
eif: Extended Isolation Forest for Anomaly Detection
Sahand Hariri1 and Matias Carrasco Kind2

1 Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, USA 2 National
Center for Supercomputing Applications, University of Illinois at Urbana-Champaign. 1205 W Clark
St, Urbana, IL USA 61801DOI: 00.00000/joss.00000

Software
• Review
• Repository
• Archive

Submitted: 00 January 0000
Published: 00 January 0000

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

The problem of anomaly detection has wide range of applications in various fields and
scientific applications. Anomalous data can have as much scientific value as normal data
or in some cases even more and is of vital importance to have robust, fast and reliable
algorithms to detect and flag such anomalies. In this paper, we present an extension to
the model-free anomaly detection algorithm, Isolation Forest (Liu, Ting, and Zhou 2008,
2012). This extension, named Extended Isolation Forest (EIF), improves the consistency
and reliability of the anomaly score produced by standard methods for a given data point.
We show that the standard Isolation Forest produces inconsistent scores using score maps,
and that these score maps suffer from an artifact produced as a result of how the criteria
for branching operation of the binary tree is selected.

Our method allows for the slicing of the data to be done using hyperplanes with random
slopes which results in improved score maps. The consistency and reliability of the algo-
rithm is much improved using this extension. We find no appreciable difference in the
rate of convergence nor in computational time between the standard Isolation Forest and
EIF which highlights its potential as anomaly detection algorithm.

This method has been written completely in Python and the only requirement is NumPy
(Oliphant 2006) and can be easily installed using pip install eif or directly from the
source code located at https://github.com/sahandha/eif where we have also added some
example Jupyter(Kluyver et al. 2016) Notebooks and documented code on how to get
started.

Motivation

While various techniques exist for approaching anomaly detection, Isolation Forest (Liu,
Ting, and Zhou 2008) is one with unique capabilities. This algorithm can readily work on
high dimensional data, it is model free, and it scales well. It is therefore highly desirable
and easy to use. However, looking at score maps for some basic example, we can see that
the anomaly scores produced by the standard Isolation Forest are inconsistent. Too see
this we look at the three examples shown below in Figure 1.

In each case, we use the data to train our Isolation Forest. We then use the train models
to score a square grid of uniformly distributed data points, which results in score maps
shown in Figure 2. Through the simplicity of the example data, we have an intuition
about what the score maps should look like. For example, for the data shown in Figure
1a, we expect to see low anomaly scores in the center of the map, while the anomaly score
should increase as we move radially away from the center. Similarly for the other figures.

Sahand Hariri, Matias Carrasco Kind, (2018). . , 00(0), 00. https://doi.org/00.00000/joss.00000 1

https://doi.org/00.00000/joss.00000
http://joss.theoj.org/papers/
https://github.com/sahandha/eif
http://dx.doi.org/00.00000/zenodo.0000000
http://creativecommons.org/lic enses/by/4.0/
https://www.python.org/
https://github.com/sahandha/eif
https://d oi.org/00.00000/joss.00000

Figure 1: Example training data. a) Normally distributed cluster. b) Two normally distributed
clusters. c) Sinusoidal data points with Gaussian noise.

Figure 2: Score maps using the Standard Isolation Forest for the points from Figure 1. We can see
the bands and artifacts on these maps

Looking at the score maps produced by the standard Isolation Forest shown in Figure
2, we can clearly see the inconsistencies in the scores. While we can clearly see a region
of low anomaly score in the center in Figure 2a, we can also see regions aligned with x
and y axes passing through the origin that have lower anomaly scores compared to the
four corners of the region. Based on our intuitive understanding of the data, this cannot
be correct. A similar phenomenon is observed in Figure 2b. In this case, the problem is
amplified. Since there are two clusters, the artificially low anomaly score regions intersect
close to points (0,0) and (10,10), and create low anomaly score regions where there is no
data. It is immediately obvious how this can be problematic. As for the third example,
Figure 2c shows that the structure of the data is completely lost the sinusoidal shape is
essentially treat as one rectangular blob.

We present a brief description of how Isolation Forest works in order to explain our
extension.

