
Building Unicode Scanners with GPLEX
(Version 1.0.0 November 2008)

John Gough QUT

November 11, 2008

1 Overview

Gardens PointLEX (gplex) is a scanner generator which accepts a “LEX-like” specifi-
cation, and produces aC# output file. The scanners produced bygplexcan operate in
two modes —

* Byte Mode, in which patterns of seven or eight-bit bytes are specified, and the
input source is read byte-by-byte. This mode corresponds to the traditional se-
mantics ofLEX-like scanner generators.

* Unicode Mode. In this mode the patterns are specified as regular expressions
over the unicode alphabet. The generated scanner matches sequences of code-
points. TraditionalLEX has no equivalent semantics.

The choice between byte-mode and unicode-mode is made at scanner generation time,
either by a command-line option togplex, or an option marker in the specification file.

For unicode mode scanners, the input to the generated scanner must be decoded
according to some known encoding scheme. This choice is made at scanner-runtime.
Unicode text files with a valid unicode prefix (sometimes called aByte-Order-Mark,
“BOM”) are decoded according to the scheme specified by the prefix. Files without a
prefix are interpreted according to a “fallback codepage” option. This option may be
specified at scanner generation time. The scanner infrastructure also provides methods
to allow scanner applications to override the default at scanner runtime, or even to defer
choice until after scanning the entire file.

1.1 Gplex Options for Unicode Scanners

The following options ofgplexare relevant to the unicode features of the tool.

/codepage:Number

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the codepage with the specified number. If there is
no such codepage, or the codepage is unsuitable, an exception is thrown and processing
terminates. For version 1.0 ofgplexthe specified codepage must have the single-byte
property1, or must be one of 1200 (utf-16), 1201 (unicodeFFFE) or 65001 (utf-8).

1An encoding has the single byte property if each byte of the input file delivers a unicode codepoint to
the scanner. For example, all of the iso-8859 encodings have this property. For this version ofgplexinput in
multi-byte encodings must use one of theUTF formats.

1

1 OVERVIEW 2

/codepage:Name

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the codepage with the specified name. If there is no
such codepage, or the codepage is unsuitable, an exception is thrown and processing
terminates. For version 1.0 ofgplexthe specified codepage must have the single-byte
property, or must be one of “utf-16” (Little-Endian Unicode), “unicodeFFFE” (Big-
Endian Unicode) or “utf-8”.

/codepage:default

In the event that an input file does not have a unicode prefix, the scanner will map
the bytes of the input file according to the default codepage of the host machine. This
codepage must have the single-byte property. This option is the default for unicode
scanners.

/codepage:guess

In the event that an input file does not have a unicode prefix, the scanner will rapidly
scan the file to see if it contains any byte sequences that suggest that the file is either
utf-8 or that it uses some kind of single-byte codepage. On the basis of this scan result
the scanner will use either the default codepage on the host machine, or interpret the
input as autf-8file. See Section 2.5 for more detail.

/codepage:raw

In the event that an input file does not have a unicode prefix, the scanner will use the
uninterpreted bytes of the input file. In effect, only codepoints from 0 to u+00ff will be
delivered to the scanner.

/unicode

By defaultgplexgenerates byte-mode scanners that use 8-bit characters, and read in-
put files byte-by-byte. This option allows for unicode-capable scanners to be created.
Using this option implicitly uses character classes.

/nounicode

This negated form of the /unicode option is the default forgplex.

/UTF8default

This option is deprecated. It will continue to be supported in version 1.0. However, the
same effect can be obtained by using “/codepage:utf-8 ”.

/noUTF8default

This option is deprecated. It will continue to be supported in version 1.0. However, the
same effect can be obtained by using “/codepage:raw ”.

2 SPECIFYING SCANNERS 3

1.2 Unicode Options for Byte-Mode Scanners

Most of the unicode options forgplex have no effect when a byte-mode scanner is
being generated. However, the codepage options have a special rôle in the special case
of character set predicates.

The available character set predicates ingplexare those supplied by the.NETbase
class libraries. These predicates are specified over the unicode character set. On a
machine with that uses a single-byte codepagegplexmust know what that codepage is,
in order to correctly construct character sets such as “[:IsPunctuation:] ”.

The available options are —

/codepage:Number

If a character set predicate is used, the set will include all the byte values which corre-
spond in the codepage mapping to unicode characters for which the predicate is true.
The nominated codepage must have the single-byte property.

