action is introduced the
counting of symbols for the$N and@N terms in semantic actions must count one for
each mid-term action. This is to account for the anonymous non-terminal that stands
proxy for the action in the transformed production.

Right-Hand-Side Syntax

We are now in a position to reveal the complete syntax of production right-hand-sides.
This looks a little silly, since it acknowledges that a production right-hand-side may
have an action at either end, and between any two symbols. Furthermore, an optional
precedence-setting clause may occur anywhere preceding a point at which an action
may be placed.

2.5 Semantic Actions

Commonly, the semantic action that is invoked at a reduction will perform some kind
of computation on the semantic values of the symbols on the right of the selected
production. The destination of the computed semantic value is denoted “$$”, while
the previously computed semantic values of the first, second and subsequent symbols
on the right-hand-side are denoted$1 , $2 , ... $n, wheren is any decimal number less
than or equal to the length of the right-hand-side of the chosen production. The index
n undergoes an index bounds check at parser construction time.

2 INPUT GRAMMAR 16

In case the semantic action needs to refer to a particular component of a semantic
value of aggregate type, the notation$<member>N refers to the named member of the
aggregate.

Default Semantic Action

The default semantic action is invoked for every reduction by a production that has no
user-supplied semantic action.

For production right-hand-sides of zero length, that is, for anerasure, the default
semantic value of the production is a default value of theYYSTYPEtype. If the semantic
value type is a reference type, the value will benull . For scalar types the value will
be “0”. For structured value types the default value is the value created by the no-arg
constructor. For production right-hand-sides of all non-zero lengths, the default action
is equivalent to “$$=$1 ”.

2.6 Location Tracking

The second generic type parameter of the scanner interface in figure 1,YYLTYPE, is the
location type. Instances of the location type contain information that mark the start and
end of the relevant phrase in the input text, that is, the type is a representation of a text
span. The actual type that is substituted for theYYLTYPEparameter must implement
the IMerge interface shown in Figure 2. The location type supplies a method that

Figure 2: Location types must implementIMerge

public interface IMerge <YYLTYPE> {
YYLTYPE Merge(YYLTYPE last);

}

produces a value that spans locations from the start of the “this” value to the end of the
“ last” argument. The parser, during every reduction, calls theMergemethod to create
a location object representing the complete production right-hand-side phrase.

Location Actions

The semantic actions of the parser may refer to the location values as well as to the
semantic values. This is most commonly done so as to pass location information to an
error handler.

In a production, the location value of the left-hand-side symbol is referred to as
@$, while the location values of the first, second and subsequent symbols on the right-
hand-side are denoted@1, @2, ... @n, wheren is any decimal number less than or equal
to the length of the right-hand-side of the chosen production.

The default action at every reduction is equivalent to the code –

@$ = @1.Merge(@N)

whereN is the number of symbols in the production right-hand-side. The default action
is carried outbeforeany user-specified semantic action. Thus it is possible for a user
action to override the default location-merging action by explicitly attaching a different
location object to “@$”.

2 INPUT GRAMMAR 17

If a scanner does not contain code to generate location objects, then the scanner’s
yylloc field will always be null. This does not cause exceptions in the default location
action, as the code is guarded by a null reference test. Location processing may thus
be safely ignored in those cases that it is not needed.

Default Location Type

Parser specifications may declare the name of a type that is to be used as the location
type. This type must implement theIMerge interface. In the event that no such dec-
laration is made, the default location tracking type is theLexLocationtype shown in
Figure 3. This type implements a simple text-span representation.

Figure 3: Default location-information class

public class LexLocation : IMerge <LexLocation >
{

public int sLin; // Start line
public int sCol; // Start column
public int eLin; // End line
public int eCol; // End column
public LexLocation() {};
public LexLocation(int sl; int sc; int el; int ec)
{ sLin=sl; sCol=sc; eLin=el; eCol=ec; }

public LexLocation Merge(Lexlocation end) {
return new LexLocation (sLin,sCol,end.eLin,end.eCol);

}
}

Supplying a Different Location Type

Sometimes if may be necessary to use a different location type. This is the case with
gppgitself, which needs to track not only line and column numbers but also file-buffer
positions.

