
Solving General Lattice Puzzles

Gill Barequet1 and Shahar Tal2

1 Center for Graphics and Geometric Computing
Dept. of Computer Science

Technion—Israel Institute of Technology
Haifa 32000, Israel

barequet@cs.technion.ac.il
2 Dept. of Computer Science

The Open University
Raanana, Israel

shahar t@hotmail.com

Abstract. In this paper we describe general methods for solving puzzles
on any structured lattice. We define the puzzle as a graph induced by the
lattice, and apply a back-tracking method for iteratively find all solutions
by identifying parts of the puzzle (or transformed versions of them) with
subgraphs of the puzzle, such the entire puzzle graph is covered without
overlaps by the graphs of the puzzle parts. Alternatively, we reduce the
puzzle problem to a submatrix-selection problem, and solve the latter
problem, using the “dancing-links” trick. Experimental results on various
lattice puzzles are presented,

Keywords: Polyominoes, polycubes.

1 Introduction

Lattice puzzles intrigued the imagination of “problem solvers” along many gen-
erations. Probably the most popular lattice is the two-dimensional orthogonal
lattice, in which puzzle parts are so-called “polyominoes” (edge-connected sets
of squares), and the puzzle is a container which should be fully covered without
overlaps by translated, rotated (and, possibly, also flipped) versions of the parts.

One very popular set of parts is the 12 “pentominoes” (5-square polyomi-
noes), which is shown in Figure 1. We describe here a few examples of the
many works on pentomino puzzles. Such games were already discussed in the
mid 1950’s by Golomb [Go54] and Gardner [Ga57]. Scott [Sc58] found all 65
essentially-different (up to symmetries) solutions of the 8 × 8 puzzle excluding
the central 2 × 2 square. Covering the entire 8 × 8 square with the twelve pen-
tominoes and one additional 2× 2 square part, without insisting on the location
of the latter part, is the classic Dudeney’s puzzle [Du08]. The Haselgrove cou-
ple [HH60], as well as Fletcher [Fl65], computed the 2,339 essentially-different
solutions to the 6 × 10 pentomino puzzle. Other pentomino puzzles were dis-
cussed by de Bruijn [Br71]. If pentominoes are not allowed to be flipped upside-
down, then there exist 18 such 1-sided pentominoes. Golomb [Go65] provided
one tiling of a 9 × 10 rectangle by all these pentominoes, while Meeus [Me73]

2

credited Leech for finding all the 46

I

T

U

V

X

W

Z

F L

N

P Y

Fig. 1. Twelve essentially-different
2-dimensional pentominoes

tilings of a 3 × 30 rectangle by the
set of 1-sided pentominoes. Hasel-
grove [Ha74] found one of the 212
essentially-different tilings of a 15×
15 square by 45 copies of the “Y”
polyomino. Golomb [Go65] provided
many other polyomino puzzles in
his seminal book “Polyominoes.” See
also [Kn00] for a listing of other
well-studied puzzles.

It is well-known that finite-puzzle
problems on an orthogonal lattice are NP-Complete. This is usually shown by
a reduction from the Wang tiling problem, which is also known to be NP-
Complete [Le78]. For completeness, we provide a short direct proof of this fact
(by using a reduction from the bin packing problem). It is not surprising, then,
that no better method than back-tracking is used for solving puzzles. Many
works, e.g., [Sc58,GB65,Br71], suggested heuristics for speeding-up the process,
usually by taking first steps with the least number of branches (possible next
steps).

Knuth [Kn00] suggested the dancing links method, which allowed solving sev-
eral problems, including orthogonal and triangular lattice puzzles, much more
efficiently than before. The main idea was a combination of a link-handling
“trick” that enables easy and efficient “unremove” operations of an object from
a doubly-connected list (a key step in back-tracking), and an abstract represen-
tation of the problems as a matrix-cover problem: Given a 0/1-matrix, choose a
subset of its rows such that each column of the shrunk matrix contains exactly
one ‘1’ entry. The reader is referred to the cited reference for more details of this
extremely elegant method.

In this paper we present a back-tracking approach to solving a general lattice
puzzle. We formulate the puzzle problem in general terms, so that it would
fit various types of puzzles. We give a simple proof that a simple version of
the problem, namely, a two-dimensional puzzle on an orthogonal lattice, is NP-
Complete. Thus, we cannot hope (unless P=NP) for subexponential algorithms,
and so, design an exponential back-tracking heuristics. We employ some tricks
to expedite the algorithm. We fully implemented our algorithm and ran it on
many puzzle problems which lie of several types of lattices.

