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Figure 1: A hilarious Simpsons meme created by the author during many hours of training image collection [

ABSTRACT

This report summarises the journey taken by the author to create
and deploy an image classification model as part of the entry into
Deakin University’s Simpsons Challenge 2021. The report details
steps taken to clean and supplement training data, the training
process and model selection, and steps taken to improve the final
model. The process generated several models with an equivalent
categorical accuracy score on the hidden test data set of 99.3%, with
one model scoring 99.1% on the hidden final test data set. Some
of the techniques used go against the traditional machine learning
rules, which make for interesting reading.

CCS CONCEPTS

« Computing methodologies — Computer vision; Supervised
learning by classification.
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1 INTRODUCTION

There are plenty of articles written about the dos and don’ts for
Machine Learning. In my approach to the Deakin Simpsons Chal-
lenge 2021, I experimented with both to build a model which scored
above 99% accuracy on all competition test sets. Admittedly, the
most significant model improvements arrived through classic data
preparation (cleansing, supplementation, and augmentation); fol-
lowed by intuitive model selection and hyper-parameter tuning. I
have thoroughly detailed all these steps within this report; however,
as validated by a successful increase in accuracy on hidden data,
sometimes, "you have to break the rules to free your heart" (Season
11/Episode 5).

A key machine learning fundamental I discerningly ignored was
separating the training and validation data sets. In other words, I
used the same data to train and to validate my model. In theory,
this could lead to a scenario where a model becomes overfit; with
the model memorising more than learning. Yet it improved my
model’s performance. In this report, I justify why in this scenario
the decision made sense, and objectively delivered superior results.
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Table 1: Xception Final Hyper-parameters

Hyper-parameter Value Comments

{le-4,1e-5,1e-6} Adjusted to find minimum
(224,224,3) Default for MobileNet

Learning Rate o
Input Shape

Table 2: Training Data Augmentation

Augmentation Value
Zoom range 0.6-1.8
Rotation range 35
Brightness range 0.6 - 1.8
Shear range 50

Width shift range 0.2
Height shift range 0.2
Horizontal flip True

Before we begin, remember... This model achieved over 99% on
the two competition test sets. Which is pretty good.

2 MODEL SUMMARY

For those non-Machine Learnists, this section contains technical infor-
mation related to the final model. Section 3 is where the fun begins,
detailing the process used to achieve +99%.

The final submission was built using the Keras Xception [Chollet
2016] architecture, initialised with pre-trained weights from Ima-
geNet. Through transfer learning, keeping all layers unfrozen, the
Xception model was trained on a heavily augmented training set.

2.1 Final Model Hyper-parameters

Hyper-parameters were tuned to find a minimal Validation Loss
score, with final values shown in Table 1. I used RMSprop as the
optimizer, gradually lowering the learning rate. In theory, RMSprop
uses an adaptive learning rate, so this process was not guaranteed
to yield superior results - but it did, and this is a competition (>99%).

In my experiments, activation by both standard ReLU and Leaky
ReLU delivered statistically indistinguishable results. Ultimately
the model submitted contained standard ReLU.

Image size was also increased to (224,224).

2.2 Final Data Augmentation

As indicated, my model was trained and validated on a complete
non-split data set; however, the training data was augmented through
Keras’ Data Augmentation module. Importantly, the validation set
was not augmented. Final perturbations are displayed in Table 2.

Example output of the data augmentation process is contained
within Figure 2.

2.3 Final Model Results

Table 3 shows the results of the final model while training, and
against the hidden test set contained on the Codalab competition
platform. Figure 3 and Figure 4 show post training model results
on Validation data.
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Table 3: Final Model Results

Criterion Score  Comments
Categorical Accuracy 98.39%  Training
Loss 0.0592  Training
Categorical Accuracy 99.99%  Validation
Loss 0.00036 Validation
Accuracy 99.3%  Test Open
Accuracy 99.1%  Test Final
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Figure 2: Example output of Data Augmentation process
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Figure 3: Confusion Matrix
This is the fun stuff.

