
The GPLEX Input Language
(Version 1.0.0 November 2008)

John Gough QUT

November 11, 2008

1 The Input File

1.1 Lexical Considerations

Everygplex-generated scanner operates either in byte-mode or in unicode-mode.gplex
scans its own input using a byte-mode scanner. It follows that the “*.lex ” files that
gplexreads are treated as streams of 8-bit bytes.

Character Denotations

Thegplexscanner operates in byte-mode. Nevertheless, the input files can define uni-
code scanners, and can denote character literals throughout the entire unicode range.
Denotations of characters ingplexmay be uninterpreted occurrences of plain charac-
ters, or may be one of the conventional character escapes, such as ‘\n ’ or ‘ \0 ’. As
well, characters may be denoted by octal, hexadecimal or unicode escapes.

In different contexts within aLEX specification different sets of characters have
special meaning. For example, within regular expressions parentheses “(,) ” are used
to denote grouping of sub-expressions. In all such cases the ordinary character is de-
noted by anescapedoccurrence of the character, by being prefixed by a backslash ‘\ ’
character. In the regular expression section 2 of this document the characters that need
to be escaped in each context are listed.

Names and Numbers

There are several places in the input syntax where names and name-lists occur. Names
in version 1.0 are simple,ASCII, alphanumeric identifiers, possibly containing the low-
line character ‘_’. This choice, while restrictive, makes input files independent of host
codepage setting. Name-lists are comma-separated sequences of names.

Numbers are unformatted sequences of decimal digits.gplexdoes not range-check
these values. If a value is too large for theint type an exception will be thrown.

1.2 Overall Syntax

A lex file consists of three parts: thedefinitionssection, therules section, and the
user-codesection1.

1 Grammar fragments in this documentation will follow the meta-syntax used forgppgand other bottom-
up parsers.

1

1 THE INPUT FILE 2

LexInput
: DefinitionSequence “%%” RulesSection UserCodeSectionopt
;

UserCodeSection
: “%%” UserCodeopt
;

TheUserCodesection may be left out, and if is absent the dividing mark “%%” may be
left out as well.

1.3 The Definitions Section

The definitions section contains several different kinds of declarations and definitions.
Each definition begins with a characteristic keyword marker beginning with “%”, and
must be left-anchored.

DefinitionSequence
: DefinitionSequenceopt Definition
;

Definition
: NamespaceDeclaration
| UsingDeclaration
| StartConditionsDeclaration
| LexicalCategoryDefintion
| CharacterClassPredicatesDeclaration
| UserCode
| OptionsDeclaration
;

Using and Namespace Declarations

Two non-standard markers in the input file are used to generateusing andnamespace

declarations in the scanner file.
The definitions section must declare the namespace in which the scanner code will

be placed. A sensible choice is something likeAppName.Lexer . The syntax is —

NamespaceDeclaration
: “%namespace” DottedName
;

whereDottedNameis a possibly qualifiedC# identifier.
The namespacesSystem, System.IO, System.Collections.Genericare included by

default. Other namespaces that are needed must be specified in a using declaration.

UsingDeclaration
: “%using ” DottedName ‘ ; ’
;

Note that the convention for the use of semicolons follows that ofC#. Using declara-
tions need a semicolon, namespace declarations do not.

Every input file must have exactly one namespace declaration. There may be as
many, or few, using declarations as are needed by the user.

1 THE INPUT FILE 3

Start Condition Declarations

Start condition declarations define names for variousstart conditions. The declarations
consist of a marker: “%x” for exclusive conditions, and “%s” for inclusive conditions,
followed by one or more start condition names. If more than one name follows a
marker, the names are comma-separated. The markers, as usual, must occur on a line
starting in column zero.

Here is the full grammar for start condition declarations —
StartConditionsDeclaration

: Marker NameList
;

Marker
: “%x” | “%s”
;

NameList
: ident
| NameList ‘ , ’ ident
;

Such declarations are used in the rules section, where they predicate the application
of various patterns. At any time the scanner is in exactly one start condition, with
each start condition name corresponding to a unique integer value. On initialization a
scanner is in the pre-defined start condition “INITIAL” which always has value 0.

When the scanner is set to anexclusivestart conditiononly patterns predicated on
that exclusive condition are “active”. Conversely, when the scanner is set to aninclusive
start condition patterns predicated on that inclusive condition are active, and so are all
of the patterns that are unconditional2.

Lexical Category Definitions

Lexical category code defines named regular expressions that may be used as sub-
expressions in the patterns of the rules section.

LexicalCategoryDefinition
: ident RegularExpression
;

The syntax of regular expressions is treated in detail in Section 2 A typical example
might be —

digits [0-9]+

which definesdigits as being a sequence of one or more characters from the character
class ‘0’ to ‘9’. The name being defined must start in column zero, and the regular
expression defined is included for used occurrences in patterns. Note that forgplex
this substitution is performed by tree-grafting in theAST, not by textual substitution,
so each defined pattern must be a well formed regular expression.

