
Automatic Response Generation to Conversational Stimuli

Vishal Raj Dutta
vishal15115@iiitd.ac.in

Sanidhya Singal
sanidhya15085@iiitd.ac.in

Abstract

We present the interim project report for Group 36. In
this project, we compare and contrast a few machine learn-
ing models that have been recently proposed and used in
the automatic response generation to conversational stim-
uli. The project is based on generative models rather clas-
sification or clustering. Hence, sufficient effort has been
involved in understanding and learning about them.

1. Introduction

We′ve always been fascinated by how chatbots work and
what makes them so realistic. In fact, response generation
is a big challenge from the perspectives of machine learn-
ing and NLP, with new innovations always on the brink of
unfolding.

Our project is based on automatic response generation
to conversational stimuli, which seeks to make a machine
comprehend conversations and respond accordingly. This
has uses in several areas including e-mail, customer service
and of course, chatbots.

More precisely we aim to play around with Neural Net-
work frameworks and the features extracted from the data
corpus (and possibly other frameworks), so as to achieve a
well performing model. We also try using statistical ma-
chine translation models for the same purposes.

2. Related Work

The papers from which we′ve taken inspiration for the
problem are [4], [6] and [9]. The underlying theme here,
is to use bilingual translation models in response genera-
tion, with some modifications in how the data is input to
the model. We′ve tried to explore both statistical and neu-
ral machine translation models in order to come up with a
better model.

The neural conversational model proposed in [6] uses
LSTM cells in an RNN to remove the issue of vanishing
gradients, and hence has better performance.

Google′s Smart Reply [4] uses the neural frameworks
proposed in [6], but with various add-on mechanisms such

as the Triggering mechanism which also detects whether or
not to even create responses to a given mail. It also uses
a semi-supervised graph learning approach to deliver better
responses. Additionally, there are methods suggested for
increasing diversity in the response subspace created.

Also, [6] uses phrase-based models for Statistical Ma-
chine Translation, which is different from the Neural Ma-
chine Translation models explored above, but generates ap-
preciable response results.
Some other relevant works are: [5], [1], [8], [3], [2].

3. Data set and Evaluation
3.1. Data set

Data set currently in use is the Cornell Movie Dialog
Corpus, with over 6, 00, 000 lines of dialogue. As of now
we have 5000 samples in the training set, 400 samples in
validation set for tuning hyperparams, and 400 samples in
the test set, all from randomly chosen conversation pairs.
We′ve also cleaned and pre-processed the Enron mail cor-
pus into stimulus-response pairs, for future use.

3.2. Feature Extraction

Given an input sentence of length L, it is first padded
with pad tokens, till maximum length (maxL) is reached.
Our feature vector is then a 1-hot styled vector of all the
words in our vocabulary (∼ 4000) (with rare words (< t%)
replaced by UNK). Each word has a corresponding integer
ID; thus, they are first converted to their integer forms and
then the above feature vector is created.
e.g.: if our vocabulary is {′cat′, ′i′, ′am′, UNK, PAD}
→ {1, 2, 3, 4, 5} and maxL = 5, then {′i am boy′} is con-
verted to {′i am boy PAD PAD′}, and its word vector is:
{(01000)(00100)(00010)(00001)(00001)}T .
All training stimulus pairs are converted into the format
above, and are fed into the encoder model, and all cor-
responding response pairs are converted into the format
above, and are fed into the decoder model.

3.3. Evaluation

We choose Perplexity to evaluate the model′s training
performance. Perplexity is a measure of confidence of pre-
dicting the next word in the response given. A perplexity of

1



Figure 1. Distribution of words and their corresponding frequen-
cies in the corpus

value k means that there are around k possible candidates
while predicting the next word. Obviously a better trained
model will have lesser value of perplexity as it can better
filter appropriate candidates and hence, is more confident
about its prediction.
The perplexity on a set of N test samples is computed using
the following formula:

Pr = exp(− 1
W

∑N
i=1 ln(P̂ (ri1, ..., r

i
m|oi1, ..., oin))

where W is the total number of words in all N samples,
P̂ is the learned distribution and ri and oi are the i-th re-
sponse and original message respectively. Note that in the
equation above only response terms are factored into Pr.
Loss function used for per-epoch evaluation in our model is
cross-entropy.

4. Analysis and Progress
The distribution of words and their corresponding fre-

quencies has been shown in Fig. 1.

4.1. Models Implemented

So far, we have designed and implemented the models
for RNN using LSTM, and RNN using GRU in Keras
with Tensorflow as back-end. We did conduct several it-
erations, of both models, but as of now have gotten unsatis-
factory results. Neural networks are of course computation-
ally expensive, and we were handicapped in that segment.
Nevertheless, we wish to obtain means to better machines,
and train our model better in the near future. For statistical
machine translation, we′re ongoing with the implementa-
tion (using NLTK) and hope to get it ready for evaluations
soon.

4.2. Challenges faced

One of the primary challenges faced in our project is that
the neural network uses very common words as safe bets.

For example, since i or you are seen very frequently in the
data (Refer Fig. 1.), the network thinks its safe to assume
strongly that the next possible word is either you or i. So,
for a small number of epochs (∼ 100) on a training set of
5000 samples, most common responses are i i i i i i or i
you you i i i, etc. Hence, we require some kind of frequency
normalization, to make this notion of safe bets obsolete. We
also wish to increase number of iterations to a minimum of
1000 iterations if not more. Also, for now we have used
naive tokenization techniques (splitting by spaces), which
may lead to redundancies in our vocabulary, e.g.: said and
said,. To resolve this issue, we use NLTK’s word tokenizer,
which tokenizes our data in a better way.