The most significant improvements to the accuracy of my model
came from textbook processes. I spent a significant amount of
time performing data preparation including data cleansing, data
supplementation and model weakness rectification, ensuring that
the most appropriate model architecture was used, and finally,
that my training process was successfully building towards an
accurate model. While this section is presented in a linear fashion,
I performed all steps concurrently and iteratively. As such, there
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precision recall fl-score support

abraham_grampa_simpson 1.88 1.88 1.88 1857
apu_nahasapeemapetilon 1.08 1.08 1.08 728
bart_simpson 1.880 1.80 1.80 1779
charles_montgomery_burns 1.8 1.8 1.88 1385
chisf_wiggum 1.88 1.88 1.88 1136
comic_book_guy 1.88 1.88 1.88 684
edna_krabappel 1.08 1.08 1.08 532
homer_simpson 1.08 1.08 1.08 2913
kent_brockman 1.8 1.8 1.88 618
krusty_the_cloun 1.889 1.9 1.8 1322
lenny_leonard 1.88 1.88 1.88 417
lisa_simpson 1.08 1.08 1.08 1638
marge_simpson 1.0@ 1.00 1.e0 1551
mayor_quimby 1.8 1.88 1.8 481
milhouse_van_houten 1.889 1.89 1.8 1172
moe_szyslak 1.88 1.88 1.88 1688
ned_flanders 1.08 1.08 1.08 1566
nelson_muntz 1.0@ 1.00 1.e0 Seg

principal skinner 1.8 1.88 1.8 1361
sideshow_bob 1.889 1.89 1.8 981

accuracy 1.88 23333

macro avg 1.08 1.08 1.88 233323

weighted avg 1.8 1.88 1.8 23333

Figure 4: Classification Report

was no silver bullet that provided the most significant performance
increase, instead, my model consistently improved over time until
the competition final submissions were due.

To begin, I developed a very simple six layer feed-forward CNN
model based on the background reading provided by the compe-
tition [Attia 2017], trained on the provided training data set. This
delivered a model with just below 80% accuracy on competition
data. It was a good starting point.

3.1 Data Preparation

3.1.1 Data Cleansing. The confusion table from the starting model
showed plenty of confusion, especially between Lisa and Bart, and,
Grampa Simpson and Homer. This led me to explore the data man-
ually to discover there were numerous erroneous or ambiguous
entries in the training data. To address this efficiently, I created a
script (creatively called test.py) which could load a model to conduct
classification on the training data set. Test.py would iterate through
the input directory and relocate each image to the appropriate out-
put directory (i.e. Homers into the homer_simpson directory). My
starting model wasn’t perfect (~80%) but it was accurate enough to
confidently isolate images that were polluting my data set. These
were rectified before retraining and improving my model.

3.1.2  Data Supplementation. In addition to cleansing, I identified
many critical gaps in the training data. Homer made for a significant
proportion of the training data size, with over 2000 images, while
some minor characters had a much smaller representation. I started
by supplementing these poorly represented characters by searching
YouTube videos for "Best of character X...". After capturing the
video and extracting frames, I had a large number of new images.
Using my ever-improving test.py (and a manual check) to classify
the newly collected images, I added them to my training data set.
However, I needed more data.

After dusting off old Simpsons DVDs, I targeted episodes fo-
cusing on these under-represented characters (i.e. Sideshow Bob-
centric episodes). This process boosted the characters of choice,
while also supplementing the training data for other characters
through incidental collect.

3.1.3  Model Weakness Rectification. I began to notice that many
new images of characters were very similar to images already in-
cluded in the training set. If the training data contained too many
similar images, I would risk creating a model with unwelcome bias
towards those similar images. This was exemplified by the misclas-
sification of characters inside the Kwik-E-Mart. My model assumed
most images inside the Kwik-E-Mart must be Apu, because most of
Apu’s training data was from inside the Kwik-E-Mart. To fix this, I
needed to add more Apus from outside the Kwik-E-Mart, and more
non-Apus from inside the Kwik-E-Mart.
Other examples were:

o Characters wearing orange shirts were classified as Bart

e Characters shown inside a TV Frame were classified as Kent
Brockman

o Characters wearing hats were classified as Chief Wiggum

e Characters shown with Smithers were classified as Mr Burns

I prioritised finding images that avoided those learned character
stereotypes. However, there was more that could be done to improve
the variance within each character’s training set. Ingeniously, I
modified test.py to prefix the confidence score of each classification
to the image filename. This resulted in one of four outcomes, all of
which added significant value to my data supplementation process.

Each new image was either:

e Misclassed with a high confidence score - This meant my
model was outright wrong. There is definitely something it
could learn from this image.

e Misclassed with a low confidence score - This meant my
model was wrong, but it probably knew it was wrong, and
was being shy. There is something that it could learn from
this image too.

o Correctly classed with a low confidence score - While correct,
more confidence would be good, so again, my model could
learn something from this image.

o Correctly classed with a high confidence score - Congratula-
tions model, you’ve done well and you have nothing to learn
from this image.

In the first three cases, the newly classified images were added
into the training set. As my data set grew towards 23,333 images,
the bias that was negatively impacting my accuracy results began
to subside.