To override the default location type, the parser specification needs to include the
command —

%YYLTYPETypeIdent

whereTypeIdentis the simple name of the desired type4. The type must implement the
IMerge interface, but may also provide whatever other methods are required.

In the case of theLexSpantype ofgppgthe type contains the same line and column
fields asLexLocation. These are used by the error reporting in the usual way. The
new type has additional fields for the start and end file position pointers into the input
buffer, and a reference to the buffer itself. The additional methods of the type write
out text spans from the buffer to specified output streams, and extract strings from the
buffer corresponding to particular location spans.

4This type identifier may be a qualified, “dotted” name.

3 ERRORS, DIAGNOSTICS AND WARNINGS 18

Special Behavior for Empty Productions

Special care must be taken when generating location information for productions with
empty right hand sides. The issue is not so much with the empty production, but when
a location span from such an empty production is used further up a derivation tree.

Consider the productionA → BCD. The default location processing action when
this production is reduced is to create a location span that begins at the start of the
B phrase, and finishes at the end of theD phrase. Now, suppose thatB andD are
nullablesymbols, and each has been produced by reduction by an empty production. A
moment’s consideration will show that the correct behavior is produced if the location
span for each empty productionbeginswith the start of the lookahead token, andends
with the finish of the last token shifted. Such a location value makes no sense on it
own, it has negative length for example, but merges correctly with other spans. The
1.0.1 version ofgppguses this strategy to deal with location information for empty
productions5.

3 Errors, Diagnostics and Warnings

Whengppgprocesses an input grammar it checks for a number of different conditions
that might make the grammar invalid. If the grammar is well-formed it proceeds to
construct an automaton to recognize the language specified by the grammar. If the
grammar has conflict statesgppgreports this.

In the case that there are errors or conflicts in the grammargppgcan give several
levels of diagnostic help to the user. This section describes all of these errors, warnings
and diagnostic messages.

3.1 Error Messages

From version 1.3, the parser generator uses agppg-generated parser, and attempts error
recovery from syntax errors. Error messages are buffered, and a listing file is produced
if any errors or warnings are emitted, or if the/listing command line option is in force.
In the listing, the location of the error is highlighted. In some cases the error message
includes a variable text indicating the erroneous token or the text that was expected. In
the following the variable text is denoted<...>.

Bad format for decimal number —
Thegppgscanner has failed to compute the value of the apparent decimal num-
ber.

Bad separator character in list —
Lists may either be comma-separated or whitespace-separated.

Code block has unbalanced braces ‘{’, ‘ }’ —
A code block has been terminated (byEOF or “%}”) before finding a balancing
number of right braces.

Duplicate definition of Semantic Value Type name —
There are duplicate definitions of the semantic value type name. Both occur-
rences are flagged.

5There are other ways of getting correct behavior, such as leaving the location valuenull and using
conditional code for the default action that searches up and down the location stack to find non-null values
to operate on.

3 ERRORS, DIAGNOSTICS AND WARNINGS 19

Invalid string escape<...> —
The escape sequence in the placeholder in invalid in this literal string.

Keyword “ %}” is out of place here —
This keyword is invalid in this context.

Keyword must start in column-0 —
All of the %-keywords must be left justified.

Literal string terminated by EOL —
The literal string reached end of line without finding a terminating quote charac-
ter. Linebreaks are permitted in verbatim literal strings.

NonTerminal symbol “<...>” has no productions —
This is a fatal error. Carefully check to see if a rule has been left out, or whether
a symbol has simply been misspelled.

Only whitespace is permitted here —
Many of the formatting keywords must occur alone on a line and can only be
followed by whitespace or comment.

Premature termination of code block —
A %%separator has terminated a code block while still inside one or more nested
braces.

Semantic action index is out of bounds —
The index into the production right-hand-side is out of bounds. Indices start
from 1, and cannot exceed the number of symbols in the rule, counting mid-rule
actions as an additional symbol.

