The GPPG Parser Generator
(Version 1.3.0 October 2008

John Gough, Wayne Kelly QUT
November 11, 2008

New in this release

Compared to the v1.2.1 (August 2008) release this version has the following sig-
nificant changes and new features —

*

The new release has a completely new frontend. The scanner and pal
constructed bygplexandgppgrespectively.

The documentation has been expanded in an attempt to make it mor,

Ser are

e self-

contained. It now has a more complete description of the input syntax, and

explains (for example) how production precedereadly works.

Error handling is based around an error buffer and a listing generato
the parser attempts error recovery. Most error messages have change

r, and
d, and a

number of syntactic errors that were previously undetected are now reported.

Type declarations fo¥' YSTYPEnNd the%union declaration now allow ar
bitrary syntax including (even nested) generic types, and arrays. Whe

%union andYYSTYPEare definedYYSTYPHENust be a simple identifier

naming the “union” type. Otherwis€YSTYPHEnay define be an arbitra
type declaration.

An extended syntax for token list declarations has been implemented.

n both

[y

Every

token has the option of declaring a “display form” that is used in all diag-
nostic messages. All token declaration constructs allow for optional “kind”

markers.

Hexadecimal and unicode escapes are allowed in strings and characts

ar liter-

als. Character literals are canonicalized before insertion in the dictionary.

Literal strings for filenames may use either the verbatim or normal form
escape characters are interpretted in filenames. Howevetyth@nput file
is still an 8-bit byte-file.

, and

1 OVERVIEW 2

1 Overview

These notes are brief documentation for the Gardens Point Parser Gerggptpr (

gppgis a parser generator which acceptsYACGIlike” specification, and pro-
duces aC# output file. Both the parser generator and the runtime components are
implemented entirely ilC# They make extensive use of the generic collection classes,
and so requirgersion 2.0of the .NET framework.

Gardens Point Parser Generatgpfg is normally distributed with the scanner
generator Gardens PoibEX (gpleX. The two are designed to work together, although
each may be used separately.

If you want to begin by reviewing the input grammar acceptedjppg then go
directly to sectiofi .

1.1 |Installing GPPG

gppgis distributed as a zip archive. The archive should be extracted into any conve-
nient folder. The distribution contains three subdirectories. Hie ™ directory con-
tains twoPE-files: gppg.exeand ShiftReduceParser.dIBoth of these must be on the
executable path. Thesburce ” directory contains all of the source code fippg The
“doc” directory contains the filesgppg.pdf " and the file ‘GPPGcopyright.rtf "
Application programs that use parsers generateghipgrely on the presence of the
runtime componershiftReduceParser.diThis PE-file should be in the same directory
as the assembly that contains the parser.
The application requires version 2.0 of tkécrosoft .NETruntime.

1.2 RunningGPPG
gppgis invoked by the command —

gppg [optiongd inputFile > outputFile
the available options are —

* /babel — causegppgto emit the additional interface required by thikan-
aged Babebackage of tha/isual Studio SDK(see “Colorizing Scanners and
Managed Babélin sectiof 2.3.]L).

* [conflicts — writes a file ‘basenameonflicts " with detailed informa-
tion about any parser conflicts (see secfion 3.4).

* [/defines — writes afile ‘basenaméokens ” with one token name per line.

* [gplex — makeggppgcustomize its output for the Gardens PdifiX (gpleX
scanner generator.

* /help — displays the usage message.

* [listing — causegppgto always produce a listing file. Without this option
gppgproduces a listing only if there are errors or warnings.

* /no-lines — suppresses emission of outpihe directives.

* [report — generates a filedasenameeport.ntml 7 with LALR(1) state
information.

1 OVERVIEW 3

* [verbose — sends more detailed information to the concole, and to the con-
flict and LALRreports.

* Jversion — displays version information.

The behavior o§ppgwhen the'reportoption is used with and without thieerbose
option is described in Sectipn B.5.

1.3 UsingGPPGParsers

Parsers constructed lgppg expose a simple interface to the user. Instances of the
parser may be created by calling any of the constructor methods defined in the user
code. The name of the parser clas@ser, unless the default is overridden (see
Sectior] 2.B). Typically other code will attach a scanner and error handler object to the
parser instance. The scanner, in turn, will have been provided with some input text to
read from.

The parser instance is invoked by calling fPersemethod, inherited from the ab-
stract base classhiftReduceParseiThe Parsemethod has the following signature —

public bool Parse() { .. }

This method returns false if the parse is unsuccessful, and true for a successful parse.
Note that the success or otherwise of the parse is distinct from the issue as to whether
errors were detected. False implies that the parse terminated abnormally.

In general the parser is expected to do more than just return true or false. In many
cases the parser will be expected to construct some kind of abstract syntax tree and/or
symbol tables as a side effect of a successful parse. When this is the case, the parser
result is normally attached to some accessible field of the parser instance from where
it may be retrieved by the invoking process.

1.4 Outputs

The parser generator reads a grammar specification input file and prodDgesigput
file containing —

* an enumeration type declaring symbolic tokens
public enum Tokens {error=127, EOF=128, ... }

The ordinal sequence of the tokens in the enumeration will start above the or-

dinal numbers of any literal characters appearing in the grammar specification.

Be aware that the use of unicode escapes for character literals may push this
boundary very high.

* a type definition for the “semantic value” type specified in the grammar. In the
case of a union typgppgwill emit —

public partial struct ValType{ ... }

The semantic value type is the type that is returned by the scanner in the in-
stance fieldyylval. This type argument thus corresponds toYMSTYPBf tra-
ditional implementations oYACGlike tools. The struct is partial if the marker
“Oppartial " appears in the definitions part of the parser specificatign " file.

* a definition for the class that implements the parser

1 OVERVIEW 4

public partial class
Parser : ShiftReduceParser <ValType, LocType {

}

The class is partial if the marke#spartial " appears in the definitions part of
the parser specificatiort.y ”file. This class definition provides an instantiation
for the generic clasShiftReduceParsewith the actual type argument&alType
andLocType inferred from the grammar specification, substituted for the type
parameter¥ YSTYPEBRNnAYYLTYPHEespectively.

The generatec# source file, as well as defining the above types, also contains the
parsing tables for the parser and the code for the user-specified semantic actions. The
parser implements a “bottom-upALR(1)” shift-reduce algorithm, and relies for its
operation on an invariant runtime componeghfftReduceParser.dll The main class
of the runtime is a generic class of two parameters which is instantiated with the two
type arguments determined from the grammar specification.

If the command line option “/defines” is used, or the input file contains Yake*
fines” marker then an additional output file is created. This file will have the name
“basenamg¢okens” wherebasenamés the name of the input file, without a filename
extension. This file contains a list of all of the symbolic (thahisn-character-litera)
tokens, one per output line. The names are syntactically correct references to the un-
derlying enumeration constants.

1.5 Scanner Interface

Parser instances contain a public field narsednner The parser expects this field

to be assigned a reference to a scanner that implements the class shown if Figure 1.
Despite its namelScanneris the abstract base class of the scanners, rather than an
interface. The base class provides & required by the runtime componentggpg

the library ShiftReduceParser.dll Of course scanners will usually implement other

Figure 1: Scanner Interface GPPG

public abstract class |Scanner <YYSTYPE, YYLTYPE>

where YYLTYPE : IMerge <YYLTYPE>
{

public YYSTYPE yylval;

public YYLTYPE yylloc { get; set; }

public abstract int yylex();

public virtual void yyerror(string msg,

param object [] args) {}

}

facilities that are required by the scanner semantic actions. These actions will use the
richer API that the concrete scanner class supports, but the shift-reduce parsing engine
itself needs only the subset defined in the base class.

User code of the parser may also access the risRépf the concrete scanner class
by casting the scanner reference from the abstract type to the actual concrete type.

