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Abstract

To explain the decision of any model, we ex-
tend the notion of probabilistic Sufficient Ex-
planations (P-SE). For each instance, this ap-
proach selects the minimal subset of features
that is sufficient to yield the same prediction
with high probability, while removing other
features. The crux of P-SE is to compute
the conditional probability of maintaining
the same prediction. Therefore, we introduce
an accurate and fast estimator of this proba-
bility via random Forests for any data (X, Y )
and show its efficiency through a theoretical
analysis of its consistency. As a consequence,
we extend the P-SE to regression problems.
In addition, we deal with non-binary features,
without learning the distribution of X nor
of having the model for making predictions.
Finally, we introduce local rule-based expla-
nations for regression/classification based on
the P-SE and compare our approaches w.r.t
other explainable AI methods.

1 Introduction

Many methods have been proposed to explain specific
predictions of machine learning models from different
perspectives, such as feature attributions approaches
(Lundberg and Lee, 2017; Ribeiro et al., 2016), deci-
sion rules (Ribeiro et al., 2018), counterfactual exam-
ples (Wachter et al., 2017) and logic-based (Shih et al.,
2018; Darwiche and Hirth, 2020).

Among these categories, the most popular are feature
attributions approaches, in particular SHAP (Lund-
berg and Lee, 2017), which is based on Shapley Val-
ues (SV) and aims at indicating the importance of
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each feature in the decision. One of the main reasons
for SHAP’s success is its scalability, nice representa-
tions of the explanations, and mathematical founda-
tions. However, SV used in SHAP does not guarantee
the truthfulness of the important variables involved in
a given decision. Indeed, it is possible to construct
simple theoretical models (defined on a partition of
the feature space) for which SV cannot distinguish
between local important and non-important variables
(see Appendix E in Amoukou et al. (2021)). Similar
difficulties have also been highlighted by Ghalebikesabi
et al. (2021) for SHAP and LIME (Ribeiro et al., 2016).
This lack of guarantees is a major issue since the expla-
nations may be used for high-stakes decisions. More-
over, the estimation of interaction effects requires ex-
tra work because of the additive nature of SV.

An appealing solution to the problem above is to use
decision rules (Ribeiro et al., 2018) or logic-based ex-
planations (Darwiche and Hirth, 2020; Shih et al.,
2018) which gives local explanations that take into ac-
count interactions while ensuring minimality and guar-
antee on the outcome. However, these methods are not
currently available in the general case (e.g., regression
model, continuous features, . . . ). Our objective is to
extend these methods to more realistic cases by devel-
oping new consistent algorithms.

In this paper, we generalize the concept of probabilistic
Sufficient Explanations (P-SE) introduced by Wang
et al. (2020). P-SE is a relaxation of logic-based ex-
planation: it explains the classification of an example
by choosing a minimal subset of features. For a given
instance, this means that if we know only this group
of features, the model makes the same prediction with
high probability, whatever the values of the remaining
features (under the data distribution). Such a sub-
set is called a Sufficient Explanation (also known as
sufficient reason or prime implicant (Shih et al., 2018;
Darwiche and Hirth, 2020).

We make several contributions. We adapt the defi-
nition of the Same-Decision Probability (SDP) to the
regression setting, such that we can extend Sufficient
Explanations from classification to regression. We in-
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troduce a fast and efficient estimator of the SDP based
on Random Forests and prove its uniform almost sure
convergence. Our approach can deal with non-discrete
features and does not need the estimation of the dis-
tribution of X. Our method can explain the data gen-
erating process (X, Y ) directly or any learnt model
(X, f(X)). In particular, we don’t need to have ac-
cess to the model f , we need only to have access to
the predictions, contrary to Wang et al. (2020).
We introduce the probabilistic local explanatory im-
portance which is the frequency of each feature to be
in the set of all Sufficient Explanations. In particu-
lar, this indicates the diversity of the Sufficient Ex-
planations. We introduce local rule-based explana-
tions for classification or regression which are simul-
taneously minimal and sufficient. We compare our ap-
proaches w.r.t other explainable AI methods and pro-
vide a Python package 1 that computes all our meth-
ods.

2 Motivations and Related works

The methods used to explain the local behavior of Ma-
chine Learning models can be organized into 5 groups:
features attributions, decision rules, instance-wise fea-
ture selection, logical reasoning approaches, data gen-
eration based or counterfactual examples. The benefit
of feature attribution-based explanations, e.g., SHAP
(Lundberg et al., 2020) or LIME (Ribeiro et al., 2016)
is that they can be applied to any model and are gen-
erally more scalable than their alternatives. On the
other hand, they are very sensitive to perturbations
(Ignatiev et al., 2019), can be fooled by adversarial at-
tacks (Slack et al., 2020) and can be poor in explaining
the local behavior of the model (Amoukou et al., 2021;
Ghalebikesabi et al., 2021). These downsides can be
caused by the local perturbations used, which make
them inconsistent with the data distribution.