Syntax error, unexpected<...>, expecting<...> —
This is the general,ShiftReduceParser-generated syntax error message. The sec-
ond place holder is a list of the expected lookahead symbols at the error site.

Source file<...> not found —
The specified source file was not found.

There are<...> non-terminating NonTerminalSymbols{<...>} —
The second place-holder lists the non-terminating non-terminal symbols.

This character is invalid in this context —
In the current scanner state, this character does not form part of any legal token.

This name already defined as a terminal symbol—
A duplicate definition of this terminal symbol has been declared.

Unknown %keyword in this context —
The selected keyword is either unknown, or is invalid in this context.

Unknown special marker in semantic action —
This symbolic marker in the semantic action is unknown.

Unterminated comment starts here —
The input file ended while inside a comment. The text span in the error message
is the start of the unterminated comment.

3 ERRORS, DIAGNOSTICS AND WARNINGS 20

With %union, %YYSTYPEcan only be a simple name —
If the specification defines a “union” type, then any declaration of%YYSTYPE
can only give a simple name to the type. Without the union declaration%YYSTYPE
can define an arbitrary type-constructor, including dotted names, arrays, instan-
tiated generic types and so on.

Non-Terminating Diagnostics

After the grammar has been parsedgppgchecks that every non-terminal symbol of the
grammar isreachable, and that there is at least one production for each non-terminal.
There is a separate check that every non-terminal isterminating.

A non-terminal symbol is reachable if it is the goal symbol, or if it occurs on the
right-hand-side of a production with a reachable left-hand-side. If a non-terminal sym-
bol is unreachable this means that there is no sequence of derivations starting from the
goal symbol that produces a sentential form containing that symbol.

A non-terminal is non-terminating if there is no sequence of productions that starts
from the given symbol and derives a sequence of terminal symbols.

If a grammar has an unreachable symbol a warning is issued, butgppgcan continue.
However if a grammar contains a reachable symbol with no productions, or a non-
terminating non-terminal then the error is fatal.

When a grammar symbol is unreachable it is almost always a simple typograph-
ical error in the input grammar. Often a whole sub-grammar may become unreach-
able because a single production has been omitted from the input. Similarly, when a
non-terminal symbol is mis-spelled the resulting grammar will often have both an un-
reachable non-terminalanda non-terminal with no produtions. This is often the result
of different occurrences of what was meant to be the same symbol being spelled with
different case characters.

3.2 Warning Messages

If warnings are issued, but there are no errors detected, then an automaton is created.
The user should note these warnings however, since some of them indicate possible
errors in the grammar.

%locations is the default in gppg —
This keyword is included for compatability, but is unnecessary, as it is the default
for gppg.

Highest char literal token <...> is very large —
The use of unicode escapes for literal character tokens is permitted, but the use
of characters with high codepoints pushes the start of the token enumeration up
to unusually high values.

Mid-rule %prec has no effect —
gppgallows a precedence marker to be attached to any action, including those
that occur mid-rule. However, such a mid-rule precedence marker has no effect
since mid-rule actions match a notional empty string, and are executed for all
possible lookahead symbols.

NonTerminal symbol “<...>” is unreachable —
An unreachable NonTerminal is not fatal to parser generation, but usually indi-
cates an error, or at least misunderstanding, in the specification file.

3 ERRORS, DIAGNOSTICS AND WARNINGS 21

Optional numeric code ignored in this version —
Optional numeric values for tokens are allowed, for compatability with other
tools. However, the values are ignored.

Terminating <...> fixes the following NonTerminal set<...> —
The second placeholder is a list of the non-terminating symbols that are fixed by
creating a terminating production for the NonTerminal in the first placeholder
position. This is a useful diagnostic in cases where a single missing production
triggers a whole cascade of non-termination of dependent NonTerminals.

The following <...> symbols form a non-terminating cycle<...> —
The second placeholder is a list of the non-terminating symbols in the depen-
dency cycle.

