The GPLEX Scanner Generator
(Version 1.0.0 November 2008

John Gough QUT
November 11, 2008

*

Compared to the v0.9 (August 2008) release this version has the following s
cant changes and new features —

New in this release

ignifi-

New options for unicode scanners allow the user to specify the fallback code-

page to use if an input file does not have a valitF prefix.

New facilities for unicode scanners allow the host application to set the
back codepage at scanner runtime.

fall-

New facilities for unicode scanners allow the scanner to scan the input file to

determine the probable encoding used.

New options for byte-mode scanners allow the user to specify the codepage

mapping that is used to define the meaning of character set predicates,

A separate documentation fil€6depage.pdf ” collects the details of the

unicode-specific features in one place.

The change log information has been separated out into a separate documen-

”

tation file “ChangeLog.pdf

Multiple input sources are now allowed, using user-supplied overrides of the

defaultyywrappredicate. Use-examples are included.

Start condition scopes have been introduced, so that pattern rules ma
the same start state conditionals. These scopes may be nested.

C#-style single line comments may be used anywhere in the specificatio
and are treated as white space.

y share

nfile,

1 Overview

This paper is the documentation for thelexscanner generator.
Gardens PointEX (gpleX is a scanner generator which acceptiBX-like” spec-
ification, and produces @# output file. The implementation shares neither code nor

1 OVERVIEW 2

algorithms with previous similar programs. The tool does not attempt to implement the
whole of thePOSIXspecification folLEX, however the program moves beyonEX
in some areas, such as support for unicode.

The scanners produce lgplexare thread safe, in that all scanner state is carried
within the scanner instance. The variables that are global in tradilié}ére instance
variables of the scanner object. Most are accessed through properties which expose
only a getter.

The implementation ofplexmakes heavy use of the facilities of the 2.0 version of
C#. There is no prospect of making it run on earlier versions of the framework.

There are two main ways in whidjplexis used. In the most common case the
scanner implements or extends certain types that are defined by the parser on whose
behalf it works. Scanners may also be produced that are independent of any parser, and
perform pattern matching on character streams. In thigrid-aloné case thegplex
tool inserts the required supertype definitions into the scanner source file.

The code of the scanner derives from three sources. There is an invariant part which
defines the class structure of the scanner, and the machinery of the pattern recognition
engine. This part is defined in #&me file. The second part contains the tables which
define the finite state machine that performs the pattern recognition, and the semantic
actions that are invoked when each pattern is recognized. This part is creapldby
from the user-specifiedtllex " input file. Finally, there is user-specified code that
may be embedded in the input file. All such code is inserted in the main scanner class
definition, as is explained in more detail in section 5.2. Since the generated scanner
class is declarepartial itis also possible for the user to specify code for the scanner
class in &C#file separate from theEX specification.

If you would like to begin by reviewing the input file format, then go to sedftion 3.

1.1 Typical Usage

A simple typical application using gplexscanner consists of two parts. A parser is
constructed usingppginvoked with the gplexoption, and a scanner is constructed
usinggplex The parser object always has a fiektannet of an abstractScanner
type (see figurg]3). The scanner specification file will include the line —

%using ParserNamespace

whereParserNamespacis the hamespace of the parser module defined in the parser
specification. Thé/ain method of the application will open an input stream, construct
a parser and a scanner object using code similar to the snippet in Fjgure 1.

Figure 1: Typical Main Program Structure

static void Main(string [] args)

{
Stream file;
/I parse input args, and open input file
parser = new Parser ();
parser.scanner = new Scanner (file);
parser.Parse();
/land so on ...

}

1 OVERVIEW 3

For simple applications the parser and scanner may interleave their respective error
messages on the console stream. However when error messages need to be buffered
for later reporting and listing-generation the scanner and parser need to each hold a
reference to some shared error handler object. If we assume that the scanner has a field
named Yyhdlr " to hold this reference, the body of the main method could resemble

Figure[2.

Figure 2: Main with Error Handler

parser = new Parser ();

parser.handler = new ErrorHandler ();

parser.scanner = new Scanner (file);

parser.scanner.yyhdlr = parser.handler; /I share handler ref.
parser.Parse();

/landsoon ...

1.2 The Interfaces

All of the code of the scanner is defined within a single claSsahnet inside the
user-specified namespace. All user-specified code is inserted into this class. The in-
variant code supplied by the frame file specifies several buffer classes nested within
the scanner class. On8canner.StreamBuffieals with byte-stream inputs of type
System.|O.Streanwhile others deal with text files with various encodings. Finally,
Scanner.StringBufand Scanner.LineBuffleal with inputs of typeSystem.StringFor

more detail on the available options, see sedtioh 5.3.

For the user ofjplexthere are several separate views of the facilities provided by
the scanner module. First, there are the facilities that are visible to the parser and the
rest of the application program. These include calls that create new scanner instances,
attach input texts to the scanner, invoke token recognition, and retrieve position and
token-kind information.

Next, there are the facilities that are visible to the semantic action code and other
user-specified code embedded in the specification file. These include properties of the
current token, and facilities for accessing the input buffer.

Finally, there are facilities that are accessible to the error reporting mechanisms that
are shared between the scanner and parser.

Each of these views of the scanner interface are described in turn. The special case
of stand-alone scanners is treated in sedtioh 5.6.

The Parser Interface

The parser “interface” is that required by tHACClike parsers generated by the Gar-
dens Point Parser Generatgppg tool. Figure B shows the signatures. Despite its
name,lScanneris an abstract base class, rather than an interface. This abstract base
class defines thAPI required by the runtime component gppg the library Shift-
ReduceParser.dliThe semantic actions of the generated parser may use the AiEher

of the concreté&cannerclass (Figurg}4), but the parsing engine needs tBdanner

1 OVERVIEW 4

Figure 3: Scanner Interface GIPPG

public abstract class IScanner <YYSTYPE, YYLTYPE>
where YYLTYPE : IMerge <YYLTYPE>
{
public YYSTYPE yylval;
public virtual YYLTYPE yylloc {
get { return default (YYLTYPE); }
set { /* skip */ }

public abstract int yylex();
public virtual void yyerror(string msg,
params object [] args) {}

IScanneris a generic class with two type parameters. The first of th€¥§TYPE
is the “SemanticValueTyp®f the tokens of the scanner. If the grammar specification
does not define a semantic value type then the type defauitits to

The second generic type parametéLTYPE is the location type that is used
to track source locations in the text being parsed. Most applications will either use
the parser’s default typgppg.LexLocationshown in Figuré Tj0, or will not perform
location tracking and ignore the field.

The abstract base class defines two variables through which the scanner passes
semantic and location values to the parser. The first, the figlddr’, is of whatever
“SemanticValueTypehe parser defines. The second, the propeyglldc’, is of the
chosen location-type.

The first method ofScanner yylex returns the ordinal number corresponding to
the next token. This is an abstract method, which the code of the frame file overrides.

The second method, the low-level error reporting routiperror, is called by the
parsing engine during error recovery. This method is provided for backward compata-
bility. The default method in the base class is empty. User code in the scanner is able to
override the emptyyerror. If it does so the default error messages of the shift-reduce
parser may be used. Alternatively the low leygerror method may be ignored com-
pletely, and error messages explicitly created by the semantic actions of the parser and
scanner. In this case the actions use EnerHandler class, theYYLTYPHocation
objects, and numeric error codes. This is almost always the preferred approach, since
this allows for localization of error messages.

All gppgproduced parsers define an abstract “wrapper” class that instantiates the
genericlScannerclass with whatever type arguments are implied by the ~ file.
This wrapper class is nam&tanBaseThe inheritance hierarchy for the casegppg
and gplex used together is shown in figuré 5. For this example it is assumed that
the parser specification has declarédiamespace MyParser ” and the scanner
specification has declare#shamespace MyLexer ”.

ClassScanBasalways defines a default predicate metlygdrrapwhich is called
whenever an end-of-file is detected in the input. The default method always returns
true , and may be overridden by the user to support multiple input sources (see Sec-

tion[5.3).

1 OVERVIEW 5

Figure 4: Features of thécanneiClass

public sealed partial class Scanner Parser. ScanBase {
public ScanBuff buffer;
public void SetSource(string s, int ofst);
}
public abstract class ScanBuff {
public abstract int Pos { get; set; }
public abstract int ReadPos { get; }
public abstract string GetString(int begin, int end);
}

Figure 5: Inheritance hierarchy of the Scanner class

Il IScanner<YYSTYPE,YYLTYPE> :
| Generic Abstract Class |
| I
!)

(

| ScanBase

| Abstract Class

: . IScanner<int,LexLocation>

~—— =

Scanner

Sealed Class
. ScanBase

gppg.IScanner
defined in
ShiftReduceParser

MyParser.ScanBase
generated by GPPG
when invoked with
/gplex option

MyLexer.Scanner
generated by
GPLEX

The scanner class exten8sanBasand declares a public buffer field of t&ean-

Buff type. ScanBulffis the abstract base class of the stream and string buffers of the
scanners. The important public features of this class are the property that allows setting
and querying of the buffer position, and the creation of strings corresponding to all the
text between given buffer positions. TResproperty returns the current position of

the underlying input stream. THeeadPogproperty, new for version 0.6.0, returns the
stream position of thecurrent charactef. For some kinds of text streams this is not
simply related to the curreosvalue.

There are two public constructors defined in the frame file, and user code may
specify others if required. The default “no-arg” constructor creates a scanner instance
that initially has no buffer. The buffer may be added later using one ocE#t8ource
methods. Another constructor takeSystem.|O.Streaargument, and creates a stream
buffer initialized with the given stream.

There is a group of four overloaded methods narSBetiSourceghat attach new

1 OVERVIEW 6

buffers to the current scanner instance. The first of these attaches a string buffer to the
scanner, and is part of tH€olorScaninterface (see Figufg 8). This method provides
the only way to pass a string to the scanner.

Scanners that take file input usually have a file attached by the scanner constructor,
as shown in Figurg]1. However, when the input source is chaSgéSourcevill be
used. The signatures of tietSourcenethod group are shown in Figure 6.

Figure 6: Signatures @etSourcenethods

/I Create a string buffer and attach to the scanner. Start reading from aifset
public void SetSource(string source, int ofst);

/I Create a line buffer from a list of strings, and attach to the scanner
public void SetSource(IList <string > source);

/I Create a stream buffer for a byte-file, and attach to the scanner
public void SetSource(Stream source);

/I Create a text buffer for an encoded file, with the specified default encoding
public void SetSource(Stream src, int fallbackCodepage);

The Internal Scanner API

The semantic actions and user-code of the scanner can access all of the features of the
IScannerandScanBassuper types. The frame file provides additional methods shown
in Figure[T. The first few of these alACCcommonplaces, and report information

Figure 7: Additional Methods for Scanner Actions

public string yytext { get; } //textofthe currenttoken
int yyleng { get; } //length ofthe currenttoken

int yypos { get; } //bufferposition at start of token

int yyline { get; } //linenumber at start of token

int yycol { get; } //columnnumber at start of token

void yyless(int n); //move input position to yypos + n

internal void BEGIN(int next);
internal void ECHO(); // writes yytext to StdOut
internal int YY_.START { get; set; }// getand setstartcondition

about the current tokeryyleng, yyposandyytextreturn the length of the current to-
ken, the position in the current buffer, and the text of the token. The text is created
lazily, avoiding the overhead of an object creation when not requiygtextreturns

an immutable string, unlike the usual array or pointer implementatigylessmoves

the input pointer backward so that all but the fitstharacters of the current token are
rescanned by the next call g§lex

2 RUNNING THE PROGRAM 7

There is no implementation, in this version,ygfmore Instead there is a general
facility which allows the buffer position to be read or set within the input stream or
string, as the case may becanBuff.GetStringeturns a string holding all text between
the two given buffer positions. This is useful for capturing all of the text between the
beginningof one token anéndof some later token.

The final three methods are only useful within the semantic actions of scanners.
The traditionalBEGIN sets the start condition of the scanner. The start condition is
an integer variable held in the scanner instance variable naneentScOrd Be-
cause the names of start conditions are visible in the context of the scannBE-the
GIN method may be called using the names known from the lex source file, as in
“BEGIN(INITIAL)"[}

1.2.1 The IColorScan Interface

If the scanner is to be used with tMsual Studio SDKas a colorizing scanner for a
new language service, thgppgis invoked with theBabeloption. In this case, as well
as defining the scanner base clagmgalso defines th&ColorScaninterface. Figurg|8

is this “colorizing scanner” interfaceVisual Studigpasses the source to be scanned to

Figure 8: Interface to the colorizing scanner

public interface IColorScan

{

void SetSource(string source, int offset);
int GetNext(ref int state, out int start, out int end);

the SetSourcenethod, one line at a time. An offset into the string defines the logical
starting point of the scan. Th&etNextmethod returns an integer representing the
recognized token. The set of valid return values@@tNextmay contain values that

the parser will never see. Some token kinds are displayed and colored in an editor that
are just whitespace to the parser.