Quite differently, instance-wise feature selection such
as L2X (Chen et al., 2018) or INVASE (Yoon et al.,
2018) aims at finding the minimal subset of variables
that are relevant for a given instance x and its label
y. Interactions can be captured in that way. In ad-
dition, the identification of minimal subset S = S(x)
is well-formalized and the objective is to find S such
that L(Y |X = x) ≈ L(Y |XS = xS). However, these
methods are not reliable because they are prone to
many approximation errors due to the training of sev-
eral Neural Networks, and they provide no guarantees
about the fidelity of the explanations (Jethani et al.,
2021).

Anchors (Ribeiro et al., 2018) are local rule-based ex-

1github.com/aistats2022exp/
ConsistentExplanations

planations that propose a solution to the reliability
issue by providing an explanation with guarantees.
It explains individual predictions of any classification
model by finding a decision rule that reaches a given
accuracy for a high percentage of the neighborhood
of the instance. However, the method is only avail-
able for classification, requires discrete variables, and
is inconsistent with the data distribution.

Logical Reasoning Approaches such as Sufficient Rea-
sons (Shih et al., 2018; Darwiche and Hirth, 2020) se-
lect a minimal subset of features guaranteeing that,
no matter what is observed for the remaining features,
the decision will stay the same. It can be seen as an
instance-wise feature selection but with guarantees of
sufficiency and minimality (i.e., no subset of the set
satisfies the sufficiency condition). However, since the
guarantees are deterministic, it is often necessary to
include many features into the explanation, making
the explanation more complex and thus less intelli-
gible. A relaxation of this method is the Sufficient
Explanations (Wang et al., 2020) that gives probabilis-
tic guarantees instead of deterministic guarantees, i.e.,
it requires that the prediction remains the same with
high probability.

Sufficient Explanations addresses all of the issues
raised above by giving a simple local explanation with
guarantees while considering feature interactions and
the data distribution. However, its area of applica-
tion is very restricted. It is available in the case of
classification with binary features and requires know-
ing/learning the distribution of the features. More-
over, we can obtain numerous Sufficient Explanations,
which causes a selection problem as the whole set of
explanations is not interpretable.

In this work, we propose a consistent method that ef-
ficiently finds the Sufficient Explanations of any data
generating process (X, Y ) or any model (X, f(X)),
without learning the distribution of X. We also sum-
marize the diversity of the Sufficient Explanations. In
addition, we propose local rule-based explanations for
regression and classification models based on the Suf-
ficient Explanations. To the best of our knowledge, it
is the first local rule-based explanations for regression.
Note that our method does not make any assumption
about the model and do not need the model. We only
need the observation X and its output Y .

3 Probabilistic Sufficient Explanations
for Regression

Let us assume that we have a i.i.d sample Dn =
(Xi, Yi)i=1,...,n such that (X, Y ) ∼ P(X,Y ) where
X ∈ Rp and Y ∈ R. We use uppercase letters for ran-
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dom variables and lowercase letters for their value as-
signments. For given a subset S ⊂ [p], XS = (Xi)i∈S
denotes a subgroup of the features.

We define the explanations of an instance x as the min-
imal subsets xS , S ⊂ [p] such that given only those fea-
tures, the model yields ”almost” the same prediction
y as on the complete example with high probability,
under the data distribution p(X). The main proba-
bilistic reasoning tool that we use for our explanations
is the Same-Decision Probability (SDP) (Chen et al.,
2012). In earlier works (Wang et al., 2020), the SDP
was defined only for classification, which, intuitively,
gives us the probability that the classifier has the same
output by ignoring some variables. To explain also re-
gression models, we propose a definition of the SDP in
the regression setting:

Definition 3.1. (Same Decision Probability of
a regressor). Given an instance (x, y), the Same-
Decision Probability at level t of the subset S ⊂ J1, pK,
w.r.t x = (xS ,xS̄) is

SDPS (y;x, t) = P
(
(Y − y)2 ≤ t |XS = xS

)
In a regression setting, the SDP gives the probabil-
ity to stay close to the same prediction y at level t,
when we fix XS = xS or when X S̄ are missing. The
higher is the probability, the better is the explanation
powered by S. Note that for classification, the SDP
is defined as SDPS (y;x) = P (Y = y |XS = xS ). Al-
though we present all the methods with the SDP for
regression, they remain the same for classification, we
only need to replace SDPS (y;x, t) by SDPS (y;x).
Now, we focus on the minimal subset of features such
that the model makes the same or almost the same
decision with a given (high) probability π.

