Travis C+-+ tutorial

Richél Bilderbeek

April 29, 2017

Contents

1 Introduction
1.1 License. o v i i e e e e e e e
1.2 Continuous integration L.
1.3 Tutorial style o
1.4 This tutorial
1.5 Acknowledgements
1.6 Collaboration
1.7 Feedback

2 Setting up the basic build
2.1 Create a GitHub online
2.2 Bring the git repository to your local computer
2.3 Create a Qt Creator project
2.4 Create the build bash scriptso

3 The basic build
3.1 What is a C++98 "Hello world’ program?
3.2 The Travisfile
3.3 Qt Creator project file
34 CH+sourcefileo

4 Extending the build by one step 18

4.1 Use of debug and release build 19
4.1.1 What are debug and release builds? 19
4.1.2 The Travisfile 19
4.1.3 The build bash scrips 19
4.1.4 The Qt Creator project file 20
4.1.5 Thesourcefiles 20

4.2 Useof CH++11o 21
421 Whatis C++117 21
4.2.2 What is noexcept?o oo 21
4.23 The Travisfile 21
4.2.4 The Qt Creator project file 23
425 Thesourcefiles 23

4.3 Useof C++14 24
4.3.1 The Travisfile 24
4.3.2 The Qt Creator project files 25
4.3.3 Thesourcefiles 26

44 Adding Boost 26
441 WhatisBoost? oL 26
4.42 The Travisfile 26
4.4.3 The build bash scrips 27
4.44 The Qt Creator project files 27
445 Thesourcefiles 28

4.5 Adding Boost.Test 28

46 Useofclang 28
4.6.1 Whatis Clang? 28
4.6.2 The Travisfile 29
4.6.3 The build bash scrip 29
4.6.4 The Qt Creator project files 29
4.6.5 Thesourcefiles 30

4.7 Adding gcov and Codecov 30
4.71 What is gcov? 30
4.7.2 What is Codecov? oo 31
4.73 The Travisfile 32
4.74 The build bash scrips 33
4.7.5 The Qt Creator project files 34
4.76 Thesourcefiles Lo 35

4.8 Adding OCLint e 35
481 The Travisfile 35
4.8.2 The build bash scrips 37
4.8.3 The Qt Creator project files 39
4.84 Thesourcefiles oo 39

4.9 Adding profiling 40

4.10 Adding the Qt library 40

4.11 Adding the Qt4 library 40
4.11.1 Whatis Qt4?o 40

4.11.3 Whatisxvib? oo o 41
4.11.4 The Qt Creator project files 41
4.11.5 Thesource files 42
4.12 Adding the Qt5 library Lo 46
4.12.1 What is Qt57 46
4.12.2 The Travisfile 47
4.12.3 The Qt Creator project files 48
4.12.4 Thesourcefiles 48
413 Adding QTest 50
414 Adding Repp .« - - o oo oo 51
4.14.1 Build overviewo L 51
4.14.2 The Travisfile 51
4.14.3 The build bash scrips 52
4.14.4 The Qt Creator project files 53
4.14.5 The C++ and Rsourcefiles. 54
4.14.6 The C++-only source files 55
4.14.7 The R-only sourcefiles 55
4.15 Adding the SFML library 56
4.15.1 The Travisfile, 57
4.15.2 The build bash scrips 58
4.15.3 The Qt Creator project files 59
4.15.4 Thesourcefiles 59
4.16 Adding SLOCcount 60
4.16.1 The Travisfile 61
4.16.2 The build bash scrips 61
4.16.3 The Qt Creator project files 62
4.16.4 Thesourcefiles 62
4.17 Adding the Urho3D library 62
4.17.1 Build overview Lo 62
4.17.2 The Travisfile 63
4.17.3 The build bash scrips 63
4.17.4 The Qt Creator project files 64
4.17.5 Thesource files 64
4.18 Adding the Wt library 65
4.18.1 The Travisfile, 65
4.18.2 The build bash scrips 65
4.18.3 The Qt Creator project files 66
4.18.4 Thesourcefiles 66
Extending the build by two steps 68
5.1 Use of gcov in debug modeonly 68
5.1.1 Buildoverview oL 68
5.1.2 The Travisfile 69
5.1.3 The build bash scrips, 70
5.1.4 The Qt Creator project files 70

5.2

5.3
5.4

3.5
5.6

5.7
5.8

5.9

5.10
5.11
5.12
5.13

5.14

Qtand QTest 72
52.1 Whatis QTest? 73
5.2.2 Do not use Boost.Test to test graphical Qt aplications . . 73
523 The Travisfile 73
5.2.4 The build bash scrips L. 73
5.2.5 The Qt Creator project files 74
526 Thesourcefiles 75
C++11 and Boost libraries, 78
C++411 and Boost. Test 80
54.1 Thefunction 81
542 Test buildo 82
543 Exebuild 84
544 Buildscript Lo 85
5.4.5 Travisscript Lo o 86
C++1landclang. o o o 86
CH+1land geov . . . o o v v v i 88
5.6.1 The Travisfile 88
5.6.2 The build bash scrips 0L 89
5.6.3 The Qt Creator project files 90
5.6.4 Thesourcefiles 91
C++1land Qt oo o 92
C++1land Repp .« - - o« o o o oo o 94
5.8.1 C++ and R: the C++ function 95
5.8.2 C++: mainsourcefile oL 96
5.8.3 C++: Qt Creator project file 96
5.8.4 C++: buildscripto 98
5.8.5 R:theR function. 98
586 R:TheRtests, 99
5.8.7 R: script to install packages L. 99
5.8.8 The Travis script 100
C++11land SFML e 101
C++11land Urho3D 103
CH+1land Wt L . o e 108
C++14 and Boost libraries 111
C++414 and Boost. Test. 113
5.13.1 The function 114
513.2 Testbuild o oo 115
5.13.3 Exebuild 0. 117
5.13.4 Travisscripto 118
C++14and Repp . . - . . o o oo 119

6 Extending the build by multiple steps
6.1 C++11 and use of gcov in debug mode only
6.1.1 Buildoverview
6.1.2 The Travisfile
6.1.3 The Qt Creator project files
6.1.4 Thesourcefiles
6.2 C++11, Boost.Test and gcov,
6.2.1 The function
6.2.2 Testbuild oo o
6.2.3 Normal build 0.
6.24 Buildscript oo
6.2.5 Travisscript o o

7 Troubleshooting
7.1 sudo apt-get install gcov-5 failed and exited with 100 during . . .
7.2 Cannot find the correct version of a package
7.3 fatal error: Rcpp.h: No such file or directory

References
74 Name
7.4.1 Whatis Name?
7.4.2 The Travisfile
7.4.3 The build bash scrips,
7.4.4 The Qt Creator project files
7.4.5 Thesourcefiles, .

1 Introduction
This is a Travis C++ tutorial, version 0.2.

1.1 License

This tutorial is licensed under Creative Commons license 4.0.

©Nole

Figure 1: Creative Commons license 4.0

All C++ code is licensed under GPL 3.0.

Figure 2: GPL 3.0

1.2 Continuous integration

Collaboration can be scary: the other(s)! may break the project worked on.
The project can be of any type, not only programming, but also collaborative
writing.

A good first step ensuring a pleasant experience is to use a version control
system. A version control system keeps track of the changes in the project and
allows for looking back in the project history when something has been broken.

The next step is to use an online version control repository, which makes
the code easily accessible for all contributors. The online version control repos-
itory may also offer additional collaborative tools, like a place where to submit
bug reports, define project milestones and allowing external people to submit
requests, bug reports or patches.

Up until here, it is possible to submit a change that breaks the build.

A continuous integration tools checks what is submitted to the project and
possibly rejects it when it does not satisfy the tests and/or requirements of the
project. Instead of manually proofreading and/or testing the submission and
mailing the contributor his/her addition is rejected is cumbersome at least. A
continuous integration tool will do this for you.

Now, if someone changes you project, you can rest assured that his/her
submission does not break the project. Enjoy!

1.3 Tutorial style

This tutorial is aimed at the beginner.

Introduction of new terms and tools All terms and tools are introduced
shortly once, by a "What is’ paragraph. This allows a beginner to have a general
idea about what the term/tool is, without going in-depth. Also, this allows for
those more knowledgeable to skim the paragraph.

Repetitiveness To allow skimming, most chapters follow the same structure.
Sometimes the exact same wording is used. This is counteracted by referring to
earlier chapters.

Lif not you

From Travis to source Every build, I start from Travis CI its point of view:
"What do I have to do?’. Usually Travis CI has to call at least one build bash
script. After describing the Travis file, I will show those build files. Those build
files usually invoke Qt Creator project files, which in turn combine source files
to executables. It may feel that the best is saved for last, but I'd disagree: this
is a Travis tutorial. I also think it makes up for a better narrative, to go from
big to small.

1.4 This tutorial

This tutorial is available online at https://github.com/richelbilderbeek/
travis_cpp_tutorial. Of course, it is checked by Travis that:

e all the setups described work
e this document can be converted to PDF. For this, it needs the files from

all of these setups

1.5 Acknowledgements
These people contributed to this tutorial:

e Kevin Ushey, for getting Reppll and C++11 to work

1.6 Collaboration

I welcome collaboration for this tutorial, especially in getting the scripts as clean
as possible. If you want to help scraping off some lines, I will be happy to make
you a collaborator of some GitHubs.

1.7 Feedback

This tutorial is not intended to be perfect yet. For that, I need help and feed-
back from the community. All referenced feedback is welcome, as well as any
constructive feedback.

2 Setting up the basic build

The basic build is more than just a collection of files. It needs to be set up.
This chapter shows how to do so.

e Create a GitHub online

Bring the git repository to your local computer

Create a Qt Creator project

Create the build bash scripts

2.1 Create a GitHub online

What is GitHub? GitHub is a site that creates websites around projects. It
is said to host these projects. Each project contains at least one, but usually
multiple files. These files can be put on your own hard disc, USB stick, or other
storage devices. They could also be put at a central place, which is called a
repository, so potentially others can also access these. GitHub is such a file
repository. GitHub also keeps track of the history of the project, which is also
called version control. GitHub uses git as a version control software. In short:
GitHub hosts git repositories.
Figure 3 shows the GitHub homepage, https://github.com.

i GitHub - Where software is built - Mozilla Firefox -+ X%

) GitHub - Wheresoft... x | +

€) © U @ GitHub, Inc. (US) github.com e ||® we 9 4 a0 =

GitHub Explore Features Enterprise Pricing Sign in

Where software is built

Powerful collaberation, code review, and code management for
open source and private projects. Public projects are always free.

Figure 3: The GitHub homepage, https://github.com

Register Before you can create a new repository, you must register. Regis-
tration is free for open source projects, with an unlimited? amount of public
repositories.

From the GitHub homepage, https://github.com (see figure 3), click the
top right button labeled "Sign up’. This will take you to the ’Join GitHub’ page
(see figure 4).

2the maximum I have observed is a person that has 350 repositories

Join GitHub - GitHub - Mozilla Firefox -+ x

Join GitHub - GitHub ~ x ‘-\+

@ GitHub, Inc. (US) | https://github.com/join?source=header @ |[®search B2l :=] + A& O =

GitHub Explore Features Enterprise Pricing @ Sign in

Join GitHub

The best way to design, build, and ship software.

Step 1:
Set up a personal account

Create your personal account
You’ll love GitHub
Username

Unlimited collaborators

This will be your usemame — you can enter your organization's usermame next. Unlimited pubiic repositories

Email Address
¥ Great communication

~ Friction-less development
You will occasionally receive account related emalls. We promise not to share your

email with anyone. + Open source community

Password

Use at least one lowercase letter, one numeral, and seven characters.

By clicking on "Create an account” below, you are agreeing to the Terms of

Service and the Privacy Policy.

Figure 4: The join GitHub page

Filling this in should be as easy. After filling this in, you are taken to your
GitHub profile page (figure 5).

richelbilderbeck (Richel Bilderbeek) - Mozilla Firefox
File Edit View History Bookmarks Tools Help

) richelbilderbeek (Ric

. X -\n{}_‘

(¢

& GitHub, Inc. (US) | https://github.cem/richelbilderbeek

& |[@search

| w®s 9 @

9]

Richel Bilderbeek
richelbilderbeek

] University of Groningen

Q Groningen

3 richel@richelbilderbeek.nl
D hitp://www.richelbilderbeek.nl
© Joined on Aug 5, 2012

v

Followers

175 74

starred Following

Organizations

A%
_mvam

‘ma

Pullr

o | e nepusilories

Popular repositories

K BoostGraphTutorial

3 Public activity

Repositories contributed to

E LucKeyProducti.../GameOiLifeFi...

1% 3k
A well-connected C==11 Boost.Graph tutorial Conway's Doughnut Combat
[ProjectRichelBilderbeek sk E] macroevolution/simtree ok
Richel Bilderbeek's C++ work. before spliiing Simulation of phylogenies under multi-shit BA...
IJ HetRoversnest it & janderkkotlarski/Tasteroid ok
Text adventure game, after the book 'City of T. Tasting tests
dr B ; .
3t £ carmenlJsebaart/PlantAndWater... *
My notes on the R programming language
[ArduinoCourse e B} isocpp/CppCoreGuidelines o795 4
Arauino cursus gegeven bi] De Jonge Onderzo... The G++ Core Guidelines are a set of tried-an...
Contributions]
u | | u
u]
u | | [] | |
| PP]
| |
| |] | |]
L | [| u u
Summary of pul requests, Issues opened, and commils. Leam how we count contributions Less EEE Vore

Contributions in the last year

4,554 total

Mar 15,2015 — Mar 15, 2016

Longest streak

99 days

October 30 - February 5

Current streak

15 days

March 1 —March 15

Creating a repository From your GitHub profile page (figure 5), click on
the plus ("Create new ...") at the top right, then click "New repository’ (figure

6).

Figure 5: A GitHub profile page

10

- Create a New Repository - Mozilla Firefox -+ x

J) Create a New Repository % ‘\n{b

() @ @ GitHub, Inc. (US) | hitps:/github.com/new ¢ | [Psearch lvm @ 3 & © =
o Pull requests Issues Gist A +- . - [
‘equests Issues Gist a +- . -

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name

. richelbilderbeek ~ /' cold_fusion_reactor v
\Aral IEPUSIOTY NAITES AT SNOILAMNG MEMNOTADIe. NSea INSPITAUCH ¢ [OW aU0uL CUrly-Iesta.

Description (optional)

A cold fusion reactor

® Public
Anyone can see this repository. You choose who can commit.

o] Private
You choose who can see and commil to this repository.

¥ Initialize this repository with a README
This will let you immediately clone the repository to your computer. SKip this step it you're importing an existing repository.

Add _gitignore: C++ ~ Add a license: GNU General Public License v3.0 -

Create

Figure 6: Create a GitHub repository

Do check ’Initialize this repository with a README’, add a .gitignore with
"C++" and add a licence like "GPL 3.0’

11

revision 1 revision 2

Figure 8: Multiple versions of main.cpp. git allows to always go back to each

version of main

- richelbilderbeek/cold fusion_reactor: A cold fusion reactor - Mozilla Firefox
) richelbilderbeek/cold f.. % | e

€

[QE—

() @ GitHub, Inc. (US) | https://github.com/richelbilderbeek/cold_fusion_react

¢ |[®search

Pull ¥

README.md

cold fusion_reactor

A cold fusion reactor

w8 9 3 & 9

This repository Pull requests Issues Gist ‘ +- - -
richelbilderbeek / cold_fusion_reactor Ounwatch~ 1 Hstar o YFork 0
<> Code Issues @ Pull requests o Wiki Pulse Graphs Settings

A cold fusion reactor — Edit
© 1 commit ¥ 1 branch 0 releases 1 contributor
Branch: master « Newfile Uploadfiles Findfile ~HTTPS- nttpsi/sgicnun.consricn [Download ZIP
. richelbilderbeek Initial commit Latest commit 213f83d just now
B .gitignore Initial commit just now
B License Initial commit just now
[README.md Initial commit just now

Figure 7: Created a GitHub repository

You have now created your own online version controlled repository (figure

7!

