The rplos
package interacts with the API services of PLoS (Public Library of Science) Journals. In order to use rplos
, you need to obtain your own key to their API services. Instruction for obtaining and installing keys so they load automatically when you launch R are on our GitHub Wiki page Installation and use of API keys.
This tutorial will go through three use cases to demonstrate the kinds
of things possible in rplos
.
install.packages("rplos")
library(rplos)
searchplos
is a general search, and in this case searches for the term
Helianthus and returns the DOI's of matching papers
searchplos(terms = "Helianthus", fields = "id", limit = 5)
id
1 10.1371/journal.pone.0057533
2 10.1371/journal.pone.0045899
3 10.1371/journal.pone.0037191
4 10.1371/journal.pone.0051360
5 10.1371/journal.pone.0070347
Get only full article DOIs
searchplos(terms = "*:*", fields = "id", toquery = "doc_type:full", start = 0,
limit = 20)
id
1 10.1371/journal.pgen.1001387
2 10.1371/journal.pone.0058892
3 10.1371/journal.pone.0015116
4 10.1371/journal.pgen.1001385
5 10.1371/journal.pone.0015114
6 10.1371/journal.pone.0030759
7 10.1371/journal.pone.0015112
8 10.1371/journal.pone.0030758
9 10.1371/journal.pone.0015111
10 10.1371/journal.pone.0058887
11 10.1371/journal.pone.0024514
12 10.1371/journal.pone.0030762
13 10.1371/journal.pone.0071223
14 10.1371/journal.pone.0030761
15 10.1371/journal.pone.0024513
16 10.1371/journal.pone.0024512
17 10.1371/journal.pone.0058890
18 10.1371/journal.pone.0030760
19 10.1371/journal.pgen.1001384
20 10.1371/journal.pone.0024511
Get DOIs for only PLoS One articles
searchplos(terms = "*:*", fields = "id", toquery = "cross_published_journal_key:PLoSONE",
start = 0, limit = 15)
id
1 10.1371/journal.pone.0071225/body
2 10.1371/journal.pone.0071225/introduction
3 10.1371/journal.pone.0071225/results_and_discussion
4 10.1371/journal.pone.0071225/materials_and_methods
5 10.1371/journal.pone.0071225/supporting_information
6 10.1371/journal.pone.0058892
7 10.1371/journal.pone.0058892/title
8 10.1371/journal.pone.0058892/abstract
9 10.1371/journal.pone.0058892/references
10 10.1371/journal.pone.0058892/body
11 10.1371/journal.pone.0058892/introduction
12 10.1371/journal.pone.0058892/results_and_discussion
13 10.1371/journal.pone.0058892/materials_and_methods
14 10.1371/journal.pone.0015116
15 10.1371/journal.pone.0015116/title
Get DOIs for full article in PLoS One
searchplos(terms = "*:*", fields = "id", toquery = list("cross_published_journal_key:PLoSONE",
"doc_type:full"), start = 0, limit = 20)
id
1 10.1371/journal.pone.0058892
2 10.1371/journal.pone.0015116
3 10.1371/journal.pone.0015114
4 10.1371/journal.pone.0030759
5 10.1371/journal.pone.0015112
6 10.1371/journal.pone.0030758
7 10.1371/journal.pone.0015111
8 10.1371/journal.pone.0058887
9 10.1371/journal.pone.0024514
10 10.1371/journal.pone.0030762
11 10.1371/journal.pone.0071223
12 10.1371/journal.pone.0030761
13 10.1371/journal.pone.0024513
14 10.1371/journal.pone.0024512
15 10.1371/journal.pone.0058890
16 10.1371/journal.pone.0030760
17 10.1371/journal.pone.0024511
18 10.1371/journal.pone.0021422
19 10.1371/journal.pone.0062009
20 10.1371/journal.pone.0030767
Serch for many terms
terms <- c("ecology", "evolution", "science")
lapply(terms, function(x) searchplos(x, limit = 2))
[[1]]
id
1 10.1371/journal.pone.0059813
2 10.1371/journal.pone.0001248
[[2]]
id
1 10.1371/journal.pbio.0050030
2 10.1371/journal.pbio.0030245
[[3]]
id
1 10.1371/journal.pbio.0020122
2 10.1371/journal.pbio.1001166
A suite of functions were created as light wrappers around searchplos
as a shorthand to search specific sections of a paper.