Definition 3.2. (Minimal Sufficient Explana-
tions). Given an instance (x, y), Sπ(x) is a Sufficient
Explanation for probability π, if SDPSπ(x) (y;x, t) ≥
π, and no subset Z of Sπ(x) satisfies SDPZ (y;x, t) ≥
π. Hence, a Minimal Sufficient Explanation is a Suf-
ficient Explanation with minimal size.

For a given instance, the Sufficient Explanation or
Minimal Sufficient Explanation may not be unique
(Darwiche and Hirth, 2020). Furthermore, there may
be significant differences among the Sufficient Expla-
nations or Minimal Sufficient Explanations. We de-
note A-SE as the set of all Sufficient Explanations and
M-SE as the set of Minimal Sufficient Explanations.
Thus, the number and the diversity of the explana-
tions make the method less intelligible, as deriving one
of them is not informative enough, and all of them is
too complex to interpret. Therefore, we propose to
compute the following local attribution that summa-
rizes the explanatory importance of each variable in
A-SE/M-SE:

Definition 3.3. (Local Explanatory Importance).
Given an instance (x, y) and its A-SE or M-SE. The
local explanatory importance of xi is how frequent xi
is chosen in the A-SE or M-SE.

Contrary to classical local feature attributions like
SHAP or LIME, the Local Explanatory Importance
is not related to the prediction, and its values are in-
terpretable by design. It corresponds to the frequency
of apparition in the A-SE or M-SE, which allows to
reason about the relative difference between the attri-
bution of each feature. Indeed, we can easily discrim-
inate between the importance of variables in terms of
probabilities compared to arbitrary values of SHAP or
LIME that depend on the model and the prediction.
In our framework, a value equals to 1 means that this
feature is present in all the A-SE/M-SE. Hence that
feature is necessary to maintain the prediction. More-
over, the attributions of the features are sparse since
it is based on the A-SE/M-SE.

Although Sufficient Explanations allow finding local
relevant variables, we may want to know the logi-
cal reasons relating input and output. In essence,
explaining a decision means giving the reasons that
highlight why the decision has been made. There-
fore, we propose to extend the Sufficient Explana-
tions into local rules. A rule is a simple IF-THEN
statement, e.g., IF the conditions on the features are
met, THEN make a specific prediction. Recall that
given an instance x, a Sufficient Explanation is the
minimal subset S ⊂ [p], such that fixing the values
XS = xS permits to maintain the prediction with
high probability. The idea is to find the largest rect-

angle LS(x) =
∏|S|
i=1[ai, bi], ai, bi ∈ R given the indexes

of the Sufficient Explanation S such that xS ∈ LS(x)
and ∀zS ∈ LS(x), SDPS(z, t) ≥ π.

Definition 3.4. (Minimal Sufficient Rule). Given
an instance (x, y), S a Minimal Sufficient Expla-

nation, the rectangle LS(x) =
∏|S|
i=1[ai, bi], ai, bi ∈

R is a Minimal Sufficient Rule if LS(x) =
argmaxL(x) V ol(L(x)), xS ∈ LS(x) and ∀zS ∈
LS(x), SDPS (y; z, t) ≥ π.

Intuitively, the Sufficient Rule is a generalization of the
Sufficient Explanation, i.e., instead of satisfying the
minimality/sufficiency conditions of definition 3.2 if we
fixed the values XS = xS , we want to satisfy these
conditions on all the elements of a rectangle LS(x)
that contains xS . We also want this rectangle to be of
maximal volume such that it covers a large part of the
input space. Thus, the Sufficient Rule captures the lo-
cal behavior of the model around x while ensuring the
minimality of the rule and guarantees on the outcome.

While Sufficient Rules are similar to Anchors intro-
duced by Ribeiro et al. (2018), we emphasize two ma-
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jor types of differences. The first one is that our
framework for constructing rules can address regres-
sion problems, deal with continuous features, and do
not need access to the model f . Moreover, if we have
a model f and an instance x, Anchors search the
largest rule (or rectangle) LS(x) such that PQ(f(x) =
Y | XS ∈ LS(x)) ≥ π under an instrumental distribu-
tion Q. This is different from the Sufficient Rule that
requires the stability of the prediction for all the ob-
servations in the rectangle i.e ∀xS ∈ LS(x), P (f(x) =
Y | XS = xS) ≥ π. The second major difference
is that the Sufficient Rule is based on the original
distribution P(X,Y ) as we use conditional distribution
P (Y |XS). At the contrary, anchors use local sam-
pling perturbations (introducing another distribution
Q). As we discuss in the next section, the effective
computation of these rules is very different. Anchors
use a heuristic approach to find the minimal rule,
which might produce suboptimal minimal rules. The
Sufficient Rules satisfy a minimality principle by defi-
nition.

