
PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

About

PAWS is a project to occupy my time in retirement (and as it happened the Covid-19 lockdowns), with
the aim of teaching myself about FPGA programming. It is based upon the idea of the 8-bit computers
and consoles from the 1980s, but using a modern CPU.

A support library, libPAWS, for easy access to the hardware is provided, along with a few sample C
programs to test the hardware and the programming library. This documentation details libPAWS and
describes the hardware.

Silice

PAWS is coded in Silice, a hardware description language developed by @sylefeb. Details can be found
here GitHub (https://github.com/sylefeb/Silice).

My coding style may not result in the best design, the aim was to create a design that could be easily
understood.

https://github.com/sylefeb/Silice
https://github.com/sylefeb/Silice

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Using PAWS

The PAWS BIOS showing the SDCARD loader.

The PAWS system starts in the BIOS, which initialises the system, and starts a file explorer for the PAW
(compiled programs) files on the SDCARD. Scroll through the available PAW files using LEFT and
RIGHT. Use FIRE 1 to select a PAW file, or to enter a directory. Use UP to return from a directory.

If the SDCARD is not detected, try pressing RESET to reinitialise the system.

There are several example programs provided, showing how to use the PAWS graphics system, and
other hardware. There are 3 complete games.

3DMAZE ASTROIDS INVADERS

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Controlling PAWS via ULX3S Buttons or PS/2 Keyboard

By default, the PS/2 keyboard is mapped as a joystick, with the buttons identified as below.

Fire 1 Fire 2 Fire 3 Fire 4 Fire 5 Fire 6

Num
Lock

Caps
Lock

Scroll
Lock

The BIOS can be controlled using either the ULX3S buttons, or the above keyboard keys.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

PAWS Features

• Dual Thread Risc-V RV32IMAFC CPU
◦ No interrupts
◦ No SYSTEM functions or memory protection

• 32MB of SDRAM with CACHE
• 32K of FAST BRAM
• 32K of I/O MEMORY MAPPED REGISTERS

• PS/2 Keyboard
◦ Joystick emulation mode available

• 115200 baud UART
• ULX3S Buttons and LEDS
• SDCARD with FAT16 READ ONLY
• 1hz and 1khz Timers
• Pseudo Random Number Generator
• Simple Stereo Audio

◦ Square, Sawtooth, Triangle and Sine Waves, plus Noise

• Multi-Layered Display (64 colours where available , with transparency)
◦ TERMINAL

▪ 80 x 8 WHITE on BLUE
◦ CHARACTER MAP

▪ 80 x 60 COLOUR, NORMAL and BOLD FONTS
◦ SPRITES

▪ 2 LAYERS OF 16 16x16 SINGLE COLOUR SPRITES
◦ TILEMAP

▪ 2 LAYERS OF 42x32 16x16 TILES (40 x 30 DISPLAYED) with SCROLLING
◦ BITMAP

▪ DOUBLE BUFFERED 320 x 240 COLOUR BITMAP
• HARDWARE ASSISTED DRAWING OF

◦ Points
◦ Lines
◦ Filled Rectangles
◦ Circles, Filled and Outline
◦ Filled Triangles
◦ Single colour and colour blitters
◦ Vectors

▪ PROGRAMMABLE BACKGROUND DISPLAY

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

PAWS CPU and SOC

PAWS CPU - Risc-V RV32IMAFC

INTEGER
REGISTERS

FLOATING
POINT

REGISTERS

REGISTER FILE

TIMERS
AND

COUNTERS

FLOATING
POINT
FLAGS

STATUS
REGISTERS

MAIN
THREAD

SMT
THREAD

PROGRAM
COUNTERS

MEMORY
MAPPED

I/O

FAST BRAM
AND BIOS

SDRAM VIA
CACHE

MEMORY
CONTROLLER

COMPRESSED
INSTRUCTION
EXPANDER

INSTRUCTION
DECODER

ADDRESS
GENERATOR

FETCH
UNIT

FETCH
REGISTERS

EXECUTE

LOAD FROM
MEMORY

STORE TO
MEMORY

BRANCH
DECIDER

LUI / AUIPC JAL / JALR

ALU
IMMEDIATE

ALU
REGISTER

FLOATING
POINT
UNIT

ALU
M EXTENSION

ALU
ATOMIC

EXTENSION

The PAWS CPU is a Risc-V RV32IMAFC that implements only the features needed to run GCC or
LLVM/CLANG compiled code.

