Things to do for Simbody 1.0
Sherm, Last update: 1/30/2007
41.
Basic mechanics & formulation functionality

41.1.
Add residual form of equations

41.2.
Add support for parameterization

41.3.
System angular velocity & momentum & mass props

41.4.
Report joint reaction forces

41.5.
Implement “instant coordinates” and conversions to/from

41.6.
Implement complete set of operator/response/solvers

41.7.
Add matrices for op space control

41.8.
Handle scaling and units well

41.9.
Add inverse dynamics (prescribed motion) support

41.10.
Figure out placeholders for 2nd derivative interface, operators

41.11.
Constraints

41.11.1.
Resolve: do auxiliary variables z appear in the acceleration constraint RHS b?

41.11.2.
Make sure you could do a “potential energy” (configuration level) constraint, and of course a total energy constraint at velocity level.

41.11.3.
Fix solvers to use QTZ

41.11.4.
Restructure to support more kinds of constraint equations

41.11.5.
Fix bug in current distance constraint

41.11.6.
Add Paul’s coincident point constraint

41.11.7.
Add Paul’s rotational constraint to support welds

41.11.8.
Add constraint on/off support

41.11.9.
Return constraint violation vectors

41.11.10.
Deal with constraint error weighting; must do projections in error norm

41.11.11.
Add Baumgarte stabilization option

41.11.12.
Make constraints extensible

41.12.
Solvers

41.12.1.
Implement solver to remove rigid body motion

51.12.2.
Figure out how to do modeling conversions, e.g. take quaternion-modeled state and convert to Euler angle state

52.
Software engineering

52.1.
Get SimTK Core build stack working

52.2.
Clean up and document error handling

52.3.
Ensure that PIMPL (handle) pattern is used uniformly

52.4.
Make joints extensible (Remove templatized joint classes; switch to casts?)

52.5.
Incorporate some TAO code

52.6.
Use Paul’s kinematics routine

52.7.
Refactor and clean up existing code

52.8.
Develop some good tests

52.9.
Measure and improve performance

52.10.
Support copy/assignment of SimbodySubsystem

53.
SimTK common

53.1.
Clean up error handling

53.2.
StableArray support? Should List be it?

53.3.
ASSERT should not throw; abort() in place or call native _assert() function.

54.
Simmatrix

54.1.
Switch big matrix to a single void* representation; use rep/myHandle pattern

54.2.
Design factoring interface

54.3.
Design storage layout interface

54.4.
Deal with packing issues

54.5.
Add QTZ support

54.6.
Change matrix multiply to dgemm()

54.7.
Rotations

64.7.1.
Enhance class to add more functionality

64.7.2.
Make sure all operators are supported properly

64.8.
Transforms

64.8.1.
Make sure all operators are supported properly

64.8.2.
Decide on relationship between rotation matrix transforms and quaternion ones

64.9.
Inertia

64.9.1.
Enhance class to add more functionality

64.9.2.
Use SymMat’s for storage

65.
Tasks for building simbody-containing simulations

65.1.
Implement a usable reporter class that uses VTK to produce animations

65.2.
Provide a library of useable force routines (Gravity, Springs & dampers, Controllers, Some contact models e.g. Hunt & Crossley)

65.3.
Simplify numerical interface for integration

65.4.
Add numerical interface for root finding/assembly analysis/parameter studies/etc.

65.5.
Add CVODE[s] support

65.6.
Resolve how to add force subsystems, and probably joint & constraint subsystems, analytic and visualization geometry subsystems

