
NodeStore, A Case Study in Refactoring
Vincent Falco

OpenCoin, Inc.
vinnie.falco@gmail.com

Why?

Soon, our software including the rippled server and the client side wallet code will be in the
spotlight on the global stage. Programmers, IT managers, maverick developers, and many more
will be looking at everything that we are doing. We're building the most important piece of
software that the world has ever seen. It deals with money, which makes the world go round!

If there was ever a piece of software for which readability, maintainability, and overall aesthetics
was of paramount importance, it would be the software developed by OpenCoin. The Ripple
payment system will help redefine society well beyond our lifetimes.

Every developer should remember that the world
will be looking at their code.

What?

Code refactoring is a "disciplined technique for restructuring an existing body of code, altering
its internal structure without changing its external behavior", undertaken in order to improve
some of the nonfunctional attributes of the software. Advantages include improved code
readability and reduced complexity to improve the maintainability of the source code, as well as a
more expressive internal architecture or object model to improve extensibility:

“By continuously improving the design of code, we make it easier and
easier to work with. This is in sharp contrast to what typically happens:
little refactoring and a great deal of attention paid to expediently adding
new features. If you get into the hygienic habit of refactoring
continuously, you'll find that it is easier to extend and maintain code.”

—Joshua Kerievsky, Refactoring to Patterns

Code is easier to understand and maintain when
it is refactored.

The NodeStore

The NodeStore provides an interface that stores, in a persistent database, the collection of
NodeObject that rippled uses as its primary representation of ledger items.

The original implementation used SQLite, which was quickly identified as a bottleneck for the
performance of the NodeStore. To improve the performance, developers changed the original
code to use LevelDB. The changes were made in hasty fashion, typical of fast paced startup

mailto:vinnie.falco@gmail.com
http://en.wikipedia.org/wiki/Code_refactoring

environments, incurring a high level of technical debt (another explanation). It became clear that
trying out a third backend using the same quick technique was not practical. To meet the business
needs, it was necessary to refactor the NodeStore interface to support interchangeable
backends before adding new features.

Evolving business needs are more easily met
when code is already well designed.

Objective

Because the NodeStore plays such a crucial role in the operation and performance of the
rippled server, we volunteered to improve the interface, to not only to fulfill the business
requirements but also to serve as an example and reference for future development. The
techniques applied in the refactoring of NodeStore should be documented and adopted as
OpenCoin programming standards and promulgated throughout the corporate culture. Note that
most of these refactoring approaches and techniques are applicable not only to the C++ code, but
also the JavaScript code (although with accommodations made for language differences).

Source Material

Accompanying this presentation is the original source material for both the “before” and “after”
version of the source code in question. The header and source files have been concatenated
together, with each version in its own separate file.

Nouns and Verbs

Computers don't care about identifier names. But humans need them. The choice of names may
seem a trivial exercise. But words shape the way we think and communicate ideas. Careful
selection of identifier names facilitates thoughts and conversations about code. They also serve as
a form of self-documentation (although they are not a substitute for proper documentation).

The original class was called HashedObjectStore. Since “node” was used in various places
to describe a key/value based object, the name was changed to NodeStore for brevity and ease
of pronunciation. Correspondingly, we have NodeObject instead of HashedObject.

It's easy to find plenty of advice on tips for naming variables.

Choosing the right names is just as important as
having a correct implementation.

Original Code

Due to the fast paced nature of startup environments, the first iteration of code usually incurs
significant technical debt. We begin with a review of the original code and the problems with it.
These are marked in the program listing in “Addendum A” in this document, in bright green
comments which begin with brackets “[]” with the note number inside:

1. Don't advertise unnecessary features. Only one place in the code base constructs a
HashedObjectStore. Rather than passing the cacheSize and cacheAge parameters, it
is easier to just put them in the constructor initializer list. An example of You Arent Gonna Need
It.

2. There is no destructor for HashedObjectStore. If mWriteSet isn't empty we could be

http://martinfowler.com/bliki/TechnicalDebt.html
http://en.wikipedia.org/wiki/Technical_debt
http://xp.c2.com/YouArentGonnaNeedIt.html
http://xp.c2.com/YouArentGonnaNeedIt.html
http://en.wikipedia.org/wiki/Technical_debt
http://www.makinggoodsoftware.com/2009/05/04/71-tips-for-naming-variables/

left with unflushed data.

3. Exposing the function isLevelDB implies that calling code needs to care about the choice of
backend. This adds an extra burden to anyone using the class.

4. Why are the backend-specific member functions public? We prefer to expose as little of a class
as possible.

5. Pushing the responsibility of waiting for writes, onto the caller of the class is bad design. It
should happen in the destructor.

6. By placing LevelDB-specific declarations in the header file, all the header material of LevelDB
needs to be included just to compile the NodeStore class. This is an unwanted dependency.

7. The std::vector type is repeated, it should be given a descriptive name.

8. ctor-initializers should each be on their own line for legibility. This also encourages
commenting on the line.

9. A magic number appears here and gets repeated.

10. We've introduced an undesirable dependency on theConfig which will complicate the unit
test and add an unnecessary moving part.

11. Returning from the middle of the function is an unsustainable style . As a function grows,
returning from the middle makes it more and more difficult to analyze.

12. The serialized format of a HashedObject is implied here but lacks any sort of annotation.
Anyone mistakenly changing this code would break all existing databases.

13. Lack of comments hide an interesting fact, there are 4 bytes in the serialized format that get
written out but are not read back in.

14. Redundant code, and even worse its the code that does serialization and defines the database
format.

15. This batch write feature was added in a way that it could not be reused nor disabled if desired.

16. This unwanted dependency on both the JobQueue and the Application object means we
can't write a unit test for HashedObjectStore without also initializing the Application
object, itself a procedure ripe with problems.

17. A classic example of why returning from the middle is bad practice. The call to
canonicalize is redundant. This example might seem trivial, but imagine if this function
was the size of RippleCalc, and we needed to do many complex steps instead of just a call
to canonicalize. One might even be tempted to use a “goto” statement in this situation...

18. We have duplicated code here because batch writing was never made into a class. What if we
want a third backend?

19. More duplicated batch writing code.

20. Another dependency on theConfig. A proper unit test would want to run the tests with both
values of RUN_STANDALONE, which is impossible because...

21. Global variables in the most unexpected place, and in a way that makes writing a unit test
impossible.

22. Missing unit tests.

http://whatimean.wordpress.com/2007/02/08/multiple-return-points-are-bad/

New Code

We refactored the entirety of HashedObjectStore, renaming it to NodeStore. The goal
was to allow the backend to be chosen through a configuration. An additional goal was to bring
the code up to the proposed OpenCoin programming standards to serve as a reference for future
work. We review the changes in the program listing corresponding to the new code which is in
“Addendum B” in this document with green comments and numbered brackets:

1. Javadoc style comments. These are automatically extracted by the Doxygen tool to produce the
HTML formatted Ripple C++ API reference.

2. Magic numbers changed into a language constant with a descriptive name

3. Descriptive name given to a commonly used type

4. The deserialization logic is consolidated into a single well designed class

5. The DecodedBlob class can detect some errors in deserialization, a new feature. It was
designed with the Single Responsibility Principle; to decode blobs. This is an instance of the
larger principle of Responsibility Driven Design.

6. There is now only a single place in the program where NodeObject is constructed from
serialized data

7. As per C++ best practices, this class exposes the least amount of interface needed to do the job

8. The EncodedBlob consolidates serialization of NodeObject into one place. This is the
Single Responsibility Principle.

9. The RecycledObjectPool class was written and added to Beast (since it is generic) and
allows the NodeStore to recycle the buffers required for serialization, reducing the load on
the memory allocator (a resource which takes a global lock).

10. The Scheduler interface eliminates the previous dependency on the Application object
and JobQueue, while still allowing the NodeStore implementation to fulfill a business
requirement. Specifically, that batch writing occur on a separate managed thread.

11. The batch writing feature, a business requirement, is consolidated into its own class with a well
defined interface which can be unit-tested independently of the rest of the system. This is an
example of preferring Composition over Inheritance, or the Composite Reuse Principle.

12. The Backend interface is used by the NodeStore. Since the class is completely abstract,
subclasses are free to choose their own implementations. Furthermore, no implementation
details required by Backend subclasses are leaked into the header material seen by clients of
NodeStore. This follows the Open/closed principle. The behavior of the NodeStore can be
modified by creating a new Backend, which does not require modification of the
NodeStore class itself.

13. Explicit return codes communicate information needed for business requirements, such as the
existence of data known to be corrupted.

14. The comments for the Backend destructor make clear the responsibilities of derived classes,
and what behaviors callers can expect. We use comments because C++ does not directly support
all the features needed for Design by contract.

15. We chose to pass keys as void* instead of uint256, since it allows the caller more flexibility

http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Cohesion_(computer_science)
http://en.wikipedia.org/wiki/Composition_over_inheritance
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://c2.com/cgi/wiki?ResponsibilityDrivenDesign
http://en.wikipedia.org/wiki/Single_responsibility_principle

in how the data is provided. A uint256 can always be presented as a void* by passing
uint256::begin(). However, there is no way to take a generic piece of memory and pass
it as a uint256 without invoking a constructor and a memory copy.

16. We chose fetch and store as the verbs used in member function names. Previously, there was
store, retrieve, fetch, and write. Since the management of I/O resources is important for
business requirements, we reserve the word write to indicate where I/O is taking place
immediately.

17. The NodeStore lets the caller provide the Scheduler, instead of depending on the
Application object.

18. The return value is well documented.

19. During the refactoring, it became clear that the storage required for the creation of the resulting
NodeObject could be taken from the caller. Previously, the store operation resulting in the
creation and destruction of three temporary memory buffers. This is now reduced to zero.

20. The format of the serialized NodeObject is defined in a comment.

21. We note that there are 4 bytes in the serialized output which are not well defined

22. Instead of repeating ugly calls to boost::make_shared<>, we simply give NodeObject
a createObject function. This exemplifies Don't Repeat Yourself. We additionally made the
NodeObject constructor effectively private, so that no one can create an object without going
through our createObject function. This gives us a strong invariant: there's only one way to
produce these objects, should we want to change how they are made.