4 SDP, Sufficient Explanations and
Sufficient Rules via Random Forest

In order to find the Sufficient Explanations Sπ(x) and
the corresponding Sufficient Rules LSπ (x), we need to
compute the SDP for any subset S. However, the com-
putation of the SDP is known to be computationally
hard, even for simple Naive Bayes model, the compu-
tation of SDP is NP-hard (Chen et al., 2013). Con-
sequently, approximate criteria based on expectations
instead of probabilities have been introduced by Wang
et al. (2020). They proposed to use a Probabilistic
Circuit (Choi et al., 2020) to model the distribution of
the features X and to compute a lower bound of the
SDP.

In this section, we propose a consistent estimator of the
SDP for any distribution (X, Y ). It is based on two
ideas: Projected Forest (Bénard et al., 2021a,c) and
Quantile Regression Forest (Meinshausen and Ridge-
way, 2006). The Projected Forest is an adapta-
tion of the Random Forest algorithm that estimates
E[Y |XS = xS ] instead of E[Y |X = x], and the Quan-
tile Regression Forest uses the Random Forest algo-
rithm to estimate Conditional Distribution Function
(CDF) P (Y ≤ y|X = x). The first step is to write
the SDP as

SDPS(x, t) = P ((Y − y)2 ≤ t|XS = xS) (1)

= FS(y +
√
t |XS = xS)− FS(y −

√
t |XS = xS).

Equation 1 shows that the only challenge is to esti-
mate the Projected (or Conditional) CDF FS(y|XS =
xS) = P (Y ≤ y|XS = xS). The variant of the original

Random Forest proposed by Meinshausen and Ridge-
way (2006) that estimates the CDF F (y|X = x) =
P (Y ≤ y|X = x) is not of interest to us because we
want to estimate the Projected CDF FS(y|XS = xS)
for any S. The recent works by Bénard et al. (2021a,c)
are much more relevant as they permit to estimate
E[Y |XS = xS ] from a classical Random Forest that
has learned to predict E[Y |X = x]. The idea is to
extract a new Forest called Projected Forest from the
original Forest, which is a projection of the original
Forest along the S-direction.

We propose to combine the ideas of Quantile Regres-
sion Forest and Projected Forest to estimate the Pro-
jected CDF FS(y|XS = xS). In addition, we prove the
consistency of our estimator of the Projected CDF.

4.1 Random Forest and Condition
Distribution Function (CDF) Forest

A Random Forest (RF) is grown as an ensemble of k
trees, based on random node and split point selection
based on the CART algorithm (Breiman et al., 1984).
The algorithm works as follows. For each tree, an data
points are drawn at random with replacement from the
original data set; then, at each cell of every tree, a split
is chosen by maximizing the CART-criterion; finally,
the construction of every tree is stopped when the total
number of cells in the tree reaches the value tn. For
each new instance x, the prediction of the l-th tree is:

mn(x,Θl,Dn) =

n∑
i=1

Bn(Xi; Θl) 1Xi∈An(x;Θl,Dn)

Nn(x; Θl,Dn)
Y i (2)

where:

• Θl, l = 1, . . . , k are independent random vec-
tors, distributed as a generic random vector Θ =
(Θ1,Θ2) and independent of Dn. Θ1 contains in-
dexes of observations that are used to build the
tree, i.e. the boostrap sample and Θ2 indexes of
splitting candidate variables in each node. Θ1:k

denotes the sequence of Θl’s.

• An(x; Θl,Dn) is the tree cell (leaf) containing x

• Nn(x; Θl,Dn) is the number of boostrap elements
that fall into An(x; Θl,Dn)

• Bn(Xi; Θl) is the boostrap component i.e. the
number of times that the observation has been
chosen from the original data.

The trees are then averaged to gives the prediction of
the forest as:

mk,n(x,Θ1:k,Dn) =
1

k

k∑
l=1

mn(x; Θl,Dn) (3)
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The Random Forest estimator (Eq. 3) can also be seen
as an adaptive neighborhood procedure (Lin and Jeon,
2006). For every instance x, the observations in Dn are
weighted by wn,i(x; Θ1:k,Dn), i = 1, . . . , n. Therefore,
the prediction of Random Forests can be rewritten as

mk,n(x,Θ1:k,Dn) =

n∑
i=1

wn,i(x; Θ1:k,Dn)Y i

where the weights are defined by

wn,i(x; Θ1:k,Dn) =

k∑
l=1

Bn(Xi; Θl) 1Xi∈An(x;Θl,Dn)

k ×Nn(x; Θl,Dn)
(4)

Viewing a Random Forest as an adaptive near-
est neighbor predictor offers natural estimates of
more complex quantities (Cumulative hazard func-
tion (Ishwaran et al., 2008), Treatment effect (Wa-
ger and Athey, 2017), conditional density (Du et al.,
2021). Therefore, just as E[Y |X = x] is approxi-
mated by a weighted mean over observation of Y i,
E[1Y≤y|X = x] is approximated by the weighted
mean over the observations of 1Y i≤y using the same
weights wn,i(x; Θ1:k,Dn) as in the original RF defined
in Equation 4. The approximation is

F̂ (y|X = x,Θ1:k,Dn) =

n∑
i=1

wn,i(x; Θ1:k,Dn)1Y i≤y (5)

To simplify the notations, we omit Θ1, . . . ,Θk,Dn and
we write directly F̂S(y|XS = xS) for any S.

