
About Face: Computer Vision for The Simpsons
Josh Anthony
Deakin University

Melbourne, Australia
josh@joshanthony.net

Roger Middenway
Deakin University

Melbourne, Australia
rmiddenway@gmail.com

Melissa Mony
Deakin University

Melbourne, Australia
melissamony@gmail.com

Simpsons Faces by K. Tokis

ABSTRACT
Facial recognition technology is becoming increasingly pervasive
in our modern digital lives, from video surveillance to social media,
our faces are constantly tracked, classified, and stored for recogni-
tion purposes. Artificial intelligence powers these processes using
carefully constructedmodels trained on datasets to recognise people
and objects. Many data science techniques can be highly theoretical
when taught at university, prompting the creation of the Deakin
Simpsons Challenge to provide an opportunity for students to apply
these techniques in practice to solve a real-world problem. In this
report we present our approach to this challenge using transfer
learning, hyperparameter optimisation and data augmentation. Our
team’s winning submission achieved 4th place in a competition that
received over 400 submissions from a variety of undergraduate and
graduate students in the school of IT. Code for our approach can
be found here: https://github.com/joshanthony/simpsons-machine-
learning-challenge

KEYWORDS
computer vision, facial recognition, transfer learning, convolutional
neural networks

1 INTRODUCTION
Computer vision is an exciting area of artificial intelligence that
aims to replicate the human visual system. The focus of this report
is on facial recognition and machine learning which can be used
to train a high-level understanding into a model so that it can
automatically classify and recognise faces within an image. This
technology is seeing increasing real-world use-cases in surveillance,
smartphones, and social media [3].

The Deakin Simpsons Challenge 2021 is a machine learning
competition with the aim to develop the most accurate model to
recognise individual characters from The Simpsons tv show [1]. The
provided dataset consists of 19548 labelled images of 19 different
characters that participants can use to train their model. Submis-
sions are then uploaded on CodaLab for evaluation, measuring

performance using an accuracy classification score on a private test
set. The challenges posed by this problem revolve around hardware
limitations for training the model and over-fitting to the training
dataset, resulting in a model that is too specialised.

This report will outline our strategy for training an effective
model using transfer learning, hyperparameter optimisation and
data augmentation. Using Tensorflow, the convolutional neural
network will form the basis of our facial recognition system by
extracting features within the images to generate feature maps
to be fed into the dense layers of the neural network and match
them to labels [4]. Our strategy to implement transfer learning will
allow us to capitalise on models that have already been trained on
massive datasets by incorporating these pre-trained layers within
the model architecture alongside more specialised layers targeting
the problem.

2 APPROACH
Our approach was to use an original set of neural network layers
connected to an existing model that has been pre-trained on the
popular Imagenet database in a process called transfer learning
and fine tuning. Imagenet includes over 14 million images, many
with similar features to the images that exist within our dataset,
which meant that Transfer Learning provided greater efficiency so
the team could allocate more time for testing and fine tuning of
hyperparameters.

The pre-trained base model we selected was the EfficientNetB4
model, which is a scaled version of EfficientNet created by Google
AI [6]. We unfroze a number of EfficientNetB4 layers and added
several original extensions to EfficientNetB4 in order to achieve a
balance between accuracy and training efficiency.

2.1 Model selection and extension
Before we selected EfficientNetB4 we spent several weeks testing
and fine tuning other pre-trained models including popular varia-
tions of VGG and ResNet [5] [2]. EfficientNetB4 with the last block
of 31 layers unlocked was our final model choice because it had the

 https://github.com/joshanthony/simpsons-machine-learning-challenge
 https://github.com/joshanthony/simpsons-machine-learning-challenge


Conference’17, July 2017, Washington, DC, USA Josh Anthony, Roger Middenway, and Melissa Mony

best overall accuracy compared to other pre-trained existing mod-
els. During this model selection process we designed and started
testing an original set of neural network layers as an extension to
the base pre-trained model. Our initial high level architecture is
shown below.