This paper is organized as follows. In Section 2 we define the puzzle-solving
problem, and prove in Section 3 that it is NP-Complete. In Section 4 we describe
two algorithms to solve it, and present in Section 5 our experimental results. We
end in Section 6 with some concluding remarks.

3

2 Statement of the Problem

Let L be a lattice generated by a repeated pattern. To avoid confusion, let us
refer to the dual of L, that is, to its adjacency graph, and use interchangeably
the terms “cell” (of the lattice) and “node” (of the graph). A “pattern,” in it
simplest form, is a single node v and a set of labeled half-edges adjacent to it.
(Each undirected edge e of the graph is considered as a pair of half-edges, each
of which is outgoing from one endpoint of e.) The half-edges incident to v are
labeled 0 through d(v)− 1, where d(v) is the degree of v. In addition, there is a
specification of how copies of v connect to each other to form L. For a 1-node
pattern, this specification is simply a pairing of the labels. In addition, there is
a set of transformations defined on v. A transformation is a permutation on the
set of labels, i.e., a 1-to-1 mapping between the set {0, . . . , d(v)− 1} and itself.

For example, the orthogonal two-dimensional lattice is

v0 2

3

1

Fig. 2.
Repeated
pattern of ZZ2

generated by the pattern shown in Figure 2: The patern con-
tains a single node, v, of degree 4. The four half-edges adja-
cent to v are labeled ‘W’=0, ‘N’=1, ‘E’=2, and ‘S’=3, which
may be coupled extacly with ‘E,’ ‘S,’ ‘W,’ and ‘N,’ respec-
tively. The pairing specification is, then, {(0, 2), (1, 3)}. Only
one transformation, so-called rotate left (RL, in short) is de-
fined on v. The mapping defined by RL on the half-edges
incident to v is RL(i) = (i + 1) mod 4. The composition of
one to four RL transformations brings v to any possible ori-
entation.

Another example is shown in Figure 3: The re-

7

v
1

0

2

43

5

6

Fig. 3. The
hexagonal-prism
pattern

peated pattern of this 3D lattice (see Figure 6(c)) is a
prism with a hexagonal cross-section. The degree of the
single-node pattern v is 8. The eight half-edges, with la-
bels 0, . . . , 7, are coupled by {(0, 1), (2, 5), (3, 6), (4, 7)}.
Two transformations are defined on v:
(a) An “x-flip”: F (0|1|2|3|4|5|6|7) = (1|0|2|7|6|5|4|3);
and
(b) A “yz-rotate”: R(0|1|2|3|4|5|6|7) = (0|1|3|4|5|6|7|2).
Compositions of F and R bring v (with repetitions) to
all possible orientations in this lattice.

A lattice puzzle P is a finite subgraph of L. Dangling half-edges (that is,
half-edges that are not coupled with half-edges of other copies of the repeated
pattern) are marked as the boundary of the puzzle. Puzzle parts are also finite
subgraphs of L, and they undergo a similar procedure. A solution to the puzzle
is a covering of P by a collection of parts, such that:

1. All nodes of P are covered by nodes of the parts;
2. The label of dangling half-edges of parts match the labels of the respective

half-edges of P; except
3. Dangling half-edges of parts may extend out of the boundary of P.

4

Some freedom can be given to the set of parts, so as to form variants of the
puzzle problem. We may have a single copy of a given part, or an unlimited
amount of copies. Different types of transformations may be defined for differ-
ent parts of the puzzle.3 While solving a puzzle, we may want to compute one
solution (thus, determine whether or not the puzzle is solvable), or to find the
entire set of solutions to the puzzle.

3 NP-Completeness

Fig. 4. The 2-dimensional puzzle
problem is NP-Complete

For completeness, we first show that
even simple 2D puzzle problems on an or-
thogonal lattice are NP-Complete. We do
this by using a trivial reduction from the
bin-packing problem, which is known to
be NP-Complete [GJ79].