Character Class Membership Predicates

Sometimes user code of the scanner needs to test if some computed value corresponds
to a code-point that belongs to a particular character class.

CharacterClassPredicatesDeclaration
: “%charClassPredicate ” NameList

;
2 gplexfollows theFlexsemantics bynot adding rules explicitly markedINITIAL to inclusive start states.

1 THE INPUT FILE 4

NameListis a comma-separated list of lexical category names, which must denote char-
acter classes.

For example, suppose that some support code in the scanner needs to test if the
value of some unicode escape sequence denotes a code point from some complicated
character class, for example —

ExpandsOnNFC [...] // Normalization length not 1

The set of all those unicode characters which do not have additive length in normaliza-
tion form C. The actual definition of the set has been abstracted away.

Now gplexwill generate the set from the definition (probably using the unicode
database) at scanner generation time. We want to be able to look up membership of
this set at scannerruntimefrom the data in the automaton tables. The following decla-
ration —

%charClassPredicate ExpandsOnNFC

causesgplexto generate a public instance method of the scanner class, with the follow-
ing signature —

public bool Is ExpandsOnNFC(int codepoint);

This method will test the given code-point for membership of the given set.
In general, for every nameN in theNameLista predicate function will be emitted

with the nameIs N , with the signature —

public bool Is N (int codepoint);

User Code in the Definitions Section

Any indented code, or code enclosed in “%{” ... “%}” delimiters is copied to the output
file.

UserCode
: “%{” CodeBlock “%}”
| IndentedCodeBlock
;

As usual, the%-markers must start at the left margin.
CodeBlockis arbitraryC# code that can correctly be textually included inside a

class definition. This may include constants, member definitions, sub-type definitions,
and so on.

IndentedCodeBlockis arbitraryC# code that can correctly be textually included
inside a class definition. It is distinguished from other declaratory matter by the fact
that each line starts with whitespcace.

It is considered good form to always use the “%{” ... “%}” delimited form, so that
printed listings are easier to understand for human readers.

Comments in the Definitions Section

Block comments, “/* ... */ ”, in the definition section that begin in column zero,
that isunindentedcomments, are copied to the output file. Any indented comments
are taken as user code, and are also copied to the output file. Note that this is different
behaviour to comments in the rules section.

Single line “// ” comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output. Consider the following user code fragment —

1 THE INPUT FILE 5

%{
// This is whitespace
void Foo() // This gets copied
{ // This gets copied
} // This is whitespace

%}
The text-span of the code block reaches from “void ” through to the final right brace.
Single line comments within this text span will be copied to the scanner source file.
Single line comments outside this text span are treated as whitespace.

Option Declarations

The definitions section may include option markers with the same meanings as the
command line options described in the main documentation. Option declarations have
the format —

OptionsDeclaration
: “%option ” OptionsList
;

OptionsList
: Option
| OptionsList ‘ , ’opt Option
;

Options within the definitions section begin with the “%option ” marker followed
by one or more option specifiers. The options may be comma or white-space separated.

The options correspond to the command line options. Options within the definitions
section take precedence over the command line options. A full list of options is in
Section 4.3.

Some options make more sense on the command line than as hard-wired definitions,
but all commands are available in both modalities.

1.4 The Rules Section

Overview of Pattern Matching

The rules section specifies the regular expression patterns that the generated scanner
will recognize. Rules may be predicated on one or more of the start states from the
definitions section.

Each regular expression declaration may have an associatedSemantic Action. The
semantic action is executed whenever an input sequence matches the regular expres-
sion.gplexalways returns thelongestinput sequence that matches any of the applicable
rules of the scanner specification. In the case of a tie, that is, when two or more patterns
of the same length might be matched, the pattern which appears first in the specification
is recognized.

The longest match rule means thatgplex-created scanners sometimes have to “back
up”. This can occur if one pattern recognizes strings that are proper prefixes of some
strings recognized by a second pattern. In this case, if some input has been scanned
that matches the first pattern, and the next character could belong to the longer, second
pattern, then scanning continues. If it should happen that the attempt to match the
longer pattern eventually fails, then the scanner must back up the input and recognize
the first pattern after all.

1 THE INPUT FILE 6

The main engine of pattern matching is a method namedScan. This method is an
instance method of the scanner class. It uses the tables of the generated automaton
to update its state, invoke sematic actions whenever a pattern is matched, and return
integer values to its caller denoting the pattern that has been recognized.

Overall Syntax of Rules Section

The marker “%%” delimits the boundary between the definitions and rules sections.
RulesSection

: PrologCodeopt RuleList EpilogCodeopt
;

RuleList
: RuleListopt Rule
| RuleListopt RuleGroup
;

PrologCode
: UserCode
;

EpilogCode
: UserCode
;

The user code in the prolog and epilog may be placed in “%{” ... “%}” delimiters or
may be an indented code block.

TheCodeBlockof the optional prologUserCodeis placed at the start of theScan
method. It can contain arbitrary code that is legal to place inside a method body3. This
is the place where local variables that are needed for the semantic actions should be
declared.