The three arguments returned from BetNextmethod define the bounds of the
recognized token in the source string, and update the state held by the client. In most
cases the state will be just the start-condition of the underlying finite state automaton
(FSA), however there are other possibilities, discussed below.

2 Running the Program

From the command lingplexmay be executed by the command —
gplex [optiong filename

If no filename extension is given, the program appends the stiigxg “” to the given
name.

INote however that these names denote constantalues of the scanner class, and must have names
that are validC# identifiers, which do not clash wit@# keywords. This is different to thBOSIX LEX
specification, where such names live in the macro namespace, and may have spellings that include hyphens.

2 RUNNING THE PROGRAM 8

2.1 Gplex Options

This section lists all of the command line options recognizedgigx Options may
be preceded by a ‘' character instead of the ‘/’ character.

/babel

With this option the produced scanner class implements the additional interfaces that
are required by thianaged Babeframework of theVisual Studio SDKThis option

may also be used witmpparser Note that the Babel scanners may be unsafe unless
the Linicodeoption is also used (see sectfon|5.7).

/check

With this option the automaton is computed, but no output is produced. A listing will
still be produced in the case of errors, orligting is specified. This option allows
syntactic checks on the input to be performed without producing an output file.

[classes

For almost every.EX specification there are groups of characters that always share the
same next-state entry. We refer to these groups as “character equivalence classes”, or
classedor short. The number of equivalence classes is typically very much less that
the cardinality of the symbol alphabet, so next-state tables indexed on the class are
much smaller than those indexed on the raw character value. There is a small speed
penalty for using classes since every character must be mapped to its class before every
next-state lookup. This option produces scanners that use classes. Unicode scanners
implicitly use this option.

/codepagehelp

The codepage option list is sent to the console. Any option that contains the strings
“codepage” and either “help” or “?” is equivalent.

/codepageNumber

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the codepage with the specified number. If there is
no such codepage, or the codepage is unsuitable, an exception is thrown and processing
terminates. For version 1.0 gplexthe specified codepage must have the single-byte
propertﬂ, or must be one of 120@tf-16), 1201 (nicodeFFFE or 65001 (itf-8).

/codepageName

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the codepage with the specified name. If there is no
such codepage, or the codepage is unsuitable, an exception is thrown and processing
terminates. For version 1.0 gplexthe specified codepage must have the single-byte

2An encoding has the single byte property if each byte of the input file delivers a unicode codepoint to
the scanner. For example, all of the is0-8859 encodings have this property. For this veggitexofput in
multi-byte encodings must use one of tW&F formats.

2 RUNNING THE PROGRAM 9

property, or must be one oltf-16’ (Little-Endian Unicode), UnicodeFFFE (Big-
Endian Unicode) orutf-8'.

/codepage:default

In the event that an input file does not have a unicode prefix, the scanner will map
the bytes of the input file according to the default codepage of the host machine. This
codepage must have the single-byte property. This option is the default for unicode
scanners, if no codepage option is specified.

/codepage:guess

In the event that an input file does not have a unicode prefix, the scanner will rapidly
scan the file to see if it contains any byte sequences that suggest that the file is either
utf-8 or that it uses some kind of single-byte codepage. On the basis of this scan result
the scanner will use either the default codepage on the host machine, or interpret the
input as autf-8file. See Sectioh 64 for more detail.

/codepage:raw

In the event that an input file does not have a unicode prefix, the scanner will use the
uninterpreted bytes of the input file. In effect, only codepoints from 0 to u+00ff will be
delivered to the scanner.

[frame:frame-file-path

Normally gplexlooks for a template (“frame”) file namegplexx.framén the current
working directory, and if not found there then in the directory from which the exe-
cutable was invoked. This option allows the user to override this strategy by looking
for the named file first. If the nominated file is not found, thygexstill looks for the
usual file in the executable directory. Using an alternative frame file is only likely to be
of interest tagplexdevelopers.

/help

In this case the usage message is produd@d: is a synonym for fhelp ”
llisting

In this case a listing file is produced, even if there are no errors or warnings issued. If
there are errors, the error messages are interleaved in the listing output.

/nocompress

gplexcompresses its scanner next-state tables by default. In the case of scanners that
use character equivalence classes (see above) it compresses the character class-map by
default in the éinicodecase. This option turns off both compressions. (See S¢ctipn 5.8

for more detail of compression options.)

2 RUNNING THE PROGRAM 10

/nocompressmap

This option turns off compression of the character equivalence-class map, independent
of the compression option in effect for the next-state tables.

/nocompressnext

This option turns off compression of the next-state tables, independent of the compres-
sion option in effect for the character equivalence-class map table.

Inofiles

This option declares that the scanner does not require file input, but reads its input
from a string. For suitable cases this reduces the memory footprint of the scanner by
omitting all of the file IO classes.

/nominimize
By default gplex performs state minimization on tHeFSA that it computes. This
option disables minimization.

/noparser

By defaultgplex defines a scanner class that conforms to an interface defined in an
imported parser module. With this optigplexproduces a stand-alone scanner that
does not rely on any externally defined scanner super-classes.

/out:out-file-path

Normally gplexwrites an outpuC#file with the same base-name as the input file. With
this option the name and location of the output file may be specified.

lout:—

With this option the generated output is sentGonsole.Out If this option is used
together with yerbosehe usual progress information is sent@onsole.Error

/parseonly

With this option theLEX file is checked for correctness, but no automaton is computed.

/squeeze

This option specifies that thgplex should attempt to produce the smallest possible
scanner, even at the expense of runtime speed.

[stack

This option specifies that the scanner should provide for the stacking of start conditions.
This option makes available all of the methods described in Sgctipn 3.5.

3 THE INPUT FILE 11

/summary

With this option a summary of information is written to the listing file. This gives
statistics of the automaton produced, including information on the number of back-
track states. For each backtrack state a sample character is given that may lead to a
backtracking episode. It is the case that if there is even a single backtrack state in the
automaton the scanner will run slower, since extra information must be stored during
the scan. These diagnostics are discussed further in sgctjon 3.4.

/unicode

By defaultgplexproduces scanners that use 8-bit characters, and which read input files
byte-by-byte. This option allows for unicode-capable scanners to be created. Using
this option implicitly uses character classes. (See Section 5.7 for more detail.)

/UTF8default

This option is deprecated. Us&ddepage:utf-8 " instead. The deprecatech®-
UTF8default " option is equivalent to /fcodepage:raw "

/verbose

In this case the program chatters on to the console about progress, detailing the various
steps in the execution. It also annotates each table entry G#la@itomaton file with
a shortest string that leads to that state from the associated start state.

/version

The program sends its characteristic version string to the console.

3 The Input File

An overview of the input file specification is given in this section. The most impor-
tant information is the relationship betwe€# source code locations in the input file
and the place in the scanner file that the code ends up. It is important to note that the
specification file for the current version gplexis always an 8-bit file. The specifica-
tion may specify literal unicode characters using the usual unicode edoapes<and
\U xxxxxxxxwherex denotes a hexadecimal character.
A lex file consists of three parts: thlkefinitionssection, theules section, and the
user-codesectiofil
LexInput
DefinitionSequence“%% RulesSection UserCodeSectign ;
UserCodeSection
“%% UserCodept

TheUserCodesection may be left out, and if is absent the dividing m&d&may be
left out as well.

3 Grammar fragments in this documentation will follow the meta-syntax usegpfogand other bottom-
up parsers.

3 THE INPUT FILE 12

3.1 The Definitions Section

The definitions section contains “using” and “namespace” declarations, option mark-
ers, start condition declarations, lexical category definitions, character class predicate
definitions and user code.

The namespaceSystem, System.lO, System.Collections.Gemaeeidncluded by
default. Other namespaces that are needed must be specified in the specification file.
Two non-standard markers in the input file are used to genesatg andnamespace
declarations in the scanner file. The syntax is —

“%using " DottedNam¢; ”

“%namespace” DottedName
whereDottedNamés a possibly qualifie€#identifier. As usual, for syntactic markers
starting with ‘%6 the keywords must be at the start of the line.

Option Markers

The definitions section may include option markers with the same meanings as the
command line options described in Sectjon] 2.1. Lines of option markers have the
format —
“9%option " OptionList
Options within the definitions section begin with thigdption " marker followed
by one or more option specifiers. The options may be comma or white-space separated.
The options correspond to the command line options. Options within the definitions
section take precedence over the command line options. The following options cannot
be negated —
help
codepagehelp
out: out-file-path
frame: frame-file-path
codepage: codepage-arg
The following options can all be negated by prefiximp~ to the command name.

babel /I default is nobabel

check /I default is nocheck

classes // default is classes for unicode
compress /l default is compress
compressmap // default is compressmap for unicode
compressnext // default is compressnext

files /I default is files

listing /I default is nolisting

minimize /I default is minimize
parseonly I/ default is noparseonly
parser /l default is parser

stack /I default is nostack

squeeze /l default is nosqueeze
summary /I default is nosummary
unicode // default is nounicode

verbose // default is noverbose

version /l default is noversion

Some of these options make more sense on the command line than as hard-wired defi-
nitions, but all commands are available in both modalities.

3 THE INPUT FILE 13

Start Condition Declarations

Start condition declarations define names for varstast conditions The declarations
consist of a marker: %X for exclusive conditions, and%s'’ for inclusive conditions,
followed by one or more start condition names. If more than one name follows a
marker, the names are comma-separated. The markers, as usual, must occur on a line
starting in column zero.
Here is the full grammar for start condition declarations —
StartConditions
Marker NamelList ;
Marker
“OX | “%S
NameList
ident
| NameList ‘,’ ident

1

Such declarations are used in the rules section, where they predicate the application
of various patterns. At any time the scanner is in exactly one start condition, with
each start condition name corresponding to a unique integer value. On initialization a
scanner is in the pre-defined start conditidhITIAL” which always has value 0.

When the scanner is set to arclusivestart conditioronly patterns predicated on
that exclusive condition are “active”. Conversely, when the scanner is seirtolasive
start condition patterns predicated on that inclusive condition are active, and so are all
of the patterns that are unconditigfial

Lexical Category Definitions

Lexical category code defines named patterns that may be used in patterns in the rules
section. A typical example might be —

digits [0-9]+
which definedigits as being a sequence of one or more characters from the character
class ‘0’ to ‘9. The name being defined must start in column zero, and the regular
expression defined is included for used occurrences in patterns. Note thgtidar
this substitution is performed by tree-grafting in h8T, not by textual substitution,
so each defined pattern must be a well formed regular expression.

Character Class Membership Predicates

Sometimes user code of the scanner needs to test if a code-point corresponding to the
value of some variable belongs to a particular character class. If the character class
is a named lexical category, namg8dtXfor example, then the following declaration
“%charClassPredicate SetX " will causegplexto generate a public method of the
Scanner class —

public bool Is _SetX(int codepoint);

This method will test the given code-point for membership of the named character
class. In general, the syntax of thiearClassPredicatéeclaration allows for a list of
character class names.

4 gplexfollows theFlex semantics byiot adding rules explicitly marketiNITIAL to inclusive start states.

3 THE INPUT FILE 14

User Code in the Definitions Section

Any indented code, or code enclosed #{" ... “%}" delimiters is copied to the output

file. The “%{" ... “%]}" delimited formmustbe used to include code that syntactically
must start in column zero, such asléfine " declarations. It is considered good form

to always use the delimiters for included code, so that printed listings are easier to
understand for human readers.

Comments in the Definitions Section

Comments in the definition section that begin in column zero, thatiisdenteccom-
ments, are copied to the output file. Any indented comments are taken as user code,
and are also copied to the output file. Note that this is different behaviour to comments
in the rules section.

Single line 1/ " comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output.

3.2 The Rules Section
Overview of Pattern Matching

The rules section specifies the regular expression patterns that the generated scanner
will recognize. Rules may be predicated on one or more of the start states from the
definitions section.

Each regular expression declaration may have an asso8atedntic ActionThe
semantic action is executed whenever an input sequence matches the regular expres-
sion. gplexalways returns thesngestinput sequence that matches any of the applicable
rules of the scanner specification. In the case of a tie, that is, when two or more patterns
of the same length might be matched, the pattern which appears first in the specification
is recognized. The example in Sectjon|6.3 illustrates this rule.

As explained in Sectidn 3.4, the attempt to find the longest match meargptaat
created scanners sometimes have to “back up”. This occurs when a match has been
found and an attempt to find an even longer match then fails.

Rule Syntax

The marker %%delimits the boundary between the definitions and rules sections. As
in the definitions section, indented text and text within the special delimiters is included
in the output file. All code appearing before the first rule becomes part of the prolog of
the Scanmethod. Code appearing after the last rule becomes part of the epilog of the
of the Scanmethod. Coddetweerrules has no sensible meaning, attracts a warning,
and is ignored.

The rules have the syntax —

3 THE INPUT FILE 15

Rule
StartConditionLisspt pattern Action ;
StartConditionList
‘<’ NamelList ‘> | ‘<’ ‘x>t
Action
S
| CodeLine

| ‘{" CodeBlock “}"

1

Start condition lists are optional, and are only needed if the specification requires more
than one start state. Rules that are predicated with such a list are only active when (one
of) the specified condition(s) applies. Rules without an explicit start condition list are
implicitly predicated on théNITIAL start condition.