/codepage:Name

If a character set predicate is used, the set will include all the byte values which corre-
spond in the codepage mapping to unicode characters for which the predicate is true.
The nominated codepage must have the single-byte property.

/codepage:default

If a character set predicate is used, the set will include all the byte values which cor-
respond to unicode characters for which the predicate is true. In this case the mapping
from byte values to unicode characters is performed according to the default code page
of thegplexhost machine. The default codepage must have the single-byte property.

/codepage:raw

If a character set predicate is used, the set will include all the byte values which numer-
ically correspond to unicode codepoints for which the predicate is true.

Caution

Character set predicates should be used with caution in byte-mode scanners. The po-
tential issue is that the byte-mode character sets are computed at scanner generation
time. Thus, unlike the case of unicode scanners, the codepage of the scanner host ma-
chine must be known at scanner generation time rather than at scanner runtime (see
also section 2.2).

2 Specifying Scanners

The scanning engine thatgplexproduces is a finite state automaton (FSA)2 This FSA
deals with codepoints from either theASCIIor Unicodealphabet. Byte-mode scanners
have the conceptual form shown in Figure 1. The un-encoded byte values of the input

2(Note for the picky reader) Well, the scanner isusuallyanFSA. However, the use of the “/stack” option
allows state information to be stacked so that in practice suchgplex-generated recognizers can have the power
of a push-down automaton.

2 SPECIFYING SCANNERS 4

Figure 1: Conceptual diagram of byte-mode scanner

Nextstate
Function

Current State

Un-encoded
byte value

Next
State

are used by the “next-state” function to compute the next state of the automaton.
In the unicode case the sequence of input values may come from a string ofSys-

tem.Charvalues, or from a file. Unicode codepoints need 21-bits to encode, so some
interpretation of the input is required for either input form. The conceptual form of the
scanner is shown in Figure 2 for file input. The corresponding diagram forstring input

Figure 2: Conceptual diagram of unicode scanner

Character
Decoding

Nextstate
Function

Current State

Encoded
byte stream

Next
State

Codepoint

differs only in that the input is a sequence ofSystem.Charvalues rather than bytes.
Forgplexversion 1.0 the scanner thatgplexuses to read its own input (the “*.lex ”

file) operates in byte-mode. Nevertheless, the input byte-mode text may specify either
a byte-mode scanner asgplex-output, or a unicode-mode scanner as output.

Because of the choice of byte-mode forgplex input, literal characters in specifi-
cations denote precisely the codepoint that represents that character in the input file.
Characters that cannot denote themselves in character literals must be specified by
character escapes of various kinds.

In this section we consider the way in which byte-mode scanners and unicode scan-
ners respectively are specified while complying with this constraint. Issues of porta-
bility of specifications and generated scanners across globalization boundaries are also
discussed.

2.1 Byte Mode Scanners

In byte-mode scanners, the only valid codepoints are in the range from ‘\ 0’ to ‘ \ xff’.
Whengplexinput specifies a byte-mode scanner, character literals in regular expression
patterns may be: literals such as ‘a’, one of the traditional control code escapes such as
‘ \ 0’ or ‘ \ n’, or any other of the allowed numeric escapes.

The allowed numeric escapes are octal escapes ‘\ ddd’, where thed are octal dig-
its; hexadecimal escapes ‘\ xhh’, where theh are hexadecimal digits; unicode escapes
‘ \ uhhhh’ and ‘\ Uhhhhhhhh’, where theh are hexadecimal digits. If the specification
is for a byte-mode scanner the numerical value of any character literal must be less than
256, or an error occurs.

2 SPECIFYING SCANNERS 5

It is important to see that even for byte-mode scanners, these choices lead to certain
kinds of portability issues across cultures. Let us examine an example.

Suppose that a specification file is being prepared with an editing system that uses
the Western European (Windows) code page 1252. In this case the user can enter a
literal character ‘ß’, thesharp scharacter. This character will be represented by a
byte 0xdf in the specification file. The byte-mode scanner which is generated will
treat any 0xdf byte as corresponding to this character. To be perfectly clear: when the
specification is viewed in an editor it may display asharp sbut gplexneither knows
nor cares about how characters are displayed on the screen. Whengplexreads its input
it will find a 0xdf byte, and will interpret it as meaning “a byte with value 0xdf”.