2 INPUT GRAMMAR 5

The abstract scanner class is a generic class with two type parameters. The first
of these,YYSTYPHSs the “SemanticValueTypef the tokens of the scanner. If the
grammar specification does not define a semantic value type (see $ectipn 2.3.1) then
the type defaults timt . From version 1.2 ofjppgthe semantic value type can be any
CLRtype. Previous versions required a value-type.

The second generic type paramedY,LTYPEIis the location type that is used to
track source locations in the text being parsed. In almost all applications it is sufficient
to use the default location typeexLocation shown in Figur¢ 3. Location-tracking is
discussed further in sectign 2.6

The abstract base class defines two variables through which the scanner passes
semantic and location values to the parser. The first, the yigidal, is of whatever
“SemanticValueTypehe parser defines. The second, the propgstioc, is of the
chosen location-type.

The first methodyylex returns the ordinal number corresponding to the next token.
This is an abstract method, the actual scammastsupply a method to override this.

The second method, the low-level error reporting rougiyerror, is called by the
parsing engine during error recovery. The default method in the base class is empty.
The scanner has the choice of overridyiygrror or not. If the scanner overridggerror
it may use that method to emit error messages. Alternatively the semantic actions of
the parser may explicitly generate error messages, possibly using the location tracking
facilities of the parser, and leaygerror empty. Error handling in the parser is treated
in more detail in sectiopn] 4.

If gppgis used with theégplexoption the parser file defines a wrapper cl8san-
Basewhich instantiates the generi€cannerclass, and several other features. Full
details of this and other convenience features of this option are given gptaedoc-
umentation.

Using GPPGParsers with NonLEX Scanners

gppghas been successfully used with both hand-written scanners, and with scanners
produced by tools such &0CO/Rthat are not at alLEX-like. In the case of newly
hand-written scanners the code is written to conform td @wannerinterface. In the

case of existing scanners, or scanners produced by other tools it is usually necessary to
write adapter code to wrap the scanA€t to conform to the expected interface.

2 Input Grammar

The input grammar fogppgis based on the traditionACClanguage. There are
a number of unimplemented constructs in the current version, and a small number of
extensions for th€# programming environment.

The rules of the grammar are specified in termgesfinal symboE and non-
terminal symbolsThe terminal symbols correspond to the various lexemes recognized
by the scanner. When each lexeme is recognized the scanner passes thetpieser a
and optionally a semantic value and a location object. Tokens are integer values that
correspond either to members of a parser-defined enumeration, or are the ordinal values

L“Terminal” symbols are so named because they appear fakiesof derivation trees, thus terminating
the substitution process. They may correspond to a single input source sequence, such as a semicolon char-
acter ; ', or may denote an unboundéekical categorysuch as “identifier” in most programming language
lexicons.

2 INPUT GRAMMAR 6

of single characters. The single character tokens do not need to be declared in the parser
specification, but the enumeration names must be declared. In cases where enumeration
tokens correspond to fixed strings in the scanner input it is possible use the fixed string
to denote the terminal symbol in the grammar rules.

Non-terminal symbols denote tegntactic categoriesf the phrase-structured gram-
mar. They are implicitly defined by their appearance in a production rule of the gram-
mar.

gppgperforms a small number of checks on the validity of the grammar that it is
given. If a particular symbol does not appear in atoken declaration, and does not appear
as the left-hand-side of at least one production, then the grammar is non-terminating.
gppgissues a error message naming the symbol that is involved. This is a fatal error,
as parser production fails under such circumstances.

As well as the terminating tesgppg checks that every non-terminal symbol is
reachable from the start symbol. Any such symbols attract a warning, but their presence
is not fatal to parser production.

Errors of both type most commonly arise because of typographical errors in the
grammar. Remember that symbol names are case sensigpe

2.1 Input Grammar Structure

The overall structure of the grammar is described by the following production rules

Grammar
DefinitionSequengg; “%% RulesSection UserSectigs
DefinitionSequence
DefinitionSequengg; Declaration
| DefinitionSequengg; “%{" CodeBlock “%3”

UserSection
“%% CodeBlock

All of the tokens begining with the “percent” character must occur alone at the start of
a line. CodeBlockis any fragment of well forme&# code.

2.2 Declarations

gppgimplements some of the declarations familiar from other parser generators, as
well as a number of extensions that specifically have to do withNEE platform.

The following symbols are recognized, with the standard meanings. Further details
are summarized in Appendix A, Section[7.1 —

%union Il usual meaning, but see sect[on 2|3.1
%prec /! usual meaning, see section 2]4.1
%token // usual meaning

%type // usual meaning

%nonassoc // usual meaning

%left // usual meaning

%right // usual meaning

Y%start // usual meaning

%locations // usual meaning

The following are extensions to the syntax, or have modified semantics —

2 INPUT GRAMMAR 7

%output /I sets the output filepath
%definitions Il creates a token declaration file
%namespace // declares the namespace for the parser
Y%parsertype /l names the parser class within namespace
%visibility I/ declares the visibility of the parser class
%tokentype /I names the token enumeration
%YYSTYPE /l names the semantic value type
%YYLTYPE // names the location value type
Y%partial // declares the parser class to be partial
%using Il inserts a “using” clause in parser prolog
All of these extensions to the declaration syntax are described in Secfjon 2.3.

Declaring Tokens

The%token , %left ,%right and%nonassoc keywords may all be used to declare
token names. Although the tokens have different semantics according to how they
are declared, the syntax of all of these declaration forms are the same. Here are two

examples.
Declaration : ... // Productions for other declarations
| "%left" Kindopt TokenList
| "%token" Kindopt TokenList
Kind
‘<’ ident ‘>’
TokenList
TokenDecl
| TokenList ‘) qp; TokenDecl
TokenDecl

litchar
| ident numbegpt litstringopt

In this syntaxident, number, litchaandlitstring are lexical categories recognized by
thegppgscanner.

The optionakKind clause declares that the semantic values of the following token-
list elements are accessed by using the nominated identifier as a field-selector on the
yylvalvariable.

Elements of &okenListmay be either whitespace-separated or comma-separated.
They consist of either a literal character (enclosed in single quotes) or an identifier. Lit-
eral character tokens do no¢edto be declared, unless they require a kind declaration.

In the case of named tokens the identifier must be a @gaentifier, and may be
followed by an optional number and optional literal string. The optional number is for
compatability with other tools, but the value is ignored, with a warning to the user. The
literal string associatesdisplay stringwith the token. This display string is used in
all diagnostic messages from the generated parser. This is particularly helpful so that,
for example, a user error message could say “expectetiSymbol” instead of using
whatever cryptic identifier name that symbol has inThkensnumeration.

Both defining and used occurrences of literal character tokens may use the character
that they denote, or any of the “usual”, octal, hexadecimal or unicode escape forms that
denote the same value. All such occurrences are canonicalized so that, for example, the
same lexical value may be referred to as”, ‘\012 ’, ‘\x0a ’, or even \u000a ’

2 INPUT GRAMMAR 8

2.2.1 Token Precedence

For expression grammars there are two ways of controlling the precedence of operators,
so as to implement the desired grouping of sub-expressions. One way is to invent a
hierarchy of syntactic categoriesxpression, simple-expression, term, factor, primary
and so on) to control the order in which derivation steps are invoked. This is the method
that must be used fqredictiveor top-downparsers.

The “multiple sub-expression categories” method works perfectly well for bottom
up parsers such as those generatedyppg but it is traditional to use the second
method. In this case, the application of a particular production rule is determined by
attributes of the lookahead token.

Tokens may be declared as haviefi or right associativity, or being non-associative.
Furthermore, the relative precedence of tokens is determined by the order in which they
are declared. Tokens declared in the same list have the same precedence, while those
declared in later lists have higher precedence than those on all earlier lists.

