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1 Stellantis et Université Paris Saclay, CNRS, Laboratoire de Mathématiques et
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Résumé. L’explicabilité des modèles de Machine Learning est un domaine très actif,
car il est un vecteur important de l’acceptabilité des algorithmes d’Intelligence Artificielle.
Parmi les techniques récemment proposées, les valeurs de Shapley émergent comme un
indicateur de référence, car il fournit une explication additive des prédictions. Cependant
les valeurs de Shapley utilisées actuellement peuvent être empreintes d’erreurs d’estimation,
et sensibles à la présence de variables peu importantes. Nous avons développé un algorithme
qui permet de calculer les ”same decision probabilities” qui mesurent la probabilité de
garder la même décision en ne fixant qu’une partie des variables prédictives. Ceci nous
permet d’introduire un nouveau jeu coopératif qui permet de montrer que les variables
qui contribuent le plus à cette stabilité sont des variables importantes du modèle. Nous
illustrons les concepts proposés sur un modèle graphique.

Mots-clés. Valeurs de Shapley, Explicabilité, Apprentissage Automatique, Sélection
de variables, Importance de Variables.

Abstract. The explainability of Machine Learning models is a very active field,
because it is an important vector of the acceptability of AI algorithms. Among the
recently proposed techniques, Shapley Values have emerged as a gold-standard, as it
provides an additive explanation of predictions. However, Shapley Values are often prone
to estimation errors, and are sensitive to the presence of unimportant variables. We have
introduced a new computation algorithm which allows us to compute also the ”Same
Decision Probability”, which measures the probability of keeping the same decision by
fixing a subset of the predictor variables. Our main contribution is the introduction of a
new cooperative game that shows that the variables who acts as game-changer are the
important variables of the model. We illustrate our findings on a graphical model.

Keywords. Shapley values, Explainable AI, Variable Importance, Variable Selection,
Machine Learning.
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1 Introduction

This work addresses the problem of interpretability of Machine Learning models. Despite a
growing use of machine learning in applications and real life problems, a significant part of
previous academic works was dedicated to the improvement of the prediction capabilities
or computational efficiencies of ML Models until the recent years. The objective of the
very active and recent field of Explainable AI (XAI) aims at developing tools that could
provide better insights in the important variables, at a global or at a local level. While
statistical models are often based on some testable assumptions, or might be interpretable
by design, there is a need for development of model-agnostic importance measures for ML
models, in order to be able to understand the differences between very diverse models
and to perform some sort of variables selection. Among the most used local measures,
the Shapley Values (SV) comes from cooperative game theory and evaluates the ”fair”
contribution of a variable Xi = xi in a prediction [1]. One of the main interest of Shapley
values, is that they provide an additive (decomposition) explanation of the prediction,
which makes it relatively easy to understand. While Shapley Values are considered as one
of the state-of-the-art methodology, several critics have been addressed concerning the
computational complexity and the approximations needed, or the difficulty to relate them
to other interpretable frame work, such as causality [2, 3]. We recall in the next section
the definition of the Shapley Values. In section 3, we introduce a measure of stability,
called ”same decision probability” that we use for computing the importance of group of
variables. Finally, in order to obtain a reliable estimate of the importance of a variable
we define a new cooperative game where we can define ”Swing Shapley Values” that are
different than the standard ones introduced in [1]. Finally, we show that the variables that
perform as game-changer when we consider swinging coalitions, are important variables.
An example on realistic data illustrates our findings and conclusions.

2 Feature attribution and Shapley Values

We recall in this section the definitions and main properties of Shapley Values.

2.1 Shapley values for explaining Black-Box models

For any group of variables XS = (Xi)i∈S, with any subset S ⊆ J1, pK, we define the reduced
predictors as

fS(xS) , E [f (X) |XS = xS ] . (2.1)

The SV for local interpretability at x are based on a cooperative game with the value
function v(f ;S) , fS(xS) (a value function is a function from 2p set to R). For any
coalition of variables C ⊆ J1, pK and k ∈ J1, p− |C|K, we denote the set Sk(C) =
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{S ⊆ J1, pK \C| |S| = k}: the SV of the coalition C is defined as

φC(f ;x) =
1

p− |C|+ 1

p−|C|∑
k=0

1(p−|C|
k

) ∑
S∈Sk(C)

(fS∪C(xS∪C)− fS(xS))) (2.2)

The definition (2.2) of the SV is a straightforward extension of the standard SV of a single
variable (or player) to a group of variables. The standard SV is recovered with C = {i} for
i ∈ J1, pK. A reference code for computing SV is the Python Open source library SHAP1,
that implements various approximation algorithms.
The great benefit of the Shapley Values is the so-called additive explanation:

f(x)− E[f(X)] =

p∑
i=1

φi(f,x) (2.3)

which permits to measure directly the influence of the variable Xi on the prediction. A
common classical criticism is about the effective estimation of the expectations needed in
the SV computation that is statistically challenging and combined with an exponential
complexity. We focus in that paper on tree-based models as the computational cost can
be made polynomial and the statistical problem is easier to address [4].

2.2 Closed-form expressions for reduced predictors

The computation of the SV uses all the conditional expectations E [f(X)|XS = xS] , S ⊆
J1, pK. While it is difficult in general, the paper [4] introduce a recursive algorithm that reads
sequentially and recursively the different nodes. In practice, the conditional expectations
need to be estimated from the training or the test set. With tree-structured models,
we can have efficient algorithms for computing in closed-form conditional expectations
and SV. We assume that we have a tree with M leafs L1, . . . , LM based on the variables
X1, . . . , Xp (continuous or qualitative), the predictor f is a tree f(x) =

∑M
m=1 fm1Lm(x).