Suppose now that the same specification is viewed on a machine which uses the
Greek (Windows) code page 1253. In this case the same character literal will be dis-
played as the characterί, small letter iota with tonos. Nevertheless, the scanner that
gplexgenerates on the second machine will be identical to the scanner generated on the
first machine.

Thus the choice of a byte-mode scanner forgplex-input achieves portability in the
sense that any specification that does not use character predicates will generate a pre-
cisely identical scanner on every host machine. However, it is unclear whether, in
general, themeaningof the patterns will be preserved across such boundaries.

In summary, byte-mode scanners handle the full 8-bit character set, but different
codepages may ascribe different meanings to character literals for the upper 128 char-
acters. Byte-mode scanners are inherently non-portable across cultures.

2.2 Character Predicates in Byte-Mode Scanners

Scanner specifications may use character set literals in the familiar form, the archetyp-
ical example of which is “[a-zA-Z] ”. In gplexcharacter set definitions may also use
character predicates, such as “[[:IsLetter:]] ”. In traditionalLEX, the names of
the character predicates are those available in “libc ”. In gplexthe available predicates
are from the.NETbase class library, and apply to unicode codepoints.

Consider the following example: a byte-mode specification declares a character set

PunctuationChars [[:IsPunctuation:]]

Now, the base class library function allows us to easily generate a set ofunicodecode-
pointsp such that the static predicate

Char .IsPunctuation(p);

returns true. Sadly, this is not quite what we need for a byte-mode scanner. Recall that
byte-mode scanners operate on uninterpreted byte-values, as shown in figure 1. What
we need is a set of byte-valuesv such that

Char .IsPunctuation(Map(v));

returns true, for the mappingMapdefined by some codepage.
For example, in the Western European (Windows) character set the ellipsis charac-

ter ‘. . .’ is byte 0x85. The ellipsis is a perfectly good punctuation character, however

Char .IsPunctuation((char)0x85);

is false! The problem is that the ellipsis character is unicode codepoint u+2026, while
unicode codepoint u+0085 is the “newline” control characterNEL. All of the characters
of the iso-8859 encodings that occupy the byte-values from 0x80 to 0x9f correspond
to unicode characters from elsewhere in the space.

2 SPECIFYING SCANNERS 6

The character set “[:IsLetter:] ” provides another example. For a byte-mode
scanner using the Western European codepage 1252, this set will contain 126 members.
The same set has only 123 members in codepage 1253. In the uninterpreted, raw case
the set has only 121 members.

Nevertheless, it is permissible to generate character sets using character predicates
in the byte-mode case. When this is done, the user may specify the codepage that maps
between the byte-values that the generated scanner reads, and the unicode codepoints
to which they correspond.

If no codepage is specified, the mapping is taken from the default codepage of the
machine on which gplex is running. This poses no problem if the machine on which
the generated scanner will run has the same culture settings as the generating machine,
or if the codepage of the scanner host is known with certainty at scanner generation
time. Other cases may lack portability.

2.3 Unicode Mode Scanners

The unicode standard ascribes unique 21-bitcodepointsfor every defined character3.
Thus, if we want to recognizeboth the ‘ß’ characterand the ‘́ι’ character then we
must use a unicode scanner. In unicode ß has codepoint u+00df, whileί has codepoint
u+03af.

In unicode-mode scanners, the valid codepoints are in the range from u+0000 to
u+10ffff. As was the case for byte-mode, character literals in the specification file may
be literals such as ‘a’, one of the traditional control code escapes such as ‘\ 0’, or ‘\ n’,
or any other of the allowed numeric escapes.

The allowed numeric escapes are just as for the byte-mode case: octal escapes
‘ \ ddd’, where thed are octal digits; hexadecimal escapes ‘\ xhh’, where theh are hex-
adecimal digits; unicode escapes ‘\ uhhhh’ and ‘\ Uhhhhhhhh’, where theh are hex-
adecimal digits. However, in this case the unicode escapes may evaluate to a codepoint
up to the limit of 0x10ffff.

Since unicode scanners deal with unicode codepoints, it is best practise to always
use unicode escapes to denote characters beyond the (7-bit)ASCIIboundary. Thus our
two example characters should be denoted ‘\ u00df’ and ‘\ u03af’ respectively.