2.2 Bring the git repository to your local computer

What is git? git is a version control system. It allows you keep a history of
a file its content in time. It is the more convenient alternative of making copies

before each modification.

12

it
Figure 9: git logo
Using git Go to the terminal and type the following line to download your
repository:

git clone https://github.com/[your name|/[your repository]

Replace ’[your name]’ and ’[your repository]’ by your GitHub username
and the repository name. A new folder called ’[your_ repository|’ is created
where you should work in. For example, to download this tutorial its repository
to a folder called *travis cpp tutorial’:

git clone https://github.com/richelbilderbeek /travis_ cpp_ tutorial

2.3 Create a Qt Creator project
What is Qt Creator? Qt Creator is a C++ IDE

al

Figure 10: Qt creator logo

Creating a new project Project will have some defaults: GCC.

What is a Qt Creator project file? A Qt Creator project file contains the
information how a Qt Creator project must be built. It commonly has the .pro
file extension.

Two big circles: ’C++ Project’ and ’executable’
Within first circle: two smaller circles: .cpp and .h
Arrow from first to second circle with text ’compiler, linker’

Figure 11: Overview of converting a C++ project to an executable

13

compiler linker

executable

i
=
HaSS
=
e
- @
Q4
&
(e}
el
@
&
o

linker

' #include compiler
Figure 12: From files to executable. The compiler converts source (.cpp) files
to object (.0) files. The linker uses these object files to create one executable

What is qmake? qmake is a tool to create makefiles.

Two upper circles: ’.pro’ -> "Makefile’
Two lower circles: ".cpp’ and ’.h’, both -> to .pro, both dotted line to "Makefile’

Figure 13: What qmake does

What is make? makeis a tool that reads a makefile and creates an executable

'Makefile’ —[make]> ’executable’

Figure 14: What make does

What is GCC? GCC, the GNU Compiler Collection, is a collection of com-
pilers, among other, the C++ compiler called g+—+.

Figure 15: GCC logo

What is g+-+7?7 g++ is the C++ compiler that is part of the GCC.

14

What is C++987 C++98 is the first C++ standard in 1998.

What is the STL? The STL, the Standard Template Library, is the C+-+
standard library.

2.4 Create the build bash scripts
What is bash? ’bash’ is a shell scripting language

3 The basic build

This basic build consists of a "Hello World’ program, written in C++98. It uses
the Qt Creator default settings: Qt Creator will create a Qt Creator project
file, which in turn will use GCC.

e What is a C++98 "Hello world’ program? See chapter 3.1
e The Travis build file. See chapter 3.2

e The build script. See chapter ?7?

The Qt Creator project file. See chapter 3.3

e The source file. See chapter 3.4

3.1 What is a C++98 "Hello world’ program?

A ’Hello World’ program shows the text 'Hello world’ on the screen. It is a
minimal program. Its purpose is to show that all machinery is in place to create
an executable from C+-+ source code.

A listing of a "Hello world’ program is shown at algorithm 3. Here I go
through each line:

e #include <iostream >
Read a header file called ’iostream’
e int main() { /% your code x/ }

The 'main’ function is the starting point of a C++ program. Its body is
between curly braces

e std::cout << "Hello world\n";

Show the text 'Hello world’ on screen and go to the next line

15

3.2

The Travis file

Travis CI is set up by a file called ’.travis.yml’. The filename starts with a dot,
which means it is a hidden file on UNIX systems. The extension 'yml’ is an
abbreviation of "Yet another Markup Language’.

The ’.travis.yml’ file to build and run a "Hello world’ program looks like this:

Algorithm 1 .travis.yml

language: cpp
compiler: gcc

script:
- gmake
- make

./travis_qmake_gcc_cpp98

This .travis.yml file has the following elements:

language: cpp
The main programming language of this project is C++
compiler: gcc

The C++ code will be compiled by the GCC (What is GCC? See chapter
2.3)

script :
— qmake
— make
— ./travis_qmake gcc_cpp98

The script that Travis will run.
gmake

"qmake’ is called to create a makefile (What is ’qmake’? See chapter 2.3)
from the only Qt Creator project file. In this build, the name of this
project file is ommitted, as there is only one, but there are chapters in
this tutorial where the project name is mentioned explicitly. Note that
currently, qmake uses Qt4 (What is Qt4? see chapter 4.11.1)

make

‘make’ is called to compile the makefile (What is 'make’? See chapter
2.3). In this build, 'make’ is called without any arguments, but there are
chapters in this tutorial where 'make’ is called with arguments

16

e ./travis qmake gcc cpp98
Run the created executable called 'travis qmake gcc cpp98’
This Travis script can fail in in multiple places:

1. If the Qt Creator project file is incorrectly formed, ’qmake’ will fail, and
as it cannot create a valid makefile

2. If the Qt Creator project file is incomplete (for example: by omitting
libraries), 'make’ will fail. ’qmake’ has created a makefile, after which
'make’ finds out that it cannot create an executable with that makefile

3. The executable can return an error code. A ’Hello World’ program is in-
tended to return the error code for ’everything went fine’. Other programs
in this tutorial return error codes depending on test cases. It may also
be that dynamically linked libraries cannot be found, which crashes the
program at startup

3.3 Qt Creator project file
The following Qt Creator project file is used in this "Hello world’ build:

Algorithm 2 travis _qmake gcc_cpp98.pro

SOURCES += main.cpp
QMAKE_CXXFLAGS += -Wall -Wextra -Wshadow -Wnon-virtual-dtor -pedantic -Weffc++ -Werror

This Qt Creator project file has the following elements:
e SOURCES 4= main.cpp
The file 'main.cpp’ is a source file, that has to be compiled
e QMAKE CXXFLAGS += —Wall —Wextra —Weffc++ —Werror

The project is checked with all warnings (-Wall’), with extra warnings (’-
Wextra’) and with the Effective C++ [1] advices (-Weffc++’) enforced.
A warning is treated as an error (-Werror’). This forces you (and your
collaborators) to write tidy code.

3.4 CH+ source file
The single C++ source file used in this "Hello world’ build is:

17

Algorithm 3 main.cpp

#include <iostream >

int main() {
std::cout << "Hello_world\n";
}

All the code does is display the text 'Hello world’, which is a traditional
start for many programming languages. See 3.1 for a line-by-line explanation.
The code is written in C++98 (What is C++4987 See chapter 2.3). It does not
use features from the newer C++ standards, but can be compiled under these
newer standards. It will not compile under plain C.

4 Extending the build by one step

The following chapter describe how to extend the build in one direction. These
are:

e Use a debug and release build: see chapter 4.1
e Use of C++11: see chapter 4.2

e Use of C++14: see chapter 4.3

e Use of Boost: see chapter 4.4

e Use of Boost.Test: see chapter 4.5

e Use of clang: see chapter 4.6

e Use of gcov and Codecov: see chapter 4.7
e Use of gprof: see chapter 4.9

e Use of Qt: see chapter 4.10

e Use of Qt4: see chapter 4.10

e Use of Qt5: see chapter 4.10

e Use of QTest: see chapter 4.13

e Use of Repp: see chapter 4.14

e Use of SFML: see chapter 4.15

e Use of Urho3D: see chapter 4.17

e Use of Wt: see chapter 4.18

18

4.1 Use of debug and release build

This example shows how to use Travis to create a debug and release build.

4.1.1 What are debug and release builds?

A debug build means that the executable is created in such a way that helps in
debugging it. For example, assert statements are only present in debug builds.

A release build means that the executable is created in a way that allows it
to run quicker and have a smaller file size. For example, assert statements are
removed from the source code in a release build.

4.1.2 The Travis file

The Travis file has to do more things now, as it has to to create and run two
different builds.
Here is how that looks like:

Algorithm 4 .travis.yml
language: cpp
compiler: gcc

script:
- ./build_debug.sh
- ./travis_gmake_gcc_cpp98_debug_and_release
- ./clean.sh
- ./build_release.sh
- ./travis_gmake_gcc_cpp98_debug_and_release

This .travis.yml file is rather self-explanatory: it builds a debug version, and
runs it. After cleaning up, it builds a release version and runs it.

4.1.3 The build bash scrips

Both build modes have their own build script. They are very similar to the one
described in chapter 77:

Algorithm 5 build _debug.sh
#!/bin/bash

qmake travis qmake gcc cpp98 debug and release.pro
make debug

19

Algorithm 6 build release.sh

#!/bin/bash
qmake travis qmake gcc cpp98 debug and release.pro
make release

The only difference is the added extra parameter to 'make’; which is ’debug’
for the debug build, and ’release’ for the release build.
4.1.4 The Qt Creator project file

The Qt Creator project file has to allow for the two different builds. It does so
as follows:

Algorithm 7 travis_qmake gcc cpp98 debug and release.pro
SOURCES += main.cpp

Debug and release mode

CONFIG += console debug_and_release

CONFIG(release, debuglrelease) {
DEFINES += NDEBUG

)

Next to setting 'main.cpp’ as the only source file, these lines are new:
e CONFIG += console debug and release
Create a debug and release makefiles

e CONFIG(release , debug]|release) {
DEFINES -+= NDEBUG

}

In the release makefile only, the preprocessor symbol 'NDEBUG’ is #de-
fined. This, among others, will remove all assert statements

4.1.5 The source files

This build uses a "Hello world’-like program that shows and proves the mode in
which it is built:

20

Algorithm 8 main.cpp

#include <cassert >
#include <iostream >

int main() {
#ifdef NDEBUG
std ::cout << "Release_mode" << ’'\n’;
assert (1==2);
#else
std :: cout << "Debug_mode" << ’'\n’;
assert(l+1==2);
#endif

It will show in text the build type. Next to this, an assert is called. In release
mode, the known-to-be-false assert statement is removed. In debug mode, the
known-to-be-true assert statement is left in.

4.2 Use of C+-+11

In this example, the basic build (chapter 3) is extended by using C++11, instead
of C++98.

4.2.1 What is C4++117

C++11 is the C++ standard formalized in 2011. Its working title was C++-0x,
as then it was assumed that the standard would be finished in 200x. C+-+11
is fully backwards compatible with C++98. One of the major new features of
C+-+11 is the introduction of move semantics, which results in faster run-time
code, by possibly reducing needless copies of objects.

In my examples, I typically use the C++11 'noexcept’ keyword (What is
noexcept? See chapter 4.2.2).

4.2.2 What is noexcept?

'noexcept’ is a C++11 keyword. It is a modifier that specifies that a (member)
function will not throw an exception. Would that function throw an exception
anyhow, the program is terminated.

4.2.3 The Travis file

The default Travis CI setup is not sufficient to use C++11 (yet). Travis CI by
default uses a LTS ("Long Term Stable’) repository, as these is the most stable
and reliable. The version of g++ in that repository is version 4.6.3, whuch does

21

not support C++11. To use C++11, we will first add a fresher (less stable)
repository. Then we can install g+-+-5,that does support C++11.
Here is how that looks like:

Algorithm 9 .travis.yml
language: cpp
compiler: gcc
dist: trusty

script:
- gmake
- make
- ./travis_gmake_gcc_cppll

This .travis.yml file has some new features:
e sudo: require

For this build, we need super user rights. When you need super user rights,
the build will be slower.

e before install:
The following events will take place before installation
e sudo add—apt—repository —yes ppa:ubuntu—toolchain—r/test

)

A new apt repository is added. The —yes’ explicitly states that we are
sure we want to do this. Without the '—yes’ flag, Travis will be prompted
if it is sure it wants to add this repository. This would break the build.

e sudo apt—get update —qq

After adding the new apt repository, then the current repositories need to
be updated updated. The ’-qq’ means that this happens quietly; with the
least amount of output.

e install: sudo apt—get install —qq g++-5

Install g+--5, which is a newer version of GCC than is installed by default

In the script, the code is built and then run.

22

4.2.4 The Qt Creator project file

The Qt Creator project file by default calls 'g++’ with its default C++ standard.
In this build, we will have to let it call g++-5 with the C++11 standard:

Algorithm 10 travis _gmake gcc _cppll.pro
Project files
SOURCES += main.cpp

Compile with high warning levels, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Wshadow -Wnon-virtual-dtor -pedantic -Weffc++ -Werror

C++11
CONFIG += c++11
QMAKE_CXXFLAGS += -std=c++11

The Qt Creator project file has the same lines as the basic project in chapter
3, except for:

o QVAKE (XX = gt{—5

Set the C++ compiler to use g++ version 5, which is a newer version than
currently used by default

e QMAKE LINK — g4+—5

Set the C++ linker to use g++ version 5, which is a newer version than
currently used by default

o QMAKE (C = g++5

Set the C compiler to use g++ version 5, which is a newer version than
currently used by default

o QVIAKE_CXXFIAGS += —std=c++11
Compile under C++11

Except for this, all is just the same.

4.2.5 The source files

This build uses a "Hello world’-like program that uses C++11:

23

Algorithm 11 main.cpp

#include <iostream >

/) C++11
void f() noexcept

{

std::cout << "Hello_world\n";

}

int main ()
{

£0);
}

It will show the text "Hello world’ on screen.

The keyword ’'noexcept’ (What is noexcept? See chapter 4.2.2) does not
exist in C++98 and it will fail to compile. This code will compile under newer
versions of C++.

4.3 Use of C++14

In this example, the basic build (chapter 3) is extended by using C++14.
What is C++4+147 C+-+14 is a C++ standard that was formalized in 2014.
It is fully backwards compatible with C++11 and C++98. It does not have any
major new features, and mostly extends C+-+11 features.

In my examples, I usually add digit seperators: instead of ’1000’, in C++14
one can write '1’000’, using a single quote as a seperator. This will not compile
in C++11.

4.3.1 The Travis file

Setting up Travis is done by the following .travis.yml:

24

Algorithm 12 .travis.yml
language: cpp
compiler: gcc
dist: trusty

before_install:
C++14
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq

install:
C++14
- sudo apt-get install -qq g++-5
- sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 90

script:
- gmake
- make
- ./travis_qmake_gcc_cppl4d

This .travis.yml file is the same as the C++11 build in chapter 4.2.

4.3.2 The Qt Creator project files

This single file is compiled with qmake from the following Qt Creator project
file:

Algorithm 13 travis_gmake gcc cppld.pro
SOURCES += main.cpp

Compile with high warning levels, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Wshadow -Wnon-virtual-dtor -pedantic -Weffc++ -Werror

C++14
CONFIG += c++14
QMAKE_CXXFLAGS += -std=c++14

The Qt Creator project file has the same lines as the C++11 build in chapter
4.2, except for that it uses one different QMAKE CXXFLAGS item:

o OMAKE_CXXFLAGS += —std=c++14

Compile under C+-+14

25

4.3.3 The source files

The single C++ source file used is:

Algorithm 14 main.cpp

#include <iostream>

/) C++14

auto f() noexcept

{
}

int main()

{
}

return "Hello_world\n";

std ::cout << f();

This is a simple C+-+14 program that will not compile under C++11.

4.4 Adding Boost

In this example, the basic build (chapter 3) is extended by also using the Boost
libraries.

4.4.1 What is Boost?

Boost is a collection of C+-+ libraries.

Figure 16: Boost logo

4.4.2 The Travis file

Setting up Travis is done by the following .travis.yml:

26

Algorithm 15 .travis.yml
language: cpp
compiler: gcc

addons:
apt:
packages: libboost-all-dev

script:
- ./build.sh
- ./travis_gmake_gcc_cpp98_boost

This .travis.yml file has one new feature:

e addons:
apt:
packages: libboost—all—dev

This makes Travis aware that you want to use the aptitude package
"libboost-all-dev’. Note that this code cannot be put on one line: it has
to be indented similar to this

Using packages like this avoids using sudo, which speeds up the build. Not all
packages can be used as such, however, but most are.