The names that appear within start condition lists must exactly match names de-
clared in the definitions section, with just two exceptions. Start condition values cor-
respond to integers in the scanner, and the default start conthiti®hAL always has
number zero. Thus in start condition lis& may be used as an abbreviation fbH-

TIAL. All other numeric values are illegal in this context. Finally, the start condition
list may be ‘<*>". This asserts that the following rule should apply in every start state.

The Action code is executed whenever a matching pattern is detected. There are
three forms of the actions. An action may be a single lin€#tode, on the same line
as the pattern. An action may be a block of code, enclosed in braces. The left brace
must occur on the same line as the pattern, and the code block is terminated when the
matching right brace is found. Finally, the special vertical bar character, on its own,
means “the same action as the next pattern”. This is a convenient rule to use if multiple
patterns take the same action, suclE@#Q() , for exampIE}

Semantic action code typically loads up tdval semantic value structure, and
may also manipulate the start condition by callB®GIN(NEWSTATE, for example.

Note thatScanloops forever reading input and matching pattergeanexits only
when an end of file is detected, or when a semantic action executetuan* tokeri
statement, returning the integer token-kind value.

Comments in the Rules Section

Comments in the rules section that begin in column zero, thatirfdenteccomments,
are not copied to the output file, and do not provoke a warning about “code between
rules”. They may thus be used to annotate the lex file itself.

Any indentedcommentsare taken as user code. If they occur before the first rule
they become part of the prolog of t&eanmethod. If they occur after the last rule they
become part of the epilog of tf&canmethod.

Single line 7/ " comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output.

5And this is not just a matter of saving on typing. Whgplexperforms state minimization two accept
states are only able to be considered for merging if the semantic actions are the same. In this context “same”
means using the same text span in the lex file.

3 THE INPUT FILE 16

Patterns

The patterns are regular expressions. Patterns must start in column zero, or immedi-
ately following a start condition list. Patterns are terminated by whitespace. The prim-
itive elements of the expressions are single characters, the metacharacter “.” (meaning
any characteexcept'\n '), literal strings (enclosed in double quote charactéry,”
character classes and used occurrences of lexical categories from the definitions sec-
tion.

Character classes are defined between (square) brackets. A character class defines
a set of characters, and matches any character from the set. The members of the class
are specified by any one of the following mechanisms: (i) individual literal characters
appearing in the definition, (ii) sequences of characters that are contiguousirathe
collating sequence, denoted by the first and last member of the sequence separated by
a dash character ‘-’, and (iii) characters corresponding to the character predicates from
the System.Chalibrary (see the next section for the syntax). Because of their special
meaning in this context literal right bracket characters must be backslash escaped. For
the same reason, literal dash characters must be backslash escaped except if the dash
occurs as the first or last member of thé&lset

If the caret symbol™” is the first character of the class the set of matching charac-
ters is inverted, that is, all charactepscepthose in the class are matched. Beyond the
first position the caret has no special meaning and denotes itself.

Used occurences of lexical categories are denoted by the name of the category
within (curly) braces. Used occurences may occur in patterns in the rules section or
within the definitions of other lexical categories. However, the defining occurence of
each category must textually precede all the used occurences of that category.

The operators of the expressions are concatenation (implicit), alternation (the ver-
tical bar), and various forms of repetition. There are also the context operefirs:
anchor“” ", right-anchor“$”, and theright contextoperator / ”.

A left-anchored pattern R, whereR is some regular expression, matches any in-
put that matcheR, but only if the input starts at the beginning of a line. Similarly, a
right-anchored patterR$, whereR is some regular expression, matches any input that
matcheR, but only if the input finishes at the end of a line. Traditional implementa-
tions of LEX define “end of the line” as whatever tRdNSI Ccompiler defines as end
of line. gplexaccepts any of the standard line-end markérs\r|\n) "

The expressioiR;/ R, matches text that match& with right context matching
the regular expressidR,. The entire string matchinB; R, participates in finding the
longest matching string, but only the text correspondinBtas consumed. Similarly
for right anchored patterns, the end of line character(s) participate in the longest match
calculation, but are not consumed.

The repetition markers are* * — meaning zero or more repetitionst™— mean-
ing one or more repetitions?” — meaning zero or one repetition{r, m} ” where
n and m are integers — meaning between n and m repetitiéng; “* where n is an
integer — meaning n or more repetitiongdn} ” where n is an integer — meaning
exactly n repetitions. Note carefully that thig;} " marker must not have whitespace
after the comma. In the curregplexscanner un-escaped white space terminates the
candidate regular expression.

Finally, there is one special marker tltatlexrecognizes. The character sequence
“<<EOF>> denotes a pattern that matches the end-of-file. The marker may be condi-

6The case of un-escaped dashes provokes a warning, just in case the literal interpretation is not the
intended meaning.

3 THE INPUT FILE 17

tional on some starting condition, in the usual way, but cannot appear as a component of
any other pattern. Beware that pattéaxEOF>>" (with the quotes) exactly matches

the seven-character-long patter<EOF>>, while the patternr<k<EOF>> (without

the quotes) matches the end of file.

Character Predicates

Within a character class, the special syntaxPredicateMethogd " denotes all of the
characters from the selected aIphE}jer which the correspondindNET base class
library method returns the true value. The implemented methods are —

* |sControl, IsDigit, IsLetter, IsLetterOrDigit, IsLower, IsNumber, IsSPunctuation,
IsSeparator, IsSymbol, IsUpper, IsWhiteSpace

There are three additional predicates —
* |sFormatCharacter— Characters with unicode category Cf
* |dentifierStartCharacter— Valid identifier start characters f@#

* |dentifierPartCharacter— Valid continuation characters f@# identifiers, ex-
cluding category Cf

Note that the bracketing markers “ and “:] ” appear within the brackets that delimit
the character class. For example, the following two character classes are equivalent.

alphanuml [[:IsLetterOrDigit:]]

alphanum2 [[:IsLetter:][:IsDigit:]]
These classes amot equivalent to the set —

alphanum3 [a-zA-Z0-9]

even in the 8-bit case, since this last class does not include all of the alphabetic charac-
ters from the latin alphabet that have diacritical marks, suchasif.

Character Predicates in Byte-Mode Scanners

In traditionalLEX, the names of the character predicates are those availabitecin™
In gplexthe available predicates are from tH¢ET base class library, and apply to
unicode codepoints. If these predicates are used in byte-mode scanners some care
must be taken.

Consider the following example: a byte-mode specification declares a character set

PunctuationChars [[:IsPunctuation:]]
Now, the base class library function allows us to easily generate a satanfdecode-
pointsp such that the static predicate

Char .IsPunctuation();
returns true. Sadly, this is not quite what we need for a byte-mode scanner. Recall that

byte-mode scanners operate on uninterpreted byte-values, as shown iff flgure 12. What
we need is a set of byte-valuesuch that

Char .IsPunctuation(Map(v));

7In the non-unicode case, the sets will include only those byte values that correspond to unicode char-
acters for which the predicate functions return true. In the case of the /unicode option, the full sets are
returned.

3 THE INPUT FILE 18

returns true, for the mappirgap defined by some codepage.

For example, in the Western European (Windows) character set the ellipsis charac-

ter‘..."is byte 0x85. The ellipsis is a perfectly good punctuation character, however
Char .IsPunctuation((char)0x85);

is false! The problem is that the ellipsis character is unicode codepoint u+2026, while

unicode codepoint u+0085 is the “newline” control charabstit. All of the characters

of the is0-8859 encodings that occupy the byte-values from 0x80 to 0x9f correspond

to unicode characters from elsewhere in the space.

The character sef:fsLetter:] " provides another example. For a byte-mode
scanner using the Western European codepage 1252, this set will contain 126 members.
The same set has only 123 members in codepage 1253. In the uninterpreted, raw case
the set has only 121 members.

Nevertheless, it is permissible to generate character sets using character predicates
in the byte-mode case. When this is done, the user may specify the codepage that maps
between the byte-values that the generated scanner reads from the input file, and the
unicode codepoints to which they correspond.

If no codepage is specified, the mapping is taken from the default codepage of the
machine on which gplex is runnind his poses no problem if the machine on which
the generated scanner will run has the same culture settings as the generating machine,
or if the codepage of the scanner host is known with certainty at scanner generation
time. Other cases may lack portability.

3.3 Start-Condition Scopes

Sometimes a number of patterns are predicated on the same list of start conditions.
In such cases it may be convenient to st condition scope® structure the rules
section. Start condition scopes have the following syntax —

StartConditionScope

StartConditionList ‘{’ RuleList ‘}’ ;
StartConditionList

‘<’ NamelList ‘> | ‘<’ ‘% >
RuleList

RuleLisppt Rule
| RuleLisbpt StartConditionScope

The rules that appear within the scope are all conditional on the start condition list
which begins the scope. The opening brace of the scope must immediately follow the
start condition list, and the opening and closing braces of the scope must each be the
last non-whitespace element on their respective lines.

As before, the start condition list is a comma-separated list of known start condition
names betweerx' and ‘>’ characters. The rule list is one or more rules, in the usual
format, each starting on a separate line. Itis common for the embedded rules within the
scope to be unconditional, but it is perfectly legal to nest either conditional rules or start
condition scopes. In nested scopes the effect of the start condition lists is cumulative.
Thus —

<one>{
<two>{
foo { FooAction(); }
bar { BarAction(); }
}

3 THE INPUT FILE 19

has exactly the same effect as —
<one,two>{
foo { FooAction(); }
bar { BarAction(); }
}
or indeed as the plain, old-fashioned sequence —
<one,jtwo>foo { FooAction(); }
<one,two>bar { BarAction(); }
It is sensible to use indentation to denote the extent of the scope. So this syntax neces-
sarily relaxes the constraint that rules must start at the beginning of the line.

Note that almost any non-whitespace characters following the left brace at the start
of a scope would be mistaken for a pattern. Thus the left brace must be the last character
on the line, except for whitespace. As usual, “whitespace” includes the case#bf a
style single-line comment.

3.4 Backtracking Information

When the fsummary ” option is sent tagplexthe program produces a listing file with
information about the produced automaton. This includes the number of start condi-
tions, the number of patterns applying to each condition, the numhéF8Astates,
DFSAstates, accept states and states that require backup.

Because an automaton that requires backup runs somewhat more slowly, some
users may wish to modify the specification to avoid backup. A backup state is a state
that is an accept state that contains at leasta¢ransition that leads to a non-accept
state. The point is that if the automaton leaves a perfectly good accept state in the
hope of finding an even longer match it may fail. When this happens, the automaton
must return to the last accept state that it encountered, pushing back the input that was
fruitlessly read.

It is sometimes difficult to determine from where in the grammar the backup case
arises. When invoked with théstmmary ” option gplexhelps by giving an example
of a shortest possible string leading to the backup state, and gives an example of the
character that leads to a transition to a non-accept state. In many cases there may be
many strings of the same length leading to the backup state. In suchgdsgsies
to find a string that can be represented without the use of character escapes.

Consider the grammar —

foo |

foobar |

bar { Console .WriteLine(" keyword " + yytext); }

If this is processed with the summary option the listing file notes that the automaton
has one backup state, and contains the diagnostic —

After <INITIAL>"foo" automaton could acceptdo ” in state 1

— after b’ automaton is in a non-accept state and might need to backup
This case is straightforward, since after reading “foo” and seeing a ‘b’ as the next
character the possibility arises that the next characters might not l@ “ar”

In other circumstances the diagnostic is more necessary. Consider a definition of
words that allows hyphens and apostrophes, but not at the ends of the word, and not
adjacent to each other. Here is one possible grammar —

8But note that the backup is removed by adding an extra production with paftef@rit }* " to ensure
that all intermediate states accepimething

3 THE INPUT FILE 20

alpha [a-zA-Z]
middle ([a-zA-Z][\-]|[a-zA-Z])
%%
{middle}+{alpha} { ..
For this automaton there is just one backup state. The diagnostic is —

After <INITIAL>"AA" automaton could accep{fhiddle }+{alpha }”in state 1
— after " " automaton is in a non-accept state and might need to backup

The shortest path to the accept state requires two alphabetic charactersaAlith “
simple example. When an apostrophe (or a hyphen) is the next character, there is al-
ways the possibility that the word will end before another alphabetic character restores
the automaton to the accept state.

3.5 Stacking Start Conditions

For some applications the use of the standard start conditions mechanism is either
impossible or inconvenient. The lex definition language itself forms such an example,
if you wish to recognize th€# tokens as well as the lex tokens. We must have start
conditions for the main sections, for the code inside the sections, and for comments
inside (and outside) the code.