Consider an instance of the bin-packing
problem, in which one is given a set E
of n elements, with the respective sizes
s1, . . . , sn, and one is asked whether or
not E can be partitioned into at most k
subsets, such that the total size of the ele-
ments in each subsets is at most m. Triv-
ially,

∑n
i=1 si ≤ km, otherwise the answer

is immediatly “No.”
Such an instance of bin packing can easily be represented as a puzzle, even if

we require the puzzle to be connected and the parts to cover the entire puzzle.
The parts of the puzzle are:

– n “sticks” with the same lengths of the elements of E, that is, rectangles of
size si × 1, for 1 ≤ i ≤ n;

– k − 1 copies of the “X” pentomino; and
– km−∑n

i=1 si (possibly zero) singleton squares.

The puzzle is shown in Figure 4. The size of the puzzle is 5(k − 1) + km =
k(m+5)− 5 = Θ(km). The total number of parts is n+k− 1+km−∑n

i=1 si ≤
n+(k+1)m−1 = Θ(km+n), and their total size is identical to that of the puzzle.
The original bin-packing problem requires Θ(n + log(km)) storage. Although it
seems like the size of the puzzle and the time to build it are polynomial in n, k,
and m, only Θ(n + log(km)) storage and reduction time are needed due to the

3 For example, consider the flip transformation in a two-dimensional othogonal-lattice
puzzle. Its analogue in three dimensions is the mirror transformation, which is
mathematically well defined but hard to realize with physical puzzle pieces made
of wooden cubes. In such a puzzle, whether or not to allow the mirror transforma-
tion is a matter of personal taste.

5

repetitive shape of the puzzle. The puzzle is stored efficiently, say, by a standard
two-dimensional run-length encoding.

In time linear in the size of the puzzle, one can verify that a candidate
solution is indeed a real one. It is also trivial to verify that a solution to the
bin-packing problem corresponds to a solution to the puzzle, and vice versa.
A key observation is that all the k − 1 copies of the “X” pentomino must be
located at the connections between the teeth of the comb—they were introduced
in order to create a connected puzzle. The purpose of the singleton squares is
to ensure that the puzzle is filled entirely. Needless to say, variants in which the
puzzle is not connected, and/or it does not necessarily have to be completely
filled, and/or different part orientation are allowed, are NP-Complete as well.

4 Algorithms

In this section we describe two puzzle-solving algorithm: Direct back-tracking
and matrix cover. Since both methods are well-known, emphasis is put not on
these paradigms but rather on the data structures and details of the implemen-
tation in the setting of general lattice puzzles.

4.1 Back-Tracking

Our first approach to solving the puzzle problem is by direct back-tracking.

Puzzle and Part Data Structures As mentioned above, the puzzle and parts
are represented by graphs. Edges of the graphs are labeled with numbers: for
each node v, the outgoing half-edges of v are labeled 0, . . . , d(v)−1, where d(v) is
the degree of v. Dangling half-edges of both puzzle and parts (that is, half-edges
beyond their boundaries), are omitted.

One specific node of each part is marked as the origin of the part. For ex-
ample, in the two-dimensional orthogonal lattice, one may fix the origin at the
leftmost cell of the topmost row of the part. Note that the edge labels have to
induce a total order on the neighbors of a cell, thereby, on all the cells of the
puzzle or its parts. In a general lattice, we simply choose the lexicographically-
smallest cell, induced by this order, as the origin of the part. Similarly, we mark
the origin of the puzzle. For example, in the two-dimensional orthogonal lattice,
a cell is always “smaller” than its bottom and left neighbors, and “greater” than
its top and right neighbors. This implies the chosen origin in this lattice.

Part Orientations A special data structure stores the transformations allowed
for each part of the puzzle. As mentioned above, a transformation is a 1-1 map-
ping between the set of possible labels and itself. In a preprocessing step, we
compute all the possible orientations of each part of the puzzle. Specifically, we
apply all possible transformations (and combinations of them) to the half-edges
outgoing from the origin cell. Applying a single combination to the origin changes

6

the orientations of all the its neighbors (manifested by new edge labels), and the
process continues recursively in a depth-first (or breadth-first) manner to all the
cells of the part.

Naturally, the graph that represents a part may contain cycles, in which
case “back-edges” are encountered in the course of the search. Note that the
formal definition of a lattice does not ensure that back-edges are consistent edge-
labeling-wise. Such inconsistency simply means that a specific transformation
(the analogue of a rotation) is not allowed in the dealt-with lattice. However, in
all lattices we experimented with, such a situation can never occur; therefore,
we did never check for consistency of back-edges.