plosauthor
searchers in authorsplosabstract
searches in abstractsplostitle
searches in titlesplosfigtabcaps
searches in figure and table captionsplossubject
searches in subject areasplosauthor
searches across authors, and in this case returns the authors of the matching papers. the fields parameter determines what is returned
plosauthor(terms = "Eisen", fields = "author", limit = 10)
author
1 Jonathan A Eisen
2 Jonathan A Eisen
3 Garmay Leung, Michael B Eisen
4 Richard W Lusk, Michael B Eisen
5 Leonid Teytelman, Michael B Eisen, Jasper Rine
6 Richard W Lusk, Michael B Eisen
7 Lars Eisen, Saul Lozano-Fuentes
8 Jonathan A Eisen, Catriona J MacCallum
9 Martin Wu, Sourav Chatterji, Jonathan A Eisen
10 Peter A Combs, Michael B Eisen
plosabstract
searches across abstracts, and in this case returns the id and title of the matching papers
plosabstract(terms = "drosophila", fields = "id,title", limit = 5)
id
1 10.1371/journal.pbio.0040198
2 10.1371/journal.pbio.0030246
3 10.1371/journal.pone.0012421
4 10.1371/journal.pbio.0030389
5 10.1371/journal.pbio.1000342
title
1 All for All
2 School Students as Drosophila Experimenters
3 Host Range and Specificity of the Drosophila C Virus
4 New Environments Set the Stage for Changing Tastes in Mates
5 Variable Transcription Factor Binding: A Mechanism of Evolutionary Change
plostitle
searches across titles, and in this case returns the title and journal of the matching papers
plostitle(terms = "drosophila", fields = "title,journal", limit = 10)
journal
1 PLoS Biology
2 PLoS Biology
3 PLoS ONE
4 PLoS Computational Biology
5 PLoS Biology
6 PLoS Genetics
7 PLoS Biology
8 PLoS Biology
9 PLoS ONE
10 PLoS ONE
title
1 School Students as Drosophila Experimenters
2 Identification of Drosophila MicroRNA Targets
3 A Tripartite Synapse Model in Drosophila
4 Parametric Alignment of Drosophila Genomes
5 Expression in Aneuploid Drosophila S2 Cells
6 Phenotypic Plasticity of the Drosophila Transcriptome
7 Reinforcement of Gametic Isolation in Drosophila
8 Combinatorial Coding for Drosophila Neurons
9 A DNA Virus of Drosophila
10 Quantification of Food Intake in Drosophila
plosword
allows you to search for 1 to K words and visualize the results
as a histogram, comparing number of matching papers for each word
out <- plosword(list("monkey", "Helianthus", "sunflower", "protein", "whale"),
vis = "TRUE")
out$table
No_Articles Term
1 6154 monkey
2 196 Helianthus
3 509 sunflower
4 64832 protein
5 702 whale
out$plot
You can also pass in curl options, in this case get verbose information on the curl call.
plosword("Helianthus", callopts = list(verbose = TRUE))
Number of articles with search term
196
plot_througtime
allows you to search for up to 2 words and visualize the results as a line plot through time, comparing number of articles matching through time. Visualize with the ggplot2 package, only up to two terms for now.
plot_throughtime(terms = "phylogeny", limit = 200, gvis = FALSE)
plot_throughtime(list("drosophila", "monkey"), 100)
OR using google visualizations through the googleVis package, check it your self using, e.g.
plot_throughtime(terms = list("drosophila", "flower"), limit = 200, gvis = TRUE)
…And a google visualization will render on your local browser and you can play with three types of plots (point, histogram, line), all through time. The plot is not shown here, but try it out for yourself!!