4.2 Projected Forest and Projected CDF
Forest

We describe the idea of Projected Forest (PRF) and
show how it is combined with the Quantile Regression
Forest to build the estimator of the Projected CDF.
The idea of PRF originally comes from Bénard et al.
(2021c,a). The projection eliminates the variables not
contained in S from the tree predictions, thus we can
estimate E[Y |XS ] instead of E[Y |X]. The general
principle is to project the partition of each tree of the
Forest on the subspace spanned by the variables in
S. PRF uses an algorithmic trick that computes the
projected partition without modifying the initial tree
structures. We simply drop observations down in the
initial trees, ignoring the splits which use a variable
outside of S: when a split involving a variable outside
of S is met, the observations are sent both to the left
and right children nodes. Consequently, each observa-
tion falls in multiple terminal leaves of the tree. We
drop the new query point xS down the tree, following
the same procedure, and retrieve the set of terminal
leaves where xS falls. Next, we collect the training ob-
servations which belong to every terminal leaf of this
collection, in other words, we intersect the collection

of leaves where xS falls. Finally, we average the out-
puts Y i of the selected training points to generate the
estimation of E[Y |XS = xS ]. Notice that such set
of selected observations can be empty if xS belongs
to a large collection of terminal leaves. To avoid this
issue, the algorithm is stopped before reaching a tree
level where xS falls in an empty cell. Recall that a
partition of the input space is associated with each
tree level, and consequently, the algorithm is stopped
when it reaches a level where the minimal number of
observations in the leaf where xS falls is above tn > 0.
An efficient implementation of the PRF algorithm is
detailed in the Supplementary Material. The associ-
ated PRF is m

(xS)
k,n (xS) =

∑n
i=1 wn,i(xS)Y i where the

weights are defined by

wn,i(xS) =

k∑
l=1

Bn(Xi; Θl) 1
Xi∈A(xS)

n (xS ;Θl,Dn)

k ×N
(xS)
n (x; Θl,Dn)

, (6)

where A
(xS)
n (xS ; Θl,Dn) is the leaf of the as-

sociated Projected l-th tree where xS falls and

N
(xS)
n (x; Θl,Dn) is the number of boostrap observa-

tions that falls in A
(xS)
n (xS ; Θl,Dn). Therefore, we

approximate the Projected CDF FS(y|XS = xS) =
P (Y ≤ y|XS = xS) as in Equation 5 by using the
weights of the Projected Forest defined in 6. The esti-
mator of the Projected CDF is defined as:

F̂S(y|XS = xS) =

n∑
i=1

wn,i(xS)1Y i≤y (7)

4.3 Consistency of the Projected CDF Forest

In this section, we state our main result, which
is the uniform a.s. convergence of the estimator
F̂S(y|XS = xS) to FS(y|XS = xS). Meinshausen
and Ridgeway (2006) showed the uniform convergence
in probability of a simplified version of the estima-
tor of the CDF defined in Eq. 5, where the weights
wn,i(xS ; Θ1:k,Dn) are in fact considered to be non-
random while they are indeed random variables de-
pending on (Θl)l=1,...,k, Dn. Moreover, the boostrap
was replaced by subsampling without replacement as
in most studies that analyse the asymptotic proper-
ties of Random Forests (Scornet et al., 2015; Wager
and Athey, 2017; Goehry, 2020). However, Elie-Dit-
Cosaque and Maume-Deschamps (2020) showed the al-
most everywhere uniform convergence of both estima-
tors (the simplified and the one defined in 5) under
realistic assumptions with random boostrap samples.
We follow their works to prove the consistency of the
PRF CDF F̂S(y|XS = xS ,Θ1:k,Dn) based on the fol-
lowing assumptions.

Assumption 1. ∀x ∈ Rd, the conditional cumulative
distribution function F (y|X = x) is continuous.
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Assumption 1 is necessary to get uniform convergence
of the estimator.

Assumption 2. For l ∈ [k], we assume that the varia-
tion of the conditional cumulative distribution function
within any cell goes to 0.