After all orientations of a part have been found, two steps should be taken:
(a) Recomputing the origin cell of each oriented copy; (b) Removing duplicate
copies. In fact, both steps can be performed simultaneously. Moreover, the re-
moval of duplicates may be avoided if we precompute the symmetries of the
original part. Nevertheless, all these operations are performed in a preprocessing
step, before running the main puzzle-solving algorithm (which takes the main
bulk of the running time), so any approach will practically do.

Essentially-Different Solutions In most cases we are not interested in find-
ing multiple solutions that are inherently the same, up to some transformation
defined for the specific lattice. Instead of computing all the solutions and look
for repetitions (an operation which might render the algorithm infeasible if there
are too many solutions), we applied a simple pruning method. Suppose that S
is a solution to a puzzle. One only need to observe that if the entire puzzle has
some symmetry realized by the transformation T , then T (S) is also a solution
to the puzzle. Thus, if we discard all copies of an arbitrary part, obtained by
transformations that realize symmetries of the puzzle, we guarantee that only
essentially-different solutions to the puzzle will be found. To maximize efficiency,
we choose the part with the maximum number of copies. (Usually, this is the
part with the least number of symmetries.)

Solving the Puzzle Our first method is a classical back-tracking algorithm.
We attempt systematically to cover the puzzle graph with the part graphs. A
part graph covers exactly a portion of the puzzle graph by an injective mapping
of the nodes of the part to the nodes of the puzzle, subject to adjacency relations
in the two graphs, while the labels of the (half-)edges of the part fully match
those of the covered portion in the puzzle.

Initially, all parts are “free,” and all nodes in the puzzle graph are “empty.”
We initialize a variable, called the anchor, to be the origin cell of the puzzle.
Naturally, it should be covered by some cell c of some part p. Moreover, c must
be the origin of p, otherwise, after positioning p in the puzzle, the origin of p
will occupy a puzzle cell which is different from the origin of the puzzle, which
is a contradiction to the lexicographic minimality of the puzzle origin. Thus,
positioning a part in the puzzle (in one of its possible orientations) is achieved
by identifying the anchor with the origin of the part and traversing the part

7

graph. A simultaneous and identical (edge-label-wise) traversal is performed in
the puzzle graph. This yields precisely which portion of the puzzle is covered by
the part. An attempt to position a part in the puzzle fails if either the traversal
of the puzzle graph reaches an “occupied” cell, or it gets out of the graph (that
it, the boundary of the puzzle is about to be crossed).

If the part-positioning is successful, we mark the part as “used,” mark all the
nodes of the puzzle graph that are matched to nodes of the positioned part as
“occupied,” and proceed to the next part-positioning step as follows. First, we set
the anchor of the puzzle to be the new lexicographically-minimal “empty” node
in the puzzle graph. This is achieved by scanning the puzzle lexicographically,
starting from the previous anchor and looking for a free node. Then, we attempt
to position a new “free” part (according to a predefined order) in the puzzle by
identifying its origin with the new anchor and proceeding as above. The new
anchor must be the origin of the next positioned part for the same reason as for
the first positioned part.

This part-positiongs process continues until one of two things happen: Either
(a) The puzzle graph is fully covered (this situation is identified by not being
able to reset the anchor); or (b) The algorithm is stuck in a situation in which
the puzzle graph is not fully covered, yet no new part can be positioned. In the
former situation the algorithm declares a solution and terminates. In the latter
situation the algorithm back-tracks: The last positioned part is removed from the
puzzle, restoring its status to “free” and marking again the covered puzzle nodes
as “empty.” Then, if another orientation of the same part exists, the algorithm
attempts to position it as above. Otherwise, the algorithm proceeds to the next
available part (according to the predefined order) and attempts to position it in
the same manner.

In case we like to find all the solutions to the puzzle, a minor step of the
algorithm is modified: When the algorithm finds a solution, the latter is reported,
but then refers to the last part-positioning step as a failure and then back-
tracks. In such a situation, the algorithm terminates when no back-tracking
options remain: This happens when all options for the first part-positioning are
exhausted.