3.3 Non-Terminating Grammars

Grammars may be non-terminating for a number of reasons. Some of these are sim-
ple typographical errors in the input grammar. Figure 4 is a typical example. This

Figure 4: Grammar With Errors
%token blip skip
%%
Goal : ListOpt | skip ;
ListOpt : Element ListOpt ;
Element : Blah ;
Blah : ’(’ Element ’)’ | Blip ;

specification has two errors in it. The terminal symbol “blip” is mis-spelled on the
final line, and theListOpt non-terminal seems from its name to be intended to be an
optional grammatical element, but has no nullable production. When run throughgppg
the following diagnostic is produced –

There are 4 non-terminating NonTerminal Symbols{ListOpt, Element, Blah, Blip}
The following 2 symbols form a non-terminating cycle{Blah, Element}
TerminatingBlahfixes the following size-2 NonTerminal set{Element, Blah}
TerminatingElementfixes the following size-2 NonTerminal set{Element, Blah}
TerminatingBlip fixes the following size-3 NonTerminal set{Element, Blah, Blip}
FATAL: NonTerminal symbol “Blip” has no productions

gppganalyses the dependencies between the non-terminating symbols, and looks for
leaf symbols in the dependency graph. It reports any instances where modifying the
grammar to terminate a single symbol would fix multiple symbols.

In this example the diagnostics show that there is a circular dependency with the
symbolsElementandBlah. Making either of these terminating will fix the other sym-
bol as well. However, the diagnostic also shows that “Blip” has no productions, and
further, if fixed would fixElementandBlah as well. Fixing symbols with no produc-
tions is always the first step in cases like this.

After the final production is changed to —

Blah : ’(’ Element ’)’ | blip ;

thegppgdiagnostic then reads —

3 ERRORS, DIAGNOSTICS AND WARNINGS 22

There are 1 non-terminating NonTerminal Symbols{ListOpt}
TerminatingListOptfixes the following size-1 NonTerminal set{ListOpt}
Unexpected Error: Non-terminating grammar

Now ListOptalone is non-terminating, and changing the productions of the other sym-
bols will not help. It is not difficult to see that a symbol with one production cannot
recursively depend on itself. If the apparently intended null production is added to the
symbol —

ListOpt : /* empty */ | Element ListOpt ;

Then the grammar is well-formed and a parser is created.

3.4 Parser Conflict Messages

By defaultgppgsends a brief message to the error stream noting any shift/reduce or
reduce/reduce errors detected during parser construction. More detailed messages are
written to the error stream if the /verbosecommand line option is used. Even more
detailed information is generated in the case that the /conflictscommand line option is
used. In that case the information is written to a file with the name derived from the
input file name, but with filename extension “.conflicts ”.

Reduce/Reduce Conflicts

If a reduce/reduce conflict is detected, the conflicts file will contain information similar
to that in figure 5. In this example there are two productions both of which can be

Figure 5: Reduce/Reduce Conflict Information

Reduce/Reduce conflict on symbol "error",
parser will reduce production 41

Reduce 51: TheRules -> RuleList
Reduce 64: ListInit -> /* empty */

reduced when the lookahead symbol is the error token. In such cases the parser will
always choose the lower numbered production. Reduce/Reduce conflicts are generally
a more serious matter than shift/reduce conflicts, so any instances of these need to
be considered carefully. In this particular example, the conflict only affects the error-
recovery behavior of the parser.

Shift/Reduce Conflicts

Shift/Reduce conflicts tend to be more common, and are often but not always benign.
The conflicts file for a typical case will contain information similar to that in figure 6.
In this example, with a current symbol of “rCond ”, the reduce action is to accept
production 29. The alternative, shift action is to shift the token and move from state 87
to state 88. The current state, 87, has two “items” in its kernel set. The first item is
production 67, after shifting an error, and expecting to next see therCondsymbol. The
current position in the recognition of the production right-hand-side is marked by the
dot. The second item is production 29, with the dot at the end. Since the dot is at the
end, the action for this item is to reduce production 29. The default resolution of such

3 ERRORS, DIAGNOSTICS AND WARNINGS 23

Figure 6: Shift/Reduce Conflict Information

Shift/Reduce conflict on symbol "rCond",
parser will shift

Reduce 29: NameList -> error
Shift "rCond": State-87 -> State-88

Items for From-state for State 87
67 StartCondition: lCond error . rCond
29 NameList: error .