There is a special mechanism that can be used for those unusual cases of tokens that
have more than one precedence. The familiar example of this occurs for the “minus”
sign of conventional arithmetic grammars, where the same token may denote subtrac-
tion (which has low precedence), and unary negation (which has very high precedence).
The special mechanism is described in Sedtion P.4.1.

Declaring Non-Terminal Symbol Types

Just as different tokens may pass different semantic values to the parser, so the recog-
nition of different non-terminals may create different semantic values on the parser’s
semantic value stack.

Semantic actions in the rules section can push a value onto the semantic value stack
by using the symbolic cod8$ = Expression If the semantic value type is some
named aggregate type, then the assignment will need to target one of the members of
that type.

The code to achieve this is automatically generatediyg after the following
declaration —

Declaration : ... // Productions for other declarations
| "%type" Kind NonTerminalList

Kind
‘<’ ident ‘>’
The identifier in theKind clause is the name of the member of the aggregate which
will hold the semantic value for specified symbols. Similarly, if a semantic value is
referenced using the symbolic naiibl, where N is an index, then the appropriate
member selection code will automatically be generatedppg
The NonTerminalLists a list of non-terminal symbol names. Elements of the list

may be either comma-separated or whitespace-separated.

2.3 Extensions to the Declaration Grammar
Declaring an Output Filepath

The command
%output=filepath

2 INPUT GRAMMAR 9

redirectggppgoutput to the nominated file. In the absence of this declaration the output
is sent to standard output.

It is necessary fogppgto be able to send its output to an arbitrarily named file,
including filenames that cannot be expressed in an 8-bit text file. The scanner accepts
three different forms for the filepath —

* An ordinary unquoted filename which does not contain any whitespace or es-
caped characters.

* A normal literal string usindC# conventions. This string may include whites-
pace, escape characters, or even unicode escapes.

* A verbatim literal string using th€#“@"..." " convention. This form is par-
ticularly convenient if the path contains backslash escapes as path-component
separators.

For the last two forms the filepath string has any escape characters expanded before
use. Howevergppgdoes not check the legality of the resulting filepath string.

Creating a Token Definitions File

The command

%(definitions
creates a “tokens” file with a list of the symbolic tokens, one per line. The names are
written in fully qualified form, with the enumeration typename prepended. This file is
not used by the parser or scanner, but is useful for other tools.

%namespace NameSpaceName

The whole of the output afppgwill be enclosed in a namespace declaration with the
given name. The name is used verbatim, and may be a dotted name.

Naming Types

The name and visibility of the parser class may be defined byiparsertype " and
“Yvisibility " constructs. In the absence of thaggpgacts as though it had seen
the declarations —

Y%parsertype Parser

%visibility public
Similarly, the name of the token enumeration may be set by %tekentype " dec-
laration. In the absence of such a declaratiyppg acts as though it had seen the
declaration —

%tokentype Tokens

The visibility of the token type is the same as that declared for the parser class. Sim-
ilarly, the visibility of the ScanBaseabstract class thajppgdefines when given the
/gplexoption is the same as that of the parser class.

2 INPUT GRAMMAR 10

2.3.1 Defining a Semantic Value Type

According to tradition, the semantic value type expected from the sca¥ii&TYPE
is defined by atinion " construct in the grammar specification file. Of courlG&does
not have a union type construct, achieving roughly the same intent by subclassing.
Neverthelessgppgrecognizes the%union ” construct, emitting a corresponding
struct definition to the output file. The structure will have a field corresponding to
every member of the “union”, with members selected using exactly the expected “dot”
notation. The effect is to substitutgpeoducttype for the usualinion, with the loss of
some storage efficiency.
The type declared by the union construct may be an arbitrary type. For example,
the declaration igppds own parser specification is

%union { public int iVal;
public List <string > sLst;
public List <TokenInfo > tLst;
public TokenInfo info;
public Production prod;
public ActionProxy prxy;

}

Note the use of types froilystem.Collections.Geneliere.

The default name for the “union” type, in the absence of an explicit declaration will
be “ValueTyp#&?] For an example of use of thestinion ” construct see Sectign 6.2.

If the grammar does not declare a “union” type, but does declare a semantic value
type name, then the semantic value stack of the parser will expect to hold values of the
named type. Thus in new grammars it is probably betteefoea semantic value type
in the C#, and declare the type’'s namegppg using the%YYSTYPHEeclaration, thus
avoiding the slightly misleading union word. In some applications it is convenient to
define the semantic value type to be the abstract base class of an abstract syntax tree
construct. This allows the semantic actions of the parser conveniently to buA&bihe

%YYSTYPRalueTypeName
%YYSTYPHypeConstructor

This declaration defines the type that will be used as the semantic value ¥yué-

type " is a deprecated synonym for tBeYYSTYPHEnarker. The first form simply de-
clares thenameof the type. If there is &union declaration, then the name should be

a simple identifier, and will be the name given to the struct that implements the “union”.
If there is no%union declaration, then the name may be a qualified (“dotted”) name
that references a named type defined elsewhere.

The second form of the declaration allows an arbitrary type constructor to define the
semantic values. Using this form is the only way to declare a semantic value type that
is an array type, since iB# arrays do not have identifier names. The type-constructor
form cannot be used if there i%aunion declaration.

If a grammar contains neither a valuetype declarationa “union” declaration,
then the semantic value type will ba .

2That is, the type name will beMlyNamespac¥alueType ” which should not be confused with the
super type of every value tyf®ystem.ValueType

2 INPUT GRAMMAR 11

%YYLTYPH.o ocationTypeName

This marker overrides the default location type natrexLocation The default type

is sufficient for most applications, but when additional functionality is required it is
possible to define a new type, and declare its name with this marker. Location tracking
is discussed in detail in Sectibn P.6

Partial Types

The “%partial " marker, at the beginning of a line in the .y file, declares that the
generated parser class will be a partial class. This is a convenient mechanism to use, so
that the bulk of the (non semantic action) code required by the parser may be defined
in a separate file. By defauyppgproduces a complete class.

In the case that the grammar declares the semantic value type usirtguhiert ”
mechanism the generated parser file will declare a struct that ipaittal.

The use of this partial marker is a very great convenience, allowing the grammar file
to hold little but the grammar syntax, with all of the other code appearing in separate
files. This is also a big gain with the definition of the semantic value type. Typically
this type contains data and many instance methods for manipulation of the type. With-
out the partial marker all of these method bodies would need to be defined inside the
dummy “%union ” construct in the .y file.

%using UsingName

The given name is inserted into the output file, immediately before the namespace
marker. There may be as many of these directives as is necessary, and the names may
be either simple or dotted names.

Colorizing Scanners andmaxParseToken

The scanners produced gplexrecognize a distinguished value of thekenssnumer-
ation named thaxParseTokén If this value is defined in thgppginput “%token ”
specification theryylexwill only return values less than this constant.

This facility is used in colorizing scanners when the scanner has two callers: the
token colorizer, which is informed dll tokens, and the parser which may choose to
ignore such things as comments, line endings and so on.

If for some reason you wish to define token values that are not meaningful to
the gppggrammar, then definmaxParseTokeand place all the token values that the
parser will ignore after this value.

Scanners produced by current versiongplexuse runtime reflection to check if
the special value of the enumeration is defined. If the value is not defined, it is set to
Int32.MaxValuelt is always safe to leave the special value out, if it is not needed.

Colorizing Scanners andManaged Babel

TheVisual Studio SDKncludes tools to allow for easy contruction of language services
based on thiManaged Package Framework (MPHhe SDK ships with the Managed
Package Parser Generatorgpg tool, but it is also possible to uggmpgto construct a
compatible parser.

2 INPUT GRAMMAR 12

MPF-compatible parsers do not require any changes to the grammar specification,
other than possibly definingraaxParseTokeanumeration value. The changes are all
in the scanner base class definition tppgemits when run with thegplexoption.