We conclude the description of the algorithm by referring to the dangling
half-edges in part graphs. In principle, they should be matched too to half-edges
in the puzzle graph, in order to ensure proper neighborhoods between parts
positioned in the puzzle. However, this was redundant in all the lattices that
we handled. Thus, we ignored all dangling half-edges in the part-positioning
operations. A cover of the puzzle graph was actually only an exact cover of
the nodes of the graph. Edges in the puzzle graph, that represent neighborhood
relations between parts, were not covered. Exact match of labels was enforced
only between inter-part edges and the corresponding edges in the puzzle graph.

4.2 Matrix Cover

Our second approach to solving the puzzle problem is by a reduction to matrix
cover, and solving the latter by using the “dancing links” technique [Kn00].

8

Reduction The puzzle problem is represented by a binary matrix in the follow-
ing manner. We create an M×N matrix, where M is the total number of options
to position parts (in all orientations) in the puzzle, and N is the number of cells
of the graph. By “part-positioning” options we mean all possible mappings of
the anchor of a part graph to a node in the puzzle graph, such that the part will
partially cover the puzzle and will not exceed its boundary. An entry (i, j) in
the matrix contains the value 1 if the jth node of the puzzle is covered by some
node in the ith part-positioning option; otherwise it is 0.

Naturally, solving the puzzle amounts to choosing a subset of the lines, in
which every column contains a single 1 with 0 in all other entries. The chosen
lines represent the choice of parts, while the requirement for a single 1 per column
guarantees that every cell of the puzzle will be covered by exactly one part.

We may want to ensure that every part will be used exactly once, among all
its possible orientations and positions in the puzzle. This is easily achieved by
adding more columns to the matrix, one for each part. In each such column, we
put 1 in all the lines that correspond to the same part, and 0 elsewhere. This
guarantees that exactly one part orientation and position will be chosen.

1 1 1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

(a) Puzzle (b) Parts (c) Submatrix solution

Fig. 5. A puzzle solution represented by a submatix

For example, consider the simple 3X3 puzzle shown in Figure 5(a). The three
puzzle parts are shown in Figure 5(b). The left part has eight different orien-
tations (allowing flipping), in each of which it can be positioned in the puzzle
in two ways, for a total of 16 options. The middle part has two different orien-
tations, in each of which it can be positioned in the puzzle in three ways, for
a total of 6 options. Finally, the right part has only one orientation, which can
be positioned in the puzzle in nine ways. Thus, the matrix we need to cover is
made of 31 lines (the total number of part-positioning options) and 12 columns
(9 puzzle cells plus three original parts). One possible solution to the puzzle is
represented by the 3-line submatrix shown in Figure 5(c): The 9 left columns
show the exact covering of the puzzle, while the 3 right columns show that each
part is used exactly one.

The matrix-cover algorithm is also back-tracking in nature, but its running
time is reduced significantly as described below.

Dancing Links The algorithm is sped up tremendously by an elegant pointer-
manipulation trick [Kn00]. An element x is removed from a doubly-connected
linked list by executing the pair of operations Next[Prev[x]] := Next[x] and
Prev[Next[x]] := Prev[x]. It is a good programming practice not to access the

9

storage of an element x after it is deleted, since it may already serve a different
purpose. However, if it is guaranteed that the area allocated to x is not altered
even after it is deleted, one can easily undo the deletion of x by making the links
“dance”: The pair of operations Next[Prev[x]] := x and Prev[Next[x]] := x
readily return x to its original location in the linked list.

Efficient Branching A very efficient heuristic, which reduces the running time
significantly, is ordering the branches of the algorithm according to their (antic-
ipated) size. The speed-up of the algorithm naturally depends on the quality of
the prediction of the sizes of branches. In our setting, branching occurs at the
selection of an additional column. Recall that in a valid solution, exactly one of
the lines comprising the submatrix contains the value 1 in this column. (This
means that exactly one part covers the puzzle cell corresponding to this column.)
Since no a priori information is known (or computed), a reasonable choice is to
explore first columns with the least number of 1-entries. This is because we will
have fewer parts among which to choose the one covering this cell of the puzzle.

Stranding Another simple pruning method is to consider the size of the con-
nected component of empty nodes, that include the anchor, in the puzzle graph.
If all free parts are larger than this component, then the algorithm nay back-
track without any further checking.