4.3. Design Choices

We initially started with a simple RNN model, but later
changed it to RNN with LSTM, since we became aware of
the notion of vanishing gradients upon reading [9]. We′re
also exploring RNN with GRU to compare and contrast the
two. We are currently studying the effect of epochs and
number of latent dimensions in both these models. We also
plan on making a character-by-character translation model,
and evalutate it against our current word-by-word model.

5. Results
For our current training model, the best result yet is a

perplexity value of 144.707 with number of epochs = 100
and latent dimensions = 2. The model is an RNN-LSTM
and features are word vectors described above.

(’Input sentence:’, ’ well i thought we
d start with pronunciation if that s
okay with you.’
(’Decoded sentence:’, ’ i i i i i i i i
i i i i i i i i i i i i i’)

(’Input sentence:’, ’ not the hacking
and gagging and spitting part. please.’)
(’Decoded sentence:’, ’ i i i i i i i i
i i i i i i i i i i i i i’)

(’Input sentence:’, ’ you re asking me
out. that s so cute. what s your name
again?’)
(’Decoded sentence:’, ’ s s s s s s s
s s s s s s s s s s s s s s’)

5.1. Inferences

As described in challenges, we see common tokens ap-
pearing all the time. This probably has something to do with
the notion of safe bets as discussed earlier. Since the per-
plexity is high, we can admit that our model is yet to train
better. Possibly more hidden layers, more number of epochs

2



or more training data can improve these statistics. There is a
huge gap of performance between our model and Google′s
Smart Reply [4] which has a perplexity of 17.1. Hence, we
need to find ways to better our model, for now.

6. Future Work
6.1. Learning techniques used

We aim to tweak our model in terms of the neural cells
used, and if possible come up with a better model.

6.2. Modifications in dataset choice

We had initially planned to use the Enron Mail
corpus as our data, but have now shifted to the
Cornell Movie–Dialogs Corpus, obtained from
https://www.cs.cornell.edu/˜cristian/
Cornell_Movie-Dialogs_Corpus.html. This
was due to our shift from a mail-response domain to a
chat-response domain, mainly because the Cornell Dialogs
corpus was more accustomed to everyday conversation,
and had a barrage of conversational topics, but the Enron
mail corpus was business oriented, which was not a domain
we were comfortable in.

6.3. Change in evaluation metrics

We are currently using perplexity as an evaluation metric
for our models, as it is a widely followed metric in the NLP
domain. The previous evaluation metrics suggested were
classification related, which cannot be used as our problem
lies in the generative models domain.

6.4. Analyses

We aim to:

1. Compare and contrast word-by-word vs. character-by-
character translations of data

2. Study the effect of word embeddings on the perfor-
mance of the model

3. Study the effect of reversing the input word sequence
first before converting to vector form, so as to increase
performance [7].

Mainly, we also wish to come up with a new model to better
incorporate the challenges that we have faced thereof, and
implement an IR-baseline also.

6.5. Individual team member roles

Sanidhya: Analysis on RNN-GRU, Statistical machine
translation Model, Developing new model
Vishal: Analysis on RNN-LSTM, IR-Model (nearest-
neighbours), Developing new model

References
[1] K. Cho, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-

gio. Learning phrase representations using rnn encoderde-
coder for statistical machine translation, 2014. https://
arxiv.org/pdf/1406.1078.pdf.

[2] G. Corrado. Computer, respond to this email.
https://research.googleblog.com/2015/
11/computer-respond-to-this-email.html.

[3] Deeplearning4j. A beginners guide to recurrent networks and
lstms. https://deeplearning4j.org/lstm.html.

[4] A. Kannan, K. Kurach, S. Ravi, T. Kaufman, B. Miklos,
G. Corrado, A. Tomkins, L. Lukacs, M. Ganea, P. Young,
and V. Ramavajjala. Smart reply: Automated response sug-
gestion for email, 2016. https://research.google.
com/pubs/pub45189.html.

[5] K. Nishimura, H. Kawanami, H. Saruwatari, and K. Shikano.
Investigation of statistical machine translation applied to
answer generation for a speech-oriented guidance system,
2011. http://www.apsipa.org/proceedings_
2011/pdf/APSIPA066.pdf.

[6] A. Ritter, C. Cherry, and W. B. Dolan. Data-driven response
generation in social media, 2011. http://aclweb.org/
anthology/D11-1054.

[7] T. Tran. Creating a language translation model
using sequence to sequence learning approach.
https://chunml.github.io/ChunML.github.
io/project/Sequence-To-Sequence/.

[8] T. Tran. Creating a text generator using re-
current neural network. https://chunml.
github.io/ChunML.github.io/project/
Creating-Text-Generator-Using-Recurrent-Neural-Network/.

[9] O. Vinyals and Q. V. Le. A neural conversational model, 2015.
https://arxiv.org/pdf/1506.05869.pdf.

3

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1406.1078.pdf
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://deeplearning4j.org/lstm.html
https://research.google.com/pubs/pub45189.html
https://research.google.com/pubs/pub45189.html
http://www.apsipa.org/proceedings_2011/pdf/APSIPA066.pdf
http://www.apsipa.org/proceedings_2011/pdf/APSIPA066.pdf
http://aclweb.org/anthology/D11-1054
http://aclweb.org/anthology/D11-1054
https://chunml.github.io/ChunML.github.io/project/Sequence-To-Sequence/
https://chunml.github.io/ChunML.github.io/project/Sequence-To-Sequence/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://arxiv.org/pdf/1506.05869.pdf

