
Responder Code CommentsInitiator Code

←Action

←Action

←Action

←Action

←Action

←Action

Variables

Variables

Variables

Variables

Variables

Variables

Comment

Comment

Comment

Line

Line

Line

Line

Line

Line

ck

ck

← lhash("chaining key init", spkr)

sidi ← random_session_id();

eski, epki ← EKEM::keygen();

mix(sidi, epki);

sctr ← encaps_and_mix<SKEM>(spkr);

pidiC ← encrypt_and_mix(pidi);

mix(spki, psk);

auth ← encrypt_and_mix(empty())

ck ← lhash("chaining key init", spkr)

mix(sidi, epki)

decaps_and_mix<SKEM>(sskr, spkr, ct1)

spki, psk ← lookup_peer(decrypt_and_mix(pidiC))

mix(spki, psk);

decrypt_and_mix(auth)

Initialize the chaining key, and bind to the responder’s public key.

The session ID is used to associate packets with the handshake state.

Generate fresh ephemeral keys, for forward secrecy.
InitHello includes sidi and epki as part of the protocol transcript, and so we
mix them into the chaining key to prevent tampering.
Key encapsulation using the responder’s public key. Mixes public key, shared
secret, and ciphertext into the chaining key, and authenticates the responder.

Tell the responder who the initiator is by transmitting the peer ID.
Ensure the responder has the correct view on spki. Mix in the PSK as optional
static symmetric key, with epki and spkr serving as nonces.
Add a message authentication code to ensure both participants agree on the
session state and protocol transcript at this point.

Responder generates a session ID.
Initiator looks up their session state using the session ID they generated.
Mix both session IDs as part of the protocol transcript.

Key encapsulation using the ephemeral key, to provide forward secrecy.
Key encapsulation using the initiator’s static key, to authenticate the
initiator, and non-forward-secret confidentiality.
The responder transmits their state to the initiator in an encrypted container
to avoid having to store state.
Add a message authentication code for the same reason as above.

IHI1

RHI1

ICI1

IHR1

RHR1

ICR1

IHI4

RHI4

ICI4

IHR4

RHR4

ICR4

IHI5

RHI5

ICI5

IHR5

RHR5

ICR5

IHI2

RHI2

ICI2

RHR2

ICR2

IHI6

RHI6

ICI6

IHR6

RHR6

ICR6

IHI3

RHI3

ICI3

RHR3

ICR3

IHI7

RHI7

ICI7

IHR7

RHR7

ICR7

IHI8 IHR8

← lookup_session(sidi);
mix(sidr, sidi);
decaps_and_mix<EKEM>(eski, epki, ecti);

decaps_and_mix<SKEM>(sski, spki, scti);

mix(biscuit)

decrypt_and_mix(auth)

← random_session_id()sidr

mix(sidr, sidi);
← encaps_and_mix<EKEM>(epki);ecti

← encaps_and_mix<SKEM>(spki);scti

← store_biscuit();biscuit

← encrypt_and_mix(empty());auth

mix(sidi, sidr);

auth ← encrypt_and_mix(empty);

enter_live();

biscuit_no ← load_biscuit(biscuit);
encrypt_and_mix(empty());

mix(sidi, sidr);

decrypt_and_mix(auth);

assert(biscuit_no > biscuit_used);
biscuit_used ← biscuit_no;

enter_live();

Responder loads their biscuit. This restores the state from after RHR6.

Responder recomputes RHR7, since this step was performed after biscuit encoding.
Mix both session IDs as part of the protocol transcript.
Message authentication code for the same reason as above, which in particular
ensures that both participants agree on the final chaining key.
Biscuit replay detection.

Biscuit replay detection.
Derive the transmission keys, and the output shared key for use asWireGuard’s PSK.

InitHello { sidi, epki, sctr, pidiC, auth }

RespHello { sidr, sidi, ecti, scti, biscuit, auth }

InitConf { sidi, sidr, biscuit, auth }

1

4

5

2

3

6