The CodeBlockof the optional epilogUserCodeis placed in a catch block at the
end of theScanmethod. This code is therefore guaranteed to be executed for every
termination ofScan. This code block may contain arbitrary code that is legal to place
inside a catch block. In particular, it may access local variables of the prolog code
block.

Code interleavedbetweenrules, whether indented or within the special delimiters,
has no sensible meaning, attracts a warning, and is ignored.

Rule Syntax

The rules have the syntax —
Rule

: StartConditionListopt RegularExpression Action
;

StartConditionList
: ‘<’ NameList ‘>’
| ‘<’ ‘ * ’ ‘ >’
;

Action
: ‘ | ’
| CodeLine
| ‘{’ CodeBlock “}”
;

3And therefore cannot contain method definitions, for example.

1 THE INPUT FILE 7

Start condition lists are optional, and are only needed if the specification requires more
than one start state. Rules that are predicated with such a list are only active when (one
of) the specified condition(s) applies. Rules without an explicit start condition list are
implicitly predicated on theINITIAL start condition.

The names that appear within start condition lists must exactly match names de-
clared in the definitions section, with just two exceptions. Start condition values cor-
respond to integers in the scanner, and the default start conditionINITIAL always has
number zero. Thus in start condition lists “0” may be used as an abbreviation forINI-
TIAL. All other numeric values are illegal in this context. Finally, the start condition
list may be “<*> ”. This asserts that the following rule should apply in every start state.

The Action code is executed whenever a matching pattern is detected. There are
three forms of the actions. An action may be a single line ofC#code, on the same line
as the pattern. An action may be a block of code, enclosed in braces. The left brace
must occur on the same line as the pattern, and the code block is terminated when the
matching right brace is found. Finally, the special vertical bar character, on its own,
means “the same action as the next pattern”. This is a convenient rule to use if multiple
patterns take the same action4.

Semantic action code typically loads up theyylval semantic value structure, and
may also manipulate the start condition by calls toBEGIN(NEWSTATE) , for example.
Note thatScanloops forever reading input and matching patterns.Scanexits only
when an end of file is detected, or when a semantic action executes a “return token”
statement, returning the integer token-kind value.

The syntax of regular expressions is treated in detail in Section 2

Rule Group Scopes

Sometimes a number of patterns are predicated on the same list of start conditions. In
such cases it may be convenient to userule group scopesto structure the rules section.
Rule group scopes have the following syntax —

RuleGroup
: StartConditionList ‘{’ RuleList ‘}’
;

StartConditionList
: ‘<’ NameList ‘>’
| ‘<’ ‘ * ’ ‘ >’
;

The rules that appear within the scope are all conditional on the start condition list
which begins the scope. The opening brace of the scope must immediately follow the
start condition list, and the opening and closing braces of the scope must each be the
last non-whitespace element on their respective lines.

As before, the start condition list is a comma-separated list of known start condition
names between ‘<’ and ‘>’ characters. The rule list is one or more rules, in the usual
format, each starting on a separate line. It is common for the embedded rules within
the scope to be unconditional, but it is perfectly legal to nest either conditional rules or
rule group scopes. In nested scopes the effect of the start condition lists is cumulative.
Thus —

4And this is not just a matter of saving on typing. Whengplexperforms state minimization two accept
states are only able to be considered for merging if the semantic actions are the same. In this context “the
same” means using the same text span in the lex file.

2 REGULAR EXPRESSIONS 8

<one>{
<two>{

foo { FooAction(); }
bar { BarAction(); }

}
}

has exactly the same effect as —
<one,two>{

foo { FooAction(); }
bar { BarAction(); }

}

or indeed as the plain, old-fashioned sequence —
<one,two>foo { FooAction(); }
<one,two>bar { BarAction(); }

It is sensible to use indentation to denote the extent of the scope. So this syntax neces-
sarily relaxes the constraint that rules must start at the beginning of the line.

Note that almost any non-whitespace characters following the left brace at the start
of a scope would be mistaken for a pattern. Thus the left brace must be the last character
on the line, except for whitespace. As usual, “whitespace” includes the case of aC#-
style single-line comment.

Comments in the Rules Section

Comments in the rules section that begin in column zero, that isunindentedcomments,
are not copied to the output file, and do not provoke a warning about “code between
rules”. They may thus be used to annotate the lex file itself.

Any indentedcommentsare taken as user code. If they occur before the first rule
they become part of the prolog of theScanmethod. If they occur after the last rule they
become part of the epilog of theScanmethod.

Single line “// ” comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output.

1.5 The User Code Section

The user code section contains nothing but user code. Because of this, it is generally
unnecessary to use the “%{ ... % }” markers to separate this code from declarative
matter. All of the text in this section is copied verbatim into the definition for the
scanner class.

SincegplexproducesC# partial classes, it is often convenient to move all of the
user code into a “scan-helper” file to make the lex input files easier to read.

2 Regular Expressions

2.1 Concatenation, Alternation and Repetition

Regular expressions are patterns that define languages of strings over some alphabet.
They may define languages of finite or infinite cardinality. Regular expressions ingplex
must fit on a single line, and are terminated by any un-escaped white space such as a
blank character not in a character class.

