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Preface 
SimTK Simbody provides a powerful multibody mechanics capability for use in biosimula-

tion and robotics. It is designed for use by programmers who are not experts in multibody 

mechanics. Simbody provides a sophisticated, robust, high performance, open source option 

for mechanical simulation, including biomechanical simulation, as well as the additional 

functionality and performance needed for effective modeling of large molecular systems in 

internal coordinates. It is accessible through a stable C++ API. The full capability of this 

package, including bindings for other languages, will be built up in layers over time; this 

document covers the current capabilities and discusses future directions. 

A complete multibody mechanics simulation (a biomechanical gait simulation or a molecular 

dynamics simulation of a protein/RNA interaction, for example) requires many layers. At the 

lowest level are hardware-dependent, computationally intense “inner loop” numerical meth-

ods like basic linear algebra and molecular force field computations. Built on those are 

numerical mathematics methods like numerical integration, nonlinear root-finding, optimiza-

tion, and higher-level linear algebra. The next layer supports physics and mechanics and 

includes Simbody’s multibody dynamics capability, as well as a variety of models for forces 

and constraints.  

Simbody’s distribution contains multibody dynamics, generally useful force and constraint 

models, a crude visualizer, and the lower-layer software it needs to run efficiently. However, 

that is still by no means a complete simulation system since it does not include domain-

specific modeling or a GUI. Thus in any complete simulation tool there are typically two 

more layers built above Simbody: a modeling layer and a user interface that provides model 

building and editing, execution, and visualization of results.  

Consequently, Simbody itself is intended for use by primarily by programmers who are 

writing domain-specific modeling tools and/or user interfaces and would like to incorporate 

high-quality multibody mechanics into their work. Some current open source examples are:  

• OpenSim™, a musculoskeletal modeling layer and GUI developed at Stanford, 

http://opensim.stanford.edu, 
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• Gazebo, a robot simulator http://gazebosim.org from the Open Source Robotics 

Foundation (http://www.osrfoundation.org), and  

• MMB (MacroMoleculeBuilder) developed by Samuel Flores, 

https://simtk.org/home/rnatoolbox.  

MMB makes use of the Molmodel™ internal-coordinate molecular modeling layer for 

Simbody, https://simtk.org/home/molmodel.  

 

How to use this document 

This Simbody Theory Manual contains background information on simulation in general and 

multibody dynamics in particular, as well as detailed mathematical theory discussion and 

literature references describing Simbody’s implementation. Generally the equation-dense 

parts are kept separate from the overview, so readers who want just one or the other can skim 

over large chunks of material. 

This is not a programming manual or user guide so you will not find detailed information 

here about using Simbody in a program. For that, see the latest Simbody User Guide,  

Simbody Advanced Programming Guide, and Doxygen API documentation available from 

the Simbody distribution project at https://simtk.org/home/simbody (go to the Documents 

tab). Simbody also provides a public forum there where you can get help. Source code is 

maintained on GitHub at https://github.com/simbody.  

 

Document conventions 

In order to allow myself the pleasure of delivering the occasional opinionated diatribe, 

while permitting the easily offended reader to avoid them, I have placed a “pontification 

warning” symbol like the one at the left at the beginning of such sections in the text. The 

end of these sections is marked with the “off my soapbox” symbol to the right. 

 

The symbol to the left is used to highlight sections which summarize earlier material. 
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This one is used to mark discussions of capabilities which are planned but not yet 

implemented. 
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1 Background 
This is general material hopefully providing enough background for the rest of the document 

to make sense. Even if you are familiar with multibody dynamics, it is probably worth 

reading this section to see how we characterize it for Simbody users. 

1.1 What is “multibody dynamics”? 

Multibody mechanics (of which multibody dynamics is a component) is the field studying the 

classical mechanical properties, especially motion, of systems of bodies interconnected by 

joints, influenced by forces, and restricted by constraints. The key feature of a system that 

makes it suitable for multibody treatment is the observation that its motion is localized, that 

is, it is well-described as a set of independently identifiable parts which undergo large motion 

with respect to one another, but are themselves rigid or nearly rigid. Figure 1 shows some 

examples of the breadth of applicability of multibody mechanics, which has been used 

effectively to model machines, skeletal motion and gait, coarse-grained biopolymers, and 

many other systems relevant to a wide variety of scientific and engineering disciplines. 

 

 

 

 
Mechanical U-joint 

Articulated  
skeleton 

Figure 1: Some multibody 
systems. 

 

Protein  
backbone 
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Multibody mechanics is a generalization of several more-familiar modeling methods. It 

includes as special cases, for example, systems of point masses represented in Cartesian 

coordinates (e.g. molecular dynamics models) and systems of freely moving extended bodies 

(typically, rigid bodies) and these can be intermixed into systems which also contain bodies 

whose motion is defined with internal (relative) coordinates, that is, with respect to one 

another rather than with respect to the Cartesian frame. Multibody mechanics should be 

viewed as a basic numerical capability fundamental to any simulation system. It is in the 

same category as, say, a linear algebra library, not an end-user application. Simbody is for 

use by modelers and application developers as a basic building block. Computational re-

searchers working to improve multibody simulation methods can use Simbody as a baseline 

source of correct answers for debugging and as a performance baseline to demonstrate the 

superiority of their new methods. However, Simbody itself is not a research project; it is 

intended instead as a reliable, industrial-grade tool on which researchers may depend. 

1.2 Structure of a simulation in Simbody 

The figure below shows the primary objects involved in computational simulation of a 

physical system in Simbody, the infamous “three S’s of simulation”: System, State, and 

Study. Here’s our first equation: 

Simulation(Simbody) = System + State + Study 

A System is a computational embodiment of a mathematical model of the physical world. A 

System typically comprises several interacting, separately meaningful subsystems. A System 

contains models for physical objects and the forces that act on them and specifies a set of 

variables whose values can affect the System’s behavior. However, the System itself is an 

unchangeable, state-free (“const”) object. Instead, the values of its variables are stored in a 

separate object, called a State, more about which below.* Finally, a Study couples a System 

and one or more States, and represents a computational experiment intended to reveal some-

                                                

 

* We will frequently use “state” (lower case) to refer to the values stored within a State object. This isn’t as 

confusing as it might seem—even if we get the capitalization wrong the meaning will be obvious from context. 
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thing about the System. By design, the results of any Study can be expressed as a State value 

or set of State values which satisfies some pre-specified criteria, along with results which the 

System can calculate directly from those State values. Such a set of State values is often 

called a trajectory. 

 

It is important to note that our notion of “state” is somewhat more general than the common 

use of the term. By state, we mean everything variable about a System. That includes not 

only the traditional continuous time, position and velocity variables, but also discrete varia-

bles, memory of past events, modeling choices, and a wide variety of parameters that we call 

instance variables. The System’s State has entries for the values of all of these variables.  

This design allows the conceptually simple model depicted above to express every kind of 

investigation one may wish to perform. Here are some examples. The simplest Study merely 

asks the System to evaluate itself using values taken from a particular State. More interest-

ingly, a dynamic Study produces a series of time, position and velocity State values which 

result from solving the classical dynamic equations representing Newton’s 2nd law, F=ma. 

An energy minimization is a Study which seeks values for the State’s position coordinates at 

which an energy calculation yields its minimum value. A Monte Carlo simulation is a Study 

yielding a series of states which satisfy an appropriate probability distribution. Design 

studies, also used for parameter fitting, are Studies which find values for instance variables 

such as lengths, masses, material properties, or coefficients which meet specified criteria. 

Modeling Studies select among models or algorithmic choices to improve defined measures 

   
 

Study 
St
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e System 

Results 

  states Input 
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of behavior, such as accuracy, stability, or execution speed. And so on. Since we know that 

all System variability is contained in the State, we can guarantee that any answers you seek 

regarding the System can be expressed in terms of state values, provided that a corresponding 

System is available to interpret them. 

1.3 Structure of a System 

Looking a little closer at a System, you will find that it is composed of a set of interlocking 

pieces, which we call subsystems. 

 

In this jigsaw puzzle analogy, you can think of the System as providing the “edge pieces” 

which frame the subsystems into a complete whole. 

In general any subsystem of a System may have its own state variables, as can the System 

itself. The System ensures that its subsystems’ state needs are provided for within the overall 

System’s State. The calculations performed by subsystems are interdependent in the sense of 

having interlocking computational dependencies. However, these dependencies can always 

be untangled by performing computations in “stages” as will be discussed below. It is the 

System’s responsibility to properly sequence its subsystems through the stages. 

Note that by design this is not a hierarchical structure. It is a flat partitioning of a System into 

a small number of Subsystems. In a higher-level modeling layer, one would expect to find 

hierarchical models, which are a powerful way to represent the physical world. However, 

computational resources are flat, not hierarchical, and the System/Subsystem scheme is a 

Study 

St
at

e 

System 

subsystem 
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computational device, not a modeling system. The intent is that a modeling layer (or user 

program) assembles a System from a small library of Subsystems just at the point when it is 

ready to perform resource-intense computations. 

1.4 Structure of a multibody system 

Simbody provides some computational components (puzzle pieces) of a complete multibody 

mechanics System. Simbody’s primary piece, the SimbodyMatterSubsystem, manages the 

representation of interconnected massive objects (that is, bodies interconnected by joints). 

Simbody can use this representation to perform computations which permit a wide variety of 

useful Studies to be performed. For example, given a set of applied forces, Simbody can very 

efficiently solve a generalized form of Newton’s 2nd law F=ma. On the other hand, Simbody 

is agnostic about the forces F, which come from domain-specific models. That is, Simbody 

fully understands the concept of forces, and knows exactly what to do with them, but hasn’t 

any idea where they might have come from. Muscle contraction? Molecular electrostatic 

interactions? Galactic collisions? Whatever. 

A complete System thus consists both of the matter subsystem, and force subsystems that 

may be Simbody-provided, user-written, or application-provided. So for a multibody system, 

the general System described above is specialized to look something like this:  

 

St
at

e 

Simbody Multibody System 

Matter Forces #1 

Forces #2 

Forces #3 
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Although both the Simbody matter subsystem and the force subsystems require state varia-

bles, as discussed above any System (including of course a MultibodySystem) is a stateless 

object once constructed. Its subsystems collectively define the System’s parameterization, 

but the parameter values themselves are stored externally in a separate State object. 

The force and mechanical subsystems are computationally interlocked. For example, a user-

provided force will typically depend on position and velocity information (kinematics) 

returned by the Simbody matter subsystem, while accelerations (dynamics) calculated by 

Simbody will in turn depend on the values of the forces. Section 7.1 provides details on how 

these interlocking computations are performed.  
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2 Fundamental concepts of multibody 
mechanics 

There are only a few general concepts required to completely specify a multibody system. 

These are closely related to physical concepts for which the reader is likely already to have a 

good intuition. This is both blessing and curse, since our intuitive understanding of these 

concepts is almost, but not quite, general enough or precise enough to serve as a basis for 

general simulation. Nevertheless we will plunge ahead using familiar concepts, adding 

precise definitions and suitable generalizations where needed. 

The concepts we’ll need to define a multibody system are: coordinate frame, body, mobilizer, 

constraint, and force. We’ll also discuss the fundamental ideas of kinematics and dynamics 

of a multibody system. 

2.1 Coordinate frames 

We define a coordinate frame (synonyms: reference frame or just frame) F to be a set of 

three mutually orthogonal directions (called axes) and a point (called the frame’s origin). We 

will denote the axes as unit vectors Fx, Fy, Fz and follow a right-handed (“dextral”) conven-

tion so that Fz = Fx ´ Fy. We label frame F’s origin point FO. 

Coordinate frames are used for measuring things. We can express the location of a point P in 

frame F, for example, by measuring the vector r from F’s origin to P, that is  r = P–FO, and 

then expressing it in frame F by writing down the components of r in each of the three axis 

directions. These numerical values are called the measure numbers of r in F denoted 

( , , ) ( , , )F
x y z x y zr r r F F F= = × × ×r r r r . That is, the measure numbers are the scalars obtained by 

taking the dot product of a vector with each of the three axis directions of the expressed-in 

frame. Here’s a picture: 
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Note that r is a unique physical quantity (the vector from FO to P) but its measure numbers 

would be different if it were expressed in a different frame. In general we will use the [ ]F Q

notation to indicate that some physical quantity Q is being expressed in frame F, whenever 

the frame is not already obvious. 

I suspect the above has not been much of a stretch for most readers, since this is a perfectly 

ordinary example of a conventional coordinate frame. Possibly the notation and the term 

“measure number” are new, but everyone is familiar with these concepts. We are just being 

excruciatingly precise in distinguishing the physical quantities of direction and location from 

their expression in a particular frame of reference. 

This next idea may seem a bit odd if you haven’t encountered it before: the concept of a 

frame makes perfect sense even if we can’t say where it is or which way its axes are pointing. 

Once we have a frame F, for example, like the one defined above, we can start measuring 

things in frame F without the slightest idea how F is placed with respect to other things. We 

can even measure frame F in itself—the measure numbers of its axes are F[Fx] =(1,0,0), 
F[Fy]=(0,1,0), F[Fz]=(0,0,1) and its origin point is F[FO]=(0,0,0). In a sense F defines its own 

self-consistent universe without reference to anything else. Note that this universe extends 

infinitely in every direction. In multibody mechanics we have another name for such an 

independent universe: a body. (Roboticists often call the same concept a link.) 

2.2 Bodies (links) 

Fundamentally, a body B is just a moving reference frame, called the body frame B. You 

probably aren’t used to thinking of a body this way! We will shortly connect this back to 

FO 

Fx 

Fz 

P 

r rx 

ry 

rz 

Figure 2: Coordinate frame F, and how to 
express the location of a point P in F. 

Fy 
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more intuitive “body” concepts like mass and geometry; however, it is the frame that is a 

body’s most fundamental characteristic. One implication of this is that a body extends 

infinitely in all directions. Before you completely reject this idea, answer this question: is the 

hole a part of a doughnut?* In any case the infinite extent of bodies will turn out to be very 

convenient when we start connecting them together. 

We call the ordered set of all bodies in a multibody system B[, with the ith body designated as 

[ ]i ÎB[ B . [ ]’siB[  body frame is [ ]iB[  with origin [ ]O iB [ . In practice we’ll only have to talk 

about a few bodies at a time so we can use different letters for them and avoid subscript 

bloat. In particular, body G is the distinguished body Ground representing the inertial (non-

accelerating, non-rotating) reference frame.† The ground frame provides a global origin OG  

(we’ll usually drop the frame in this case and just say O) and fixed orthogonal directions 

, ,x y zG G Gx y z! ! ! . By convention, we identify ground with the “0th” body, that is, 

[0] GºB[ . 

Bodies typically have associated features which can be measured in and expressed in the 

body frame. These include other frames, directions (unit vectors) and stations (point loca-

tions). The body frame B origin point BO is the station whose measure numbers when ex-

pressed in B are (0,0,0), and its axes are the directions with measure numbers (1,0,0), (0,1,0), 

and (0,0,1). Mass properties include the total mass (a scalar), the center of mass (a station, 

represented numerically by a vector), and an inertia tensor (numerically a 3´3 symmetric 

matrix) which expresses rotational inertia about a particular station. When the inertia tensor 

is defined about the center of mass it is called the central inertia. For rigid bodies, mass 

properties are constant; for deformable bodies (not presently supported by Simbody) the 

mass is constant but the center of mass and inertia will be seen to vary when measured in the 

body frame. 

                                                

 

* Thanks to Paul Mitiguy for the doughnut analogy. 
† Other names sometimes used for the ground frame are: Cartesian frame, Newtonian frame, world frame, 
inertial frame, laboratory frame, and experimenter’s frame. 
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For practical purposes we assign each body a fixed property called that body’s mass struc-

ture. The possible mass structures are: (1) ground, (2) massless, (3) particle (inertialess), (4) 

line (inertialess in one direction), (5) rigid body, and (6) flexible body. 

2.3 Mobilizers 

A mobilizer connects a body to its unique parent body,* and provides the relative mobility 

(degrees of freedom or “dofs”) allowed between those bodies. Mobility expresses the permit-

ted motion of a body’s frame with respect to its parent’s frame. Don’t confuse this with the 

idea of constraining the motion of otherwise free bodies—in Simbody, bodies start out with 

no mobility at all, meaning that the body’s frame and its parent’s frame are locked together 

and would stay that way forever. Thus there is no motion to be constrained. Instead, Mobi-

lizers are used to grant to a body the ability to move relative to its parent, allowing transla-

tion and/or rotational motion of the body frame and providing a parameterization of that 

motion. We call these unrestricted, parent-relative degrees of freedom a body’s mobilities. 

The unique Ground body has no parent and no mobility. 

2.3.1 Mobilizers are not joints 

When describing a multibody system, a joint is a higher-level (more abstract) concept than a 

mobilizer, although they are easily confused. We reserve the term “joint” to refer to the 

physical-world concept of that name, as illustrated in Figure 3. In general, joints are imple-

mented as a combination of mobilizers and constraints, and may also introduce force ele-

ments (e.g. friction or soft stops). It is possible to create topological loops with joints but not 

with mobilizers, as the latter are restricted to connections between bodies and their unique 

parents. So a mobilizer can only add degrees of freedom to a system, while a joint may add 

or remove them.  

                                                

 

* Recall that Ground is a body. 
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Figure 3: a mechanism with four joints; at most three can be  

mobilizers unless you break one of the bodies. 

