
Array manipulations as functional programming

Jim Pivarski

September 19, 2019

Introduction

The central features of an array library like Numpy or Awkward Array simplify if we think
of arrays as functions and these features as function composition. A one-dimensional array
of dtype d (e.g. int32 or float64) can be thought of as a function from integer indexes to
members of d. Thus,

array[i]

becomes
array : Z→ d

because given an integer i ∈ Z, it returns a value in d. In Python, this function is the
implementation of the array’s __getitem__ method.

Specified this way, this is a partial function1—for some integers, it raises an exception
rather than returning a value in d. (Integers greater than or equal to the array’s length or
less than its negated length, if the array implements Python’s negative indexing, are outside
the bounds of the array and do not return a value.) It can be made into a total function by
restricting the domain to [0, n) where n is the length of the array:

array : [0, n)→ d.

We can choose [0, n) as the domain and work with total functions or Z as the domain and
work with partial functions—it is a matter of the granularity of the type system. Numpy
has a single type ndarray for all arrays (effectively untyped), Numba has an array type
that depends on the array’s dimension, and C++ has a std::array<dtype, n> type that
depends on the exact size (n) of the array, like our functional description above. As we’ll see
later, a consequence of this specificity is that the return value of some functions will depend
on the values given to that function, a feature known as dependent types2.

In this note, we’ll describe arrays as total functions in a dependent type system.

1https://en.wikipedia.org/wiki/Partial_function
2https://en.wikipedia.org/wiki/Dependent_type

1

https://en.wikipedia.org/wiki/Partial_function
https://en.wikipedia.org/wiki/Dependent_type

Multidimensional arrays

Numpy arrays can have arbitrarily many dimensions, referred to as the array’s shape. The
shape is a tuple of positive integers specifying the length of each dimension: (n1, n2, . . . , nk)
is a rank-k tensor (k = 1 is a vector, k = 2 is a matrix, etc.).

To get values of type d from a rank-k array of dtype d, we must specify k integers, each
in a restricted domain [0, ni). In Numpy syntax, this is an implicit Python tuple between
the square brackets:

array[i1, i2, ..., ik]

In mathematical syntax, we can represent a k-tuple as a cartesian product,

[0, n1)× [0, n2)× . . .× [0, nk)

so the function corresponding to this array is

array : [0, n1)× [0, n2)× . . .× [0, nk)→ d.

A function with multiple arguments can be replaced with functions of one argument that
each return a function, a process known as currying3. For example, the function above can
be replaced with

array : [0, n1)→ [0, n2)→ . . .→ [0, nk)→ d

by noting that
array[i1]

returns an array of rank k − 1 and dtype d, which is a function

array[i1] : [0, n2)→ . . .→ [0, nk)→ d

(and so on, for each dimension). In fact, Numpy’s indexing syntax illustrates this clearly:

array[i1, i2, i3] == array[i1][i2][i3]

for any i1, i2, i3 that satisfy a three-dimensional array’s domain.

Record arrays

Numpy also has record arrays4 for arrays of record-like structures (e.g. struct in C). In
Numpy, the named fields and their types are considered part of the array’s dtype, but they
are accessed through the same square bracket syntax as elements of the array’s shape:

array[i1, i2, i3][fieldname]

3https://en.wikipedia.org/wiki/Currying
4https://docs.scipy.org/doc/numpy/user/basics.rec.html

2

https://en.wikipedia.org/wiki/Currying
https://docs.scipy.org/doc/numpy/user/basics.rec.html

where fieldname is a string, the name of one of the record’s fields. (Numpy does not allow
the fieldname to be uncurried—it must be in a different set of brackets from i1, i2, i3.)

Since record fields are accessed through a similar syntax, let’s consider it part of the
array’s functional type, making no distinction between shape elements and field names. For
a record type in which string-valued field names s1, s2, . . . , sm map to dtypes d1, d2, . . . ,
dm, we can write

recarray : [0, n)→ s1 → d1

s2 → d2

. . .

sm → dm

to represent a one-dimensional record array of length n. This is a dependent type because
the choice of field name determines the return type of the function.