-lookahead: [rCond,]
Items for Next-state for State 88

67 StartCondition: lCond error rCond .
-lookahead: [pattern,]

conflicts is to shift, trying to munch the maximum number of tokens for each reduction.
For this example, that is clearly the correct behavior.

For items which are complete, that is, those that have the dot at the end, the conflicts
file also shows the lookahead symbols that can validly appear at that point.

3.5 Conflict Diagnostics

It is sometimes quite difficult to discover the underlying reason for a conflict in a gram-
mar. Sometimes it may be necessary to trace the path by which the automaton entered
the state with the conflict in order to understand how the conflict is caused.

A /report option gppggives additional diagnostic information so as to make this
task a little easier. In this casegppgproduces a file namedbasename.report.html .
This file is hyperlinked to assist in navigation around the sometimes large data set.

The Report Option

The/reportoption generates a file with a formatted version of the productions, together
with information about each state in theLALR(1) automaton.

The information provided for each state of the automaton is —

* All the “kernel items” for that state. This is a list of all of the productions that
lead to that state, with a dot ‘.’ indicating the position in the production that the
pattern is matched up to.

* For each completed kernel item (that is, for all items where the dot is at the
right-hand end) the list of lookahead tokens that predicate reduction by that pro-
duction.

* The parser actions. This is a list of tokens and the associated actions that the
parser will take. The actions may be “shift token and go to stateN”, or “ reduce
usingrule M ”. In each case the output is hyperlinked to the destination state or
production.

* Non-terminal transitions. This is a list of state transitions to be taken when a
reduction recognizes a non-terminal symbol starting from the current state. The
reduction may start from the current state or from a successor state.

4 ERROR HANDLING IN GPPGPARSERS 24

Figure 7 shows the information generated by the option, for state 4 of the automaton
for the fixed version of the tiny grammer in Figure 4. The state information shows

Figure 7: State information with/report option

State4
Kernel Items

5 ListOpt: Element . ListOpt

Parser Actions
’(’ shift, and go to state 7
blip shift, and go to state 10
EOF reduce using rule 4 (Erasing ListOpt)

Transitions
ListOpt go to state 5
Element go to state 4
Blah go to state 6

that this state has a single item. There are two shift actions and one reduce action. The
report draws attention to the fact that the reduction in this case is anerasure, that is, a
reduction that derives the null string.

There are three non-terminal transitions from the state.
When trying to understand the origins of a parser conflict it is sometimes helpful to

know two things about the conflicted state: the path through the automaton by which
the state has been reached, and a typical prefix that spells out that path. This is addi-
tional information that is provided by the/report option if /verboseis also specified.

Of course, there may be more than one path leading to any particular state, and
there may be many prefixes that spell out the path.gppgcomputes an example of a
shortest path that leads to the state, and a shortest prefix.

For our example state, the information is shown in Figure 8. In this state the
shortest prefix is the non-terminal symbolElement. The state path is only of length 1.
State 0 is the start state. Each state on the state path is hyperlinked so that a browser
can navigate to each of the states to gather more information.

4 Error Handling in GPPGParsers

4.1 Parser Action

The default action of the parser, when neither a shift nor a reduce is possible, is to
call theyyerror method of the scanner interface (see figure 1). The parser runtime then
discards values from the parser state, value and location stacks until a state is found that
can shift the synthetic “error” token. After the error token has been shifted the parser
checks to see if an ordinary shift or reduce action is then possible given the existing
lookahead symbol. If no such action is possible, the parser discards input tokens until
an acceptable token is found or the input ends.

In the event that no state on the parser stack can shift an error token and the stack
becomes empty, or if the input ends while discarding tokens, theParsemethod returns
false.