A mobilizer is one way to implement a joint, but not all joints are mobilizers. For example, 

when a joint forms a loop as in the figure, it reduces the total mobility, requiring implementa-

tion as a constraint rather than a mobilizer. While the physical system is uniquely described 

in terms of its bodies and joints, in general there will be many ways to decompose that 

system into mobilizers and constraints for purposes of building a Simbody model. In particu-

lar, for a case like the one illustrated in Figure 3, there is a nice way to make the mobilizers 

correspond to the joints—break the loop by cutting one of the bodies instead of the more 

intuitive means of breaking one of the joints. The split body’s mass properties should be 

divide 50/50 between the two halves (don’t use a massless body – that risks making the tree 

part of the system singular which is not allowed in Simbody). Then a Weld constraint is 

added to weld the two halves back together into the original body. With this approach all the 

joints are mobilizers so are treated uniformly, with the motion of every joint being represent-

ed explicitly by mobilities. The alternative of modeling one of the joints with a 5-constraint 

equation Pin constraint can work but is unappealing; one of the joints is then modeled 

differently, and there are no coordinates in the system directly corresponding to the motion of 

that joint. 

One case where it is reasonable to split a loop at the joint is when that joint is a Ball joint 

modeled with quaternions – in that case you can use a Ball constraint rather than a Ball 

mobilizer and easily obtain the quaternions from the relative orientations of the two con-
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strained bodies. Other than that, though, we recommend splitting loops by cutting bodies 

rather than joints. 

2.3.2 Types of Mobilizers 

The most common mobilizer types are sliding, torsion, and orientation. A sliding mobilizer 

(syn: prismatic) provides a single degree of freedom representing translation along a defined 

axis, and adds a single coordinate with units of length to the system’s set of generalized 

coordinates. A torsion mobilizer (syn: pin) provides a single degree of freedom representing 

rotation about a defined axis and adds a single generalized coordinate with angular units. An 

orientation mobilizer (syn: ball, spherical) permits unrestricted relative orientation between 

its pair of bodies, that is, three degrees of freedom and at least three corresponding general-

ized coordinates (for dynamics these require a four-element quaternion). 

Most other mobilizer types can be viewed as compositions of the three basic types. For 

example, a cartesian mobilizer is a composition of three sliding joints with orthogonal axes 

and thus permits unrestricted relative translation (three degrees of freedom) between the 

bodies it connects. A free mobilizer is a composition of a cartesian and an orientation mobi-

lizer and permits six degrees of freedom (completely unrestricted motion) between its bodies. 

A free mobilizer serves to introduce independent rigid bodies into the system and simply 

provides a convenient reference frame and corresponding coordinates with which to express 

their motion. Note that, like all other mobilizers, a free mobilizer can be placed between any 

two bodies—it does not have to connect a body to ground. This allows very convenient 

relative coordinates to be used for collections of independent bodies. For example, one can 

express a protein domain that carries its local waters and ions along with it when it is moved 

kinematically. 

Complex joints can be built up from mobilizers and constraints (see below). A “screw joint” 

for example could be composed of a coaxial sliding and torsion mobilizer, providing one 

translational and one rotational coordinate, plus a constraint enforcing a defined relationship 

(the screw’s “pitch”) between the time derivatives of these coordinates. However, the Sim-

body mobilizer concept is extensible in the sense that arbitrarily complicated ones can be 

constructed without the use of constraints. There is, in fact, already a screw mobilizer that 

has only a single generalized coordinate and no constraints, but can only represent screw 
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motion. A more elaborate, data-driven example is a subject-specific knee joint which can be 

built as a 1-dof mobilizer so that a single unconstrained coordinate is used to represent the 

complicated coordinated rotational and translational motion of a knee. 

2.3.3 Mobility space 

A body can have from 0 to 6 relative mobilities (degrees of freedom) with respect to its 

parent body. Summing the mobilities of each body in a multibody system, the total of n 

mobilities defines an n-dimensional mobility space for the multibody system. The n mobili-

ties are independent by construction and thus form a basis for mobility space. Only configu-

rations in mobility space are representable by the multibody system. Typically there are many 

conceivable configurations which simply cannot be expressed. For example, consider a 

system composed of Ground and one moving body, a wheel, having a single mobility with 

respect to Ground consisting of just a rotation about a fixed axis. One can imagine a configu-

ration in which the wheel is removed from the axis, but the chosen multibody system simply 

can’t express that. With just one coordinate, an angle, we can only talk about rotations of the 

wheel about an axis. Additional mobilities would have to have been granted to the wheel in 

order to express more general configurations. 

This ability to limit the mobility space of a multibody system is extremely powerful if you 

happen to know something about the space containing the solutions of interest to you. To 

continue the above example, if you are a car designer rather than a crash-test engineer, then 

you know that correct solutions to your vehicle simulation problems will always exhibit 

wheels that are attached to their axles. Solutions in that smaller space are much easier to find 

than solutions in the much larger space where wheels may be found anywhere. Similarly, in 

molecular mechanics if you know that certain groups of atoms are always observed to move 

together as rigid bodies, problems are much easier to solve in a reduced space in which only 

those groupings can be expressed, than one in which the atoms could be anywhere. We know 

that correct solutions would always “rediscover” the known groupings (at great, and unnec-

essary, expense). 
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2.3.4 Parameterization of mobility 

The mobilities of the bodies in a multibody system, taken together, define its mobility space. 

However, we must choose a particular parameterization of this space (that is, a basis) in order 

to express a particular configuration and motion of the multibody system and this choice is 

not unique. Conveniently, body mobilities are mutually independent so we may choose the 

parameterization for each body separately. The set containing all these parameters is then the 

parameterization of mobility for the multibody system as a whole. 

The independence of body mobilities localizes the parameterization issue to the mobilizer for 

each body. Each mobilizer must define two sets of scalar parameters to express particular 

values for its mobilities, one set to specify the relative positioning (configuration) and the 

other to specify the relative velocity (motion) between the parent and child bodies. Parame-

ters used for positioning are conventionally called generalized coordinates; parameters for 

velocity are called generalized speeds.* The symbol q is used to represent a vector of general-

ized coordinates, and u is a vector of generalized speeds. Generalized coordinates are some-

times referred to as “internal coordinates,” “relative coordinates,” or “torsion coordinates.” 

In Simbody, the number of a body’s generalized speeds u is always the same as that body’s 

mobility—e.g., if a body has five degrees of freedom with respect to its parent, then it will 

also have five u’s. The u’s are thus mutually independent. u’s have interpretations with direct 

physical meaning, and the system equations of motion are written in terms of the time 

derivatives of u, which we denote u!  and refer to as generalized accelerations. The general-

ized coordinates q, on the other hand, must at times be chosen for convenience or computa-

tional stability and do not always map directly to physical quantities, so in general q u¹! . In 

fact, for many bodies there will be more q’s than u’s in which case the q’s are not always 

independent. However, the interdependence among a body’s q’s is always a localized rela-

tionship among only those q’s, and never involves other bodies. At any particular configura-

                                                

 

* Generalized here refers to the use of the mobility space basis where the meaning of the coordinates and speeds 
depends on the definition of the associated mobility. They can represent translations, rotations, or more general 
motions. We similarly use generalized forces to mean both forces, torques, or more general loads which are 
applied along or about mobilities. 
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tion, there is always a linear, invertible relationship between q!  and u, and each Mobilizer 

provides the necessary conversions. As a specific example, during dynamic calculations 

Simbody Mobilizers that permit unrestricted relative orientation between a body and its 

parent use four quaternions to stably represent the orientations, while the three generalized 

speeds are just the elements of the relative angular velocity vector. The four quaternions must 

satisfy a normalization constraint, leaving only the expected three degrees of freedom for the 

four coordinates. 

For the whole multibody system, the generalized speeds are aggregated in a vector whose 

length is the sum of the mobilities of each body. This vector is the set of generalized speeds 

for the multibody system and is also designated u. A vector q aggregating the individual 

bodies’ generalized coordinates forms the generalized coordinates for the whole multibody 

system. Together, q and u constitute the instantaneous state of the matter component of a 

multibody system. It will usually be clear from context whether we are referring to the 

coordinates of the whole system or just one body, but if we need to be specific we use qB and 

uB to indicate the sets of mobilizer parameters for body B. 

2.3.5 A comment on deformable (flexible) bodies 

In general, the bodies of a multibody system do not have to be rigid. It is sometimes desirable 

to allow the bodies themselves to undergo small internal motions, called deformations. These 

add a new set of independent coordinates to the overall system coordinates and speeds, but 

we distinguish them from the generalized coordinates and generalized speeds introduced by 

mobilizers and refer to them instead as deformation coordinates and deformation rates. 

Various techniques can be used to determine the appropriate representation of deformable 

bodies. Typically, structural mechanics methods are used to aggregate large nearly-rigid 

subsystems into deformable bodies with “assumed mode” linear deformations. 

We do not provide direct support for deformable bodies yet in Simbody, but it is always 

possible to model body flexibility by partitioning the body into Mobilizer-connected rigid 

bodies, with internal forces and constraints modeling the deformation behavior. Reference 1 

describes how deformable bodies can be incorporated into a computational methodology like 

Simbody’s. 
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2.4 Constraints 

As discussed above, Simbody’s mobilizers allow construction of a very small mobility space 

to represent all possible motion of the bodies of a multibody system. However, we will often 

find that even this reduced space is substantially larger than our known solution space. For 

example, in a multibody system where the joints form closed loops like the one shown in 

Figure 3, mobility space would permit solutions where the loops are not closed. Instead, we 

would like to focus on a lower-dimensional subspace of mobility space, called constrained 

space. The dimensionality of constrained space is the net number of degrees of freedom 

possessed by the multibody system.* So a multibody system’s net degrees of freedom (or net 

mobility) can be smaller than the sum of its bodies’ individual mobilities. 

One might wish simply to redefine the mobility of the bodies so that only constrained space 

can be expressed (that is, make mobility space=constrained space), and that is a very good 

thing to do if you can. Unfortunately, in general constrained space cannot be parameterized 

directly. Instead we create a system with a small but convenient-to-define mobility space, 

and then add a set of constraints whose satisfaction implicitly defines the constrained space. 

Constraints may represent arbitrary restrictions on the generalized coordinates and general-

ized speeds, and linear restrictions on accelerations. Each Simbody constraint generates one 

or more constraint equations. Each independent constraint equation removes one degree of 

freedom from the system. In this sense constraints are the complement of mobilizers, whose 

generalized speeds each add one degree of freedom to the system. And in fact any n-dof 

mobilizer can be represented instead as a free mobilizer plus 6−n constraint equations.  

Constraints among the moving bodies of a physical system act by introducing internal forces 

and moments. These forces act in the same manner as the applied forces described below—

they can act on bodies or along mobilities (joint axes), and as with applied forces they can 
                                                

 

* When a multibody system represents a mechanism, the net number of degrees of freedom after accounting for 

constraints is conventionally called the mechanism’s “mobility.” We use the terms mobility and mobility space 

exclusively to mean the number of degrees of freedom in the unconstrained system. We’ll say “net dofs” or 

“net mobility” whenever we’re referring to the post-constraint leftovers. 
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always be reduced to a system of forces acting only along the mobilities. The only difference 

between constraint forces and externally applied forces is that the constraint forces are 

unknown and must be solved for simultaneously with the system accelerations. 

2.5 Forces 

By forces we mean to include both forces and moments (torques).* Force vectors can be 

applied to the multibody system at any station on a body and moment vectors can be applied 

to any body (or implemented as pairs of forces). Scalar forces or moments can also be 

applied to the system’s mobilities, that is, directly along the generalized speeds; these are 

called generalized forces or mobility forces. All systems of forces and moments can be 

reduced to an equivalent set of generalized forces, and Simbody provides an operator which 

efficiently performs this useful conversion.  

Forces can be functions of time, position, velocity, and their own internal states. They may 

be local effects or result from spatially distributed fields or a constant gravitational field, or 

act pairwise between distant stations (e.g. atoms) in the system. Forces which depend only on 

configuration are called conservative forces, and are the gradient of some potential energy 

function. Non-conservative forces dependent on time and velocity exist as well but may not 

contribute to potential energy. 

2.6 Kinematics 

Kinematics is usually defined as the study of motion without regard to mass or force. In 

practice, however, it is entirely concerned with the mapping between the mobility coordi-

nates and spatial positions, velocities, and accelerations of the bodies. The mobility coordi-

nates and speeds uniquely determine the spatial quantities so the mapping in that direction is 

fast and direct; this is called forward kinematics. Given a q we can immediately say where all 

the bodies are; with q and u we can say how they are moving; and with q, u, and u!  (where u!  

is the time derivative of u) we can say how they are reacting (accelerating). The reverse 

                                                

 

* The term loads is often used as an alternative with less ambiguity. However we will continue to use the more 
familiar term forces, usually meaning both forces and torques. 
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direction is called inverse kinematics and is more difficult unless all bodies have been given 

unrestricted mobility (i.e., they are “free”). Given a set of observed spatial kinematic quanti-

ties, the goal of inverse kinematics is to find the “best fit” mobility coordinates and speeds 

that satisfy both the observations and the constraint equations generated by the multibody 

systems’ own Constraints. Such problems arise, for example, when fitting a reduced-

coordinate molecular model to a set of atom positions determined with X-ray crystallog-

raphy. Simbody provides an Assembler solver that can solve many common inverse kinemat-

ics problems. More generally, there is a broad assortment of useful initial condition analyses 

which must be performed prior to the start of a dynamic analysis, and these are based on 

kinematic calculations. 

2.7  Dynamics 

Dynamics is concerned with the relationship between forces and accelerations at a fixed 

value of the state variables q and u. This is determined by Newton’s second law, f=ma. 

Forward dynamics attempts to calculate accelerations and internal constraint forces, given a 

set of applied forces (which is equivalent to some set of generalized forces f). Inverse dynam-

ics (also called prescribed motion) attempts to determine what set of generalized forces 

explains a given set of generalized accelerations. In practice it is often useful to specify some 

accelerations and some forces and calculate the remaining unknowns.  

Given this definition of dynamics, advancing the state through time to produce a trajectory, 

or searching through the state to satisfy particular objectives, are higher-level operations 

(“Studies”) which are facilitated by the multibody dynamics capabilities described here. 

SimTK::TimeStepper and SimTK::Integrator objects are designed to employ Simbody 

dynamics calculations to generate a trajectory through time. 
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3 Basic Simbody numerical types 
This chapter presents the basic numerical types used repeatedly in the Simbody API and in 

theory discussions. We’ll present both the mathematical notation and definitions for these 

objects and the C++ classes used to manipulate them programmatically. 

3.1 Vectors and Matrices 

Simbody makes use of lower-level SimTK toolsets to simplify its interface and internals. The 

SimTK general purpose Simmatrix™ package (part of the SimTKcommon library that is part 

of Simbody) is used to handle basic vector and matrix objects. We follow the Simmatrix 

convention of using names containing “Vector” and “Matrix” to refer to large objects of 

variable dimension, and names containing “Vec” and “Mat” to mean small, fixed-size objects 

of known dimension. The types we use most are the fixed-size Vec3 and Mat33 types and the 

variable length Vector type. We use the basic Simmatrix types to build up a set of special-

ized vectors and matrices of particular use in manipulating physical objects, as described in 

the next sections. 

3.2 Geometry 

We provide a small set of specialized types for dealing with geometric quantities of interest 

in multibody dynamics. This is not intended to be a general purpose geometry package. For 

example, we happily assume that all geometry of interest is 3D. 

Given the fundamental existence of a rigid body frame B, we are primarily interested in 

stations, directions, and other frames fixed in B. These are represented by positions, rota-

tions, and transforms (xforms) respectively, which locate these objects with respect to an 

existing frame.  

3.2.1 Stations 

Stations are simply points which are fixed in a particular reference frame (i.e., they are 

“stationary” in that frame). They are specified by the position vector which would take the 

frame’s origin to the station. A position is represented by a Simmatrix Vec3 type. Simbody 

does not provide an explicit Station class; Vec3’s are adequate whenever a station is to 

be specified. 



 

20 

3.2.2 Directions 

Directions are unit vectors, which are Vec3s with the additional property that their lengths are 

always 1. We define a class UnitVec3 which behaves identically to Vec3 in most respects but 

restricts the ways in which values can be assigned to ensure that the length is always 1. This 

has concrete performance benefits because this unit length guarantee means that we can track 

length-preserving operations at compile time and avoid unnecessary normalization checks, or 

worse, unnecessary normalizations which are very expensive. 

3.2.3 Rotations 

There are many ways to express 3D rotations. Examples are: pitch-roll-yaw, azimuth-

elevation-twist, axis-angle, and quaternions. Many others are in common use. Each way of 

writing orientation has its own quirks and complexities. However, all of these are equivalent 

to a 3x3 matrix, called a rotation matrix (synonyms: orientation matrix, direction cosine 

matrix). Rotation matrices have a particularly simple definition and straightforward physical 

interpretation, and are very easy to work with. At the API level, Simbody uses the rotation 

matrix as a least common denominator, embodied in a class Rotation. Rotation provides a 

set of methods which can be used to construct a rotation matrix from a wide variety of 

commonly-used rotation schemes. 

Rotation matrices are simply 3x3 matrices whose three columns are mutually perpendicular 

directions (unit vectors) representing the axes of one coordinate frame, expressed in another. 

These are represented internally in objects of type Rotation as an ordinary Simmatrix 

Mat33, and behave identically except that their construction and assignment is restricted to 

ensure that certain properties are maintained. Those properties are: each column and row is a 

unit vector, the columns are mutually perpendicular, and the rows are mutually perpendicu-

lar, forming a right-handed set. That means that the third column (row) is the positive cross 

product of the first two columns (rows). Such a matrix is orthogonal; hence its transpose is its 

inverse. Its determinant is +1, meaning that it is a pure rotation and not a reflection or scaling 

operation. 

