Automatic Response Generation to Conversational Stimuli

Vishal Raj Dutta
vishall5115@iiitd.ac.in

Abstract

We present the interim project report for Group 36. In this
project, we compare and contrast a few machine learning models
that have been recently proposed and used in the automatic re-
sponse generation to conversational stimuli. The project is based
on generative models rather classification or clustering. Hence,
sufficient effort has been involved in understanding and learning
about them.

1 Introduction

1.1 Problem Statement

The problem we deal is how to model a machine that a compre-
hend conversations and respond coherently to them, using deep
learning. We aim to create a model that can generate responses to
a conversational stimulus and at the same time, sound more hu-
man.

We've always been fascinated by how chatbots work and what
makes them so realistic. In fact, response generation is a big chal-
lenge from the perspectives of machine learning and NLP, with
new innovations always on the brink of unfolding. It can be used
in several areas like e-mail, customer service and of course, chat-
bots.

1.2 Motivation

Natural language (for example, English language) has always been
a hard domain to model, due to its complex structure and grammar.
Until recently, any conversational model that was present, relied
on an elaborate set of rules for conversing with any user (Eliza
chatbot is an example). This obviously couldn’t scale well, since
a lot of rules would be required to account for the unpredictability
of english sentence structure. However, with the onset of Recur-
rent Neural Networks (RNNs), Sequence-to-Sequence (seq2seq)
models [3]] are being used in a lot of NLP tasks such as machine
translation, text generation, etc.

For our project on Response Generation, we followed the same
backbone of thought as Machine Translation. In machine transla-
tion, given a sentence S and a set of plausible translations 7" for
S, the model tries to generate a translation ¢ € T or is very close
to the elements in 7. This closeness between the two translations
is evaluated by the BLEU score [6].

We treated conversing as akin to translation [4], where given a
sentence S, its response 7 is a translation of S, and belongs to a
set of valid responses 2. Hence, our model aims to generate a best

Sanidhya Singal
sanidhyal5085@iiitd.ac.in

response 7 € R. In translation, the model learns the translation
space T', because during training, both input sequences and their
correct translations are provided. Similarly, our model learns the
response space R, because in the training phase, the sentence and
its response is provided.

2 Related Work

There has been a significant work being done on the given problem
for the past few years. Following are some of the relevant ones:

1. In [10], the neural conversational model — a two-layered
LSTM using AdaGrad with gradient clipping — was trained
on the large albeit noisy open subtitles dataset with a vocabu-
lary of the most frequent 100K words. The dataset contained
62M sentences (923M tokens) as training examples, and the
validation set had 26M sentences (395M tokens). At conver-
gence the perplexity of the recurrent model on the validation
set was 17. Some snippets are:

Human: What is the purpose of life?

Machine: to serve the greater good.

Human: What is the purpose of living?

Machine: to live forever.

Human: What is the purpose of existence?

Machine: to find out what happens when we get to the planet
earth.

2. In [7], the neural translation model — a 4 layer deep LSTM —
was trained on a subset of 12M sentences consisting of 348M
French words and 304M English words, with a vocabulary of
80K words a side. At convergence, perplexity was 5.8 on the
validation set.

3. More specific to our dataset, i.e., the Cornell Movie Dialog
Corpus, people have posted their results on chatbots online at
a popular data science blogging website, Medium [2]]. A re-
cent blog states a perplexity of 2.74 in a dataset which com-
prises of the Cornell Corpus, among few others. This model
is comparable to ours, as the corpus chosen is same, as well
as the size of the data used. We use their model as the state-
of-the-art model for our project.

3 Data set and Evaluation

3.1 Data set

The dataset comprises of conversations extracted from the Cor-
nell Movie Dialog Corpus, which is a collection of dialogues
by movie characters, consisting of more than 6,00, 000 lines of

dialogue. We assumed consecutive sentences as action-response
pairs, since they were uttered by different characters. Overall, 20K
conversation pairs were extracted, and 2K pairs were used for the
validation set, with a vocabulary of 1000 words. Rest of the words
were flagged as unknown with a special tag <vsunk>.

3.2 Feature Extraction: Word Embeddings

To extract features from the corpus, we used two common fea-
ture extraction techniques based on word embeddings, namely,
One Hot Vectorization and Word2Vec. These techniques are ex-
plained in detail below. We created two separate models based on
the two techniques. After evaluating the performances of the two
models, we decided to move with the One Hot Vectorization tech-
nique, since it provided better results. Please refer to section 4 for
more details.