4 ERROR HANDLING IN GPPGPARSERS 25

Figure 8: State information with/report and /verboseoptions

State4
Shortest prefix: Element
State path: 0-> 3

Kernel Items
5 ListOpt: Element . ListOpt

Parser Actions
’(’ shift, and go to state 7
blip shift, and go to state 10
EOF reduce using rule 4 (Erasing ListOpt)

Transitions
ListOpt go to state 5
Element go to state 4
Blah go to state 6

Syntactic error recovery sets a boolean flag which prevents cascading calls toyyer-
ror. This flag is not cleared until three input tokens have been shifted without further
syntactic errors resulting. This constraint does not apply to the reporting of anyseman-
tic error messages that are explicit in semantic actions.

In cases where it is certain that error recovery has succeeded a semantic action may
clear the flag explicitly by a call to the built-in parser methodyyerrok(). As well, the
lookahead token may be explicitly discarded in a semantic action by calling the built-in
parser methodyyclearin().

4.2 Overriding the Default Error Handling

As noted, the parser will callyyerror in case of errors. If the scanner overrides the
empty implementation inIScannerthen that method may construct a suitable error
message. It is useful to note that error recovery is attempted because the next input
symbol is not a possible lookahead for either a shift or a reduce action. It is always
the case that the input symbol that blocked progress is the symbol corresponding to the
scanner’s currentyylvalandyyllocat the moment thatyyerror was called.

The default mechanism suffices for simple applications, but there are options for
improved functionality. For example in many applications it is desired that alist of
errors be constructed with associated text spans pointing into the input text.

The alternative strategy for constructing error messages is to leaveyyerror empty,
and place explicit calls to an error handler in the semantic actions of productions that
mention the error token. Such calls to the error handler will be able to make good
use of the automatic location tracking mechanisms of the parser to provide information
for the error handler. For example, in the case of a missing member of some kind of
paired construct the semantic action should have access to the location information of
the current lookahead symboland the symbols whose pair was expected.

Error reporting based around an error handler object should also select the error
message by an ordinal number to allow for easy localization of the message text. Fi-

5 NOTES 26

nally, the error handler needs to be callable from the semantic actions of the parser (and
other semantic checking code) and by the scanner.

In use, the application will create an instance of itsErrorHandlerclass. A reference
to the error handler object is either directly visible to the scanner or is copied to a field
in the scanner. The scanner and parser will then be able to interleave error messages in
the error handler buffer.

5 Notes

5.1 Copyright

Gardens Point Parser Generator (gppg) is copyright c© 2005–2008, Wayne Kelly, Queens-
land University of Technology. See the accompanying file “GPPGcopyright.rtf ”.

5.2 Bug Reports

Gardens Point Parser Generator (gppg) is currently being maintained and extended
by John Gough. Bug reports and feature requests forgppgshould be sent to John at
“j.goughat-signqut.edu.au”.

6 Examples

The distribution contains two simple, related examples. One is a simple integer cal-
culator, the other calculates real numbers and illustrates several additional grammar
features.

6.1 Integer Calculator

The fileCalc.ycontains the specification for a simple integer calculator. The calculator
can run with a file as input or, if run without arguments, reads standard input.

The specification contains a simple scanner methodyylexin the user code section.
Notice that the parser detects the first digit of a number and sets the number base to
octal if the first digit is zero. There is a predefined array of 26 integers, which are used
to store the values for variables named by a single alphabetic character. When there is
a used occurence of a variable name in an expression the value is retrieved by indexing
into the array.

The specification is very simple, and uses the default semantic value type, integer.
The default is sufficient to hold character values as well as the result of intermediate
computations when expressions are evaluated. The second example uses a richer struc-
ture. Note the use of the synthetic token “UMINUS” so that the ‘–’ operator may have a
different precedence when used as a unary operator.

Running the Program

The parser is generated by the command —

D:\work> gppg /no-lines calc.y > calc.cs

In this and subsequent examples, user input is set in a bold, slanted, mono-spaced font.
Program generated output is shown in plain typewriter font.