2 REGULAR EXPRESSIONS 9

Definitions

Regular expressions are made up of primitive atoms which are combined together by
means of concatenation, alternation and repetition. Concatenation is a binary operation,
but has an implicit application in the same way as some algebraic notations denoteab
to mean “a multiplied byb”.

If R1 andR2 are regular expressions defining languagesL1 andL2 respectively,
thenR1R2 defines the language which consists of any string fromL1 concatentated
with any string fromL2.

Alternation is a binary infix operation. It is denoted by the vertical bar character
‘ | ’. If R1 andR2 are regular expressions defining languagesL1 andL2 respectively,
thenR1| R2 defines the language which consists all the strings from eitherL1 or L2.

Repetition is a unary operation. There are several forms of repetition with different
markers. The plus sign ‘+’ is used as a suffix, and denotes one or more repetitions
of its operand. IfR is a regular expressions defining languageL then R+ defines
the language which consists one or more strings fromL concatenated together. Note
that the use of the word “repetition” in this context is sometimes misunderstood. The
defined language is not repetitions of thesamestring fromL but concatenations of any
members ofL .

Operator Precedence

The repetition markers have the highest precedence, concatenation next highest, with
alternation lowest. Sub-expressions of regular expressions are grouped using parenthe-
ses in the usual way.

If ‘ a’, ‘ b’ and ‘c ’ are atoms denoting themselves, then the following regular ex-
pressions define the given languages.

a defines the language with just one string{ “a” }.
a+ defines the infinite language{ “a”, “ aa”, “ aaa ”, ... }.
ab defines the language with just one string{ “ab” }.

a|b defines the language with two strings{ “a”, “ b” }.
ab|c defines the language with two strings{ “ab”, “ c” }.

a(b|c) defines the language with two strings{ “ab”, “ ac ” }.
ab+ defines the infinite language{ “ab”, “ abb ”, “ abbb ”, ... }.

(ab)+ defines the infinite language{ “ab”, “ abab ”, “ ababab ”, ... }.

and so on.

Repetition Markers

There are three single-character repetition markers. These are —
The suffix operator ‘+’ defines a language which contains all the strings formed by

concatentating one or more strings from the language defined by its operand on the left.
The suffix operator ‘* ’ defines a language which contains all the strings formed by

concatentating zero or more strings from the language defined by its operand on the
left. If R is some regular expression,R* defines almost the same language asR+. The
language defined using the “star-closure” contains just one extra element, the empty
string “”.

The suffix operator ‘?’ defines a language which concatentates zero or one string
from the language defined by its operand on the left. IfR is some regular expression,

2 REGULAR EXPRESSIONS 10

R? defines almost the same language asR. The language defined using the “optional-
ity” operator contains just one extra element, the empty string “”.

The most general repetition marker allows for arbitrary upper and lower bounds
on the number of repetitions. The general repetition operator{N , M}, whereN and
M are integer constants, is is a unary suffix operator. When it is applied to a regular
expression it defines a language which concatenates betweenN andM strings from
the language defined by the operand on its left. It is an error ifN is greater thanM . If
there is no upper bound, then the second numerical argument is left out, but the comma
remains. Note however that the{N , } marker must not have whitespace after the
comma. Ingplexun-escaped whitespace terminates the candidate regular expression.

If both the second numerical argumentandthe comma are taken out then the opera-
tor defines the language that contains all of the strings formed by concatenating exactly
N strings from the language defined by the operand on the left.

We have the following identities for any regular expressionR —

R+ = R{1, } // One or more repetitions
R* = R{0, } // Zero or more repetitions
R? = R{0,1 } // Zero or one repetition

R{N} = R{N , N} // ExactlyN repetitions

As may be seen, all of the simple repetition operators can be thought of as special cases
of the general{N , M} form.

It is an interesting but not very useful fact that, conversely, every instance of the
general repetition form can be written in terms of concatenation, alternation and the
‘ * ’ operator. Here is a hint of the proof. First we have two shift rules that allow us
to reduce the lower repetition count by one at each application, so long as the count
remains non-negative —

R{N ,} = RR{N − 1, } // Start-index shift rule
R{N ,M} = RR{N − 1, M − 1} // Start-index shift rule

After we have reduced the lower bound to zero, we can do an inductive step —

R{0,1 } = (| R) // Zero or one repetition
R{0,2 } = (| R| RR) // Zero, one or two repetitions

... // And so on ... with limit case —
R{0, } = R* // Zero or more repetitions

2.2 Regular Expression Atoms

Character Denotations

Characters that do not have a special meaning in a particular context, and which are
represented in thegplex input alphabet are used to represent themselves. Thus the
regular expressionfoo defines a language that has just one string: “foo”.

Characters that have some format affect on the input must be escaped, so the usual
control characters inC#are denoted as\\ , \ a, \ b, \ f, \ n, \ r, \ t, \ v, \ 0, exactly as in
C#5.