23. We use Beast's static_bassert feature to detect unexpected architecture changes at
compile time.

24. The fetch function implements the largest amount of Ripple-specific business logic, checking
various caches and multiple backends. We found the numerous return statements in the
middle of the function an impediment to achieving clarity in the understanding of the function.
First, we rewrote the function have a single point of exit. During this refactoring, it was possible
to eliminate the redundant calls to canonicalize. If this code needs to be changed, it will be
easier as a result of the refactoring. Finally, we carefully annotated the thinking behind each
important line of code so that if someone unfamiliar with the code base steps through it, they
will have a profound understanding of it's behavior.

25. It was necessary to split some code into its own function to eliminate redundancy. This a
Composed Method refactoring.

26. The Beast ScopedPointer<> container provides RAII management of a dynamically
allocated object, ensuring that it gets deleted when the enclosing class is deleted.

27. Common code for unit tests is factored into its own class.

28. The unit test code provides its own Scheduler so we don't need to use the one from the
Application object. Our hard work refactoring is now yielding dividends!

29. A set of basic tests make sure that none of the things we depend on in later unit tests break.

30. We unit test the Backend interface directly. This is now practical since Backend subclasses
have no upstream dependencies.

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://c2.com/cgi/wiki?ComposedMethod
http://en.wikipedia.org/wiki/Don't_repeat_yourself

31. Now we can do performance testing in a controlled environment, to make sure we haven't
introduced a problem, or to test new implementations.

32. We can test the NodeStore itself, with the additional caching and other business logic,
without needing theConfig or the Application object to initialize.

33. Even the unit tests were written with best practices in mind. The NodeStore unit test
exercises everything through a generic function that works with any backend.

What Can We do?

Code Should Be Easy To Understand

By paying attention to white space, choice of names, consistency in capitalization (capitalize the
first letter for type names, lower case first letter for variables, and always use camel case), we can
go a long way towards making the code readable. Breaking up long functions into smaller
functions with very descriptive names also helps.

Comments are essential for describing what a class does, or for documenting the parameters or
nuanced behaviors of public member functions. But comments are not always needed, it is
possible to write readable code without comments if you follow these guidelines.

Code Should Be Written to Minimize the Time for Someone Else To Understand It

Each coding style or good coding practice might seem subtle or trivial on its own. But when you
take them all together and apply their principles continuously over time, the results increase
productivity and help to reliably achieve business goals. Here is a partial list of good
programming practices:

– Write code in a clear, self-documenting style but use comments where necessary.

– Use Test Driven Development. It encourages designing interfaces first, before implementation.

– Don't Repeat Yourself , “D.R.Y.”. Put redundant code in a class so it can be re-used and unit
tested.

– Expose as little of a class as possible. Prefer private over protected. Prefer protected over
public. The smaller the interface footprint, the easier it is to write unit tests and comprehend the
operation of the class. This is the Interface Segregation Principle.

– Make classes depend on as few external classes or routines as possible. Ideally, no
dependencies.

– Write code that is first correct, and do not worry about optimizations until later. Changes that
improve performance usually make the program harder to work with. This slows development.
This would be a cost worth paying if the resulting software were quicker, but usually it is not.
The performance improvements are spread all around the program, and each improvement is
made with a narrow perspective of the program’s behavior.

The rippled repository and the Beast repository have a CodingStyle.md document which is a
great starting point for writing well designed code.

Immediately Polish New Code

The best time to go over a piece of newly written working code and polish it up is right after it

http://c2.com/cgi/wiki?SelfDocumentingCode
http://www.wikihow.com/Write-Readable-Code-Without-Comments
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Test-driven_development
http://www.codinghorror.com/blog/2008/07/coding-without-comments.html

has been written and tested. This is the time to rename things to make sense, add or update the
comments, eliminate unnecessary functions and redundant code, make implementation details
private, streamline the exposed interface, and eliminate external dependencies.

If we leave this process for some unspecified point in the future, then it will be much more
difficult to revise because the code and algorithms are no longer fresh in the mind of the
programmer. A quick refactoring after writing the initial code gives us a large benefit for only a
marginal cost. Waiting until later increases the cost, or defers it indefinitely if development is
always in a “crisis mode.”

The Rule of Three

All development times should be increased by a factor of three. Right now, we put in an hour of
development and it ends there. Instead, for each hour of development we should add:

– An hour for refactoring, with a final peer review by another programmer. The first draft of code
usually always needs some work to eliminate technical debt. Doing a refactoring pass when it is
fresh in the mind of the author is ideal. Class names, types, and parameter names can be
rethought. More comments can be added. Input from other developers can help at this point.

– An hour for writing unit tests. They say that the ratio of unit test code to business code is one to
one. It follows that for each hour of development, an hour of unit test writing is necessary.
During the writing of the unit test, it is likely that the inteface will be further refined to support
the test. This is itself a form of factoring, and makes the newly written code more robust.

While it might appear counter-intuitive that increasing the time taken for development will
decrease the time requirement for deliverables, remember that significant levels of technical debt
impose a “tax” on development. It is the price that must continually be paid when a programmer
has to work in functions with little or no documenting comments, that also does not adhere to
good programming principles. The author notes that there is a considerable learning curve for
gaining a sufficient understanding of core business logic code like the ripple calculation or the
ledger closing process, to the extent that there is only one employee of sufficient proficiency to
effect changes and fixes.

“If a shortened and bug-free release schedule was the goal of rapid
development with an absence of refactoring, unit tests, or attention to
good programming principles, then we have surely failed.”

— Vincent Falco

Education

There is plenty of literature on good programming practices. Journal articles, columns, and even
resources such as the #c++ or #boost channels on IRC's Freenode network. The author is always
connected and regularly consults these resources with relevant questions in order to produce the
highest quality code. For example:

<Vinnie_win> If I have a 32-bit signed integer and I want to
reinterpret the bits as a 32-bit unsigned integer without doing
any conversions, do I use static_cast<>, reinterpret_cast<>, or
either?

<adamm> << static_cast<unsigned>(-1);

<Vinnie_win> michlemken-1: According to StackExchange there's

http://devblog.guidewire.com/2009/04/03/thoughts-on-tech-debt/
http://devblog.guidewire.com/2009/04/03/thoughts-on-tech-debt/

no portable way to friend make_shared that works on all
compilers.

<michlemken-1> Vinnie_win, ... template<...> friend ?
std::make_shared(...)

<PlasmaHH> Vinnie_win: you can only befriend functions, not
templates, so you have to use an instance of make_shared

<Vinnie_win> If I want to memcpy the contents of a std::string,
without the null terminator, whats the 'proper' way to get a
pointer to the beginning of the std::string in question?

<japro> C++98, C++11 also have the string::data() member

<Vinnie_win> I prefer data(). Because I am unconcerned with
terminators.

<tsimpson> you'll still get the \0 in all likelihood

<tsimpson> but at least conceptually you're better off with
data()

<japro> well yeah, you should probably be using std::copy
instead of memcpy anyway

OpenCoin developers should continually dedicate some time to studying the literature on good
programming practices. These skills add significant value not only to the company but also the
individual. It's a win-win.

The External Resources section contains a great starting point for learning more about writing
well designed code.

Code Review, Code Audit

All code should be subjected to informal code reviews that are not overly time consuming, with
the understanding that we're not looking to criticize anyone or play competitive games but
instead to recognize that hearing the opinions of our colleagues can provide valuable insights. A
code review could be as simple as looking over a header file containing interfaces just to look for
code smells. We all have our own strengths, and a shared desire to make the best software
possible. Peer reviewing code improves our process.

Furthermore, the open sourcing of the rippled software will introduce new requirements on
every developer to enhance their code reviewing skills to work with outside contributors. Outside
contributions must be subjected to a code audit process not only to ensure consistent quality but
also to detect malicious intent.

http://en.wikipedia.org/wiki/Code_audit
http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Code_review

Benefits of Refactoring

– Improves the design of the software , reversing the increasing tendency of code to develop
difficult to fix bugs.

– Helps you find bugs , and helps you program faster.

– Refactoring makes software easier to understand for everyone , instead of having only one
person who can work in the software portions critical to the business.

– Well written code attracts higher quality contributions, and increase pride in workmanship.

– The techno-literate will more easily accept Ripple as the “Internet Payments” system that deals
with money when they see well designed code.

– Code looks more professional once it is open sourced.

http://www.hesslerdesign.com/blog/coding/take-pride-in-your-code/
http://sourcemaking.com/refactoring/why-should-you-refactor
http://sourcemaking.com/refactoring/refactoring-helps-you-find-bugs
http://sourcemaking.com/refactoring/refactoring-helps-you-find-bugs
http://sourcemaking.com/refactoring/why-should-you-refactor

External Resources

As developers we should strive to grow our skills and knowledge. If you see this book lying
around you should read it. Or you can order it for home:

The Art of Readable Code, Trevor Foucher and Dustin Boswell

Here's a list of more invaluable resources for improving code design skills:

– Good Programming Principles

– Refactoring: Improving the Design of Existing Code , Martin Fowler.

– Design Patterns: Elements of Reusable Object-Oriented Software , various

– C++ Coding Standards: 101 Rules, Guidelines, and Best Practices , Sutter and Alexandrescu

– Effective C++: 55 Specfic Ways to Improve Your Programs and Designs , Scott Myers

– More Effective C++: 35 New Ways to Improve Your Programs and Designs , Scott Myers

– The Mythical Man-Month: Essays on Software Engineering , Frederick P. Brooks Jr.

– Freenode IRC : ##c++, #boost, and ##javascript channels

http://freenode.net/
http://www.amazon.com/Mythical-Man-Month-Software-Engineering-Anniversary/dp/0201835959/ref=sr_1_1?s=books&ie=UTF8&qid=1374510346&sr=1-1
http://www.amazon.com/Effective-Specific-Improve-Programs-Designs/dp/0321334876/ref=sr_1_2?s=books&ie=UTF8&qid=1374510625&sr=1-2
http://www.amazon.com/Effective-Specific-Improve-Programs-Designs/dp/0321334876/ref=sr_1_2?s=books&ie=UTF8&qid=1374510625&sr=1-2
http://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586/ref=sr_1_1?s=books&ie=UTF8&qid=1374510572&sr=1-1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=sr_1_1?s=books&ie=UTF8&qid=1374510304&sr=1-1
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://en.wikipedia.org/wiki/Category:Programming_principles
http://www.amazon.com/dp/0596802293
http://www.amazon.com/dp/0596802293

Addendum A
ripple_HashedObjectStore.cpp

//--
/*
 Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==

#ifndef RIPPLE_HASHEDOBJECTSTORE_H
#define RIPPLE_HASHEDOBJECTSTORE_H

/** Persistency layer for hashed objects.
*/
// VFALCO TODO Move all definitions to the .cpp
class HashedObjectStore : LeakChecked <HashedObjectStore>
{
public:
 /// [1] Unnecessary parameters, only 1 caller constructs this object
 HashedObjectStore (int cacheSize, int cacheAge);

 /// [2] No destructor. What happens if mWriteSet isn't empty?