• No interrupts.
• Machine mode only.

The PAWS CPU has two modes:

• Single thread using all available cycles.
• Dual thread

◦ Execute an instruction from each thread alternatively.
◦ Second thread can be stopped/started as required.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Supported Instruction Set Listing

Risc-V Implemented Not Implemented Notes
BASE ADD[I] SUB

SLT[I][U]
AND[I] OR[I] XOR[I]
SLL[I] SRL[I] SRA[I]
AUIPC/LUI

BASE
unconditional jumps

JAL[R}

BASE
conditional brnaches

BEQ/BNE
BLT[U]
BGE[U]

BASE
load and store

LB[U] LH[U] LW
SB SH SW

BASE FENCE FENCE.I
BASE and F EXTENSION
CSR

RDCYCLE[H]
RDTIME[H]
RDINSTRET[H]
F[R][S]CSR
F[R][S]RM
F[R][S]FLAGS
FS[RM][FLAGS]I

Timers and instruction retired
counters are readonly.

BASE
SYSTEM

ECALL EBREAK

M EXTENSION DIV[U] REM[U]
MUL MULH[[S]U]

A EXTENSION AMOADD AMOSWAP
AMOAND AMOOR AMOXOR
AMOMAX[U] AMOMIN[U]

AQ / RL flags are ignored.

The AMO instructions do operate as
a complete READ-MODIFY_WRITE
operation, as intended.

F EXTENSION FLW FSW
F[N]M[ADD][SUB].S
FADD.S FSUB.S
FMUL.S FDIV.S
FSQRT.S
FSNJ[N][X].S
FMIN.S FMAX.S
FCVT.W[U].S FCVT.S.W[U]
FMV.X.W FMV.W.X
FEQ.S FLT.S FLE.S
FCLASS.S

There is no rounding control.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Compiling Programs For PAWS

The default language for PAWS is C, specifically GCC, with support for LLVM and CLANG.

To create a program for PAWS, create a C file in the SOFTWARE/c directory. It is advised to use the
SOFTWARE/template.c as a starting point.

Contents of template.c Explanation

#include "PAWSlibrary.h"

int main(void) {
 INITIALISEMEMORY();

 // CODE GOES HERE
}

// EXIT WILL RETURN TO BIOS

Use libPAWS for definitions and helper functions.

MAIN program entry point
Setup the memory map

Main loop.

Compile your code using the shell scripts. For example, to compile the included asteroids style arcade
game, ./compile.sh c/asteroids.c PAWS/ASTROIDS.PAW or ./clang.sh c/asteroids.c
PAWS/ASTROIDS.PAW. Either will compile the program to PAWS/ASTROIDS.PAW, which can be
copied to the SDCARD for loading via the BIOS.

PAWS uses newlib to provide a C library and some auxiliary floating-point routines, and libgcc to provide
additional floating-point routines (such as single precision to double precision). The shell scripts will link
to these libraries installed in their default locations on ArchLinux.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

PAWS Memory System

The SDRAM has a 32k directly mapped eviction cache. A directly mapped cache was used to simplify
the cache logic, and an eviction method chosen to reduce the number of SDRAM writes.

Memory access are organised as 16 bit, the bus width of the SDRAM chip on the ULX3S. 16-bit
compressed instructions are preferred as due to latency during instruction fetching these will be fetched,
decoded and executed quicker than 32-bit instructions.

Memory Management

The BIOS will initialise the memory, and allocates space at the top of fast BRAM memory for the CPU
STACK, and space at the top the SDRAM for SDCARD buffers.