We use the symbol R with left and right superscripts from toR  to represent the orientation of the 

“to” frame (the right superscript) measured with respect to the “from” frame (the left super-

script), like this: 
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[ ] [ ]( )GG GG B
x y zR B B Bé ùº ë û  

(Bx is the x-direction unit vector of frame B, with measure numbers expressed in B’s frame, 

while the operator [ ]F
!  indicates that the measure numbers of some physical quantity are re-

expressed in coordinate frame F.) So the symbol G BR  should be read “the axes of frame B 

expressed in frame G,” or “the orientation of frame B in G,” or just “B in G.” We never use 

“R” alone for a rotation matrix; that is a recipe for certain disaster. Instead, we always 

provide the two frames. (When under tight typographical restrictions, as in source code, we 

write G BR  as R_GB.) Using this notation, one can simply match up superscripts to rotate 

vectors or compose rotations. Also, since these are orthogonal, the inverse of a rotation 

matrix is just its transpose, which serves simply to swap the superscripts. Using the Simma-

trix “~” operator to indicate matrix transpose: ~G B B GR R= . As an example, if you have a 

rotation G BR  and a vector Bv expressed in B, you can re-express that same vector in G like 

this: G G B BR=v v! . To go the other direction, we can write ~B B G G G B GR R= =v v v! ! . As a 

C++ code fragment, this can be written 

Rotation R_GB;  //orientation of frame B in G 
Vec3     v_G;   //a vector expressed in G 
… 
Vec3     v_B = ~R_GB*v_G; //re-express v_G in frame B 
 

Composition of rotations is similarly accomplished by lining up superscripts (subject to order 

reversal with the “~” operator). So given G BR  and G CR  we can get B CR  as 

~B C B G G C G B G CR R R R R= =! ! . Note that the “~” operator has a high precedence like unary 

“–” so ~G B G CR R!  is (~ )G B G CR R! , not ~ ( )G B G CR R! . 

As is typical for Simmatrix operations on small quantities, the transpose operator is actually 

just a change in point of view and involves no computation or copying of data. That is, the 

operations B G GR v!  and ~G B GR v!  are exactly equivalent in both meaning and performance: 

the cost is 15 floating point operations (three inline dot products), with no wasted data 

copying or subroutine calls. 
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3.2.4 Transforms 

Transforms combine a rotation and a position (translation) and are used to define the configu-

ration of one frame with respect to another. (Recall that we consider a frame to consist of 

both a set of axes and an origin point.) We represent a frame B’s configuration with respect 

to another frame G by giving the measure numbers in G of each of B’s axes, and the measure 

numbers in G of the vector from G’s origin point to B’s origin point, for a total of 4 vectors, 

which can be interpreted as a 3x3 Rotation (see above) followed by the origin point location 

(a Vec3). Following computer graphics convention, we call this object a transform (abbrevi-

ated xform) and conceptually augment the axes and origin point to create a 4x4 linear opera-

tor which can be applied to augmented vectors (4th element is 0) or points (4th element is 1), 

or composed using matrix multiplication. We define a type Transform which conceptually 

represents transforms as follows:  

[ ] [ ] [ ]
0 0 0 1

G G G G B
x y zG B B B B p

X
æ ö
ç ÷ç ÷
è ø
!  

(The notation O OG BG Bp pº , that is, the vector from the origin of the G frame to the origin of 

the B frame.) Note that we use the symbol X for transforms, with superscripts from toX  so 
G BX  means “the transform from frame G to frame B,” or “frame B measured from and 

expressed in frame G.” Another way to interpret G BX  is that it represents the operations that 

must be performed on G to bring it into alignment with B (a rotation and a translation). Then 

as for rotation matrices described above, we can interpret G B B CX X!  as a composition of 

operators yielding G CX , and ~G BX is defined to yield the inverse transform B GX .* 

The above transform matrix can be considered a matrix of four columns as shown: three 

augmented vectors and an augmented point. An alternate, and entirely equivalent, way to 

view this is as a rotation matrix, translation vector, and an extra row: 

                                                

 

* Note that this is actually a different definition for the “~” operator than is normally used in Simmatrix, since 
the inverse of a transform is not simply its transpose. However, the analogy with ~R (which is both the trans-
pose and inverse of rotation matrix R), combined with the lack of any practical use for the transpose of a 
transform, makes this use of “~” very attractive and natural to use in practice. 
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In our implementation, the physical layout of a Simbody Transform is just the three columns 

of the rotation matrix followed immediately in memory by the translation vector, that is, 

( )
3 4

G B G B G BX R p
´

= . There is no need for the fourth row to be stored in memory since it is 

always the same. 

Given a Transform, you can work with it as though it were a 4x4 matrix, or work directly 

with the rotation matrix R and translation vector p individually, without having to make 

copies. Although a transform defined this way is not orthogonal, its inverse is easy to apply 

with no additional calculation. As described above, we overload the normal matrix transpose 

operator “~” to recast a Transform to its inverse so that either the transform or its inverse 

can be used conveniently in an expression, for example, ~B C G B G CX X X= ! . As is typical 

using Simmatrix objects, this inverse operator is just a change of point of view at zero cost, 

so the total cost is the same in either direction. For example, to transform a point measured 

and expressed in one frame to the equivalent one re-measured and re-expressed in another 

frame costs one 3x3 matrix-vector multiply and one addition of 3-vectors per transformed 

point, for a total of 18 floating point operations (flops), and the cost is the same if we trans-

form it back using a Transform inverse. A straightforward implementation of a 4x4 trans-

form (i.e., as an actual 4x4 matrix times a 4-vector) would require 28 floating point opera-

tions per transformed point. Composition of Transforms (using the ‘*’ operator for matrix 

multiply) is done in 63 flops but would take 112 using a 4x4 matrix multiply. Thus Trans-

form provides the convenience of a 4x4 transformation matrix at substantially lower cost. 

3.3 Mechanics 

Some additional specialized quantities arise in mechanics for dealing with mass properties, 

which consist of a mass, center of mass, and inertia matrix for each body. Mass is a simple 

scalar and center of mass just a point so we do not define special classes for them. Inertia, 

however, is a tensor quantity (a 3x3 matrix) which is expected to exhibit certain properties. 
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Among these, it is symmetric, and the values of its elements must satisfy certain relation-

ships. In addition, there are common operations on inertias which can be most efficiently and 

conveniently provided with a distinct inertia class. So we provide a class Inertia which is 

stored physically as a 3x3 symmetric matrix, i.e., a Simmatrix SymMat33 containing six real-

valued numbers. This behaves like an ordinary matrix for read-only operations but its con-

struction and assignment is restricted to enforce physical relevance, and additional operations 

are provided, such as shifting inertia taken about one point to the equivalent inertia about 

another point.  

For convenience we combine all the mass properties into a MassProperties class, which 

contains a mass, a center of mass location, and an inertia matrix. Note that there is implicitly 

a reference frame in whose axes the vector and tensor are expressed, and from whose origin 

the center of mass location and inertia distribution are measured. 

3.3.1 Spatial Notation 

We also build on the Simmatrix types to define some specialized vectors and matrices useful 

in mechanics. Following Jain and Rodriguez5, we use spatial notation which combines 

translational and rotational quantities into a single object. Using Simmatrix we define the 

convenient type SpatialVec to mean a stacked vector of two ordinary 3-vectors, and Spa-

tialMat to mean a 2x2 matrix of ordinary 3x3 matrices, that is 

typedef Vec<2,Vec3>    SpatialVec; 

typedef Mat<2,2,Mat33> SpatialMat; 

Note that these convenient types have well-defined interpretations as packed arrays of real 

numbers, which means they have equivalent descriptions in C and FORTRAN, which we’ll 

address later. There is zero overhead in C++ for using the more expressive types.  

The first sub-vector of a SpatialVec is always the rotational component, and the second is 

the translational one. Some examples of spatial vectors: spatial velocity V, spatial accelera-

tion A, and spatial force F, defined like this: 

, ,V A F
v a f
w b µæ ö æ ö æ ö
ç ÷ ç ÷ ç ÷
è ø è ø è ø
! ! !  
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where ω is an angular velocity vector, v a linear velocity,  β an angular acceleration*, a is a 

linear acceleration, µ a moment (torque), and f is a force. Each of these elements is an ordi-

nary 3-vector (Vec3). Sadly, orientation is not a vector quantity so we can’t use an analogous 

SpatialVec P
p
qæ ö
ç ÷
è ø
! to represent configuration (orientation and position) of a rigid body 

(that is, of a reference frame). However, it can be useful to think of position this way in some 

circumstances. 

Unless otherwise indicated, all quantities are measured with respect to the ground frame G, 

and linear quantities are referred to the body origin. That is, the default symbols above 

represent 

, ,
O O O

G B G B G B
G B G B G B

B B BG G GV V A A F F
v a f
w b µæ ö æ ö æ ö

= = =ç ÷ ç ÷ ç ÷
è ø è ø è ø
! ! !  

For spatial position, instead of the fanciful P we use the Transform class described above, 

where 

  ( )O OG BG B G BX R p=  

with rotation matrix R playing the role of P’s θ. 

The above notation and somewhat atypical use of Greek symbols was chosen so that there 

would be an obvious way to represent these using the restrictive typographical capability of a 

programming language. For Greek letters we use the correspondence w=ω, b=β, m=µ, q=θ, 

so we can represent the above symbols in code with 

V=[w,v], A=[b,a], F=[m,f], P=[q,p], X=[R,p] 

(Although as mentioned above there is no actual P like this, orientation angles and quaterni-

ons are part of the generalized coordinates q so this notation is conceptually right even if 

pragmatically flawed.) 

                                                

 

* We use β rather than the more conventional α for angular acceleration because a and α are too similar in many 

fonts, and we can use b in code rather than spelling out alpha. 
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3.3.2 Cross product matrix 

For any vector quantity v, we use the notation ´v  to indicate a 3x3 skew-symmetric cross 

product matrix such that for any vector w, ´ × = ´v w v w . Spelled out in scalars, the cross 

product matrix is  

 
0

0
0

z y

z x

y x

v v
v v
v v

´

æ ö-
ç ÷

= -ç ÷
ç ÷-è ø

v  (3.1) 

Note that the matrix is skew-symmetric, so  ´ ´= -v vT .  

We will occasionally make use of the following identities: 

 ( )´ ´ ´= +v +w v w  (3.2) 

 3´ ´ = -v w wv w v1T T  (3.3) 

 2
3´ ´ ´ ´ ´= - = -v v v v v v v1 vv!

T T T  (3.4) 

 ( 31 is a 3x3 identity matrix.) Note that ´ ´v vT  is a symmetric matrix with non-negative diago-

nal elements. Spelled out in scalars, 
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´ ´ ´

æ ö+
ç ÷
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v v v!
T

T T

T  (3.5) 

where T indicates that the element is the same as the transposed one. This can also be viewed 

as the inertia (or gyration) matrix of a unit-mass particle located at v, measured about the 

origin. 

 
3 3

( ) ,
where  is orthogonal.

´ ´

´

× × = ×U v U U v
U

T

 (3.6) 

Since rotation matrices are orthogonal, equation (3.6) is particularly useful when transform-

ing spatial quantities from one frame to another. 

 ( )´ ´=v v! !  (3.7) 

where the overdot indicates a derivative with respect to time taken in some frame understood 

from context. 
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Identity (3.7) is primarily useful to allow us to write ´v!  unambiguously without concern for 

the typographical details of the overdot placement. 

3.3.3 Spatial mass properties 

The mass properties of a rigid body conventionally consist of the body’s mass m, the mass 

center location p, and its inertia tensor J. It is convenient to view the inertia tensor as the 

product of the mass and a gyration tensor G, such that J=mG. Then a spatial inertia matrix M 

can be written as a spatial gyration matrix (giving the mass distribution) scaled by the total 

mass: 

3

p
M m

p
´

´

æ ö
ç ÷-è ø1

!
G

 

For the spatial inertia matrix BM  of a body B about its origin BO we have O CB Bp=p  so 

3

O C

O C

B B
B

B B B B

p
M m

p
´

´

æ ö
= ç ÷

-è ø1
G  

Note that when the spatial mass properties are given about the center of mass BC we have 

0=p  so 

3

0
0

C
C

B
B B
B BM m

æ ö
= ç ÷

è ø1
G  

Where the central gyration matrix is 

2
3( )CB

B B B Bp p p´ ´ ´= - - = - = -p p1 ppG G G GT T T  

using the parallel axis theorem and then cross product matrix identities (3.4). 

 

If we have the spatial velocity VC also referred to the center of mass, i.e. C
C

V æ ö
= ç ÷
è ø

ω
v

, then we 

can define another spatial vector quantity, spatial momentum of a body “referred to” its 

center of mass: 
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0
0

C C
C C C

C C
P M V m m

æ ö æ öæ ö
º = =ç ÷ ç ÷ç ÷

è øè ø è ø

ω ω
v1 v

G G  

In the more general (and typical) case where the body origin BO≠BC we compute spatial 

momentum the same way with the result being the spatial momentum referred to BO, which is 

not the same quantity: 

0

C
Cp p p

P MV m m P m
p p

´ ´ ´

´ ´

+ æ öæ ö æ öæ ö
º = = = + ç ÷ç ÷ ç ÷ç ÷- -è øè ø è ø è ø

ω vω v
1 v ωv

G G
 

(Because C p´= +v v ω and C p p´ ´= +G G T .) A body’s kinetic energy (a scalar) is calculated 

from spatial momentum like this: 

1 1 1
2 2 2 ( )

( ) 2

KE V MV V P m

p p p

r

r ´ ´ ´

= = = + +

º - =

2ω ω v

ω v v ω ω v

GT T T

T T T
 

Note that although the angular momentum must be referred to a specific point, kinetic energy 

is independent of that point. That is 

1 1 1
2 2 2

21 1 1
2 2 2

( 2 )

( )CC C C C C C

KE V MV V P m p

V M V V P m
´= = = + +

= = = +

2ω ω v ω v

ω ω v

G

G

T T T T

T T T
 

These can be shown equivalent by substituting C p p´ ´= -G G T  and C p´= -v v ω  into the last 

expression. 

3.3.4 Spatial rotation, shifting, and transform 

Objects of type Rotation and Transform have equivalent interpretations as spatial matrices: 
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0
spatial rotation  

0

A B
A B

A B

R
R

R
æ ö

º ç ÷
è ø

 (3.8) 

1 0
spatial shift  

1
P Q

P QS
p´

æ ö
º ç ÷
è ø

 (3.9) 

0
spatial transform  O O

O O

A B
A BA B A B

A B A B A B

R
X S R

p R R´

æ ö
º = ç ÷

è ø
 (3.10) 

Then a spatial vector or spatial matrix can be rotated, shifted, or transformed using these 

matrices, their inverses, and their duals (inverse transpose). From the definitions above you 

can check that swapping the superscripts produces the inverse of each of these matrices: 

1

1

1

0
( ) ( )

0

1 0 1 0
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1 1

0 0
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O O O O

B A
B A A B A B
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Q P P Q
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R R R
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X X

p R R R p R
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 (3.11) 

The dual operators are given by transposing the inverses, so 

* ( ) ( )

1
* ( ) ( )

0 1

* ( ) ( )
0

O O

A B A B B A A B

P Q
P Q P Q Q P
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A B A B B A
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R R R R
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S S S

R p R
X X X

R

-

- ´

- ´

= =

æ ö
= = ç ÷

è ø
æ ö

= = ç ÷
è ø

!

!

!

T T

T T

T T

 (3.12) 

Defined this way, operators R, S, and X apply to spatial vectors in the “motion” basis, like 

velocities and accelerations. The dual operators R*(=R), S*, and X* apply to spatial vectors 

in the “force” basis, like forces and impulses. These definitions follow Featherstone2 but 

have the reverse sense from Jain3 and Schwieters4 where the force basis is primary and the 

motion basis is dual (their ϕ operator is our S* operator). 

Using these definitions you can rotate, shift, or transform a spatial inertia matrix (rigid or 

articulated) M like this:  
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* ( )

* ( )

* ( )

A B B A B A B A A B B A
B B B

A B B A B A B A
B B

A B B A B A B A
B B

R M R R M R R M R
S M S S M S
X M X X M X

= =

=

=

T

T

T

 

See Chapter 12 for details. 
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4 Constructing a Simbody multibody 
system 

The Simbody API (application programmer interface) assumes that the caller has made all 

modeling decisions and simply wants to perform calculations on the model. The primary 

decisions to be made are (1) how the physical model is to be decomposed into a particular set 

of rigid bodies, (2) what kinds of mobilizers are to be used to interconnected them in a tree 

structure, and (3) what constraints, if any, should be present to restrict the allowable mobility. 

A variety of higher-level automated modelers for specific domains can be provided which 

can make these decisions and then use the low-level interface. 

4.1 Topology 

In describing the “matter” side of a multibody system, the most fundamental property is the 

system topology. By topology we mean just these properties: 

• A set of bodies (that is, reference frames). One distinguished body Ground is always 

present. 

• The mass structure of each body. The possible mass structures are: (1) ground, (2) 

massless, (3) particle (inertialess), (4) line, (5) rigid body, and (6) flexible body. 

• For each body except Ground, a unique “parent” body with respect to which the 

body’s mobility will be defined. This leads to a tree topology for the system as a 

whole, with the ground body at its root. 