One approach to handling the start conditions in such cases is tcstesekaf start
conditions, and to push and pop these in semantic actggiexsupports the stacking
of start conditions when thestack ” command is given, either on the command line,
or as an option in the definitions section. This option provides the methods shown in
Figure[9. These are normally used together with the starBB@IN method. The

Figure 9: Methods for Manipulating the Start Condition Stack

/I Clear the start condition stack
internal void yy clear _stack();

/I Push currentScOrd, and set currentScOrd to “state”
internal void yy _push _state(int state);

/I Pop start condition stack into currentScOrd
internal int yy _pop _state();

/I Fetch top of stack without changing top of stack value
internal int yy _top _state();

first method clears the stack. This is useful for initialization, and also for error recovery
in the start condition automaton.

The next two methods push and pop the start condition values, while the final
method examines the top of stack without affecting the stack pointer. This last is useful
for conditional code in semantic actions, which may perform tests such as —

if (yy _top _state() == INITIAL) ...

Note carefully that the top-of-stack state is not the current start condition, but is the
value that willbecomehe start condition if “pop” is called.

3 THE INPUT FILE 21

3.6 Location Information

Parsers created lgppghave default actions to track location information in the input
text. The parsers define a classxLocation that is the default instantiation of the
YYLTYPHeneric type parameter. The parsers call the merge method at each reduction,
expecting to create a location object that represents an input text span from the start of
the first symbol of the production to the end of the last symbol of the production.
gppg users may substitute other types for the default, provided that they implement
a suitableMergemethod. Figur¢ 70 is the definition of the default class. dfptex

Figure 10: Default Location-Information Class

public class LexLocation : IMerge <LexLocation >
{
public int sLin; // Start line
public int sCol; // Start column
public int eLin; //Endline
public int eCol; // End column
public LexLocation() {}
public LexLocation(int sl; int sc; int el; int ec)

{ sLin=sl; sCol=sc; eLin=el; eCol=ec; }
public LexLocation Merge(Lexlocation end) {
return new LexlLocation (sLin,sCol,end.eLin,end.eCol);

}

scanner ignores the existence of the location type, the parser will still be able to access
some location information using theline, yycolproperties, but the default text span
tracking will do nothinfj]

If a gplexscanner needs to create location objects for the parser, the logical place to
do this is in the epilog of the scan method. Code after the final rule in the rules section
of a lex specification will appear infinally clause in theScanmethod. For the
default location type, the code would simply say —

yylloc = new LexLocation (tokLin,tokCol,tokELin,tokECol)

where the arguments are internal variables of the scanner defigpteix.frame
ThelMergeinterface is shown in Figufe 1L1.

Figure 11: Location Types Must ImplemdMerge

public interface IMerge <YYLTYPE> {
YYLTYPE Merge(YYLTYPE last);

}

9The parser will not crash by trying to callergeon a null reference, because the default code is guarded
by a null test.

4 ERRORS, WARNINGS AND GOTCHAS 22

4 Errors, Warnings and Gotchas

There are a number of errors and warnings tfiéxdetects. Errors are fatal, and no
scanner source file is produced in that case. Warnings are intended to be informative,
and draw attention to suspicious constructs that may need manual checking by the user.

“Gotchas are an informal category of potential malfunctions. These are situations
that users should treat with caution.

4.1 Errors

Errors are displayed in the listing file, with the location of the error highlighted. In
some cases the error message includes a variable text indicating the erroneous token or
the text that was expected. In the following the variable text is denated

“%%marker must start at beginning of line —
An out-of-place marker was found, possibly during error recovery from an earlier
error.

Cannot set/unicode option inconsistently<..> —
Normally options are processed in order and may undo other option’s effect.
However, options that explicitly set the alphabet size suchrisodeor /nouni-
codecannot be contradicted by later options.

Context must have fixed right length or fixed left length —
gplexhas a limitation on the implementation of patterns with right context. Either
the right context or the body of the pattern must recognize fixed length strings.

Empty semantic action, must be at least a comment—
No semantic action was found. This error also occurs due to incorrect syntax in
thepreviousrule.

Expected character<..> —
During the scanning of a regular expression an expected character was not found.
This most commonly arises from missing right hand bracketing symbols, or clos-
ing quote characters.

Expected space here—
Thegplexparser was expecting whitespace. This can arise when a lexical cate-
gory definition is empty or when the pattern of a rule is followed by an end-of-
line rather than a semantic action.

Expected end-of-line here—
Unexpected non-whitespace characters have been found at the end of a construct
when an end of line is the only legal continuation.

lllegal name for start condition <..> —
Names of start conditions must be identifiers. As a special case the number zero
may be used as a shortcut for a used occurrence of the initial start state. Any
other numeric reference is illegal.

lllegal octal character escape<..> —
Denotation of character values by escaped octal sequences must contain exactly
three octal digits, except for the special case\df':

4 ERRORS, WARNINGS AND GOTCHAS 23

Illegal hexadecimal character escape..> —
Denotation of character values by escaped hexadecimal sequences must contain
exactly two hexadecimal digits.

Illegal unicode character escape&..> —
Denotation of character values by unicode escapes must have exactly four hex-
adecimal digits, following a\t * prefix, or exactly eight hexadecimal digits,
following a \U ’ prefix.

Illegal character in this context —
The indicated character is not the start of any posgplextoken in the current
scanner state.

Inconsistent “%option " command <..> —
The message argument is an option that is inconsistent with already processed
options. In particular, it is not possible to decléneclassegor a unicode scan-
ner.

Invalid action —
There is a syntax error in the multi-line semantic action for this pattern.

Invalid or empty namelist —
There is a syntax error in the namelist currently being parsed.

Invalid production rule —
There is a syntax error in the rule currently being parsed.

Invalid character range: lower bound > upper bound —
In a character range within a character class definition the character on the left
of the ‘—" must have a numerically smaller codepoint than the character on the
right.

Invalid single-line action —
gplexfound a syntax error in the parsing of a single-line semantic action.

Invalid class character: ‘=’ must be escaped—
A ‘'~ character at the start or end of a character set definition is taken as a lit-
eral, single character. Everywhere else in a set definition this character must be
escaped unless it is part of a range declaration.

Lexical category<...> already defined —
The lexical category in this definition is already defined in the symbol table.

Lexical category must be a character class...> —
In this version ofgplexcharacter set membership predicates can only be gener-
ated for lexical categories that are character classes “[...]".

Missing matching construct<..> —
The parser has failed to find a matching right hand bracketing character. This
may mean that brackets (either ‘(, ‘[’ of") are improperly nested.

“namespace” is illegal, use %onamespace” instead —
C# code in the lex specification is insertetside the generated scanner class.
The namespace of the scanner can only be set using the non-stétkame-
space command.

4 ERRORS, WARNINGS AND GOTCHAS 24

“next” action ‘ | ' cannot be used on last pattern—
The | ' character used as a semantic action has the meansgthe same action
as the following patterh This action cannot be applied to the last pattern in a
rules section.

No namespace has been defined-
The end of the definitions section of the specification was reached without find-
ing a valid namespace declaration.

Non unicode scanners allow only single-byte codepages
For byte-mode scanners the codepage option modifies the behavior of character
set predicates. Only codepages with the single byte property make sense for this
purpose.

Non unicode scanner cannot use /codepage:guess
For byte-mode scanners the codepage setting is used at scanner generation time
to determine the meaning of character predicates. The codepage guesser works
at scanner runtime.

Parser error <..> —
Thegplexparser has encountered a syntax error in the ihgXtfile. The nature
of the error needs to be found from the information inthe> placeholder.

Start state <..> already defined —
All start state names must be unique. The indicated name is already defined.

Start state <...> undefined —
An apparent use of a start state name does not refer to any defined start state
name.

Symbols " and ‘$’ can only occur at ends of patterns —
The two anchor symbols can only occur at the end of regular expressions. This
error can arise when an anchor symbol is part of a lexical category which is then
used as a term in another expression. Using anchor symbols in lexical categories
should be deprecated.

This token unexpected—
The parser is expecting to find indented text, which can only be partG# a
code-snippet. The current text does not appear to be &gal

Type declarations impossible in this context—
gplexallows type declarationglass, struct, enum) in the definitions sec-
tion of the specification, and in the user code section. Type declarations are not
permitted in the rules section.

“using” is illegal, use “%using " instead —
C# code in the lex specification is insertatside the generated scanner class.
The using list of the scanner module can only have additional namespaces added
by using the non-standafdusing command.

Unknown lexical category<..> —
This name is not the name of any defined lexical category. This could be a
character case error: lexical category names are case-sensitive.

4 ERRORS, WARNINGS AND GOTCHAS 25

Unexpected symbol, skipping to<..> —
gplexhas found a syntax error in the current section. It will discard input until it
reaches the stated symbol.

Unrecognized ‘%option " command <..> —
The given option is unknown.

Unknown character predicate<..> —
The character predicate name in fhe...:] construct is not known tgplex

Unicode literal too large<..> —
The unicode escape denotes a character with a codepoint that exceeds the limit
of the unicode definitiorQx10ffff

Unterminated block comment start here —
A end of this block comment ...* was not found before the end of file was
reached. The position of thetart of the unterminated comment is marked.

Unknown lex tag name —
Tags ingplexare all those commands that start witbea. The current tag is not
known. Remember that tag names are case-sensitive.

Version of gplexx.frame is not recent enough—
The version of gplexx.frame thgplexfound does not match thgplexversion.

4.2 Warnings

A number of characteristics of the input specification may be dangerous, or require
some additional checking by the user. In such cagdasxissues one of the following
warnings. In some cases the detected constructs are intended, and are safe.

/babel option is unsafe without/unicode option —
Scanners generated with thabel option read their input from strings. It is
unsafe to generate such a scanner without decldtingodesince the input
string might contain a character beyond the Latin-8 boundary, which will cause
the scanner to throw an exception.

Code between rules, ignored—
Codebetweerrules in the rules section of a specification cannot be assigned to
any meaningful location in the generated scanner class. It has been ignored.

No upper bound to range,<...> included as set class members—
Itis legal for the last character in a character set definition to be the ‘~' character.
However, check that this was not intended to be part of a range definition.

Special casex...> included as set class member—
Itis legal for the first character in a character set definition to be the ‘—’ character.
However, check that this was not intended to be part of a range definition.

This pattern is never matched —
gplexhas detected that this pattern cannot ever be matched. This might be an
error, caused by incorrect ordering of rules. (See the next two messages for
diagnostic help).

5 THE GENERATED SCANNER 26

This pattern always overridden by<..> —
In the case that a pattern is unreachable, this warning is attached to the unreach-
able pattern. The variable text of the message indicates (one of) the patterns that
will be matched instead. If this is not the intended behavior, move the unreach-
able pattern earlier in the rule list.

This pattern always overrides pattern<..> —
This warning message is attached to the pattern that makes some other pattern
unreachable. The variable text of the message indicates the pattern that is ob-
scured.

This pattern matches the empty string, and might loop—
One of the input texts that this pattern matches is the empty string. This may be
an error, and might cause the scanner to fail to terminate. The following section
describes the circumstances under which such a constiN@Tsan error.

Matching the Empty String

There are a number of circumstances under which a pattern can match the empty string.
For example, the regular expression may consist dfadosure or may consist of a
concatenation of symbols each of which is optional. It is also possible for a pattern
with fixed-length right context to have a pattern body (variable-length left context)
which matches the empty string. All such patterns are detectgglex

Another way in which a pattern recognition might consume no input is for the
semantic action of a pattern to contain the commgyldss(0) . If this is the case
the semantic action will reset the input position back to steat of the recognised
pattern.

In all cases where the pattern recognition does not consume any input, if the start
state of the scanner is not changed by the semantic action the scanner will become
stuck in a loop and never terminate.

Nevertheless, it is common and useful to include patterns that consume no input.
Consider the case where some characteristic pattern indicates a “phase change” in the
input. SupposeX denotes that patterty; is the previous start condition and the new
phase is handled by start conditiSn. The following specification-pattern is a sensible
way to implement this semantic —

<S1>X { BEGIN(S2); yyless(0); }

<So>...
Using this specification-pattern allows the regular expression patterns that belong to
the S, start state to include patterns that begin by matchingXhthat logically be-
gins the new input phase. The lexical specificationdplex uses this construct no
less than three times. For scanners that usdéstlagkoption, callingyy_pop.stateor
yy_pushstatealso constitute a change of start state for purposes of avoiding looping.

5 The Generated Scanner
5.1 Byte-Mode and Unicode-Mode

Every scanner generated plexoperates either ibyte-modgor in unicode-mode
The conceptual form of a byte-mode scanner is shown in Figdre 12. In this mode,
the next state of the scanner automaton is determined by the next-state function from

5 THE GENERATED SCANNER 27

Figure 12: Conceptual diagram of byte-mode scanner

Un-encoded
byte value

Nextstate
Function

Current State

the current input byte and the current state. The bytes of the input stream are used
uninterpreted.