4.4.3 The build bash scrips

The bash build script to build and run this:

Algorithm 16 build.sh

#!/bin/bash
gqmake
make

The bash script is identical to the basic build script as in chapter 77.

4.4.4 The Qt Creator project files

This single file is compiled with qmake from the following Qt Creator project
file:

Algorithm 17 travis qmake gcc cpp98 boost.pro
SOURCES += main.cpp
QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

27

The Qt Creator project file has the same lines as the basic project in chapter
3.3.

4.4.5 The source files
The single C++ source file used is:

Algorithm 18 main.cpp

#include <iostream >
#include <boost/version .hpp>

int main() {
std :: cout << BOOST LIB VERSION << ’\n’;

}

All the file does is display the version of Boost on the screens. It will only
compile when the Boost libraries are present.
Currently, on Travis CI, the default Boost version is 1.46.1.

4.5 Adding Boost.Test

Adding only a testing framework does not work: it will not compile in C++98.
Instead, this is covered in chapter 5.4.

4.6 Use of clang
In this example, the basic build (chapter 3) is compiled by the clang compiler.

4.6.1 What is Clang?

clang is a C+-+ compiler

Figure 17: clang logo

28

4.6.2 The Travis file

Setting up Travis is done by the following .travis.yml:

Algorithm 19 .travis.yml
language: cpp
compiler: gcc

addons:
apt:
packages: clang

script:
- ./build.sh
- ./travis_gmake_clang_cpp98

This .travis.yml file uses the package clang (without needing sudo), compiles
the program and then runs it.

4.6.3 The build bash scrip
The bash build script to build this:

Algorithm 20 build.sh
#1/bin/bash

qmake
make

The bash script is identical to the basic bash script as described in chapter
29

4.6.4 The Qt Creator project files

This single file is compiled with qmake from the following Qt Creator project
file:

29

Algorithm 21 travis_qmake clang cpp98.pro

SOURCES += main.cpp

Compile at a high warning level, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

clang

QMAKE_CXX = clang++
QMAKE_LINK = clang++
QMAKE_CC = clang

The Qt Creator project file.. except for:

o QMAKE CXX = clang++
Set the C++ compiler to use clang++

e QMAKE IINK = clangt+

Set the C++ linker to use clang++
e QMAKE OC = clang

Set the C compiler to use clang

4.6.5 The source files

The single C++ source file used is:

Algorithm 22 main.cpp

#include <iostream>

int main() {
std :: cout << "Hello_world\n";
}

This is just a 'Hello world’ program, as discussed in detail in chapter .

4.7 Adding gcov and Codecov

In this example, the basic build (chapter 3) is extended by calling gcov and
using codecov to show the code coverage.

4.7.1 What is gcov?

geov is a tool that works with GCC to analyse code coverage

30

4.7.2 What is Codecov?

Codecov works nice with GitHub and give nicer reports

Figure 18: Codecov logo

Here is an example of a code coverage report, which is generated by this
example:

31

- richelbilderbeek/travis_gmake_gce_cpp98_gcov/./main.cpp@cfade0? - Mozilla Firefox - + X
richelbilderbeek/travis_.. % | 57

€) (0 @ https:/icodecov.iorgithub/richelbilderbeek/travis_gmak @ | |Q search A 9 3+ & © =

‘e Features Languages Pricing O | e

© richelbilderbeek / travis_qgmake_gcc_cpp98_gcov / main.cpp

< Coverage 6 statements | O branches | 0 methods m (w]

50.00% v

///Returns the value of x multiplied by 2, except for 42, which is multiplied by one
int do_magic(const int x)
{
if (x == 42)
{
return 42;
1

return x * 2;

}

1 |int main()
{
1 std::cout << do_magic(2) << '\n‘;
//Forgot to test do_magic(42)

2}

Figure 19: Codecov report of this build

4.7.3 The Travis file

Setting up Travis is done by the following .travis.yml:

32

Algorithm 23 .travis.yml
sudo: require
language: cpp
compiler: gcc

before_install:
- sudo pip install codecov

script:
- gmake travis_gmake_gcc_cpp98_gcov.pro
- make
- ./travis_gmake_gcc_cpp98_gcov
- ./get_code_cov
- codecov

after_success:
- bash <(curl -s https://codecov.io/bash)

This .travis.yml file has some new features:
e sudo: require

Travis will give super user rights to the script. This will slow the build
time, but it is inevitable for the next step

e before install: sudo pip install codecov

Travis will use pip to install codecov using super user rights. It is tempo-
rary workaround to use sudo, as sudo should not be needed. This is seen
as a bug, is known and solved. It just has to seep through to the Travis
CI GNU/Linux distro.

e after success: codecov

After the script has run successfully, codecov is called

The code coverage performed in this build mismatches with the goals of code
coverage. One of these goals is to test for unused ('dead’) code. Code coverage
fits better within a debug build, where all functions are tested with valid and
invalid input. Chapter 6.1 shows a build in which code coverage is tested in
debug mode only.

4.7.4 The build bash scrips

The bash build to measure the code coverage:

33

Algorithm 24 get code cov

#!/bin/bash
for filename in ‘find . | egrep ’\.cpp’‘;
do

gcov —n —o . $filename > /dev/null;
done

This script uses gceov on all implementation files.
Going into a bit more detail on the new lines:

e for filename in ‘find . | egrep ’\.cpp’‘;
do
gcov —n —o . $filename > /dev/null;
done

Find all filenames (in this folder and its subfolder) that end with *.cpp’.
For each of these filenames, let ’gcov’ work on it. The '-n’ flag denotes 'no
output please’. Because there is still some output, this output is sent to
the void of ’/dev/null’. The -0 . means that the object files are in the
same folder as this script

4.7.5 The Qt Creator project files

This normal is compiled with gmake from the following Qt Creator project file:

Algorithm 25 travis qmake gcc cpp98 gcov.pro
SOURCES += main.cpp

Compile with a high warning level, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

gcov
QMAKE_CXXFLAGS += -fprofile-arcs -ftest-coverage
LIBS += -lgcov

The Qt Creator project file has two new lines:

e QMAKE CXXFLAGS += —fprofile —arcs —ftest —coverage
Let the C++ compiler add coverage information

e LIBS += —lgcov

Link against the gcov library

34

4.7.6 The source files
The C++ source file used by the normal build is:

Algorithm 26 main.cpp

#include <iostream>

///Returns the wvalue of z multiplied by 2,
/// except for 42, which is multiplied by one
int do_magic(const int x) {
if (x == 42) {
return 42;

}

return x x 2;

}

int main() {
std :: cout << do_magic(2) << ’'\n’;
//Forgot to test do_magic(42)

It defines a function called ’do_magic’. It is called for the value two, but
not for the value 42. Due to this, we expect to see an incomplete code coverage.
And this is indeed detected, as shown in figure 19.

4.8 Adding OCLint

In this example, the basic build (chapter 3) is extended by adding OCLint
support. Because we intendedly use smelly code, this build is supposed to fail
due to (only) this.

What is OCLint? OCLint is a static code analysis tool.

4.8.1 The Travis file

Setting up Travis is done by the following .travis.yml:

35

Algorithm 27 .travis.yml
language: cpp
compiler: gcc
sudo: required

install:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test --yes
- sudo apt-get update -qq

- sudo apt-get install -qq libstdc++6-4.7-dev

- ./install_oclint.sh

script:
- ./build.sh
- ./travis_qmake_gcc_cpp98_oclint
- ./do_oclint.sh

This .travis.yml file has one new feature:

e sudo add—apt—repository ppa:ubuntu—toolchain—r/test —yes
Add a newer apt repository than installed on Travis

e sudo apt—get update —qq
Update the packages

e sudo apt—get install —qq libstdc++6—4.7—dev

This makes Travis install the package "libstdc++6-4.7-dev’, that is needed
by OCLint

e ./install oclint.sh
This makes Travis install OCLint
e ./do_oclint.sh
Let OCLint check the code
e cat log correct.txt
Let Travis show the log of a file that passes OCLint
e cat log correct.txt

Let Travis show the log of a file that does not pass OCLint

36

4.8.2 The build bash scrips
The bash build script to build this:

Algorithm 28 build.sh

#!1/bin/bash
qmake
make

The bash script has the same lines as the basic project in chapter 3.
The script to let OCLint check the code:

37

Algorithm 29 do_oclint.sh

#!/bin/bash
cpp _files=‘ls x.cpp"

Clean main should work
./oclint —0.10.3/bin/oclint —o oclint.log \
$cpp _files — —c

cat oclint.log

Will be 0 if success
Will be 1 if fail
fail=‘egrep "Compiler_Errors" oclint.log | wc —1°¢

if | $fail —eq 1 |;

then
echo "OCLint:_Compiler_error"
exit 1

else
echo "OCLint: _OK"

fi

Will be 1 if success

Will be 0 if fail

success=‘egrep "FilesWithViolations=0_P1=0_P2=0_P3=0"
oclint .log | wec —1°¢

if [$success —eq 1];

then
echo "OCLint: _OK"
else
echo "OCLint:_Fail"
exit 1
fi

Here T call OCLint with these parameters:
e —0 oclint.log

Write the output to the file ’oclint.log’
e main.cpp

All the files to be analysed

38

After this are the compiler settings
e —C
7no idea, please email me if you do

Additionally, I analyse the log files using
success=‘egrep "FilesWithViolations=0 P1=0 P2=0 P3=0" log_correct.txt | wc —1°

In more detail, this means:
e success = ‘[...] "¢

The variable ’success’ get assigned the outcome of the part between back-
ticks

e egrep "[regex]|" oclint.log
Search through the file 'oclint.log’ for the regular expression ’[regex]’
o | wc —1

The result of the egrep is piped to a word count (*wc’) by line *-I’. If egrep
found the regex, the line count will be 1, yet 0 otherwise

4.8.3 The Qt Creator project files

This single file is compiled with gqmake from the following Qt Creator project
file:

Algorithm 30 travis_qmake gcc cpp98 oclint.pro
SOURCES += main.cpp
QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

The Qt Creator project file has the same lines as the basic project in chapter

4.8.4 The source files

The C++ source file used is just a "Hello World’ program:

39

Algorithm 31 main.cpp

#include <iostream >

int main()

{
}

std :: cout << "Hello_world\n";

4.9 Adding profiling

4.10 Adding the Qt library

In this example, the basic build (chapter 3) is extended by also using the Qt
library.

What is Qt? Qt (pronounce ’cute’) is a library to create C++ GUI’s.

Figure 20: Qt logo

At this moment, there are two versions of Qt: Qt4 and Qt5. The GNU/Linux
version Travis CI uses has Qt4. When this GNU/Linux distro changes, Qt5 will
be the new (next) default.

4.11 Adding the Qt4 library
4.11.1 What is Qt4?
Qt4 is version 4 of the Qt library (What is Qt? see chapter 4.10).

4.11.2 The Travis file

Setting up Travis is done by the following .travis.yml:

40

Algorithm 32 .travis.yml
language: cpp
compiler: gcc

Start virtual X server, from https://docs.travis-ci.com/user/gui-and-headless-browsers/
before_script:

- "export DISPLAY=:99.0"

- "sh -e /etc/init.d/xvfb start"

- sleep 3 # give xvfb some time to start

script:
- ./build.sh
- ./travis_gmake_gcc_cpp98_qt4

This .travis.yml file starts xvfb before the script. In the script, it builds the
code first, before running the resulting executable. Instead of calling ’qmake’,
however, it explicitly calls 'qmake-qt4’.

4.11.3 What is xvfb?

xvib is the vitual X server.

4.11.4 The Qt Creator project files

This project is compiled from the following Qt Creator project file:

Algorithm 33 travis_qmake gcc cpp98 qtd.pro
QT += core gui

Cannot use -Weffc++ with Qt4
QMAKE_CXXFLAGS += -Wall -Wextra -Werror

SOURCES += main.cpp
SOURCES += my_dialog.cpp
FORMS += my_dialog.ui
HEADERS += my_dialog.h

RESOURCES += travis_qgmake_gcc_cpp98_qt4.qrc

The Qt Creator project file:
e QT 4= core gui

To be able to use a GUI, one needs to add ’gui’ (and keep ’core’) defined

41

o QMAKE CXXFLAGS += —Wall —Wextra —Werror

When working with a Qt resource file, the -Weffc++-’ flag will trigger a
warning

e SOURCES += main. cpp
HEADERS += my dialog.h
SOURCES += my dialog.cpp
FORMS += my_dialog. ui

The files that, respectively, contain the main function definition, the dec-
laration of 'my dialog’, the implementation of 'my dialog’ and the form
of ‘my dialog’

e RESOURCES += travis qmake gcc cpp98 qt4d.qrc

Use a resource file. This resource file contains the picture that is on the
form.

4.11.5 The source files

This project uses multiple source files.
The main function is defined as such:

Algorithm 34 main.cpp

#include <QApplication>
#include "my dialog.h"

int main(int argc, char xargv([])
{
QApplication a(argc, argv);
my dialog d;
d.show () ;

return a.exec();

This is a standard implementation of the main function for a graphical Qt
application.
qwiq

e #include <QApplication>
#include "my dialog.h"

Read the headers of, respectively, the Qt QApplication class and our cus-
tom my _dialog class

42

e int main(int argc, char xargv|[])

This is one of the two official versions of main. This version takes into
account the arguments supplied at startup of the application. For exam-
ple, would this application be called with ’travis _qmake gcc cpp98 qt4
hello’, the value of arge ("argument count’) would be two and the array
argv would be (thus) of size two with strings 'travis _qmake gcc cpp98 qt4’
and ’hello’

e QApplication a(argc, argv);
Start the QApplication class

e my dialog d;
d.show ();

Create an instance of my dialog and show it
e return a.exec();

Start QApplication (which handles events for my dialog) and return an
error code depending on how the application is terminated.

The declaration of my dialog looks like this:

43

Algorithm 35 my dialog.h

#ifndef MY DIALOG H
#define MY DIALOG H

#include <QDialog>

namespace Ui {
class my dialog;

}

class my dialog : public QDialog
Q_OBJECT

public:
explicit my dialog(QWidget xparent = 0);
“my dialog() ;

private:

Ui::my dialog #ui;

}s

#endif // MY DIALOG_H

This header file is completely generated by Qt Creator.

o #ifndef MY DIALOG H
#define MY DIALOG H

#endif // MY DIALOG H
This is an #include guard. An #include guard ensures that this file is
read only once per compilation unit. Every header file should have these
[REF], although '#pragma once’ is also a fine solution.

e #include <QDialog>
Read the Qt QDialog header file

e namespace Ui {
class my dialog;
}

44

A forward-declaration of a class called 'my dialog’ within the "Ui’ names-
pace. Forward-declarations intend to speed up compilation.

class my dialog : public QDialog

{
/..
}s

Create a class called 'my _dialog’ which is a derived class of the Qt *QDi-
alog’ class

Q_OBIJECT
Macro to signify that this class uses the Qt signal and slot mechanism

public:
explicit my dialog(QWidget xparent = 0);
“my dialog ();

Public constructor and destructor

private:
Ui::my dialog =ui;

The private user interface (which has only been forward-declared)

The implementation of my dialog looks like this:

Algorithm 36 my dialog.cpp

#include "my dialog.h"
#include "ui my dialog.h"
#include <QTimer>

my dialog:: my_dialog(QWidget xparent)

}

QDialog(parent) ,
ui (new Ui::my_dialog)

ui—>setupUi(this);

QTimer * const timer (new QTimer(this));

connect (timer ,SIGNAL(timeout ()) ,this ,SLOT(close ()));
timer—>setInterval (1000);

timer—>start () ;

my dialog:: " my_dialog()

{
}

delete ui;

45

Most of this code is generated by Qt, except for the addition of a timer that
closes the dialog after one second:

e #include "my dialog.h"
#include "ui my dialog.h"
#include <QTimer>

Read, respectively, the declaration of my dialog, the declaration of the
user interface of my dialog, and the declaration of the Qt QTimer class

e my dialog::my dialog(QWidget xparent)

QDialog (parent),
ui (new Ui::my_dialog)

/).