Space is reserved in the fast BRAM memory for the SMT CPU STACK.

Address Range Memory Type Usage

0x00000000 – 0x00008000 Fast BRAM 0x0000 – 0x1000 BIOS
0x8000 – 0x4000 Main Stack
0x4000 – 0x2000 SMT Stack

0x1000 – 0x1400 printf buffer
0x1400 – 0x1500 libPAWS
0x1500 – 0x2000 fast storage

0x00008000 – 0x0000ffff I/O Registers Commuincation with the PAWS hardware.

No direct hardware access is
required, as libPAWS provides
functions for all aspects of the PAWS
hardware.

0x10000000 - 0x11ffffff SDRAM

PROGRAM + LOADED DATA
MALLOC ALLOCATED MEMORY

Program and data storage. Accessed
via a cache.

libPAWS variables and functions

unsigned char *MEMORYTOP Points to the top of unallocated
memory.

void INITIALISEMEMORY(void) Sets up the memory map using
parameters passed from the BIOS.

Standard C library functions for memory management such as malloc are available via newlib. See
newlib documentation for details.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Colours

PAWS uses a 6-bit colour attribute, given as RRGGBB. This gives 64 colours, specified in hexadecimal
as per the table below. Names defined in libPAWS are shown.

Some display layers allow for a transparency attribute to allow lower layers to show. This is named
TRANSPARENT in libPAWS.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Display Structure

The display in PAWS is organised in layers. The arrangement of the layers can be adjusted, with the
background layer always being at the bottom.

The default arrangement of layers (top to bottom) is:

• Terminal Layer (hidden by default)
• Character (Text) Layer
• Upper Sprite Layer
• Bitmap Layer
• Lower Sprite Layer
• Upper Tile Map Layer
• Lower Tile Map Layer
• Background Layer

PAWS Asteroids, showing the background (dark blue and falling stars), the bitmap (logo, galaxy image,
“GAME OVER” and the fuel bars), the tile maps (the small planets and rocket ships), the sprites

(asteroids, UFO, player ship), and the character map (player score and instructions).

PAWS Asteroids runs in screen mode 2, where the bitmap is displayed below the sprites and the tile
maps.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

libPAWS Variables and Functions

void await_vblank(void) Waits for the screen vertical blank
to start.

void screen_mode(unsigned char screenmode, unsigned char colour) Changes the display layer order and
selects colour or greyscale mode.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

File Management

libPAWS has the ability to load files from the SDCARD directly into memory.

libPAWS variables and functions

unsigned char *sdcard_selectfile(char *message, char *extension, unsigned
int *filesize)

Returns a pointer to a file that has
been loaded into memory, or NULL if
no file found.

Message is displayed above the file
selector. Only directories and files
of the type “extension” will be
displayed.

Example code for loading a JPG into memory via the file selector, decoding and displaying.

#include "PAWSlibrary.h"
#include <stdlib.h>

int main(void) {
 INITIALISEMEMORY();

 int width, height; unsigned int filesize;
 unsigned char *imagebuffer, colour, *filebuffer;

 filebuffer = sdcard_selectfile("Please select a JPEG", "JPG", &filesize);

 // JPEG LIBRARY
 if(filebuffer) {
 njInit();
 njDecode(filebuffer, filesize);
 width = njGetWidth();
 height = njGetHeight();
 imagebuffer=njGetImage();
 gpu_pixelblock24(0, 0, width, height, imagebuffer);
 free(filebuffer);
 } else {
 gpu_print_centre(WHITE, 160, 120, 0, 0, "NO FILE FOUND!");
 }

 sleep(4000, 0);
}

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Single Thread or Dual Thread Mode

On startup PAWS runs in single thread mode. The BIOS will switch back to single thread mode when
returning to the BIOS from a program running in dual thread mode.

Whilst dual thread mode is activated PAWS will execute one instruction from each thread alternatively.
All memory is shared, with no memory protection.