∀x ∈ Rd,∀y ∈ R, sup
z∈An(x;Θl,Dn)

|F (y|z)− F (y|x)| a.s→ 0

Assumption 2 allows to control the approximation er-
ror of the estimator. If for all y, F (y|.) is continuous,
Assumption 2 is satisfied provided that the diameter
of the cell goes to zero. Note that the vanishing of the
diameter of the cell is a necessary condition to prove
the consistency of general partitioning estimator (see
chapter 4 in Györfi et al. (2002)). Scornet et al. (2015)
show that it is true in RF where the bootstrap step
is replaced by subsampling without replacement and
the data come from additive regression models (Stone,
1985). The result is also valid for all regression func-
tions, with a slightly modified version of RF, where
there are at least a fraction γ observations in children
nodes, and the number of splitting candidate variables
is set to 1 at each node with a small probability. Under
these small modifications, Lemma 2 from Meinshausen
and Ridgeway (2006) gives that the diameter of each
cell vanishes.

Assumption 3. Let k and Nn(x; Θl,Dn) (number
of boostrap observations in a leaf node), then there
exists k = O(nα), with α > 0, and ∀x ∈ Rd,
Nn(x; Θl,Dn) = Ω2(

√
n(ln(n))β), with β > 1 a.s.

Assumption 3 allows us to control the estimation error
and means that the cells should contain a sufficiently
large number of points so that averaging among the
observations is effective.

To prove the consistency of the PRF CDF F̂S(y|XS =
xS), we only need to verify the assumptions 1, 2, 3 on
the parameters of the PRF CDF and the Projected
CDF FS(y|XS = xS) = P (Y ≤ y|XS = xS).

Assumptions 1 and 2 are satisfied for the Projected
CDF and the PRF CDF’s leaves. Since by defini-

tion A
(xS)
n (xS ; Θl,Dn) ⊂ An(x; Θl,Dn), if the vari-

ations within the cells of the RF vanish, it also van-
ishes in the projected forest. In addition, if the CDF
F (y|X = x) = F (y|XS = xS ,X S̄ = xS̄) is con-
tinuous, we can show by a straightforward analysis
of parameter-dependent integral that the Projected
CDF FS(y|XS = xS) =

∫
F (y|XS = xS ,X S̄ =

xS̄)p(xS̄ |xS)dxS̄ is also continuous. Since we con-
trol the minimal number of observations in the leaf
of the Projected Forest by construction, Assumption

2f(n) = Ω(g(n)) ⇐⇒ ∃k > 0,∃n0 > 0| ∀n ≥
n0|f(n)| ≥ |g(n)|

3 is also verified. Then, the PRF CDF satisfies also
Assumption 1-3 which ensures its consistency thanks
to Theorem 1.

Theorem 1. Consider a RF satisfying Assumptions
1 to 3. Then,

∀x ∈ Rd, sup
y∈R
|F̂S(y|XS = xS)− FS(y|XS = xS)| a.s→ 0

The complete proof is in the Supplementary Material.

4.4 Estimation of SDP, Sufficient
Explanations and Sufficient Rules

In this section, we show how we compute the SDP,
Sufficient Explanations, and Sufficient Rules using the
PRF CDF estimator. We derive from (7) the following
consistent estimator of any SDP:

ŜDPS (x, t) = F̂S(y +
√
t |XS = xS)− F̂S(y −

√
t |XS = xS)

However, finding the A-SE/M-SE using a greedy al-
gorithm is computationally hard, since the number of
subsets is exponential. Therefore, we propose to re-
duce the number of variables by focusing only on the
most influential variables. We search the Sufficient
Explanations in the subspace of the 10-variables fre-
quently selected in the RF used to estimate the SDP,
reducing the complexity from 2p to 210. This pre-
selection procedure is already used in Bénard et al.
(2021b,a), and it is mainly based on Proposition 1 of
Scornet et al. (2015), which highlights the fact that
RF naturally splits the most on influential variables.
Note that the minimum number of selected variables
is a hyperparameter.

To find the Sufficient Rules, we used the SDP’s es-

timator ŜDPS . By using the fact that ŜDPS par-
titions the space like a tree or a Random Forest, we
do not need to discretize the continuous space to find
the largest rectangle. We only need to find the leaves
compatible with the conditions of the Sufficient Rule
defined in 3.4. Given a Minimal Sufficient Explana-
tions S of an instance x, we already a have a rectan-

gle LS(x) defined by the PRF CDF or ŜDPS that
is the largest rectangle such that xS ∈ LS(x) and

∀zS ∈ LS(x), ŜDPS(z, t) = ŜDPS(x, t) ≥ π. By
definition, it is the intersection of the cell of the trees

where xS falls, namely ∩kl=1A
(xS)
n (xS ; Θl,Dn). Thus,

starting from ∩kl=1A
(xS)
n (xS ; Θl,Dn), which is also a

cell (leaf) of the Projected Forest, we can find all the
neighboring leaf (rectangles) that we can merge with
it to get the largest rectangle. We will see in the next
section that it provides good insights about the local
behaviour of the model.
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5 Experiments

We conduct three experiments in this section. The
first aims to show the convergence of the estimator
of the Projected CDF. The second compares the Suf-
ficient Explanations and Sufficient Rules approaches
with state-of-art local explanations methods (SHAP,
LIME, INVASE) in a regression model. Finally, we
highlight the advantages of the Sufficient Rules in com-
parison with Anchors in classification models.