65.7.
State

65.7.1.
Store all continuous vars contiguously

65.7.2.
Figure out how to get references to q,u,z

65.7.3.
Allow out of date references?

65.7.4.
Add copying options (with/without cache)

65.7.5.
Serialize

65.7.6.
Modification time like VTK?

66.
User interface, API

66.1.
Provide SD/FAST compatibility

76.1.1.
Methods

76.1.2.
Documentation

76.1.3.
File processing?

76.2.
Create a workable C interface

76.3.
Generate SWIG’ed interface for Java, Tcl, Python

76.4.
Naming

76.4.1.
Freedom/Constraint, Permit/Restrict?

76.4.2.
InertiaMat (Inertia

77.
Documentation

77.1.
Need more examples, strategies

77.2.
Draw a nice closed-loop structure with cut bodies

77.3.
Make Doxygen-generated docs useful (see TAO)

77.4.
Note that “handle” classes are an implementation of the well-known “PIMPL” design pattern

77.5.
Continue working on coding standards document

78.
Schedule

78.1.
06/2006

78.1.1.
Visualization tool working

78.1.2.
Build stack working

78.2.
07/2006

78.2.1.
Simple force subsystem working

78.2.2.
Ability to make systems & studies and run them

78.2.3.
State fully functional (except serialization)

78.2.4.
CVODE design in place with Simbody support

78.3.
08/2006

78.3.1.
New constraint functionality in place

78.3.2.
CVODE coordinate projection scheme functional (with Radu)

78.4.
09/2006

78.4.1.
Modified CVODE binaries available (with Jack & Radu)

88.4.2.
Remaining mechanics capabilities in place (e.g. inverse dynamics)

88.4.3.
Alternate integration schemes available (error controlled Verlet?)

88.5.
10/2006

88.5.1.
Additional required studies in place, e.g. root finding

88.5.2.
Simbody 0.7

88.5.3.
Integration into ToRNAdo (with Chris)

88.6.
11/2006

88.6.1.
Code packaging, cleanup, testing

88.6.2.
Support alpha test users

88.6.3.
Simmatrix 1.0 release (with Jack)

88.7.
12/2006

88.7.1.
Additional interfaces, e.g. C, SD/FAST

88.8.
01/2007

88.8.1.
Simbody 0.9

88.9.
02/2007

88.9.1.
Integrated with OpenSim (with Ayman)

88.10.
03/2007

88.10.1.
Documentation, testing, examples done

88.10.2.
Simbody 1.0 Release

89.
Plans for Simbody 2.0

89.1.
Add support for analytic 2nd derivatives everywhere.

89.2.
Support user-supplied joints & constraints.

89.3.
Serialization

89.4.
Higher level modeling support

89.5.
Integration with OpenMM and features for high-speed molecular dynamics.

89.6.
Theory manual, book, papers etc.

89.7.
Training and coursework support.

1. Basic mechanics & formulation functionality

1.1. Add residual form of equations

1.2. Add support for parameterization

1.3. System angular velocity & momentum & mass props

1.4. Report joint reaction forces

1.5. Implement “instant coordinates” and conversions to/from

1.6. Implement complete set of operator/response/solvers

1.7. Add matrices for op space control

1.8. Handle scaling and units well

1.9. Add inverse dynamics (prescribed motion) support

1.10. Figure out placeholders for 2nd derivative interface, operators

1.11. Constraints

1.11.1. Resolve: do auxiliary variables z appear in the acceleration constraint RHS b?

1.11.2. Make sure you could do a “potential energy” (configuration level) constraint, and of course a total energy constraint at velocity level.

1.11.3. Fix solvers to use QTZ

1.11.4. Restructure to support more kinds of constraint equations
1.11.5. Fix bug in current distance constraint

1.11.6. Add Paul’s coincident point constraint

1.11.7. Add Paul’s rotational constraint to support welds

1.11.8. Add constraint on/off support

1.11.9. Return constraint violation vectors

1.11.10. Deal with constraint error weighting; must do projections in error norm

1.11.11. Add Baumgarte stabilization option

1.11.12. Make constraints extensible

1.12. Solvers

1.12.1. Implement solver to remove rigid body motion

1.12.2. Figure out how to do modeling conversions, e.g. take quaternion-modeled state and convert to Euler angle state

2. Software engineering
2.1. Get SimTK Core build stack working
2.2. Clean up and document error handling

2.3. Ensure that PIMPL (handle) pattern is used uniformly
2.4. Make joints extensible (Remove templatized joint classes; switch to casts?)
2.5. Incorporate some TAO code