If gppgis run with the babeloption (which implies thegplexoption), then the
emitted parser source file will define th@olorScaninterface. Some additional fea-
tures of the scanner base claSsanBasgeare also emitted. These allow the scanners
to operate incrementally by providing end-of-line scanner state to be persisted.

2.4 Production Rules

The production rules for each non-terminal consist of the symbol name, starting on a
new line in the first column, followed by a colon character, and zero or more right-
hand-sides. Right-hand-sides are separated by the vertical bar chajactaerd the
sequence is terminated by a semicolon.

Rule
NonTermSymbol ‘1" RhsSequengg; ;'

RhsSequence
RightHandSide
| RhsSequence’|’ RightHandSide

With the exception of a few possible special cases discussed later, a production
right-hand-side consists of a sequence of zero or more symbols, followed by an optional
semantic action. The symbols may be terminal or non-terminal symbols, including
those terminal symbols that are denoted by a character literal. At runtime gpfiue
generated parser, when an token sequence corresponding to that production right-hand-
side has been recognized, the semantic action, if there is one, is executed.

All of the productions for a given non-terminal symbol may occur together in the
specificatin, with separate right-hand-sides separated by the vertical bar. Alternatively,
the productions for a symbol may be spread throughout the grammar in multiple pro-
duction groups each beginning with the non-terminal name.

Semantic Action Syntax

Semantic actions consist of arbitray statements enclosed in braces. The semantic
actions are not checked or interpreted in any wagpp@ The semantic action ends
when the right brace is located that matches the left brace that began the action. Mal-
formed actions that do not have matching braces lead to syntactic errors from which it
is difficult for thegppgparser to recover.

As well as regulaC# code, the semantic actions may contain a number of special
symbols that refer to attributes of the rule just matched. A summary of these special
symbols is given in Sectign 7.2, and their use is discussed in S¢ction 2.5.

2.4.1 Controlling Precedence

The ordinary rules of relative precedence, and associativity for operator-like symbols
are sufficient for grammars where such symbols have an unique precedence. However,

3Except of course for recognizing literal strings and comments, so as to safeguard the matching of left
and right braces.

2 INPUT GRAMMAR 13

for those rare cases where symbols have different precedence in differing contexts a
special feature oYACClike grammars must be used.

As an example, we consider a simplified version of the expression grammer in the
Calc example of Sectiop 6/1. The simplified version has only three operators, and the
following relevant productions.

expr
‘' expr Y
‘-7 expr %prec UMINUS
expr ‘-’ expr

I

|

| expr ‘+ expr

| expr ‘*' expr
The token declarations for this grammar giveé and ‘+’ a lower precedence than
“*' and give the highest priority to the dummy “toket?MINUS. All of these tokens
are declared as havingséleft " associativity. The second right-hand-side has spe-
cial markers that say that that production should have the precedenceldfihéJS
dummy token.

If we generate a parser from this grammar, and another from the same grammar
but without the precedence marker we may compare them. Usirigefhet option of
gppgand examining the html files generated shows that only one state of the parser is
different between the two versions. The “kernel items” for that state are identical —

Kernel Items

-7 expr e

expr e ‘-' expr

expr e ‘+' expr

expr e ‘*' expr
In words, the kernel items show the position within the recognition of various right-
hand-sides that cause the automaton to be in this particular state. The “dot” marks the
current position. Clearly we are either about to reduce (that is, finalize) recognition of
the first production (since the dot is at the end), or we are in the middle of one of the
other productions and about to shift a binary operator.

In situations such as this, where there are both shift and reduce possillipgs
determines, for each possible lookahead token, whether the generated parser will shift
the next token or reduce a completed production. It makes this decision by comparing
the precedence of the completed right-hand-side with the precedence of each possible
lookahead symbol. Since in this case we have forced the second production to have the
highest possible priority, we will always reduce by that production when in this state.

In the absence of thétprec ” marker the situation is rather different. If the looka-
head is* ' we shift the operator and continue parsing, sinceénas a higher precedence
than - . For all other lookahead symbols, the precedences of the lookahead and the
production are equal, and the parser reduces, since thapérator is declared to be
left-associative.

This is but one example, so we must generalize this by stating the general rules
by which precedence is determined. When both shift and reduction rules apply to a
state the precedence of theoductionand the precedence of thmokahead tokemare
compared. Here are the rules for determining precedence —

* The precedence oftakenis determined by the position of the declaration group
in which it occurs. Groups declared later in the definitions section have higher
precedence (see also Secfion 3.2.1).

2 INPUT GRAMMAR 14

* The precedence of productionis that given by the %prec TokenNamedec-
laration, if there is one.

* QOtherwise, the precedence of a production is that of the rightmost terminal sym-
bol in the right-hand-side, if there are any terminal symbols in the right-hand-
side.

* Otherwise the production has zero precedence.
And here are the rules for comparing precedence —

* |If the precedence of the production is higher than the precedence of the looka-
head token, then reduce.

* Otherwise, if the precedence of the lookahead token is higher than the prece-
dence of the production, then shift.

* |f the precedences are equal and the associativity of the lookahead tdkén is
then reduce.

* |f the precedences are equal and the associativity of the lookahead talgit is
then shift.

It is important to note that these rules are applied during the generation of the parsing
tables, and not at runtime for the generated parser.

Finally, here are the rules thgppguses for deciding when to issue conflict diag-
nostics during the generation of the parsing tables.

* |f an automaton state has two or more productions that can be reduced, that is,
two or more items with the “dot” at the end, then issue a reduce/reduce conflict
warning.

* |f an automaton state has a reduction and also possible shift actions, then the
conflicts are resolved as detailed above. However, if the conflict is resolved
in favor of shifting because the production has zero precedence, then issue a
shift/reduce conflict warning.

Mid-Rule Actions

Itis uncommon, but nevertheless legal, to place semantic actions in the middle, or even
the beginning of production rules. In effect, the parser generator performs a transfor-
mation of the production as described below.

Suppose that we have a production —

A B {MRA} C
whereMRAIis some mid-rule action.

This production is treated as if transformed by replacing the mid-rule action by a
new, anonymous non-terminal symlfgion say. The new symbol has a single, empty
production, and takes the code of the mid-rule action as a normal, end-of-rule action.

A : B Anon C ;

Anon : [* empty */ {MRA}
The use of mid-rule actions sometimes leads to parser conflicts that would not occur
without the action. This may be understood by considering the example above. Con-

sider two productions —

2 INPUT GRAMMAR 15

AL B C ;

A B D
We shall assume that the non-terminal symitondD have overlapping first terminal
symbol sets. To be specific, let us assume that efther D can start with terminal
symbolzx.

The fact that these two non-terminals have overlapping first sets does not cause a
conflict between the two productions. The parser does not have to choose between the
two productions until it has seall of the symbols that make up a compl&eor a
completeD.

Suppose however that we now introduce a mid-rule action in the first of these pro-
ductions. After the transformation described above, we consider the state with the
following two items —

Kernel Items
A e Anon C
A e D

Now here is the problem: a lookahead tokencdh this state will be consistent with
the reductionAnon—empty but is also consistent with shifting the first token of an
expected symbol.

Thus, introducing the mid-rule action can cause a shift/reduce conflict that was not
there before. In effect, putting in a mid-rule action sometimes forces the parser to
choose between two productions before it has seen enough of the input to make that
decision.

If introducing a mid-rule action causes a damaging shift/reduce conflict the correct
strategy is to take the action out. The idea is to perform the aetftam the whole
production has been recognized. In order to do this it may be necessary to store away
some additional information in the semantic values of the intermediate symbols to use
in the later action.

A final, important point to remember is that if a mid-rule action is introduced the
counting of symbols for th&N and @\ terms in semantic actions must count one for
each mid-term action. This is to account for the anonymous non-terminal that stands
proxy for the action in the transformed production.