 /// [3] Exposed implementation detail
 bool isLevelDB ()
 {
 return mLevelDB;
 }

 float getCacheHitRate ()
 {
 return mCache.getHitRate ();
 }

 bool store (HashedObjectType type, uint32 index, Blob const& data,
 uint256 const& hash)
 {
 if (mLevelDB)
 return storeLevelDB (type, index, data, hash);

 return storeSQLite (type, index, data, hash);
 }

 HashedObject::pointer retrieve (uint256 const& hash)
 {
 if (mLevelDB)
 return retrieveLevelDB (hash);

 return retrieveSQLite (hash);
 }

 /// [4] Were these supposed to be public?
 bool storeSQLite (HashedObjectType type, uint32 index, Blob const& data,
 uint256 const& hash);
 HashedObject::pointer retrieveSQLite (uint256 const& hash);
 void bulkWriteSQLite (Job&);

 bool storeLevelDB (HashedObjectType type, uint32 index, Blob const& data,
 uint256 const& hash);
 HashedObject::pointer retrieveLevelDB (uint256 const& hash);
 void bulkWriteLevelDB (Job&);

 /// [5] Are callers responsible for knowing about write batching?
 void waitWrite ();

 void tune (int size, int age);
 void sweep ()
 {
 mCache.sweep ();
 mNegativeCache.sweep ();
 }
 int getWriteLoad ();

 int import (const std::string& fileName);

private:
 /// [6] Everyone who needs NodeStore now needs to see leveldb declarations
 static HashedObject::pointer LLRetrieve (uint256 const& hash, leveldb::DB* db);
 static void LLWrite (boost::shared_ptr<HashedObject> ptr, leveldb::DB* db);
 static void LLWrite (const std::vector< boost::shared_ptr<HashedObject> >& set, leveldb::DB* db);

private:
 TaggedCache<uint256, HashedObject, UptimeTimerAdapter> mCache;
 KeyCache <uint256, UptimeTimerAdapter> mNegativeCache;

 boost::mutex mWriteMutex;
 boost::condition_variable mWriteCondition;
 int mWriteGeneration;
 int mWriteLoad;

 /// [7] This type name is repeated often
 std::vector< boost::shared_ptr<HashedObject> > mWriteSet;
 bool mWritePending;
 bool mLevelDB;
 bool mEphemeralDB;
};

#endif

//==

/// [8] ctor-initializers are hard to read, hard to add comments.
HashedObjectStore::HashedObjectStore (int cacheSize, int cacheAge) :
 mCache ("HashedObjectStore", cacheSize, cacheAge),

mNegativeCache ("HashedObjectNegativeCache", 0, 120),
 mWriteGeneration (0), mWriteLoad (0), mWritePending (false), mLevelDB (false),
 mEphemeralDB (false)
{
 /// [9] A magic number
 mWriteSet.reserve (128);

 /// [10] Dependency on "theConfig"
 if (theConfig.NODE_DB == "leveldb" || theConfig.NODE_DB == "LevelDB")
 mLevelDB = true;
 else if (theConfig.NODE_DB == "SQLite" || theConfig.NODE_DB == "sqlite")
 mLevelDB = false;
 else
 {
 WriteLog (lsFATAL, HashedObject) << "Incorrect database selection";
 assert (false);
 }

 if (!theConfig.LDB_EPHEMERAL.empty ())
 mEphemeralDB = true;
}

void HashedObjectStore::tune (int size, int age)
{
 mCache.setTargetSize (size);
 mCache.setTargetAge (age);
}

void HashedObjectStore::waitWrite ()
{
 boost::mutex::scoped_lock sl (mWriteMutex);
 int gen = mWriteGeneration;

 while (mWritePending && (mWriteGeneration == gen))
 mWriteCondition.wait (sl);

}

int HashedObjectStore::getWriteLoad ()
{
 boost::mutex::scoped_lock sl (mWriteMutex);
 return std::max (mWriteLoad, static_cast<int> (mWriteSet.size ()));
}

// low-level retrieve
HashedObject::pointer HashedObjectStore::LLRetrieve (uint256 const& hash, leveldb::DB* db)
{
 std::string sData;

 leveldb::Status st = db->Get (leveldb::ReadOptions (),
 leveldb::Slice (reinterpret_cast<const char*>

 (hash.begin ()), hash.size ()), &sData);

 if (!st.ok ())
 {
 assert (st.IsNotFound ());

 /// [11] Returning from the middle of the function
 return HashedObject::pointer ();
 }

 /// [12] This defines the serialized format of a HashedObject
 const unsigned char* bufPtr = reinterpret_cast<const unsigned char*> (&sData[0]);
 uint32 index = htonl (*reinterpret_cast<const uint32*> (bufPtr));
 int htype = bufPtr[8];

 return boost::make_shared<HashedObject> (static_cast<HashedObjectType> (htype), index,
 bufPtr + 9, sData.size () - 9, hash);
}

// low-level write single
void HashedObjectStore::LLWrite (boost::shared_ptr<HashedObject> ptr, leveldb::DB* db)
{
 HashedObject& obj = *ptr;
 Blob rawData (9 + obj.getData ().size ());
 unsigned char* bufPtr = &rawData.front ();

 reinterpret_cast<uint32> (bufPtr + 0) = ntohl (obj.getIndex ());

 /// [13] Here, we're writing out 4 bytes that are not read back in
 reinterpret_cast<uint32> (bufPtr + 4) = ntohl (obj.getIndex ());
 * (bufPtr + 8) = static_cast<unsigned char> (obj.getType ());
 memcpy (bufPtr + 9, &obj.getData ().front (), obj.getData ().size ());

 leveldb::Status st = db->Put (leveldb::WriteOptions (),
 leveldb::Slice (reinterpret_cast<const char*>

 (obj.getHash ().begin ()), obj.getHash ().size ()),
 leveldb::Slice (reinterpret_cast<const char*> (bufPtr),

 rawData.size ()));

 if (!st.ok ())
 {
 WriteLog (lsFATAL, HashedObject) << "Failed to store hash node";
 assert (false);
 }
}

// low-level write set
void HashedObjectStore::LLWrite (const std::vector< boost::shared_ptr<HashedObject> >& set,

 leveldb::DB* db)
{
 leveldb::WriteBatch batch;

 BOOST_FOREACH (const boost::shared_ptr<HashedObject>& it, set)
 {
 const HashedObject& obj = *it;
 Blob rawData (9 + obj.getData ().size ());
 unsigned char* bufPtr = &rawData.front ();

 /// [14] Redundant code
 reinterpret_cast<uint32> (bufPtr + 0) = ntohl (obj.getIndex ());
 reinterpret_cast<uint32> (bufPtr + 4) = ntohl (obj.getIndex ());
 * (bufPtr + 8) = static_cast<unsigned char> (obj.getType ());
 memcpy (bufPtr + 9, &obj.getData ().front (), obj.getData ().size ());

 batch.Put (leveldb::Slice (reinterpret_cast<const char*>
(obj.getHash ().begin ()), obj.getHash ().size ()),

 leveldb::Slice (reinterpret_cast<const char*>
(bufPtr), rawData.size ()));

 }

 leveldb::Status st = db->Write (leveldb::WriteOptions (), &batch);

 if (!st.ok ())
 {
 WriteLog (lsFATAL, HashedObject) << "Failed to store hash node";
 assert (false);
 }
}

bool HashedObjectStore::storeLevelDB (HashedObjectType type, uint32 index,
 Blob const& data, uint256 const& hash)
{
 // return: false = already in cache, true = added to cache
 if (!getApp().getHashNodeLDB ())
 return true;

 if (mCache.touch (hash))
 return false;

#ifdef PARANOID
 assert (hash == Serializer::getSHA512Half (data));
#endif

 HashedObject::pointer object =
boost::make_shared<HashedObject> (type, index, data, hash);

 if (!mCache.canonicalize (hash, object))
 {
 /// [15] Non-reusable batch write feature
 boost::mutex::scoped_lock sl (mWriteMutex);
 mWriteSet.push_back (object);

 if (!mWritePending)
 {
 mWritePending = true;

 /// [16] Dependency on the JobQueue
 getApp().getJobQueue ().addJob (jtWRITE, "HashedObject::store",

BIND_TYPE (&HashedObjectStore::bulkWriteLevelDB, this, P_1));
 }
 }

 mNegativeCache.del (hash);
 return true;
}

void HashedObjectStore::bulkWriteLevelDB (Job&)
{
 assert (mLevelDB);
 int setSize = 0;

 while (1)
 {
 std::vector< boost::shared_ptr<HashedObject> > set;
 set.reserve (128);

 {

 boost::mutex::scoped_lock sl (mWriteMutex);

 mWriteSet.swap (set);
 assert (mWriteSet.empty ());
 ++mWriteGeneration;
 mWriteCondition.notify_all ();

 if (set.empty ())
 {
 mWritePending = false;
 mWriteLoad = 0;
 return;
 }

 mWriteLoad = std::max (setSize, static_cast<int> (mWriteSet.size ()));
 setSize = set.size ();
 }

 LLWrite (set, getApp().getHashNodeLDB ());

 if (mEphemeralDB)
 LLWrite (set, getApp().getEphemeralLDB ());
 }
}

HashedObject::pointer HashedObjectStore::retrieveLevelDB (uint256 const& hash)
{
 HashedObject::pointer obj = mCache.fetch (hash);

 if (obj || mNegativeCache.isPresent (hash) || !getApp().getHashNodeLDB ())
 return obj;

 if (mEphemeralDB)
 {
 obj = LLRetrieve (hash, getApp().getEphemeralLDB ());

 if (obj)
 {
 /// [17] Returning from the middle
 mCache.canonicalize (hash, obj);
 return obj;
 }
 }