{
}

This is a standard constructor. The base class of my dialog, QQDialog, is
called with the optional 'parent’ argument. The user interface is instanci-
ated.

e ui—setupUi(this);
Set up the user interface of my dialog

e QTimer % const timer (new QTimer(this));
connect (timer ,SIGNAL(timeout ()) , this ,SLOT(close ()));
timer—>setInterval (1000);
timer—>start ();

Create a timer, which will be deleted by this class. Connect its 'timeout’
signal to the ’close’ slot of this dialog. Set the interval of the timer to a
thousand milliseconds and start it.

e my dialog:: " my dialog()

{
}

A standard destructor, that deletes the user interface

delete ui;

4.12 Adding the Qt5 library
4.12.1 What is Qt57?
Qt5 is version 5 of the Qt library (What is Qt? see chapter 4.10).

46

4.12.2 The Travis file

Qt5 is not the default Qt version in the current Travis CI GNU/Linux distro.
Thanks to http://stackoverflow.com/questions/25737062/travis-ci-for-a-qtb-project#
25743300 for showing how install Qt5 on Travis CI:

Algorithm 37 .travis.yml
sudo: required

dist: trusty

language: cpp
compiler: gcc

From https://gist.github.com/jreese/6207161#gistcomment-1462109
before_install:
- sudo add-apt-repository --yes ppa:ubuntu-sdk-team/ppa
- sudo apt-get update -qq
- sudo apt-get install -qq libqtbwebkitb-dev qtdeclarativeb-dev
- export QMAKE=/usr/1ib/x86_64-linux-gnu/qt5/bin/qmake

From http://stackoverflow.com/q/37201085/3364162
#apt:

sources:
- ubuntu-sdk-team

packages:

- libgtbwebkit5-dev
- qtdeclarativeb-dev

Start virtual X server, from https://docs.travis-ci.com/user/gui-and-headless-browsers/
before_script:

- "export DISPLAY=:99.0"

- "sh -e /etc/init.d/xvfb start"

- sleep 3 # give xvfb some time to start

script:
- ./build.sh
- ./travis_qgmake_gcc_cpp98_qth

This .travis.yml file is an extension of when adding the Qt4 library (chapter
4.11). The new lines are:

e sudo add—apt—repository ——yes ppa:ubuntu—sdk—team/ppa
Add an apt repository that has Qt5

e sudo apt—get update —qq

47

Update the current apt repositories, to be able to find Qt5

e — sudo apt—get install qtbase5—dev qtdeclarativeb—dev
— sudo apt—get install libqtiwebkitb—dev libsqlite3 —dev
— sudo apt—get install qts—default qttoolsb5—dev—tools

Install all Qt5 apt packagess. I put these on three lines just for readability.

4.12.3 The Qt Creator project files
This project compiled with qmake from the following Qt Creator project file:

Algorithm 38 travis _qmake gcc cpp98 qt5.pro
QT += core gui widgets

Use highest warning level, a warning is an error.
Cannot use -Weffc++ with Qtb
QMAKE_CXXFLAGS += -Wall -Wextra -Werror

SOURCES += main.cpp

SOURCES += my_qtb_dialog.cpp
FORMS += my_qtb_dialog.ui
HEADERS += my_qtb5_dialog.h

RESOURCES += travis_qgmake_gcc_cpp98_qtb.qrc

The Qt Creator project file is similar to the one needed for the Qt4 library
(chapter 4.11), except for:

e QT += core gui widgets

Add ’core’, ’gui’ and (new) 'widgets’ to the Qt configuration. One of the
differences between Qt4 and Qt5 is that part of what was 'gui’ has been
moved to 'widgets’.

4.12.4 The source files

This project uses multiple source files.
The main function is defined as such:

48

Algorithm 39 main.cpp

#include <QApplication>
#include "my qt5 dialog.h"

int main(int argc, char xargv([])
{
QApplication a(argc, argv);
my qtb5 dialog d;
d.show () ;
return a.exec();

This main function definition is close to identical to that of when using Qt4
(see chapter 4.11).
The declaration of my qt5 dialog is as such:

Algorithm 40 my qt5 dialog.h

#ifndef MY DIALOG H
#define MY DIALOG H

#include <QDialog>
namespace Ui {
class my qt5 dialog;
}
class my qt5 dialog : public QDialog
Q_OBIJECT
public:
explicit my qt5 dialog(QWidget s*parent = 0);
“my qt5_dialog() ;
private:

Ui::my qt5 _dialog *ui;
I

#endif // MY DIALOG_H

This header file is also close to identical to that of when using Qt4 (see
chapter 4.11).

49

The implementation of my qt5 dialog:

Algorithm 41 my qt5 dialog.cpp

#include "my qt5 dialog.h"
#include "ui my qt5 dialog.h"
#include <QTimer>

my qtd dialog::my qt5 dialog(QWidget *parent)
QDialog(parent) ,
ui (new Ui::my qt5 dialog)
{
ui—>setupUi(this);
QTimer * const timer (new QTimer(this));
connect (
timer ,&QTimer : : timeout ,
this, &my qt5 dialog:: close
)
timer—>setInterval (1000);
timer—>start () ;

}

my qtd dialog:: " my qt5 dialog()

{

delete ui;

}

This implementation file is also close to identical to that of when using Qt4
(see chapter 4.11), except for this line:

e connect (
timer , &QTimer:: timeout ,
this , &my qt5 dialog:: close

)

This is the Qt5 syntax of connecting QTimer its 'timeout’ slot tomy qt5 _dialog
its ’close’ slot. This syntax will not compile with Qt4. The new syntax

has the benefit that during compilation it can be checked that the signals

and slots exist (Qt4 emits a warning at runtime).

4.13 Adding QTest

One cannot use QTest without Qt. Because this thus takes two steps, this is
covered in chapter 5.2.

a0

4.14 Adding Rcpp

In this example, the basic build (chapter 3) is extended by also using the Rcpp
library /package.

What is R? R is a programming language.

Figure 21: R logo

What is Repp? Rcpp is a package that allows to call C++ code from R

4.14.1 Build overview
The build will be complex: I will show the C++ build and the R build seperately

main.cpp do_magic_cpp.h do_magic_7r.R

domagic.pro do_magic__cpp.cpp test — do_magic.R

Figure 22: Venn diagram of the files uses in this build

4.14.2 The Travis file

Setting up Travis is done by the following .travis.yml:

o1

Algorithm 42 .travis.yml
sudo: true

language: cpp
compiler: gcc

before_install:
- sudo add-apt-repository -y ppa:marutter/rrutter # For R
- sudo apt-get update -qq

install:
- sudo apt-get install -qq r-base r-base-dev # For R
- sudo apt-get install -qq lyx # For pdflatex

- sudo apt-get install -qq texlive # For pdflatex

script:

C++

- ./build_cpp-sh
./domagic
R wants all non-R files gone...
./clean.sh

- sudo Rscript install_r_packages.R
- rm .gitignore

- rm src/.gitignore

- rm .travis.yml

- rm -rf .git

- rm -rf ..Rcheck
Now R is ready to go

- R CMD check .

after_failure:

fatal error: Rcpp.h: No such file or directory

- find / -name ’Rcpp.h’

R logs

- cat /home/travis/build/richelbilderbeek/travis_qgmake_gcc_cpp98_rcpp/..Rcheck/00install. ot

This .travis.yml file is longer than usual, as it both compiles and runs the
C++ and R code.

4.14.3 The build bash scrips
The C++ build script:

92

Algorithm 43 build _cpp.sh

#!/bin/bash
gmake
make

The bash script has the same lines as the basic project in chapter 3.
This R build script installs the required R packages:

Algorithm 44 build _cpp.sh

install . packages("Rcpp", repos = "http://cran.uk.r—
project.org")

install . packages("knitr", repos = "http://cran.uk.r—
project.org")

install .packages("testthat", repos = "http://cran.uk.r—
project.org")

install . packages ("rmarkdown", repos = "http://cran.uk.r—

project.org")

4.14.4 The Qt Creator project files

This single file is compiled with qmake from the following Qt Creator project
file:

33

Algorithm 45 domagic.pro
TEMPLATE = app

CONFIG += comnsole
CONFIG -= app_bundle
CONFIG -= qt

INCLUDEPATH += src

INCLUDEPATH += /home/p230198/R/x86_64-pc-linux-gnu-library/3.2/Rcpp/include
INCLUDEPATH += /home/richel/R/i686-pc-linux-gnu-library/3.2/Rcpp/include
INCLUDEPATH += /usr/share/R/include/

SOURCES += \
src/do_magic_cpp.cpp \
main.cpp

HEADERS += \
src/do_magic_cpp.h

LIBS += -1R

The name of the Qt Creator project file is ’domagic’ as it follows the same
naming as the R project. It add the R and Repp and src folders to its include
path and links to R.

4.14.5 The C++ and R source files

Both C++ and R use this function. It is called ’do_magic cpp’. It is declared
in the header file ’do_magic_cpp.h’; as shown here:

Algorithm 46 src/do_magic cpp.h

#ifndef DO _MAGIC_CPP_H
#define DO_MAGIC_CPP_H

int do_magic_cpp(const int x);

#endif // DO_MAGIC CPP_H

The header file consists solely of #include guards and the declaration of the
function ’do__magic_cpp’.

The function ’do_magic_cpp’ is implemented in the implementation file
"do_magic_cpp.cpp’, as shown here:

o4

Algorithm 47 src/do_magic_cpp.cpp

#include "do magic cpp.h"

//’ Does magic

//’ @param z Input

//’ @return Magic value

// 7 @ezport

// [[Repp::export]]

int do_magic cpp(const int x)
{

return x x 2;

}

This implementation file has gotten rather elaborate, thanks to Repp and
documentation. This is because it has to be callable from both C++ and R and
satisfy the requirement from both languages.

4.14.6 The C++-only source files

The C++ program has a normal main function:

Algorithm 48 main.cpp

#include "do magic cpp.h"

int main ()

{
if (do_magic_cpp(2) != 4) return 1;

}

All it does is a simple test of the ’do__magic_cpp’ function.

4.14.7 The R-only source files
The R function 'do_magic_r’ calls the C++ function ’do_magic_cpp’:

39

Algorithm 49 R/do_magic r.R

#’ Does magic

#’ @param x Input

#’ Q@return Magic value

#’ Qexport

#’ QuseDynLib domagic

#? @importFrom Rcpp sourceCpp

do_magic_r <- function(x) {
return(do_magic_cpp(x))

}

Next to this, it is just Roxygen2 documentation
R allows for easy testing using the ’testthat’ package. A test file looks as
such:

Algorithm 50 tests/testthat/test-do_magic r.R

context ("do_magic")

test_that("basic use", {
expect_equal (do_magic_r(2), 4)
expect_equal (do_magic_r(3), 6)
expect_equal (do_magic_r(4), 8)

expect_equal (domagic: :do_magic_cpp(2), 4)

expect_equal (domagic: :do_magic_cpp(3), 6)

expect_equal (domagic: :do_magic_cpp(4), 8)
b

The tests call both the R and C++ functions with certain inputs and checks
if the output matches the expectations.

4.15 Adding the SFML library

In this example, the basic build (chapter 3) is extended by also using the SFML
library. The result will be a simple graphical display as shown in figure 23:

96

* travis_gmake_gcc, — + X

Figure 23: travis gmake gcc cpp98 sfml screenshot

What is SFML? SFML (’Simple and Fast Multimedia Library’) is a library
intended for 2D game development.

N/

Figure 24: SFML logo

4.15.1 The Travis file

Setting up Travis is done by the following .travis.yml:

37

Algorithm 51 .travis.yml
language: cpp
compiler: gcc

sudo: true

before_install:
- sudo apt-add-repository ppa:sonkun/sfml-development --yes
- sudo apt-get update -qq

install:
- sudo apt-get install libsfml-dev

Start virtual X server, from https://docs.travis-ci.com/user/gui-and-headless-browsers/
before_script:

- "export DISPLAY=:99.0"

- "sh -e /etc/init.d/xvfb start"

- sleep 3 # give xvfb some time to start

script:
- ./build.sh
- ./travis_gmake_gcc_cpp98_sfml

This .travis.yml file has one new feature:

e sudo apt—add—repository ppa:sonkun/sfml—development ——yes
Add an apt repository for a fresh version of SFML

e install: sudo apt—get install libsfml—dev
This makes Travis install the needed package

4.15.2 The build bash scrips
The bash build script to build this:

Algorithm 52 build.sh

#!/bin/bash
gmake
make

The bash script has the same lines as the basic project in chapter 3.

a8

4.15.3 The Qt Creator project files

This single file is compiled with gmake from the following Qt Creator project
file:

Algorithm 53 travis_qmake gcc cpp98 sfml.pro
SOURCES += main.cpp

Compile with high warning levels, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

SFML
LIBS += -1lsfml-graphics -lsfml-window -lsfml-system -lsfml-audio

The Qt Creator project file has the same lines as the basic project in chapter
3, except for:

e LIBS += —lsfml—graphics —Isfml—window —Isfml—system —Isfml—audio

Link to the SFML libraries

4.15.4 The source files

The single C++ source file used is:

99

Algorithm 54 main.cpp

#include <SFML/Graphics.hpp>

int main() {
sf :: RenderWindow window (
sf :: VideoMode (200, 200),
"travis _qmake gcc _cpp98 sfml"
)
double angle = 0.0;

while (window.isOpen()) {
sf::Event event;
while (window.pollEvent (event))

{
if (event.type =— sf::Event:: Closed)

{

}
}

window . clear (sf :: Color :: Black) ;

window . close () ;

sf::RectangleShape r(sf:: Vector2f(100.0,100.0));
r.setOrigin(sf:: Vector2f(40.0,40.0));
r.setPosition (100.0,100.0);

r.rotate (angle);

r.setFillColor (sf:: Color (100, 250, 50));
window . draw (1) ;

window . display () ;

angle += 0.01;
if (angle > 100.0) break;

It draws a rotating rectangle by incrementing the variable ’angle’. After this
variable reaches a certain value, the application is terminated.

The reason the application is terminated, is because it must be run on Travis
CI and thus terminate without user input.

4.16 Adding SLOCcount

In this example, the basic build (chapter 3) is extended by also measuring the
SLOCcount.

60

What is SLOCcount? SLOCcount estimates the costs to develop code.

4.16.1 The Travis file

Setting up Travis is done by the following .travis.yml:

Algorithm 55 .travis.yml
language: cpp

compiler: gcc
sudo: require

install:
- sudo apt-get install sloccount

script:
- ./build.sh
- ./travis_gmake_gcc_cpp98_sloccount
- cd ..; sloccount --overhead 1 --personcost 22611 travis_gmake_gcc_cpp98_sloccount

This .travis.yml file has one new feature:
e sudo add—apt install sloccount
Install the package ’sloccount’
e cd ..; sloccount —overhead 1 —personcost 22611 travis qmake gcc cpp98 sloc

Go up one folder and measure the SLOCcount of this project, knowing it
is a solo-project in which the developer makes the Dutch minimum wages

4.16.2 The build bash scrips
The bash build script to build this:

Algorithm 56 build.sh
#!1/bin/bash

qmake
make

The bash script has the same lines as the basic project in chapter 3.

61

4.16.3 The Qt Creator project files

This single file is compiled with gmake from the following Qt Creator project
file:

Algorithm 57 travis _qmake gcc cpp98 sloccount.pro
SOURCES += main.cpp
QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

The Qt Creator project file has the same lines as the basic project in chapter

4.16.4 The source files

The single C+-+ source file used exactly the same as described in chater 3.4:

Algorithm 58 main.cpp

#include <iostream>

int main() {
std::cout << "Hello_world\n";

}

4.17 Adding the Urho3D library

In this example, the basic build (chapter 3) is extended by also using the Urho3D
library.

What is Urho3D? Urho3D is a library to create C++ 3D games.