In unicode mode the next state of the scanner automaton is determined by the next-
state function from the currenmnicode codepoirdnd the current state. The sequence
of codepoints may come from a string 8ystem.Chavalues, or from a file. Unicode
code-points have 21 significant bits, so some interpretation of the input is required for
either input form. The conceptual form of the scanner is shown in F[gyre 13 for file
input. The corresponding diagram fstring input differs only in that the input is a

Next
State

Figure 13: Conceptual diagram of scanner

Nextstate
Function

Character
Decoding

Encoded

Codepoint
byte stream

Current State

Next
State

sequence oBystem.Char

5.2 The Scanner File

The program creates a scanner file which by default is nditeehimecs wherefile-
nameis the base name of the given source file name.

The file defines a clasdcannerbelonging to a namespace specified in the lex input
file. There are a number of nested classes in this class, as well as the implementations
of the interfaces previously described.

The format of the file is defined by a template file nargptéxx.frameUser defined
and tool generated code is interleaved with this file to produce theGialitput fiI@

The overall structure of the file is shown in Figlrg 14. There are seven places
where user code may be inserted. These are shown in red in the figure. They are —

* QOptional additional “using” declarations that other user code may require for its
proper operation.

* A namespace declaration. This is not optional.

10_ater versions may hide this file away in the executable, but it is convenient to have the file explicitly
available during development gplex

5 THE GENERATED SCANNER 28

Figure 14: Overall Output File Structure

using System;
using System.IO;
using System.Collections.Generic;
user defined using declarations
user defined namespace declaration
{
public sealed partial class Scanner : ScanBase
{
generated constants go here
user code from definitions goes here
int state;
//'lots more declarations
generated tables go here
. /I all the other invariant code
/I The scanning engine starts here
int Scan() { //Scanis the core of yylex
optional user supplied prolog
/l invariant code of scanning automaton
user specified semantic actions
optional user supplied epilog
}
user-supplied body code from “usercode” section
}
}
unicode scanners include codepage “guesser” code here

* Arbitrary code from within the definitions section of the lex file. This code
typically defines utility methods that the semantic actions will call.

* Optional prolog code in the body of tfecanmethod. This is the main engine
of the automaton, so this is the place to declare local variables needed by your
semantic actions.

* User-specified semantic actions from the rules section.

* QOptional epilog code. This actually sits insiddimally clause, so that all exits
from the Scanmethod will execute this cleanup code. It might be important to
remember that this code execusdter the semantic action has saigturn .

* Finally, the “user code” section of the lex file is copied into the tail of the scanner
class. In the case of stand-alone applications this is the place wingskc"
static void Main " will appear.

As well as these, there is also all of the generated code inserted into the file. This may
include some tens or even hundreds of kilobytes of table initialization. There are actu-
ally several different implementations tanin the frame file. The fastest one is used

in the case of lexical specifications that do not require backtracking, and do not have
anchored patterns. Other versions are used for every one of the eight possible com-
binations of backtracking, left-anchored and right-anchored pattgplex statically
determines which version tettiefine " out.

5 THE GENERATED SCANNER 29

Note however that th8cannerclass is markegartial . Much of the user code
that traditionally clutters up the lex specification can thus be moved into a separate
scan-helper file containing a separate part of the class definition.

5.3 Choosing the Input Buffer Class

There are a total of seven concrete implementations of the abSitanBuffclass in
gplex There are five flavors of file input buffer, and two string input buffers.

The File Input Buffers
There are five flavors of file buffers —

* StreamBuff The buffer for a byte file, which reads one byte at a time. It is used
for non-unicode scanners, and by unicode scanners for files that have no prefix
when the fall-back fcodepage:raw " is specified.

* CodePageBuff The buffer for a text file which is encoded according to some
specified codepage. This is used by unicode scanners for files that have no prefix,
and a single-byte fallback codepage has been specified.

* TextBuff The buffer for a text file encoded according to theF-8 form. This is
used by unicode scanners for files with a utf-8 prefix, of for files without a prefix
if “ /codepage:utf-8 " has been specified.

* BigEndTextBuffThe buffer for a text file encoded according to the “big-endian”
UTF-16form. This is used by unicode scanners for files with a utf-16 prefix, or
for files without a prefix if Tcodepage:unicodeFFFE " has been specified.

* LittleEndTextBuff The buffer for a text file encoded according to the “little-
endian”UTF-16 form. This is used by unicode scanners for files with a utf-16
prefix, of for files without a prefix if fcodepage:utf-16 " has been specified.

For all forms of file input, the scanner opens a file stream with code equivalent to
the following —

FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner ();
scnr.SetSource(file,)

The constructor code of thigcannerobject that is emitted bgplexis customized ac-
cording to the/unicodeoption. If the unicode option is not in force a scanner is gen-
erated with aStreamBuffbuffer object. In this case the single-argument version of
SetSourcéthird method in figur¢ |6) will be called. This buffer reads input byte-by-
byte, and the resulting scanner will match patterns of 8-bit bytes.

If the unicode option is in force, the two-argument overloadSetSourceglast
method in figur¢ J6) will be called. This version S&tSourceeads the first few bytes
of the stream in an attempt to find a valid unicode prefix.

If a valid prefix is found corresponding toldir F-8file, or to one or othetJ TF-16
file formats, then a corresponding unicode text buffer object is created. If no prefix
is found, then the form of buffer is determined by thieotiepage: ” option. In the
event that no codepage option is in forc€adePageBufivill be created, and loaded
up with the default codepage for the host machine.

5 THE GENERATED SCANNER 30

Note that the choice of alphabet cardinality for the scanner tables is determined at
scannerconstructiontime, based on the value of thienicodeoption. The choice of
buffer implementation, on the other hand, is determinedmtime when the input file
is opened. Itis thus possible as a corner case that a unicode scanner will open an input
file as a byte-file containing only 8-bit characters. The scanner will work correctly,
and will also work correctly with input files that contain unicode data in any of the
supported formats.

String Input Buffers

If the scanner is to receive its input as one or more string, the user code passes the input
to one of theSetSourcenethods. In the case of a single string the input is passed to the
method, together with an starting offset value —

public void SetSource(string s, int ofst);

This method will create a buffer object of tsgringBufftype. Colorizing scanners for
Visual Studiaalways use this method.

An alternative interface uses a data structure that implementfidtgstring >
interface —

public void SetSource(IList <string > list);

This method will create a buffer object of théneBuff type. It is assumed that each
string in the list has been extracted by a method RieadLinehat will remove the end

of line marker. When the end of each string is reached the bRéadmethod will
report a \n ’ character, for consistency with the other buffer classes. In the case that
tokens extend over multiple strings in the lstffer.GetStringwill return a string with
embedded end of line characters.

5.4 How Buffering Works

The scanning engine thgplexproduces is a finite state automatGrS@EI] ThisFSA
deals with code-points from either tBgteor Unicodealphabets, as described in sec-
tion[5.1.

Files containing character data may require as little as one byte to encode a unicode
code-point, or as many as four bytes in the worst case of a legal unicode code-point.
gplexscanners always treat their input as byte-files, and layer any decoding on top of
thereadbytemethod. This is so that arbitrary file-position seeks may be made to the
first byte of any character. Whengplexgenerated scanner opens a file at runtime it
will instantiate an appropriate file buffer object for the file-encoding that it has detected.

Strings containing character data from the full unicode alphabet may require two
characters to encode a single code-point. BtrngBufferobject detects surrogate
characters and reads a second character when needed.

Finally, it should be noted that textual data exported from the scanner, such as
yytext are necessarily dystem.Stringype. This means that if the sequence of code-
points contains points beyond the 64k boundary (that is, not fronB#séc Multilin-
gual Plang those points must be folded back into surrogate paiyyiextand String-
Buff.GetSource

1(Note for the picky readgell, the scanner issuallyanFSA However, the use of thestack option
allows state information to be stacked so that in practice gptéxgenerated recognizers can have the power
of a push-down automaton.

5 THE GENERATED SCANNER 31

An example

Suppose an input text begins with a character sequence consisting of four unicode
characters:\u0061 ’, ‘\uOODF ’, ‘\u03CO0 ’, ‘\UOOO100AA '. These characters are:
lower case letterd, Latin lower casesharp sas used in German, Greek lower case
pi, and the Linear-B ideogram forgarment. For all four characters the predicate
IsLetteris true so the four characters might form a programming language identifier in
a suitably permissive language.

Figurg IT$ shows what this data looks like as a UTF-8 encoded file. Fighre 16 shows
what the data looks like as a big-endian UTF-16 file. In both cases the file begins with a

Figure 15: Encoding of the example as UTF-8 file
(prefix) —a B T =)
BF BB/ BF|61]|C3|9F|CF|80|F1 80|82 |AA

yytext = “alRm\uD800\uDCAA’

Figure 16: Encoding of the example as big-endian UTF-16 file
(prefix) a 13 o B
FE| FF]00| 61100 DF|03|CO|D8 |00 |DC|AA

yytext = “alRm\uD800\uDCAA’

representation of the file prefix characteifeff . The encoded form of this character
occupies three bytes in a UTF-8 file, and two in a UTF-16 file. Reading this prefix
allows the scanner to discover in which format the following data is encoded.

The UTF-8 file directly encodes the code-points using a variable-length represen-
tation. This example shows all encoded lengths from one to four. The UTF-16 file
consists of a sequence eéhort values, and thus requires the use of a surrogate pair
for the final code-point of the example, since this has more than sixteen significant bits.

In every case the sequence of code-points delivered té-8#ewill be: 0x61,

Oxdf, 0x3c0, 0x100aa . Theyytextvalue returned by the scanner is the same in
each case, using the same surrogate pair as in the UTF-16 file. For string input, the
input string would be exactly the same as for the big-endian UTF-16 case, but without
the prefix code.

Files Without Prefix

The case of text files that do not have a prefix is problematic. What should a unicode
scanner do in the case that no prefix is found? In version 1dgplefkthe decision is
made according to thiallback codepagsetting.
The default setting for the fallback codepagepfexgenerated scanners is to read
the input byte-by-byte, and map the byte-values to unicode using the default codepage

5 THE GENERATED SCANNER 32

of the host machine. Other possible fallbacks are to use a specified codepage, to use
the byte-value uninterpreted (“raw”), or to rapidly scan the input file looking for any
characteristic patterns that indicate the encoding.

At scanner generation time the user may specify the required fallback behavior.
Generated scanners also contain infrastructure that allows the scanner’s host applica-
tion to override the generation-time default. This overriding may be done on a file-by-
file basis.

The treatment of codepages is detailed in the separate docuawtapage. pdf

5.5 Multiple Input Sources

There are two common scenarios in which multiple input sources are needed. The
first occurs when multiple input sources are treated as though concatenated. Typically,
when one input source is exhausted input is taken from the next source in the sequence.

The second scenario occurs in the implementation of “include files” in which a
special marker in the current source causes input to be read from an alternative source.
At some later stage input may again be read from the remaining text of the original
source.

gplexincludes facilities to enable the encoding of both of these behaviors, and
examples of both are included in Sectjgn 6.

Whenever an end-of-input event is found by the scanB&f- processing is in-
voked. If there is an explicit user action attached to B@F-event for the current
start-state then that specified action is executed. If there is no such action, or if the
specified action completes without returning a token value, then the d&f@itac-
tion is executed. The default action calls the predigaterap). If yywrapreturns
true the call toyylexwill return Tokens.EORhus causing the parser to terminate. If,
on the other hand, the predicate retufiise then scanning continues.

The ScanBaseslass contains a default implementationygfvrap which always
returnsrue . Users may override this method in thBiranneclass. The user-supplied
yywrap method will determine whether there is further input to process. If so, the
method will switch input source and retufaise E} If there is no further input, the
user-suppliegyywrapmethod will simply returrtrue .

Chaining Input Texts

When input texts are chained together, thysvrap method may be used to manage
the buffering of the sequence of sources. A structured way to do this is to place the
texts (filenames, or perhaps strings) in a collection, and fetch the enumerator for that
collection. Figuré 1]7 is a template for tigwrapmethod. The code for creation and
initialization of the new input buffer depends on the buffer class that is appropriate for
the next input text. In the case ofsringBuffa call to the firsSetSourcenethod —

public void SetSource(string str, int ofst);

does everything that is required.

The case of a file buffer is slightly more complicated. The file stream must be
created, and a new buffer allocated and attached to the scanner. For a byte-stream the
following code isalmostsufficient.

SetSource(new FileStream (filename, FileMode .Open));

12Beware that returning falseithout replacing the input source is yet another way of making a scanner
hang in a loop.

5 THE GENERATED SCANNER 33

Figure 17: Chaining input texts witpywrap

protected override bool yywrap() {
if (enumerator.MoveNext()) { /l'ls there more input to process?
SetSource(...) /I Choice of four overloads here
return false
} else
return true ; // And cause yylex to return EOF
}

Of course, sensible code would open the file withitya block to catch any exceptions.
In the unicode case, a call to the fourth method in Fijlire 6 will create a buffer for
an encoded text file.