To effectively compare different explanations methods,
we use synthetic data since we need the ground truth.
Thus, we use the following synthetic model for the
first two experiments: we have X ∈ Rp, X ∈ N (0,Σ),
Σ = 0.8Jp+ 5Ip with p = 50, Ip is the identity matrix,
Jp is all-ones matrix and a linear predictor defined as:

Y = (X1 +X2)1X5≤0 + (X3 +X4)1X5>0. (8)

The variables Xi for i = 6 . . . 49 are noise variables.
We fit a RF with a sample size n = 104, k = 20 trees
and the minimal number of samples by leaf node is
set to tn = b

√
n × ln(n)1.5/250c for the original and

the Projected Forest. The mean squared error of the
model on the test set of size 104 is MSE = 0.61. The
original forests is used to compute the explanations of
SHAP, LIME, and the Projected Forest for the SDP
approaches. We choose t of the SDP for regression
as the 0.95-th quantile of the MSE on the test-set and
π = 0.95. For INVASE, we use Neural Networks with 3
hidden layers for the selector model, and the predictor
model as in Yoon et al. (2018).

5.1 Empirical evaluations of F̂S(y|XS = xS)

In order to compare the PRF CDF F̂S(y|XS = xS)
and FS(y|XS = xS), we use a Monte Carlo estima-
tor to effectively compute FS(y|XS = xS). We use a
randomly chosen point xS = [−0.13, 1.29,−1.31] with
S = [1, 2, 5] from the test set. The experiment is repli-
cated 100 times. Figure 1 shows that the estimator
works well for almost all points y ∈ R.

We also compute two global metrics. For a given S, we
compute the average Kolmogorov-Smirnov MKS =
1
n

∑n
i=1 supy∈R |F̂S(y|XS = xS,i)− FS(y|XS = xS,i)|

and the average mean absolute deviation MAD =
1
n

∑n
i=1

∫
R |F̂S(y|XS = xS,i)− FS(y|XS = xS,i)|dy.

We have MAD = 0.008 and the MKS=0.26 on all the
observations with S = [1, 2, 3, 5] showing the estima-
tor’s efficiency. We also compute them with small
S = [0, 4], it works even better with MAD=0.068,
MKS=0.0098.

Figure 1: Comparison of F̂S(y|XS = xS) and
FS(y|XS = xS) with S = [1, 2, 5] and xS =
[−0.13, 1.29,−1.31]

Metrics
Methods TPR FDR P-MSE
Sufficient Explanations 99% 2% 0.02
INVASE 99% 87% 0.006
SHAP 73% 27% 0.79
LIME 50% 49% 5.01

Table 1: TPR, FDR, P-MSE for each method

5.2 Comparisons with state-of-art

In this section, we analyze the capacity of each method
to discover the important local variables of the model
defined in Eq. 8. Indeed, Eq. 8 shows that if x5 ≤ 0,
the model uses only the variables x1, x2 otherwise it
uses the variables x3, x4. Thus, we try to find the top
K = 3 relevant features for each sample. Note that
K is not a required input for SDP and INVASE, but
K must be given for SHAP and LIME. The perfor-
mance metrics we use are the true positive rate (TPR)
(higher is better) and false discovery rate (FDR) (lower
is better) to measure the performance of the methods
on discovery (i.e., discovering which features are rel-
evant). In addition, as one of the objectives of each
method is to find the minimal subset xS that is rel-
evant to the corresponding target y, we also use a
predictive performance metrics that shows how well
the projected predictor E[Y |XS = xS ] selected by
each method is close to the predictor on the full set
of features E[Y |X = x], under the data distribu-
tion. Formally, for a given subset S, we denote it

as P-MSE = EZ

[(
E[Y |X = Z]− E[Y |XS = ZS ]

)2
]

where Z ∼ PX . We observe in table 1 that the Mini-
mal Sufficient Explanation estimated by SDP find the
top K relevant variables and outperforms the other
methods by a significant margin. SHAP and LIME
obtain the worst discovery rate. INVASE succeeds in
finding the relevant variables, but it has a high FDR
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(87%), which means we cannot distinguish between
the relevant and irrelevant variables since 87% of the
selected variables are irrelevant. We also see that the
P-MSE of INVASE is the lowest, which is not surpris-
ing as it selects all the relevant variables despite its
high FDR. Indeed, this metric is not much affected by
the FDR. The P-MSE of Sufficient Explanation is also
almost zero, and as above, SHAP and LIME perform
worse than the other methods.