3.2.1 One Hot Vectorization

As chats tend to be shorter than normal conversations, we select
only those sentences from the corpus which have no more than
20 words. Each sentence is tokenized using Keras’s inbuilt tok-
enizer, and an integer ID is assigned to each token. Every word in
the vocabulary is too assigned a unique ID, with the words which
occur rarely in the corpus (frequency of occurrence < 10), be-
ing replaced by the <vsunk> specifier. The sentences are, then,
padded with a special <vspad> token so that every sentence has
the same length. Now, each sentence is converted into a sequence
of integers, which leads to a one-hot representation of each word
in the sentence.

3.2.2 Word2Vec

For our word-embeddings based model, we use gensim’s inbuilt
Word2Vec model, which assigns a 300-dimensional word vector
to each word in the vocabulary. Word2Vec, thus, converts a word
to a fixed length vector with real number values. ’Similar’ words,
as seen in the corpus, are placed closer in the vector space.

3.3 Evaluation

We considered two metrics for evaluation: Perplexity and Human
Evaluation.

Perplexity [10] is a measure of confidence of predicting the
next word in the response given. A perplexity of value k means
that there are around k possible candidates while predicting the
next word. Obviously a better trained model will have lesser
value of perplexity as it can better filter appropriate candidates and
hence, is more confident about its prediction. The perplexity on a
set of NV test samples is computed using the following formula:

P. = exp(—% Zf;l ln(P(Ti, v rfn\oli, - 0;)))
where W is the total number of words in all N samples, Pis
the learned distribution and * and o’ are the i-th response and
original message respectively. Note that in the equation above only
response terms are factored into P;.

Human Evaluation is the other evaluation metric and we
found this reasonable since, ultimately, humans will be the end
users and can judge the quality of a chatbot to a good extent based
on responses.

4 Methodology

4.1 Data Pre-processing

We use the Cornell Movie Dialog Corpus to train our data. The
movie lines and conversations are extracted as per the instructions
provided along with the corpus. Every conversation between any
two actors is treated as a question answer pair. The text is cleansed
using Keras’s tokenizer. Upon doing some analysis, we see that
85% of the sentences are of length 19 words or less. Thus, we
discard any sentence with length more than 20 words. This looks
realistic as chat messages are, in general, short in length. Now,
we create a vocabulary based on the question answer pairs. We
restrict the size of our vocabulary to 1000 words, by marking any
words with frequencies less than 10 as unknown. For this, we
use a special tag: <vsunk>. About 4% of the total words are
marked unknown. Each word in a sentence is assigned a unique ID
and two dictionaries are maintained for the same. Since sentences
are of varying lengths, we pad each sentence with a special tag:
<vspad>. Each question starts with a tag <vsgo> and each
answer ends with a tag <vseos>. These special tags too are
provided with unique IDs.

4.2 Training of Data

We use two separate models to train our data as discussed below.

Feature Extraction: One Hot Vectorization vs. Word2Vec

Word embeddings assign each word in the training corpus a word
vector of fixed dimensions. Initially, we used the Word2 Vec model
of embeddings to generate a 300-dimensional (akin to what was
done for a Wikipedia dump) embeddings for words in our corpus,
keeping a vocabulary of 10K words. We used a straightforward
seq2seq model with 4 LSTM layers and sigmoid activation in each.
Also, to convert output embedding vectors to words in a sentence,
a nearest neighbour strategy was used. However, our results were
not great even after 100 epochs, possibly because of the simple
seq2seq setup (stacking one layer over another) that was used. The
chat results were also poor, even after increasing the dimensions
of the LSTMs and the word embeddings to 1000.

Hence, we switched over to an encoder-decoder based seq2seq
approach, which uses a one-hot based vectorization for represent-
ing words in a vocabulary instead of Word2Vec. This model is
described below:

Model 1: seq2seq Based Model

The proposed model is an encoder-decoder based sequence to se-
quence model, which given a sequence of words as input, predicts
a sequence of words as output. The encoder processes the input
sentence term by term and creates a fixed length representation of
the sentence in a vector space. The decoder then uses this context
vector and generates a response, term by term, using the previous
term and the context vector.