A multidimensional record array can be described as

recarray : [0, n1)→ [0, n2)→ . . .→ [0, nk)→ s1 → d1

s2 → d2

. . .

sm → dm

or as

recarray : [0, n1)→ s1 → [0, n2)→ . . .→ [0, nk)→ d1

s2 → [0, n2)→ . . .→ [0, nk)→ d2

. . .

sm → [0, n2)→ . . .→ [0, nk)→ dm

or any other placement of the field name index within the ordered sequence of dimensional
indexes. In general, the string indexes (field names) commute with the integer indexes
(dimensions). This is evident in Numpy’s syntax:

recarray[i1][i2][i3][fieldname] == recarray[i1][i2][fieldname][i3]

== recarray[i1][fieldname][i2][i3]

== recarray[fieldname][i1][i2][i3]

It is also evident if the array is arranged as a rectilinear table, in which [0, n1), [0, n2),
. . . [0, nk) form a k-dimensional lattice of bounded integers and the field names are an addi-
tional dimension, indexed by a finite set of strings with no predefined order. This dimension
of category labels is usually called the “columns” and all other dimensions are called “rows.”
In this picture, rearranging the order of the string index and the integer indexes corresponds
to selecting a column before a row, rather than a row before a column.

3

Vectorized functions

Numpy uses so-called “vectorized” functions or “universal” functions (“ufuncs”) for most
calculations5. (These are not to be confused with vectorized instructions in CPU hardware,
but are based on a similar idea.) Any function f that maps scalar dtypes dA to dB,

f : dA → dB,

can be lifted to a vectorized function that maps arrays of dtype dA to arrays of dtype dB:

ufunc(f) :
(
[0, n)→ dA

)
→
(
[0, n)→ dB

)
.

Note that the shape of the array, [0, n) in this case, is the same for the argument type of
ufunc(f) as for its return type.

This ufunc functor is a partial application of what would be called “map” in most func-
tional languages6. The map functor takes a function and a collection, returning a collection
of the same length with the function applied to each element. The ufunc functor only takes
a function, and its result is applied to collections (arrays) later.

Since arrays are themselves functions, applying ufunc(f) to an array is a composition7

of the array with f . Thus, the following is true for any i ∈ [0, n):

ufunc(f)(array)︸ ︷︷ ︸
array

(i) = f(array(i)︸ ︷︷ ︸
scalar

)

numpy.vectorize(f)(array)︸ ︷︷ ︸
array

[i] = f(array[i]︸ ︷︷ ︸
scalar

).

by associativity of function composition. This composition always applies f to the output of
the array, never the input (function composition is not commutative).

f : dA → dB

array : [0, n)→ dA

ufunc(f)(array) = f ◦ array : [0, n)→ dB.

Using associativity again, we should be able to compose a sequence of scalar functions
f : dA → dB, g : dB → dC , . . . , h : dY → dZ before applying them to the array. If the scalar
function can be extracted from a ufunc object, it would be possible to compose

ufunc(f) ◦ ufunc(g) ◦ . . . ◦ ufunc(h)

5https://docs.scipy.org/doc/numpy/reference/ufuncs.html
6https://en.wikipedia.org/wiki/Map_(higher-order_function)
7https://en.wikipedia.org/wiki/Function_composition

4

https://docs.scipy.org/doc/numpy/reference/ufuncs.html
https://en.wikipedia.org/wiki/Map_(higher-order_function)
https://en.wikipedia.org/wiki/Function_composition

into a single
ufunc(f ◦ g ◦ . . . ◦ h) :

(
[0, n)→ dA

)
→
(
[0, n)→ dZ

)
that can be applied to an array. This is an optimization known as loop fusion8, and is
often faster than making multiple passes over arrays and possibly allocating large temporary
arrays between ufuncs. There have been proposals9 and external libraries10 to add this
feature transparently to Numpy. In principle, it could even be an explicit (user-visible)
feature of the ufunc object, but to my knowledge, it has never been implemented as such.

Array slicing

Whereas ufuncs compose scalar functions to the output of an array, slicing composes index
arrays (which are functions) to the input of an array.

The fact that array slicing is itself composition may not be obvious because of the way
that slicing is presented:

array[i:j]

does not seem to be a composition of two arrays. The first point to make is that all of
Numpy’s slicing mechanisms—range slices (Python’s slice operator or start:stop:step),
numpy.compress with boolean arrays, and numpy.take with integer arrays—can be rewritten
in terms of numpy.take with integer arrays:

• A range slice start:stop:step can be replaced with an integer sequence

range(start, stop, step)

(ignoring the effect of negative start and stop).

• A boolean array mask can be replaced with numpy.nonzero(mask).

• An integer array index is already an integer array.

As an array, index is a function index : [0, x) → [0, n) that can be composed with
array : [0, n)→ d to produce

array ◦ index : [0, x)→ d

Note that index is to the right (transforms the input) of array, whereas ufunc(f) put f to
the left (transforms the output) of array.