Figure 25: Urho3D logo

4.17.1 Build overview

The files will work together to create the following 3D world:

62

Figure 26: Screenshot of travis _qmake gcc cpp98 urho3d

4.17.2 The Travis file

Setting up Travis is done by the following .travis.yml:

Algorithm 59 .travis.yml
sudo: require
language: cpp
compiler: gcc

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq

install:
- sudo apt-get install libxll-dev libxrandr-dev libasound2-dev libgll-mesa-dev
- sudo apt-get install libsdll.2-dev libsdl-imagel.2-dev libsdl-mixerl.2-dev libsdl-ttf2.(

addons:
apt:
sources:
- boost-latest
- ubuntu-toolchain-r-test
packages:
- libboostl.55-all-dev

before_script:
- ./build_urho3d.sh

script:
- ./build.sh

This .travis.yml file has to do many things.
Note that we do not run the application.

4.17.3 The build bash scrips
The bash build script to build:

63

Algorithm 60 build.sh

#!1/bin/bash
gqmake travis qmake gcc cpp98 urho3d.pro
make

The bash script has the same lines as the basic project in chapter 3.

4.17.4 The Qt Creator project files

The files are compiled with gmake from the following Qt Creator project file:

Algorithm 61 travis gmake gcc cpp98 urho3d.pro
SOURCES += \

mastercontrol.cpp \

inputmaster.cpp \

cameramaster.cpp

HEADERS += \
mastercontrol.h \
inputmaster.h \
cameramaster.h

Qt resources emit a warning
#QMAKE_CXXFLAGS += -Wno-unused-variable

Urho3D
INCLUDEPATH += \
../travis_gmake_gcc_cpp98_urho3d/Urho3D/include \
../travis_gmake_gcc_cpp98_urho3d/Urho3D/include/Urho3D/ThirdParty
LIBS += ../travis_qgmake_gcc_cpp98_urho3d/Urho3D/1ib/1ibUrho3D.a
LIBS += -lpthread -1SDL -1d1 -1GL

The Qt Creator project file lists all source files, uses g++5, suppresses a
warning , includes and links to multiple libraries.

4.17.5 The source files

The C++ source files are too big to show here. Their names are:
e cameramaster.h
e cameramaster.cpp

e inputmaster.h

64

e inputmaster.cpp
e mastercontrol.h

e mastercontrol.cpp

4.18 Adding the Wt library

In this example, the basic build (chapter 3) is extended by also using the Wt
library.

What is Wt? Wt (pronounce 'witty’) is a library to create C++ websites.

Figure 27: Wt logo

4.18.1 The Travis file

Setting up Travis is done by the following .travis.yml:

Algorithm 62 .travis.yml
language: cpp
compiler: gcc
addons:

apt:

packages: libboost-all-dev

install: sudo apt-get install witty-dev
script: ./build.sh

This .travis.yml file has uses the package ’libboost-all-dev’ and installs 'witty-
dev’. It does not run the application.

4.18.2 The build bash scrips
The bash build script to build this:

65

Algorithm 63 build.sh
#!1/bin/bash

qmake
make

The bash script has the same lines as the basic project in chapter 3.

4.18.3 The Qt Creator project files

This single file is compiled with qmake from the following Qt Creator project
file:

Algorithm 64 travis _qmake gcc cpp98 wt.pro
SOURCES += main.cpp

Compile with high warning levels, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

Wt
LIBS += \
-1lboost_date_time \
-1boost_filesystem \
-1boost_program_options \
-1lboost_regex \
-1lboost_signals \
-1lboost_system
LIBS += -lwt -lwthttp
DEFINES += BOOST_SIGNALS_NO_DEPRECATION_WARNING

The Qt Creator project file has the same lines as the basic project in chapter
3, except for that it links to multiple libraries and suppresses a warning.

4.18.4 The source files

The single C++ source file used is:

66

Algorithm 65 main.cpp

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "—Weffc++"
#include <boost/program options.hpp>
#include <boost/signals2.hpp>
#include <Wt/WApplication>

#include <Wt/WContainerWidget>
#include <Wt/WEnvironment>

#include <Wt/WPaintDevice>

#include <Wt/WPaintedWidget>
#include <Wt/WPainter>

#include <Wt/WPushButton>

#pragma GCC diagnostic pop

struct WtWidget : public Wt:: WPaintedWidget
{
WtWidget ()
{
this—resize (32,32);
}
protected:
void paintEvent (Wt:: WPaintDevice xpaintDevice)
{
Wt:: WPainter painter (paintDevice);
for (int y=0; y!=32; ++y)
{
for (int x=0; x!=32; ++x)
{
painter.setPen (
Wt : : WPen (
Wt :: WColor (
((x+0) = 8) % 256,
((y+0) * 8) % 256,
((xty) = 8) % 256)));
//Draw a line of one pizel long
painter .drawLine (x,y,x+1,y);
//drawPoint yiels too white results
//painter.drawPoint(z,y);

}
}
}
}s

struct WtDialog : public Wt:: WContainerWidget

WtDialog ()
: m_widget (new WtWidget)
{ 67
this—addWidget (m_widget) ;
}
private:
WtDialog (const WtDialog&); //delete
WtDialog& operator=(const WtDialog&); //delete
WtWidget * const m_widget;

It starts a web server.

5 Extending the build by two steps

You will probably want to combine the single ingredients in the previous chap-
ters. This will also result in more complex project setups. In this chapter, such
setups will be described:

Use of gcov in debug mode only: see chapter 5.1

Use of Qt and QTest: see chapter

Use of C++11 and Boost: see chapter 5.3

Use of C++11 and Boost.Test: see chapter 5.4

Use of C++14 and Boost: see chapter 5.12

5.1 Use of gcov in debug mode only

In this example, the C++98 build with gcov (chapter 4.7) is extended by using
gcov in debug mode only.

5.1.1 Build overview

This will be a more complex build, consisting of two projects:
e A release version that just runs the code, assuming it to be correct
e A debug version that tests the code and measures code coverage

The filenames are shown in this figure:

68

travis_gmake

_gce_cppll
__gcov.pro

travis_gmake

__gce_cppll
__gcov__gcov.pro

do_magic.h
do_magic.cpp

main.cpp main__gecov.cpp

Figure 28: Venn diagram of the files uses in this build

5.1.2 The Travis file

Setting up Travis is done by the following .travis.yml:

Algorithm 66 .travis.yml

sudo: require
language: cpp
compiler: gcc
before_install: sudo pip install codecov
script:
- ./build_debug.sh
- ./travis_qmake_gcc_cpp98_debug_gcov_debug
./get_code_cov.sh
- codecov
./clean.sh
- ./build_release.sh
- ./travis_gmake_gcc_cpp98_debug_gcov

This .travis.yml file has some new features:

e sudo: true

Travis will give super user rights to the script. This will slow the build
time, but it is inevitable for the next step

69

e before install: sudo pip install codecov
Travis will use pip to install codecov using super user rights
e after success: codecov
After the script has run successfully, codecov is called

5.1.3 The build bash scrips

The bash build script to build this, run this and measure the code coverage:

Algorithm 67 build _debug

#!/bin/bash
qmake travis qmake gcc cpp98 debug gcov debug.pro
make

The new step is ...
The bash build script to build this, run this and measure the code coverage:

Algorithm 68 build release

#!1/bin/bash
gqmake travis qmake gcc cpp98 debug gcov.pro
make

This is ...

5.1.4 The Qt Creator project files

Release:

Algorithm 69 travis qmake gcc cpp98 debug gcov.pro

SOURCES += do_magic.cpp main.cpp
HEADERS += do_magic.h

QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

Debug with gcov:

Algorithm 70 travis_qmake gcc cpp98 gcov.pro

The Qt Creator project file has two new lines:

70

e QMAKE CXXFLAGS += —fprofile —arcs —ftest —coverage
Let the C++ compiler add coverage information
e LIBS += —lgcov

Link against the gcov library

5.1.5 The source files

Common files Both builds use the following code:

Algorithm 71 do_magic.h

#ifndef DO MAGIC H
#define DO MAGIC H

int do_ magic(const int x);

#endif // DO_MAGIC H

And its implementation:

Algorithm 72 do__magic.cpp

#include "do magic.h"

int do_ magic(const int x)
{

if (x = 42)

{

return 42;

}

if (x == 314)

{

return 314;

}

return x x 2;

}

Release main function The C++ source file used by the normal build is:

71

v T

¥ travis_gmake_g + X

@ Travis CI

Figure 29: The application

Algorithm 73 main.cpp

#include "do magic.h"
#include <iostream >

int main() {
std :: cout << do_magic(123) << ’'\n’;

}

Debug and gcov main function The C++ source file used by the normal
build is:

Algorithm 74 main_gcov.cpp

#include "do magic.h"

int main ()

{

if (do_magic(2) != 4) return 1;
if (do_magic(42) != 42) return 1;
//Forgot to test do_magic(314)

}

5.2 Qt and QTest

This build is about a Qt dialog that displays an image (using a Qt resource).
When the key ’x’ is pressed, it should close.

The release build is just that application.

The debug build tests if the application indeed closes upon a press of the 'x’
key. Its primary output is test report. During the test, the dialog will show up

shortly.
In this build, only one dialog is tested. For a build that has more dialogs,

see chapter .

72

5.2.1 What is QTest?
QTest is the Qt testing framework

5.2.2 Do not use Boost.Test to test graphical Qt aplications

The Boost.Test library (see chapter 5.4) works great with console (that is: non-
graphical) applications. But is is tedious to let it test graphical Qt classes.

Why is this tedious? Because Qt has its own Qt way, that works best in
that way. QTest will process the QApplication event queue and have many
privileges. Using Boost.Test will make you reponsible to do yourself what Qt
normally does for you in the back, such as emptying the QApplication event
queue. Next to this, you will have to make some member functions public (e.g.
keyPressEvent) to allow your tests to use these.

5.2.3 The Travis file

Algorithm 75 .travis.yml
language: cpp
compiler: gcc

Start virtual X server
before_script:
- "export DISPLAY=:99.0"
- "sh -e /etc/init.d/xvfb start"
- sleep 3 # give xvfb some time to start

script:
- ./build_test.sh
- ./travis_qgmake_gcc_cpp98_qt_qtest_test
- ./build_normal.sh

Because this application uses graphics, we need to start a virtual X server on
Travis CI (see https://docs.travis-ci.com/user/gui-and-headless-browsers),
before the tests run.

In the script, the testing executable is created and run. The test results will
be visible in Travis CI.

After the test, the normal executable is created. The normal executable is
not run, as it requires user input. This means that on Travis CI, it would run
forever, wouldn’t Travis CI detect this and indicate a failure.

5.2.4 The build bash scrips

There need to be two bash scripts, one for building the testing executable, one
for building the normal program. Both are as short as can be:

73

Algorithm 76 build _test.sh

#!/bin/bash
gqmake travis qmake gcc cpp98 qt qtest test.pro
make

Algorithm 77 build normal.sh

#!/bin/bash
qmake travis qmake gcc_ cpp98 qt_qtest.pro
make

5.2.5 The Qt Creator project files

There need to be two Qt Creator scripts, one for building the testing executable,
one for building the normal program. Both are as short as can be. The only
difference is that the testing project file uses QT += testlib’.

Test:

Algorithm 78 travis qmake gcc cpp98 qt qtest test.pro
Shared files

SOURCES += my_dialog.cpp

FORMS += my_dialog.ui

HEADERS += my_dialog.h

RESOURCES += travis_gmake_gcc_cpp98_qt_qtest.qrc

Unique files

SOURCES += gtmain_test.cpp
SOURCES += my_dialog_test.cpp
HEADERS += my_dialog_test.h

Qt
QT += core gui
greaterThan (QT_MAJOR_VERSION, 4): QT += widgets

QTest
QT += testlib

Normal:

74

Algorithm 79 travis_qmake gcc cpp98 qt qtest.pro

QT += core gui
greaterThan (QT_MAJOR_VERSION, 4): QT += widgets

Shared files

SOURCES += my_dialog.cpp

FORMS += my_dialog.ui

HEADERS += my_dialog.h

RESOURCES += travis_gmake_gcc_cpp98_qt_qtest.qrc

Unique files
SOURCES += gtmain.cpp

5.2.6 The source files

The dialog This is the source of dialog:

Algorithm 80 my dialog.h

#ifndef MY DIALOG H
#define MY DIALOG H

#include <QDialog>
namespace Ui { class my dialog; }

class my dialog : public QDialog {
Q_OBIJECT

public:
explicit my dialog(QWidget xparent = 0);
“my _dialog() ;

protected:
void keyPressEvent (QKeyEvent x);

private:
Ui::my dialog #ui;

}s

#endif // MY DIALOG_H

The only added line, is the ’keyPressEvent’.

75

Algorithm 81 my dialog.cpp

#include "my dialog.h"
#include <QKeyEvent>
#include "ui_my dialog.h"

my dialog:: my dialog(QWidget xparent)
QDialog(parent) ,
ui (new Ui::my_dialog) {
ui—>setupUi(this);

}

my dialog:: " my dialog() {
delete ui;

}

void my dialog:: keyPressEvent (QKeyEvent x e) {
if (e—=key() == Qt::Key_X) close();
}

Here we can see that when ’x’ is pressed, the application will close.

The main function of the normal executable Most graphical Qt appli-
cations have this main function:

Algorithm 82 gtmain.cpp

#include <QApplication>
#include "my dialog.h"

int main(int argc, charx argv[]) {
QApplication a(argc, argv);

my dialog d;
d.exec();
return a.exec();

}

This main is given as default when creating a new graphical Qt application.

The main function of the testing executable The QTest framework col-
lects all tests and calls these within a QTest-generated main function. This
leaves us little left to write (which is awesome):

76

Algorithm 83 gtmain_test.cpp

#include <QtTest/QtTest>
#include "my dialog test.h"

QTEST MAIN(my dialog test)

The class for the tests Here comes in the QTest architecture: for each test
suite we will have to create a class:

Algorithm 84 my dialog test.h

#ifndef MY DIALOG TEST H
#define MY DIALOG TEST H

#include <QtTest/QtTest>
class my dialog test: public QObject
{

Q_OBJECT

private slots:
void close with x();
&

#endif // MY DIALOG_TEST H

Here we create a class called 'my dialog test’. The fit into the QTest
framework each test suite

e must be a derived class from QObject
e the header file must include the 'QtTest’ header file

where each member function is a tests.
The implementation of each test can be seen in the implementation file:

7

Algorithm 85 my dialog test.cpp

#include "my dialog test.h"
#include "my dialog.h"

void my dialog test::close with x()
{
my dialog d;
d.show () ;
QVERIFY(d.isVisible ());
QTest :: keyClick(&d,Qt :: Key X, Qt:: NoModifier, 100);
QVERIFY(d.isHidden ()) ;

The ’QVERIFY’ macro is used by the QTest framework to do a single check,
which will end up in the test report. The QTest has some priviliges, as it can
directly click keys on the form, also when the ’keyPressEvent’ isn’t public.

5.3 C-4+11 and Boost libraries

In this example, the basic build (chapter 3) is extended by also using the Boost
libraries.
The chapter has the following specs:

e Build system: qmake

e C++ compiler: gee

o C++ version: C++11

e Libraries: STL and Boost

e Code coverage: none

e Source: one single file, main.cpp

The single C++ source file used is:

78

Algorithm 86 main.cpp

#include <boost/graph/adjacency list.hpp>

int f() noexcept {
boost :: adjacency list<> g;
boost ::add_vertex(g);
return boost::num _vertices(g);

}

int main() {
if (f() !'= 1) return 1;
}

All the file does is to create an empty graph, from the Boost.Graph library.
It will not compile without the Boost libraries absent.