In contexts in which a particular character has some special meaning, that character
must be escaped in the same way, by prefixing the character by a ‘\ ’.

5Note however that the regular expression\n matches theASCII LF character, while\\n matches the
length-2 literal string which could be written either as@"\n" or as"\\n" in aC#source file.

2 REGULAR EXPRESSIONS 11

To denote characters that cannot be represented by a single byte in the input file,
various numerical escapes must be used. These are —

* Octal escapes‘ \ ddd’ where thed are octal digits.

* Hexadecimal escapes‘ \x hh’ where theh are hexadecimal digits.

* Unicode escapes‘ \u hhhh’ where theh are hexadecimal digits.

* Unicode escapes‘ \U hhhhhhhh’ where theh are hexadecimal digits.

In the final case the hexadecimal value of the codepoint must not exceed 0x10ffff.
Within a regular expressions the following characters have special meaning and

must be escaped to denote their uninterpreted meaning —

‘ . ’, ‘ " ’, ‘ (’, ‘) ’, ‘ {’, ‘ }’, ‘ [’, ‘] ’, ‘ +’, ‘ * ’, ‘ / ’, ‘ | ’, ‘ ’,

This list is in addition to the usual escapes for control characters and characters that
require numerical escapes.

The last character in the list is the space character. It appears here because a space
signals the end of the regular expression ingplex.

Lexical Categories – Named Expressions

Lexical categories are named regular expressions that may be used as atoms in other
regular expressions. Expressions may be named in the definitions section of the input
file. Used occurrences of these definitions may occur in other named regular expres-
sions, or in the patterns in the rules section.gplex implements a simple “declaration
before use” scoping rule for such uses.

Used occurrences of lexical categories are denoted by the name of the expression
enclosed in braces “{name}”.

As an example, if we have named regular expressions for octal, hex and unicode
escape characters earlier in the input file, we may define all the numerical escapes as a
new named expression —

NumericalEscape {OctalEscape }| {HexEscape }| {UnicodeEscape }

Roughly speaking, themeaningof a used occurrence of a named expression is
obtained by substituting the named expression into the host expression at the location
of the used occurrence. In the case ofgplexthe effect is as if the named expression is
surrounded by parentheses. This is different to the earliest implementations ofLEX,
which performed a textual substitution, but is equivalent to the semantics ofFlex.

This particular choice of semantics means that if we have an expression named as
“keyword” say —

keyword foo|bar

and then use this lexical category in another expression —

the {keyword } // Expands asthe(foo|bar) , not asthefoo|bar

The language defined by this expression contains two strings,{ “ thefoo ”, “ thebar ”}.
With the originalLEX semantics the defined language would have contained the two
strings{ “ thefoo ”, “ bar ”}.

A consequence of this choice is that every named pattern must be a well-formed
regular expression.

2 REGULAR EXPRESSIONS 12

Literal Strings

Literal strings in the usualC# format are atoms in a regular expression.
The meaning of a literal string is exactly the same as the meaning of the regular

expression formed by concatenating the individual characters of the string. For sim-
ple cases, enclosing a character sequence in quotes has no effect. Thus the regular
expressionfoo matches the same pattern as the regular expression"foo" .

However there are two reasons for using the string form: first, a string is an atom,
so the regular expression"foo"+ defines the language{ “ foo ”, “ foofoo ”, ...}, while
the regular expressionfoo+ defines the language{ “ foo ”, “ fooo ”, “ foooo ” ...}. Sec-
ondly, the only ordinary character that must be escaped within a literal string is ‘" ’,
together of course with the control characters and those requiring numerical escapes.
This may make the patterns much more readable for humans.

Character Classes

Character classes are sets of characters. When used as atoms in a regular expression
they match any character from the set. Such sets are defined as a bracket-enclosed list
of characters, character-ranges and character predicates. There is no punctuation in the
list of characters, so the definition of of a named expression for the set of the decimal
digits could be written —

digits [0246813579]

The digits have deliberately been scrambled to emphasise that character classes are
unordered collections, and the members may be added in any order.

For sets whererangesof contiguous characters are members, we may use the char-
acter range mechanism. This consists of the first character in the range, the dash char-
acter ‘- ’, and the last character in the range. The same set as the last example then
could have been written as —

digits [0-9] // Decimal digits

It is an error if the ordinal number of the first character is greater than the ordinal
number of the last character.

We can also definenegatedsets, where the members of the set are all those charac-
tersexceptthose that are listed as individual characters or character ranges. A negated
set is denoted by the caret character ‘ˆ ’ as the first character in the set. Thus, all of the
charactersexceptthe decimal digits would be defined by —

notDigit [ˆ0-9] // Everything but digits

Within a character class definition the following characters have special meaning:
‘] ’, marking the end of the set; ‘- ’, denotes the range operator, except as the first or last
character of the set; ‘ˆ ’, denotes set inverse, but only as the first character in the set.
All these characters must be escaped in locations where they have special meaning.

The dash character- does not need escaping if it is the first or last character in the
set, butgplexwill issue a warning to make sure that the literal meaning was intended.