The reduced predictor is fS(xS) =
∑M

m=1 fmPX (Lm |XS = xS ) showing that the only
challenge is the computation of the conditional probabilities. We have implemented in a
Python package Active Coalition of Variables2 an efficient algorithm for computing more
accurate conditional probabilities and Shapley Values for tree-based models.

3 A new game for Variable Importance

In general, we are not only interested in computing feature importance φi(f,x), we also
want to identify the group of variables Xi, i ∈ S that best explains x and the group of

1https://github.com/slundberg/shap
2https://github.com/salimamoukou/acv00
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uninformative variables X i, i ∈ S̄. Therefore, several papers [5, 6, 7] suggest to use SV as
a heuristic for feature selection, but as proved in [2], the magnitude of SV of variables
do not necessarily correspond to relevant variables. Indeed, a variable can have a low
influence but paradoxically, it can have at the same time a high φi(f,x). So we need to
filter the noisy variables.

3.1 Same Decision Probability and game changer

Our methodology for identifying the most important features is based on the Same Decision
Probability (SDP) criterion, introduced in [8], and that can be computed for tree-based
models in the Active Coalition of Variables library.

Definition 3.1 (Same Decision Probability of a classifier). Let f : X −→ [0, 1]
a probabilistic predictor and its classifier C(x) = 1f(x)≥T with threshold T, the Same
Decision Probability of coalition S ⊂ J1, pK, w.r.t x = (xS,xS̄) is

SDPS (C;x) = P (C(xS ,X S̄) = C(x) |XS = xS )

SDP gives the probability to keep the same decision C(x) when we do not observe the
variables X S̄. The higher is the probability, the better is the explanation based on S. We
introduce a new cooperative game that will put emphasis on the game-changers i.e on the
variables that make the decision becoming stable when they enter into a coalition.

Definition 3.2 (Swing Shapley Values). Let f a model, x an instance, SDPS(f ;x)
the same decision probability of coalition S. We define the new cooperative game with value
function:

vSDP,π(f ;S) =

{
1, if SDPS(f ;x) ≥ π
0, otherwise

(3.1)

For this game, we can also compute the corresponding Shapley Value (denoted Swing-
SV) in order to compute the overall contribution of a variable to the game induced by the
value function (3.1). The Swing-SV φSDP,πi of variable Xi is then computed by replacing
fS(xS) by vSDP,π(S) in the standard definition of a Shapley Value (2.2). A coalition with
value zero is called a ”losing coalition” and with value one a ”winning coalition”. If a
player’s entry into a coalition changes the value from losing to winning, then the player’s
contribution is one, otherwise zero. A coalition S is said to be a swing for player i if
S is losing but S ∪ i is winning. Therefore, a high Swing-SV φSDP,πi implies that the
variable Xi generates a lot of swings and is a game-changer; i.e this variable permits to
retrieve significantly the original prediction. However, it should be noted that the SV
φSDP,πi can be negative, especially when the variable is not very important. In that latter
case, the variable is not important enough to make a lot of swings, while correlations with
other variables and local over-fitting induce a lot of reverse-swings (i.e adding the variable
transforms a winning coalition into a loosing coalition).
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3.2 A graphical model: LUCAS

To illustrate our method, we use a dataset generated by the Causal Bayesian network
LUCAS3, used for modeling the occurence of a Lung Cancer, based on a network of 11
binary variables. The variables ”Smoking, Coughing, Allergy, Genetics, Fatigue” are
Markov Blanket, the 6 other variables are not directly related to the target. We want to
explain an observation with a well-defined ground truth. We know from the probability
tables that if Smoking, Genetic, Coughing are True, the probability of having Cancer is
very high. So, these three variables should have a high Swing-SV. To better analyze the
behavior of the Swing-SV values of the new game, they are calculated for different values
of π.

Figure 1: Left: Swing-SV given π. Right: Additive decomposition of the Swing-SV
(π = 0.9).

We observe in the left of figure 1 that all the features have the same Swing-SV for
low values of π (below 0.7): all the features have the same rate of swings when the
condition is to give the same decision at low level π. For higher probability π, the three
expected variables (Smoking, Coughing, Genetic) stand out. The variables Fatigue, Allergy
seems important, but the remaining variables have almost zero contributions. In addition,
we have also an additive explanation based on the Swing-SV, in order to know if its
value comes essentially from the swings or the reverse-swings: we argue that we need
to avoid means, as it blurs the interpretation. In the right of figure 1, we remark that
important variables do not make any reverse-swings, while irrelevant variables do. Even
more, reverse-swings dominate for noisy variables.

3http://www.causality.inf.ethz.ch/data/LUCAS.html
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4 Conclusion

The Shapley Values for explainable AI are a very useful and insightful methodology
for evaluating the importance of variables. While the ”standard” Shapley Values can
be criticized, we think that the introduction of more adapted game can give a better
assessment of the impact of a variable on a decision. In particular, the same decision
probability, that evaluates the stability of the decision with respect to fixed subgroups of
variables, offers a promising direction for feature attribution and variable selection at a
local scale, and possibly at a global scale.
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