Figure 1: High level architecture of our model

The use of transfer learning allowed us to achieve greater accu-
racy and efficiency because the existing model recognised features
that were similar to our Simpsons Dataset allowing our team to
allocate more time for testing and fine tuning of hyperparameters.

2.2 Hyperparameter tuning
After we had developed an initial architecture for our model we
conducted additional experiments using the Keras Tuner library to
perform random search over hyperparameters and extensions to
the pre-trained base model [7]. This approach was time and GPU
intensive but allowed us to achieve a range of optimisations to
the extension of our base model in areas such as global pooling
(average or maximum), amount of dropout (0 - 0.6), number of dense
layers (1-4), activation functions (ReLU, Softmax and Sigmoid) and
optimisation function (Adam, RMSprop and SGD).

At the completion of this process we settled on a architecture
that was able to best serve the requirements of this challenge as
shown below. We also closely monitored and adjusted learning
rates and took steps to reduce the learning rate in the event of a
training plateau.

2.2.1 Final custom model composition.

• Input size 224
• EfficientNetB4 with final block of 31 layers trainable
• Global average pooling
• 0.05 dropout
• Dense ReLU layer
• Dense softmax layer
• Output with Adam optimizer

2.3 Fine tuning
Once our model was performing in the range of 98.92% accuracy we
began the process of fine tuning the model by unlocking all layers
excluding batch normalisation layers and trained the model on a

Figure 2: Specific final architecture of our model

low learning rate of 0.0001 or lower. This allowed us to achieve a
final model accuracy of 99.24% which was validated by CodaLab at
~99%.

2.4 Data cleaning and augmentation
One final aspect of our model’s performance was the quality and
variability of the data used for training and testing. During pre-
liminary analysis we discovered that several classes were not well
represented because they had mislabelled or duplicate data, or a low
number of samples. Overall, 34 samples were found to be clearly
mislabelled, and a further 26 samples contained multiple characters.

Several strategies were used to clean and augment our data. In
order to remove duplicates, a script was created which generated
a hash of each image using the imagehash library, and then com-
pared each hash against the others of its respective class. For each
image pair with a hash difference of less than 2, one image was
removed. Mislabelled images detected by visual inspection were
also removed. Some manual data augmentation was carried out,
using google image search and screen shots of streamed Simpsons
episodes. This augmentation focused on increasing the pool of
images for comic_book_guy, lenny_leonard, mayor_quimby and
nelson_muntz, all of which were both underrepresented, and on the
low end of the f1 score spectrum. The addition of this data helped
our model better generalise for those specific characters.

Finally, we amplified the base rotation, angle, flip and shift
present within the ImageDataGenerator class used by Keras for
random data augmentation during training and this helped our
model generalise better.

2.5 Hardware
The model was trained using a NVIDIA Quadro P5000 GPU with
16 GB GDDR5X memory virtual machine from Paperspace. Addi-
tional experimental models were trained using GPU’s in Google’s
Colaboratory development environment.



About Face: Computer Vision for The Simpsons Conference’17, July 2017, Washington, DC, USA

3 RESULTS AND DISCUSSION
Our final model obtained F1 scores ranging between 98% and 100%
across all the classes. It was initially noted that the underrepresented
classes tended to perform worse than the more dominant ones. The
first plot in Figure 3 clearly shows this effect, with support levels
under 75 being strongly associated with low scores in precision,
recall and F1.

Figure 3: Performance metrics by support before (left) and
after (right) data augmentation

In augmenting our dataset, we focused on collecting more sam-
ples for the four most underrepresented classes. After further train-
ing on the augmented dataset, our model showed a marked im-
provement for these classes. As demonstrated in the second plot in
Figure 3, the classes with low support now have improved scores in
all metrics, and the correlation between these metrics and support
is now insignificant. (Note: these tests were performed on the raw
dataset, so the supports indicated in Figure 3 are not indicative of
the class balance in the augmented dataset).

Our data cleaning strategy was less successful, showing insignif-
icant improvement despite the removal of several hundred images,
including duplicates, near-duplicates, and mislabelled images. This
may be explained by the capacity of neural networks to handle
imperfect training data. The presence of duplicates in the dataset
was also likely not a problem due to the random transformations
applied to the dataset during training.