 {
 LoadEvent::autoptr event (

getApp().getJobQueue ().getLoadEventAP (jtHO_READ, "HOS::retrieve"));
 obj = LLRetrieve (hash, getApp().getHashNodeLDB ());

 if (!obj)
 {
 mNegativeCache.add (hash);
 return obj;
 }
 }

 /// [17] Leads to duplicated code
 mCache.canonicalize (hash, obj);

 if (mEphemeralDB)
 LLWrite (obj, getApp().getEphemeralLDB ());

 WriteLog (lsTRACE, HashedObject) << "HOS: " << hash << " fetch: in db";
 return obj;
}

bool HashedObjectStore::storeSQLite (HashedObjectType type, uint32 index,
 Blob const& data, uint256 const& hash)
{
 // return: false = already in cache, true = added to cache
 if (!getApp().getHashNodeDB ())
 {
 WriteLog (lsTRACE, HashedObject) << "HOS: no db";
 return true;
 }

 if (mCache.touch (hash))
 {
 WriteLog (lsTRACE, HashedObject) << "HOS: " << hash << " store: incache";
 return false;
 }

 assert (hash == Serializer::getSHA512Half (data));

 HashedObject::pointer object = boost::make_shared<HashedObject> (type, index, data, hash);

 /// [18] Duplicated batch writing logic
 if (!mCache.canonicalize (hash, object))
 {
 // WriteLog (lsTRACE, HashedObject) << "Queuing write for " << hash;
 boost::mutex::scoped_lock sl (mWriteMutex);
 mWriteSet.push_back (object);

 if (!mWritePending)
 {
 mWritePending = true;
 getApp().getJobQueue ().addJob (jtWRITE, "HashedObject::store",
 BIND_TYPE (&HashedObjectStore::bulkWriteSQLite, this, P_1));
 }
 }

 // else
 // WriteLog (lsTRACE, HashedObject) << "HOS: already had " << hash;
 mNegativeCache.del (hash);

 return true;
}

/// [19] Duplicated batch writing code
void HashedObjectStore::bulkWriteSQLite (Job&)
{
 assert (!mLevelDB);
 int setSize = 0;

 while (1)
 {
 std::vector< boost::shared_ptr<HashedObject> > set;
 set.reserve (128);

 {
 boost::mutex::scoped_lock sl (mWriteMutex);
 mWriteSet.swap (set);
 assert (mWriteSet.empty ());
 ++mWriteGeneration;
 mWriteCondition.notify_all ();

 if (set.empty ())
 {
 mWritePending = false;
 mWriteLoad = 0;
 return;
 }

 mWriteLoad = std::max (setSize, static_cast<int> (mWriteSet.size ()));
 setSize = set.size ();
 }
 // WriteLog (lsTRACE, HashedObject) << "HOS: writing " << set.size();

#ifndef NO_SQLITE3_PREPARE

 if (mEphemeralDB)
 LLWrite (set, getApp().getEphemeralLDB ());

 {
 Database* db = getApp().getHashNodeDB ()->getDB ();

 // VFALCO TODO Get rid of the last parameter "aux", which is set to !theConfig.RUN_STANDALONE
 //
 /// [20] Dependency on theConfig
 /// [21] Global variables make unit tests non-repeatable
 static SqliteStatement pStB (db->getSqliteDB (),

"BEGIN TRANSACTION;", !theConfig.RUN_STANDALONE);
 static SqliteStatement pStE (db->getSqliteDB (),

"END TRANSACTION;", !theConfig.RUN_STANDALONE);
 static SqliteStatement pSt (db->getSqliteDB (),

"INSERT OR IGNORE INTO CommittedObjects "
 "(Hash,ObjType,LedgerIndex,Object) VALUES (?, ?, ?, ?);",

!theConfig.RUN_STANDALONE);

 pStB.step ();
 pStB.reset ();

 BOOST_FOREACH (const boost::shared_ptr<HashedObject>& it, set)
 {
 const char* type;

 switch (it->getType ())
 {
 case hotLEDGER:
 type = "L";
 break;

 case hotTRANSACTION:
 type = "T";
 break;

 case hotACCOUNT_NODE:
 type = "A";
 break;

 case hotTRANSACTION_NODE:
 type = "N";
 break;

 default:
 type = "U";
 }

 pSt.bind (1, it->getHash ().GetHex ());
 pSt.bind (2, type);
 pSt.bind (3, it->getIndex ());
 pSt.bindStatic (4, it->getData ());
 int ret = pSt.step ();

 if (!pSt.isDone (ret))
 {
 WriteLog (lsFATAL, HashedObject) <<

"Error saving hashed object " << ret;
 assert (false);
 }

 pSt.reset ();
 }

 pStE.step ();
 pStE.reset ();
 }

#else

 static boost::format
 fAdd ("INSERT OR IGNORE INTO CommittedObjects "
 "(Hash,ObjType,LedgerIndex,Object) VALUES ('%s','%c','%u',%s);");

 Database* db = getApp().getHashNodeDB ()->getDB ();
 {
 ScopedLock sl (getApp().getHashNodeDB ()->getDBLock ());

 db->executeSQL ("BEGIN TRANSACTION;");

 BOOST_FOREACH (const boost::shared_ptr<HashedObject>& it, set)
 {
 char type;

 switch (it->getType ())
 {
 case hotLEDGER:
 type = 'L';
 break;

 case hotTRANSACTION:
 type = 'T';
 break;

 case hotACCOUNT_NODE:
 type = 'A';
 break;

 case hotTRANSACTION_NODE:
 type = 'N';
 break;

 default:
 type = 'U';
 }

 db->executeSQL (boost::str (boost::format (fAdd)
 % it->getHash ().GetHex () % type % it->getIndex ()

% sqlEscape (it->getData ())));
 }

 db->executeSQL ("END TRANSACTION;");
 }
#endif

 }
}

HashedObject::pointer HashedObjectStore::retrieveSQLite (uint256 const& hash)
{
 HashedObject::pointer obj = mCache.fetch (hash);

 if (obj)
 return obj;

 if (mNegativeCache.isPresent (hash))
 return obj;

 if (mEphemeralDB)
 {
 obj = LLRetrieve (hash, getApp().getEphemeralLDB ());

 if (obj)
 {
 mCache.canonicalize (hash, obj);
 return obj;
 }
 }

 if (!getApp().getHashNodeDB ())
 return obj;

 Blob data;

 std::string type;
 uint32 index;

#ifndef NO_SQLITE3_PREPARE
 {
 ScopedLock sl (getApp().getHashNodeDB ()->getDBLock ());

 static SqliteStatement pSt (getApp().getHashNodeDB ()->getDB ()->getSqliteDB (),
 "SELECT ObjType,LedgerIndex,Object FROM CommittedObjects WHERE Hash = ?;");

 LoadEvent::autoptr event (getApp().getJobQueue ().getLoadEventAP (jtDISK, "HOS::retrieve"));

 pSt.bind (1, hash.GetHex ());
 int ret = pSt.step ();

 if (pSt.isDone (ret))
 {
 pSt.reset ();
 mNegativeCache.add (hash);
 WriteLog (lsTRACE, HashedObject) << "HOS: " << hash << " fetch: not in db";
 return obj;
 }

 type = pSt.peekString (0);
 index = pSt.getUInt32 (1);
 pSt.getBlob (2).swap (data);
 pSt.reset ();
 }

#else

 std::string sql = "SELECT * FROM CommittedObjects WHERE Hash='";
 sql.append (hash.GetHex ());
 sql.append ("';");

 {
 ScopedLock sl (getApp().getHashNodeDB ()->getDBLock ());
 Database* db = getApp().getHashNodeDB ()->getDB ();

 if (!db->executeSQL (sql) || !db->startIterRows ())
 {
 sl.unlock ();
 mNegativeCache.add (hash);
 return obj;
 }

 db->getStr ("ObjType", type);
 index = db->getBigInt ("LedgerIndex");

 int size = db->getBinary ("Object", NULL, 0);
 data.resize (size);
 db->getBinary ("Object", & (data.front ()), size);
 db->endIterRows ();
 }
#endif

#ifdef PARANOID
 assert (Serializer::getSHA512Half (data) == hash);
#endif

 HashedObjectType htype = hotUNKNOWN;

 switch (type[0])
 {
 case 'L':
 htype = hotLEDGER;
 break;

 case 'T':
 htype = hotTRANSACTION;
 break;

 case 'A':
 htype = hotACCOUNT_NODE;
 break;

 case 'N':
 htype = hotTRANSACTION_NODE;
 break;

 default:
 assert (false);
 WriteLog (lsERROR, HashedObject) << "Invalid hashed object";
 mNegativeCache.add (hash);
 return obj;
 }

 obj = boost::make_shared<HashedObject> (htype, index, data, hash);
 mCache.canonicalize (hash, obj);

 if (mEphemeralDB)
 LLWrite (obj, getApp().getEphemeralLDB ());

 WriteLog (lsTRACE, HashedObject) << "HOS: " << hash << " fetch: in db";
 return obj;
}

int HashedObjectStore::import (const std::string& file)
{
 WriteLog (lsWARNING, HashedObject) << "Hashed object import from \"" << file << "\".";
 UPTR_T<Database> importDB (new SqliteDatabase (file.c_str ()));
 importDB->connect ();

 leveldb::DB* db = getApp().getHashNodeLDB ();
 leveldb::WriteOptions wo;

 int count = 0;

 SQL_FOREACH (importDB, "SELECT * FROM CommittedObjects;")
 {
 uint256 hash;
 std::string hashStr;
 importDB->getStr ("Hash", hashStr);
 hash.SetHexExact (hashStr);

 if (hash.isZero ())
 {
 WriteLog (lsWARNING, HashedObject) << "zero hash found in import table";
 }
 else
 {
 Blob rawData;
 int size = importDB->getBinary ("Object", NULL, 0);
 rawData.resize (9 + size);
 unsigned char* bufPtr = &rawData.front ();

 importDB->getBinary ("Object", bufPtr + 9, size);

 uint32 index = importDB->getBigInt ("LedgerIndex");
 reinterpret_cast<uint32> (bufPtr + 0) = ntohl (index);
 reinterpret_cast<uint32> (bufPtr + 4) = ntohl (index);

 std::string type;
 importDB->getStr ("ObjType", type);
 HashedObjectType htype = hotUNKNOWN;

 switch (type[0])
 {
 case 'L':
 htype = hotLEDGER;
 break;

 case 'T':
 htype = hotTRANSACTION;
 break;

 case 'A':
 htype = hotACCOUNT_NODE;
 break;

 case 'N':
 htype = hotTRANSACTION_NODE;
 break;

 default:
 assert (false);
 WriteLog (lsERROR, HashedObject) << "Invalid hashed object";
 }

 * (bufPtr + 8) = static_cast<unsigned char> (htype);

 leveldb::Status st = db->Put (wo,
 leveldb::Slice (reinterpret_cast<const char*> (hash.begin ()), hash.size ()),
 leveldb::Slice (reinterpret_cast<const char*> (bufPtr), rawData.size ()));

 if (!st.ok ())
 {
 WriteLog (lsFATAL, HashedObject) << "Failed to store hash node";
 assert (false);
 }

 ++count;
 }

 if ((count % 10000) == 0)
 {
 WriteLog (lsINFO, HashedObject) << "Import in progress: " << count;
 }
 }

 WriteLog (lsWARNING, HashedObject) << "Imported " << count << " nodes";
 return count;
}

/// [22] Where are the unit tests?