To internalise the dependance of the current state on the pre-
vious states, we use RNNs rather than feedforward neural nets.
However, since natural language contains long range dependen-
cies, we need to capture that too. For example: ”A girl came here

— LST™M

Validation Loss -->

0 200 400 600 800 1000
Epochs -->

Figure 1. Comparitive Study of LSTM and GRU based on Perplexity val-
ues (Batch Size = 64, Latent Dimensions = 512)

(.‘285nparitwe Study of Batch Sizes in LSTM with Latent Dimensions = 2
— 4
— 16

32
— 64

150 +

100 +

Perplexity -->

50 -

0 5 10 15 20 25 30 35 40
Epochs -->

Figure 2. Comparitive Study of Batch Sizes in LSTM with Latent Dimen-
sions = 2

a while ago. Did you see her?”. The model must remember the
context well enough to associate *girl’ and "her’. But since vanilla
RNN cells suffer from vanishing gradients, we instead use LSTMs
and GRUs [3]]. The models are created out using Tensorflow Back-
end and Keras API [3]].

Figure 1 summarises the performance of LSTM vs GRU wrt
perplexity on the validation set.

We, then, experimented with various dimensions of the LSTM
layers, so as to better generate responses. We did so by fixing
all other parameters (cell type, batch size, epochs, etc.) and only
varying the LSTM cell dimensions. We note that for LSTMs with
dimension equal to 512, our validation perplexity is least, though
it takes a greater number of epochs to reach the same. This may be
because greater number of LSTM cells lend it more power to form
meaningful sentences. Note that we ran the model for 200 epochs
since after that perplexity fluctuates very less.

We, then, also experimented with the batch size for training in
each epoch, as learning in small batches might prove better than

C%nparitwe Study of Latent Dimensions in LSTM with Batch Size = 64

Perplexity -->

0 50 100 150 200
Epochs -->

Figure 3. Comparitive Study of Latent Dimensions in LSTM with Batch
Size = 64

Study of reversal of input at Encoder

— Without Reversal
—— With Reversal

Validation Loss -->

0 100 200 300 400 500
Epochs >

Figure 4. Study of Reversal of Input at the Encoder

entire batches on our huge dataset. Batch size was varied keep-
ing other parameters constant. The results were found as given
in figures 2 to 4. We note that for batch size 4, the perplexity
decreased faster than for others. This is probably because the vari-
ability of sentence length tends to increase over bigger batches, but
the model prefers to learn same length sentences at a time.

Thus, after this series of evaluations the best model achieved
was an LSTM with 512 cells in both the encoder and decoder,
with softmax activation function (training with batch size of 4).
The perplexity score achieved at convergence was 8.04.

The backbone of all seq2seq modelling techniques was [7].

Model 2: HMM Based SMT Model

We also tested our HMM based Statistical Machine Translation
(SMT) model, which gave a validation perplexity value of 26.24.
This is well below the state-of-the-art, but in regard to our SMT
model, this is still a huge leap ahead.

Comparison of Perplexity values for different Models

SMT £ 26.24
GRU F 10.54
A
o}
=l
o
=
LSTM | 8.04
SOTA 12.74
0 5 10 15 20 25 30
Perplexity -->

Figure 5. Comparative Study of Different Models

5 Results & Analysis

To evaluate our model qualitatively, we took a survey of 17 can-
didates and asked them to rate 10 outputs each generated by the
statistical model, the baseline and our best model respectively on
the grounds of human-ness (i.e., how human it sounds) of the re-
sponses in each case. The score varied from 0 to 10, with O be-
ing the least comprehensible and 10 being the most comprehen-
sible. The human-ness of the model was then calculated by tak-
ing the mean of all the (10 * 17 = 170) scores per model. The
’human-ness’ scores achieved were: 2.982 for the HMM-based
SMT model, 4.671 for seq2seq based model and 5.135 for the
state-of-the-art model. We note the closeness of our model in com-
parison to the-state-of-the-art model. Please refer to figure 6.

To evaluate our model quantitatively, we used validation per-
plexity as a metric. We again compare the perplexities of our sta-
tistical, baseline and our best model.

We note that our best model’s perplexity is higher than the state
of the art by 5.30. However, with respect to the SMT baseline,
which has a perplexity of 26.24, we are clearly better off.

Shortcomings may be due to less layers in the encoder-decoder
framework. We were constrained by resources and time to create
a model that has more layers, since one-hot encodings take up a
lot of memory. The dataset may also be expanded to cover more
conversational aspects.

6 Contributions

6.1 Deliverables

1. Finished various analyses based on different models, hyper-
parameters, word reversal, word embedding analyses, build-
ing statistical machine model, etc.