The BufferContext Class

Switching input sources requires replacement obiliéer object of the executing scan-
ner. When a new input source is attached, some associated scanner state variables need
to be initialized. The buffer and associated state values fornBtlierContext It is
values of this type that need to be saved and restored for include-file handling.
There are predefined methods for creating valueBusferContextype from the
current scanner state, and for setting the scanner state from a suppffedContext
value. The signatures are shown in Figuré 18. In cases where include files may be

Figure 18: BufferContext handling methods

/I Create context from current buffer and scanner state
BufferContext MKkBuUffCtx() { .. }

/I Restore buffer value and associated state from context
void RestoreBuffCtx(BufferContext value) { ... }

nested, context values are createdMkBuffCtxand are then pushed on a stack. Con-
versely, when a context is to be resunfisektore BuffCtis called with the popped value
as argument.

The BufferContextype is used in the same way fall types of buffer. Thus it is
possible to switch from byte-files to unicode files to string-input in an arbitrary fash-
ion. However, the creation and initialization of objects of the correct buffer types is
determined by user code choosing the appropriate overlo8dt&ourcéo invoke.

Include File Processing

If a program allows arbitrary nesting of include file inclusion then it is necessary to
implement a stack of saveBlifferContextecords. Figurg 19 is a template for the user
code in such a scanner. In this case it is assumed that the pattern matching rules of the
scanner detect the file-include command and parse the filename. The semantic action
of the pattern matcher will then caltyinclude

5 THE GENERATED SCANNER 34

Figure 19: Nested include file handling

Stack <BufferContext > bStack = new Stack <BufferContext — >();
private void Trylnclude(string filename) {
try {
BufferContext savedCtx = MkBUffCtx();
SetSource(new FileStream (filename, FileMode .Open));
bStack.Push(savedCtx);
} catch { .. }; /I Handle any 10 exceptions
}
protected override bool yywrap() {
if (bStack.Count == 0) return true;
RestoreBuffCtx(bStack.Pop());
return false ;
}

This template leaves out some of the error checking detail. The complete code of a
scanner based around this template is shown in the distributed examples.

5.6 Class Hierarchy

The scanner file produced lgplexdefines a scanner class that extends an inherited
ScanBaselass. Normally this super class is defined in the parser namespace, as seen
in Figure[$. As well as this base class, the scanner relies on several other types from
the parser namespace.

The enumeration for the token ordinal values is defined iMfdk@nsenumeration
in the parser namespace. Typical scanners also rely on the presenderafrétandler
class from the parser namespace.

Stand-alone Scanners

gplexmay be used to create stand-alone scanners that operate without an attached
parser. There are some examples of such use iBxaeplesection.

The question is: if there is no parser, then where does the cogpl@tfind the
definitions ofScanBas@and theTokensnumeration?

The simple answer is that thyplexx.framdile contains minimal definitions of the
types required, which are activated by theparseroption on the command line or in
the lex specification. The user need never see these definitions but, just for the record,
Figure[20 shows the code.

Note that mention ofScanneris unecessary, and does not appear. If a standalone,
colorizing scanner is required, thgplexwill supply dummy definitions of the required
features.

Using GPLEX Scanners with Other Parsers

When gplexscanners are used with parsers that offer a different interface to that of
gppg some kind of adapter classes may need to be manually generated. For example

5 THE GENERATED SCANNER 35

Figure 20: Standalone Parser Dummy Code

public enum Tokens {
EOF = 0, maxParseToken = int .MaxValue
/I must have just these two, values are arbitrary

}
public abstract class ScanBase {

public abstract int yylex();

protected virtual bool yywrap() { return true ; }
}

if a parser is used that is generateddppgbut not using the fgpleX command line
option, then adaptation is required. In this case the adaptation required is between the
raw IScannerclass provided bghiftReduceParsemnd theScanBaselass expected by
gplex

A common design pattern is to have a tool-generated parser that crqzesah
parser class. In this way most of the user code can be placed in a separate “parse
helper” file rather than having to be embedded in the parser specification. The parse
helper part of the partial class may also provide definitions for the expSciaaBase
class, and mediate between the calls made by the parser addPttadfered by the
scanner.

Colorizing Scanners andmaxParseToken

The scanners produced lgplexrecognize a distinguished value of tfiekensenu-
meration namedrhaxParseTokeén If this value is defined, usually in thgppginput
specification, thegrylexwill only return values less than this constant.

This facility is used in colorizing scanners when the scanner has two callers: the
token colorizer, which is informed dll tokens, and the parser which may choose to
ignore such things as comments, line endings and so on.

gplexuses reflection to check if the special value of the enumeration is defined. If
no such value is defined the limit is setito .MaxValue .

Colorizing Scanners andManaged Babel

Colorizing scanners intended for use by Managed Babeframework of theVisual
Studio SDKare created by invokingplexwith the babeloption. In this case the
Scannerclass implements thkColorScaninterface (see figurg| 8), argplexsupplies
an implementation of the interface. TBeanBaselass also defines two properties for
persisting the scanner state at line-ends, so that lines may be colored in arbitrary order.
ScanBaselefines the default implementation of a scanner propExdiState that
encapsulates the scanner state inrdB2. The default implementation is to identify
EolStateas the scanner start state, described below. F[gyre 21 shows the definition
in ScanBase gplexwill supply a final implementation o€urrentScbacked by the
scanner state fieldurrentScOrdthe start state ordinal.
EolStates a virtual property. In a majority of applications the automatically gener-
ated implementation of the base class suffices. For example, in the case of multi-line,

5 THE GENERATED SCANNER 36

Figure 21: TheEolStateproperty

public abstract class ScanBase {
// Other (non-babel related) ScanBase features
protected abstract int CurrentSc { get; set; }

/I The currentScOrd value of the scanner will be the backing field for CurrentSc

public virtual int EolState {
get { return CurrentSc; }
set { CurrentSc = value ; } }

non-nesting comments it is sufficient for the line-scanner to know that a line starts or
ends inside such a comment.

However, for those cases where something more expressive is required the user
must overrideEolStateso as to specify a mapping between the internal state of the
scanner and thint32 value persisted byisual Studio For example, in the case of
multi-line, possibly nested comments a line-scanner must knowdeapthe comment
nesting is at the start and end of each line. The user-supplied overfa#Sthtemust
thus encode both théurrentScvalueand a nesting-depth ordinal.

5.7 Unicode Scanners

gplexis able to produce scanners that operate over the whole unicode alphabet. How-
ever, theLEX specification itself is always an 8-bit file.

Specifying a Unicode Scanner

A unicode scanner may be specified either on the command line, or with an option
marker in theLEX file. Putting the option in the file is always the preferred choice,
since the need for the option is a fixed property of the specification. It is an error to
include character literals outside the 8-bit range without specifyingitieddeoption.
Furthermore, the use of the unicode option implies theesseoption. Itis an error
to specifyunicodeand then to attempt to specifydclasses
Unicode characters are specified by using the usual unicode escape formats
and\U xxxxxxxxwherex is a hexadecimal digit. Unicode excapes may appear in literal
strings, as primitive operands in regular expressions, or in bracket-delimited character
class definitions.

Unicode Scanners and the Babel Option

Scanners generated with thabeloption should always use thanicodeoption also.
The reason is that although th&X specification might not use any unicode literals, a
non-unicode scanner will throw an exception if it scans a string that contains a character
beyond the latin-8 boundary.

Thus it is unsafe to use the babel option without the unicode option unless you can
absolutely guarantee that the scanner will never meet a character that is out of bounds.
gplexwill issue a warning if this dangerous combination of options is chosen.

5 THE GENERATED SCANNER 37

Unicode Scanners and the Input File

Unicode scanners that read from strings use the samegBuff class as do non-
unicode scanners. However, unicode scanners that read from filestreams must use a
buffer implementation that reads unicode characters from the underlying byte-file. The
current version supports three kinds of text file encodindd¥+-8, and 16-bit Uni-
code in both big-endian and little-endian variants.

When an scanner object is created with a filestream as argument, andittealée
option is in force, the scanner tries to read an encoding prefix from the stream. If the
prefix indicates any of the supported encodings an appropriate buffer object is created,
derived from theTextBuffclass. If no prefix is found the input stream position is reset
to the start of the file and the type of buffer that is created depends dialthack
codepagesetting.

5.8 Choosing Compression Options

Depending on the optiongplexscanners have either one or two lookup tables. The
program attempts to choose sensible compression defaults, but in cases where a user
wishes to directly control the behavior the compression of the tables may be controlled
independently.

In order to use this flexibility, itis necessary to understand a little of how the internal
tables ofgplexare organized. Those readers who are uninterested in the technical
details can safely skip this section and confidently rely on the program defaults.

Scanners Without Character Classes

If a scanner does not use either tekassesor the Lnicodeoptions, the scanner has
only a next-state table. There is a one-dimensional array, one element for each state,
which specifies for each input character what the next state shall be. In the simple,
uncompressed case each next-state element is simply an array of length equal to the
cardinality of the alphabet. States with the same next-state table share entries, so the
total number of next state entries(j&V| — R) x |S| where|N| is the number of states,
R is the number of states that reference another state’s next-state arrag| @sthe
number of symbols in the alphabet. In the case ofdbmponent Pascal LEgrammar
there are 62 states and the 8-bit alphabet has 256 characters. Without row-sharing there
would be 15872 next-state entries, however 34 rows are repeats so the actual space used
is 7168 entries.
It turns out that these next-state arrays are very sparse, in the sense that there are
long runs of repeated elements. The default compression is to tregf|thatries as
being arranged in a circular buffer and to exclude the longest run of repeated elements.
The entry in the array for each state then has a data structure which specifies: the lowest
character value for which the table is consulted, the numbeowetiefault entries in the
table, the default next-state value, and finallytioe-default array itself. The length of
thenondefault array is different for different states, but on average is quite short. For
the Component Pascgirammar the total number of entries in all the tables is just 922.
Note that compression of the next-state table comes at a small price at runtime.
Each next-state lookup must inspect the next-state data for the current state, check the
bounds of the array, then either index into the shortened array or return the default
value.

5 THE GENERATED SCANNER 38

Non-Unicode Scanners With Equivalence Classes

If a scanner uses character equivalence classes, then conceptually there are two tables.
The first, theCharacter Map is indexed on character value and returns the number

of the equivalence class to which that character belongs. This table thus has as many
entries as there are symbols in the alphalsgt, Figur shows the conceptual form

of a scanner with character equivalence classes. This figure should be compared with

Figure 22: Conceptual diagram of scanner with character equivalence classes

Nextstate
Function

Character
Class Map

Equiv.
Class

Current State

Next
State

Codepoint

Character
Decoding

Encoded
byte stream

Figure[13.

The “alphabet” on which the next-state tables operate has only as many entries as
there are equivalence classgs|. Because the number of classes is always very much
smaller than the size of the alphabet, using classes provides a useful compression on
its own. The runtime cost of this compression is the time taken to perform the mapping
from character to class. In the case of uncompressed maps, the mapping cost is a single
array lookup.

In the case of th€omponent Pascacanner specification there are only 38 char-
acter classes, so that the size of the uncompressed next-state {@bles,R) x |F|,
is just (62 — 34) states by 38 entries, or 1064 entries. Clearly, in this case the total
table size is not much larger than the case with compression but no mapping. For typi-
cal 8-bit scanners theo-compression but character clagsrsion is similar in size and
slightly faster in execution than the default settings.

Note that although the class map often has a high degree of redundancy it is seldom
worth compressing the map in the non-unicode case. The map takes up only 256 bytes,
so the default for non-unicode scanners with character classesi@ tompress the
map.

Tables in Unicode Scanners

For scanners that use the unicode character set, the considerations are somewhat differ-
ent. Certainly, the option of using uncompressed next-state tables indexed on character
value seems unattractive, since in the unicode case the alphabet cardinality is 1114112
if all planes are considered. For tB®mponent Pascgrammar this would lead to un-
compressed tables of almost seventy mega-bytes. In grammars which contain unicode
character literals spread throughout the character space the simple compression of the
next-state tables is ineffective, so unicode scanakvaysuse character classes.

With unicode scanners the use of character classes provides good compaction of the
next-state tables, since the number of classes in unicode scanners is generally as small

5 THE GENERATED SCANNER 39

as is the case for non-unicode scanners. However the class map itself, if uncompressed,
takes up more than a megabyte on its own. This often would dominate the memory
footprint of the scanner, so the default for unicode scanners is to compress the character
map.

Whengplexcompresses the character map of a unicode scanner it considers two
strategies, and sometimes uses a combination of both. The first strategy is to use an
algorithm somewhat related to the Fraser and Hansen algorithm for compressing sparse
switch statement dispatch tables. The second is to use a “two-level” table lookup.

Compression of a sparse character map involves dividing the map into dense re-
gions which contain different values, which are separated by long runs of repeated
values. The dense regions are kept as short arrays in the tablesAapfé function
implements a binary decision tree of deptbg, R|, whereR is the number of regions
in the map. After at most a number of decisions equal to the tree-depth, if the character
value has fallen in a dense region the return value is found by indexing into the appro-
priate short array, while if a long repeated region has been selected the repeated value
is returned.