The Risc-V A Extension (Atomic Instructions) are decoded and executed, but ignoring the aq and rl flags.
The whole of the fetch-modify-write cycle will complete before allowing the other thread to execute.
FENCE instructions from the Risc-V base are treated as no-ops.

libPAWS variables and functions

void SMTSTOP(void)void SMTSTART(unsigned int code) Stops the SMT thread.

void SMTSTART(unsigned int code) Starts the SMT thread, jumping
immediately to the address of the
function provided.

Due to the way that all of the I/O operations are memory mapped there are considerations to make when
writing dual threaded code. Some suggestions for best practice are listed below:

• Only one thread should access the GPU, tile-maps, character map or audio. If both threads
attempt to they could be overwriting the control registers leading to an unknown outcome.

• The sprite layers control registers are memory mapped to allow both threads to control the
sprites.

Example code for a simple dual thread program

#include "PAWSlibrary.h"

void smtthread(void) {
 // SETUP STACKPOINTER FOR THE SMT THREAD
 asm volatile ("li sp ,0x4000");
 while(1) {
 gpu_rectangle(rng(64), rng(640), rng(432), rng(640), rng(432));
 sleep(500, 1);
 }
}

void main(void) {
 INITIALISEMEMORY();

 tpu_printf_centre(27, TRANSPARENT, GREEN, "SMT Test");
 tpu_printf_centre(28, TRANSPARENT, YELLOW, "I'm Just Sitting Here Doing Nothing");
 tpu_printf_centre(29, TRANSPARENT, BLUE, "The SMT Thread Is Drawing Rectangles!");
 SMTSTART((unsigned int)smtthread);

 while(1) {
 tpu_set(1, 1, TRANSPARENT, WHITE);
 tpu_printf("Main Thread Counting Away: %d", systemclock());
 sleep(1000, 0);
 }
}

NOTE: The first line of code in the smtthread function must set the stack pointer to the reserved
memory in the fast BRAM.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Background Generator

The background layer shows when there is nothing to display from the layers above. There are 16
named background generators in libPAWS. The result of the individual background generators are
shown in the table below.

Result of set_background(PURPLE, ORANGE, value from table);

BKG_SOLID BKG_5050_V BKG_5050_H BKG_CHKBRD_5

BKG_RAINBOW BKG_SNOW BKG_STATIC BKG_CHKBRD_1

BKG_CHKBRD_2 BKG_CHKBRD_3 BKG_CHKBRD_4 BKG_HATCH

BKG_LSLOPE BKG_RSLOPE BKG_VSTRIPE BKG_HSTRIPE

In addition, a simple co-processor, called COPPER, is available to change background generator
parameters during the frame generation.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Background COPPER Programming

The COPPER is designed to allow the changing of the background generator parameters during the
display frame. The COPPER program storage has 64 entries, there is one variable, and it can detect the
present X and Y coordinates (range X = 0 to 639, Y = 0 to 479).

COMMAND CONDITION VALUE MODE ALT COLOUR /
ADDRESS

JUMP ALWAYS ADDRESS Jump to ADDRESS
JUMP IF_VBLANK_EQUAL 0 or 1 ADDRESS Jump to ADDRESS if VBLANK is 0 or 1
JUMP IF_HBLANK_EQUAL 0 or 1 ADDRESS Jump to ADDRESS if HBLANK is 0 or 1
JUMP IF_Y_LESS Y COORDINATE* ADDRESS Jump to ADDRESS if Y is LESS THAN VALUE
JUMP IF_X_LESS X COORDINATE* ADDRESS Jump to ADDRESS if X is LESS THAN VALUE
JUMP IF_VARIABLE_LESS VALUE* ADDRESS Jump to ADDRESS if VARIABLE is LESS THAN VALUE
WAIT_VBLANK SET FLAGS MODE ALT COLOUR Wait for VBLANK and SET
WAIT_HBLANK SET FLAGS MODE ALT COLOUR Wait for HBLANK and SET
WAIT_Y SET FLAGS Y COORDINATE* MODE ALT COLOUR Wait for Y and SET
WAIT_X SET FLAGS X COORDINATE* MODE ALT COLOUR Wait for X and SET
WAIT_VARIABLE SET FLAGS X/Y FLAG MODE ALT COLOUR Wait for VARIABLE to be EQUAL to X or Y
SET_VARIABLE 1 VALUE* Set VARIABLE to VALUE
ADD_VARIABLE 2 VALUE* Add VALUE to VARIABLE
SUB_VARIABLE 4 VALUE* Subtract VALUE from VARIABLE
SET_FROM_VARIABLE SET_FLAGS SET from VARIABLE
* the value can be replaced with the constant ‘COPPER_USE_CPU_INPUT’ which will then compare/use the value set by the libPAWS function
set_copper_cpuinput(value).