2. Did not finish character by character model, and need to fur-
ther better performance of the best model.

6.2 References & Citations

Online Blogs and Tutorials: [1]], (2], [3l, [S], 81, [9]
Science Articles: [4]], [6], [7], [10]
Please refer to the end of the paper for more details.

6.3 Individual Contributions

1. Vishal: Created word-embeddings based model, Created
encoder-decoder model, Created HMM model, Analysis on
the word-embedding based model.

2. Sanidhya: Pre-processed the data, Created encoder-decoder
model, Various analyses on the encoder-decoder model, Did
the Survey.

6.3.1 List of Files

1. Vishal: *Seqg2SegModel .py,
MLProject_Model RNN4GRU.py,
CreateHMMTrainingSet.py,
createEmbeddingsOnConvPairs.py,
test_handler.py, hmm—Viterbi.py,
dataPreprocessor.py

2. Sanidhya: MLProject Model RNN+LSTM.py,
MLProject_Model RNN+LSTM_v2.py,
convertToConvPairs.py, train_handler.py,
CleanDataAndPlotx*.py

References

[1] G. Corrado. Computer, respond to this email.
https://research.googleblog.com/2015/11/
computer—-respond-to-this—email.htmll

[2] D. Currie. Bot tutorials, medium: How to build your
first chat bot. https://tutorials.botsfloor.com/
how-to-build-your-first-chatbot-c84495d4622d.

[3] Deeplearning4j. A beginners guide to recurrent networks and Istms.
https://deeplearning4j.org/lstm.html,

[4] A. Kannan, K. Kurach, S. Ravi, T. Kaufman, B. Miklos,
G. Corrado, A. Tomkins, L. Lukacs, M. Ganea, P. Young, and
V. Ramavajjala. Smart reply: Automated response suggestion
for email, 2016. https://research.google.com/pubs/
pub45189.html

[5] Keras. A ten-minute introduction to seq2seq
learning in keras. https://blog.
keras.io/a-ten-minute-introduction—
to-sequence-to-sequence-learning-in-keras.
htmll

[6] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: A method
for automatic evaluation of machine translation. http://www.
aclweb.org/anthology/P02-1040.pdf.

[7] I Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. http://arxiv.org/abs/1409.3215,

[8] T. Tran. Creating a language translation model us-
ing sequence to sequence learning approach. https:
//chunml.github.io/ChunML.github.io/project/
Sequence—-To-Sequence/,

[91 T. Tran. Creating a text generator using re-
current neural network. https://chunml.
github.io/ChunML.github.io/project/

Creating-Text—-Generator-Using—Recurrent—-Neural-Network/.

[10] O. Vinyals and Q. V. Le. A neural conversational model, 2015.
https://arxiv.orqg/pdf/1506.05869.pdf.

https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://tutorials.botsfloor.com/how-to-build-your-first-chatbot-c84495d4622d
https://tutorials.botsfloor.com/how-to-build-your-first-chatbot-c84495d4622d
https://deeplearning4j.org/lstm.html
https://research.google.com/pubs/pub45189.html
https://research.google.com/pubs/pub45189.html
https://blog.keras.io/a-ten-minute-introduction-
https://blog.keras.io/a-ten-minute-introduction-
to-sequence-to-sequence- learning-in-keras.html
to-sequence-to-sequence- learning-in-keras.html
http://www.aclweb.org/anthology/P02-1040.pdf
http://www.aclweb.org/anthology/P02-1040.pdf
http://arxiv.org/abs/1409.3215
https://chunml.github.io/ChunML.github.io/project/Sequence-To-Sequence/
https://chunml.github.io/ChunML.github.io/project/Sequence-To-Sequence/
https://chunml.github.io/ChunML.github.io/project/Sequence-To-Sequence/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://arxiv.org/pdf/1506.05869.pdf

Input Sentence seqZseq Model State-of-the-art Model SMT Model
are you a computer? | what me that Certainly, Doctor you re you re
get lost! | no You got itl you re
are you @ human? | what me that No, not real you re you re
who is the president? | no one is it? Nice,me you .im
you are not making sense | idon’t know yeah, | know .you .im not

are you drunk?

Hi!

am f a doctor?

when will the warld end?

can you teach me something?

what me that now please would
really

was in vsunk work i'm at work u
wouldn't me

this back

1“m him .

Hil

sure but a can always be a.

You mean last night would you?
what do | do to install ?

Figure 6. Table showing the comparison of results obtained on the three different models

you re not

H

you .im

you . im not

you re not . i m not