3.2 Training Process

3.2.1 Overfitting. As confessed in the introduction, I took deliber-
ate action to combine the training and validation data sets (although
with data augmentation applied to the training set). I made this de-
cision because some images containing higher variance (i.e. unique
images) were being randomly excluded from the training set dur-
ing the split. I wanted to find a way to ensure all of my valuable
training data collected during the model weakness rectification
process (section 4.3) were included. I knew that by using the same
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data set to train and validate could lead to overfitting; however,
I hypothesised three reasons to explain why this process would
improve my model:

o The set of Simpsons characters is finite. Unlike photographic
images of the natural world, there is only a limited set (albeit,
avery large set) of images of Simpsons characters. As a train-
ing set approaches the total number of possible Simpsons
images, an overfit model’s accuracy must increase, as the
likelihood of training images existing within the competition
test set would approach 100%.

o Each Simpsons character is defined by a strict set of design
guidelines [Weinstein 2020]. These design rules indicate that
variability between images is generally low. Even with a de-
gree of overfitting, good generalisation can still be achieved
because variability within each character set is low.

o Except when variability is high! In some episodes, characters
are modified away from their stereotype in dramatic fashion.
e.g. There have been 31 episodes of "Treehouse of Horror’
where characters often appear with significant variance. I
needed to ensure these high variability events were captured.

My hypothesis was correct, my model generated a higher val-
idation accuracy score and competition test score (>99%). When
using this model with test.ps to collect further data, both accuracy
and confidence scores were much higher on all truly unseen data.
Although unconventional, objectively it was the right choice as it
squeezed the absolute maximal result from my model and I moved
up the leaderboard.

3.22 Data Augmentation. While the training and validation sets
were initially identical, I ensured the training set was significantly
modified through data augmentation. Data augmentation, as I had
previously incorrectly assumed, does not augment the set, instead
it replaces it with the modified images [Brownlee 2019]. This gave
me confidence that my process as detailed in 3.2.1 would not lead
to significant overfitting, as both training and validation sets were
now different.

Initially, I selected the values for augmentation by what I would
reasonably expect to see during a Simpsons episode. I continued
to increase the perturbations to find the maximum delta from the
original image, while still producing a model that could accurately
classify non-perturbed images. Interestingly, as I continued tweak-
ing these parameters, I discovered my model performed better at
generalisation than on the training data. This highly favourable
symptom was present even without the overfitting process from
section 3.2.1. Training history is shown in figure 5.

Training and validation loss Training and validation accuracy

Taining loss.
Validation loss

Figure 5: History of training, showing Validation results bet-
ter than training results
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3.2.3 Model Selection. During my testing, I experimented with
multiple models, including MobileNet, VGG16 and RESNET152v2.
These models were discarded primarily because they were not able
to achieve the level of accuracy I found with the Xception model,
or training time was significantly longer.

I also tested an Xception model built layer-by-layer and trained
scratch, but it did not compare to the speed of training the pre-
trained Imagenet Xception model. Using this pre-trained model,
I was able to achieve a validation accuracy of 93% after only one
epoch, which significantly enhanced the training time while tuning
other parameters. I tried improving training speed further by freez-
ing several layers of the pre-trained model, but this did not perform
well in accuracy. This is likely because Simpsons characters are
intrinsically different to photographic images as contained in the
Imagenet data set, so while the pre-trained weights are a good start,
they are not ultimately suited to cartoons. As shown in section
3.2.2 my model generalised very well, so there was no need for any
additional dropout layers, and when trialled, they did not improve
performance.

While I was testing the MobileNet pre-trained model, I exper-
imented with the default input size of 224 x 224. Increasing the
number of inputs increased my model’s training time, but gave
my model more data points on which to make decisions. I tested
this increased size on the Xception model, and noticed a signifi-
cant improvement in model accuracy, so I selected the input size of
(224,224,3).

3.24 Training Runs. With all parameters finalised and my training
set ready, I launched a final training run of 50 epochs, saving the
model which achieved the lowest Validation Loss score. Upon com-
pletion, I lowered the learning rate and re-ran training for another
10 epochs, before lowering the learning rate and re-running one
final time.

3.2.5  Final Submission. The processes outlined in this report de-
livered a number of different but high performing models. Several
of my models scored 99.2% on the competition test data, while two
models scored 99.3%. Upon entry into the final round, my two most
precious models scored 99.0% and 99.1% respectively. Which once
again, was outstandingly excellent.

4 CONCLUSION

This report documents my efforts to create an extremely accurate
and easily repeatable Simpsons character classification model. As
evidenced, every decision I made on the journey was a considered
one, ensuring that my model’s behaviour was always explainable.
While most of these decisions were textbook examples of dos, I most
definitely experimented with the don’ts, and my results are stronger
because of it. After all, this was a competition, and my methodical
approach to this experimentation resulted in an observable increase
in accuracy, scoring greater than 99% against all competition test
sets.
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