The usual control characters are denoted by their escaped forms, and all of the
numerical escapes may be used within a character class.

2 REGULAR EXPRESSIONS 13

Character Predicates

Some of the character classes that occur with unicode scanners are too large to easily
define explicitly. For example, the set of all those unicode codepoints which are a
possible first character of aC# identifier contains 92707 characters which appear in
362 ranges.

Within a character class, the special syntax “[: PredicateMethod:] ” denotes all
of the characters from the selected alphabet6 for which the corresponding.NET base
class library method returns the true value. The implemented methods are —

* IsControl, IsDigit, IsLetter, IsLetterOrDigit, IsLower, IsNumber, IsPunctuation,
IsSeparator, IsSymbol, IsUpper, IsWhiteSpace

There are three additional predicates built intogplex—

* IsFormatCharacter— Characters with unicode category Cf

* IdentifierStartCharacter— Valid identifier start characters forC#

* IdentifierPartCharacter— Valid continuation characters forC# identifiers, ex-
cluding category Cf

Note that the bracketing markers “[: ” and “:] ” appear within the brackets that delimit
the character class. For example, the following two character classes are equivalent.

alphanum1 [[:IsLetterOrDigit:]]
alphanum2 [[:IsLetter:][:IsDigit:]]

These classes arenot equivalent to the set —

alphanum3 [a-zA-Z0-9]

even in the 8-bit case, since this last class does not include all of the alphabetic charac-
ters from the latin alphabet that have diacritical marks, such asä andñ.

These character predicates are intended for use with unicode scanners. Their use
with byte-mode scanners is complicated by the codepage setting of the host machine.
For futher information on this, see the section “Character Predicates in Byte-Mode
Scanners” in the documentBulding Unicode Scanners with GPLEX.

Future releases ofgplexwill provide facilities for users to define their own character
predicate functions.

The Dot Metacharacter

The “dot” character, ‘. ’, has special meaning in regular expressions. It meansany
character except ‘\n ’ . This traditional meaning is retained forgplex.

The “dot” is often used to cause a pattern matcher to match everything up to the
end-of-line. It works perfectly for files that use theUNIX end-of-line conventions.
However, for maximum portability in unicode scanners it is better for the user to define
a character class which isany character exceptanyof the unicode end-of-line charac-
ters. This set can be defined by —

any [ˆ\r\n\u0085\u2028\2029]

Given this definition, the character class{any } can be used any place where the tradi-
tional dot would have been used.

6In the non-unicode case, the sets will include only those byte values that correspond to unicode char-
acters for which the predicate functions return true. In the case of the /unicode option, the full sets are
returned.

3 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 14

Context Markers

The context operators ofgplexare used to declare that particular patterns should match
only if the input immediately preceeding the pattern (theleft context) or the input im-
mediately following the pattern (theright context) are as requested.

There are three context markers:left-anchor ‘ ˆ ’, right-anchor ‘$’, and theright
contextoperator “/ ”.

A left-anchored pattern̂R, whereR is some regular expression, matches any in-
put that matchesR, but only if the input starts at the beginning of a line. Similarly, a
right-anchored patternR$, whereR is some regular expression, matches any input that
matchesR, but only if the input finishes at the end of a line. Traditional implementa-
tions ofLEX define “end of the line” as whatever theANSI Ccompiler defines as end
of line. gplexaccepts any of the standard line-end markers “(\r\n|\r|\n) ”.

The expressionR1/ R2 matches text that matchesR1 with right context matching
the regular expressionR2. The entire string matchingR1R2 participates in finding the
longest matching string, but only the text corresponding toR1 is consumed. Similarly
for right anchored patterns, the end of line character(s) participate in the longest match
calculation, but are not consumed.

It is a limitation of the currentgplex implementation that when the right-context
operator is used, as inR1/ R2 at least one ofR1 or R2 must define a language of
constant length strings.

End-Of-File Marker

Finally, there is one more special marker thatgplexrecognizes. The character sequence
“<<EOF>>” denotes a pattern that matches the end-of-file. The marker may be condi-
tional on some starting condition in the usual way, but cannot appear as a component of
any other pattern. Beware that pattern"<<EOF>>" (with the quotes) exactly matches
the seven-character-long pattern “<<EOF>>”, while the pattern<<EOF>> (without
the quotes) matches the end-of-file.

3 Special Symbols in Semantic Actions

3.1 Properties of the Matching Text

The yytext Property

Within the semantic action of a patternR, this read-only property returns astring

containing the input text that matchesR.
If a semantic action calls theyylessmethod, it will modifyyytext. In the case of a

pattern with right-context, the string has already had the right context trimmed.

The yyleng Property

Theyylengproperty returns the length of the input text that matched the pattern. It is a
read-only property.

The length is given in codepoints, that is, logical characters. For many text file
encodingsyylengis less than the number of bytes read. Even in the case of string input
the number of codepoints will be less than the number ofchar values, if the string
contains surrogate pairs.