A two-level table lookup divides the map function index into high and low bits. For
a 64k map it is usual to use the most significant eight bits to select a sub-map of 256
entries, and use the least significant eight bits to index into the selected sub-map. In a
typical case not all the sub-maps are different, so that i the number of bytes in
the pointer type, and’ is the number of unique sub-maps the total space required is
(256 x N) bytes for the upper level map afghb6 x U) bytes of sub-maps. Two level
maps are fast, since they take only two array lookups to find a value, but for the sparse
case may take more space than the alternative method.

When generating a unicode scanggiex always computes a decision tree data
structure. The program tries to limit the decision-tree depth in order to safeguard per-
formance. In the case that the decision tree is too deep the program switches to two-
level lookup table for th@asic Multilingual Plang(that is for the first 64k characters)
and recursively considers a decision tree for the region beyond the 64k boundary. This
is a good strategy since 14 of the remaining 16 planes are unallocated and the other two
are almost always infrequently accessed.

For the common case wherd BX specification has no literals beyond tASCII
boundary the character space collapses into just two regions: a dense region covering
the 7 or 8-bit range, and a repeated region that repeats all the way out to the 21-bit
boundary. In this case the “decision tree” collapses into the obvious bounds-check —

sbyte MapC(int chr) {
if (chr < 127) return mapCOlchr];
else return (sbyte) 29;

}

wheremapCQOQis the map for the dense region frokd “ to
29 encodes the “no transition” class.

It is possible to forcegplexto use the decision-tree algorithm over the whole al-
phabet by using thisqueezeption. This almost always leads to the smallest scanner
tables, but sometimes leads to very deep decision trees and poor performance.

, and equivalence class

Statistics

If the summaryoption is used, statistics related to the table compression are emitted to
the listing file. This section has data for two different scanners. One is a relatively sim-
ple specification for &omponent Pascahnd contains no unicode literal characters.

5 THE GENERATED SCANNER 40

The other is an extremely complicated specification fG#@canner. This specification
uses character classes that range through the whole of the unicode alphabet.
Figure[23 contains the statistics for the lexical grammar foGbmponent Pascal
Visual Studidanguage service, with various options enabled. This grammar is for a
Babelscanner, and will normally get input from a string buffer. Note particularly that

Figure 23: Statistics foComponent Pascacanners

Options nextstate char- map- | tree-
entries | classes| entries | depth
compresst 902 - - -
nocompress 7168 - - -
classes, nocompressmap, nocompressnext 1064 38 256 -
classes, nocompressmap, compresstext 249 38 256 —
classes, compressmap, compressnext 249 38 127 1
classes, compressmap, nocompressnex] 1064 38 127 1
unicode, nocompressmap, hocompressnext 1064 38 1.1e6 -
unicode, hocompressmap, compressne 249 38 1.1e6 -
unicode, compressmap, compressrext 249 38 127 1
unicode, compressmap, hocompressne 1064 38 127 1

Default compression option

since thel EX file has no unicode character literals a unicode scanner will take up no
more space nor run any slower than a non-unicode scanner using character classes.
In return, the scanner will not throw an exception if it is passed a string containing

a unicode character beyond the Latin-8 boundary. The default compression case is
indicated in the table. Thus if no option is given the default@mpressWith option
/classeghe default i¥nocompressmap /compressnekinally, with option/unicode

the default igcompressmap /compressnext

For the unicode scanners that compress the map the compression used is: a table
for the single dense region covering the first 127 entries, a defanlt carevalue for
the rest of the alphabet, and a decision tree that has degenerated into a simple bounds
check.

An example more typical of unicode scanners is the scann&#oiThis scanner
implements theeCMA-334standard, which among other things allows identifiers to
contain characters that are located throughout the whole unicode alphabet. In this
case, the default compression if only thaicodeoption is given is/compressmap
/compressnextThe compressed map in this case consists of: a two level lookup table
for the basic multilingual plane with a 256-entry upper map pointing to 47 unique sub-
maps. The rest of the map is implemented by a decision-tree of depth 5, with a total of
only 1280 entries in the dense arrays.

The use of thésqueez@ption generates a scanner with a map that is compressed
by a single decision-tree. The tree has depth 7, and the dense arrays contain a total of
9744 elements. Given that the decision tree itself uses up memory space, it is not clear
that in this case the overall compression is significantly better than the default.

6 EXAMPLES 41

Figure 24: Statistics foC# scanner

Options nextstate char- map- | tree-

entries | classes| entries | depth
unicode 1360 55| 13568 5
unicode, squeeze 1360 55 9744 7
unicode, nocompressmap, hocompressnext 4675 55 1.1e6 —
unicode, hocompressmap, compressne 1360 55 1.1e6 -
unicode, compressmap, compressrext 1360 55| 13568 5
unicode, compressmap, hocompressne 4675 55| 13568 5

Default compression option

When to use Non-Default Settings

If a non-unicode scanner is particularly time critical, it may be worth considering using
character classes and not compressing either tables. This is usually slightly faster than
the default settings, with very comparable space requirements. In even more critical
cases it may be worth considering simply leaving the next-state table uncompressed.
Without character classes this will cause some increase in the memory footprint, but
leads to the fastest scanners.

For unicode scanners, there is no option but to use character classes, in the current
release. In this case, a moderate speedup is obtained by leaving the next-states uncom-
pressed. Compressing the next-state table has roughly the same overhead as one or two
extra levels in the decision tree.

The depth of the decision tree in the compressed maps depends on the spread of
unicode character literals in the specification. Some pathological specifications are
known to have caused the tree to reach a depth of seven or eight.

Using thesummaryoption and inspecting the listing file is the best way to see
if there is a problem, although it may also be seen by inspecting the source of the
produced scann&#file.

6 Examples

This section describes the stand-alone application examples that are pargpfetke
distribution. In practice the user code sections of such applications might need a bit
more user interface handling.

The text for all these examples is in thExamples ” subdirectory of the distribu-
tion.

6.1 Word Counting

This application scans the list of files on the argument list, counting words, lines, in-
tegers and floating point variables. The numbers for each file are emitted, followed by
the totals if there was more than one file.

The next section describes the input, line by line.

The file WordCount.lexbegins as follows.

6 EXAMPLES 42

%namespace LexScanner
%option noparser, verbose

%f{
static int lineTot = O;
static int wordTot = 0;
static int intTot = 0;
static int fltTot = O;
%}

the definitions section begins with the namespace definition, as it must. We do not need
any “using " declarations, sinc8ystenandSystem.lGre needed by the invariant code
of the scanner and are imported by default. Next, four class fields are defined. These
will be the counters for the totals over all files. Since we will create a new scanner
object for each new input file, we make these counter variai¢s
Next we define three character classes —
alpha [a-zA-Z]
alphaplus [a-zA-Z\-"]
digits [0-9]+
%%
Alphaplusis the alphabetic characters plus hyphens (note the escape) and the apos-
trophe. Digits is one or more numeric characters. The final line ends the definitions
section and begins the rules.
Firstin the rules section, we define some local variables foBtaroutine. Recall
that codebeforethe first rule becomes part of the prolog.
int lineNum = 0;
int wordNum = 0;

int intNum = O;
int fltNum = 0;

These locals will accumulate the numbers within a single file. Now come the rules —
\n[\n\n? lineNum++; lineTot++;
{alpha}{alphaplus}*{alpha} wordNum++; wordTot++;

{digits} intNum++; intTot++;
{digits}\.{digits} fltNum++; fltTot++;

The first rule recognizes all common forms of line endings. The second defines a
word as an alpha followed by more alphabetics or hyphens or apostrophes. The third
and fourth recognize simple forms of integer and floating point expressions. Note
especially that the second rule allows words to contain hyphens and apostrophes, but
only in theinterior of the word. The word must start and finish with a plain alphabetic
character.

The fifth and final rule is a special one, using the special marker denoting the end
of file. This allows a semantic action to be attached to the recognition of the file end.
In this case the action is to write out the per-file numbers.

<<EOF>> {
Console .Write(" Lines: " + lineNum);
Console .Write(" , Words: " + wordNum);
Console .Write(" , Ints: "+ intNum);
Console .WriteLine(" , Floats: "+ fltNum);

%%

6 EXAMPLES 43

Note that we could also have placed these actions as code in the epilog, to catch termi-
nation of the scanning loop. These two are equivalent in this particular case, but only
since no action performs a return. We could also have placed the per-file counters as
instance variables of the scanner object, since we construct a fresh scanner per input
file.

The final line of the last snippet marks the end of the rules and beginning of the
user code section.

The user code section is shown if Figliré 25. The code opens the input files one by
one, creates a scanner instance and gglex

Figure 25: User Code for Wordcount Example

public static void Main(string [] argp) {
for (int i = 0; i < argp.Length; i++) {
string name = argpli];
try {
int tok;
FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner (file);
Console .WriteLine("File: " + name);
do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);
} catch (IOException) {

Console .WriteLine("File " + name + " not found");

}

}

if (argp.Length > 1) {
Console .Write("Total Lines: " + lineTot);
Console .Write(", Words: "+ wordTot);
Console .Write(", Ints: " + intTot);
Console .WriteLine(", Floats: " + fltTot);

}

}

Building the Application

The fileWordCount.css created by invoking —
D:\gplex\test> gplex /minimize /summary WordCount.lex

This also create®ordCount.Istwith summary information. The frame filgplexx.fr-
ameshould be in the same folder as tiglexexecutable.

This particular example, generatesRBESAstates which reduces to just DIEFSA
states. Nine of these states am:eptstate@ and there are two backup states. Both
backup states occur on a “.” input character. In essence when the lookahead character
is dot, gplexrequires an extra character of lookahead to before it knows if this is a

13These are always the lowest numbered states, so as to keep the dispatch table for the semantic action
switch statement as dense as possible.

6 EXAMPLES 44

full-stop or a decimal point. If the/thinimize " command line option is used the two
backup states are merged and the final automaton has just nine states.

Since this is a stand-alone application, the parser type definitions are taken from
the gplexx.framdile, as described in Figufe P0. In non stand-alone applications these
definitions would be accessed bylsing ” the parser namespace in the lex file. The
application is compiled by —

D:\gplex\test> csc WordCount.cs
producingWordCount.exeRun it over its own source files —

D:\gplex\test> WordCount WordCount.cs WordCount.lex

File: WordCount.cs

Lines: 590, Words: 1464, Ints: 404, Floats: 3

File: WordCount.lex

Lines: 64, Words: 151, Ints: 13, Floats: 0

Total Lines: 654, Words: 1615, Ints: 417, Floats: 3

D:\gplex\test>
The text in plain typewriter font is console output, the slanting, bold font is user input.

Where do the three “floats” come from? Good question! The te¥afdCount.cs
guotes some version number strings in a header comment. The scanner thinks that
these look like floats. As well, one of the table entries of the automaton has a comment
that the shortest string reaching the corresponding stateds'"

6.2 ASCII Strings in Binary Files

A very minor variation of the word-count grammar produces a version ofiKEX
“strings” utility, which searches for ascii strings in binary files. This example uses
the same user code section as the word-count example, Figure 25, with the following
definitions and rules section —

alpha [a-zA-Z]

alphaplus [a-zA-Z\-"]

%%

{alpha}{alphaplus}*{alpha} Console .WriteLine(yytext);

%%
This example is in file $trings.lex

”

6.3 Keyword Matching

The third example demonstrates scanningtohgsinstead of files, and the way that
gplexchooses the lowest numbered pattern when there is more than one match. Here
is the file ‘foobar.lex "

%namespace LexScanner

%option noparser nofiles

alpha [a-zA-Z]

%%

foo |

bar Console .WriteLine(" keyword " + yytext);
{alpha}{3} Console .WriteLine(" TLA " + yytext);

{alpha}+ Console .WriteLine(" ident " + yytext);
%%

6 EXAMPLES 45

Figure 26: User Code for keyword matching example

public static void Main(string [] argp) {
Scanner scnr = new Scanner ();
for (int i = 0; i < argp.Length; i++) {
Console .WriteLine("Scanning \"" + argp[i] +),
scnr.SetSource(argpli], 0);
scnr.yylex();
}
}

The point is that the input text “foo” actually matches three of the four patterns. It
matches the TLA" pattern and the general ident pattern as well as the exact match.
Altering the order of these rules will exercise the “unreachable pattern” warning mes-
sages. Try this!

Figure[26 is the string-scanning version of the user code section. This example
takes the input arguments and passes them tSét8ourcenethod. Try the program
out on input strings such a6 bar foobar blah " to make sure that it behaves as
expected.

One of the purposes of this example is to demonstrate one of the two usual ways
of dealing with reserved words in languages. One may specify each of the reserved
words as a pattern, with a catch-all identifier pattern at the end. For languages with
large numbers of keywords this leads to automata with very large state numbers, and
correspondingly large next-state tables.

When there are a large number of keywords it is sensible to define a single identifier
pattern, and have the semantic action delegate to a method call —

return GetldToken(yytext);

The GetldTokermethod should check if the string of the text matches a keyword, and
return the appropriate token. If there really are many keywords the method should
perform a switch on the first character of the string to avoid sequential search. Finally,
for languages for which keywords are not case sensitiv&#t&d Tokermethod can do

a String. ToLowercall to canonicalize the case before matching.