A simple COPPER program that sets the background generator to the BKG_SNOW pattern on a BLACK background, and
changes the colour of the snow/stars every 64 pixels down the screen to give a rainbow effect.

 copper_startstop(0);
 copper_program(0, COPPER_WAIT_Y, 7, 0, BKG_SNOW, BLACK, WHITE);
 copper_program(1, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, WHITE);
 copper_program(2, COPPER_JUMP, COPPER_JUMP_IF_Y_LESS, 64, 0, 0, 1);
 copper_program(3, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, RED);
 copper_program(4, COPPER_JUMP, COPPER_JUMP_IF_Y_LESS, 128, 0, 0, 3);
 copper_program(5, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, ORANGE);
 copper_program(6, COPPER_JUMP, COPPER_JUMP_IF_Y_LESS, 160, 0, 0, 5);
 copper_program(7, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, YELLOW);
 copper_program(8, COPPER_JUMP, COPPER_JUMP_IF_Y_LESS, 192, 0, 0, 7);
 copper_program(9, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, GREEN);
 copper_program(10, COPPER_JUMP, COPPER_JUMP_IF_Y_LESS, 224, 0, 0, 9);
 copper_program(11, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, LTBLUE);
 copper_program(12, COPPER_JUMP, COPPER_JUMP_IF_Y_LESS, 256, 0, 0, 11);
 copper_program(13, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, PURPLE);
 copper_program(14, COPPER_JUMP, COPPER_JUMP_IF_Y_LESS, 288, 0, 0, 13);
 copper_program(15, COPPER_WAIT_X, 7, 0, BKG_SNOW, BLACK, MAGENTA);
 copper_program(16, COPPER_JUMP, COPPER_JUMP_IF_NOT_VBLANK, 0, 0, 0, 15);
 copper_program(17, COPPER_JUMP, COPPER_JUMP_ALWAYS, 0, 0, 0, 1);
 copper_startstop(1);

A simple COPPER program that sets the background generator to the BKG_SNOW pattern on a BLACK background, and
cycles through the colours for the snow/stars every frame, giving a twinkling stars effect.

 copper_startstop(0);
 copper_program(0, COPPER_VARIABLE, COPPER_SET_VARIABLE, 1, 0, 0, 0);
 copper_program(1, COPPER_WAIT_Y, 6, 0, BKG_SNOW, BLACK, 0);
 copper_program(2, COPPER_SET_FROM_VARIABLE, 1, 0, 0, 0, 0);
 copper_program(3, COPPER_VARIABLE, COPPER_ADD_VARIABLE, 1, 0, 0, 0);

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

 copper_program(4, COPPER_JUMP, COPPER_JUMP_IF_NOT_VBLANK, 0, 0, 0, 4);
 copper_program(5, COPPER_JUMP, COPPER_JUMP_IF_VARIABLE_LESS, 64, 0, 0, 1);
 copper_program(6, COPPER_JUMP, COPPER_JUMP_ALWAYS, 0, 0, 0, 0);
 copper_startstop(1);

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Bitmap and GPU

PAWS displays a 320x240 pixel bitmap with 64 colours, plus TRANSPARENT. PAWS uses a GPU to
draw to the bitmap, with hardware accelerated drawing of some graphic primitives.