This single file is compiled with gqmake from the following Qt Creator project
file:

Algorithm 87 travis _gmake gcc cppll boost.pro
SOURCES += main.cpp

QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

QMAKE_CXX = g++-5
QMAKE_LINK = g++-5

QMAKE_CC = gcc-5
QMAKE_CXXFLAGS += -std=c++11

The Qt Creator project file has the same lines as the basic project in chapter

The bash build script to build and run this:

Algorithm 88 build.sh
#!1/bin/bash

qmake
make
./travis_qmake gcc_cppll boost

The bash script has the same lines as the basic project in chapter 3.
Setting up Travis is done by the following .travis.yml:

79

Algorithm 89 .travis.yml
sudo: true

language: cpp
compiler: gcc
before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq
install: sudo apt-get install -qq g++-5
addons:
apt:
packages: libboost-all-dev
script: ./build.sh

This .travis.yml file has ...

5.4 C-+-+11 and Boost.Test

Boost.Test works great for console applications. If you use a GUI library like
Qt, using QTest is easier (see chapter 5.2)
This project consists out of two projects:

e travis gmake gcc cppll boost test.pro: the real code
e travis gmake gcc cppll boost test test.pro: the tests

Both projects center around a function called ’add’, which is located in the
'my function.h’ and 'my_function.cpp’ files, as shown here:

80

travis_gmake

__gce_cppll
__boost_test.pro

travis_gmake

__gce_cppll
__boost.pro

my_ function.h
my__ function.cpp

main__test.cpp
my_ function _test.cpp

main.cpp

Figure 30: Venn diagram of the files uses in this build

Both of these are compiled both in release and debug mode.

Specifics The basic build has the following specs:
e Build system: qmake
e C++ compiler: gce
o C++ version: C++11
e Libraries: STL and Boost, demonstrating Boost.Test
e Code coverage: none

e Source: multiple files: main.cpp, my function.h, my function.cpp, test _my function.cpp

5.4.1 The function

First the function that is (1) tested by the test build (2) called by the real build,
is shown here:

81

Algorithm 90 my function.h

#ifndef MY FUNCTIONS H
#define MY FUNCTIONS H

int add(const int i, const int j) noexcept;

#endif // MY FUNCTIONS H

This header file has the #include guards and the declaration of the function
‘add’. It takes two integer values as an argument and returns an int.
Its definition is shown here:

Algorithm 91 my function.cpp

#include "my functions.h"

int add(const int i, const int j) noexcept

{

return i + j;

}

Perhaps it was expected that ’add’ adds the two integers

5.4.2 Test build

The test build’ is the build that tests the function. It does not have a 'main.cpp’
as the exe build has, but uses 'test _my functions.cpp’ as its main source file.
This can be seen in the Qt Creator project file:

82

Algorithm 92 travis_qmake gcc cppll boost test test.pro

CONFIG += console debug and release
CONFIG — app_bundle

QT —= core gui

TEMPLATE = app

Shared files
HEADERS += my functions.h
SOURCES += my functions.cpp

Unique files
SOURCES += main_test.cpp my functions test.cpp

C++11

unix {
QMAKE CXX = g++—5
QMAKE LINK = g++—5
QMAKE CC = gcc—5

}

Boost.Test does not go well with —Weffc++
QMAKE CXXFLAGS += —Wall —Wextra —Werror —std=c++11

Debug and release build
CONFIG(release , debug|release) {
DEFINES += NDEBUG

}

Boost . Test
win32 {

INCLUDEPATH += C:/boost 1 62 0

#LIBS += —LC:/boost_1 62 0/stage/lib

#LIBS += —LC:/boost_1 62 0

#LIBS += —LC:/boost 1 62 0/bin.v2

#LIBS += —LC:/boost_1_62_0/bin.v2/libs

#LIBS += —LC:/boost_1_62_0/bin.v2/libs/test

#LIBS += —LC:/boost_1 62 0/bin.v2/libs/test/build /gcc—
mingw —4.9.3/debug/link —static/threading—multi

#LIBS += —lboost unit test framework

#LIBS += —LC:/boost_1_62_0/stage/lib/

#LIBS += —lboost unit test framework—mgw49—mt—d—1 62.a

#LIBS += "C:/boost_1_62_0/stage/lib/
libboost unit test framework-mgw49-—mt—d—1 62.a"

LIBS += "C:/boost_1 62 0/stage/lib/
libboost unit test framework-—-mgw49-—mt—1 62.a"

#LIBS += —LC:/boost_1_62_0/stage/lib /x.a

#LIBS += —LC:/boost_1_62_0/stage/lib/
libboost _unit_ test_fram%%uork—mgw49—mt—1_62.a

#LIBS += —LC':/boost_1_62_0/bin.v2/libs/test/build/gcc—
mingw—4.9.3/debug/link—static /threading—multi /x.a

#LIBS += —LC:/boost_1_62_0/bin.v2/libs/test/build/gcc—
mingw—4.9.3/release /link—static/threading—multi /x.a

#LIBS += —LC':/boost_1_62_ 0/bin.v2/libs/test/build/gcc—
mingw—4.9.3/debug/link—static /threading—multi/
libboost unit test framework—mgwi9—mi—d—1 62.a

Note how this Qt Creator project file links to the Boost unit test framework.
Its main source file is shown here:

Algorithm 93 main_test.cpp

#define BOOST TEST DYN_LINK
#define BOOST TEST MODULE my functions test module
#include <boost/test /unit test.hpp>

//No main needed, BOOST TEST DYN LINK creates it

It uses the Boost.Test framework to automatically generate a main function
and test suite. An empty file is created, so Travis can verify there has been
built both a debug and release mode.

Its main testing file file is shown here:

Algorithm 94 my functions test.cpp

#include <boost/test /unit_test.hpp>
#include "my functions.h"

BOOST AUTO_TEST CASE(add works)
{

BOOST_CHECK(add (1, 1) = 2);
BOOST_CHECK(add (1, 2) =— 3);
BOOST_CHECK(add (1, 3) — 4);
BOOST_CHECK(add (1, 4) — 5);

It tests the function ’add’.

5.4.3 Exe build
The ’exe’ build’ is the build that uses the function.

84

Algorithm 95 main.cpp

#include "my functions.h"
#include <iostream >
#include <vector> //Does this make Travis CI fail?

int main() {
std ::cout << add(40,2) << ’'\n’;
std:: vector<int> v;
std::cout << v.empty() << '\n’;

}

Next to using the function ’add’, also a file is created, so Travis can verify
there has been built both a debug and release mode.

This single file is compiled with gmake from the following Qt Creator project
file:

Algorithm 96 travis_gmake gcc _cppll boost _test.pro
SOURCES += my_functions.cpp main.cpp
HEADERS += my_functions.h

CONFIG += console debug_and_release

CONFIG(release, debug|release) {
DEFINES += NDEBUG

}

QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5

QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror -std=c++11

Note how this Qt Creator project file does not link to the Boost unit test
framework.

5.4.4 Build script
The bash build script to build, test and run this:

85

Algorithm 97 build.sh
#!1/bin/bash

gmake travis qmake gcc cppll boost test.pro
make debug
./travis_qmake gcc cppll boost _test

gmake travis qgmake gcc _cppll boost test.pro
make release
./travis_qmake gcc cppll_ boost _test

qmake travis qmake gcc _cppll boost test test.pro
make debug

./travis_qmake gcc_cppll boost test test

qmake travis qmake gcc _cppll boost test test.pro
make release

./travis _qmake gcc _cppll boost test test

In this script both projects are compiled in both debug and release mode.
All four exectables are run.

5.4.5 Travis script

Setting up Travis is done by the following .travis.yml:

Algorithm 98 .travis.yml
sudo: true
language: cpp
compiler: gcc
addons:
apt:
packages: libboost-all-dev
before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq
install: sudo apt-get install -qq g++-5
script: ./build.sh

This .travis.yml file has ...

5.5 C++411 and clang

In this example, the basic build (chapter 3) is extended by using clang and
C++11.

86

The chapter has the following specs:
e Build system: qmake

e C-++ compiler: clang

o C++ version: C++11

e Libraries: STL only

e Code coverage: none

e Source: one single file, main.cpp

The single C++ source file used is:

Algorithm 99 main.cpp

#include <iostream >
void f () noexcept {

std :: cout << "Hello_world\n";
}

int main() {

£0);
}

All the file does is to create an empty graph, from the Boost.Graph library.
It will not compile without the Boost libraries absent.

This single file is compiled with qmake from the following Qt Creator project
file:

Algorithm 100 travis _gmake clang cppll.pro
SOURCES += main.cpp

High warning level, warning is error
QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

clang

QMAKE_CXX = clang++
QMAKE_LINK = clang++
QMAKE_CC = clang

C++11
QMAKE_CXXFLAGS += -std=c++11

87

The Qt Creator project file has the same lines as the basic project in chapter

The bash build script to build and run this:

Algorithm 101 build.sh
#1/bin/bash

qmake
make
./travis _qmake clang cppll

The bash script has the same lines as the basic project in chapter 3.
Setting up Travis is done by the following .travis.yml:

Algorithm 102 .travis.yml
language: cpp

compiler: gcc
sudo: true

install:
- sudo apt-get install clang

script:
- ./build.sh

This .travis.yml file has ...

5.6 C++411 and gcov

In this example, the C++98 build with gcov (chapter 4.7) is extended by using
C++11.

5.6.1 The Travis file

Setting up Travis is done by the following .travis.yml:

88

Algorithm 103 .travis.yml
sudo: require
language: cpp
compiler: gcc

before_install:
C++11
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq
Codecov
- sudo pip install codecov

install:
C++11
- sudo apt-get install -qq g++-5
Codecov
- sudo update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 90

script:
- ./build.sh
- ./travis_gmake_gcc_cppll_gcov
Codecov
- ./get_code_cov.sh
- codecov

after_success:
Codecov
- bash <(curl -s https://codecov.io/bash)

This .travis.yml file has some new features:
e sudo update—alternatives —install /usr/bin/gcov gcov /usr/bin/gcov—5 90

Codecov will call ’gcov’, even if it should call ’gcov-5’. With this line, we
let the command ’gcov’ call 'gcov-5’

We must run the executable for codecov to be able to do its job.

5.6.2 The build bash scrips
The bash build script to build this is trivial:

89

Algorithm 104 build.sh
#!1/bin/bash

gqmake travis gmake gcc _cppll gcov.pro
make

The bash script to obtain the code coverage is new:

Algorithm 105 get code_cov.sh

#!1/bin/bash
for filename in ‘find . | egrep ’\.cpp’‘;
do

gcov—5 —n —o . $filename > /dev/null;
done

The new steps are:

e for filename in ‘find . | egrep ’\.cpp’ ‘;
do
gcov—5 —n —o . $filename > /dev/null;
done

Find all filenames (in this folder and its subfolder) that end with ’.cpp’.
For each of these filenames, let gcov-5 work on it. The ’-n’ flag denotes
no output please’. Because there is still output, this output is sent to the
void of ’/dev/null’. The ’-0 .” means that the object files are in the same
folder as this script

5.6.3 The Qt Creator project files

This Qt Creator project file is a mix from using only gcov (chapter 4.7) and
using C++11 (chapter 5.5)

90

Algorithm 106 travis _gmake gcc cppll gcov.pro
SOURCES += main.cpp

QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

gcov
QMAKE_CXXFLAGS += -fprofile-arcs -ftest-coverage
LIBS += -lgcov

C++11

QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5
QMAKE_CXXFLAGS += -std=c++11

See those chapters for more details.

5.6.4 The source files
The C++ source file used:

Algorithm 107 main.cpp

#include <iostream >

///Returns the wvalue of z multiplied by 2, except for 42,
which is multiplied by one
int do_magic(const int x)
{
if (x == 42)
{
return 42;
}
return x *x 2;

}

int main ()

{
std :: cout << do_magic(2) << ’'\n’;
//Forgot to test do_magic(42)

In this code, the function ’do_magic’ is used for a single value, that is
displayed on screen. Because the value 42’ is not used, not all program flows of

91

"do_magic’ are covered. The code coverage report should inform us about this.

5.7 CH++11 and Qt
In this example, the basic build (chapter 3) is extended by both adding C+-+11
and the Qt library.

Specifications
e Build system: gqmake
e C+-+ compiler: gec
e C++ version: C++11
e Libraries: STL and Qt
e Code coverage: none

e Source: one single file, main.cpp

The single C++ source file used is:

Algorithm 108 main.cpp

#include <fstream>
#include <iostream >
#include <QFile>

std::string get filename () noexcept {
return "HelloWorld . png";
}

int main ()

{
const std::string filename = get filename();
QFile f(":/images/HelloWorld.png");
if (QFile::exists(filename.c_str()))

{

std ::remove(filename.c_str());
}
f.copy("HelloWorld .png") ;
if (!QFile::exists(filename.c_str()))
{
std :: cerr << "filename_'" << filename << "’_must_be_
created\n";
return 1;

}
}

92

All the file does ...
This single file is compiled with gqmake from the following Qt Creator project
file:

Algorithm 109 travis _gmake gcc _cppll qgt.pro

QT += core gui

greaterThan (QT_MAJOR_VERSION, 4): QT += widgets
TEMPLATE = app

SOURCES += main.cpp

RESOURCES += \
travis_gmake_gcc_cppll_qt.qrc

C++11

QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5
QMAKE_CXXFLAGS += -std=c++11

Thanks to Qt
QMAKE_CXXFLAGS += -Wno-unused-variable

The Qt Creator project file has the same lines as the basic project in chapter

The bash build script to build this, run this and measure the code coverage:

Algorithm 110 build.sh
#!/bin/bash

qmake
make
./travis_qmake gcc_cppll qt

The bash script has the same lines as the basic project in chapter 3.
Setting up Travis is done by the following .travis.yml:

93

Algorithm 111 .travis.yml
language: cpp
compiler: gcc

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test # C++11
- sudo apt-get update -qq

install:
- sudo apt-get install -qq g++-5 # C++11

script:
- ./build.sh

This .travis.yml file has ...

5.8 C++11 and Rcpp

In this example, the basic build (chapter 3) is extended by also using the Rcpp
library /package.

Specifications The chapter has the following specs:
e Build system: qmake
o C++ compiler: gcc
e C++ version: C++11
e Libraries: STL and Rcpp
e Code coverage: none
e Source: multiple files

The build will be complex: I will show the C++ build and the R build seperately

94

main.cpp do_magic_cpp.h do_magic_1.R

domagic.pro do_magic__cpp.cpp test — do_magic.R

Figure 31: Venn diagram of the files uses in this build

5.8.1 C-++ and R: the C+-+ function

This Travis CI project is centered around the function ’do_magic _cpp’. T use
the extension ’_cpp’ to indicate it is a C++ function. The function ’"do__magic_cpp’
is used by both C++ and R. It is declared in the header file 'do_magic cpp.h’,

as shown here:

Algorithm 112 src/do_magic_cpp.h

#ifndef DO MAGIC CPP_H
#define DO MAGIC CPP H

//’ Does magic

// 7 @param z Input

// 7 @return Magic value
V) [[Repp - export]

int do_magic cpp(const int x) noexcept;

#endif // DO_MAGIC_CPP_H

The header file consists solely of #include guards and the declaration of the
function 'do_magic_cpp’. The C++11 keyword 'noexcept’ will make the build
fail to compile under C++98, but will compile under C++11 and later versions

95

of C++.
The function 'do_magic _cpp’ is implemented in the implementation file
"do__magic_cpp.cpp’, as shown here:

Algorithm 113 src/do_magic_cpp.cpp

#include "do_ magic_cpp.h"
//#include <Rcpp.h>
//using mamespace Repp;

int do_magic_cpp(const int x) noexcept {
return x *x 2;
}

This source file is very simple. Most lines are dedicates to the C++ roxygen?2
documentation. Omitting this documentation will fail the R package to build,
as this documentation is mandatory . Note that

// [[Repp::export ||

needs to written exactly as such.

5.8.2 C-+: main source file

The C++ program has a normal main function:

Algorithm 114 main.cpp

#include "do_ magic_cpp.h"

int main() {
if (do_magic cpp(2) != 4) return 1;
}

All it does is a simple test of the ’do__magic_cpp’ function.