2.6. Use Paul’s kinematics routine

2.7. Refactor and clean up existing code

2.8. Develop some good tests

2.9. Measure and improve performance

2.10. Support copy/assignment of SimbodySubsystem
3. SimTK common
3.1. Clean up error handling

3.2. StableArray support? Should List be it?

3.3. ASSERT should not throw; abort() in place or call native _assert() function.

4. Simmatrix
4.1. Switch big matrix to a single void* representation; use rep/myHandle pattern

4.2. Design factoring interface

4.3. Design storage layout interface

4.4. Deal with packing issues

4.5. Add QTZ support

4.6. Change matrix multiply to dgemm()

4.7. Rotations

4.7.1. Enhance class to add more functionality

4.7.2. Make sure all operators are supported properly

4.8. Transforms

4.8.1. Make sure all operators are supported properly

4.8.2. Decide on relationship between rotation matrix transforms and quaternion ones

4.9. Inertia

4.9.1. Enhance class to add more functionality

4.9.2. Use SymMat’s for storage
5. Tasks for building simbody-containing simulations
5.1. Implement a usable reporter class that uses VTK to produce animations

5.2. Provide a library of useable force routines (Gravity, Springs & dampers, Controllers, Some contact models e.g. Hunt & Crossley)

5.3. Simplify numerical interface for integration

5.4. Add numerical interface for root finding/assembly analysis/parameter studies/etc.

5.5. Add CVODE[s] support

5.6. Resolve how to add force subsystems, and probably joint & constraint subsystems, analytic and visualization geometry subsystems

5.7. State

5.7.1. Store all continuous vars contiguously

5.7.2. Figure out how to get references to q,u,z

5.7.3. Allow out of date references?

5.7.4. Add copying options (with/without cache)

5.7.5. Serialize

5.7.6. Modification time like VTK?
6. User interface, API
6.1. Provide SD/FAST compatibility

6.1.1. Methods

6.1.2. Documentation

6.1.3. File processing?

6.2. Create a workable C interface

6.3. Generate SWIG’ed interface for Java, Tcl, Python
6.4. Naming

6.4.1. Freedom/Constraint, Permit/Restrict?

6.4.2. InertiaMat (Inertia

7. Documentation
7.1. Need more examples, strategies

7.2. Draw a nice closed-loop structure with cut bodies

7.3. Make Doxygen-generated docs useful (see TAO)

7.4. Note that “handle” classes are an implementation of the well-known “PIMPL” design pattern
7.5. Continue working on coding standards document

8. Schedule

Here is rough ordering and timeline for the above:

8.1. 06/2006

8.1.1. Visualization tool working

8.1.2. Build stack working

8.2. 07/2006
8.2.1. Simple force subsystem working

8.2.2. Ability to make systems & studies and run them

8.2.3. State fully functional (except serialization)

8.2.4. CVODE design in place with Simbody support

8.3. 08/2006

8.3.1. New constraint functionality in place
8.3.2. CVODE coordinate projection scheme functional (with Radu)
8.4. 09/2006
8.4.1. Modified CVODE binaries available (with Jack & Radu)

8.4.2. Remaining mechanics capabilities in place (e.g. inverse dynamics)

8.4.3. Alternate integration schemes available (error controlled Verlet?)

8.5. 10/2006
8.5.1. Additional required studies in place, e.g. root finding

8.5.2. Simbody 0.7

8.5.3. Integration into ToRNAdo (with Chris)
8.6. 11/2006
8.6.1. Code packaging, cleanup, testing

8.6.2. Support alpha test users

8.6.3. Simmatrix 1.0 release (with Jack)

8.7. 12/2006
8.7.1. Additional interfaces, e.g. C, SD/FAST

8.8. 01/2007
8.8.1. Simbody 0.9
8.9. 02/2007

8.9.1. Integrated with OpenSim (with Ayman)

8.10. 03/2007
8.10.1. Documentation, testing, examples done
8.10.2. Simbody 1.0 Release
9. Plans for Simbody 2.0
9.1. Add support for analytic 2nd derivatives everywhere.

9.2. Support user-supplied joints & constraints.

9.3. Serialization

9.4. Higher level modeling support

9.5. Integration with OpenMM and features for high-speed molecular dynamics.

9.6. Theory manual, book, papers etc.

9.7. Training and coursework support.