Addendum B
ripple_NodeStore.cpp

//--

/*

 Copyright (c) 2011-2013, OpenCoin, Inc.

*/

//==

#ifndef RIPPLE_NODESTORE_H_INCLUDED

#define RIPPLE_NODESTORE_H_INCLUDED

// Javadoc comments are added to all public classes, member functions,

// type definitions, data types, and global variables (which we should

// minimize the use of.

//

// A Javadoc comment is introduced with an extra asterisk following the

// beginning of a normal C++ style comment, or by using a triple forward slash.

//

// Structure of a Javadoc comment:

/** Brief one line description.

 A more detailed description, which may be broken up into multiple

 paragraphs. Doxygen commands are prefixed with the at-sign '@'. For

 example, here's a formatted code snippet:

 @code

 int main (int argc, char** argv)

 {

 return 0;

 }

 @endcode

 You can also add a note, or document an invariant:

 @note This appears as its own note.

 @invariant This must not be called while holding the lock.

 When documenting functions, you can use these Doxygen commands

 to annotate the parameters, return value, template types.

 @param argc The number of arguments to the program.

 @param argv An array of strings argc in size, one for each argument.

 @return The return value of the program, passed to to the enclosing process.

*/

/** Functions can be documented with just the brief description, like this */

/// Here's the alternate form of a brief description.

//--

/// [1] Javadoc comment explaining the class

/** Persistency layer for NodeObject

 A Node is a ledger object which is uniquely identified by a key, which is

 the 256-bit hash of the body of the node. The payload is a variable length

 block of serialized data.

 All ledger data is stored as node objects and as such, needs to be persisted

 between launches. Furthermore, since the set of node objects will in

 general be larger than the amount of available memory, purged node objects

 which are later accessed must be retrieved from the node store.

 @see NodeObject

*/

class NodeStore

{

public:

 /// [2] Magic numbers moved to an enumeration instead of repeated

 enum

 {

 // This is only used to pre-allocate the array for

 // batch objects and does not affect the amount written.

 //

 batchWritePreallocationSize = 128

 };

 /// [3] Commonly used type is given a descriptive name

 typedef std::vector <NodeObject::Ptr> Batch;

 //--

 /// [4] Deserialization format made explicit

 /** Parsed key/value blob into NodeObject components.

 This will extract the information required to construct a NodeObject. It

 also does consistency checking and returns the result, so it is possible

 to determine if the data is corrupted without throwing an exception. Not

 all forms of corruption are detected so further analysis will be needed

 to eliminate false negatives.

 @note This defines the database format of a NodeObject!

 */

 class DecodedBlob

 {

 public:

 /** Construct the decoded blob from raw data. */

 DecodedBlob (void const* key, void const* value, int valueBytes);

 /// [5] New feature, detecting corrupted data

 /** Determine if the decoding was successful. */

 bool wasOk () const noexcept { return m_success; }

 /// [6] Centralized place for creating NodeObject from serialized data

 /** Create a NodeObject from this data. */

 NodeObject::Ptr createObject ();

 /// [7] Data members hidden, all interface is through just 3 members

 private:

 bool m_success;

 void const* m_key;

 LedgerIndex m_ledgerIndex;

 NodeObjectType m_objectType;

 unsigned char const* m_objectData;

 int m_dataBytes;

 };

 //--

 /// [8] Serialization format made explicit

 /** Utility for producing flattened node objects.

 These get recycled to prevent many small allocations.

 @note This defines the database format of a NodeObject!

 */

 struct EncodedBlob

 {

 /// [9] Added a Beast class to assist with optimal usage of memory

 typedef RecycledObjectPool <EncodedBlob> Pool;

 void prepare (NodeObject::Ptr const& object);

 void const* getKey () const noexcept { return m_key; }

 size_t getSize () const noexcept { return m_size; }

 void const* getData () const noexcept { return m_data.getData (); }

 private:

 void const* m_key;

 MemoryBlock m_data;

 size_t m_size;

 };

 //--

 /// [10] Abstract interface to eliminate an unwanted dependency

 /** Provides optional asynchronous scheduling for backends.

 For improved performance, a backend has the option of performing writes

 in batches. These writes can be scheduled using the provided scheduler

 object.

 */

 class Scheduler

 {

 public:

 /** Derived classes perform scheduled tasks. */

 struct Task

 {

 virtual ~Task () { }

 /** Performs the task.

 The call may take place on a foreign thread.

 */

 virtual void performScheduledTask () = 0;

 };

 /** Schedules a task.

 Depending on the implementation, this could happen

 immediately or get deferred.

 */

 virtual void scheduleTask (Task* task) = 0;

 };

 //--

 /// [11] Batch writing logic refactored into its own class.

 /** Helps with batch writing.

 The batch writes are performed with a scheduled task. Use of the

 class it not required. A backend can implement its own write batching,

 or skip write batching if doing so yields a performance benefit.

 @see Scheduler

 */

 // VFALCO NOTE I'm not entirely happy having placed this here,

 // because whoever needs to use NodeStore certainly doesn't

 // need to see the implementation details of BatchWriter.

 //

 class BatchWriter : private Scheduler::Task

 {

 public:

 /** This callback does the actual writing. */

 struct Callback

 {

 virtual void writeBatch (Batch const& batch) = 0;

 };

 /** Create a batch writer. */

 BatchWriter (Callback& callback, Scheduler& scheduler);

 /** Destroy a batch writer.

 Anything pending in the batch is written out before this returns.

 */

 ~BatchWriter ();

 /** Store the object.

 This will add to the batch and initiate a scheduled task to

 write the batch out.

 */

 void store (NodeObject::Ptr const& object);

 /** Get an estimate of the amount of writing I/O pending. */

 int getWriteLoad ();

 private:

 void performScheduledTask ();

 void writeBatch ();

 void waitForWriting ();

 private:

 typedef boost::recursive_mutex LockType;

 typedef boost::condition_variable_any CondvarType;

 Callback& m_callback;

 Scheduler& m_scheduler;

 LockType mWriteMutex;

 CondvarType mWriteCondition;

 int mWriteGeneration;

 int mWriteLoad;

 bool mWritePending;

 Batch mWriteSet;

 };

 //--

 /// [12] Backend interface is completely abstract

 /** A backend used for the store.

 The NodeStore uses a swappable backend so that other database systems

 can be tried. Different databases may offer various features such

 as improved performance, fault tolerant or distributed storage, or

 all in-memory operation.

 A given instance of a backend is fixed to a particular key size.

 */

 class Backend

 {

 public:

 /** Return codes from operations. */

 /// [13] Well defined return codes to make results explicit

 enum Status

 {

 ok,

 notFound,

 dataCorrupt,

 unknown

 };

 /// [14] Behavior of member functions is defined in the comments

 /** Destroy the backend.

 All open files are closed and flushed. If there are batched writes

 or other tasks scheduled, they will be completed before this call

 returns.

 */

 virtual ~Backend () { }

 /** Get the human-readable name of this backend.

 This is used for diagnostic output.

 */

 virtual std::string getName() = 0;

 /** Fetch a single object.

 If the object is not found or an error is encountered, the

 result will indicate the condition.

 @note This will be called concurrently.

 @param key A pointer to the key data.

 @param pObject [out] The created object if successful.

 @return The result of the operation.

 */

 /// [15] We choose void* over uint256

 virtual Status fetch (void const* key, NodeObject::Ptr* pObject) = 0;

 /** Store a single object.

 Depending on the implementation this may happen immediately

 or deferred using a scheduled task.

 @note This will be called concurrently.

 @param object The object to store.

 */

 /// [16] Standardized naming conventions. fetch, store.

 virtual void store (NodeObject::Ptr const& object) = 0;

 /** Store a group of objects.

 @note This function will not be called concurrently with

 itself or @ref store.

 */

 virtual void storeBatch (Batch const& batch) = 0;

 /** Callback for iterating through objects.

 @see visitAll

 */

 struct VisitCallback

 {

 virtual void visitObject (NodeObject::Ptr const& object) = 0;

 };

 /** Visit every object in the database

 This is usually called during import.

 @note This routine will not be called concurrently with itself

 or other methods.

 @see import

 */

 virtual void visitAll (VisitCallback& callback) = 0;

 /** Estimate the number of write operations pending. */

 virtual int getWriteLoad () = 0;

 };

 //--

 /** Factory to produce backends.

 */

 class BackendFactory

 {

 public:

 virtual ~BackendFactory () { }

 /** Retrieve the name of this factory. */

 virtual String getName () const = 0;

 /** Create an instance of this factory's backend.

 @param keyBytes The fixed number of bytes per key.

 @param keyValues A set of key/value configuration pairs.

 @param scheduler The scheduler to use for running tasks.

 @return A pointer to the Backend object.

 */

 virtual Backend* createInstance (size_t keyBytes,

 StringPairArray const& keyValues,

 Scheduler& scheduler) = 0;

 };

 //--

 /** Construct a node store.

 Parameter strings have the format:

 <key>=<value>['|'<key>=<value>]

 The key "type" must exist, it defines the choice of backend.

 For example

 `type=LevelDB|path=/mnt/ephemeral`

 @param backendParameters The parameter string for the persistent backend.

 @param fastBackendParameters The parameter string for the ephemeral backend.

 @param cacheSize ?