• A set of topological constraints, that is, constraints which are always present and ac-

tive. These can impart a closed-loop topology to the system as a whole. 

A body’s mass structure defines the most general form that the body’s mass properties can 

take on. Ground and massless bodies have only a single predefined set of mass properties: 

infinite and zero respectively. Particles can take only a point mass, and never have inertia 

about that point. A line body can be thought of as a linear arrangement of particles, and thus 

has mass, a meaningful center of mass along the line, and equal central inertias in two 

directions perpendicular to the line, but none about the line. A rigid body (representing a 
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mass distribution on a surface or in a volume) can have a full inertia. A flexible body has a 

mass distribution that is not constant in the body’s frame. 

4.2 Bodies and their Mobilizers 

The primary Simbody representation of matter is a multibody tree, that is, a tree-structured 

collection of interconnected bodies, which we call a SimbodyMatterSubsystem. On initial 

construction, a SimbodyMatterSubsystem contains just a single body, the inertial frame 

Ground (body 0) which is the root of the multibody tree. To add a body B to an existing 

SimbodyMatterSubsystem, you will need to be able to specify the following properties: 

• The parent body P (with body frame P), which must already be in the multibody tree. 

• A reference frame (axes and origin) for the body (this is implicit, but you need to 

have it in mind). We call that the body frame B. (See Figure 2 for an example.) 

• Mass properties for the body, with the center of mass location measured from BO and 

expressed in B, and the inertia (actually the unit inertia or gyration matrix G) meas-

ured about BO and expressed in B. 

• The mobilizer’s moving frame M attached to B. You must be able to express M’s con-

figuration on B as a transform B MX  from B to M.  

• The mobilizer’s fixed frame F, attached to P, which will be connected to M by the 

mobilizer. You must be able to express F’s configuration on P as a transform P FX  

from P to F. 

• The kind of mobilizer to be used to connect B to its parent body P, and whether to 

reverse the interpretation of the generalized coordinates. 

Figure 4 shows a body B being added to a tree already containing its parent P. Not shown are 

the body’s mass mB, its inertia JB= mBGB about BO
 and the transforms B MX  and P FX . 

When this information is supplied to the appropriate Simbody method, the new body be-

comes part of the growing tree, and a unique, small integer body number is assigned which 

can be used to refer to the body later. The specified mobilizer is the unique inboard mobilizer 

of body B, that is, the mobilizer which connects it to a body which is closer (in a graph path-
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length sense) to the Ground body. When defining the sense (sign) of mobilizer coordinates 

later we will refer to the frame F on P as the “fixed” frame, and frame M on B as the “mov-

ing” or “mobilized” frame, although these terms are arbitrary and do not imply anything of 

physical significance except when P is ground in which case it really is “fixed.” 

 

 

4.2.1 The reference configuration 

The frames M and F are used to define a reference configuration for each body with respect 

to its parent. For most mobilizers, that is the configuration in which M and F are overlaid, 

and corresponds to a value of zero for the mobilizer’s generalized coordinates*. Figure 5 

shows the reference configuration for the mobilizer defined in Figure 4. For any mobilizer 

type, the values of the generalized coordinates q express a transform F MX  which gives the 

                                                

 

* Certain sets of mobilizer coordinates may define their own “zero” which does not necessarily correspond to 
numerical values of zero for all coordinates. For example, zero (“no rotation”) for a quaternion is a four-vector 
(1,0,0,0). 

B 

M BO 

BC 

P 

PO 

F 

Figure 4: Adding body B to a 
multibody tree already containing 
parent body P. 

FO 

MO 
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current location and orientation of the M frame, measured from and expressed in the F frame. 

The definition of each mobilizer type specifies the meaning of each of the q’s for that mobi-

lizer and the kinds of transforms that can be expressed. For example, a Cartesian mobilizer 

would permit arbitrary translation of M, but its axes must remain forever aligned with those 

of F. A ball (spherical) mobilizer’s coordinates express the complementary motion in which 

the origins of the two frames must remain coincident forever, but the orientation of M can be 

arbitrary with respect to F. A sliding mobilizer permits translation along one axis only, and a 

torsion (pin) mobilizer permits only rotation about a single axis. Other mobilizers permit 

various combinations of rotation and translation, with the extremes being the Free mobilizer 

which permits all possible motion (six degrees of freedom) and the Weld (im)mobilizer 

which permits no motion at all (zero degrees of freedom). 

Regardless of the mobilizer type, setting all the coordinates to zero expresses that the M and 

F frames are in their reference configuration. 

 

Those users familiar with SD/FAST’s reference configuration should note that the above is a 

different method for defining the reference configuration. It is in fact the opposite approach: 

SD/FAST requires the bodies to be entered already in the reference configuration, and then 

defines the mobilizer (SD/FAST joint) frames from the reference configuration. We think it is 

P 

PO 

F 

B 

M 

BO 

BC 

Figure 5: The reference 
configuration for the 
mobilizer added in the 
previous figure. 
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much more natural to express the joint frames separately in their bodies’ frames, and then 

define the reference configuration from the joint frames. It is always possible to choose 

mobilizer frames to reproduce the ones used by SD/FAST if you want, but it is no longer 

necessary to calculate them that way. 

4.3 Constraints 

Constraints in Simbody are the complement of Mobilizers. Mobilizers add mobility to a 

multibody system; Constraints reduce mobility by introducing one or more constraint 

equations. Mobilizers are local, granting degrees of freedom to a single body, while Con-

straints are global and remove degrees of freedom from the multibody system as a whole by 

introducing restrictions on the allowable relationships among the generalized coordinates, 

speeds, or accelerations. A simple example is a distance constraint which says that a particu-

lar point fixed on one body must always be at a certain distance d from a point fixed on 

another body. If those bodies are far apart in the graph of the multibody topology, this simple 

restriction is actually expressing a complicated relationship that must hold among the mobili-

ty coordinates of many bodies. As mentioned earlier, it is much more efficient to define less 

mobility in the first place than to grant the bodies their freedom and then take it away later! 

However, as with the distance constraint above, that is not always possible or convenient, so 

we have Constraints.  

In the same way that a single Mobilizer may introduce several mobilities, a single Constraint 

may generate multiple constraint equations. Unlike mobilities, which are globally independ-

ent, the constraint equations generated by Constraints may be mutually interdependent 

making some of the constraints ineffective, redundant or inconsistent. A trivial example of a 

redundant constraint would be adding the same Constraint twice—nothing changes since 

mobility coordinates which satisfy the first Constraint also satisfy the second. An example of 

an ineffective constraint would be restricting the distance between a point on the outside of a 

wheel and the point of the parent at the wheel’s center. If the specified distance is equal to 

the wheel’s radius, the single mobility automatically meets this restriction at all times and the 

system has the same net mobility with or without the restriction. Changing the required 

distance to anything other than the wheel’s radius creates an inconsistent constraint which 

can never be satisfied by any setting of the mobility coordinates. 
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Simbody supports a variety of built-in Constraints, and arbitrary user-defined Constraints. 

Some examples of built-ins are: Rod (distance) Constraint, Ball (coincident points) Con-

straint, and Weld (coincident frames) Constraint. A Rod constraint generates one constraint 

equation which maintains a user-specified constant, non-zero separation distance between a 

station on one body (that is, a point fixed on the body) and a station on another body, as 

measured along the line between the two stations. Each nonredundant distance constraint 

removes one degree of freedom from the system. A Ball or “coincident points” constraint 

generates three constraint equations which together hold a station from each of two distinct 

bodies together at the same location in space, i.e., at a separation distance of zero, exactly 

like a Ball joint. A nonredundant Ball constraint thus removes three translational degrees of 

freedom from the system (all translation between the two points), while a Ball mobilizer adds 

three rotational degrees of freedom (all rotation about the connected points). A Weld con-

straint maintains frames (both location and orientation) from each of two bodies coincident in 

space, generating six constraint equations and thus removing six degrees of freedom from the 

system. Weld Constraints are the primary means by which we take a system that has loop 

topology and make it a tree—we cut one of the bodies in two to break the loop and then weld 

the two halves back together with a Weld constraint. 

The information needed for adding one of the above Constraints to a Simbody multibody 

system is as follows: 

• Two distinct bodies A and B. Either one (but not both) may be Ground. Both bodies 

must already be part of the multibody tree and are identified by the mobilized body 

index that was returned at the time they were added. 

• (Distance or Coincident Points Constraint) A station point PA fixed on body A and 

station point PB fixed on body B. These are measured and expressed in the bodies’ lo-

cal frames, that is, PA is measured from AO and expressed in A while PB is measured 

from BO and expressed in B. The measure numbers of these vectors are thus constant 

during simulation. 

• (Weld Constraint) A frame FA fixed on body A and a frame FB fixed on body B. The-

se are expressed in the bodies’ local frames, that is, FA is given by a transform AFAX  
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while FB is given by transform BFBX . The measure numbers of the transforms are 

thus constant. 

• For a Rod (constant distance) Constraint you also need to supply a scalar distance. 

This is the physical separation B Ad P P= -  between the stations that you would like 

Simbody to maintain at all times. This separation must be significantly larger than ze-

ro; zero distance between stations is obtained using a Ball Constraint rather than a 

Rod Constraint. 

Note that nonredundant constraints will not be satisfied by arbitrary values of the mobility 

coordinates. Prior to a simulation, you must find an initial set of generalized coordinates q 

and speeds u that satisfies all the constraint equations. Occasionally this can be done by 

inspection or hand calculation, but in general it is a difficult nonlinear problem to be solved 

numerically prior to beginning a simulation (this is called assembly analysis for q and 

velocity analysis for u). Given any set of mobility coordinates q and u, Simbody can effi-

ciently calculate the constraint equation violations those entail. Simbody provides a variety 

of numerical methods that can be used to drive constraint violations to below a desired 

tolerance, at which point the associated constraints will be considered to be satisfied. After 

that, valid numerical studies maintain the constraint equations, and thus satisfy the Con-

traints, as they advance from step to step. 

4.4 Forces 

We can apply forces to bodies, or directly to the mobility coordinates represented by the 

generalized speeds u. In general these include both linear and rotational forces (torques). 

Forces applied to mobilities are called generalized forces or mobility forces. Forces applied 

to the bodies are called spatial forces or body forces. There is always a unique set of mobility 

forces equivalent to any set of body forces, in the sense that both sets will produce the same 

accelerations. Calculating this equivalent set is an important Simbody capability, since the 

equations of motion are written in terms of the mobilities, while forces are typically known in 

terms of their effects on the bodies. 

It is important to note that calculation of applied forces is not limited to the force types 

provided Simbody. Force calculation is a domain-specific modeling issue; Simbody’s job is 
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to provide the information needed by the modeler to calculate the forces, and then to respond 

to those forces in accordance with Newton’s laws of motion. For convenience, the Simbody 

distribution does include a set of basic force subsystems to use in calculating simple forces 

such as gravity, springs, and atomic forces; however, this is by no means an exhaustive set 

and it is easily extended. 
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5 Theory for Mobilizers 
A Simbody Mobilizer defines the permitted mobility of a body B with respect to a more-

inboard (closer to Ground) body P, called its parent body. A given mobilizer provides n 

mobilities (degrees of freedom) for body B with respect to body P, with 0 6n£ £ . 

Each body has a unique parent so there is a one-to-one correspondence between bodies and 

mobilizers; in Simbody we call the combination of a body with its unique mobilizer a Mobi-

lizedBody. The permitted mobility is described in terms of n scalar velocity coordinates u 

(called generalized speeds), and qn n³  scalar position coordinates q (called generalized 

coordinates). The time derivatives of the generalized speeds serve as the generalized accel-

erations u! . The meanings of these quantities are defined by the following equations, which 

express the body’s allowed motion with respect to its parent in terms of q and u. This relative 

motion is defined using a pair of coordinate frames associated with the MobilizedBody B at 

the time it is added to the multibody tree: the unique mobilizer “moving” frame M attached to 

B with constant transform B MX  and “fixed” frame F attached to P with constant transform 
P FX . 
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These are the equations that define the generalized coordinates and speeds. (The overdot 

notation below indicates time derivatives that are taken in the F frame.)  

B 

mobilizer B 
q,u 

M BO 

P 

PO 

F 

Figure 6: Coordinate frames for use 
in describing the mobility of 
MobilizedBody B with respect to its 
inboard parent body P. Everything 
blue is associated with B. The origin 
point O of each frame is labeled. 

MO 

FO 

B MX  

P FX  

( )F MX q  

body B 

Ground 

parent body P 
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( )( ) ( ) ( )F M F M F MX q R q p q!  (5.1) 
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( )q q u=N!  (5.4) 

n( ) 0q =  (5.5) 

Note that X and H cannot be chosen arbitrarily, because the time derivative of X is related to 

V: 
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This implies relationships that must hold among X, H, and N:  
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where wH and vH are the upper and lower 3xn partitions of hinge matrix H. Intuitively, this is 

stating the requirement that the spatial velocity produced from u by the action of H is the 

time derivative of the spatial position and orientation produced from q by the nonlinear 

function X(q), with matrix N serving to mediate between u and q! . Note from (5.2) that H 

depends only on the transform (spatial position) represented by the set of q’s, not on the 

definitions of the individual q’s. 

Equation (5.5) specifies additional constraints that q must satisfy if there are not enough 

equations (5.4) to uniquely specify q. That occurs when there are more q’s than u’s, typically 

because q is a quaternion in which case n(q) is the quaternion normalization constraint. 
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5.1 Reverse mobilizers 

Because a tree of mobilized bodies must be ordered parentàchild along each branch going 

away from Ground, the role of parent and child may be reversed from the desired sense for 

some mobilizers. When the generalized coordinates and speeds are intended to have a 

particular physical meaning, we would like to preserve that meaning even when exchanging 

the roles of parent and child. For example, if you make a “knee” mobilizer with the general-

ized coordinate being knee flexion, you would like to preserve that meaning regardless of 

whether the femur or tibia is the parent body. 

So we will at times be given the mobilizer specification from frame M on body B to frame F 

on body P, but a mobilizer specification must go from F to M. That is, we’re given M FX , 
M FH , M FH! , and N for a mobilizer in frame M fixed to the child body B (with time deriva-

tives taken in M), but we want F MX , F MH , F MH! , and N describing the mobilizer with 

identical generalized coordinates and speeds in frame F fixed on the parent body (and with 

time derivatives taken in F).  

N is easy enough—since we want q and u to retain their original meanings, N must stay the 

same. Almost as easy, ( )1( )F M M F F M F M M FX X R R p-= = - × . But we’re going to have to 

work to get the other two matrices. First F MH : 

From Equation (5.2) (with the frames swapped) we have 

M FM F
M F

M FM F
v

V u
v

ww æ öæ ö
= = ç ÷ç ÷
è ø è ø

H
H

 (5.9) 

We want to find F MH  such that  

F MF M
F M

F MF M
v

V u
v

ww æ öæ ö
= = ç ÷ç ÷
è ø è ø

H
H

 (5.10) 

For the moment we are going to leave the expressed-in frame as M and work only with the 

physical quantities. We’ll re-express at the end. We know that F M M Fw w= -  so it follows that 
F M M F

w w= -H H . But the linear velocity cannot simply be negated. We have 
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M F M F M F
Mdv p p
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Fdv p p
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!" "  (5.12) 

Since F M M Fp p= -  we can substitute into (5.12) and get 
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Since F M F M
vv u= H  we see that 
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In the above analysis we left the quantities expressed in the M frame as emphasized in 

equation (5.14) (although we took the derivative in F). Re-expressing in the F frame com-

pletes the computation of  F MH : 
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We can differentiate equation (5.15) in F to get F MH! : 
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Substituting from (5.12) and  (5.15) gives this form for F MH! : 
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Algorithmically, we can avoid duplicate computations by separating the two rows of (5.15), 

and rearranging to use already-computed terms: 
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F M F M M FRw w= -H H  (5.18) 
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 (5.19) 

using identity (3.6) in the second-to-last step. 

To create an algorithmic version of (5.17), differentiate equations (5.18)  and (5.19) in F to 

get F MH!  in terms of already-computed quantities: 

F M F M M F F M F M M F

F M M F F M F M

R R
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w w w

w w

w

w
´

´

= - -

= - +

H H H

H H

! !

!
 (5.20) 
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Or, collecting terms 

0
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Simbody uses equations (5.18), (5.19), (5.20), and (5.22) in that order to perform these 

computations. 

5.2 Mobilizers in body frames 

At times it is more convenient to deal with the mobilizer hinge matrix describing the allowed 

motion of the body frame B with respect to the parent body’s frame P, rather than between 

the two mobilizer frames. This is related to the hinge matrix H defined above by the constant 

transforms P FX  and M BX  depicted in Figure 6. First, perform a rigid body shift of the 

spatial velocity from M’s origin outward to B’s, using the kinematic shift operator fT : 
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( )
F B FF B M B F MV p
u

f¶ é ù= ×ë û¶
H H!

T  (5.23) 

where 

 
F M B F M M Bp R pé ù = ×ë û  

 ( )1
( )

0 1

A B
A Bf ´

æ öé ùë ûç ÷é ù =ë û ç ÷
è ø

v
v  

 

Note that although we are shifting from one point on body B to another, the effect is time 

varying since we are expressing the shift vector in the parent body using the cross-mobilizer 

rotation matrix ( )F MR q  . 

Next, re-express the resulting spatial velocity (currently in F) to P: 

P B
P B P F F BV R

u
¶

= ×
¶

H H!  (5.24) 

This transformation involves only a constant rotation matrix, and the translation of the 

reference frame from F to P doesn’t affect the velocity. 