Right-Hand-Side Syntax

We are now in a position to reveal the complete syntax of production right-hand-sides.
This looks a little silly, since it acknowledges that a production right-hand-side may
have an action at either end, and between any two symbols. Furthermore, an optional
precedence-setting clause may occur anywhere preceding a point at which an action
may be placed.

2.5 Semantic Actions

Commonly, the semantic action that is invoked at a reduction will perform some kind
of computation on the semantic values of the symbols on the right of the selected
production. The destination of the computed semantic value is den$&d While

the previously computed semantic values of the first, second and subsequent symbols
on the right-hand-side are denott], $2, ... $n, wheren is any decimal number less

than or equal to the length of the right-hand-side of the chosen production. The index
n undergoes an index bounds check at parser construction time.

2 INPUT GRAMMAR 16

In case the semantic action needs to refer to a particular component of a semantic
value of aggregate type, the notat®amember N refers to the named member of the
aggregate.

Default Semantic Action

The default semantic action is invoked for every reduction by a production that has no
user-supplied semantic action.

For production right-hand-sides of zero length, that is, foeesure the default
semantic value of the production is a default value oMN&TYPEype. If the semantic
value type is a reference type, the value willadl . For scalar types the value will
be “0”. For structured value types the default value is the value created by the no-arg
constructor. For production right-hand-sides of all non-zero lengths, the default action
is equivalent to $$=$1".

2.6 Location Tracking

The second generic type parameter of the scanner interface inflgave. T PEis the
location type. Instances of the location type contain information that mark the start and
end of the relevant phrase in the input text, that is, the type is a representation of a text
span. The actual type that is substituted for YWELTYPEparameter must implement

the IMerge interface shown in Figurg] 2. The location type supplies a method that

Figure 2: Location types must implemdierge

public interface IMerge <YYLTYPE> {
YYLTYPE Merge(YYLTYPE last);

}

produces a value that spans locations from the start of the “this” value to the end of the
“last’ argument. The parser, during every reduction, callsMisegemethod to create
a location object representing the complete production right-hand-side phrase.

Location Actions

The semantic actions of the parser may refer to the location values as well as to the
semantic values. This is most commonly done so as to pass location information to an
error handler.

In a production, the location value of the left-hand-side symbol is referred to as
@$ while the location values of the first, second and subsequent symbols on the right-
hand-side are denot&@1 @2 ... @, wherenis any decimal number less than or equal
to the length of the right-hand-side of the chosen production.

The default action at every reduction is equivalent to the code —

@%$ = @1.Merge(@N)
whereN is the number of symbols in the production right-hand-side. The default action
is carried outbeforeany user-specified semantic action. Thus it is possible for a user

action to override the default location-merging action by explicitly attaching a different
location object to @$.

2 INPUT GRAMMAR 17

If a scanner does not contain code to generate location objects, then the scanner’s
yylloc field will always be null. This does not cause exceptions in the default location
action, as the code is guarded by a null reference test. Location processing may thus
be safely ignored in those cases that it is not needed.

Default Location Type

Parser specifications may declare the name of a type that is to be used as the location
type. This type must implement th®lerge interface. In the event that no such dec-
laration is made, the default location tracking type is ltlegLocationtype shown in
Figure[3. This type implements a simple text-span representation.

Figure 3: Default location-information class

public class LexLocation . IMerge <LexLocation >
{

public int sLin; // Startline

public int sCol; // Start column

public int eLin; //Endline

public int eCol; // End column

public LexLocation() {};
public LexLocation(int sl; int sc; int el; int ec)
{ sLin=sl; sCol=sc; eLin=el; eCol=ec; }

public LexLocation Merge(Lexlocation end) {
return new LexlLocation (sLin,sCol,end.eLin,end.eCol);

}

Supplying a Different Location Type

Sometimes if may be necessary to use a different location type. This is the case with
gppgitself, which needs to track not only line and column numbers but also file-buffer
positions.

To override the default location type, the parser specification needs to include the
command —

%YYLTYPHYypeldent

whereTypeldenis the simple name of the desired t&bé*he type must implement the
IMergeinterface, but may also provide whatever other methods are required.

In the case of theexSpartype ofgppgthe type contains the same line and column
fields asLexLocation These are used by the error reporting in the usual way. The
new type has additional fields for the start and end file position pointers into the input
buffer, and a reference to the buffer itself. The additional methods of the type write
out text spans from the buffer to specified output streams, and extract strings from the
buffer corresponding to particular location spans.

4This type identifier may be a qualified, “dotted” name.

3 ERRORS, DIAGNOSTICS AND WARNINGS 18

Special Behavior for Empty Productions

Special care must be taken when generating location information for productions with
empty right hand sides. The issue is not so much with the empty production, but when
a location span from such an empty production is used further up a derivation tree.
Consider the productiod — BCD. The default location processing action when
this production is reduced is to create a location span that begins at the start of the
B phrase, and finishes at the end of thephrase. Now, suppose th& and D are
nullablesymbols, and each has been produced by reduction by an empty production. A
moment’s consideration will show that the correct behavior is produced if the location
span for each empty productitseginswith the start of the lookahead token, agmds
with the finish of the last token shifted. Such a location value makes no sense on it
own, it has negative length for example, but merges correctly with other spans. The
1.0.1 version ofgppguses this strategy to deal with location information for empty
productiong

3 Errors, Diagnostics and Warnings

Whengppgprocesses an input grammar it checks for a number of different conditions
that might make the grammar invalid. If the grammar is well-formed it proceeds to
construct an automaton to recognize the language specified by the grammar. If the
grammar has conflict statgppgreports this.

In the case that there are errors or conflicts in the grangppgcan give several
levels of diagnostic help to the user. This section describes all of these errors, warnings
and diagnostic messages.

3.1 Error Messages

From version 1.3, the parser generator usgsprgenerated parser, and attempts error
recovery from syntax errors. Error messages are buffered, and a listing file is produced
if any errors or warnings are emitted, or if thisting command line option is in force.

In the listing, the location of the error is highlighted. In some cases the error message
includes a variable text indicating the erroneous token or the text that was expected. In
the following the variable text is denoted. >.

Bad format for decimal number —
Thegppgscanner has failed to compute the value of the apparent decimal hum-
ber.

Bad separator character in list —
Lists may either be comma-separated or whitespace-separated.

Code block has unbalanced braces{*, ‘' }' —
A code block has been terminated B@F or “94") before finding a balancing
number of right braces.

Duplicate definition of Semantic Value Type name —
There are duplicate definitions of the semantic value type name. Both occur-
rences are flagged.

5There are other ways of getting correct behavior, such as leaving the locationnalllsnd using
conditional code for the default action that searches up and down the location stack to findlingiues
to operate on.

3 ERRORS, DIAGNOSTICS AND WARNINGS 19

Invalid string escape<..> —
The escape sequence in the placeholder in invalid in this literal string.

Keyword “ 94" is out of place here —
This keyword is invalid in this context.

Keyword must start in column-0 —
All of the %keywords must be left justified.

Literal string terminated by EOL —
The literal string reached end of line without finding a terminating quote charac-
ter. Linebreaks are permitted in verbatim literal strings.

NonTerminal symbol “<...>” has no productions —
This is a fatal error. Carefully check to see if a rule has been left out, or whether
a symbol has simply been misspelled.

Only whitespace is permitted here —
Many of the formatting keywords must occur alone on a line and can only be
followed by whitespace or comment.

Premature termination of code block —
A %%eparator has terminated a code block while still inside one or more nested
braces.

Semantic action index is out of bounds —
The index into the production right-hand-side is out of bounds. Indices start
from 1, and cannot exceed the number of symbols in the rule, counting mid-rule
actions as an additional symbol.

Syntax error, unexpected<..>, expecting<..> —
This is the generabhiftReduceParsegenerated syntax error message. The sec-
ond place holder is a list of the expected lookahead symbols at the error site.