Isolation Forest

In the algorithm, given a dataset of dimension N , the algorithm chooses a random sub-
sample of data to construct a binary tree. The branching process of the tree occurs by
selecting a random dimension xi with i in {1, 2, ..., N} of the data (a single variable). It
then selects a random value v within the minimum and maximum values in that dimension.
If a given data point possesses a value smaller than v for dimension xi, then that point is
sent to the left branch, otherwise it is sent to the right branch. In this manner the data

Sahand Hariri, Matias Carrasco Kind, (2018). . , 00(0), 00. https://doi.org/00.00000/joss.00000 2

https://d oi.org/00.00000/joss.00000

Figure 3: a) Shows an example tree formed from the example data while b) shows the forest generated
where each tree is represented by a radial line from the center to the outer circle. Anomalous points
(shown in red) are isolated very quickly,which means they reach shallower depths than nominal points
(shown in blue).

on the current node of the tree is split in two. This process of branching is performed
recursively over the dataset until a single point is isolated, or a predetermined depth limit
is reached. The process begins again with a new random sub-sample to build another
randomized tree. After building a large ensemble of trees, i.e. a forest, the training is
complete, the creation of the forest is summarized in Algorithm 1 and the Class iForest()
in the code.

Algorithm 1 iForest(X, t, ψ)

Require: X - input data, t - number of trees, h - sub-sampling size
Ensure: a set of t iT rees

1. Initialize Forest
2. set height limit l = ceiling(log2 ψ)
3. for i = 1 to t do
4. X ′ ← sample(X,ψ)
5. Forest← Forest ∪ iT ree(X ′, 0, l)
6. end for

During the scoring step, a new candidate data point (or one chosen from the data used to
create the trees) is run through all the trees, and an ensemble anomaly score is assigned
based on the depth the point reaches in each tree. Figure 3 shows an schematic example
of a tree and a forest plotted radially.

It turns out the splitting process described above is the main source of the bias observed in
the score maps. Figure 4 shows the process described above for each one of the examples
considered thus far. The branch cuts are always parallel to the axes, and as a result
over construction of many trees, regions in the domain that don’t occupy any data points
receive superfluous branch cuts.

The branching process shouldn’t be affected by the choice of our coordinate system.

Sahand Hariri, Matias Carrasco Kind, (2018). . , 00(0), 00. https://doi.org/00.00000/joss.00000 3

https://d oi.org/00.00000/joss.00000

Figure 4: Splitting of data in the domain during the process of construction of one tree.

Extended Isolation Forest

The Extended Isolation Forest remedies this problem by allowing the branching process
to occur in every direction. The process of choosing branch cuts is altered so that at
each node, instead of choosing a random feature along with a random value, we choose a
random normal vector along with a random intercept point. The criteria of splitting the
node in the binary tree is determined by the equation:

(x⃗− p⃗) · n⃗ ≤ 0 (1)

where n is the normal vector, p is the random intercept. x is a give data point. If the
inequality satisfied, point x is passed down to the left branch of the tree. Otherwise, it
is passed down to the right branch as explained in Algorithm 2. Each tree is a Python
Class iTree() in the code.

Sahand Hariri, Matias Carrasco Kind, (2018). . , 00(0), 00. https://doi.org/00.00000/joss.00000 4

https://d oi.org/00.00000/joss.00000

Figure 5: Same as Figure 5 but using Extended Isolation Forest

Algorithm 2 iT ree(X, e, l)

Require: X - input data, e - current tree height, l - height limit
Ensure: an iT ree

1. if e ≥ l or |X| ≤ 1 then
2. return exNode{Size← |X|}
3. else
4. get a random normal vector n⃗ ∈ IR|X| where each coordinate is ∼ N (0, 1)

5. randomly select an intercept point p⃗ ∈ IR|X| in the range of X
6. set coordinates of n⃗ to zero according to extension level
7. Xl ← filter(X, (X − p⃗) · n⃗ ≤ 0)
8. Xr ← filter(X, (X − p⃗) · n⃗ > 0)
9. return inNode{

Left← iT ree(Xl, e+ 1, l),
Right← iT ree(Xr, e+ 1, l),
Normal← n⃗,
Intercept← p⃗}

10. end if

Figure 5 shows the resulting branch cuts int he domain for each of our examples.