The time derivative taken in P is then 

P PP B P B P F F B F Bd R
dt

é ù= × = ë ûH H H H! ! !"  (5.25) 

where 

( ) ( )
F

F B F B M B F M M B F MF Fd p p
dt

f fé ù é ù= × +ë û ë ûH H H H!! !"
T T  (5.26) 

and 

( )0
( )

0 0

AA B B
A B w

f ´

æ öé ù´ ë ûç ÷é ù =ë û ç ÷
è ø

v
v!  (5.27) 

These matrices are related to the hinge matrix H* in reference 3 as follows: 
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*

G P B
G P B G P P B

V
R

u

é ù¶ ë û é ù= = ×ë û¶
H H H!  (5.28) 
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G
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G GG P P B P B

d R R
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= × + ×
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H H H H
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! ! !"

!

 (5.29) 

Note that P BH  is not shifted to Ground to form H*, but only re-expressed in Ground. That 

is, it still represents motion of B with respect to P (not with respect to G), however it has 

been re-expressed in the Ground frame. (Time derivatives are taken in the frame indicated by 

the expressed-in frame of the differentiated quantity.) 
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6 Theory for Constraints 
A Simbody Constraint C is modeled with a set of mC scalar constraint equations which 

restrict the allowable values for mobilizer coordinates by enforcing algebraic relationships 

among them or their time derivatives. Constraints are usually written to directly affect only a 

very small number bn  of bodies and nm of mobilizers, typically one, two, or three, which we 

call the constrained bodies and constrained mobilizers. For efficient processing, Simbody 

must know the complete set { },C C
k lB M  of b

Cn  constrained bodies and m
Cn  constrained mobi-

lizers for each Constraint C. The set of constrained bodies and mobilizers is considered 

topological information and is thus frozen after the Constraint is specified. 

The set of mobilities which can appear in the corresponding constraint equations consists of 

all the mobilities m
Cu  associated with the constrained mobilizers, plus all mobilities b

Cu  which 

can affect the relative motions of any the constrained bodies. Note that while the number of 

mobilities associated with a mobilizer is very small, the number which may affect a set of 

constrained bodies can be much larger, potentially including all the mobilities on the paths 

from the constrained bodies back to Ground. 

To avoid unnecessarily including a large number of mobilities in the constraint calculations 

for a Constraint C, Simbody searches the multibody tree from the constrained bodies in the 

inboard direction (towards Ground) to find the outmost common ancestor AC, which is the 

most-outboard (highest numbered) body shared by the inboard paths of all the constrained 

bodies. Ground can always serve as A if no other common body can be found. We call the 

path from the kth constrained body inward to AC the kth branch of the Constraint; these 

branches may overlap and may also overlap with constrained mobilizers. We call the set of 

all generalized speeds on the kth branch b,
C
ku , with b b,k

C C
ku u= ! ; the complete set of general-

ized speeds which can affect Constraint C is then { }m b,C C Cu u u= . These are the Constraint’s 

C Cn u=  participating mobilities. The q
Cn  participating coordinates are similarly defined as 

b b,k

C C
kq q= !  and { }m b,C C Cq q q= , with q

C Cn q=  and q
C Cn n³ .  
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Figure 7 depicts these quantities for a single Constraint C with three constrained bodies. The 

figure does not show the mC constraint equations that this Constraint generates; mC can’t be 

determined just from the number of constrained bodies. However, it does show how the 

body-affecting mobilities b
Cu  are determined. Note that the mobilizers for the two black 

highlighted bodies are shared by branches 0 and 1. 

 

For the rest of this section we’ll drop the superscript “C” except when necessary for clarity. 

Without the C, our Constraint generates m constraint equations in n mobilities. 

The most fundamental constraint equation is a relationship among the accelerations (the n 

participating generalized speed derivatives u! ), called an acceleration constraint. Every 

0B  

A
 

branch 0 
b,0u  

constrained 
bodies 

outmost 
common 
ancestor 

Figure 7: Constraint topology. This shows 
a single Constraint C with three constrained 
bodies kB , the corresponding branches, and 

the outmost common ancestor body A . The 
branches determine the participating 
mobilities bu ; mobilities of the two black-
outlined bodies are shared between 
branches 0 and 1. Additional mobilities mu  
are introduced explicitly for constrained 
mobilizers. 

Ground 

b b,0 b,1 b,2

b m

u u u u
u u u
= È È

= È
 

1B  
2B  

branch 1 
b ,1u  

branch 2 
b,2u  
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Simbody constraint equation ultimately restricts accelerations, and these m acceleration 

constraint equations form part of the dynamical equations of motion. The ith acceleration 

constraint equation has the following form: 

 g ( , , , ) ( , , ) 0i i it q u u u b t q u- =g! !"  (6.1) 

Where ig is a scalar function, gi=gi(q) is a row vector of length n, and bi is a scalar function. 

Every defined Constraint must provide a method for efficiently evaluating its m scalar 

acceleration error functions gi. For constraint equations involving only constrained mobilizers 

this can be done directly in terms of the mobilities um. But in the case of participating mobili-

ties ub due to constrained bodies, the constraints are not normally known explicitly as in (6.1) 

but rather in terms of some physical consequence of bu! , such as body accelerations. The 

user-written routine is expected to calculate the error in those terms in constant time, with the 

physical consequences of bu!  having been supplied by Simbody after an O(n) computation. 

Similarly, the meaning of the Lagrange multipliers λ is given by  

 ( , ) T
i i i if q l lg!  (6.2) 

where fi is a column vector function giving the n generalized forces generated by the scalar 

multiplier λi allocated to the ith constraint equation. Every defined Constraint must provide a 

method for efficiently calculating its forces given its m multipliers λ. Again, except for 

participating coordinates due to constrained mobilizers, this is normally not known explicitly 

in generalized forces as in equation (6.2), but in terms of forces and torques applied to 

bodies. The user-written routine is written as a constant-time function in those terms, and 

then Simbody converts the result to generalized forces with a single O(n) computation. 

Constraint equations may differ in the level at which they are first defined: position, velocity, 

or acceleration. When a constraint equation is introduced at the position level (such con-

straints are called holonomic and are typically nonlinear), it is differentiated once to yield a 

(linear) constraint on velocities, and again to yield a (linear) constraint on accelerations. 

When a constraint is first introduced at the velocity level (a nonholonomic constraint, which 

can be nonlinear in velocities) it is differentiated once to yield a (linear) constraint on accel-

erations. A constraint which appears only at the acceleration level (an acceleration-only 
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constraint; not common) is required by Simbody to be linear in the generalized accelerations 

u! . Here are the equations defining each of the three types of constraint equation: 

holonomic (position) constraints p(0 )j m£ <  
 p ( , ) 0j t q =  (6.3) 

 p ( , , ) ( , ) 0j j jt q u u c t q- =Þ p! "  (6.4) 

 p,p ( , , , ) ( , , ) 0j j jt q u u u b t q u- =Þ p!! ! !"  (6.5) 

 
nonholonomic (velocity) constraints 

v(0 )j m£ <  
 v ( , , ) 0j t q u =  (6.6) 

 v,v ( , , , ) ( , , ) 0j j jt q u u u b t q u- =Þ v! ! !"  (6.7) 

 
acceleration-only constraints 

a(0 )j m£ <  
 a,a ( , , , ) ( , , ) 0j j jt q u u u b t q u- =a! !"  (6.8) 

where the row vectors are 

        
p p p

( ) j j j C
j q u u q

¶ ¶ ¶
= = =
¶ ¶ ¶

p N
!! !

!
 (6.9) 

        
v v

( ) j j
j q u u

¶ ¶
= =
¶ ¶

v
!

!
 (6.10) 

        
a

( ) j
j q u

¶
=
¶

a
!

 (6.11) 

and the remainder terms produced by differentiation are 

        
p

( , ) j
jc t q t

¶
= -

¶
 (6.12) 

        , ( , , )p j j jb t q u c u= -p!!  (6.13) 

        , ( , , )
j j

v j

v v
b t q u q

t q
¶ ¶æ ö

= - +ç ÷¶ ¶è ø
!  (6.14) 

NC is an q
C Cn n´   matrix assembled from a subset of the rows and columns of the global N 

such that C C Cq u=N! . Note that the equations marked with blue arrows are implied by 

differentiation of the modeled constraint equations; they are not independent. These add 

another 2mp+mv equations to the mC modeled ones. 
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All mp rows pj stacked together form matrix PC, and all mv rows vi form matrix VC, which 

together are used for initial satisfaction of position and velocity constraints, as well as for 

constraint projection during numerical integration. All ma rows aj together form matrix AC, 

and PC,VC,AC stacked together form the mC rows of constraint matrix 
C

C C

C

é ù
= ê ú
ê úë û

P
G V

A
 as dis-

cussed above. Note that each of the mC rows gi in (6.1) is actually one of the rows pj, vj, or aj. 

6.1 Explicit calculation of constraint matrices 

For efficient calculation of constraint forces and for performing constraint projections, 

Simbody needs to be able to efficiently calculate matrix-vector products involving the 

constraint matrices and their transposes. We expect to be able to calculate both Gv and GTw 

in O(n+m) time, where G is mXn and v and w are conformant column vectors. (Note that a 

straightforward matrix multiply would be O(nm), much more expensive.) Simbody uses the 

methods that define the constraint in combination with O(n) operators to perform these 

computations efficiently. 

With the O(n+m) matrix-vector multiplies available, Simbody can calculate the constraint 

matrices P, V, and A (collectively G) explicitly in constant time per element. By making m 

calls to the provided routines, mXn matrices can be calculated in O(nm+m2)=O(nm)* time 

which is within a constant factor of optimal if you have to form these matrices. 

Regardless of whether a constraint equation is initially specified at position, velocity, or 

acceleration level it will contribute a row g to the acceleration constraint matrix G above, 

which will also be a row of P, V, or A. So all the terms we need can be obtained by examin-

ing the constraint equation’s error function once it has been expressed at the acceleration 

level, that is, equations (6.5), (6.7), or (6.8). Taken together, these equations are just the 

equations (6.1), that is, g ( , , , ) ( , , ) 0i i it q u u u b t q u- =g! !" . So the rows of the explicit matrices 

we need are just g ( , , , )i t q u u u¶ ¶! ! . An alternative is to use the constraint force functions (6.2) 

                                                

 

* because m≤n, mn+m2≤2mn 



 

52 

which can equivalently provide a column of T
ig at O(n) cost per column. Simbody thus 

calculates the constraint matrices a row at a time by mC repeated calls to the O(nC) constraint 

force function (6.2), yielding an explicit GC matrix to machine precision in O(mC nC) opera-

tions, which is within a constant factor of optimal since the matrix has mC nC elements. The 

mC scalars 
0

1C

C

m

b

b -

é ù
ê ú=
ê úë û

b !  from each Constraint form the vector b in equation (6.1), and can if 

necessary be determined explicitly in O(n) time using equation (6.1) with all u! ’s set to zero. 

As discussed above, it is rare that an acceleration constraint equation will be conveniently 

written directly in terms of the generalized accelerations u!  (prescribed motion is an excep-

tion). Instead, it will be written in terms of physically meaningful acceleration-derived 

quantities involving the constrained bodies. These may be complicated expressions, but they 

are always built from the following fundamental quantities: 

• the accelerations of points and angular accelerations of vectors fixed on the con-

strained bodies, relative to the ancestor or to other constrained bodies in this Con-

straint, or  

• the cross-mobilizer accelerations directly in terms of the generalized accelerations u!  

of the constrained mobilizers. 

Simbody’s Constraint base class provides utilities to efficiently obtain the constrained 

bodies’ accelerations relative to the outmost common ancestor A given a set of u! ’s (for fixed 

q and u), relative velocities given u’s (for fixed q), and relative positions given q’s. The 

user’s constraint equation error functions are written using these utilities. 
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7 State representation and realization 
The State concept was presented in Section 1.2. In this section we will take a closer look at 

how we represent the state of a Simbody System and how we operate on that state when 

performing a Study.  

7.1 Computation – realization of the State 

This section provides some details about how computations are performed in the System-

State-Study architecture described in Section 1.2. 

During a Study, the System is used to realize a State. By realize we mean the process of 

taking a new set of values from a State and performing the computations that those new 

values enable. A simple example would be to take new position coordinate values from a 

State and use them to calculate new spatial locations for the bodies, and then distances 

between designated points on different bodies. Realizing a State enables three kinds of 

computations: responses, operators, and solvers, defined next. 

7.1.1 Responses, operators, and solvers 

A response is a numerical result which can be computed knowing only the values in the 

State. The above calculation of distance from position coordinates is an example of a re-

sponse. An operator is a computation which requires knowledge of certain State variables, 

but then can be applied repeatedly to other input data (i.e., data not from the State) to produce 

numerical results. For example, once we know positions and velocities from the State, we 

can realize an operator which, when applied to a set of forces, efficiently calculates the 

accelerations that would be produced by those forces. Neither responses nor operators make 

changes to the State. A solver, on the other hand, both reads from and writes to the State. A 

given solver requires certain values from the State, and may make use of those values or 

responses and operators calculated from them. It then performs a computation which updates 

the State in some well-defined way. The simplest kind of solver is a method which just sets a 

particular State variable to a given value. A more elaborate example is a solver which takes 

current positions from the State and modifies them to find the nearest set of positions which 

satisfies particular constraints. 
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7.1.2 Caching of computed results 

Realizing a State may require a large amount of expensive computation, and the computed 

results are typically used many times in calculation of subsequent results. Consequently it is 

crucial that these computations not be re-done once calculated for a particular set of State 

values. Given that a System is a read-only object, and that realization results are associated 

with a particular State, the obvious place to store these results is in the State object. That way 

when a Study provides a State to a System, all previously-calculated results are available as 

well, and one may be certain that those results were calculated using the values from the 

supplied State. This eliminates the possibility of bugs in which values computed at one state 

are incorrectly used as results at a different state. That is an extremely common error in 

simulation programs and is very difficult to fix, primarily because it often goes completely 

unnoticed. Errors of this type are hidden by the fact that sequentially-produced states tend to 

differ very little, making the computed values only a “little bit” wrong.  

To take a brief pontification opportunity, I want to emphasize in the strongest possi-

ble terms that “little” bugs in simulation programs do not leave them “nearly” valid the 

Subsystem 

Responses 

Operators 

Solvers 

Figure 8: After realizing a State, a 
subsystem provides responses, 
operators, and solvers. 

Results 

 

Back to State 

 

Inputs 
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way, say, small measurement errors affect real-world experiments. Simulation software is the 

most nonlinear thing in existence—one wrong bit in a billion can completely destroy any 

relevance it might have had to the real world. The resulting simulation results, unfortunately, 

may still appear plausible, especially where human intuition is of limited use such as with 

molecular systems. And statistical reduction methods used to calculate physical properties 

from a simulation (e.g., population distributions, free energies, radii of gyration, transi-

tion times, etc.) are almost certain to turn meaningless garbage into “intriguing” results 

which “should be researched further.”  

Although cached results are stored in the State object, it is important to note that those results 

(that is, responses, operators, and solvers) are not logically part of the system state. They are 

simply intermediate calculations which have been derived from the state, and can easily be 

discarded and re-created when necessary. They are needed only for efficient computation 

using the System-State-Study architecture, and so can be viewed as “merely” a hint. They 

exist as a kind of shadow behind the actual state variables, whose values do matter. We call 

this shadowy construct the realization cache, or more often, just the cache. 
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Figure 9 combines the concepts just described. It shows a subsystem (one of the pieces 

making up a System) and how its responses, operators, and solvers make use of the realiza-

tion cache. Note that responses require no input other than the State, while operators and 

solvers can have additional inputs (the blue arrows in the figure). Operators and solvers then 

differ by the disposition of their outputs (red arrows), with only solvers’ output able to update 

the State. 

To summarize briefly: A System (or subsystem) by itself is stateless once con-

structed. The values of state variables stored in a particular State object 

completely determine the behavior of the System. That behavior is produced 

by realizing the State. The results of realization, which are responses, operators, 

and solvers, are stored in a hidden cache which is physically contained in the State object, but 

is not logically part of the state in the sense that cache values are not permitted to alter the 

behavior of the System, except for the speed with which it can perform computations involv-

ing that State. 

Figure 9: A subsystem (part of a 
System), showing its use of part of the 
State to realize responses, operators 
and solvers. The realization cache adds 
no new information but shadows the 
state variables for efficiency. 

State 
 

Subsystem 

Realization Cache 
State Variables 

Responses 

Operators 

Solvers 
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7.1.3 Computing in stages 

The computations performed by a System in realizing a State are naturally ordered in stages, 

and realization is done one stage at a time, in order. For example, one must compute the 

positions of the bodies before computing forces that may depend on those positions. This 

structure allows for interdependencies among the subsystems in the System, without requir-

ing any subsystem to know any internal details of other subsystems. Of specific relevance for 

Simbody, user-supplied forces depend on values provided by the Simbody multibody subsys-

tem (such as positions and velocities), but Simbody dynamic calculations (e.g., accelerations) 

likewise depend on the user-supplied forces. Thus complete realization of a State requires 

sequences like (1) the SimbodyMatterSubsystem realizes its “Position” stage, then (2) each 

force subsystem independently realizes its Position stage to calculate position-dependent 

forces (repeat for Velocities), and then (3) SimbodyMatterSubsystem realizes its accelera-

tions (reactions) using computations cached by the force subsystems. This staging approach 

allows a composite System computation to be performed efficiently from isolated subsys-

tems, with each subsystem mediating access to its own state variables and cache. 
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3.  Instance 
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7.  Dynamics 
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Figure 10: The conceptual organization 
of a computation into ordered stages. A 
given stage is fully realized by each 
subsystem in a System before the next 
stage is realized by any subsystem. For 
many purposes, construction of the (read 
only) System can be viewed as the initial 
stage of computation. 