Basic Principles

The bitmap is 320 pixels wide by 240 pixels tall, with (0,0) being located at the top left-hand corner of the
screen. Drawing can be limited to a “cropping rectangle”, only pixels within the “cropping rectangle” will
be drawn.

void bitmap_display(unsigned char framebuffer) Display bitmap 0 or 1.

void bitmap_draw(unsigned char framebuffer) Draw to bitmap 0 or 1.

void gpu_crop(unsigned short left, unsigned short right, unsigned short
top, unsigned short bottom)

Sets the cropping rectangle for the
GPU. gpu_crop(CROPFULLSCREEN) will
return to the whole of the screen.

void gpu_cs(void) Clears the bitmap to TRANSPARENT.

Example code for a tear-free animation

#include "PAWSlibrary.h"

void main(void) {
 // CURRENT FRAMEBUFFER
 unsigned short framebuffer = 0;

 INITIALISEMEMORY();

 while(1) {
 // DRAW TO HIDDEN BITMAP
 bitmap_draw(!framebuffer);

 // CODE TO GENERATE THE BITMAP
 // DRAWN TO THE HIDDEN BITMAP

 // SWITCH THE FRAMEBUFFER
 await_vblank();
 framebuffer = !framebuffer;
 bitmap_display(framebuffer);
 }
}

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Dither Patterns

When drawing rectangles, filled circles or triangles, the GPU can apply one of 16 “dither” patterns. The
“dither” routine determines whether to use the main drawing colour, provided with the shape being
drawn, or the alternate colour, set with the “dither mode”.

void gpu_dither(unsigned char mode, unsigned char colour) Sets the dither mode and the
alternate colour.

Result of gpu_dither(dithermode, PURPLE); Plus drawing a rectangle in ORANGE.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Graphic Primatives

void gpu_pixel(unsigned char colour, short x, short y) Draws a pixel at (x,y) in colour.

void gpu_line(unsigned char colour, short x1, short y1, short x2, short y2
)

Draws a line from (x1,y1) to (x2,y2)
in colour.

void gpu_wideline(unsigned char colour, short x1, short y1, short x2,
short y2, unsigned short width)

Draws a line from (x1,y1) to (x2,y2)
in colour, width pixels wide.

Effectively draws a parallelogram.
Steep lines with the flat sides
horizontal, shallow lines with the
flat sides vertical.

void gpu_rectangle(unsigned char colour, short x1, short y1, short x2,
short y2)

Draws a filled rectangle with corners
at (x1,y1) and (x2,y2) in colour.
Uses the dither mode.

void gpu_circle(unsigned char colour, short x1, short y1, short radius,
unsigned char drawsectors, unsigned char filled)

Draws a circle at centre (x1,y1) of
the given radius in colour,
optionally filled. Uses the dither
mode when filling.

See below for details of the
drawsectors parameter.

void gpu_triangle(unsigned char colour, short x1, short y1, short x2,
short y2, short x3, short y3)

Draws a filled triangle with vertices
(x1,y1), (x2,y2) and (x3,y3) in
colour. Uses the dither mode.

void gpu_quadrilateral(unsigned char colour, short x1, short y1, short x2,
short y2, short x3, short y3, short x4, short y4)

Draws a filled convex quadrilateral
with vertices (x1,y1), (x2,y2),
(x3,y3) and (x4,y4) in colour. Uses
the dither mode.

NOTE: Drawn by breaking into two
triangles, so vertices should be
presented either anti-clockwise or
clockwise.

2
4

5
6
7

1

3

0

The drawsectors parameter is an 8-bit binary mask
that specifies which of the 45° sectors will be drawn.
The bit position that represents each sector is as
shown.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Blitters

The blitter copies a tile to the bitmap, drawing pixels where there is a set bit in the tile, and ignoring clear
bits in the tile (treating them as transparent). Pixels are drawn in the specified colour without dither
patterns being applied. The colour blitter does the same, except that the tile describes a 64 colour
image, with transparent pixels being ignored.