Source file<..> not found —
The specified source file was not found.

There are<...> non-terminating NonTerminalSymbols {<..>} —
The second place-holder lists the non-terminating non-terminal symbols.

This character is invalid in this context —
In the current scanner state, this character does not form part of any legal token.

This name already defined as a terminal symbol—
A duplicate definition of this terminal symbol has been declared.

Unknown %keyword in this context —
The selected keyword is either unknown, or is invalid in this context.

Unknown special marker in semantic action —
This symbolic marker in the semantic action is unknown.

Unterminated comment starts here —
The input file ended while inside a comment. The text span in the error message
is the start of the unterminated comment.

3 ERRORS, DIAGNOSTICS AND WARNINGS 20

With %union %rYSTYPEan only be a simple name —
If the specification defines a “union” type, then any declaratioPo6¥ STYPE
can only give a simple name to the type. Without the union declargéofSTYPE
can define an arbitrary type-constructor, including dotted names, arrays, instan-
tiated generic types and so on.

Non-Terminating Diagnostics

After the grammar has been parggmbgchecks that every non-terminal symbol of the
grammar igeachable and that there is at least one production for each non-terminal.
There is a separate check that every non-terminariginating

A non-terminal symbol is reachable if it is the goal symbol, or if it occurs on the
right-hand-side of a production with a reachable left-hand-side. If a non-terminal sym-
bol is unreachable this means that there is no sequence of derivations starting from the
goal symbol that produces a sentential form containing that symbol.

A non-terminal is non-terminating if there is no sequence of productions that starts
from the given symbol and derives a sequence of terminal symbols.

If a grammar has an unreachable symbol a warning is issuedppgtan continue.
However if a grammar contains a reachable symbol with no productions, or a non-
terminating non-terminal then the error is fatal.

When a grammar symbol is unreachable it is almost always a simple typograph-
ical error in the input grammar. Often a whole sub-grammar may become unreach-
able because a single production has been omitted from the input. Similarly, when a
non-terminal symbol is mis-spelled the resulting grammar will often have both an un-
reachable non-terminahd a non-terminal with no produtions. This is often the result
of different occurrences of what was meant to be the same symbol being spelled with
different case characters.

3.2 Warning Messages

If warnings are issued, but there are no errors detected, then an automaton is created.
The user should note these warnings however, since some of them indicate possible
errors in the grammar.

%locations is the defaultingppg —
This keyword is included for compatability, but is unnecessary, as it is the default

for gppg

Highest char literal token <...> is very large —
The use of unicode escapes for literal character tokens is permitted, but the use
of characters with high codepoints pushes the start of the token enumeration up
to unusually high values.

Mid-rule %prec has no effect —
gppgallows a precedence marker to be attached to any action, including those
that occur mid-rule. However, such a mid-rule precedence marker has no effect
since mid-rule actions match a notional empty string, and are executed for all
possible lookahead symbols.

NonTerminal symbol “<...>" is unreachable —
An unreachable NonTerminal is not fatal to parser generation, but usually indi-
cates an error, or at least misunderstanding, in the specification file.

3 ERRORS, DIAGNOSTICS AND WARNINGS 21

Optional numeric code ignored in this version —
Optional numeric values for tokens are allowed, for compatability with other
tools. However, the values are ignored.

Terminating <...> fixes the following NonTerminal set<..> —
The second placeholder is a list of the non-terminating symbols that are fixed by
creating a terminating production for the NonTerminal in the first placeholder
position. This is a useful diagnostic in cases where a single missing production
triggers a whole cascade of non-termination of dependent NonTerminals.

The following <...> symbols form a non-terminating cycle<..> —
The second placeholder is a list of the non-terminating symbols in the depen-
dency cycle.

3.3 Non-Terminating Grammars

Grammars may be non-terminating for a number of reasons. Some of these are sim-
ple typographical errors in the input grammar. Figure 4 is a typical example. This

Figure 4: Grammar With Errors

%token blip skip

%%

Goal : ListOpt | skip ;
ListOpt : Element ListOpt ;
Element : Blah ;

Blah :'(C Element)’ | Blip ;

specification has two errors in it. The terminal symbol “blip” is mis-spelled on the
final line, and theListOpt non-terminal seems from its name to be intended to be an
optional grammatical element, but has no nullable production. When run thgmpgh

the following diagnostic is produced —

There are 4 non-terminating NonTerminal SymbglsstOpt, Element, Blah, Blip
The following 2 symbols form a non-terminating cydBlah, Elemeng
TerminatingBlah fixes the following size-2 NonTerminal s€Element, Blah
TerminatingElementfixes the following size-2 NonTerminal sg¢Element, Blah
TerminatingBlip fixes the following size-3 NonTerminal s€Element, Blah, Blip
FATAL NonTerminal symbol Blip” has no productions

gppganalyses the dependencies between the non-terminating symbols, and looks for
leaf symbols in the dependency graph. It reports any instances where modifying the
grammar to terminate a single symbol would fix multiple symbols.

In this example the diagnostics show that there is a circular dependency with the
symbolsElementandBlah. Making either of these terminating will fix the other sym-
bol as well. However, the diagnostic also shows th2itg” has no productions, and
further, if fixed would fixElementandBlah as well. Fixing symbols with no produc-
tions is always the first step in cases like this.

After the final production is changed to —

Blah :'(C Element)’ | blip ;
thegppgdiagnostic then reads —

3 ERRORS, DIAGNOSTICS AND WARNINGS 22

There are 1 non-terminating NonTerminal SymbdlsstOpt}
TerminatingListOptfixes the following size-1 NonTerminal sétistOpt}
Unexpected Error: Non-terminating grammar

Now ListOptalone is non-terminating, and changing the productions of the other sym-
bols will not help. It is not difficult to see that a symbol with one production cannot
recursively depend on itself. If the apparently intended null production is added to the
symbol —

ListOpt : /* empty */ | Element ListOpt ;

Then the grammar is well-formed and a parser is created.

3.4 Parser Conflict Messages

By defaultgppgsends a brief message to the error stream noting any shift/reduce or
reduce/reduce errors detected during parser construction. More detailed messages are
written to the error stream if thevérbosecommand line option is used. Even more
detailed information is generated in the case thatdbeflictscommand line option is

used. In that case the information is written to a file with the name derived from the
input file name, but with filename extensiordnflicts

Reduce/Reduce Conflicts

If areduce/reduce conflict is detected, the conflicts file will contain information similar
to that in figurg b. In this example there are two productions both of which can be

Figure 5: Reduce/Reduce Conflict Information

Reduce/Reduce conflict on symbol "error",
parser will reduce production 41
Reduce 51: TheRules -> RuleList
Reduce 64: Listlnit -> /* empty */

reduced when the lookahead symbol is the error token. In such cases the parser will
always choose the lower numbered production. Reduce/Reduce conflicts are generally
a more serious matter than shift/reduce conflicts, so any instances of these need to
be considered carefully. In this particular example, the conflict only affects the error-
recovery behavior of the parser.

Shift/Reduce Conflicts

Shift/Reduce conflicts tend to be more common, and are often but not always benign.
The conflicts file for a typical case will contain information similar to that in figgre 6.

In this example, with a current symbol ofCond ”, the reduce action is to accept
production 29. The alternative, shift action is to shift the token and move from state 87
to state 88. The current state, 87, has two “items” in its kernel set. The first item is
production 67, after shifting an error, and expecting to next seebed symbol. The
current position in the recognition of the production right-hand-side is marked by the
dot. The second item is production 29, with the dot at the end. Since the dot is at the
end, the action for this item is to reduce production 29. The default resolution of such

3 ERRORS, DIAGNOSTICS AND WARNINGS 23

Figure 6: Shift/Reduce Conflict Information

Shift/Reduce conflict on symbol "rCond",
parser will shift
Reduce 29: Namelist -> error
Shift "rCond": State-87 -> State-88
ltems for From-state for State 87
67 StartCondition: ICond error . rCond
29 Namelist: error .
-lookahead: [rCond,]
ltems for Next-state for State 88
67 StartCondition: ICond error rCond .
-lookahead: [pattern,]

conflicts is to shift, trying to munch the maximum number of tokens for each reduction.
For this example, that is clearly the correct behavior.

