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MANOVA is geared towards doing a simple ANOVA model with multiple response variables.

LDA on the other hand, says hey, “using the response variables, can we predict what factor level the
observation is coming from?”.

Introduction

The hemophilia data set contains two measured variables on 75 women, belonging to two groups: n1=30
of them are non-carriers (normal group) and n2=45 are known hemophilia A carriers (obligatory carriers).
MANOVA and LDA are linked together in terms of what is going on under the hood mathematically.
MANOVA though is geared towards doing a simple ANOVA model with multiple response variables. LDA on
the other hand, says hey, “using the response variables, can we predict what factor level the observation is
coming from?”. The variables in the study are:

e Group - Categorical variable with levels: Non-carriers or Carriers
e Activity - Continuous variable.
e Antigen - Continuous variable.

Data gathering and cleaning

All the required libraries are loaded.

source('libraries.R')

The data is retrieved and stored into a data frame using read.csv.

hemophil <- read.csv("/Users/Shravan/Downloads/Unit7Exercise/Hemophil.csv"

Exploratory Data Analysis

Summary statistics per response variable by group. Use the describeBy from psych package.

describeBy (hemophil, hemophil$Group)

## $Carriers

## vars n mean sd median trimmed mad min max range skew
## Group* 145 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 NaN
## Activity 245 -0.31 0.15 -0.34 -0.31 0.17 -0.69 -0.01 0.68 0.00
## Antigen 3 45 -0.01 0.16 0.00 0.00 0.17 -0.34 0.29 0.63 -0.24
## kurtosis  se

## Group* NaN 0.00

## Activity -0.53 0.02

## Antigen -0.83 0.02

##

## $Noncarriers

## vars n mean sd median trimmed mad min max range skew
## Group* 130 2.00 0.00 2.00 2.00 0.00 2.00 2.00 0.00 NaN



## Activity 230 -0.13 0.14 -0.14 -0.13 0.08 -0.53 0.15 0.68 -0.61

## Antigen 3 30 -0.08 0.13 -0.07 -0.07 0.13 -0.48 0.21 0.69 -0.59
## kurtosis se

## Group* NaN 0.00

## Activity 0.93 0.03

## Antigen 1.09 0.02

#i#

## attr(,"call")
## by.data.frame(data = x, INDICES = group, FUN = describe, type = type)

Draw a boxplot to visualize the effect of a categorical predictor on a continuous response variable. First we
will draw Activity ~ Group and then we will draw Antigen ~ Group.

ggplot(data = hemophil, aes(x = Group, y = Activity)) +

geom_boxplot() +
ggtitle("Activity vs Group")
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ggplot(data = hemophil, aes(x = Group, y = Antigen)) +

geom_boxplot() +
ggtitle("Antigen vs Group")
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Our main question is, Are the Activity/Antigen means for the 2 groups statistically different from one another
? Well, looking at the box plot for Activity/Antigen by group definitely seems that they are different, but we
want to formally answer this question using a one-way ANOVA model.

Understanding one-way ANOVA.

ANOVA in R

Normally, you do not have to do all calculations yourself to get the F-value and to see whether or not the null
hypothesis (i.e. that all groups are equal) should be rejected. R’s aov() function does the heavy lifting for
you! Apply aov() to the hemophil data. The only argument should be a formula containing the dependent
variable iq and independent variable condition. For example, aov(dependent_ var ~ independent_ var).

anova_hemophil <- aov(hemophil$Activity ~ hemophil$Group)

anova_antigen <- aov(hemophil$Antigen ~ hemophil$Group)

summary (anova_hemophil)

#Hit Df Sum Sq Mean Sq F value Pr(>F)

## hemophil$Group 1 0.5392 0.5392 23.82 6.04e-06 *x**

## Residuals 73 1.6525 0.0226

## ——-

## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1



summary (anova_antigen)

#i# Df Sum Sq Mean Sq F value Pr(>F)

## hemophil$Group 1 0.093 0.09296 4.303 0.0416 *

## Residuals 73 1.577 0.02161

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The p-value is < 0.05, which means, we reject the null hypothesis and state that atleast one of the means of
the sub-groups is different. This is true for both Activity and Antigen response variables.

For Activity: The F-value is 23.82, which is really large and the p-value is really small. As a result, you have
23.82 times as much between group variance as within group variance, so you have a big effect. For Antigen:
The F-value is 4.303, which is not that large and thus the p-value is close to 0.05. As a result, you have 4.3
times as much between group variance as within group variance, so you have a resonable effect.

These can also be visually confirmed through box plots shown above.

Checking ANOVA assumptions

The assumptions of ANOVA are relatively simple. Similar to an independent t-test, we have a continuous
dependent variable, which we assume to be normally distributed. Furthermore, we assume homogeneity of
variance, which can be tested with Levene’s test. It’s good practice to check both assumptions before you do
ANOVA, but here we’ll focus on the latter. If the assumptions don’t hold, then the ANOVA results won’t be
valid.

Perform Levene’s test for the hemophil data. Use leveneTest from the car package with the dependent and
independent variables as first and second arguments, respectively.

leveneTest (hemophil$Activity, hemophil$Group)

## Levene's Test for Homogeneity of Variance (center = median)

#Hit Df F value Pr(>F)
## group 1 0.8335 0.3643
## 73

If you don’t specify additional arguments, the deviation scores are calculated by comparing each score to its
group median. This is the default behavior, even though they are typically calculated by comparing each
score to its group mean. If you want to use means and not medians, add an argument center = mean. Do
this now and compare the results to the first test.

leveneTest (hemophil$Activity, hemophil$Group, center = mean)

## Levene's Test for Homogeneity of Variance (center = mean)
#it Df F value Pr(>F)
## group 1 1.1501 0.2871
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leveneTest (hemophil$Antigen, hemophil$Group, center = mean)

## Levene's Test for Homogeneity of Variance (center = mean)

## Df F value Pr(>F)
## group 1 2.0118 0.1603
#it 73



In both cases the p-value is not significant, which means, we will fail to reject the null hypothesis - which is
that of equal variances.

Understanding Covariance

Provide a scatterplot for Carrier vs Non-Carrier for your final variables used in #2 and color code the points
by group. Since we know each variable satistifies normality from #2, the only additional question is if the
data are following multivariate normality with a constant covariance matrix for each group. Try to explain
what visual properties you see in the plot would lead you for or against the assumption of constant covariance
matrix. Recall covariance matrix is simply book keeping variance and correlation estimates for the two
variables.

ggplot(data = hemophil, aes(x = Activity, y = Antigen, color = Group)) +

geom_point ()
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There are two ways of expressing the relationship between variables:

¢ Covariance
¢ Correlation

Covariance refers to how much two variables are associated (i.e., whether two variables covary). To understand
covariance, you’ll need to understand the variance and standard deviation of a single variable. Variance or
standard deviation represents the average amount the data vary from the mean. The formula for variance
(i.e., square of standard deviation o) is:

2 >y (x — )

o =
n—1
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