The blit_size parameter specifies the size of the output.

blit_size Size of gpu_blit and gpu_colourblit output Size of gpu_character_blit
0 16x16 8x8
1 32x32 16x16
2 64x64 32x32
3 128x128 64x64

The action parameter specifies the reflection or rotation of the tile when draw to the screen.

action Result
0 No effect (no reflection)

1 (REFLECT_X) Reflect in X axis
2 (REFLECT_Y) Reflect in Y axis

3 (REFLECT_X | REFLECT_Y) Reflect in X and Y axes
4 (ROTATE0) No effect (rotate 0 degrees)

5 (ROTATE90) Rotate 90 degrees anti-clockwise
6 (ROTATE180) Rotate 180 degrees anti-clockwise
7 (ROTATE270) Rotate 270 degrees anti-clockwise

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Tile Blitter

The tile blitter uses 16x16 tiles, 64 are available, with the tiles being set using the set_blitter_bitmap
function, which takes a pointer to an array of 16 unsigned short.

void gpu_blit(unsigned char colour, short x1, short y1, short tile,
unsigned char blit_size, unsigned char action)

Blit a 16x16 tile to (x1,y1) in
colour.

void set_blitter_bitmap(unsigned char tile, unsigned short *bitmap) Define one of the 64 16x16 blitter
tiles.

Code Output

unsigned short blitter_bitmaps[] = {
 0b0000011000000000,
 0b0000111100000000,
 0b0001111110000000,
 0b0011011011000000,
 0b0011111111000000,
 0b0001011010000000,
 0b0010000001000000,
 0b0001000010000000,
 0,0,0,0,0,0,0,0 };

set_blitter_bitmap(0, &blitter_bitmaps[0]);

gpu_blit(GREEN, 16, 32, 0, 0, 0);

(16,32)

The character blitter uses 8x8 tiles, 512 are available, with the tiles being set using the
set_blitter_chbitmap function, which takes a pointer to an array of 8 unsigned char. The character blitter
tiles default to an 8x8 character ROM, with normal (characters 0 to 255) and bold characters
(characters 256 to 511), but can be overwritten.

The colour blitter uses 16x16 tiles, 64 are available, with the tiles being set using the
set_colourblitter_bitmap function, which takes a pointer to an array of 256 unsigned char.

void gpu_character_blit(unsigned char colour, short x1, short y1, unsigned
char tile, unsigned char blit_size, unsigned char action)

Blit an 8x8 character to (x1,y1) in
colour.

void gpu_colourblit(short x1, short y1, short tile, unsigned char
blit_size, unsigned char action)

Blit a 16x16 full colour tile to
(x1,y1).

void set_blitter_chbitmap(unsigned char tile, unsigned char *bitmap) Define one of the 256 8x8 character
blitter tiles.

void set_colourblitter_bitmap(unsigned char tile, unsigned char *bitmap) Define one of the 64 16x16 colour
blitter tiles.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Pixelblocks

The pixelblock operates as a software blitter, outputting pixels from an area of memory, such as a
decoded image. gpu_pixelblock7 outputs { ARRGGBB } pixels, and gpu_pixelblock24 converts 24bit
RGB pixels to the PAWS ARRGGBB pixels before output.

The transparent parameter specifies a colour to treat as a ‘mask’ and not to be drawn. If ALL pixels are
to be output, set transparent to TRANSPARENT.

void gpu_pixelblock7(short x, short y, unsigned short w, unsigned short h,
unsigned char transparent. Unsigned char *buffer)

Outputs a rectangle of { ARRGGBB }
pixels stored in memory, starting at
(x,y) of size (width, height).

void gpu_pixelblock24(short x, short y, unsigned short width, unsigned
short height, unsigned char transparent. Unsigned char *buffer)

Outputs a rectangle of 24bit RGB
pixels stored in memory, starting at
(x,y) of size (width, height).