6 EXAMPLES 27

There are no errors or warnings and the generated parser,calc.csmay be compiled
with the command line compiler using the command —

D:\work> csc /nologo /r:ShiftReduceParser.dll calc.cs

The parser references the base classes in the runtime componentShiftReduceParser.
For the above command this is presumed to be in the working directory.

The application may be run from the command line. Here is a typical input ses-
sion —

D:\work> Calc
c = 34
s = 13
26 * c / s
68
s = 013
26 * c / s
80
ˆC

Notice that the second value that is assigned to the variables has been interpreted as
octal, because it starts with a zero digit.

The program continues to evaluate expressions until it is forcibly terminated by an
input of “ˆC ”.

6.2 Real Number Calculator

The real number calculator is based on the integer version, but illustrates the use of a
more complicated semantic value type. The source file for this example is included in
the distribution asRealCalc.y

As with the first example, there is an 26-long array that stores the values of alpha-
betically named variables. In this case the values are real numbers stored as floating
point double data. The semantic values of expressions are also floating point values.
Nevertheless,yylexstill passes its semantic values to the parser character by character.
The file RealCalc.ydeclares the semantic value type using the “%union ” construct,
as seen in Figure 9. As described in Section 2.3.1, this semantic value type will be

Figure 9: Start ofRealCalcspecification

%union { public double dVal;
public char cVal;
public int iVal; }

%token <iVal> LETTER
%token <cVal> DIGIT

%type <dVal> expr
...

implemented bygppgas aC#struct.
The figure also illustrates the use of the “%type ” keyword so that the semantic

actions do not have to explicitly select the appropriate field of the struct. We also
illustrate the use of the optionalKind construct in the “%token ” declaration to declare

6 EXAMPLES 28

that DIGIT token has achar semantic value returned in thecVal member,LETTER
token has anint semantic value returned in theiVal member.

The semantic action for the first production of the symbolnumberis called when
the first digit of a number is recognized. Figure 10 shows the relevant production
rules. The action creates a new string-builder object and appends the first digit. Each

Figure 10: Extract fromRealCalcsemantic actions

number : digit {
buffer = new StringBuilder ();
buffer.Append($1);

}
| number digit {

buffer.Append($2);
}

| number ’.’ digit {
buffer.Append(’.’);
buffer.Append($3);

}
;

expr : ... // Other productions for expr
| number

{
try {

$$ = double .Parse(buffer.ToString());
} catch (FormatException) {

scanner.yyerror(
"Illegal number \" {0}\"" , buffer);

}
}

;

subsequent digit is appended to the buffer, as are any decimal points that are discovered
along the way. The scanner does not try to check on the legality of any input numbers,
although that would be simple enough to do with agplex-generated scanner. Instead,
the semantic action attached to the completion of number recognition takes the string
from the string-builder and submits it to theSystem.Double.Parsemethod. In the event
that an illegal number is entered as input,Parsethrows an exception which is caught
by its caller and converted into a call ofyyerror.

Running the Program

The parser is generated by the command —
D:\work> gppg /no-lines RealCalc.y > realcalc.cs

As before, user input is set in a bold, slanted, mono-spaced font. Program generated
output is shown in plain typewriter font.

There are no errors or warnings and the generated parser,realcalc.csmay be com-
piled with the command line compiler using the command —

D:\work> csc /nologo /r:ShiftReduceParser.dll realcalc.cs

6 EXAMPLES 29

The application may be run from the command line. Here is a typical input session —

D:\work> RealCalc
RealCalc expression evaluator, type ˆC to exit
c = 34
s = 13
26.2 * c / s
68.5230769230769
s = 13.0.0
Illegal number "13.0.0"
ˆC

7 APPENDIX A: GPPGSPECIAL SYMBOLS 30

7 Appendix A: GPPGSpecial Symbols

7.1 Keyword Commands

Keyword Meaning
%defines gppgwill create a “basename.tokens” file defining the token enu-

meration that the scanner will use. The scanner does not need
this text file, but it is useful for other tools.