However, even if the Sufficient Explanation find ef-
fectively the top K relevant variables, it cannot pro-
vide a complete understanding of the local behav-
ior of the model, i.e., that it’s the sign of x5 that
matters. Thus, by extending the Sufficient Expla-
nation into Sufficient Rule we can retrieve the com-
plete story. We choose an observation x such that
its Sufficient Explanations found is S = [3, 4, 5], with
xS = [−3.64,−4.41, 0.68]. Although the Sufficient Ex-
planation shows that fixing the value xS permit to
maintain the prediction with high probability, the Suf-
ficient Rule gives the additional information that we
can also maintain the prediction by satisfying the rule
LS(x) = {X5 > 0 and − 4, 45 ≤ X4 ≤ −4, 06 and

− 3.67 ≤ X3 ≤ −3.58}. The Sufficient Rule LS(x)
catches perfectly the local behaviour of the model
which says that despite the values of x3, x4, it’s the
sign of x5 that matters.

5.3 Anchors vs Sufficient Rules

To demonstrate the advantages of our method w.r.t.
Anchors, we have to consider a classification problem.
We ran both algorithms on a toy dataset and evalu-
ated their capacity of providing good minimal rules.
We use the moon dataset (Z1, Z2, Y ) ∈ R2 × {0, 1},
see figure 2, and we add gaussian features X ∈ R100

with the µ,Σ of section 5 such that the final data is
(Z1, Z2,X, Y ). In addition, if X1 > 0, we flip the label
Y of the observation.
We train a RF as in section 5, with AUC=99% on
the test set (of size 104 observations). We use An-
chors with threshold τ = 0.95, tolerance δ = 0.05,
and the Minimal Sufficient Rules with π = 0.95 to ex-
plain 1000 observations of the test set. We observe
that, on average anchors tend to give much longer
rules. The mean size for Sufficient Rule is 2, and for
Anchors it is 10. In addition, the Minimal Sufficient
Explanations detect local relevant variables more ac-
curately. It has FDR=3%, TPR=100% and Anchors
has FDR=48%, TPR=80%. Finally, we observe qual-
itatively the rules on a given example x (black star in
figure 2). We test the stability of the explanations by
comparing the rules of x and x̃ a nearby observation
such that maxi |xi−x̃i| ≤ 0.05 (yellow star in figure 2).
The rule given by Anchors for x, x̃ are LAnchors(x) =

Figure 2: Explanations of x, x̃ by the two Sufficient
Rules, the horizontal/vertical rectangle is associate
with S?1 = [z1,x1], S?2 = [z2,x1] respectively. The
background samples are the observations with x1 > 0.

{Z1 > 1.03 AND X1 > 0.02 AND Z2 ≤ −0.21} and
LAnchors(x̃) = {X8 > −1.61 AND X92 > 1.68 AND Z1 >

−0.03 AND X1 > 0.02 AND Z2 ≤ −0.21}. We find
that the rules are very different, showing instability.
Moreover, we also note that Anchors is very sensitive
to random seeds. However, the SDP approach gives
the same explanation for x, x̃. The observations have
two Minimal Sufficient Explanations S?1 = [z1,x1],
S?2 = [z2,x1]. Thus, they have two Sufficient Rules,
we can observe them given the axis Z1, Z2 in figure 2.

6 Conclusion

In this paper, we introduced three local explana-
tions methods: Minimal Sufficient Explanations, Lo-
cal Explanatory Importance, and Minimal Sufficient
Rules. We proved that these methods considerably
improve local variable detection over state-of-the-art
algorithms while ensuring minimality, sufficiency, and
stability. Our generalization of SDP and Minimal Suf-
ficient Rules are tightly related. They are linked by a
Random Forest, which is a computationally and sta-
tistically efficient estimator of the SDP and gives the
partition that is translated into an interpretable rule.
A remarkable feature of our extension of SDP is the
new parameter t that corresponds to the level of varia-
tions around the prediction. The choice of t is essential
as it can change the Sufficient Explanations. It adds
additional complexity, but it should be dependent on
the use case. A relevant default principle is to relate
the value of t with the level of uncertainty of the pre-
diction of f(x) as we suggest in our experiments. Of
course, better choices taking into account uncertainty
or stability still needs to be explored. Besides, we be-
lieve that the extension of the Sufficient Rules into a
simple global model is a promising research direction.
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