The pixelblock can also operate by taking pixels one-by-one, such as after calculation and drawing them
to the bitmap.

This mode is activated using gpu_pixelblock_start, and terminated with gpu_pixelblock_stop. Pixels are
sent using gpu_pixelblock_pixel7 and gpu_pixelblock_pixel24 for { ARRGGBB } and 24-bit RGB pixels
respectively.

void gpu_pixelblock_start(short x, short y, unsigned short width) Set the GPU to start accpeting a
rectangle of width pixels starting at
(x,y) in PIXELBLOCK mode.

NOTE: No other GPU commands can be
issued unitl gpu_pixelblock_stop()
has been called.

void gpu_pixelblock_stop(void) Stop the PIXELBLOCK mode.

void gpu_pixelblock_pixel7(unsigned char pixel) Send an { ARRGGBB } pixel to the
pixelblock and move to the next
pixel.

void gpu_pixelblock_pixel24(unsigned char red, unsigned char green,
unsigned char blue)

Send a 24bit RGB pixel to the
pixelblock and move to the next
pixel.

NOTE: No other GPU operation can be started until gpu_pixelblock_stop has been called.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Hardware Vector Blocks

void draw_vector_block(unsigned char block, unsigned char colour, short
xc, short yc, unsigned char rotation)

Starts the drawing of one of the 32
user definable vector (line drawn)
objects, centred at (x,y) in colour.
Rotation is by rotation*90°.

void set_vector_vertex(unsigned char block, unsigned char vertex, unsigned
char active, char deltax, char deltay)

Sets one of the 16 vertices in one of
the 32 user definable vector (line
drawn) objects.

PAWS a Risc-V RV32IMAFC CPU – Usage & Programming Guide

Miscellaneous/Utility Functions

void gpu_box(unsigned char colour, short x1, short y1, short x2, short y2,
unsigned short width)

Draws an outline rectangle with
corners at (x1,y1) and (x2,y2) in
colour, width pixels wide.

NOTE: Drawn by breaking into 4 lines.

To print C formatted strings to the bitmap, using the character blitter to output each character.

For gpu_printf the coordinate specify the top-left pixel for the output; for gpu_printf centre the coordinate
specifies the top and the horizontal centre pixel for the output; for gpu_printf_vertical the coordinate
specifies the bottom-left pixel for the output; for gpu_printf_centre_vertical the coordinate specifies the
left and the vertical centre pixel for the output.

The size and action parameters are obeyed as per the character blitter.

void gpu_printf(unsigned char colour, short x, short y, unsigned char
size, unsgined char action, const char *fmt,...)

Outputs a string (maximum 80
characters) by repeatedly using the
character blitter, starting at (x,y)
in colour. Will size the characters
and space accordingly. Action is
detailed below.

NOTE: Escape characters are not
processed, the corresponding
character code is output as a
character.

void gpu_printf_vertical(unsigned char colour, short x, short y, unsigned
char size, unsgined char action, const char *fmt,...)

Outputs a string (maximum 80
characters) by repeatedly using the
character blitter, starting at (x,y)
in colour. Will size the characters
and space accordingly. Moving
vertically upwards. Action is
detailed below.

NOTE: Escape characters are not
processed, the corresponding
character code is output as a
character.

void gpu_printf_centre(unsigned char colour, short x, short y, unsigned
char size, unsigned char action, const char *fmt, ...)

Outputs a string by repeatedly using
the character blitter, with the top
centred at (x,y) in colour. Will size
the characters and space accordingly.
Action is detailed below.

NOTE: Escape characters are not
processed, the corresponding
character code is output as a
character.

void gpu_printf_centre_vertical(unsigned char colour, short x, short y,
unsigned char size, unsigned char action, const char *fmt, ...)

Outputs a string by repeatedly using
the character blitter, with the top
centred at (x,y) in colour. Will size
the characters and space accordingly.
Moving vertically upwards. Action is
detailed below.

NOTE: Escape characters are not
processed, the corresponding
character code is output as a
character.