3 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 15

The yypos Property

Theyyposproperty returns the position of the input file buffer at the start of the input
text that matched the pattern. It is a read-only property.

Althoughyyposreturns an integer value, it should be treated as opaque. In particu-
lar, arithmetic usingyyposandyylengwill not behave as expected.

The yyline Property

Theyylineproperty returns the line-number at the start of the input text that matched
the pattern. It is a read-only property. Line numbers count from one.

The yycol Property

Theyycolproperty returns the column-number at the start of the input text that matched
the pattern. It is a read-only property. Column numbers count from zero at the start of
each line.

3.2 Looking at the Input Buffer

Everygplex-generated scanner has an accessible buffer object as a field of the scanner
object. There are many different buffer implementations, all of which derive from the
abstractScanBuffclass.

The last character to be read from the buffer is stored within the scanner. All buffer
implementations provide a method to look ahead one further character in the input
stream.

Current and Lookahead Character

When a pattern has been matched, the scanner fieldchr holds the codepoint of the last
character to be read. This in an integer value. The value is not part of the current
pattern, but will be the first character of the input text that the scanner matchesnext.

In every casechr is the input character that follows the last character ofyytext. Thus
for patterns with right contextchr is the first character of the context, and calls toyyless
that discard characters will change the value.

The character that followschr in the input can be read using thePeekmethod of the
scanner’s buffer instance. “buffer.Peek() ” does not consume any input, and returns
the codepoint of the character following the currentchr.

The yyless Method

After a scanner has matched a pattern, theyylessmethod allows some or all of the input
text to be pushed back to the buffer.

void yyless(int len); // Discard all but the firstlencharacters

Following this call,yytextwill be len characters long, andbuffer.Pos, yylengandchr
will have been updated consistently.

This method can either trimyytextto some fixed length, or can cut a fixed length
suffix from the text. For example, to push back the last character of the textyy-
less(yyleng−1) should be called.

A useful idiom when changing from one start condition to another is to recognize
the pattern that starts the new phase, change the start condition, and callyyless(0) .

3 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 16

In that way the starting pattern is scanned again in the new condition. Here is an
example for scanning block comments. The scanner has aCMNT start condition, and
the relevant rules look like this —

\/* BEGIN(CMNT); yyless(0); // No return!
<CMNT>...

Note that both the slashand the star characters must be escaped in the regular expres-
sion.

In this way, theCMNT “mini-scanner” will get to seeall of the comment, including
the first two characters. It is then possible for the comment scanner to return with a
yytextstring that contains the whole of the comment.

The yymore Method

This method is not implemented in the current version ofgplex.

3.3 Changing the Start Condition

The BEGIN Method

TheBEGINmethod sets a new start condition. Start conditions correspond to constant
integer values in the scanner. The initial condition always has value one, but the values
assigned bygplex to other start conditions is unpredictable. Therefore the argument
passed to the call ofBEGINshould always be thenameof the start condition, as shown
in the example in the discussion ofyyless.

The YY STARTProperty

YYSTARTis a read-write property that gets or sets the start condition. SettingYYSTART
to some valueX is precisely equivalent to callingBEGIN(X) .

Reading the value ofYYSTARTis useful for those complicated scenarios in which
a pattern applies to multiple start conditions, but the semantic action needs to vary
depending on the actual start condition. Code of the following form allows this behav-
ior —

SomePattern { if (YY START == INITIAL)
... else ...

}
Another scenario in whichYYSTARTis used is those applications where the parser

needs to manipulate the start condition of the scanner. TheYYSTARTproperty has
internal accessibility, and hence may be set by a parser in the samePE-file as the
scanner.

3.4 Stacking Start Conditions

For some applications the use of the standard start conditions mechanism is either
impossible or inconvenient. The lex definition language itself forms such an example,
if you wish to recognize theC# tokens as well as the lex tokens. We must have start
conditions for the main sections, for the code inside the sections, and for comments
inside (and outside) the code.

One approach to handling the start conditions in such cases is to use astackof start
conditions, and to push and pop these in semantic actions.gplexsupports the stacking

3 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 17

of start conditions when the “stack ” command is given, either on the command line,
or as an option in the definitions section. This option provides the methods shown in
Figure 1. These are normally used together with the standardBEGIN method. The

Figure 1: Methods for Manipulating the Start Condition Stack

// Clear the start condition stack
internal void yy clear stack();

// Push currentScOrd, and set currentScOrd to “state”
internal void yy push state(int state);

// Pop start condition stack into currentScOrd
internal int yy pop state();

// Fetch top of stack without changing top of stack value
internal int yy top state();

first method clears the stack. This is useful for initialization, and also for error recovery
in the start condition automaton.

The next two methods push and pop the start condition values, while the final
method examines the top of stack without affecting the stack pointer. This last is useful
for conditional code in semantic actions, which may perform tests such as —

if (yy top state() == INITIAL) ...

Note carefully that the top-of-stack state is not the current start condition, but is the
value that willbecomethe start condition if “pop” is called.