5.8.3 C++4: Qt Creator project file

This single file is compiled with qmake from the following Qt Creator project
file:

96

Algorithm 115 domagic.pro
TEMPLATE = app

CONFIG += comnsole

CONFIG -= app_bundle
CONFIG -= qt

C++11

QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5
QMAKE_CXXFLAGS += -std=c++11

Shared C++11 files
INCLUDEPATH += src

SOURCES += src/do_magic_cpp.cpp
HEADERS += src/do_magic_cpp.h

Rcpp, adapted from script from Dirk Eddelbuettel and Romain Francois
R_HOME = $$system(R RHOME)

RCPPINCL = $$system($$R_HOME/bin/Rscript -e \"Rcpp:::CxxFlags\(\)\")
INCLUDEPATH += RCPPINCL

Rcpp does not play nice with -Weffc++
QMAKE_CXXFLAGS += -Wall -Wextra -Werror

C++1ll-only files
SOURCES += main.cpp

R
LIBS += -1R

Here is what the sections do:

e # Shared C++11 files
INCLUDEPATH += src
SOURCES += src/do_magic_cpp.cpp
HEADERS += src/do_magic_cpp.h

These files are shared by the C++11 and R project
e # Rcpp, adapted from script from Dirk Eddelbuettel and Romain Francois
R HOME = $$system (R RHOME)

RCPPINCL = $$system ($8R_HOME/bin/Rscript —e \"Rcpp::: CxxFlags\(\)\")
INCLUDEPATH += RCPPINCL

97

Rcpp does not play nice with —Weffc++
QMAKE CXXFLAGS += —Wall —Wextra —Werror

Let Rcpp be found by and compile cleanly. To do so, the ’~Weffc++’
warnings have to be omitted

o # Ct++11l—-only files
SOURCES += main . cpp

This contains the main function that is only used by the C++11-only
build

e # R
LIBS += -1R

Link to the R language libraries

5.8.4 C++: build script
The C++ bash build script is straightforward.

Algorithm 116 build cpp.sh

#!/bin/bash
gmake

make

./ domagic

This script is already described in the C++98 and Rcpp chapter (chapter
4.14, algorithm 43).

5.8.5 R: the R function

The R function 'do_magic 1’ calls the C++ function ’do__magic cpp’:

Algorithm 117 R/do_magic_r.R
#’ QuseDynLib domagic

#? Q@importFrom Rcpp sourceCpp
NULL

#’ Does magic

#’ @param x Input

#? Q@return Magic value

#’ Qexport

do_magic_r <- function(x) {
return(do_magic_cpp(x))

3

98

Must lines are dedicated to Roxygen2 documentation. Omitting this docu-
mentation will fail the R package to build, as this documentation is mandatory.

5.8.6 R: The R tests
R allows for easy testing using the ’testthat’ package. A test file looks as such:

Algorithm 118 tests/testthat/test-do_magic r.R

context ("do_magic")

test_that("basic use", {
expect_equal (do_magic_r(2), 4)
expect_equal (do_magic_r(3), 6)
expect_equal (do_magic_r(4), 8)

expect_equal (do_magic_cpp(2), 4)

expect_equal (do_magic_cpp(3), 6)

expect_equal (do_magic_cpp(4), 8)
b

The tests call both the R and C++ functions with certain inputs and checks
if the output matches the expectations. It may be a good idea to only call the
R function from here, and move the C++ function tests to a C++ testing suite
like Boost.Test.

5.8.7 R: script to install packages

Algorithm 119 install r packages.sh

#1/usr/bin/Rscript

install . packages("Rcpp", repos = "http://cran.uk.r—
project.org")

install .packages("knitr", repos = "http://cran.uk.r—
project.org")

install .packages("testthat", repos = "http://cran.uk.r—
project.org")

install . packages ("rmarkdown", repos = "http://cran.uk.r—

project.org")

To compile the C++ code, Repp needs to be installed. The R package needs the
other packages to work. An R code repository from the UK was used: without
supply an R code repository, Travis will be asked to pick one, which it cannot.

99

5.8.8 The Travis script

Setting up Travis is done by the following .travis.yml:

Algorithm 120 .travis.yml
sudo: true

language: cpp

compiler: gcc

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test # C++11
- sudo add-apt-repository -y ppa:marutter/rrutter # R
- sudo apt-get update -qq

install:
- sudo apt-get install -qq g++-5 # C++11
- sudo apt-get install -qq r-base r-base-dev # R
- sudo apt-get install -qq lyx texlive # pdflatex, used by knitr
- sudo Rscript install_r_packages.R # Rcpp

script:
C++
./build_cpp.sh
R wants all non-R files gome...
./clean.sh
- rm .gitignore
- rm src/.gitignore
- rm .travis.yml
- rm -rf .git
- rm -rf ..Rcheck
Now R is ready to go
- R CMD check .

after_success:
- cat /home/travis/build/richelbilderbeek/travis_qmake_gcc_cppll_rcpp/..Rcheck/00check.log

after_failure:
- cat /home/travis/build/richelbilderbeek/travis_qmake_gcc_cppll_rcpp/..Rcheck/00check. lo;

This .travis.yml file is rather extensive:

e sudo: true
language: cpp
compiler: gcc

The default language used has to be C+-+

100

e before install:

— sudo add—apt—repository —y ppa:ubuntu—toolchain—r/test # C++11
— sudo add—apt—repository —y ppa:marutter/rrutter # R

— sudo apt—get update —qq

Before installation, Travis has to add to apt repositories, one for C+-+11

and one for the R version used by CRAN

e install:

— sudo apt—get install —qq g++-5

C++11

— sudo apt—get install —qq r—base r—base—dev # R
— sudo apt—get install —qq lyx texlive # pdflatex,
— sudo Rscript install r packages.R # Rcpp

used by knitr

Travis has to install the prerequisites for C++11, R, pdflatex (used by R’s

knitr) and some R packages

e script :
G+
— ./build_cpp.sh

R wants all non—-R files gone...

— ./clean.sh

— rm .gitignore

— rm src/.gitignore

— rm .travis.yml

— rm —rf .git

— rm —rf ..Rcheck

Now R is ready to go
— R CMD check

The script consists out of a build and run of the C++11 code, cleaning

up for R, then building an R package

59 C-++11 and SFML

In this example, the basic build (chapter 3) is extended by both adding C+-+11

and the SFML library.

Specifications

Build system: gmake

e C++ compiler: gee

C++ version: C++11
e Libraries: STL and SFML

e Code coverage: none

101

e Source: one single file, main.cpp

The single C++ source file used is:

Algorithm 121 main.cpp

#include <SFML/Graphics/RectangleShape.hpp>

int main ()

{

::s8f:: RectangleShape shape (::sf:: Vector2f(100.0,250.0))
if (shape.getSize().x < 50) return 1;

}

All the file does ...
This single file is compiled with gmake from the following Qt Creator project
file:

Algorithm 122 travis _gmake gcc_cppll sfml.pro
SOURCES += main.cpp

Compile with highest warning level, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

QMAKE_CXX = g++-5
QMAKE_LINK = g++-5
QMAKE_CC = gcc-5

C++11
QMAKE_CXXFLAGS += -std=c++11

SFML
LIBS += -lsfml-graphics -lsfml-window -lsfml-system -lsfml-audio

The Qt Creator project file has the same lines as the basic project in chapter

The bash build script to build this, run this and measure the code coverage:

102

Algorithm 123 build.sh

#!1/bin/bash

qmake

make

./travis _qmake gcc cppll sfml

The bash script has the same lines as the basic project in chapter 3.
Setting up Travis is done by the following .travis.yml:

Algorithm 124 .travis.yml

language: cpp
compiler: gcc
sudo: true

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-add-repository ppa:sonkun/sfml-development -y
- sudo apt-get update -qq

install:
- sudo apt-get install -qq g++-5
- sudo apt-get install libsfml-dev

script:
- ./build.sh

This .travis.yml file has ...

5.10 C+4-411 and Urho3D

In this example, the basic build (chapter 3) is extended by both adding C+-+11
and the Urho3D library.

Specifications

e Build system: gqmake

e C++ compiler: gee

o C++ version: C++11
Libraries: STL and Urho3D

Code coverage: none

103

e Source: one single file, main.cpp

The single C++ source file used is:

104

Algorithm 125 mastercontrol.cpp

#include
#include

#include

#pragma GCC
#pragma GCC
#pragma GCC
#pragma GCC
#pragma GCC

<string>
<vector >

<QFile>

diagnostic
diagnostic
diagnostic
diagnostic
diagnostic

push

ignored
ignored
ignored
ignored

"~ Weffet+"

#define BT INFINITY

#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<Urho3D /Urho3D . h>

<Urho3D /Audio/Sound . h>
<Urho3D/Audio/SoundSource .h>
<Urho3D/Core/CoreEvents.h>
<Urho3D /DebugNew . h>
<Urho3D/Engine/Console . h>
<Urho3D /Engine /DebugHud . h>
<Urho3D /Engine /Engine . h>
<Urho3D/Graphics /Camera.h>
<Urho3D/Graphics/DebugRenderer . h>
<Urho3D/Graphics /Geometry . h>
<Urho3D/Graphics/Graphics.h>
<Urho3D/Graphics/IndexBuffer .h>
<Urho3D/Graphics/Light .h>
<Urho3D/Graphics/Material .h>
<Urho3D/Graphics /Model . h>
<Urho3D /Graphics/Octree . h>
<Urho3D/Graphics/OctreeQuery .h>
<Urho3D /Graphics/RenderPath . h>
<Urho3D/Graphics/Skybox.h>
<Urho3D/Graphics/StaticModel . h>
<Urho3D/Graphics/VertexBuffer .h>
<Urho3D /IO /FileSystem .h>
<Urho3D /10 /Log.h>
<Urho3D/Physics/CollisionShape .h>
<Urho3D/Physics /PhysicsWorld . h>
<Urho3D/Resource /ResourceCache . h>
<Urho3D/Resource /Resource . h>
<Urho3D/Resource /XMLFile . h>
<Urho3D/Scene/SceneEvents.h>
<Urho3D/Scene/Scene .h>

<Urho3D /UI/Font .h>

<Urho3D /UI/Text .h>
105

#pragma GCC diagnostic pop

#include
#include
#include

"mastercontrol .h"
"cameramaster .h"
"inputmaster .h"

DEFINE _APPLICATION MAIN(MasterControl) ;

"—Wunused—parameter"
"—Wunused—variable"
"—-Wstrict—aliasing"

All the file does ...
This single file is compiled with gqmake from the following Qt Creator project
file:

Algorithm 126 travis _gmake gcc cppll urho3d.pro

g++-5

QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5

QMAKE_CXXFLAGS += -Wall -Wextra -Werror -std=c++11

SOURCES += \
mastercontrol.cpp \
inputmaster.cpp \
cameramaster.cpp

HEADERS += \
mastercontrol.h \
inputmaster.h \
cameramaster.h

QMAKE_CXXFLAGS += -Wno-unused-variable

Urho3D

INCLUDEPATH += \
../travis_qmake_gcc_cppll_urho3d/Urho3D/include \
../travis_qgmake_gcc_cppll_urho3d/Urho3D/include/Urho3D/ThirdParty

LIBS += \
../travis_gmake_gcc_cppll_urho3d/Urho3D/1ib/1ibUrho3D.a

LIBS += \
-lpthread \
-1SDL \
-1d1 \
-1GL
-1SDL2 \ #0therwise use -1SDL

#DEFINES += RIBI_USE_SDL_2

The Qt Creator project file has the same lines as the basic project in chapter

The bash build script to build this, run this and measure the code coverage:

106

Algorithm 127 build.sh

#!1/bin/bash

./ Urho3d .sh

#ln —s ./Urho8D/bin/Data

#ln —s ./Urho8D/bin /CoreData

gqmake travis qgmake gcc cppll urho3d.pro
make

The bash script has the same lines as the basic project in chapter 3.
Setting up Travis is done by the following .travis.yml:

Algorithm 128 .travis.yml
sudo: true

language: cpp

compiler: gcc

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq

install:
- sudo apt-get install -qq g++-5
- sudo apt-get install libxll-dev libxrandr-dev libasound2-dev libgll-mesa-dev
- sudo apt-get install libsdll.2-dev libsdl-imagel.2-dev libsdl-mixerl.2-dev libsdl-ttf2.(

addons:
apt:
sources:
- boost-latest
- ubuntu-toolchain-r-test
packages:
- gcc-5
- g++-5
- libboostl.55-all-dev

script:
- ./build.sh

- sudo apt-get install libboost-all-dev

This .travis.yml file has ...

107

5.11 C-+-+11 and Wt

In this example, the basic build (chapter 3) is extended by both adding C+-+11
and the Wt library.
DOES NOT WORK YET

Specifications
e Build system: gqmake
e C++ compiler: gee
o C++ version: C++11
e Libraries: STL and Wt
e Code coverage: none
e Source: one single file, main.cpp

The single C++ source file used is:

108

Algorithm 129 main.cpp

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "—Weffc++"
#include <boost/program options.hpp>
#include <boost/signals2.hpp>
#include <Wt/WApplication>

#include <Wt/WContainerWidget>
#include <Wt/WEnvironment>

#include <Wt/WPaintDevice>

#include <Wt/WPaintedWidget>
#include <Wt/WPainter>

#include <Wt/WPushButton>

#pragma GCC diagnostic pop

struct WtWidget : public Wt:: WPaintedWidget
{
WtWidget ()
{
this—resize (32,32);
}
protected:
void paintEvent (Wt:: WPaintDevice xpaintDevice)
{
Wt:: WPainter painter (paintDevice);
for (int y=0; y!=32; ++y)
{
for (int x=0; x!=32; ++x)
{
painter.setPen (
Wt : : WPen (
Wt :: WColor (
((x+0) = 8) % 256,
((y+0) * 8) % 256,
((xty) = 8) % 256)));
//Draw a line of one pizel long
painter .drawLine (x,y,x+1,y);
//drawPoint yiels too white results
//painter.drawPoint(z,y);

}
}
}
}s

struct WtDialog : public Wt:: WContainerWidget

WtDialog ()
: m_widget (new WtWidget)
{ 109
this—addWidget (m_widget) ;
}
WtDialog (const WtDialog&) = delete;
WtDialog& operator=(const WtDialog&) = delete;
private:
WtWidget * const m_widget;

All the file does ...
This single file is compiled with gqmake from the following Qt Creator project
file:

Algorithm 130 travis _gmake gcc cppll wt.pro

QT += core

QT -= gui

CONFIG += console
CONFIG -= app_bundle

TEMPLATE = app
QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

LIBS += \
-1boost_date_time \
-1boost_filesystem \
-1boost_program_options \
-1lboost_regex \
-1lboost_signals \
-1lboost_system

LIBS += -1lwt -lwthttp

SOURCES += main.cpp

DEFINES += BOOST_SIGNALS_NO_DEPRECATION_WARNING
QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5
QMAKE_CXXFLAGS += -std=c++11

The Qt Creator project file has the same lines as the basic project in chapter

Setting up Travis is done by the following .travis.yml:

110

Algorithm 131 .travis.yml

sudo: true

language: cpp

compiler: gcc

dist: trusty # Qt5, from https://gist.github.com/jreese/6207161#gistcomment-1462109

addons:
apt:
packages: libboost-all-dev

before_install:
C++14
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq

install:
C++14
- sudo apt-get install -qq g++-5
- sudo update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 90
Wt
- sudo apt-get install witty witty-dbg witty-dev witty-doc

Start virtual X server, from https://docs.travis-ci.com/user/gui-and-headless-browsers/
before_script:

- "export DISPLAY=:99.0"

- "sh -e /etc/init.d/xvfb start"

- sleep 3 # give xvfb some time to start

script:
- gmake
- make
- ./travis_gmake_gcc_cppll_wt &
- sleep 10
- sudo killall travis_qgmake_gcc_cppll_wt

This .travis.yml file has ...