5 Experimental Results

The two algorithms were implemented in JAVA on a dual-core 2.2GHz PC with
Sun’s Virtual Machine 5+, under the Windows XP and Linux operating systems.
The two algorithms allowed simple parallelism for using the dual-core CPU. The
software consisted of 5,500 lines of code. In addition, we implemented a warm-
restart mechanism which allowed to resume the course of the algorithm from
occasional crashes of the system.

(a) 3D orthogonal (b) Packed spheres (c) Hexagonal prisms

Fig. 6. Lattice puzzles

The first two lattice types which we experimented with were the two- and three-
dimensional orthogonal lattices. The formal structure of the 2D lattice is de-
scribed in the introduction of this paper. It is straightforward to generalize it to
three dimensions. Figure 6(a) shows a sample puzzle in the 3D lattice. The third

10

lattice type is the “packed-spheres” lattice. Figure 6(b) shows a sample puzzle
in this lattice. In this lattice, the repeated pattern is a node of degree 12. A com-
plete characterization of the group of transformations in this lattice is provided
in the full version of the paper. The fourth lattice type is the “hexagonal-prism”
lattice, whose structure is also described in the introduction. Figure 6(c) shows
a sample puzzle in this lattice.

Lattice Puzzle Parts Solutions Method Branches Time (Sec.)
Name Size Orig. Total Reduced Unique Sym. First All

2D Ort. 8 × 8 − 2 × 2 60 12 56 56 65 *8 BT 2,757,203 0.2 8.0
BT+ST 1,523,328 0.0 3.4

DL 2,091,625 0.4 12.5
DL+ST 2,375,555 0.3 9.5
DL+SZ 117,437 0.1 1.5

DL+SZ+ST 81,638 0.0 1.2
2D Ort. 10 × 6 60 12 56 56 2,339 *4 BT 10,595,621 0.1 20.0

BT+ST 5,802,074 0.1 13.0
DL 10,597,824 0.2 52.0

DL+ST 9,235,621 0.1 40.0
DL+SZ 1,728,193 0.0 13.0

DL+SZ+ST 1,476,710 0.0 10.0
3D Ort. 10 × 2 × 3 60 12 168 68 12 *8 BT(+ST) 861,525 0.1 0.9

DL(+ST) 1,317,971 0.1 5.5
DL+SZ(+ST) 72,671 0.1 0.5

3D Ort. 5 × 4 × 3 60 12 168 144 3,940 *8 BT(+ST) 1,259,189,714 1.5 4,020.0
DL(+ST) 1,969,102,501 2.7 6,180.0

DL+SZ(+ST) 10,103,602 0.0 73.0
3D Ort. 6 × 5 × 2 60 12 168 93 264 *8 BT(+ST) 67,714,344 0.3 168.0

DL(+ST) 107,596,954 12.0 485.0
DL+SZ(+ST) 677,083 0.0 5.5

3D Ort. Green Happy Cube 98 6 91 91 20 *24 BT(+ST) 1,215 0.1 0.6
DL(+ST) 1,953 0.0 0.9

DL+SZ(+ST) 159 0.0 0.6
3D Ort. Orange Happy Cube 98 6 79 79 2 *24 BT(+ST) 846 0.1 0.3

DL(+ST) 1,320 0.0 0.6
DL+SZ(+ST) 81 0.0 0.6

3D Ort. Strip 60 12 168 85 6 *4 BT 187,883 0.2 1.9
BT+ST 99,272 0.1 0.7

DL 195,684 0.3 2.6
DL+ST 181,554 0.2 2.6
DL+SZ 14,076 0.0 0.1

DL+SZ+ST 13,706 0.0 0.1
3D Ort. Stairs 55 ?? 186 186 640 *1 BT 2,088,970 0.1 10.0