3.5 Miscellaneous Methods

The ECHO Method

This method echos the recognized text to the standard output stream. It is equivalent
to

System. Console .Write(yytext);

4 APPENDIX A: TABLES 18

4 Appendix A: Tables

4.1 Keyword Commands

Keyword Meaning
%x This marker declares that the following list of

comma-separated names denote exclusive start
conditions.

%s This marker declares that the following list of
comma-separated names denote inclusive start
conditions.

%using The dotted name following the keyword will be
added to the namespace imports of the scanner
module.

%namespace This marker defines the namespace in which the
scanner class will be defined. The namespace ar-
gument is a dotted name. This marker must occur
exactly once in the definition section of every in-
put specification.

%option This marker is followed by a list of option-names,
as detailed in section 4.3. The list elements may
be comma or white-space separated.

%charClassPredicate This marker is followed by a comma-separated list
of character class names. The class names must
have been defined earlier in the text. A member-
ship predicate function will be generated for each
character class on the list. The names of the pred-
icate functions are generated algorithmically by
prefixing “Is ” to the name of each character class.

4.2 Semantic Action Symbols

Certain symbols have particular meanings in the semantic actions ofgplexparsers. As
well as the symbols listed here, methods defined in user code of the specification or its
helper files will be accessible.

Symbol
Meaning

yytext A read-only property which lazily constructs the text of
the currently recognized token. This text may be invali-
dated by subsequent calls ofyyless.

yyleng A read-only property returning the number of symbols of
the current token. In the unicode case this is not neces-
sarily the same as the number of characters or bytes read
from the input.

yypos A read-only property returning the buffer position at the
start of the current token.

yyline A read-only property returning the line number at the start
of the current token.

yycol A read-only property returning the column number at the
start of the current token.

4 APPENDIX A: TABLES 19

Semantic Action Symbols (continued)

Symbol Meaning
yyless A method that truncates the current token to the length

given as theint argument to the call.
BEGIN Set the scanner start condition to the value nominated in

the argument. The formal parameter to the call is of type
int , but the method is always called using the symbolic
name of the start state.

ECHO A no-arg method that writes the current value ofyytextto
the standard output stream.

YY_START A read-write property that gets or sets the current start
ordinal value. As withBEGIN, the symbolic name of the
start condition in normally used.

yy_clear_stack ‡ This no-arg method empties the start condition stack.
yy_push_state ‡ This method takes a start condition argument. The cur-

rent start condition is pushed and the argument value be-
comes the new start condition.

yy_pop_state ‡ This method pops the start condition stack. The previous
top of stack becomes the new start state.

yy_top_of_stack ‡ This function returns the value at the top of the start con-
dition stack. This is the value that would become current
if the stack were to be popped.

‡ This method only applies with the/stackoption.

4.3 GPLEX Options

Informative Options

The following options are informative, and cannot be negated —

help Send the usage message to the console
codepagehelp Send help for the codepage options to the console
out: out-file-path Generate a scanner output file with the prescribed

name
frame: frame-file-path Use the specified frame file instead of seeking

“gplexx.frame” on the built-in search path
codepage: codepage-arg For unicode scanners: deal with input files that

have noUTF prefix in the nominated way. For
byte-mode scanners: interpret the meaning of
character class predicates according to the encod-
ing of the nominated codepage.

Boolean Options

The following options correspond to Boolean state flags withingplex. They can each
be negated by prefixing “no” to the command name —

4 APPENDIX A: TABLES 20

Option Meaning Default
babel Include interfaces for Man-

aged Babel framework
default is nobabel

check Compute the automaton, but
do not create an output file

default is nocheck

classes Use character equivalence
classes in the automaton

unicode default is classes

compress Compress all tables of the
scanner automaton

default is compress

compressmap Compress the equivalence
class map

unicode default is compressmap

compressnext Compress the next-state ta-
ble of the scanner

default is compressnext

files Provide file-handling code
in scanners

default is files

listing Generate a listing, even
when there are no errors

default is nolisting

minimize Minimize the number of
states of the automaton

default is minimize

parseonly Check the input, but do not
construct an automaton

default is noparseonly

parser Expect type definitions from
a host parser

default is parser

stack Allow for start conditions to
be stacked

default is nostack

squeeze Generate the automaton
with the smallest tables

default is nosqueeze

summary Write out automaton statis-
tics to the listing file

default is nosummary

unicode Generate a unicode-mode
(not byte-mode) scanner

default is nounicode

verbose Sendgplex’ progress infor-
mation to the console

default is noverbose

version Sendgplexversion details to
the console

default is noversion

	The Input File
	Lexical Considerations
	Overall Syntax
	The Definitions Section
	The Rules Section
	The User Code Section

	Regular Expressions
	Concatenation, Alternation and Repetition
	Regular Expression Atoms

	Special Symbols in Semantic Actions
	Properties of the Matching Text
	Looking at the Input Buffer
	Changing the Start Condition
	Stacking Start Conditions
	Miscellaneous Methods

	Appendix A: Tables
	Keyword Commands
	Semantic Action Symbols
	GPLEX Options