5.12 C-+-+14 and Boost libraries

In this example, the basic build (chapter 3) is extended by also using the Boost
libraries.
The chapter has the following specs:

e Build system: gmake

e C++ compiler: gec

111

o C++ version: C++14

e Libraries: STL and Boost

e Code coverage: none

e Source: one single file, main.cpp

The single C++ source file used is:

Algorithm 132 main.cpp

#include <boost/graph/adjacency list.hpp>

auto f() noexcept

{

boost :: adjacency list<> g;
boost ::add _vertex(g);
return boost::num _vertices(g);

}

int main()

{
}

if (f() !'= 1) return 1;

All the file does is to create an empty graph, from the Boost.Graph library.
It will not compile without the Boost libraries absent.

This single file is compiled with gmake from the following Qt Creator project
file:

Algorithm 133 travis_gmake gcc_cppl4d boost.pro
SOURCES += main.cpp

Compile with high warning levels, a warning is an error
QMAKE_CXXFLAGS += -Wall -Wextra -Wshadow -Wnon-virtual-dtor -pedantic -Weffc++ -Werror

C++14
CONFIG += c++14
QMAKE_CXXFLAGS += -std=c++14

The Qt Creator project file has the same lines as the basic project in chapter

Setting up Travis is done by the following .travis.yml:

112

Algorithm 134 .travis.yml

sudo: true

language: cpp

compiler: gcc

dist: trusty # Qt5, from https://gist.github.com/jreese/6207161#gistcomment-1462109

Boost
addons:
apt:
packages: libboost-all-dev

before_install:
C++14
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq

install:
C++14
- sudo apt-get install -qq g++-6
- sudo update-alternatives --install /usr/bin/g++ gt++ /usr/bin/g++-6 90

script:
- gmake
- make
- ./travis_qgmake_gcc_cppl4_boost

This .travis.yml file has ...

5.13 C+4-414 and Boost.Test

This project consists out of two projects:
e travis gmake gcc cppld boost test.pro: the real code
e travis gmake gcc cppld boost test test.pro: the tests

Both projects center around a function called ’add’, which is located in the
'my function.h’ and 'my _function.cpp’ files, as shown here:

113

travis_gmake
_gcc_cppld
__boost_test.pro

travis_gmake

__gcec_cppl4d
__boost.pro

my_ function.h
my__ function.cpp

main__test.cpp
my_ function _test.cpp

main.cpp

Figure 32: Venn diagram of the files uses in this build

Both of these are compiled both in release and debug mode.

Specifics The basic build has the following specs:
e Build system: qmake
e C++ compiler: gce
o C++ version: C++14
e Libraries: STL and Boost, demonstrating Boost.Test
e Code coverage: none

e Source: multiple files: main.cpp, my function.h, my function.cpp, test _my function.cpp

5.13.1 The function

First the function that is (1) tested by the test build (2) called by the real build,
is shown here:

114

Algorithm 135 my function.h

#ifndef MY FUNCTIONS H
#define MY FUNCTIONS H

int add(const int i, const int j) noexcept;

#endif // MY FUNCTIONS H

This header file has the #include guards and the declaration of the function
‘add’. It takes two integer values as an argument and returns an int.
Its definition is shown here:

Algorithm 136 my _function.cpp

#include "my functions.h"

int add(const int i, const int j) noexcept

{
return i + j + 000’000;

}

Perhaps it was expected that ’add’ adds the two integers

5.13.2 Test build

The test build’ is the build that tests the function. It does not have a 'main.cpp’
as the exe build has, but uses 'test _my functions.cpp’ as its main source file.
This can be seen in the Qt Creator project file:

115

Algorithm 137 travis _gmake gcc cppl4d boost test test.pro

HEADERS += my functions.h
SOURCES += my functions.cpp \
main_test.cpp \
my functions test.cpp

C++14
CONFIG += c++14
QMAKE CXXFLAGS += —std=c++14

High warning levels
QMAKE CXXFLAGS += —Wall —Wextra —Weffc++ —Werror

CONFIG += debug and _release
CONFIG(release , debug|release) {
DEFINES += NDEBUG

}

Qt
QT —= core gui

Boost . Test
LIBS += —lboost unit_ test framework

gcov
QMAKE CXXFLAGS 4= —fprofile —arcs —ftest —coverage
LIBS += —lgcov

Note how this Qt Creator project file links to the Boost unit test framework.
Its main source file is shown here:

Algorithm 138 main _test.cpp

#define BOOST TEST DYN_LINK
#define BOOST TEST MODULE my functions test module
#include <boost/test /unit test.hpp>

//No main needed, BOOST TEST DYN LINK creates it

It uses the Boost.Test framework to automatically generate a main function
and test suite. An empty file is created, so Travis can verify there has been
built both a debug and release mode.

Its main testing file file is shown here:

116

Algorithm 139 my functions test.cpp

#include <boost/test /unit_test.hpp>
#include "my functions.h"

BOOST_AUTO_TEST CASE(add _works)
{

BOOST_CHECK(add (1, 1) — 2);
BOOST_CHECK(add (1, 2) — 3);
BOOST_CHECK(add (1, 3) — 4);
BOOST_CHECK(add (1, 4) = 5);

It tests the function ’add’.

5.13.3 Exe build
The ’exe’ build’ is the build that uses the function.

Algorithm 140 main.cpp

#include "my functions.h"
#include <iostream >

int main() {
std::cout << add(40,2) << ’'\n’;
}

Next to using the function ’add’, also a file is created, so Travis can verify
there has been built both a debug and release mode.

This single file is compiled with gmake from the following Qt Creator project
file:

117

Algorithm 141 travis _gmake gcc _cppl4 boost test.pro
SOURCES += main.cpp my_functions.cpp
HEADERS += my_functions.h

C++14
CONFIG += c++14
QMAKE_CXXFLAGS += -std=c++14

High warning levels
QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

Debug and release versioms

CONFIG += console debug_and_release

CONFIG(release, debug|release) {
DEFINES += NDEBUG

}

Qt
QT -= core gui

Note how this Qt Creator project file does not link to the Boost unit test
framework.

5.13.4 Travis script

Setting up Travis is done by the following .travis.yml:

118

Algorithm 142 .travis.yml
sudo: true
language: cpp
compiler: gcc
addons:
apt:
packages: libboost-all-dev

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq

install:
- sudo apt-get install -qq g++-6
- sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-6 90

script:
Debug
- gmake travis_gmake_gcc_cppl4_boost_test.pro
- make debug
- make clean
- ./travis_gmake_gcc_cppl4_boost_test
Release
- gmake travis_gmake_gcc_cppl4_boost_test.pro
- make release
- make clean
- ./travis_gmake_gcc_cppl4_boost_test

Test
- gmake travis_qgmake_gcc_cppl4_boost_test_test.pro
- make debug

- make clean
- ./travis_gmake_gcc_cppl4_boost_test_test

This .travis.yml file has ...

5.14 C++14 and Rcpp

Does not work yet.

6 Extending the build by multiple steps

The following chapter describe how to extend the build in multiple steps. These
are:

e Use of C++11, Boost.Test and gcov: see chapter

119

6.1 C++11 and use of gcov in debug mode only

In this example, the C+-+11 build with gcov in debug mode (chapter ??7?) is
extended by using C++11.

6.1.1 Build overview

This will be a more complex build, consisting of two projects:
e The regular project that just runs the code
e The project that measures code coverage

The filenames are shown in this figure:

travis_gmake

__gcc_cppll
__gcov__gcov.pro

travis_gmake

_gce_cppll
_gcov.pro

do_magic.h
do_magic.cpp

main.cpp main__gecov.cpp

Figure 33: Venn diagram of the files uses in this build

6.1.2 The Travis file
Setting up Travis is done by the following .travis.yml:

120

Algorithm 143 .travis.yml
sudo: true

language: cpp

compiler: gcc

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq
- sudo pip install codecov

install:
- sudo apt-get install -qq g++-5
- sudo update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 90

script:

- ./build_debug.sh

- ./travis_gmake_gcc_cppll_debug_gcov_gcov

- ./get_code_cov.sh

- codecov

- ./clean.sh

- ./build_release.sh
./travis_qgmake_gcc_cppll_debug_gcov

This .travis.yml file has some new features:
e sudo: true

Travis will give super user rights to the script. This will slow the build
time, but it is inevitable for the next step

e before install: sudo pip install codecov
Travis will use pip to install codecov using super user rights
e after success: codecov
After the script has run successfully, codecov is called

6.1.3 The Qt Creator project files

Release:

121

Algorithm 144 travis qgmake gcc cppll debug gcov.pro

TEMPLATE = app

CONFIG += comnsole

CONFIG -= app_bundle qt

SOURCES += main.cpp do_magic.cpp

HEADERS += do_magic.h

QMAKE_CXXFLAGS += -Wall -Wextra -Weffct++ -Werror

C++11

QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5
QMAKE_CXXFLAGS += -std=c++11

Debug with gcov:

Algorithm 145 travis_gmake gcc_cppll _gcov.pro

TEMPLATE = app

CONFIG += comsole

CONFIG -= app_bundle qt

SOURCES += main_gcov.cpp do_magic.cpp

HEADERS += do_magic.h

QMAKE_CXXFLAGS += -Wall -Wextra -Weffc++ -Werror

gcov
QMAKE_CXXFLAGS += -fprofile-arcs -ftest-coverage
LIBS += -lgcov

C++11

QMAKE_CXX = g++-5

QMAKE_LINK = g++-5

QMAKE_CC = gcc-5
QMAKE_CXXFLAGS += -std=c++11

The Qt Creator project file has two new lines:

e QMAKE CXXFLAGS += —fprofile —arcs —ftest —coverage
Let the C++ compiler add coverage information

e LIBS += —Igcov

Link against the gcov library

122

6.1.4 The source files

Common files Both builds use the following code:

Algorithm 146 do_magic.h

#ifndef DO MAGIC H
#define DO_MAGIC H

int do_magic(const int x) noexcept;

#endif // DO_MAGIC H

And its implementation:

Algorithm 147 do__magic.cpp

#include "do magic.h"

int do_magic(const int x) noexcept
{

if (x =— 42)

{

return 42;

}
if (x == 314)

{
}

return x x 2;

}

return 314;

Release main function The C++ source file used by the normal build is:

Algorithm 148 main.cpp

#include "do magic.h"
#include <iostream >

int main() {
std :: cout << do_magic(123) << ’'\n’;

}

123

Debug and gcov main function The C++ source file used by the normal
build is:

Algorithm 149 main _gcov.cpp

#include "do magic.h"

int main ()

{
if (do_magic(2) !'= 4) return 1;
if (do_magic(42) != 42) return 1;
//Forgot to test do_magic(314)

}

6.2 C++11, Boost.Test and gcov

This project adds code coverage to the previous project and is mostly similar
This project consists out of two projects:

e travis _qmake gcc cppll_ boost test gcov.pro: the real code

e travis_qmake gcc cppll boost test gcov test.pro: the tests, also mea-
sures the code coverage

Both projects center around a function called ’add’, which is located in the
'my function.h’ and 'my function.cpp’ files, as shown here:

124

travis_gmake

travis_gmake

__gce_cppll __gce_cppll
__boost_test __boost_test
_ gcov.pro __gcov_test.pro

my_ function.h
my__ function.cpp

main__test.cpp
my_ function _test.cpp

main.cpp

Figure 34: Venn diagram of the files uses in this build

Both of these are compiled both in release and debug mode.

6.2.1 The function

Same

6.2.2 Test build

The test build’ is the build that tests the function. It does not have a 'main.cpp’
as the exe build has, but uses 'test _my functions.cpp’ as its main source file.
This can be seen in the Qt Creator project file:

125

Algorithm 150 travis _gmake gcc cppll boost test gcov test.pro

#CONFIG += console debug and release

CONFIG += console

CONFIG —= app_bundle

QT —= core gui

TEMPLATE = app

QMAKE CXXFLAGS += —Wall —Wextra —Weffc++ —Werror

CONFIG(release , debug|release) {
DEFINES += NDEBUG
}

HEADERS += my functions.h
SOURCES += my functions.cpp \
main_test.cpp \
my functions test.cpp

C++11

QMAKE CXX = g++-5

QMAKE IINK = g++-5

QMAKE CC = gcec—5

QMAKE CXXFLAGS += —std=c++11

Boost . Test
LIBS += —lboost unit test framework

gcov
QMAKE CXXFLAGS += —fprofile —arcs —ftest —coverage
LIBS += —lgcov

Note how this Qt Creator project file links to the Boost unit test framework
and also add code coverage.

Its main source file is identical.

Its main testing file file is identical.

6.2.3 Normal build

The normal build is identical.

6.2.4 Build script
The bash build script to build, test and run this:

126

Algorithm 151 build_test.sh

#!/bin/bash
qmake travis qmake gcc cppll boost test gcov test.pro
make

In this script both projects are compiled in both debug and release mode.
All four exectables are run.

6.2.5 Travis script

Setting up Travis is done by the following .travis.yml:

Algorithm 152 .travis.yml
sudo: true
language: cpp
compiler: gcc
addons:
apt:
packages: libboost-all-dev

before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq
- sudo pip install codecov

install:
- sudo apt-get install -qq g++-5
- sudo update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 90

script:
- ./build_test.sh
- ./travis_qmake_gcc_cppll_boost_test_gcov_test
- ./build.sh
- ./get_code_cov.sh
- codecov

after_success:
- bash <(curl -s https://codecov.io/bash)

This .travis.yml file has ...

127

7 Troubleshooting

7.1 sudo apt-get install gcov-5 failed and exited with 100
during .

Or in full:
The command "sudo —E apt—get —yq —no—install —suggests —no—install —recommends —

It means Travis-CI cannot find the package ’gcov-5’ in the ’addons’ section.
Comment out the addons section and add this to the Travis script:

n U

apt—cache search "gcov" | egrep "“gcov"

One can then observe that ’gcov’ is absent. It is part of g++.

7.2 Cannot find the correct version of a package

Comment out the addons section and add this to the Travis script:

"~

— apt—cache search "g++" | egrep gee"

— apt—cache search "g++" | egrep "“g\+\+"

— apt—cache search "gcov" | egrep "“gcov"

— apt—cache search "libboost"| egrep "~libboost"

This will cause Travis to search the aptitude packages.

7.3 fatal error: Rcpp.h: No such file or directory
Add these line to the .travis.yml file to find Rcpp.h:

after failure:
fatal error: Rcpp.h: No such file or directory
— find / —name ’Rcpp.h’

You can then add the folder found to the INCLUDEPATHS of the Qt Create
project file.

References

[1] Scott Meyers. Effective C++: 55 specific ways to improve your programs
and designs. Pearson Education, 2005.

128

Index

#define, 20 qmake, 14, 16
#include guard, 44 qmake-qt4, 41
#pragma once, 44 QMAKE CXXFLAGS, 17
-Wall, 17 Qt, 40
-Weffc++, 17 Qt Creator, 13
-Werror, 17 Qt Creator project file, 13
-Wextra, 17 Qt Creator, create new project, 13
.pro, 13 Qt4, 40
Qt5, 46
assert, remove, 20
R, 51
bash, 15 Repp, 51
Boost, 26 release build, 19
remove assert, 20
C++0x, 21
C++11, 21 SFML, 57
C++14, 24 SLOCcount, 61
C++98, 15 SOURCES, 17
clang, 28 STL, 15
Codecov, 31 sudo, 22

. sudo: require, 22
debug build, 19

_ Urho3D, 62

forward-declaration, 45
Wt, 65

g++, 14
GCC, 14 xvib, 41
geov, 30
git, 12 Yet Another Markup Language, 16
GitHub, 8 yml, 16

GitHub, creating a repository, 10
GitHub, registration, 8

Hello world, 18

Long Term Stable, 21
LTS, 21

make, 14, 16
Makefile, 16

NDEBUG, 20
noexcept, 21

OCLint, 35

129

7.4 Name

7.4.1 What is Name?

7.4.2 The Travis file

7.4.3 The build bash scrips

7.4.4 The Qt Creator project files
7.4.5 The source files

130