 @param cacheAge ?

 @param scheduler The scheduler to use for performing asynchronous tasks.

 @return A pointer to the created object.

 */

 /// [17] Scheduler passed in

 static NodeStore* New (String backendParameters,

 String fastBackendParameters,

 Scheduler& scheduler);

 /** Destroy the node store.

 All pending operations are completed, pending writes flushed,

 and files closed before this returns.

 */

 virtual ~NodeStore () { }

 /** Add the specified backend factory to the list of available factories.

 The names of available factories are compared against the "type"

 value in the parameter list on construction.

 @param factory The factory to add.

 */

 static void addBackendFactory (BackendFactory& factory);

 /// [18] Comments make the return value clear.

 /** Fetch an object.

 If the object is known to be not in the database, isn't found in the

 database during the fetch, or failed to load correctly during the fetch,

 `nullptr` is returned.

 @note This can be called concurrently.

 @param hash The key of the object to retrieve.

 @return The object, or nullptr if it couldn't be retrieved.

 */

 virtual NodeObject::pointer fetch (uint256 const& hash) = 0;

 /// [19] An optimization allows the caller's buffer to be taken over

 /** Store the object.

 The caller's Blob parameter is overwritten.

 @param type The type of object.

 @param ledgerIndex The ledger in which the object appears.

 @param data The payload of the object. The caller's

 variable is overwritten.

 @param hash The 256-bit hash of the payload data.

 @return `true` if the object was stored?

 */

 virtual void store (NodeObjectType type,

 uint32 ledgerIndex,

 Blob& data,

 uint256 const& hash) = 0;

 /** Import objects from another database.

 The other NodeStore database is constructed using the specified

 backend parameters.

 */

 virtual void import (String sourceBackendParameters) = 0;

 /** Retrieve the estimated number of pending write operations.

 This is used for diagnostics.

 */

 virtual int getWriteLoad () = 0;

 // VFALCO TODO Document this.

 virtual float getCacheHitRate () = 0;

 // VFALCO TODO Document this.

 // TODO Document the parameter meanings.

 virtual void tune (int size, int age) = 0;

 // VFALCO TODO Document this.

 virtual void sweep () = 0;

};

#endif

//==

NodeStore::DecodedBlob::DecodedBlob (void const* key, void const* value, int valueBytes)

{

 /// [20] Format of the data is explained in a comment

 /* Data format:

 Bytes

 0...3 LedgerIndex 32-bit big endian integer

 4...7 Unused? An unused copy of the LedgerIndex

 8 char One of NodeObjectType

 9...end The body of the object data

 */

 m_success = false;

 m_key = key;

 // VFALCO NOTE Ledger indexes should have started at 1

 m_ledgerIndex = LedgerIndex (-1);

 m_objectType = hotUNKNOWN;

 m_objectData = nullptr;

 m_dataBytes = bmax (0, valueBytes - 9);

 if (valueBytes > 4)

 {

 LedgerIndex const* index = static_cast <LedgerIndex const*> (value);

 m_ledgerIndex = ByteOrder::swapIfLittleEndian (*index);

 }

 /// [21] There are 4 bytes unaccounted for

 // VFALCO NOTE What about bytes 4 through 7 inclusive?

 if (valueBytes > 8)

 {

 unsigned char const* byte = static_cast <unsigned char const*> (value);

 m_objectType = static_cast <NodeObjectType> (byte [8]);

 }

 if (valueBytes > 9)

 {

 m_objectData = static_cast <unsigned char const*> (value) + 9;

 switch (m_objectType)

 {

 case hotUNKNOWN:

 default:

 break;

 case hotLEDGER:

 case hotTRANSACTION:

 case hotACCOUNT_NODE:

 case hotTRANSACTION_NODE:

 m_success = true;

 break;

 }

 }

}

NodeObject::Ptr NodeStore::DecodedBlob::createObject ()

{

 bassert (m_success);

 NodeObject::Ptr object;

 if (m_success)

 {

 Blob data (m_dataBytes);

 memcpy (data.data (), m_objectData, m_dataBytes);

 /// [22] No more boost::make_shared<> everywhere

 object = NodeObject::createObject (

 m_objectType, m_ledgerIndex, data, uint256 (m_key));

 }

 return object;

}

//--

void NodeStore::EncodedBlob::prepare (NodeObject::Ptr const& object)

{

 m_key = object->getHash ().begin ();

 // This is how many bytes we need in the flat data

 m_size = object->getData ().size () + 9;

 m_data.ensureSize (m_size);

 /// [23] Architecture assumptions are checked at compile time

 // These sizes must be the same!

 static_bassert (sizeof (uint32) == sizeof (object->getIndex ()));

 {

 uint32* buf = static_cast <uint32*> (m_data.getData ());

 buf [0] = ByteOrder::swapIfLittleEndian (object->getIndex ());

 buf [1] = ByteOrder::swapIfLittleEndian (object->getIndex ());

 }

 {

 unsigned char* buf = static_cast <unsigned char*> (m_data.getData ());

 buf [8] = static_cast <unsigned char> (object->getType ());

 memcpy (&buf [9], object->getData ().data (), object->getData ().size ());

 }

}

//==

NodeStore::BatchWriter::BatchWriter (Callback& callback, Scheduler& scheduler)

 : m_callback (callback)

 , m_scheduler (scheduler)

 , mWriteGeneration (0)

 , mWriteLoad (0)

 , mWritePending (false)

{

 mWriteSet.reserve (batchWritePreallocationSize);

}

NodeStore::BatchWriter::~BatchWriter ()

{

 waitForWriting ();

}

void NodeStore::BatchWriter::store (NodeObject::ref object)

{

 LockType::scoped_lock sl (mWriteMutex);

 mWriteSet.push_back (object);

 if (! mWritePending)

 {

 mWritePending = true;

 m_scheduler.scheduleTask (this);

 }

}

int NodeStore::BatchWriter::getWriteLoad ()

{

 LockType::scoped_lock sl (mWriteMutex);

 return std::max (mWriteLoad, static_cast<int> (mWriteSet.size ()));

}

void NodeStore::BatchWriter::performScheduledTask ()

{

 writeBatch ();

}

void NodeStore::BatchWriter::writeBatch ()

{

 int setSize = 0;

 for (;;)

 {

 std::vector< boost::shared_ptr<NodeObject> > set;

 set.reserve (batchWritePreallocationSize);

 {

 LockType::scoped_lock sl (mWriteMutex);

 mWriteSet.swap (set);

 assert (mWriteSet.empty ());

 ++mWriteGeneration;

 mWriteCondition.notify_all ();

 if (set.empty ())

 {

 mWritePending = false;

 mWriteLoad = 0;

 // VFALCO NOTE Fix this function to not return from the middle

 return;

 }

 // VFALCO NOTE On the first trip through, mWriteLoad will be 0.

 // This is probably not intended. Perhaps the order

 // of calls isn't quite right

 //

 mWriteLoad = std::max (setSize, static_cast<int> (mWriteSet.size ()));

 setSize = set.size ();

 }

 m_callback.writeBatch (set);

 }

}

void NodeStore::BatchWriter::waitForWriting ()

{

 LockType::scoped_lock sl (mWriteMutex);

 int gen = mWriteGeneration;

 while (mWritePending && (mWriteGeneration == gen))

 mWriteCondition.wait (sl);

}

//==

class NodeStoreImp

 : public NodeStore

 , LeakChecked <NodeStoreImp>

{

public:

 NodeStoreImp (String backendParameters,

 String fastBackendParameters,

 Scheduler& scheduler)

 : m_scheduler (scheduler)

 , m_backend (createBackend (backendParameters, scheduler))

 , m_fastBackend (fastBackendParameters.isNotEmpty ()

 ? createBackend (fastBackendParameters, scheduler) : nullptr)

 , m_cache ("NodeStore", 16384, 300)

 , m_negativeCache ("NoteStoreNegativeCache", 0, 120)

 {

 }

 ~NodeStoreImp ()

 {

 }

 //--

 /// [24] Complex business logic receives extra attention from comments

 NodeObject::Ptr fetch (uint256 const& hash)

 {

 // See if the object already exists in the cache

 //

 NodeObject::Ptr obj = m_cache.fetch (hash);

 if (obj == nullptr)

 {

 // It's not in the cache, see if we can skip checking the db.

 //

 if (! m_negativeCache.isPresent (hash))

 {

 // There's still a chance it could be in one of the databases.

 bool foundInFastBackend = false;

 // Check the fast backend database if we have one

 //

 if (m_fastBackend != nullptr)

 {

 obj = fetchInternal (m_fastBackend, hash);

 // If we found the object, avoid storing it again later.

 if (obj != nullptr)

 foundInFastBackend = true;

 }

 // Are we still without an object?

 //

 if (obj == nullptr)

 {

 // Yes so at last we will try the main database.

 //

 {

 // Monitor this operation's load since it is expensive.

 //

 // VFALCO TODO Why is this an autoptr? Why can't it just be a plain old object?

 //

 // VFALCO NOTE Commented this out because it breaks the unit test!

 //

 //LoadEvent::autoptr event (getApp().getJobQueue ()

// .getLoadEventAP (jtHO_READ, "HOS::retrieve"));

 obj = fetchInternal (m_backend, hash);

 }

 // If it's not in the main database, remember that so we

 // can skip the lookup for the same object again later.

 //

 if (obj == nullptr)

 m_negativeCache.add (hash);

 }

 // Did we finally get something?

 //

 if (obj != nullptr)

 {

 // Yes it so canonicalize. This solves the problem where

 // more than one thread has its own copy of the same object.

 //

 m_cache.canonicalize (hash, obj);

 if (! foundInFastBackend)

 {

 // If we have a fast back end, store it there for later.

 //

 if (m_fastBackend != nullptr)

 m_fastBackend->store (obj);

 // Since this was a 'hard' fetch, we will log it.

 //

 WriteLog (lsTRACE, NodeObject) << "HOS: " << hash << " fetch: in db";

 }

 }

 }

 else

 {

 // hash is known not to be in the database

 }

 }

 else

 {

 // found it!

 }

 return obj;

 }

 /// [25] Function split up as needed to avoid redundant code

 NodeObject::Ptr fetchInternal (Backend* backend, uint256 const& hash)

 {

 NodeObject::Ptr object;

 Backend::Status const status = backend->fetch (hash.begin (), &object);

 switch (status)

 {

 case Backend::ok:

 case Backend::notFound:

 break;

 case Backend::dataCorrupt:

 // VFALCO TODO Deal with encountering corrupt data!