Figure 4: Mislabelled images from the dataset

The difficulty in improving the model beyond an accuracy score
of 99% may be explained by several factors. Firstly, errors and am-
biguities in the labelling of the dataset set a hard ceiling on the
achievable accuracy. In the manual review of the dataset, 34 misla-
belled images were found, as well as 26 images which contained

several characters (Figure 5) and which effectively reduced the
model’s accuracy to a coin flip. These 60 images represent approx-
imately 0.3% of the full dataset, thus setting a global achievable
accuracy cap of around 99.7%. Another confounding factor was the
presence of images in which characters were partially obscured or
depicted in a highly atypical outfit or position, and which were not
easily identifiable by visual information alone.

Figure 5: Images with multiple characters visible

Figure 6: Images with distorted or highly atypical represen-
tations of characters

As seen in the final results in Figure 7, the model’s F1 scores var-
ied between 98% and 100%, with generally no clear intuitive link be-
tween character and performance.While apu_nahasapeemapetilon’s
F1 score of 100% could be attributed to the fact that he’s the only
dark skinned character in the dataset, it is unclear why more
generic looking characters such as mayor_quimby and ned_flanders
achieved similar performance. Another interesting finding was the
mediocre performance of some large classes such as bart_simpson
and lisa_simpson. This may be because their status as main charac-
ters sees them shown in a wider variety of costumes and situations
than other characters. It may also simply be because they are ob-
jectively less recognisable, and that a human observer finds them
more readily recognisable due to a priming effect.



Conference’17, July 2017, Washington, DC, USA Josh Anthony, Roger Middenway, and Melissa Mony

Figure 7: Classification report of final model

4 CONCLUSION
In this report we outlined our approach for the 2021 Deakin Simp-
sons Challenge. We opted to “stand on the shoulders of giants”

through our implementation of transfer learning. This allowed us
to expedite the learning process and shift focus to the experimen-
tation of parameters in our own specialised layers targeted to the
problem. Alongside data augmentation this approach helped us
achieve 4th place on the final challenge leader board.

ACKNOWLEDGMENTS
The authors acknowledge the support of Dr. Mohamed Reda Bouad-
jenek, Dr. Sunil Aryal and Prof. Peter Eklund from the School of
Information Technology at Deakin University.

REFERENCES
[1] Mohamed Bouadjenek. 2021. Deakin Simpsons Challenge 2021. Retrieved 4 June,

2021 from https://github.com/rbouadjenek/deakin-simpsons-challenge2021
[2] Shaoqing Ren Kaiming He, Xiangyu Zhang and Jian Sun. 2020. Deep Residual

Learning for Image Recognition. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2020).

[3] Thorin Klosowski. 2020. Facial Recognition Is Everywhere. Here’s What We Can Do
About It. Retrieved June 4, 2021 from https://www.nytimes.com/wirecutter/blog/
how-facial-recognition-works/

[4] Laurence Moroney. 2020. AI and Machine Learning for Coders. (2020).
[5] Karen Simonyan andAndrewZisserman. 2015. VeryDeep Convolutional Networks

for Large-Scale Image Recognition. ICLR (2015).
[6] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks. International Conference on Machine Learning
(2019).

[7] Keras Team. [n.d.]. Keras Tuner. Retrieved June 3, 2021 from https://github.com/
keras-team/keras-tuner/

https://github.com/rbouadjenek/deakin-simpsons-challenge2021
https://www.nytimes.com/wirecutter/blog/how-facial-recognition-works/
https://www.nytimes.com/wirecutter/blog/how-facial-recognition-works/
https://github.com/keras-team/keras-tuner/
https://github.com/keras-team/keras-tuner/

	Abstract
	1 Introduction
	2 Approach
	2.1 Model selection and extension
	2.2 Hyperparameter tuning
	2.3 Fine tuning
	2.4 Data cleaning and augmentation
	2.5 Hardware

	3 Results and Discussion
	4 Conclusion
	Acknowledgments
	References