6.4 The Codepage Guesser

The “codepage guesser” is invoked by unicode scanners generated witidépage:-
guessoption if an input file is opened which has WI'F prefix. The guesser scans

the input file byte-by-byte, trying to choose between treating the file as a utf-8 file, or
presuming it to be an 8-bit byte-file encoded using the default codepage of the host
machine.

The example file GuesserTest.lex " is a wrapped example of the codepage
guesser. It scans the files specified in the command line, and reports the number of
significant patterns of each kind that it finds in each file.

The basic idea is to look for sequences of bytes that correspond to well-formed
utf-8 character encodings that require two or more bytes. The code also looks for bytes
in the upper-128 byte-values that are not part of any valid utf-8 character encoding. We
want to create an automaton to accumulate counts of each of these events. Furthermore,

6 EXAMPLES 46

we want the code to run as quickly as possible, since the real scanner cannot start until
the guesser delivers its verdict.
The following character sets are defined —

Utf8pfx2 [\xcO-\xdf] // Bytes with pattern 110x Xxxx
Utf8pfx3 [\xe0-\xef] /I Bytes with pattern 1110 xxxx
Utf8pfx4 [\xfO-\xf7] I/ Bytes with pattern 1111 Oxxx
Utf8cont [\x80-\xbf] // Bytes with pattern 10xx Xxxx
Upperl28 [\x80-\xrf] /I Bytes with pattern 1xxx Xxxx

These sets are: all those values that are the first byte of a two, three or four-byte utf-8
character encoding respectively; all those values that are valid continuation bytes for
multi-byte utf-8 characters; and all bytes that are in the upper-128 region of the 8-bit
range.

Counts are accumulated for occurrences of two-byte, three-byte and four-byte utf-8
character patterns in the file, and bytes in the upper 128 byte-value positions that are
not part of any legal utf-8 character. The patterns are —

{Utf8pfx2}{Utf8cont} utf2++; /I Increment 2-byte utf counter
{Utf8pfx3{Utf8cont{2} utf3++; /I Increment 3-byte utf counter
{Utf8pfx4H{Utf8cont}{3} utf4++; /I Increment 4-byte utf counter
{Upper128} uppr++; /I Increment upper non-utf count

It should be clear from the character set definitions that this pattern matcher is defined
in a natural way in terms of symbol equivalence classes. This suggestsgydag
with the classesoption. The resulting automaton has six equivalence classes, and just
twelve states. Unfortunately, it also has two backup states. The first of these occurs
when aUtf8pfx3byte has been read, and the next byte is a member dit#gzont
class. The issue is that the first byte is a perfectly good match fargpepattern, so
if the bytetwo aheads not a secontltf8contthen we will need to back up and accept
theuppr pattern. The second backup state is the cognate situation for the fourtilyte
pattern.

Having backup states makes the automaton run slower, and speed here is at a pre-
mium. Some reflection shows that the backup states may be eliminated by defining
three extra patterns —

{Utf8pfx3}{Utf8cont} uppr += 2; /I Increment uppr by two
{Utf8pfx4}{Utf8cont} uppr += 2; /I Increment uppr by two
{Utf8pfx4H{Utf8cont}{2} uppr += 3; /I Increment uppr by three

With these additional patterns, when the first two bytes oftitig or utf4 patterns
match, but the third byte does not, rather than back up, wewdtb theuppr count.
Similarly, if the first three bytes of thetf4 pattern match but the fourth byte does not
match we addhreeto theuppr count.

The new automaton has the same number of equivalence classes, and the same
number of states, but has no backup states. This automaton can run very fast indeed.

6.5 Include File Example

The example prograrincludeTesis a simple harness for exercising the include file
facilities ofgplex The complete source of the example is the filefide Test.lex ”
in the distribution.

The program is really a variant of the “strings” program of a previous example,
but has special semantic actions when it reads the stfiingltide " at the start of an
input line. As expected, the file declareBafferContexstack.

7 NOTES 47

Stack <BufferContext > bStack = new Stack <BufferContext >();
Compared to the strings example there are some additional declarations.

%x INCL // Start state while parsing include command
dotchr ["\r\n] /I EOL-agnostic version of traditional LEX ‘!
eol (\r\n?|\n) /I Any old end of line pattern

/I And soon ...

The rules section recognizes strings of length two or more, the include pattern, and
also processes the filenames of included files.

{alpha}{alphaplus}*{alpha} { Console .WriteLine(
"{0}{1} {2}: {3}", Indent(), yytext, yyline, yycol); }

“"#include" BEGIN(INCL);

<INCL>{eol} BEGIN(0); Trylnclude(null);

<INCL>[\{] /* skip whitespace */

<INCL>[" \t[{dotchr}* BEGIN(O); TryInclude(yytext);
Thelndentmethod returns a blank string of length depending on the depth of the buffer
context stack. This “pretty prints” the output of this test program.

The user code in Figufe R7 suppligsin, Trylncludeandyywrapfor the example.
In this example the command line arguments are passed intee8uff buffer. Since
the buffers that result from file inclusion will be 8treamBufttype, this demonstrates
the ability to mix buffers of different types using file inclusion.

Most of the error checking has been left out of the figure, but the example in the
distribution has all the missing detail.

7 Notes

7.1 Implementation Notes

Versions since 0.4.0 parse their input files using a parser constructed by Gardens Point
Parser Generatogppg. Because it is intended to be used with a colorizing scanner
the grammar contains rules for both thEX syntax and also many rules f@#. The

parser will match braces and other bracketing constructs within the code sections of
the LEX specification.gplexwill detect a number of syntax errors in the code parts of
the specification prior to compilation of the resulting scanner output file.

Compatibility

The current version afiplexis not completely compatible with eith®OSIX LEXor
with Flex. However, for those features thate implemented the behaviour follows
Flexrather tharPOSIXwhen there is a difference.

Thusgpleximplements the ¢<EOF>>" marker, and both the%x' and “%<’ mark-
ers for start states. The semantics of pattern expansion also followseth@odel. In
particular, operators applied to named lexical categories behave as though the named
pattern were surrounded by parentheses. Forthcoming versions will continue this pref-
erence.

7 NOTES 48

Figure 27: User code fdncludeTesexample

public static void Main(string [] argp) {
if (argp.Length == 0)

Console .WriteLine("Usage: IncludeTest args”);
else {

int tok;

Scanner scnr = new Scanner ();

scnr.SetSource(argp); /I Create LineBuff object from args

do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);

}
}
private void Trylnclude(string fName) {
if (fName == null)
Console .Error.WriteLine("#include, no filename");
else {
BufferContext savedCtx = MKkBuUffCtx();
SetSource(new FileStream (fName, FileMode .Open));
Console .WriteLine("Included file {0} opened" , fName);
bStack.Push(savedCitx); /I Don’t push until after file open succeeds!
}
}

protected override bool yywrap() {
if (bStack.Count == 0) return true
RestoreBuffCtx(bStack.Pop());
Console .WriteLine("Popped include stack");
return false ;

Error Reporting

The default error-reporting behavior gppgconstructed parsers is relatively primitive.

By default the calls ofyyerror do not pass any location information. This means that
there is no flexibility in attaching messages to particular positions in the input text.
In contexts where th&rrorHandler class supplies facilities that go beyond those of
yyerror it is simple to disable the default behaviour. The scanner base class created by
the parser defines an emptyerror method, so that if the concrete scanner class does
not overrideyyerror no error messages will be produced automatically, and the system

will rely on explicit error messages in the parser’s semantic actions.

In such cases the semantic actions of the parser will direct errors to the real error
handler, without having these interleaved with the default messages from the shift-

reduce parsing engine.

7 NOTES 49

7.2 Limitations for Version 1.0.0

Version 1.0.0 supports anchored strings but does not support variable right context.
More precisely, iR,/ R, at least one of the regular expressiéisandR; must define
strings of fixed length. Either regular expression may be of arbitrary form, provided
all accepted strings are the same constant length. As well, the standard lex character
set definitions such ag:fsalpha:] " are not supported. Instead, the character
predicates from the base class libraries, sudslastterare permitted.

The default action oLEX, echoingunmatchedinput to standard output, is not
implemented. If you really need this it is easy enough to do, but if you don’t want it,
you don’t have to turn it off.

7.3 Installing GPLEX

gplexis distributed as a zip archive. The archive should be extracted into any conve-
nient folder. The distribution contains four subdirectories. Thiedries " directory
contains four files:gplex.exe ShiftReduceParser.dlgplexx.frameand Guesser.incl
All four of these must be on the executable path, and in the same directory. In environ-
ments that have botiplexand Gardens Point Parser Generagmp@, it is convenient
to put the executables for both applications in the same directory.

The “project " directory contains thé&v/isual Studioproject from which the cur-
rent version ofgplexwas built. The documentation " directory contains the files
“gplex.pdf ", “Codepage.pdf ”,“ChangelLog.pdf ”and the file ‘GPPGcopyright-
atf . The “examples ” directory contains the examples described in this documen-
tation.

The application requires version 2.0 of thiécrosoft .NETruntime.

7.4 Copyright

Gardens PointEX (gplex is copyright(© 2006—2008, John Gough, Queensland Uni-
versity of Technology. See the accompanying documertEXcopyright.rtf

7.5 Bug Reports

Gardens PointEX (gpleX is currently being maintained and extended by John Gough.
Bug reports and feature requests fimexshould be sent to John at “j.gouglt-sign
qut.edu.au”.

8 APPENDIX A: GPLEXSPECIAL SYMBOLS 50

8 Appendix A: GPLEX Special Symbols
8.1 Keyword Commands

| Keyword I Meaning \

%X This marker declares that the following list of
comma-separated names denote exclusive start
conditions.

%s This marker declares that the following list of
comma-separated names denote inclusive start
conditions.

%using The dotted name following the keyword will be
added to the namespace imports of the scanner
module.

%namespace This marker defines the namespace in which the

scanner class will be defined. The namespace ar-
gument is a dotted name. This marker must occur
exactly once in the definition section of every in-
put specification.
%option This marker is followed by a list of option-names,
as detailed on page[l2. The list elements may be
comma or white-space separated.
%charClassPredicate This marker is followed by a comma-separated |ist
of character class names. The class names must
have been defined earlier in the text. A member-
ship predicate function will be generated for edach
character class on the list. The names of the pred-
icate functions are generated algorithmically jpy
prefixing “Is_" to the name of each character class.

8.2 Semantic Action Symbols

Certain symbols have particular meanings in the semantic actiag@efparsers. As
well as the symbols listed here, methods defined in user code of the specification or its
helper files will be accessible.

Symbol Meaning

yytext A read-only property which lazily constructs the text of
the currently recognized token. This text may be invali-
dated by subsequent callsyfless
yyleng A read-only property returning the number of symbols of

the current token. In the unicode case this is not neces-
sarily the same as the number of characters or bytes fread
from the input.

YYypos A read-only property returning the buffer position at the
start of the current token.

yyline Aread-only property returning the line number at the start
of the current token.

yycol A read-only property returning the column number at the

start of the current token.

8 APPENDIX A: GPLEXSPECIAL SYMBOLS 51

Semantic Action Symbols (continued)

gth

pe

| Symbol Meaning \

yyless A method that truncates the current token to the len
given as thent argument to the call.

BEGIN Set the scanner start condition to the value nominated in
the argument. The formal parameter to the call is of ty
int , but the method is always called using the symbolic
name of the start state.

ECHO A no-arg method that writes the current valueygtextto
the standard output stream.

YY_START A read-write property that gets or sets the current start

ordinal value. As witrBEGIN, the symbolic name of the

start condition in normally used.

be-

yy_clear_stack i This no-arg method empties the start condition stack.

yy_push_state i This method takes a start condition argument. The cur-
rent start condition is pushed and the argument value
comes the new start condition.

yy_pop_state i This method pops the start condition stack. The previpus
top of stack becomes the new start state.

yy_top_of stack T || This function returns the value at the top of the start cpn-

dition stack. This is the value that would become current

if the stack were to be popped.

1 This method only applies with thistackoption.

	Overview
	Typical Usage
	The Interfaces
	The IColorScan Interface

	Running the Program
	Gplex Options

	The Input File
	The Definitions Section
	The Rules Section
	Start-Condition Scopes
	Backtracking Information
	Stacking Start Conditions
	Location Information

	Errors, Warnings and Gotchas
	Errors
	Warnings

	The Generated Scanner
	Byte-Mode and Unicode-Mode
	The Scanner File
	Choosing the Input Buffer Class
	How Buffering Works
	Multiple Input Sources
	Class Hierarchy
	Unicode Scanners
	Choosing Compression Options

	Examples
	Word Counting
	ASCII Strings in Binary Files
	Keyword Matching
	The Codepage Guesser
	Include File Example

	Notes
	Implementation Notes
	Limitations for Version 1.0.0
	Installing GPLEX
	Copyright
	Bug Reports

	Appendix A: GPLEX Special Symbols
	Keyword Commands
	Semantic Action Symbols