For items which are complete, that is, those that have the dot at the end, the conflicts
file also shows the lookahead symbols that can validly appear at that point.

3.5 Conflict Diagnostics

It is sometimes quite difficult to discover the underlying reason for a conflict in a gram-
mar. Sometimes it may be necessary to trace the path by which the automaton entered
the state with the conflict in order to understand how the conflict is caused.

A /report option gppg gives additional diagnostic information so as to make this
task a little easier. In this cagppgproduces a file namegasenameeport.html
This file is hyperlinked to assist in navigation around the sometimes large data set.

The Report Option

The/reportoption generates a file with a formatted version of the productions, together
with information about each state in th&ALR(1) automaton.
The information provided for each state of the automaton is —

* All the “kernel items” for that state. This is a list of all of the productions that
lead to that state, with a dot ‘.’ indicating the position in the production that the
pattern is matched up to.

* For each completed kernel item (that is, for all items where the dot is at the
right-hand end) the list of lookahead tokens that predicate reduction by that pro-
duction.

* The parser actions. This is a list of tokens and the associated actions that the
parser will take. The actions may bshift token and go to state, or “reduce
usingrule M ”. In each case the output is hyperlinked to the destination state or
production.

* Non-terminal transitions. This is a list of state transitions to be taken when a
reduction recognizes a non-terminal symbol starting from the current state. The
reduction may start from the current state or from a successor state.

4 ERROR HANDLING IN GPPGPARSERS 24

Figure[T shows the information generated by the option, for state 4 of the automaton
for the fixed version of the tiny grammer in Figdre 4. The state information shows

Figure 7: State information withieport option

State4
Kernel ltems
5 ListOpt: Element . ListOpt

Parser Actions

¢ shift, and go to state 7

blip shift, and go to state 10

EOF reduce using rule 4 (Erasing ListOpt)
Transitions

ListOpt go to state 5

Element go to state 4

Blah go to state 6

that this state has a single item. There are two shift actions and one reduce action. The
report draws attention to the fact that the reduction in this case ésemure that is, a
reduction that derives the null string.

There are three non-terminal transitions from the state.

When trying to understand the origins of a parser conflict it is sometimes helpful to
know two things about the conflicted state: the path through the automaton by which
the state has been reached, and a typical prefix that spells out that path. This is addi-
tional information that is provided by theeport option if /verbosés also specified.

Of course, there may be more than one path leading to any particular state, and
there may be many prefixes that spell out the pafbpgcomputes an example of a
shortest path that leads to the state, and a shortest prefix.

For our example state, the information is shown in Fidyre 8. In this state the
shortest prefix is the non-terminal symliiglement The state path is only of length 1.
State 0 is the start state. Each state on the state path is hyperlinked so that a browser
can navigate to each of the states to gather more information.

4 Error Handling in GPPGParsers

4.1 Parser Action

The default action of the parser, when neither a shift nor a reduce is possible, is to
call theyyerror method of the scanner interface (see figure 1). The parser runtime then
discards values from the parser state, value and location stacks until a state is found that
can shift the synthetic “error” token. After the error token has been shifted the parser
checks to see if an ordinary shift or reduce action is then possible given the existing
lookahead symbol. If no such action is possible, the parser discards input tokens until
an acceptable token is found or the input ends.

In the event that no state on the parser stack can shift an error token and the stack
becomes empty, or if the input ends while discarding tokensPéineemethod returns
false.

4 ERROR HANDLING IN GPPGPARSERS 25

Figure 8: State information withieport and /verboseoptions

State4
Shortest prefix: Element
State path: 0->3

Kernel Items
5 ListOpt: Element . ListOpt

Parser Actions

¢ shift, and go to state 7

blip shift, and go to state 10

EOF reduce using rule 4 (Erasing ListOpt)
Transitions

ListOpt go to state 5

Element go to state 4

Blah go to state 6

Syntactic error recovery sets a boolean flag which prevents cascading gas-to
ror. This flag is not cleared until three input tokens have been shifted without further
syntactic errors resulting. This constraint does not apply to the reporting clesingn-
tic error messages that are explicit in semantic actions.

In cases where it is certain that error recovery has succeeded a semantic action may
clear the flag explicitly by a call to the built-in parser methgebrrok)). As well, the
lookahead token may be explicitly discarded in a semantic action by calling the built-in
parser methogtyclearirn().

4.2 Overriding the Default Error Handling

As noted, the parser will callyerror in case of errors. If the scanner overrides the
empty implementation inScannerthen that method may construct a suitable error
message. It is useful to note that error recovery is attempted because the next input
symbol is not a possible lookahead for either a shift or a reduce action. It is always
the case that the input symbol that blocked progress is the symbol corresponding to the
scanner’s currentylval andyylloc at the moment thatyerror was called.

The default mechanism suffices for simple applications, but there are options for
improved functionality. For example in many applications it is desired tHest @f
errors be constructed with associated text spans pointing into the input text.

The alternative strategy for constructing error messages is to yg@ver empty,
and place explicit calls to an error handler in the semantic actions of productions that
mention the error token. Such calls to the error handler will be able to make good
use of the automatic location tracking mechanisms of the parser to provide information
for the error handler. For example, in the case of a missing member of some kind of
paired construct the semantic action should have access to the location information of
the current lookahead symbahdthe symbols whose pair was expected.

Error reporting based around an error handler object should also select the error
message by an ordinal number to allow for easy localization of the message text. Fi-

5 NOTES 26

nally, the error handler needs to be callable from the semantic actions of the parser (and
other semantic checking code) and by the scanner.

In use, the application will create an instance otteorHandlerclass. A reference
to the error handler object is either directly visible to the scanner or is copied to a field
in the scanner. The scanner and parser will then be able to interleave error messages in
the error handler buffer.

5 Notes

5.1 Copyright

Gardens Point Parser Generatypg is copyright© 2005-2008, Wayne Kelly, Queens-
land University of Technology. See the accompanying f#@PGcopyright.rtf "

5.2 Bug Reports

Gardens Point Parser Generatgpfg is currently being maintained and extended
by John Gough. Bug reports and feature requestgppg should be sent to John at
“j.goughat-signqut.edu.au”.

6 Examples

The distribution contains two simple, related examples. One is a simple integer cal-
culator, the other calculates real numbers and illustrates several additional grammar
features.

6.1 Integer Calculator

The file Calc.ycontains the specification for a simple integer calculator. The calculator
can run with a file as input or, if run without arguments, reads standard input.

The specification contains a simple scanner methdekin the user code section.
Notice that the parser detects the first digit of a number and sets the number base to
octal if the first digit is zero. There is a predefined array of 26 integers, which are used
to store the values for variables named by a single alphabetic character. When there is
a used occurence of a variable name in an expression the value is retrieved by indexing
into the array.

The specification is very simple, and uses the default semantic value type, integer.
The default is sufficient to hold character values as well as the result of intermediate
computations when expressions are evaluated. The second example uses a richer struc-
ture. Note the use of the synthetic tokesMINUS so that the ‘—' operator may have a
different precedence when used as a unary operator.

Running the Program

The parser is generated by the command —
D:\work> gppg /no-lines calc.y > calc.cs

In this and subsequent examples, user input is set in a bold, slanted, mono-spaced font.
Program generated output is shown in plain typewriter font.

