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Models

 Can’t use Recurrent Neural Networks (RNN) due to the problem of 
vanishing gradient

 We use RNN with
 Long Short Term Memory (LSTM)

 Gated Recurrent Units (GRU)

 Phrase-based Statistical Machine Translation

 Information Retrieval (Nearest Neighbours)

 Keras with Tensorflow



Translation 
Models to 
Generative 
Models

 Most models used to translate words from one language to another.

 We adapt them to generate response based on a query.
 Use RNN with encoder-decoder

 Challenges:
 Word vectors not of same lengths

 Less previous work

 Safe bets (Common words might appear in responses more)
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Dataset & 
Evaluation

 Datasets:
 Cornell Movie 

Dialog Corpus

 Enron Mail Corpus

 Feature Extraction
 Padding

 1-hot 
representation

 Evaluation
 Perplexity



Analysis & 
Progress

 Comparison of RNN-LSTM with RNN-GRU
 Effect of no. of epochs

 Effect of no. of latent dimensions

 Character-by-character model vs. word-by-word model
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Results & 
Inferences

 High perplexity value: 144.707
 No. of epochs = 100

 No. of latent dimensions = 2

 Example:
 Input: well i thought we’d start with pronunciation if that’s okay with 

you.

 Output: i i i i i i i i i i i i i i i i i i i i i

 Increase hidden layers, no. of epochs, more training data
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