Reading Scanner Input

The automata of unicode scanners deal only with unicode codepoints. Thus the scan-
ners thatgplex produces must generate the functionality inside the left-hand box in
figure 2. ThisCharacter Decodingfunction maps the bytes of the input file (or the
characters of a string) into the codepoints that the scanner automaton consumes.

In the best of all worlds, the problem is simple. If the scanner’s input file is encoded
using “little-endian” utf-16 our two example characters will each take two bytes. The
ß character will be denoted by two bytes{0xdf, 0x00}, while the ί character will be
denoted by the two bytes{0xaf, 0x03}.

If the scanner’s input file is encoded using utf-8 our two example characters will
again take two bytes each. The ß character will be denoted by two bytes{0xc3, 0x9f},
while theί character will be denoted by the two bytes{0xce, 0x9f}.

3This is not the same as saying that every character has an unambiguous meaning. For example, in the
CJK compatabilityregion of unicode ideograms with different meanings in Chinese, Japanese and Korean
may share the same codepoint provided they share the same graphical representation.

2 SPECIFYING SCANNERS 7

In both of these cases, the files should begin with a prefix which unambiguously
indicates the format of the file. If a file is opened which does not start with a prefix
then there is a problem.

Consider the case of a byte file prepared using either codepage 1252 or codepage
1253. Of course, such a file cannot contain both ß andί characters, since both of
these are denoted by the same byte value 0xdf. The question is — if such a file is
being scanned and a 0xdf byte is found — what codepoint should be delivered to the
automaton4? Note that unlike the “utf-with-prefix” cases there is no certain way to
know what codepage a file was encoded with, and hence no certain way to know what
decoding to use.

At the time thatgplexgenerates a scanner, either a command line “/codepage: ”
option or a “%option ” declaration in the specification may specify the fall-back code-
page that should be used if an input file has no unicode prefix. A common choice is
“ /codepage:default ”, which treats files without prefix as 8-bit byte files encode
according to the default codepage on the host machine. This is a logical choice when
the input files are prepared in the same culture as the scanner host machine. In fact,
this is the fallback thatgplexuses in the event that no codepage option is specified.

The other common choice is “/codepage:utf-8 ”, which treats files without pre-
fix as utf-8 files anyway.

If it is known for certain that input files will have been generated using a codepage
that is different to the host machine, then that known codepage may be explicitly spec-
ified as the fallback. Note however, that this fallback will be applied toeveryfile that
the scanner encounters that does not have a prefix. In such cases it is more useful to
allow the fallback to be specified to the scanner application on a file-by-file basis. How
to do this is the subject of the next section.

What may we conclude from this discussion?

* Use unicode scanners for global portability whenever possible.

* Input files to unicode scanners should always be in one of the utf formats, when-
ever that is possible. Always place a prefix on such files.

* Consider using the default fallback to the host-machine codepage unless it is
known at scanner generation time that input files will originate from another
culture.

* Applications that usegplexscanners should allow users to override the codepage
fallback when it is known that a particular input file originates from another
culture.

2.4 Overriding the Codepage Fallback at Application Runtime

The fallback codepage that is specified at scanner generation time is hardwired into the
code of the generated scanner. However, an application that uses agplexscanner may
need to have its fallback codepage changed for a particular input file when the encoding
of that file is known.

Scanners generated bygpleximplement a static method of the stream buffer class
with the following signature —

public static int GetCodePage(string command);
4We have discussed only two possibilities here. Other codepages will give many additional meanings to

the same 0xdf byte value.

2 SPECIFYING SCANNERS 8

This method takes a string argument, which is a codepage-setting command from the
calling application. If the command begins with the string “codepage:” this prefix
is removed, and the remaining string is converted to a codepage index. The command
may specify either a codepage name or a number, or the special values “raw”, “default”
or “guess”. Raw denotes no interpretation of the raw byte values, while “default” de-
codes according to the default codepage of the host machine. Finally, “guess” attempts
to determine the codepage from the byte-patterns in the file. These semantics are the
same as the/codepage:option ofgplex, which indeed invokes this same method.

There are two constructors for the scanner objects in the scanner thatgplexgen-
erates. One takes a stream object as its sole argument, while the other takes a stream
object and a command string denoting the fallback codepage. The second construc-
tor passes the string argument toGetCodePage, and then sends the resulting integer
to the appropriate call ofSetSource5. Alternatively, the application may directly call
SetSourceitself, as shown below.