 9.  Report Study 
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7.2 State variables 

The complete state of a Simbody System is represented by a set S  of broadly-defined state 

variables. Physically, S  is stored in a SimTK State object, where it is partitioned into time 

tÎS , and two disjoint subsets ,x y Í S , so that { }t x y= È ÈS= . During time stepping, t is 

the independent variable; x and y both contain dependent state variables but differ in the 

types of variables they can contain. Partition y contains conventional real-valued, “smooth” 

state variables q, u, and z representing system kinematic and dynamic quantities, while 

partition x contains state variables of arbitrary value types including boolean, integer, and 

structured types of any complexity.  

7.2.1 State partitioning by stage 

State variables may be usefully partitioned by the computation stages they affect; we call the 

lowest affected computation stage the state variable’s stage. As shown in Figure 10 stages 

that can be affected by state variables in S  are:  model, instance, time, position, velocity, 

force, acceleration, and report. (Topology stage is only affected by the contents of the 

System, not its State.) We denote state partitions with these effects modelS ,  instanceS , timeS , 
posS , velS , forceS , accS , reportS  with 

 

time time

pos pos pos pos

vel vel vel vel

force force force force

{ }x t
x y x q
x y x u
x y x z

È

È = È

È = È

È = È

!

!

!

!

S x
S
S
S

  (7.1) 

For the other stages, only variables in the x partition can be used, so we have model modelxºS , 
instance instancexºS , and report reportxºS , 

Partition y consists only of position-, velocity-, and force-stage variables as shown above. For 

convenience, we provide more conventional names for those partitions: 

 
pos vel force, ,

with 
q y u y z y
y q u z
º º º
= È È

  (7.2) 

q and u are the sets of generalized coordinates and speeds associated with the System’s 

mobilized bodies. z is a set of generalized dynamic variables typically belonging to force and 
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control elements in the System. z’s can directly affect forces, but not positions or velocities 

of bodies. 

7.3 State resources 

The SimTK::State object manages a collection of resources including state variables and 

cache entries needed for realization. Resources are allocated at the request of the various 

Subsystems, and the State object keeps them organized by Subsystem. In addition, certain 

kinds of state resources are aggregated into global resources pools which represent the 

System as a whole. Global pools support efficient numerical manipulation of the System’s 

state as a whole in circumstances where the Subsystem composition is irrelevant. 

Every State resource has an allocation stage, meaning that that resource is allocated during 

realization of that stage, and unallocated if that stage is invalidated later. That means that the 

set of resources in a System’s State can vary based on the current stage, and the settings of 

state variables that were allocated earlier.  

Resources that are always present for a given System are allocated at Topology stage. That 

includes the set of state variables which can affect modeling options. Then realizing Model 

stage causes more resources to be allocated, reflecting the modeling choices made. Some of 

those resources may be state variables representing parameters of the chosen model. Once 

those are set, realizing Instance stage allocates the final set of resources needed for further 

computation. No state resources may be allocated later than Instance stage; after that only the 

values of existing state resources may be changed. 

Here are the resources supported by a State object. 

Resource Allocation Description Resource notes 
Built-in  
resources 

Topology Every State has some built-in resources, 
allocated at Topology stage. Note that the 
System stage can never be higher than 
the lowest Subsystem stage. 

, prevt t  
System current stage 
Per-Subsystem current stages 
Low-water mark 

Dynamic 
variable group 
(q,u,z) 

Topology 
Model 
size: Instance 

A contiguous array of real-valued 
“conventional” state variables. These are 
pooled into a global array y, which is 
itself partitioned into global q, u, and z 
arrays. An additional state variable holds 
the size of the group and can be set at 
Instance stage. 

{ , , },y q u z q=! ! ! !!!  

{ , , }prev prev prev prevy q u z=  

sizes 
Subsystem-private group Id 
Pool slots assignment 



 

60 

Structured 
variable x 

Topology 
Model 
 

A private variable belonging to a single 
subsystem and able to contain a designat-
ed value type of any kind, from boolean 
flag to arbitrary object. Has “invalidates” 
stage; must be allocated before that. 

Previous value prevx  
Subsystem-private Id only 

Constraint 
group (qerr, 
uerr, udoterr, 
mults) 

Topology 
Model 
Instance 
m: Instance 

Allocates cache entries which are 
contiguous arrays of m scalars for 
holding the current constraint errors and 
multiplier values. An additional state 
variable is allocated to hold the size m of 
the group which can be set at Instance 
stage. 

{ , }err err erry q u=  

erru! , λ 
m 
Subsystem-private group Id 
Pool slots assignment 

Event trigger 
group 

Topology 
Model 
Instance 
size: Instance 

Allocates contiguous array of scalar 
cache entries for event trigger function 
values, in global pool. The number of 
entries can be changed up to Instance 
stage. 

, preve e  
# of triggers 
Subsystem-private group Id 
Pool slots assignment 

Event group Topology 
Model 
Instance 
size: Instance 

Allocates a group of event ids for a 
subsystem, and a corresponding global 
pool of System-unique Ids. 

Subsystem-private group Id 
# events 

Cache entry Topology 
Model 
Instance 

Private variable belonging to a single 
subsystem. Can hold any designated 
object type. Has depends-on stage and “is 
valid” flag. Must be allocated before 
depends-on stage. 

Subsystem-private Id only 

 

The State maintains mapping information for the global resources so that one can determine 

which particular entity is the owner of an entry in a global pool, for any local entity where in 

the global pool it may be found. 

7.4 Allocation of state resources 

State variables are allocated by the various elements of a System. Here are the System 

elements and the kinds of state variables they allocate: 

7.4.1 Mobilized bodies 

There are nB mobilized bodies [ ]jB  (including Ground) . 

Each [ ]jB  represents a unique body and its mobilizer providing 0 [ ] 6n j£ £  unconstrained 

mobilities (degrees of freedom). The ground body G [0]º B , and n[0]=0. u[j] and [ ]u j!  are 

sets of n[j] scalar generalized speeds and corresponding generalized accelerations defined by 

[ ] sjB ’  mobilizer. q[j] and [ ]q j!  are the mobilizer’s nq[j] generalized coordinates and their 

time derivatives, with [ ] [ ]qn j n j³ . q and u are related via an [ ] [ ]qn j n j´  kinematic coupling 
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matrix N[j] such that [ ] [ ] [ ]q j j u j= N! . There may be a local quaternion normalization con-

straint n[j] defined, where n[j] depends only on q[j]. 

For the System as a whole, we define ordered sets [ ]ju u j=!  and [ ]jq q j=! , and sets of 

their elementwise time derivative variables u!  and q! . Sizes are [ ]jn u n j=å!  and 

[ ]q qjn q n j=å! . We also define block diagonal qn n´  matrix N=diag(N[j]) so that q u=N!
. 

7.4.2 Dynamic variables z 

There are nD scalar dynamic variable sets [ ]z i zÎ . 

Any element in the System may allocate one or more sets of nz[i] scalar dynamic variables 
z[i] and their corresponding time derivative variables [ ]z i! . We collect these into nz-element 
aggregate ordered sets z and z! .  

7.4.3 Structured variables d 

There are nd structured-value variables [ ]d i dÎ . 

These variables can be allocated by any element of the System. Each one holds an object of a 

particular type, but that type is arbitrary and is different for each variable. These can be as 

simple as boolean flags or integers to arbitrarily complex objects. 

7.4.4 Constraints 

There are nC constraints [ ]iC  which can restrict the mobility of the bodies.  

Each constraint defines a set of m[i] constraint equations g[i]. These are classified as position 

(holonomic), velocity (nonholonomic), and acceleration constraint equations and a single 

constraint can generate equations at different levels. g[i] is then partitioned into correspond-

ing subsets [ ], [ ], [ ] [ ]p i v i a i g iÌ  of cardinality [ ], [ ], [ ]p v am i m i m i  such that 

[ ] [ ] [ ] [ ]p v am i m i m i m i= + + . We also define aggregate sets , ,P V A  and = È ÈG P V A  with 

cardinalities , ,p v am m m  and m, resp.; p v am m m m= + + . 

A position constraint equation kp ÎP  has the general form : ( ; ) 0k k kq p t q =  where kq qÍ , 

that is, it defines an implicit algebraic relationship among a subset of the elements of q, 

possibly with an explicit dependence on time. If the set qk contains just one element ( 1kq =
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), then pk defines qk explicitly as ( )k kq q t= ; this is called a “prescribed position”. Each 

position constraint kp  requires an entry in the global qerr pool in the State, a corresponding 

entry in the uerr pool for the time derivative equation 0kp =! , an entry in udoterr for 0kp =!! , 

and a λ slot in the multiplier pool. 

Similarly, a velocity constraint equation kv ÎV is : ( , ; ) 0k k k ku v t q u =  where ku uÍ , an 

implicit relationship among a subset of generalized speeds with explicit dependence on t and 

q. Note that there is not necessarily any correspondence between the sets kq  and ku in a 

velocity constraint; ku  can depend on time and any set of q’s. If 1ku =  then vk defines uk 

explicitly as ( , )k k ku u t q= , this is called a “prescribed velocity”. Each velocity constraint kv  

requires an entry in the global uerr pool in the State, an entry in udoterr for 0kv =! , and a λ 

slot in the multiplier pool. 

Finally, an acceleration constraint equation ka ÎA  is : ( , , ; ) 0k k k k ku a t q u u =! !  where ku uÍ! ! , 

an implicit relationship among a subset of generalized accelerations with explicit dependence 

on t, q, and u. Note that there is not necessarily any correspondence between the sets ku  and 

ku!  in a velocity constraint; ku!  can depend on time and any sets of q’s and u’s. If 1ku =!  then 

ak defines ku!  explicitly as ( , , )k k k ku u t q u=! ! , this is called a “prescribed acceleration”. Each 

acceleration constraint ka  requires an entry in the global udoterr pool in the State, and a λ 

slot in the multiplier pool.  
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8 Equations of motion 
In this chapter we’ll present the equations of motion represented by a Simbody System. By 

equations of motion we mean the equations that determine the instantaneous rates of change 

for the state variables. Integrating those rates of change into a trajectory through time is a 

different topic and will be discussed in Chapter 10. 

A few conventions: We use n and subscripted n’s to count quantities related to coordinates 

(mobilities or degrees of freedom) and m and subscripted m’s to count constraint equations. 

We use overdot to represent differentiation with respect to time, in the Ground frame unless 

otherwise specified. We use a right superscript to denote a quantity which applies only to a 

particular body or its mobilizer. 

As detailed in section 7.4.1, the equations of motion will be written in terms of the set of n 

generalized speeds [ ]bu u b=!  where b ranges over all the mobilized bodies, and the nq 

generalized coordinates [ ]bq q b=! , where u[b] and q[b]  are the disjoint sets of n[b] speeds 

and nq[b] coordinates for each body [ ]bB , which arise from the presence of its mobilizer.* 

Typically there will also be a set of differential equations associated with force models which 

must be integrated along with the matter model’s generalized coordinates and speeds; we’ll 

call these nz auxiliary state variables z. In general a system will also include discrete-time 

equations and associated discrete states (we call those “slow” variables) but we’ll only 

consider the continuous system here. 

The total number n of mobilities in a multibody system is just the sum of the bodies’ individ-

ual mobilities, that is [ ]
b

n n b=å . Note that n is the number of unconstrained system 

mobilities; the net number of degrees of freedom after constraints will be net netn n m= -  

where netm m£  is the number of independent acceleration-level constraint equations gener-

ated by the system’s constraints.  

                                                

 

* We use n, representing the mobilizer’s of degrees of freedom, rather than nu to count generalized speeds, since 

there is necessarily the same number of generalized speeds as degrees of freedom. 
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Generalized speeds u are fundamentally related to the physics of the system, while general-

ized coordinates q are chosen primarily to facilitate good numerical behavior during compu-

tation. Thus the number of generalized speeds introduced by a mobilizer is always the same 

as the number of mobilities so that the generalized speeds are always mutually independent. 

The number of generalized coordinates [ ] [ ]qn b n b³  so the coordinates q[b] may not be 

independent. In Simbody, that occurs only when a mobilizer uses a quaternion to represent 

unrestricted orientation. For convenience we introduce the symbol quat [ ]n b  defined as fol-

lows: 

 quat

if mobilizer [ ] uses a quaternion

otherwise

1,  
[ ]

0, 
b

n b ì
º í
î

B
 (8.1) 

Then the total number of quaternions in the system is quat quat[ ]b
n n b=å . 

It should be emphasized that our presentation of the equations of motion below is a formal 

description, rather than a computational algorithm. It would be extremely inefficient to set up 

and solve the equations in the form they are presented here (although many lesser codes do 

that). The techniques of Order(n) multibody dynamics provide the solution of these equations 

without ever requiring their explicit formation. 

8.1 Unconstrained dynamic systems 

In a system with no constraints and where all state variables q, u, and z are defined dynami-

cally by differential equations, the equations of motion are 

 ( )q q u=N!  (8.2) 

 ( ) 0q =n  (8.3) 

 app bias( ) ( , , , ) ( , )q u t q u z q u= -M f f!  (8.4) 

 ( , , , , )z z t q u z u= !! !  (8.5) 

Then a time stepper study seeks to find trajectories ( ), ( ), ( )q t u t z t  where 
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0

0( ) ( ) ( )
t

t
q t q t q d

t
t t

=
= + ò !  (8.6) 

 
0

0( ) ( ) ( )
t

t
u t u t u d

t
t t

=
= + ò !  (8.7) 

 
0

0( ) ( ) ( )
t

t
z t z t z d

t
t t

=
= + ò !  (8.8) 

Simbody forms equations (8.2)–(8.5) analytically while equations (8.6)–(8.8) must be solved 

numerically. Time stepping is discussed in detail in Chapter 10. 

Here Mn´n is a symmetric, positive definite mass matrix in mobility space (u-space) which 

captures all the inertial properties of the system in its current configuration, and fapp (nx1) is 

the set of all applied force and torques (including gravity) mapped into an equivalent set of n 

generalized forces acting along the mobilities. fbias (nx1) is equivalent to the forces represent-

ing velocity-induced coriolis acceleration and gyroscopic terms. (fbias is quadratic in u, and is 

zero if u=0.) We partition the applied forces fapp as follows: 

  app mob bodyJ •= +f f FT  (8.9) 

Here fmob and Fbody are the user-supplied system of forces and torques, while the kinematic 

Jacobian J=J(q) is managed internally by Simbody. Fbody is an nBx1 “stacked” vector of 

spatial forces consisting of one element per body (that is, the per-body net result of all the 

forces and moments applied to each body), where each element is a 6-element spatial vector 

combining body forces and moments as described in section 3.3.1. Fbody collects user-applied 

forces and moments that act on bodies (such as Cartesian forces on atoms). If gravity has 

been specified, then Fbody also includes the spatial forces resulting from the gravitational 

model. fmob is an  nx1 vector of user-supplied scalar forces applied directly to the mobilities, 

such as would be used for bonded forces in a molecular model. JT• is the Cartesian-to-

internal conversion operator, conceptually an nxnB matrix of spatial vectors that maps spatial 

forces to their equivalent mobility forces (some authors call J the matrix of “partial veloci-

ties”). In practice the JT• operator is an O(n) algorithm, and J is never formed explicitly in 

Simbody (unless you ask for it).  

qn n´N  is a block diagonal, invertible mapping between generalized speeds and generalized 

coordinate derivatives. In practice this is mostly used to convert angular velocities to scaled 

quaternion derivatives or to Euler angle derivatives. The rectangular system of equations 
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represented by (8.2) has rank only n (≤nq), leaving quaternion lengths undetermined, so we 

need nquat additional normalization conditions represented by (8.3) to ensure a unique solu-

tion for trajectory q(t). Note that although equation (8.3) is formally a set of constraints, we 

consider this an unconstrained system since these constraints do not affect the physical 

solution. 

Equation (8.4) is just a version of Newton’s second law F=ma, relating forces to accelera-

tions. The z’s are nz additional state variables whose values can affect the forces, which may 

themselves be modeled as differential equations. z’s cannot directly affect positions and 

velocities, although of course they do affect accelerations which will ultimately affect 

velocities and then positions. Note that z’s time derivatives z!  can depend on u! but not vice 

versa. 

Formally, we can solve equation (8.4) for the accelerations u!  with 

 app bias( )u -= -1M f f!  (8.10) 

By formally we mean, “don’t actually do it that way!” There is always special structure to M 

that can be exploited such that the accelerations can be calculated directly in O(n) time, while 

a literal matrix inversion would take O(n3) time and be prohibitive for large systems. Even 

forming M would take O(n2) time since it has (roughly) n2/2 unique elements, so Simbody 

neither forms nor factors M while solving equation (8.10). 

As an extreme example, consider the special case of a molecular system modeled with na 

point mass atoms and Cartesian coordinates, so that n=3na. M is then a diagonal matrix of 

dimension 3na´3na with the atomic masses (each repeated three times) arrayed along the 

diagonal. The q’s are the Cartesian x,y,z coordinates, and the u’s are the Cartesian velocities 

so nq=n (=nu), N is an identity matrix, and q u=! . fbias is always zero for this system. fapp is 

simply the Cartesian forces acting on each coordinate of each atom, typically resulting from 

taking the gradient of the potential energy function. This represents a set of 3na uncoupled 

scalar equations for the Cartesian accelerations of each atom, which can clearly be solved in 

O(n)! 