DL 3,143,814 3.7 23.0
3D Ort. Big Y 60 12 186 157 14 *1 BT 161,584,456 6.0 444.0

DL(+ST) 210,494,003 3.6 545.0
DL+SH(+ST) 204,910 0.2 1.5

Spheres Tetrahedron 4 20 6 137 50 6 *12 BT 1,228 0.4 0.4
DL 2,261 0.5 0.5

DL+SZ 44 0.5 0.5
Hex Prism Hex prisms 45 11 92 89 2 *3 BT 2,268 0.0 0.1

DL(+ST) 2,826 0.0 0.1
DL+SZ(+ST) 93 0.0 0.1

Table 1. Statistics of puzzle solving

We experimented with many puzzles in these lattices, and report here (see
Table 1) about solving only a few of them. The size of a puzzle is the number
of cells it contains. For parts we provide three numbers: the number of original
parts, the total number of different oriented parts, and the number of oriented
parts that can fit into the puzzle. (Naturally, a long part cannot fit at all into a
thin puzzle in the wrong orientation. This can be checked in a preprocessing step
for general puzzle graphs too.) We provide two counts of solutions: essentially
different and the total number of solutions. The method codes are the following:
BT: back-tracking; ST: the stranding heuristics; DL: dancing links; and SH: size
heuristics. Branches are decision points where the back-tracking algorithms place
a part or the matrix-cover algorithm chooses a column. Finally, we report the
running times which were needed in order to find either a single solution or all
solutions to the puzzle. Figure 7 shows representative solutions to these puzzles.

11

(a) 2D 8× 8− 2× 2 (b) 2D 10× 6 (c) 3D Big Y

(d) 3D 5× 4× 3 (e) 3D 6× 5× 2 (f) 3D 10× 3× 2

(g) 3D Green Happy Cube (h) 3D Strip (i) 3D Stairs

(j) 3D Orange Happy Cube (k) Hexagonal prisms (l) Sphere Pyramid

Fig. 7. Solutions to various puzzles

12

As can be easily observed from the data in Table 1, the matrix-cover algo-
rithm, coupled with the dancing-link “trick,” is superior over the back-tracking
algorithm. Both methods can be improved heuristically. The table shows clearly
that the size-ordering heuristics contributes the largest reduction in running
time. Without it or on top of it, the stranding heuristics can also make a modest
improvement to the algorithm.

6 Conclusion

In the paper we presented two puzzle-solving algorithms, and identified one
of them (the matrix cover) as the method of choice. The algorithms run on
puzzles in any general lattice. We experimented comprehensively with many
puzzles in four different types of lattices. Our future goals are to extend the
algorithms to other lattices, to incorporate more restrictions and conditions on
the structures of puzzles and/or parts, and to continue to improve the efficiency
of our implementation of the algorithms.

References

[Br71] N.G. de Bruijn, Programmeren van de pentomino puzzle, Euclides, 47 (1971–
1972), 90–104.

[Du08] H.E. Dudeney, 74.—The broken chessboard, in: The Canterbury Puzzles,
1908, 90–92.

[Fl65] J.G. Fletcher, A program to solve the pentomino problem by the recursive
use of macros, Comm. of the ACM, 8 (1965), 621–623.

[Ga57] M. Gardner, Mathematical games: More about complex dominoes, plus the
answers to last month;s puzzles, Scientific American, 197 (1957), 126–140.

[GJ79] M. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman, San Francisco, 1979.

[Go54] S.W. Golomb, Checkerboards and polyominoes, American Mathematical
Monthly, 61 (1954), 675–682.

[Go65] S.W. Golomb, Polyominoes, Scribners, New York, 1965; 2nd ed., Princeton
Univ. Press, 1994.

[GB65] S.W. Golomb and L.D. Baumart, Backtrack programming, J. of the ACM,
12 (1965), 516–524.

[HH60] C.B. Haselgrove and J. Haselgrove, A computer program for pentomi-
noes, Eureka, 23 (1960), 16–18.

[Ha74] J. Haselgrove, Packing a square with Y-pentominoes, J. of Recreational
Mathematics, 7 (1974), 229.

[Kn00] D.E. Knuth, Dancing links, in: Millennial Perspectives in Computer Science
(J. Davies, B. Roscoe, and J. Woodcock, eds.), 187–214, Palgrave Macmillan,
England, 2000.

[Le78] H.R. Lewis, Complexity of solvable cases of the decision problem for the
predicate calculus, 19th Ann. Symp. on Foundations of Computer Science,
Ann Arbor, MI, 35–47, 1978.

[Me73] J. Meeus, Some polyomino and polyamond problems, J. of Recreational Math-
ematics, 6 (1973), 215–220.

[Sc58] D.S. Scott, Programming a combinatorial puzzle, Technical Report 1, Dept.
of Electrical Engineering, Princeton Univ., June 1958.