We can see that the region is divided much more uniformly, and without the bias intro-
ducing effects of the coordinate system. As in the case of the standard Isolation Forest,
the anomaly score is computed by the aggregated depth that a given point reach on each
iT ree, the depth computation is defined by the Class PathFactor() in the code and is
given by Algorithm 3 with

c(n) = 2H(n− 1)− (2(n− 1)/n) (2)

where H(i) is the harmonic number and can be estimated by ln(i)+0.5772156649 (Euler’s
constant) (Liu, Ting, and Zhou 2012) and n is the number of points use in he construction
of the trees. The final anomaly score s for a given point x is given by :

s(x, n) = 2−E(h(x))/c(n) (3)

Sahand Hariri, Matias Carrasco Kind, (2018). . , 00(0), 00. https://doi.org/00.00000/joss.00000 5

https://d oi.org/00.00000/joss.00000

Figure 6: Score maps using the Extended Isolation Forest.

Algorithm 3 PathLength(x, T, e)

Require: x⃗ - an instance, T - an iTree, e - current path length; initialized to 0
Ensure: path length of x⃗

1. if T is an external node then
2. return e+ c(T.size){c(.) is defined in Equation 2}
3. end if
4. n⃗← T.Normal
5. p⃗← T.Intercept
6. if {(x⃗− p⃗) · n⃗ ≤ 0} then
7. return PathLength(x⃗, T.left, e+ 1)
8. else if {(x⃗− p⃗) · n⃗ > 0} then
9. return PathLength(x⃗, T.rigth, e+ 1)
10. end if

As we see in Figure 6, these modifications completely fix the issue with the score maps
that we saw before and produce reliable results. Clearly, these score maps are a much
better representation of anomaly score distributions.

Figure 7 shows a very simple example of anomalies and nominal points from a Single blob
example as shown in Figure 1a. It also shows the distribution of the anomaly scores which
can be used to make hard cuts on the definition of anomalies or even assign probabilities
to each point.

Conclusions

We present an robust, open source extension to the Isolation Forest algorithm which
produces accurate anomaly score maps. We present the motivation behind this code and
the comparison between the standard and the extended methods. Given the scalability of
this method, this algorithm can be extended to work on distributing computing systems
as shown in (Hariri and Kind 2018) and can be readily used in scientific applications to
find anomalies in the data.

Acknowledgements

MCK is supported by the National Science Foundation under Grant NSF AST 07-15036
and NSF AST 08-13543

Sahand Hariri, Matias Carrasco Kind, (2018). . , 00(0), 00. https://doi.org/00.00000/joss.00000 6

https://d oi.org/00.00000/joss.00000

Figure 7: a) Shows the dataset used, some sample anomalous data points discovered using the
algorithm are highlighted in black. We also highlight some nominal points in red. In b), we have the
distribution of anomaly scores obtained by the algorithm.

References

Hariri, Sahand, and Matias Carrasco Kind. 2018. “Batch and Online Anomaly Detec-
tion for Scientific Applications in a Kubernetes Environment.” In Proceedings of the 9th
Workshop on Scientific Cloud Computing, 3:1–3:7. ScienceCloud’18. New York, NY, USA:
ACM. https://doi.org/10.1145/3217880.3217883.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, et al. 2016. “Jupyter Notebooks – a Pub-
lishing Format for Reproducible Computational Workflows.” Edited by F. Loizides and
B. Schmidt. IOS Press.

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. 2008. “Isolation Forest.” In Data
Mining, 2008. ICDM’08. Eighth Ieee International Conference on, 413–22. IEEE.

———. 2012. “Isolation-Based Anomaly Detection.” ACM Trans. Knowl. Discov. Data
6 (1). New York, NY, USA: ACM: 3:1–3:39. https://doi.org/10.1145/2133360.2133363.

Oliphant, Travis E. 2006. A Guide to Numpy. Trelgol Publishing.

Sahand Hariri, Matias Carrasco Kind, (2018). . , 00(0), 00. https://doi.org/00.00000/joss.00000 7

https://doi.org/10.1145/3217880.3217883
https://doi.org/10.1145/2133360.2133363
https://d oi.org/00.00000/joss.00000

	Summary
	Motivation
	Isolation Forest
	Extended Isolation Forest
	Conclusions
	Acknowledgements
	References