Numpy uses the same syntax for this function composition, array[index], as it does for
function evaluation, array[i], which is potentially confusing. Let’s illustrate this with an
extended example.

8https://en.wikipedia.org/wiki/Loop_fission_and_fusion
9https://numpy.org/doc/1.14/neps/deferred-ufunc-evaluation.html

10https://www.weld.rs/weldnumpy

5

https://en.wikipedia.org/wiki/Loop_fission_and_fusion
https://numpy.org/doc/1.14/neps/deferred-ufunc-evaluation.html
https://www.weld.rs/weldnumpy

Example

Consider two functions that are defined on all non-negative integers (at least).

def f(x):

return x**2 - 5*x + 10

def g(y):

return max(0, 2*y - 10) + 3

They may be transformed into arrays by sampling f, g, and f ◦ g at enough points to
avoid edge effects from their finite domains. For f and g above, 100 points in g is enough to
accept the entire range of f when f is sampled at 10 points.

F = numpy.array([f(i) for i in range(10)]) # F is f at 10 elements

G = numpy.array([g(i) for i in range(100)]) # G is g at 100 elements

GoF = numpy.array([g(f(i)) for i in range(10)]) # GoF is g◦f at 10 elements

Now F : [0, 10)→ [4, 46), G : [0, 100)→ [3, 191), and GoF : [0, 10)→ [3, 85).

Indexing G by F can be expressed with square-bracket syntax or numpy.take, and it
returns the same result as the sampled composition GoF.

G[F] # → [13, 5, 3, 3, 5, 13, 25, 41, 61, 85]

G.take(F) # → [13, 5, 3, 3, 5, 13, 25, 41, 61, 85]

numpy.take(G, F) # → [13, 5, 3, 3, 5, 13, 25, 41, 61, 85]

GoF # → [13, 5, 3, 3, 5, 13, 25, 41, 61, 85]

In GoF, the functions are composed before being transformed into arrays, and in G[F], the
arrays themselves are composed via integer-array indexing.

Function composition is associative, so we should be able to change the order of two
integer-array indexings. To demonstrate this, introduce another array, which need not have
integer dtype.

H = numpy.arange(1000)*1.1

When we compute H indexed by G indexed by F, it shouldn’t matter whether the H[G] index
is computed first or the G[F] index is computed first, and we see that this is the case.

H[G][F] # → [14.3 5.5 3.3 3.3 5.5 14.3 27.5 45.1 67.1 93.5]

H[G[F]] # → [14.3 5.5 3.3 3.3 5.5 14.3 27.5 45.1 67.1 93.5]

6

Multidimensional slicing

If Numpy’s integer-array indexing for multiple dimensions worked the same was as its range-
slicing does, then the above would be trivially extensible to any number of dimensions.
However, Numpy’s integer-array indexing (called “advanced indexing”)11 couples iteration
over integer arrays supplied to each of the k slots in a rank-k array.

To work-around this caveat, consider rank-k integer arrays in each of the k slots, in which
the integer array in slot i has shape (1, . . . , ni, . . . , 1). For example, a three-dimensional slice

array[start1:stop1, start2:stop2, start3:stop3]

can be simulated with integer arrays

array[numpy.arange(start1, stop1).reshape(-1, 1, 1),

numpy.arange(start2, stop2).reshape(1, -1, 1),

numpy.arange(start3, stop3).reshape(1, 1, -1)]

because Numpy broadcasts the three integer arrays into a common three-dimensional shape,
and the symmetry of these arrays decouples their effects in each dimension.

Beyond rectilinear arrays

Numpy is a library for contiguous, rectangular grids of numbers—within that scope, range-
slicing and broadcasting12 can be effectively computed without modifying or copying array
buffers, using stride tricks13.

However, we often want more general data structures, so Awkward Array extends Numpy
by interpreting collections of rectilinear arrays as non-rectilinear arrays. The two most
important additions are

• records containing fields of any type and

• arrays of unequal-length subarrays.

(Although union types, nullable types, and cross-referencing are also included in the Awk-
ward Array library, they are less related to this note’s focus on arrays as functions.)

11https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
12https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
13https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_

strided.html

7

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html

Non-rectilinear record types

Numpy’s record array only allows one dimension of category labels, and all arrays identified
by a category label share the same shape. This is because the location of each of these
arrays is defined by a stride. It also means that Numpy is limited to “arrays of structs.”14

Suppose we want field s1 of an array to have shape [0, n1) and field s2 to have shape
[0, n1)× [0, n2). That is, at each i1, field s1 has a scalar and field s2 has an array. This can
be described as the dependent type

array : [0, n1)→s1 → dA

s2 → [0, n2)→ dA.