An application program that wishes to set the fallback codepage of its scanner
on a file-by-file basis should follow the example of the schema in Figure 3. If the

Figure 3: Using theGetCodePagemethod

string codePageArg = null ;
...
// Process the codepage argument
if (arg.StartsWith("codepage:"))

codePageArg = arg;
...
// Instantiate a scanner
FileStream file = new FileStream (...);
Scanner scnr = new Scanner ();
if (codePageArg != null) {

int cp = Scanner.StreamBuff .GetCodePage(codePageArg);
scnr.SetSource(file, cp);

}
else // Use machine default codepage, arg1 = 0

scnr.SetSource(file, 0);
...

application passes multiple input files to the same scanner instance, then an appropriate
value for the fallback codepage should be passed to each subsequent call ofSetSource
in the same way as shown in the figure.

2.5 Adaptively Setting the Codepage

There are occasions in which it is not possible to predict the codepage of input files
that do not have a unicode prefix. This is the case, for example, with programming
language scanners that deal with input that has been generated by a variety of different
text editing systems.

5In the case of byte-mode scanners there is no fallback codepage, so the two-arg constructor simply
ignores its second argument.

3 INPUT BUFFERS 9

In such cases, if an input file has no prefix, a last resort is to scan the input file to
see if it contains some byte value sequences that unambiguously indicate the codepage.
In principle the problem has no exact solution, so we may only hope to make a correct
choice in the majority of cases.

Version 1.0.0 ofgplexcontains code to automate this decision process. In this first
release the decision is only made between theutf-8codepage and the default codepage
of the host machine. The option is activated either by using the command line option
“ /codepage:guess ”, or by arranging for the host application to pass this command
to theGetCodePagemethod.

The code that implements the decision procedure scans the whole file. The “guesser”
is a very lean example of agplex-generated byte-modeFSA. ThisFSAsearches for byte
sequences that correspond to well-formed two, three and four-byte utf-8 codepoints.
The automaton forms a weighted sum of such occurrences. The automaton also counts
bytes with values greater than 128 (“high-bytes”) which do not form part of any legal
utf-8 codepoint.

If a file has an encoding with the single-byte property there should be many more
high-bytes than legal utf-8 sequences, since the probability of random high-bytes form-
ing legal utf-8 sequences is very low. In this event the host machine codepage is chosen.

Conversely if a file is encoded in utf-8 then there should be many multi-byte utf-8
patterns, and a zero high-byte count. In this event a utf-8 decoder is chosen for the
scanner.

Note that it is possible to deliberately construct an input that tricks the guesser
into a wrong call. Nevertheless, the statistical likelyhood of this occurring without
deliberation is very small.

There is also a processing cost involved in scanning the input file twice. However,
the auxiliary scanner is very simple, so the extra processing time will generally be
significantly less than the runtime of the final scanner.

3 Input Buffers

Whenever a scanner object is created, an input buffer holds the current input text. There
are seven concrete implementations of the abstractScanBuffclass. Two are used for
string input, and five for file input.

TheScanBuffclass in Figure 4 is the abstract base class of the stream and string

Figure 4: Features of theScanBuffClass

public abstract class ScanBuff {
...
public abstract int Pos { get ; set ; }
public abstract int ReadPos { get ; }
public abstract int Read();
public abstract int Peek();
public abstract string GetString(int begin, int end);

}

buffers of the generated scanners. The important public features of this class are the
property that allows setting and querying of the buffer position, and the creation of

3 INPUT BUFFERS 10

strings corresponding to all the text between given buffer positions. ThePosproperty
returns the current position of the underlying input stream. TheReadPosproperty
returns the stream position of the (start of the) “current character”. For some kinds of
text streams this is not simply related to the currentPosvalue.

The methodReadreturns an integer corresponding to the codepoint of the next
character, and advances the input position by one or more input elements. The method
Peekreturns an integer corresponding to the codepoint of the next character, but does
not advance the input position.

New buffers are created by calling one of theSetSourcemethods of the scanner
class. The signatures of these methods are shown in Figure 5.