In a more general multibody system M will be dense as a result of coupling produced by the 

internal coordinates. Use of quaternions for orientation results in there being more q’s than 
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u’s and N is no longer identity and in fact not even square. However, equation (8.10) pro-

vides the solution for the accelerations in this case just as well, and the special structure of 

multibody systems permits a solution in O(n) time regardless of the amount of coupling in 

M. 

8.2 Constrained systems 

Constraints introduce unknown forces and moments into the system. Constraints are intro-

duced, for example, if there are topological loops created by the set of bodies and joints. The 

constraint forces involve additional unknowns (along with the non-prescribed accelerations). 

We call these unknowns Lagrange multipliers and represent them as a vector λ of length m. 

These are mapped to mobility forces with a coupling matrix G and thus modify acceleration 

equation (8.4) like this: 

 T
app biasu l+ = -M G f f!  (8.11) 

 u =G b!  (8.12) 

where Gm´n=G(q) and bm´1=b(t,q,u), m is the number of constraint equations and n=nu is the 

number of generalized speeds. Equations (8.11) and (8.12) are a system of n+m equations in 

n+m unknowns (  and u l! ) so can be solved for the accelerations that satisfy the constraint 

equations. The solution of this system makes use of the unconstrained result from equation 

(8.10). Note that because we can directly solve for u! and eliminate λ, this is still just an 

ordinary differential equation, with ( , , , )u u t q u z=! ! .* 

8.3 Unconstrained systems with prescribed, fast, and slow varia-
bles 

A system may have motion where some or all of the generalized accelerations u!  are known 

as functions of time and state, but the corresponding generalized forces are unknown. In this 

                                                

 

* Knocking equations (8.11) and (8.12) around a little, one can verify that 
Cuuu !!! -= 0

, where 
1

0 app bias( )u -= -M f f! , 1 T
Cu l-=M G! , and 1

0
1( ) ( )ul - -= -GM G G b!

T . In general the constraint matrix 1-GM GT  can 

be singular, so there may be no solution, or an unlimited number of solutions, in which case Simbody will 
provide a least squares solution for λ. 
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case we’ll partition the generalized accelerations u!  as { },p fu u u=! ! !  where pu!  are the pn  

prescribed accelerations and fu!  are the fn  free accelerations driven by forces. (For notation-

al convenience we’ll treat these as though all prescribed variables follow any dynamic ones, 

although that ordering is not required in practice.) We then use ( 1)pnt ´   to represent the 

unknown generalized forces associated with prescribed generalized accelerations pu! . Any 

accelerations that are associated with fast or slow variables are prescribed to be zero. 

Equation (8.4) is then replaced with equation (8.13)  where there are additional unknowns for 

the generalized forces that implement the prescribed motions: 

app bias

0
( ) ( , , , ) ( , )f f

p

u
q t q u z q u
u t
æ ö æ ö

+ = -ç ÷ ç ÷
è øè ø

M f f
!

!
 (8.13) 

[ ]( , , ), upd[ ]
[ ]

0, upd[ ]  or 
p pf pf

p

u i t q u i pres
u i

i fast slow
=ì

= í =î

!
!  (8.14) 

[ ] [ ]( , , , , , )z i z i t q u z u t= !! !  (8.15) 

For a subset of the prescribed accelerations pu! , we  may also know the corresponding 

generalized speeds pu  analytically as a function of time and position, otherwise the general-

ized speeds will be free variables fu  produced by numerical integration of pu! . Similarly, for 

a subset of the prescribed speeds we will also know prescribed coordinates pq  as a function 

of time only; otherwise the coordinates will be part of the free position variables fq . 

The trajectory equations (8.6) and (8.7) still hold for the free and prescribed dynamic varia-

bles, but only the free variables , ,f fq u z  need to be solved via numerical integration: 
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0

0

( )

( ) ( )( )
( ) ( )( )
( ) relax( )
( )

t

f ff t

p p

fast fast
kslow
slow

q t q dq t
q t q tq t
q t q
q t q

t
t t

=

æ ö+æ ö ç ÷ç ÷ ç ÷ç ÷= = ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷è ø è ø

ò !

 (8.16) 

 
0

0

( )

( ) ( )( )
( ) ( , )( )
( ) relax( ; )
( )

t

f ff t

p p pf

fast fast fast
kslow
slow

u t u du t
u t u t qu t
u t q u
u t u

t
t t

=

æ ö+æ ö ç ÷ç ÷ ç ÷ç ÷= = ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷è ø è ø

ò !

 (8.17) 

 
0

0( ) ( ) ( )
t

t
z t z t z d

t
t t

=
= + ò !  (8.18) 

Note again that the partitioning of q, u, and u!  into free and prescribed variables can differ 

because a higher-level coordinate (position or velocity) may need to be produced by integra-

tion even if a lower one (velocity or acceleration) is prescribed. 

To solve for the dynamic unknowns fu!  and t , we view the mass matrix and right hand side 

as being composed of partitions corresponding to the free and prescribed variables like this: 

bias,

bias,

0ff fp f f ff

fp pp p p p

u
u t

æ öæ ö æ ö æ öæ ö
+ = -ç ÷ç ÷ ç ÷ ç ÷ç ÷
è øè øè ø è ø è ø

M M f f
M M f f

!

!
T  (8.19) 

Multiplying out the blocks and moving the known quantities to the right hand side gives 

 ( , , )p pu u t q u=! !  (8.20) 

 bias,ff f f f fp pu u= - -M f f M! !  (8.21) 

 bias,p p fp f pp pu ut = - - -f f M M! !
T  (8.22) 

These equations can be solved recursively in O(n) time by the method described in reference 

5. 

8.4 Constrained systems with prescribed motion 

Prescribed motion is similar to a constraint, and in fact one of Simbody’s built-in Constraint 

types implements prescribed motion that way. There are two differences between a con-

straint-based prescribed motion and the direct form described here: 
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1. Direct prescribed motion takes priority over any constraints. That is, first prescribed 

motion is satisfied, and then constraints are satisfied by modifying only the unpre-

scribed variables. 

2. Direct prescribed motion can be implemented much more efficiently. In fact, adding 

prescribed motion this way speeds up computation rather than slowing it down, be-

cause inverse dynamics is faster than forward dynamics. 

With prescribed motion some of the generalized accelerations  are known explicitly as 

functions of time, q, and u. As was done in section 8.3, we’ll partition the u! ’s and general-

ized forces into two groups, subscripting those associated with prescribed motion with a p, 

and the free (force-driven) ones with an f: { },f pu u u=! ! ! , { },f p=f f f  with fu! ,l  and t being 

the unknown dynamic quantities. Substituting into equations (8.11) and (8.12) gives 

 bias

0f f

p

u
u

l
t

æ ö æ ö
+ + = -ç ÷ ç ÷

è øè ø
M G f f
!

!

T  (8.23) 

 f

p

u
u
æ ö

=ç ÷
è ø

G b
!

!
 (8.24) 

Now we’ll partition M and G into blocks corresponding to the free and prescribed variables 

as follows: 

 ( ),ff fp
f p

fp pp

æ ö
= =ç ÷
è ø

M M
M G G G

M MT  (8.25) 

Partitioning the right hand sides analogously, the equations of motion are now 

( , , )p pu u t q u=! !  (8.26) 

bias,

bias,

0ff fp f f ff f

fp pp p p pp

u
u

l
t

æ öæ öæ ö æ ö æ öæ ö
+ + = -ç ÷ç ÷ç ÷ ç ÷ ç ÷ç ÷ç ÷ è øè øè ø è ø è øè ø

M M f fG
M M f fG

!

!

T

T T  (8.27) 

( ) f
f p

p

u
u
æ ö

=ç ÷
è ø

G G b
!

!
 (8.28) 

Multiplying the blocks out and moving the known terms to the right hand side gives 

u!



 

  71  

 ( , , )p pu u t q u=! !  (8.29) 

 ˆ
ff f f fu l+ =M G f!

T  (8.30) 

 ˆ
f fu =G b!  (8.31) 

 ˆ
p pt l= -f GT  (8.32) 

where 

 bias,
ˆ
f f f fp pu= - -f f f M !  (8.33) 

 ˆ
p pu= -b b G !  (8.34) 

 bias,
ˆ
p p p fp f pp pu u= - - -f f f M M! !

T  (8.35) 

 

Equations (8.30) and (8.31) are solved for fu!  and l  in the same manner as equations (8.11) 

and (8.12), using the known value of pu!  to evaluate the right hand sides in equations (8.33) 

and (8.34). Then the resulting values for fu!  and l  are substituted into equations (8.35) and 

(8.32), giving the final unknown t .  

1
,0

0 ,0

ˆ
( , ) ˆ ( )

ff ff
p

p f

u
dyn u

ut

-æ öæ ö
ç ÷= =ç ÷ ç ÷è ø è ø

M f
f

f

!
!

!
 (8.36) 

,01
,0
ˆ( ) f

f ff f f f
p

u
aerr u

u
l- æ ö
= = -ç ÷

è ø
G M G G b

!
!

!

T  (8.37) 

1 ˆ( )
( , ) ˆ ( )

ff f ff
p

p f p

u
dyn u

u

l
l

t l

-æ ö-æ ö
ç ÷= - =ç ÷ ç ÷-è ø è ø

M f G
f G

f G

!
!

!

T
T

T
 (8.38) 

As before the only matrix we must form and factor explicitly is the mxm possibly-singular 

matrix 1
f ff f

-G M GT , which takes worst case ( )fO m n×   time to form and 3( )O m  time to factor, 

with the worst case occurring when all the constraints are coupled. All the other matrix-

vector multiplies can be performed with recursive O(n) and O(m) operators and the pre-

scribed constraints do not contribute to this matrix. 
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The operators we have available for performing the above calculations are as follows. 

Prescribed motion provides direct calculation of ( , , )pu t q u!  and applied forces, converted to 

equivalent generalized forces ( , , , ) f

p
t q u z

æ ö
= ç ÷
è ø

f
f

f
 are available also. 

From the multibody system we have these two O(n) operators: 

 
1

bias,f

bias,

( )
( , ) ff f fp pf

p
p p fp f pp p

uu
dyn u

u ut

-æ ö- -æ ö
= = ç ÷ç ÷ ç ÷- - -è ø è ø

M f f M
f

f f M M
!!

!
! !

T  (8.39) 

 
1 0

( )
0 0 0
f fff

p p

u
minv

-æ ö æ öæ ö
= =ç ÷ ç ÷ç ÷

è øè ø è ø

fM
f

f
!

 (8.40) 

From the system of constraints we also have two O(n) operators: 

( )( ) f
f p

p

u
aerr u

u
æ ö

= -ç ÷
è ø

G G b
!

!
!

 (8.41) 

cons,

cons,

( ) f f

p p

frc l l
æ öæ ö

= = ç ÷ç ÷ ç ÷è ø è ø

f G
f G

T

T  (8.42) 

These are used to calculate all the above terms efficiently, especially the m m´  matrix 
1

f f ff f
-=W G M GT  which we calculate by noting 

 
( )1

1 1 0
where         

0 0 0

f f ff f f p

ff f ff fp f
n m

pm pf pp p

-

- -

´

= =

æ ö æ öæ ö
= =ç ÷ ç ÷ç ÷ç ÷ ç ÷ç ÷
è ø è øè ø

W G M G G G X

M G M G
X

G

T

T T

T

 (8.43) 

Our goal is to calculate columns of X one column at a time and then use the aerr() operator 

to calculate a column of Wf. 

First make one call to the dyn() operator (8.39) to calculate ,0fu!  in equation (8.36). Then 

make one call to the aerr() operator (8.41) with a zero argument to calculate the bias term b: 

 0

0
0
f

p
aerr aerr

æ ö
= = -ç ÷

è ø
b (8.44) 

Then use a call to equation (8.42) to form columns of GT  explicitly, one at a time: 
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 ( )i i
i frc l l= =G GT T  (8.45) 

where il  is a unit vector of length m with the ith element 1 and the rest 0.  

We then call the minv() operator in equation (8.40), followed by a call to aerr() to calculate a 

column iX : 

1

( )
0
ff i

i i
p

minv
-æ ö

= =ç ÷ç ÷
è ø

M G
X G

T
T  (8.46) 

0and then               ( ) ( )f f i ii aerr aerr= = -W G X X  (8.47) 

to build up 1
f f ff f

-=W G M GT  in ( )O m n× operations as needed to solve equation (8.37) for a 

least squares value for l . That is used to calculate constraint forces lGT  using the frc() 

operator again. These are subtracted from the applied forces for a final call to the dyn() 

operator to solve equation (8.38) for fu!  and t . 

8.5 Constrained systems as specified to Simbody 

Equations (8.12) and (8.31) are written in terms of linear constraints on the accelerations u! . 

However, in most cases general constraints are known only at the configuration level, that is, 

as nonlinear algebraic relationships which must hold among the q’s or among quantities fully 

determined by the q’s. A constraint like “these two atoms must be a certain distance apart at 

all times” would be an example. In other cases the constraints may be expressed at the 

velocity level as restrictions on u. In these cases we time-differentiate the constraints twice or 

once, resp., until we have corresponding acceleration constraints, and then use them in 

equation (8.12) or (8.31), along with any constraints which may have been defined directly at 

the acceleration level. Similarly in the case of prescribed motions given at the position or 

velocity level, we differentiate twice or once and then use the result as equation (8.29). 

Following this procedure yields correct accelerations, but with approximate numerical 

integration of those accelerations the original position or velocity constraints will not remain 

satisfied over time. In practice, any constraints that are not actively enforced will gradually 

drift apart during a dynamic simulation. To address this, we must keep the original algebraic 

constraints in the problem and solve them along with the ODE  (8.11), (8.12). That results in 

a system of mixed differential and algebraic equations, known as a DAE. Equations (8.48)-
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(8.54) shows the complete set of equations, including the set of auxiliary, unconstrained 

differential equations in z which may be required in the computation of forces. 

 ( )q q u=N!  (8.48) 

 ( ) 0q =n  (8.49) 

 T
bias( ) ( , , , ) ( , )q u t q u z q ul+ = -M G f f!  (8.50) 

 ( , , ; ) 0t q u u =a !  (8.51) 

 ( , ; ) 0t q u =v  (8.52) 

 ( ; ) 0t q =p  (8.53) 

  (8.54) 

Constraint coupling matrix Gmxn is obtained from equations (8.51)-(8.53) as discussed below. 

Note also that the constraint equations (8.51)-(8.53) combine both general constraints and 

prescribed motion constraints, each subject to different restrictions on the allowable forms 

for the constraint functions. We are showing only dynamic variables here; there are also 

relaxation conditions for fast variables and discrete conditions for slow variables. 

Equations (8.48)-(8.54) show the system as it is defined to Simbody, including all the con-

straints that must be obeyed during a dynamic simulation, starting with initial conditions t0, 

q(t0), u(t0), z(t0) such that constraint equations (8.49), (8.52), and (8.53) are satisfied. 

The function 
a 1m ´a  in equation (8.51) specifies ma acceleration (index 1) constraints, which 

are required to be linear in the accelerations , with maxn coefficient matrix A. These have 

application, for example, in some models of Coulomb friction6 and in producing simulations 

which must track measured accelerations or reaction forces. It is common to prescribe an 

acceleration to zero to temporarily lock a joint. 

The function 
v 1m ´v  in equation (8.52) specifies mv nonholonomic (velocity, index 2) con-

straints (usually, but not necessarily, linear or quadratic in u). These include, for example, 

“non slip” constraints like gears and rolling contact, and constraints involving kinetic energy. 

The mv time derivatives v!  of the nonholonomic constraints v must also be obeyed since, like 

a, they restrict the allowable values of  and in general they will be coupled to a. Prescribed 

velocity is often used to force a body to rotate at a constant rate. 

( , , , )z z t q u z=! !

u!

u!



 

  75  

The function 
p 1m ´p  in equation (8.53) specifies mp holonomic (position, index 3) constraints, 

which are arbitrarily nonlinear in t and q. The mp time derivatives p! , and mp second time 

derivatives p!!  must also be obeyed since they impose restrictions on u and , respectively, 

and in general will be coupled to v and a. 

Then a, v! , and p!!  together constitute the acceleration-level constraints, so we have 

m=ma+mv+mp as the total number of constraints at the acceleration level.  

The system of equations (8.48)-(8.54) contains nq+nu+nz+m equations in the nq+nu+nz+m 

unknowns q,u,z and λ, and should thus yield a unique solution for the resulting trajectories 

q(t), u(t), z(t) and λ(t), given consistent t0, q(t0), u(t0), and z(t0) to start with. Unfortunately, 

obtaining that solution is easier said than done! Numerical analysts describe a system like 

this as a Differential Algebraic Equation (DAE) system of index 3, for which few entirely 

satisfactory solution methods exist. For a survey of methods, see reference 7. For Simbody 

we advocate and actively support the method known as coordinate projection,8 which is very 

accurate and reliable in practice. It is also possible to use the popular but less robust tech-

nique called Baumgarte stabilization9. In the next section we’ll discuss how we go about 

solving equations (8.48)-(8.54). 