 //

 WriteLog (lsFATAL, NodeObject) << "Corrupt NodeObject #" << hash;

 break;

 default:

 WriteLog (lsWARNING, NodeObject) << "Unknown status=" << status;

 break;

 }

 return object;

 }

 //--

 void store (NodeObjectType type,

 uint32 index,

 Blob& data,

 uint256 const& hash)

 {

 bool const keyFoundAndObjectCached = m_cache.refreshIfPresent (hash);

 // VFALCO NOTE What happens if the key is found, but the object

 // fell out of the cache? We will end up passing it

 // to the backend anyway.

 //

 if (! keyFoundAndObjectCached)

 {

 #if RIPPLE_VERIFY_NODEOBJECT_KEYS

 assert (hash == Serializer::getSHA512Half (data));

 #endif

 NodeObject::Ptr object = NodeObject::createObject (

 type, index, data, hash);

 if (!m_cache.canonicalize (hash, object))

 {

 m_backend->store (object);

 if (m_fastBackend)

 m_fastBackend->store (object);

 }

 m_negativeCache.del (hash);

 }

 }

 //--

 float getCacheHitRate ()

 {

 return m_cache.getHitRate ();

 }

 void tune (int size, int age)

 {

 m_cache.setTargetSize (size);

 m_cache.setTargetAge (age);

 }

 void sweep ()

 {

 m_cache.sweep ();

 m_negativeCache.sweep ();

 }

 int getWriteLoad ()

 {

 return m_backend->getWriteLoad ();

 }

 //--

 void import (String sourceBackendParameters)

 {

 class ImportVisitCallback : public Backend::VisitCallback

 {

 public:

 explicit ImportVisitCallback (Backend& backend)

 : m_backend (backend)

 {

 m_objects.reserve (batchWritePreallocationSize);

 }

 ~ImportVisitCallback ()

 {

 if (! m_objects.empty ())

 m_backend.storeBatch (m_objects);

 }

 void visitObject (NodeObject::Ptr const& object)

 {

 if (m_objects.size () >= batchWritePreallocationSize)

 {

 m_backend.storeBatch (m_objects);

 m_objects.clear ();

 m_objects.reserve (batchWritePreallocationSize);

 }

 m_objects.push_back (object);

 }

 private:

 Backend& m_backend;

 Batch m_objects;

 };

 //--

 ScopedPointer <Backend> srcBackend (createBackend (sourceBackendParameters, m_scheduler));

 WriteLog (lsWARNING, NodeObject) <<

 "Node import from '" << srcBackend->getName() << "' to '"

 << m_backend->getName() << "'.";

 ImportVisitCallback callback (*m_backend);

 srcBackend->visitAll (callback);

 }

 //--

 static NodeStore::Backend* createBackend (String const& parameters, Scheduler& scheduler)

 {

 Backend* backend = nullptr;

 StringPairArray keyValues = parseKeyValueParameters (parameters, '|');

 String const& type = keyValues ["type"];

 if (type.isNotEmpty ())

 {

 BackendFactory* factory = nullptr;

 for (int i = 0; i < s_factories.size (); ++i)

 {

 if (s_factories [i]->getName ().compareIgnoreCase (type) == 0)

 {

 factory = s_factories [i];

 break;

 }

 }

 if (factory != nullptr)

 {

 backend = factory->createInstance (NodeObject::keyBytes, keyValues, scheduler);

 }

 else

 {

 Throw (std::runtime_error ("unknown backend type"));

 }

 }

 else

 {

 Throw (std::runtime_error ("missing backend type"));

 }

 return backend;

 }

 static void addBackendFactory (BackendFactory& factory)

 {

 s_factories.add (&factory);

 }

 //--

private:

 static Array <NodeStore::BackendFactory*> s_factories;

 Scheduler& m_scheduler;

 /// [26] Beast containers reduce programmer errors

 // Persistent key/value storage.

 ScopedPointer <Backend> m_backend;

 // Larger key/value storage, but not necessarily persistent.

 ScopedPointer <Backend> m_fastBackend;

 // VFALCO NOTE What are these things for? We need comments.

 TaggedCache <uint256, NodeObject, UptimeTimerAdapter> m_cache;

 KeyCache <uint256, UptimeTimerAdapter> m_negativeCache;

};

Array <NodeStore::BackendFactory*> NodeStoreImp::s_factories;

//--

void NodeStore::addBackendFactory (BackendFactory& factory)

{

 NodeStoreImp::addBackendFactory (factory);

}

NodeStore* NodeStore::New (String backendParameters,

 String fastBackendParameters,

 Scheduler& scheduler)

{

 return new NodeStoreImp (backendParameters,

 fastBackendParameters,

 scheduler);

}

//==

/// [27] We factor common unit test code into its own class

// Some common code for the unit tests

//

class NodeStoreUnitTest : public UnitTest

{

public:

 // Tunable parameters

 //

 enum

 {

 maxPayloadBytes = 1000,

 numObjectsToTest = 1000

 };

 // Shorthand type names

 //

 typedef NodeStore::Backend Backend;

 typedef NodeStore::Batch Batch;

 /// [28] The unit test provides its own version of Scheduler

 // Immediately performs the task

 struct TestScheduler : NodeStore::Scheduler

 {

 void scheduleTask (Task* task)

 {

 task->performScheduledTask ();

 }

 };

 // Creates predictable objects

 class PredictableObjectFactory

 {

 public:

 explicit PredictableObjectFactory (int64 seedValue)

 : m_seedValue (seedValue)

 {

 }

 NodeObject::Ptr createObject (int index)

 {

 Random r (m_seedValue + index);

 NodeObjectType type;

 switch (r.nextInt (4))

 {

 case 0: type = hotLEDGER; break;

 case 1: type = hotTRANSACTION; break;

 case 2: type = hotACCOUNT_NODE; break;

 case 3: type = hotTRANSACTION_NODE; break;

 default:

 type = hotUNKNOWN;

 break;

 };

 LedgerIndex ledgerIndex = 1 + r.nextInt (1024 * 1024);

 uint256 hash;

 r.nextBlob (hash.begin (), hash.size ());

 int const payloadBytes = 1 + r.nextInt (maxPayloadBytes);

 Blob data (payloadBytes);

 r.nextBlob (data.data (), payloadBytes);

 return NodeObject::createObject (type, ledgerIndex, data, hash);

 }

 private:

 int64 const m_seedValue;

 };

public:

 NodeStoreUnitTest (String name, UnitTest::When when = UnitTest::runAlways)

 : UnitTest (name, "ripple", when)

 {

 }

 // Create a predictable batch of objects

 static void createPredictableBatch (Batch& batch, int startingIndex, int numObjects, int64 seedValue)

 {

 batch.reserve (numObjects);

 PredictableObjectFactory factory (seedValue);

 for (int i = 0; i < numObjects; ++i)

 batch.push_back (factory.createObject (startingIndex + i));

 }

 // Compare two batches for equality

 static bool areBatchesEqual (Batch const& lhs, Batch const& rhs)

 {

 bool result = true;

 if (lhs.size () == rhs.size ())

 {

 for (int i = 0; i < lhs.size (); ++i)

 {

 if (! lhs [i]->isCloneOf (rhs [i]))

 {

 result = false;

 break;

 }

 }

 }

 else

 {

 result = false;

 }

 return result;

 }

 // Store a batch in a backend

 void storeBatch (Backend& backend, Batch const& batch)

 {

 for (int i = 0; i < batch.size (); ++i)

 {

 backend.store (batch [i]);

 }

 }

 // Get a copy of a batch in a backend

 void fetchCopyOfBatch (Backend& backend, Batch* pCopy, Batch const& batch)

 {

 pCopy->clear ();

 pCopy->reserve (batch.size ());

 for (int i = 0; i < batch.size (); ++i)

 {

 NodeObject::Ptr object;

 Backend::Status const status = backend.fetch (

 batch [i]->getHash ().cbegin (), &object);

 expect (status == Backend::ok, "Should be ok");

 if (status == Backend::ok)

 {

 expect (object != nullptr, "Should not be null");

 pCopy->push_back (object);

 }

 }

 }

 // Store all objects in a batch

 static void storeBatch (NodeStore& db, NodeStore::Batch const& batch)

 {

 for (int i = 0; i < batch.size (); ++i)

 {

 NodeObject::Ptr const object (batch [i]);

 Blob data (object->getData ());

 db.store (object->getType (),

 object->getIndex (),

 data,

 object->getHash ());

 }

 }

 // Fetch all the hashes in one batch, into another batch.

 static void fetchCopyOfBatch (NodeStore& db,

 NodeStore::Batch* pCopy,

 NodeStore::Batch const& batch)

 {

 pCopy->clear ();

 pCopy->reserve (batch.size ());

 for (int i = 0; i < batch.size (); ++i)

 {

 NodeObject::Ptr object = db.fetch (batch [i]->getHash ());

 if (object != nullptr)

 pCopy->push_back (object);

 }

 }

};

//--

/// [29] A suite of basic tests needed for the rest of the tests

// Tests predictable batches, and NodeObject blob encoding

//

class NodeStoreBasicsTests : public NodeStoreUnitTest

{

public:

 typedef NodeStore::EncodedBlob EncodedBlob;

 typedef NodeStore::DecodedBlob DecodedBlob;

 NodeStoreBasicsTests () : NodeStoreUnitTest ("NodeStoreBasics")

 {

 }

 // Make sure predictable object generation works!

 void testBatches (int64 const seedValue)

 {

 beginTest ("batch");

 Batch batch1;

 createPredictableBatch (batch1, 0, numObjectsToTest, seedValue);

 Batch batch2;

 createPredictableBatch (batch2, 0, numObjectsToTest, seedValue);

 expect (areBatchesEqual (batch1, batch2), "Should be equal");

 Batch batch3;

 createPredictableBatch (batch3, 1, numObjectsToTest, seedValue);

 expect (! areBatchesEqual (batch1, batch3), "Should be equal");

 }

 // Checks encoding/decoding blobs

 void testBlobs (int64 const seedValue)

 {

 beginTest ("encoding");

 Batch batch;

 createPredictableBatch (batch, 0, numObjectsToTest, seedValue);