6 EXAMPLES 27

There are no errors or warnings and the generated pasdegsmay be compiled
with the command line compiler using the command —

D:\work> csc /nologo /r:ShiftReduceParser.dll calc.cs

The parser references the base classes in the runtime com@hi&ReduceParser
For the above command this is presumed to be in the working directory.
The application may be run from the command line. Here is a typical input ses-
sion —
D:\work> Calc

c =34
s = 13
26 *c /s
68

s = 013
26 *c /s
80

C

Notice that the second value that is assigned to the vargliides been interpreted as
octal, because it starts with a zero digit.

The program continues to evaluate expressions until it is forcibly terminated by an
input of “°C”.

6.2 Real Number Calculator

The real number calculator is based on the integer version, but illustrates the use of a
more complicated semantic value type. The source file for this example is included in
the distribution afkealCalc.y

As with the first example, there is an 26-long array that stores the values of alpha-
betically named variables. In this case the values are real numbers stored as floating
pointdouble data. The semantic values of expressions are also floating point values.
Neverthelessyylexstill passes its semantic values to the parser character by character.
The file RealCalc.ydeclares the semantic value type using tbriion ” construct,
as seen in Figurg] 9. As described in Secfion 2.3.1, this semantic value type will be

Figure 9: Start oRealCalcspecification

%union { public double dVal;
public char cVal;
public int ival; }

%token <iVal> LETTER
%token <cVal> DIGIT

%type <dVal> expr

implemented byyppgas aC# struct.

The figure also illustrates the use of thtype " keyword so that the semantic
actions do not have to explicitly select the appropriate field of the struct. We also
illustrate the use of the optionKind construct in the %token ” declaration to declare

6 EXAMPLES 28

that DIGIT token has ahar semantic value returned in ttoé/al member,LETTER
token has aimt semantic value returned in tiéal member.
The semantic action for the first production of the symfnainberis called when
the first digit of a number is recognized. Figlirg 10 shows the relevant production
rules. The action creates a new string-builder object and appends the first digit. Each

Figure 10: Extract fronRealCalcsemantic actions

number : digit {
buffer = new StringBuilder 0;
buffer.Append($1);
}
| number digit {
buffer.Append($2);

| number " digit {
buffer.Append(’.’);
buffer.Append($3);

expr Do /I Other productions for expr
| number
{

try {
$$ = double .Parse(buffer.ToString());

} catch (FormatException) {
scanner.yyerror(
“lllegal number \" {0\ , buffer);

subsequent digit is appended to the buffer, as are any decimal points that are discovered
along the way. The scanner does not try to check on the legality of any input numbers,
although that would be simple enough to do witg@exgenerated scanner. Instead,

the semantic action attached to the completion of humber recognition takes the string
from the string-builder and submits it to tBgstem.Double.Parseethod. In the event

that an illegal number is entered as inpedrsethrows an exception which is caught

by its caller and converted into a call gferror.

Running the Program

The parser is generated by the command —
D:\work> gppg /no-lines RealCalc.y > realcalc.cs
As before, user input is set in a bold, slanted, mono-spaced font. Program generated
output is shown in plain typewriter font.
There are no errors or warnings and the generated pagatzalc.csmay be com-
piled with the command line compiler using the command —

D:\work> csc /nologo /r:ShiftReduceParser.dll realcalc.cs

6 EXAMPLES 29

The application may be run from the command line. Here is a typical input session —

D:\work> RealCalc

RealCalc expression evaluator, type "C to exit
c =34

s =13

262 *c /s

68.5230769230769

s = 13.0.0

lllegal number "13.0.0"

C

7 APPENDIX A: GPPGSPECIAL SYMBOLS

30

7 Appendix A: GPPGSpecial Symbols

7.1 Keyword Commands

need

| Keyword I Meaning \
%defines gppgwill create a ‘hasenaméeokens” file defining the token enu
meration that the scanner will use. The scanner does not
this text file, but it is useful for other tools.
%left this marker declares that the following token or tokens will have

left associativitythat is,aebec is interpreted agaeb)ec.

%locations

this marker is ignored in this version: location tracking is always

turned on ingppg

%namespace

this marker defines the namespace in which the parser clas
be defined. The namespace argument is a dotted name.

%nonassoc

this marker declares that the following token or tokens are
associative. This means thatbec is a syntax error.

%output

allows the output stream to be redirected to a specified, ng
file. See sectiop 22.

Y%partial

this marker causegppgto define aC# partial class, so that th
body of the parser code may be placed in a sepat®e-helper
file.

%oparsertype

this marker allows for the default parser class narRarser’, to
be overridden. The argument must be a v&idsimple identi-
fier.

%prec

this marker is used to attach context-dependent precedence
occurrence of a token in a particular rule. This is necessary i

1]

5 will

not

med

toan
the

same token has more than one precedence. See decfign 2.4.1 for

further detail.

%right

this marker declares that the following token or tokens will have

right associativity that is,aebec is interpreted age(bec).

%start

this marker allows the goal, (start) symbol of the grammar tg
specified, instead of being taken from the left-hand-symbog
the first production rule.

%token

declares that the following names are tokens of the lexicon.

%tokentype

be
| of

this marker allows for the default token enumeration class name,

“Tokens, to be overridden. The argument must be a valid
simple identifier.

%type

the form ‘“Y%type < member> non-terminal list, wheremem-
beris the name of a member in a union declaration, declares
the following non-terminal symbols set the value of the no
nated member.

%union

marks the start of a semantic value-type declaration. See
tion[2.3.1 for more detail.

%using

that

mi-

Sec-

this marker adds the given namespace to the parser’s using list.

The argument is a dotted name, in general.

7 APPENDIX A: GPPGSPECIAL SYMBOLS 31

Keyword I Meaning \
%visibility this marker sets the visibility keyword of the token enumeration
and the semantic value-type struct. The argument must be avalid
C#visibility keyword. The default is public.

%valuetype a synonym foY YSTYPEdeprecated.

%YYSTYPE this marker declares the name of the semantic value type.| The
default isint.

%YYLTYPE this marker declares the name of the location type. The default

is LexLocation

7.2 Semantic Action Symbols

Certain symbols have particular meanings in the semantic actiaggpofparsers. As
well as the symbols listed here, the scanner will also define accessible symbols. Those
for gplexgenerated scanners are given in figdre 1.

| Symbol I Meaning \

$$ the symbolic location holding the semantic value of the left-
hand-side of the current reduction.

$N the value of theVth symbol on the right-hand-side of the current
reduction.

@$% the symbolic location holding the location span of the left-hand-
side of the current reduction.

@V the location span of thé&'th symbol on the right-hand-side of
the current reduction.

YYABORT placing this symbol in a semantic action causes the parse method
to return false.

YYACCEPT placing this symbol in a semantic action causes the parse method
to return true.

YYERROR placing this symbol in a semantic action causes the parser to
attempt error recovery. No error message is generated.

YYRECOVERING this Boolean property denotes whether or not the parser is|cur-
rently recovering from an error.

yyclearin() placing this method call in a semantic action causes the parser to
discard the current lookahead symbol.

yyerrok() placing this method call in a semantic action asserts that error
recovery is complete.

	Overview
	Installing GPPG
	Running GPPG
	Using GPPG Parsers
	Outputs
	Scanner Interface

	Input Grammar
	Input Grammar Structure
	Declarations
	Token Precedence

	Extensions to the Declaration Grammar
	Defining a Semantic Value Type

	Production Rules
	Controlling Precedence

	Semantic Actions
	Location Tracking

	Errors, Diagnostics and Warnings
	Error Messages
	Warning Messages
	Non-Terminating Grammars
	Parser Conflict Messages
	Conflict Diagnostics

	Error Handling in GPPG Parsers
	Parser Action
	Overriding the Default Error Handling

	Notes
	Copyright
	Bug Reports

	Examples
	Integer Calculator
	Real Number Calculator

	Appendix A: GPPG Special Symbols
	Keyword Commands
	Semantic Action Symbols