With i1 ∈ [0, n1) and i2 ∈ [0, n2),

array[i1][s1] returns dA (a scalar)

array[i1][s2] returns [0, n2)→ dA (an array), and

array[i1][s2][i2] returns dA (a scalar).

Such an array can still be passed into ufuncs because ufuncs compose a function f : dA →
dB to the output of an array. For example,

ufunc(f)(array) : [0, n1)→s1 → dB

s2 → [0, n2)→ dB.

Such an array can still be sliced because slicing composes an integer array index :
[0, x)− > [0, n1) to the input of the array. For example,

array(index) : [0, x)→s1 → dA

s2 → [0, n2)→ dA.

The string-index/integer-index can be partially commuted: the domain {s1, s2} can be
moved from the middle of this function type to the left, like so:

array :s1 → [0, n1)→ dA

s2 → [0, n1)→ [0, n2)→ dA,

but it cannot be moved to the right, where the type of each field is different.

Similarly, if we had nested records, with s1 containing dtype d and s2 containing a record
with fields t1 and t2, our options for commuting indexes would be limited to one possibility:

array : [0, n1)→s1 → d array : s1 → [0, n1)→ d

s2 → t1 → d s2 → [0, n1)→ t1 → d

t2 → d t2 → d.

14https://en.wikipedia.org/wiki/AoS_and_SoA

8

https://en.wikipedia.org/wiki/AoS_and_SoA

Non-rectilinear shapes

We can also consider arrays of unequal-length subarrays (“jagged” or “ragged” arrays).

Like records, jagged arrays must be described by a dependent type if the function is to
be defined on its whole domain. Just as each value in a record’s domain, {s1, s2}, can return
a different type, each value in a jagged array’s domain can return a different type.

For example, the type of an array like [[1.1, 2.2, 3.3], [], [4.4, 5.5]] is

array : 0→ [0, 3)→ dA

1→ [0, 0)→ dA

2→ [0, 2)→ dA.

The type description grows with the length of the array—while it may be practical to fully
enumerate a record’s fields, it’s not practical to enumerate a large jagged array’s type.

Jagged arrays can be passed into ufuncs and sliced for the same reasons as non-rectilinear
records: these features are composition to the output and input of the array, respectively:

ufunc(f)(array) : 0→ [0, 3)→ dB array(index) : 0→ [0, 2)→ dA

1→ [0, 0)→ dB 1→ [0, 3)→ dA

2→ [0, 2)→ dB 2→ [0, 3)→ dA

3→ [0, 0)→ dA

for f : dA → dB and index = [2, 0, 0, 1], for example.

Non-rectilinear record types and non-rectilinear shapes can be combined, and these two
generators can already produce data types as general as JSON. (Note that the explicit
enumeration of dependent types for each array index allows heterogeneous lists and null.)

String-valued field indexes can always commute to the left through a jagged dimension,
but it can only commute to the right if domains match for all elements of a jagged dimension.
For example, {s1, s2} can commute through both levels of the following jagged array, but
only because it has the same combinations of nested shapes for both s1 and s2.

a : s1 → 0→ [0, 3)→ dA a: 0→ s1 → [0, 3)→ dA a : 0→ [0, 3)→ s1 → dA

1→ [0, 0)→ dA s2 → [0, 3)→ dB s2 → dB

2→ [0, 2)→ dA 1→ s1 → [0, 0)→ dB 1→ [0, 0)→ s1 → dA

s2 → 0→ [0, 3)→ dB s2 → [0, 0)→ dB s2 → dB

1→ [0, 0)→ dB 2→ s1 → [0, 2)→ dB 2→ [0, 2)→ s1 → dA

2→ [0, 2)→ dB s2 → [0, 2)→ dB s2 → dB

9

Conclusions

The reason Awkward Array can make use of Numpy’s ufunc and slicing concepts, despite
a much more general data model, is because arrays are functions and these two operations
correspond to function composition at the output or the input of the array.

This note does not discuss the implementation details of Numpy or Awkward Array,
though their scopes are well drawn by technical considerations. Numpy focuses on rectilinear
arrays because stride tricks greatly optimize that domain. Awkward Array is more general,
but it cannot use stride tricks on non-rectilinear data. Parts of a data structure must be
physically separated in memory to allow generalized reshaping. However, the fact that
slices can be explicitly composed with one another before applying them to an array (the
associativity of function composition) has been very useful when dealing with separated
data: slices do not need to be propagated all the way down a tree of nested structures—the
meaning is preserved by lazy evaluation.

10