 EncodedBlob encoded;

 for (int i = 0; i < batch.size (); ++i)

 {

 encoded.prepare (batch [i]);

 DecodedBlob decoded (encoded.getKey (), encoded.getData (), encoded.getSize ());

 expect (decoded.wasOk (), "Should be ok");

 if (decoded.wasOk ())

 {

 NodeObject::Ptr const object (decoded.createObject ());

 expect (batch [i]->isCloneOf (object), "Should be clones");

 }

 }

 }

 void runTest ()

 {

 int64 const seedValue = 50;

 testBatches (seedValue);

 testBlobs (seedValue);

 }

};

static NodeStoreBasicsTests nodeStoreBasicsTests;

//--

/// [30] Backend test skips NodeStore and tests the backend directly

// Tests the NodeStore::Backend interface

//

class NodeStoreBackendTests : public NodeStoreUnitTest

{

public:

 NodeStoreBackendTests () : NodeStoreUnitTest ("NodeStoreBackend")

 {

 }

 //--

 void testBackend (String type, int64 const seedValue)

 {

 beginTest (String ("NodeStore::Backend type=") + type);

 String params;

 params << "type=" << type

 << "|path=" << File::createTempFile ("unittest").getFullPathName ();

 // Create a batch

 NodeStore::Batch batch;

 createPredictableBatch (batch, 0, numObjectsToTest, seedValue);

 //createPredictableBatch (batch, 0, 10, seedValue);

 {

 // Open the backend

 ScopedPointer <Backend> backend (

 NodeStoreImp::createBackend (params, m_scheduler));

 // Write the batch

 storeBatch (*backend, batch);

 {

 // Read it back in

 NodeStore::Batch copy;

 fetchCopyOfBatch (*backend, ©, batch);

 expect (areBatchesEqual (batch, copy), "Should be equal");

 }

 {

 // Reorder and read the copy again

 NodeStore::Batch copy;

 UnitTestUtilities::repeatableShuffle (batch.size (), batch, seedValue);

 fetchCopyOfBatch (*backend, ©, batch);

 expect (areBatchesEqual (batch, copy), "Should be equal");

 }

 }

 {

 // Re-open the backend

 ScopedPointer <Backend> backend (

 NodeStoreImp::createBackend (params, m_scheduler));

 // Read it back in

 NodeStore::Batch copy;

 fetchCopyOfBatch (*backend, ©, batch);

 // Canonicalize the source and destination batches

 std::sort (batch.begin (), batch.end (), NodeObject::LessThan ());

 std::sort (copy.begin (), copy.end (), NodeObject::LessThan ());

 expect (areBatchesEqual (batch, copy), "Should be equal");

 }

 }

 void runTest ()

 {

 int const seedValue = 50;

 testBackend ("keyvadb", seedValue);

 testBackend ("leveldb", seedValue);

 testBackend ("sqlite", seedValue);

 #if RIPPLE_HYPERLEVELDB_AVAILABLE

 testBackend ("hyperleveldb", seedValue);

 #endif

 #if RIPPLE_MDB_AVAILABLE

 testBackend ("mdb", seedValue);

 #endif

 }

private:

 TestScheduler m_scheduler;

};

static NodeStoreBackendTests nodeStoreBackendTests;

//--

/// [31] Timing tests to pick the "winner" and prevent regressions

class NodeStoreTimingTests : public NodeStoreUnitTest

{

public:

 enum

 {

 numObjectsToTest = 20000

 };

 NodeStoreTimingTests ()

 : NodeStoreUnitTest ("NodeStoreTiming", UnitTest::runManual)

 {

 }

 class Stopwatch

 {

 public:

 Stopwatch ()

 {

 }

 void start ()

 {

 m_startTime = Time::getHighResolutionTicks ();

 }

 double getElapsed ()

 {

 int64 const now = Time::getHighResolutionTicks();

 return Time::highResolutionTicksToSeconds (now - m_startTime);

 }

 private:

 int64 m_startTime;

 };

 void testBackend (String type, int64 const seedValue)

 {

 String s;

 s << "Testing backend '" << type << "' performance";

 beginTest (s);

 String params;

 params << "type=" << type

 << "|path=" << File::createTempFile ("unittest").getFullPathName ();

 // Create batches

 NodeStore::Batch batch1;

 createPredictableBatch (batch1, 0, numObjectsToTest, seedValue);

 NodeStore::Batch batch2;

 createPredictableBatch (batch2, 0, numObjectsToTest, seedValue);

 // Open the backend

 ScopedPointer <Backend> backend (

 NodeStoreImp::createBackend (params, m_scheduler));

 Stopwatch t;

 // Individual write batch test

 t.start ();

 storeBatch (*backend, batch1);

 s = "";

 s << " Single write: " << String (t.getElapsed (), 2) << " seconds";

 logMessage (s);

 // Bulk write batch test

 t.start ();

 backend->storeBatch (batch2);

 s = "";

 s << " Batch write: " << String (t.getElapsed (), 2) << " seconds";

 logMessage (s);

 // Read test

 Batch copy;

 t.start ();

 fetchCopyOfBatch (*backend, ©, batch1);

 fetchCopyOfBatch (*backend, ©, batch2);

 s = "";

 s << " Batch read: " << String (t.getElapsed (), 2) << " seconds";

 logMessage (s);

 }

 void runTest ()

 {

 int const seedValue = 50;

 testBackend ("keyvadb", seedValue);

 testBackend ("leveldb", seedValue);

 #if RIPPLE_HYPERLEVELDB_AVAILABLE

 testBackend ("hyperleveldb", seedValue);

 #endif

 #if RIPPLE_MDB_AVAILABLE

 testBackend ("mdb", seedValue);

 #endif

 testBackend ("sqlite", seedValue);

 }

private:

 TestScheduler m_scheduler;

};

//--

/// [32] Direct tests of the NodeStore with various backends

class NodeStoreTests : public NodeStoreUnitTest

{

public:

 NodeStoreTests () : NodeStoreUnitTest ("NodeStore")

 {

 }

 void testImport (String destBackendType, String srcBackendType, int64 seedValue)

 {

 String srcParams;

 srcParams << "type=" << srcBackendType

 << "|path=" << File::createTempFile ("unittest").getFullPathName ();

 // Create a batch

 NodeStore::Batch batch;

 createPredictableBatch (batch, 0, numObjectsToTest, seedValue);

 // Write to source db

 {

 ScopedPointer <NodeStore> src (NodeStore::New (srcParams, "", m_scheduler));

 storeBatch (*src, batch);

 }

 String destParams;

 destParams << "type=" << destBackendType

 << "|path=" << File::createTempFile ("unittest").getFullPathName ();

 ScopedPointer <NodeStore> dest (NodeStore::New (

 destParams, "", m_scheduler));

 beginTest (String ("import into '") + destBackendType + "' from '" + srcBackendType + "'");

 // Do the import

 dest->import (srcParams);

 // Get the results of the import

 NodeStore::Batch copy;

 fetchCopyOfBatch (*dest, ©, batch);

 // Canonicalize the source and destination batches

 std::sort (batch.begin (), batch.end (), NodeObject::LessThan ());

 std::sort (copy.begin (), copy.end (), NodeObject::LessThan ());

 expect (areBatchesEqual (batch, copy), "Should be equal");

 }

 void testBackend (String type, int64 const seedValue)

 {

 beginTest (String ("NodeStore backend type=") + type);

 String params;

 params << "type=" << type

 << "|path=" << File::createTempFile ("unittest").getFullPathName ();

 // Create a batch

 NodeStore::Batch batch;

 createPredictableBatch (batch, 0, numObjectsToTest, seedValue);

 {

 // Open the database

 ScopedPointer <NodeStore> db (NodeStore::New (params, "", m_scheduler));

 // Write the batch

 storeBatch (*db, batch);

 {

 // Read it back in

 NodeStore::Batch copy;

 fetchCopyOfBatch (*db, ©, batch);

 expect (areBatchesEqual (batch, copy), "Should be equal");

 }

 {

 // Reorder and read the copy again

 NodeStore::Batch copy;

 UnitTestUtilities::repeatableShuffle (batch.size (), batch, seedValue);

 fetchCopyOfBatch (*db, ©, batch);

 expect (areBatchesEqual (batch, copy), "Should be equal");

 }

 }

 {

 // Re-open the database

 ScopedPointer <NodeStore> db (NodeStore::New (params, "", m_scheduler));

 // Read it back in

 NodeStore::Batch copy;

 fetchCopyOfBatch (*db, ©, batch);

 // Canonicalize the source and destination batches

 std::sort (batch.begin (), batch.end (), NodeObject::LessThan ());

 std::sort (copy.begin (), copy.end (), NodeObject::LessThan ());

 expect (areBatchesEqual (batch, copy), "Should be equal");

 }

 }

public:

 void runTest ()

 {

 int64 const seedValue = 50;

 //

 // Backend tests

 //

 /// [33] The NodeStore tests exercise all the backends

 testBackend ("keyvadb", seedValue);

 testBackend ("leveldb", seedValue);

 testBackend ("sqlite", seedValue);

 #if RIPPLE_HYPERLEVELDB_AVAILABLE

 testBackend ("hyperleveldb", seedValue);

 #endif

 #if RIPPLE_MDB_AVAILABLE

 testBackend ("mdb", seedValue);

 #endif

 //

 // Import tests

 //

 //testImport ("keyvadb", "keyvadb", seedValue);

 testImport ("leveldb", "leveldb", seedValue);

 #if RIPPLE_HYPERLEVELDB_AVAILABLE

 testImport ("hyperleveldb", "hyperleveldb", seedValue);

 #endif

 #if RIPPLE_MDB_AVAILABLE

 testImport ("mdb", "mdb", seedValue);

 #endif

 testImport ("sqlite", "sqlite", seedValue);

 }

private:

 TestScheduler m_scheduler;

};

static NodeStoreTests nodeStoreTests;

static NodeStoreTimingTests nodeStoreTimingTests;

	Why?
	What?
	The NodeStore
	Objective
	Source Material
	Nouns and Verbs

	Original Code
	New Code
	What Can We do?
	Code Should Be Easy To Understand
	Code Should Be Written to Minimize the Time for Someone Else To Understand It
	Immediately Polish New Code
	The Rule of Three
	Education
	Code Review, Code Audit
	Benefits of Refactoring

	External Resources
	Addendum A
	Addendum B