Figure 5: Signatures ofSetSourcemethods

// Create a string buffer and attach to the scanner. Start reading from offsetofst
public void SetSource(string source, int ofst);

// Create a line buffer from a list of strings, and attach to the scanner
public void SetSource(IList <string > source);

// Create a stream buffer for a byte-file, and attach to the scanner
public void SetSource(Stream src);

// Create a text buffer for an encoded file, with the specified encoding fallback
public void SetSource(Stream src, int fallbackCodepage);

3.1 String Input Buffers

There are two classes for string input:StringBuffwhich holds a single string of input,
andLineBuff which holds a list of lines.

Scanners that accept string input should always be generated with the/unicode
option. This is because non-unicode scanners will throw an exception if they are passed
a codepoint greater than 255. Unless it is possible to guarantee that no input string will
contain such a character, the scanner will be unsafe.

The StringBuff Class

If the scanner is to receive its input as a single string, the user code passes the input to
the first of theSetSourcemethods, together with a starting offset value —

public void SetSource(string s, int ofst);

This method will create a buffer object of theStringBuff type. Colorizing scanners for
Visual Studioalways use this method.

Buffers of this class consume either one or two characters for each call ofRead,
unless the end of string has been found, in which case theEOF value−1 is returned.
Two characters are consumed if they form a surrogate pair, and the caller receives
a single codepoint which in this case will be greater than u+ffff. Calls directly or
indirectly toGetStringthat contain surrogate pairs will leave the pair as two characters.

3 INPUT BUFFERS 11

The LineBuff Class

An alternative string interface uses a data structure that implements theIList<string >
interface —

public void SetSource(IList <string > list);
This method will create a buffer object of theLineBuff type. It is assumed that each
string in the list has been extracted by a method likeReadLinethat will remove the
end-of-line marker. When the end of each string is reached the bufferReadmethod
will report a ‘\n ’ character, for consistency with the other buffer classes. In the case
that tokens extend over multiple strings in the listbuffer.GetStringwill return a string
with embedded end of line characters.

3.2 File Input Buffers

There are five flavors of file buffers —

* StreamBuff. The buffer for a byte file, which reads one byte at a time. It is used
for non-unicode scanners, and by unicode scanners for files that have no prefix
when the fall-back “/codepage:raw ” is specified.

* CodePageBuff. The buffer for a text file which is encoded according to some
specified codepage. This is used by unicode scanners for files that have no prefix,
and a single-byte fallback codepage has been specified.

* TextBuff. The buffer for a text file encoded according to theUTF-8 form. This is
used by unicode scanners for files with a utf-8 prefix, of for files without a prefix
if “ /codepage:utf-8 ” has been specified.

* BigEndTextBuff. The buffer for a text file encoded according to the “big-endian”
UTF-16 form. This is used by unicode scanners for files with a utf-16 prefix, or
for files without a prefix if “/codepage:unicodeFFFE ” has been specified.

* LittleEndTextBuff. The buffer for a text file encoded according to the “little-
endian”UTF-16 form. This is used by unicode scanners for files with a utf-16
prefix, of for files without a prefix if “/codepage:utf-16 ” has been specified.

For all forms of file input, the scanner opens a file stream with code equivalent to
the following —

FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner ();
scnr.SetSource(file, . . .);

The constructor code of theScannerobject that is emitted bygplexis customized ac-
cording to the/unicodeoption. If the unicode option is not in force a scanner is gen-
erated with aStreamBuffbuffer object. In this case the single-argument version of
SetSource(third method in figure 5) will be called. This buffer reads input byte-by-
byte, and the resulting scanner will match patterns of 8-bit bytes.

If the unicode option is in force, the two-argument overload ofSetSource(last
method in figure 5) will be called. This version ofSetSourcereads the first few bytes
of the stream in an attempt to find a valid unicode prefix.

If a valid prefix is found corresponding to aUTF-8 file, or to one or otherUTF-16
file formats, then a corresponding unicode text buffer object is created. If no prefix
is found, then the form of buffer is determined by the “/codepage: ” option. In the
event that no codepage option is in force aCodePageBuffwill be created, and loaded
up with the default codepage for the host machine.

	Overview
	Gplex Options for Unicode Scanners
	Unicode Options for Byte-Mode Scanners

	Specifying Scanners
	Byte Mode Scanners
	Character Predicates in Byte-Mode Scanners
	Unicode Mode Scanners
	Overriding the Codepage Fallback at Application Runtime
	Adaptively Setting the Codepage

	Input Buffers
	String Input Buffers
	File Input Buffers