%left this marker declares that the following token or tokens will have
left associativity, that is,a•b•c is interpreted as(a•b)•c.

%locations this marker is ignored in this version: location tracking is always
turned on ingppg.

%namespace this marker defines the namespace in which the parser class will
be defined. The namespace argument is a dotted name.

%nonassoc this marker declares that the following token or tokens are not
associative. This means thata•b•c is a syntax error.

%output allows the output stream to be redirected to a specified, named
file. See section 2.2.

%partial this marker causesgppgto define aC# partial class, so that the
body of the parser code may be placed in a separateparse-helper
file.

%parsertype this marker allows for the default parser class name, “Parser”, to
be overridden. The argument must be a validC# simple identi-
fier.

%prec this marker is used to attach context-dependent precedence to an
occurrence of a token in a particular rule. This is necessary if the
same token has more than one precedence. See section 2.4.1 for
further detail.

%right this marker declares that the following token or tokens will have
right associativity, that is,a•b•c is interpreted asa•(b•c).

%start this marker allows the goal, (start) symbol of the grammar to be
specified, instead of being taken from the left-hand-symbol of
the first production rule.

%token declares that the following names are tokens of the lexicon.
%tokentype this marker allows for the default token enumeration class name,

“Tokens”, to be overridden. The argument must be a validC#
simple identifier.

%type the form “%type < member> non-terminal list”, wheremem-
ber is the name of a member in a union declaration, declares that
the following non-terminal symbols set the value of the nomi-
nated member.

%union marks the start of a semantic value-type declaration. See sec-
tion 2.3.1 for more detail.

%using this marker adds the given namespace to the parser’s using list.
The argument is a dotted name, in general.

7 APPENDIX A: GPPGSPECIAL SYMBOLS 31

Keyword Meaning
%visibility this marker sets the visibility keyword of the token enumeration

and the semantic value-type struct. The argument must be a valid
C#visibility keyword. The default is public.

%valuetype a synonym forYYSTYPE, deprecated.
%YYSTYPE this marker declares the name of the semantic value type. The

default isint.
%YYLTYPE this marker declares the name of the location type. The default

is LexLocation.

7.2 Semantic Action Symbols

Certain symbols have particular meanings in the semantic actions ofgppgparsers. As
well as the symbols listed here, the scanner will also define accessible symbols. Those
for gplex-generated scanners are given in figure 1.

Symbol Meaning
$$ the symbolic location holding the semantic value of the left-

hand-side of the current reduction.
$N the value of theN th symbol on the right-hand-side of the current

reduction.
@$ the symbolic location holding the location span of the left-hand-

side of the current reduction.
@N the location span of theN th symbol on the right-hand-side of

the current reduction.
YYABORT placing this symbol in a semantic action causes the parse method

to return false.
YYACCEPT placing this symbol in a semantic action causes the parse method

to return true.
YYERROR placing this symbol in a semantic action causes the parser to

attempt error recovery. No error message is generated.
YYRECOVERING this Boolean property denotes whether or not the parser is cur-

rently recovering from an error.
yyclearin() placing this method call in a semantic action causes the parser to

discard the current lookahead symbol.
yyerrok() placing this method call in a semantic action asserts that error

recovery is complete.

	Overview
	Installing GPPG
	Running GPPG
	Using GPPG Parsers
	Outputs
	Scanner Interface

	Input Grammar
	Input Grammar Structure
	Declarations
	Token Precedence

	Extensions to the Declaration Grammar
	Defining a Semantic Value Type

	Production Rules
	Controlling Precedence

	Semantic Actions
	Location Tracking

	Errors, Diagnostics and Warnings
	Error Messages
	Warning Messages
	Non-Terminating Grammars
	Parser Conflict Messages
	Conflict Diagnostics

	Error Handling in GPPG Parsers
	Parser Action
	Overriding the Default Error Handling

	Notes
	Copyright
	Bug Reports

	Examples
	Integer Calculator
	Real Number Calculator

	Appendix A: GPPG Special Symbols
	Keyword Commands
	Semantic Action Symbols