8.6 Unilateral constraints 

Normally a constraint generates whatever constraint forces are necessary in order to 

satisfy the acceleration-level expression of that constraint. Some constraints are 

limited, however, in the forces they can generate. Most commonly this occurs 

when constraints are used to represent contact between bodies. In those cases, the constraint 

can produce “pushing” forces but not “pulling” forces. Other common examples are joint 

stops, ratchets, and ropes. These constraints are capable only of producing forces λ of one 

sign, and their characteristic constraint equations are inequalities rather than the equalities 

shown in equations (8.51)–(8.53). By convention we’ll require that all the constraint errors 

and λ are nonnegative; if they are actually nonpositive we can negate them so that we only 

need to consider nonnegativity here. Now when solving for the constraint forces λ we must 

first determine which of the unilateral constraints are active. These extra unknowns (that is, 

whether each constraint is active) are resolved by a complementarity condition that must hold 

u!
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for every acceleration-level unilateral constraint equation: if the force is nonzero then the 

constraint error must be zero (constraint is active), or if the constraint error is nonzero then 

the force must be zero (constraint is inactive). Thus the product 0i ig l =  for every unilateral 

constraint equation i, where ig  is the acceleration-level constraint error (i.e., it is ia , iv! , or 

ip!!  depending on the kind of constraint). So we have the conditions 

 0, 0, 0i i i ig g il l³ ³ = "  (8.55) 

Combined with the always-active acceleration-level equality constraint equations, (8.55) is in 

the form of a mixed complementarity problem (MCP). In cases where ig  and il  are linear 

functions, this is a (mixed) linear complementarity problem (LCP) for which very efficient 

solution methods exist. In practice, all our inequality constraints will be linear except for 

friction, which can be quadratic. 

An enabled, unilateral holonomic constraint will be in one of these seven states: 

State	 Conditions	 Action	
violated	 p tol< -  Illegal; must correct. 
separated	 p tol>  

Ignore constraint. separating	 ,p tol p vtol£ >!  

inactive	 , , 0 and 0p tol p vtol p l£ £ ³ =! !!  

impacting	 ,p tol p vtol£ < -!  
Or, impact declared by time stepper. 

Perform impulsive MCP; new 
p vtol³ -!  à separating or 
candidate. 

candidate	 , , ,  p tol p vtol p unknownl£ £! !!  Perform MCP to determine ,p l!!  

active	 , , 0 and 0p tol p vtol p l£ £ = >! !!  Obey constraint. 
 

Holonomic unilateral constraints can generate impulses, that is, discontinuous changes to the 

velocity state variables due to impacts. The response to an impact requires user specification 

of the amount of dissipation that should occur; this results in a coefficient of restitution 

0 1e£ £  that is used to impulsively change the velocities. If the resulting rebound velocity is 

small enough, the constraint becomes a candidate to become active; otherwise the surfaces 

separate after impact. 
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An enabled, unilateral nonholonomic constraint will be in one of these five states: 

State	 Conditions	 Action	
violated	 v vtol< -  Illegal; must correct. 
separated	 v vtol>  

Ignore constraint. 
inactive	 , 0 and 0v vtol v l£ ³ =!  

candidate	 , ,  v vtol v unknownl£ !  Perform MCP to determine ,v l!  

active	 , 0 and 0v vtol v l£ = >!  Obey constraint. 
 

No state variable discontinuity occurs when a unilateral nonholonomic constraint becomes 

active, although the acceleration will have a jump. 

An enabled, unilateral acceleration-only constraint will be in one of these three states: 

State	 Conditions	 Action	
candidate	 ,  a unknownl  Perform MCP to determine ,a l  
inactive	 0 and 0a l³ =  Ignore constraint. 
active	 0 and 0a l= >  Obey constraint. 

 

Note that a unilateral acceleration-only constraint is always a candidate and can never be 

violated. 

8.6.1 Solving for impacts 

When we have determined that an impact has occurred, we need to make a discontinuous 

change to the system’s generalized speeds to avoid violating constraints. These speed chang-

es result from applying an impulse to the system. An impulse is the integral of the forces 

applied during the collision, which is considered to be infinitesimally fast for rigid contact so 

that the system configuration (value of q) does not change during the impact. Further, during 

an impact we assume that all applied forces are insignificant except contact forces, so only 

those contribute to the impulse integral. Contact forces result either from the enforcement of 

constraints (including unilateral and bilateral constraints and mobilizers), or from the applica-

tion of sliding friction forces. 

Impact events have a coefficient of restitution e that determines how much energy is dissipat-

ed during the collision. When e=1, the collision is conservative, and when e=0 it is maximal-



 

78 

ly dissipative. In between some fraction of the energy is lost and there are three common 

ways to interpret e: as the ratio of rebound speed to impact speed (Newton’s coefficient); as 

the ratio of expansion impulse to compression impulse (Poisson’s coefficient); and as the 

square root of the ratio of the final energy to the initial energy (Stronge’s coefficient). These 

are all equivalent in simple collisions, but for multibody systems Newton’s interpretation will 

often produce non-physical behavior. Poisson’s produces consistent behavior though Stronge 

claims that only his interpretation can be guaranteed not to add energy. It is not clear whether 

Stronge’s interpretation can be implemented in practice, however, so we use Poisson’s. 

The basic procedure for a frictionless impact is as follows: 

1. Determine that a contact event has occurred at time t-  that would violate a constraint 

c. 

2. Determine the collision velocity that must be eliminated to avoid constraint violation, 

call it cv
-  (< 0).  If cv

-  is below a small “capture velocity” we set coefficient of restitu-

tion e=0, otherwise we use a supplied value or velocity-dependent calculation for e.  

3. Compression: calculate the consistent impulse that would just drive vc to zero, call 

that I. (By consistent we mean that it satisfies the equations of motion and all con-

straint conditions.) 

4. Expansion: Apply the impulse (1+e)I and calculate the resulting change in general-

ized speeds Δu. 

5. Update u u u+ -= + D  and use that to calculate the post-impact velocity cv
+ . 

6. If 0cv
+ = (to a tolerance), examine its time derivative ca

+ . If 0ca
+ < activate constraint 

c. 

Assume first that only constraint c is unilateral and that all other constraints are active. We 

need to integrate the equations of motion over the infinitesimal interval t-  to t+ . Since time 

and state don’t change during the impact, only contact force-dependent terms can change 

during the integration interval. That leaves us with these impulsive equations of motion: 
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0puD =  (8.56) 
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 (8.58) 

where the unknowns are shown in red. These are fuD , the change in generalized speeds, Il , 

the constraint impulses, and It , the prescribed motion impulses. The fI are the sliding friction 

impulses applied during the impact. We have added rows to the constraint matrix correspond-

ing to the new constraint c, with right hand side set to the change we want to make in the 

constraint violation velocity. For Poisson restitution, we will always want to calculate the 

impulse that will make 0cv
+ = . Note that the prescribed motions in (8.56), applied and inertial 

forces in (8.57), and the right hand side of (8.58) are all zero here, but otherwise these are the 

same as the acceleration-level equations of motion with the unknowns relabeled. Thus we 

can solve these equations using the same operators and techniques as for the original equa-

tions. Multiplying these out we get 

 1
,

0

f
ff I f

f

I
cf v

l - -

é ù
ê ú

= é ùê ú+ê úê úë ûë û

GW
M

c
  (8.59) 

 1
,( )ff I f Iff ffu l- é ù= -D ë ûM G cT T   (8.60) 

 ,I f
T

I p fp p p Iuft lé ù= - - ë ûDM G cT T   (8.61) 

where 1f
ff f f

f

-é ù
é ù= ê ú ë û

ë û

G
W M G c

c
T T   (8.62) 

Note that we do not need to determine the prescribed motion impulses in order to solve for 

the constraint impulses and changes to the generalized speeds. As before, W may be singular 

so we choose a least squares solution to Il ; any choice for Il  that solves (8.59) will produce 

the same fuD .  

8.6.2 Sliding friction forces and impulses 

Using Coulomb’s friction law results in sliding friction forces or impulses of the form 
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 slip s=F e  (8.63) 

 with sliding friction multiplier σ a nonnegative scalar and e a unit vector in the slip direction 

(or impending slip direction). The sliding friction multiplier is defined as 

 Ns µ=   (8.64) 

where scalar N≥0 is a normal force or impulse magnitude and µ≥0 is a scalar (often velocity-

dependent) representing the coefficient of friction. The dimensionality of slip direction e 

determines the dimensionality and meaning of the friction force Fslip – for example, e may be 

a scalar (a generalized speed), a translational 2-vector (planar friction), or a rotational 3-

vector such as the angular velocity of a ball joint. These would produce friction forces that 

are: a generalized force, a planar force, or a 3d torque, respectively. 

8.6.2.1 Coefficient of friction 

The coefficient of friction µ in general may be velocity-dependent. Pure Coulomb friction 

switches discontinuously between two values, a static coefficient of friction µs used when 

sticking, and a dynamic coefficient µd ≤ µs used when sliding. Continuous schemes may 

blend these values based on velocity. Coefficients of friction may also change with time and 

position, but must not depend on accelerations or constraint forces. A typical form for sliding 

friction (where v is the slip velocity vector) is: 

 d vµ µ µ= + v   (8.65) 

where µv is a viscous coefficient of friction. For any given pair of contact surfaces, these 

coefficients must be calculated via some combination of the two sets of surface properties. 

8.6.2.2 Normal force 

N may depend nonlinearly (quadratically) on mobilizer or constraint reactions, which are in 

turn dependent on the calculated accelerationsu! and Lagrange multipliers λ. Because these 

may then depend on friction forces, the equations of motion can become mildly nonlinear 

and some iteration may be required to find a compatible set of accelerations, multipliers, and 

sliding friction forces for a given set of active constraints. During impact, similar iteration 

may be required to find compatible velocity changes, impulse multipliers, and impulsive 

sliding friction forces. We expect this iteration usually to converge very rapidly for several 

reasons: the nonlinearity is very mild, at most the magnitude of a vector; friction forces are 
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orthogonal to N’s application direction so coupling must be indirect through the multibody 

system; and we generally have a very good starting guess from the normal forces at the 

previous time step. Nevertheless the coupling can be strong at times and there are circum-

stances in which convergence cannot be obtained without an impulsive change to velocities 

(see Painlevé’s paradox). 

8.6.2.3 Sliding friction with linear dependence on multipliers 

When each sliding friction multiplier js  is a linear function of a constraint multiplier jl ¢ , as is 

the case for point contact between surfaces, the equations of motion remain linear, although 

with a switching condition (a discrete nonlinearity). There are two cases, depending on 

whether the constraint multiplier belongs to a bilateral or a unilateral constraint, as illustrated 

below. 

 

Friction force multipliers are required to be nonnegative, but the constraint multipliers they 

depend on are signed. This is true even for unilateral constraints here, because we are assum-

ing a given active set (all active constraints are treated as bilateral). If that results in violation 

of a unilateral constraint (i.e., a negative constraint multiplier or stiction beyond its limit), a 

higher-level algorithm will revise the set of active constraints; we do not make that choice 

here. 

The friction force multipliers are given by 

0jl >
¢

 

λj 

σj 

0jl <
¢

 

λj 
{ }j bilateralÎ¢  

0jl >
¢

 

λj 

σj 

0jl <
¢

 

λj 
{ }j unilateralÎ¢  

Figure 11: Dependence of sliding force magnitude σ on normal constraint multiplier λ. 
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  (8.66) 

where j¢  is the index of the constraint multiplier on which sliding friction force j depends. 

There are a total of k sliding forces and m multipliers (and n generalized speeds). For conven-

ience we’ll arrange the j j¢®  mapping in a kxm matrix T, which is all zero except that 

element [ , ] 1j j¢ =T  for j=1..k. Then Tλ selects just the k multipliers for which there are sliding 

forces and reorders them if necessary. (T can select the same multiplier more than once if 

several sliding forces depend on it, but that is unlikely.) 

We can view this as a collection of linear equations, only one of which is active for each j, 

depending on the sign of jl ¢ : 

 
, 0
, 0 and { }

0, 0 and { }

j j j

j j j j

j

j bilateral
j unilateral

µ l l
s µ l l

l

¢ ¢

¢ ¢

¢

³ì
ï ¢= - < Îí
ï ¢< Îî

  (8.67) 

We don’t know in advance what the signs of the multipliers will be, so we now have k 

additional unknowns sense( ) {1, 1,0}j jd l ¢= Î -  giving the sense (“direction”) for each sliding 

force equation, defined 

  
sign( ), { }

sense( )
max(sign( ),0), { }

j
j j

j

j bilateral
d

j unilateral
l

l
l
¢

¢
¢

¢Îì
= = í ¢Îî

  (8.68) 

where sign(x) is 1 if x≥0, −1 otherwise. Note that d does not represent sliding directions; it is 

just the sense of the relationship between the normal constraint multipliers and their sliding 

force multipliers. With that definition we have 

 ( 0)j j j jds µ l ¢= ³   (8.69) 

Assemble the sense scalars into a kxk diagonal matrix D=diag(dj). Given the right values for 

d, we can write the sliding friction magnitudes as the set of linear equations 

 ( 0)s l= ³DµT   (8.70) 

where σ is a kx1 column vector containing the sliding friction force multipliers and 

µ=diag(µj) is a kxk diagonal matrix. Now let ST be the matrix mapping those magnitudes to 
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generalized forces (that is, S=S(t,q,u) is a kxn matrix formed from the slip directions v and 

kinematic Jacobian). Then the equations of motion are 

 

sense( ), ( )

T Tu f
u b

d d

l s

s l
l

+ + =
=
=
= =

M G S
G

DµT
T D diag

!

!   (8.71) 

Given fixed values for d, the first three equations above define a linear subproblem for the 

unknowns , ,u l s! . Substituting the third line of (8.71) into the first eliminates σ: 

 ( )T Tu f
u b
l+ + =
=

M G T DµS
G

!

!
  (8.72) 

Then multiplying through by the inverse mass matrix and substituting eliminates u! : 

 
1

1where  ( )T T

f bl -

-

= -

= +

W GM
W GM G T DµS

  (8.73) 

This system is likely to be underdetermined, but the least-squares value of λ is the unique 

solution we want: 

 1( )f bl + -= -W GM   (8.74) 

where superscript + indicates pseudoinverse. This is identical to Simbody’s usual calculation 

of λ except for the new term TT DµS, which makes W non-symmetric. That doesn’t matter for 

us since we can’t easily exploit symmetry anyway here due to the potential for redundancy. 

Now we can recalculate d and check whether we used the right set of equations. If so, then 

s l=DµT are the correct, nonnegative sliding force multipliers. If not we’ll have to revise d 

and re-solve the modified linear system. 

In the case where we have chosen d incorrectly, we will have errors in σ due to having 

chosen the wrong linear equation from (8.67). For bilateral constraints we will have had d=1 

when it should have been −1 or vice versa; for unilateral constraints we will have had d=0 

when it should have been 1 or vice versa. That means an incorrect choice leads to twice the 

error for bilateral constraints as for unilateral ones. You can see that easily in Figure 12 

below. 
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We propose the following algorithm to solve this system [TODO: is there a better way?]: 

1. Assume we are given an initial set of signs dj (these will typically have been saved 

from the previous time step). 

2. Solve for λ using (8.74), then define derr such that  sense( ) {0,1,2}j j jderr d l ¢= - Î . This 

will be 2 for an incorrect bilateral constraint, 1 for an incorrect unilateral constraint, 

and zero if dj was correct. 

3. If derr=0 we are done since we used the correct set of linear equations. Go to step 5. 

4. Otherwise, from all j for which 0jderr ¹ , choose the one for which j j j jerr derrs µ l ¢=  

is largest, then revise dj using (8.68), and repeat from step 2. [TODO: is this the right 

way to choose j?] Note that we only revise one sign at a time since all the unknowns 

are coupled in general—changing more than one at a time can cause failure to con-

verge. [TODO: what can we say about convergence and uniqueness?] 

5. Verify that we have a solution. If not, the system is inconsistent which means there 

must be an impulsive velocity change to change a sliding contact into a sticking one; 

the impact handler should be invoked. 

This same set of equations can be used for impact also, after relabeling, removing non-

impulsive forces, and inserting the velocity error to be removed from normal and stiction 

constraints: 

σj σj 

σerrj σerrj 

Figure 12: The error in a sliding friction force multiplier when the wrong linear equation is 
chosen for it. The dotted blue lines show the incorrect values of σ. Note that the error is twice 
as large for bilateral constraints as for unilateral ones. 

Bilateral Unilateral 
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  (8.75) 

where the unknowns are the set of impulse multipliers π (and σ), the velocity change Δu, and 

the signs d. 

8.6.2.4 Sliding friction with nonlinear dependence on multipliers 

A bilateral constraint implemented with several multipliers may have sliding friction that is 

dependent on a normal force that is the magnitude of a vector. Examples are a 2-multiplier 

point-on-line constraint (with sliding friction along the line), or joint-like constraints such as 

a 3-multiplier ball joint constraint (sliding friction torque vector opposing angular velocity) 

or 5-multiplier pin joint constraint (sliding friction generalized torque about rotation axis). In 

these cases the normal force scalar of interest is the norm of a vector which is some projec-

tion of the constraint reaction force. Then we can write the magnitude σj≥0 of the jth sliding 

friction force as 

 
2

( )

where     ( )
j j j j

j j j j

N

N

s µ l

l l
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= A

!

! !   (8.76) 

Subscript j¢  is now the set of multiplier indices on which σj depends and jl ¢

!
is a vector, 

typically with 2 or 3 elements; conceivably it could contain up to 5. Aj=Aj(q) provides 

rotation, scaling, and projection as needed. Note that Nj(0)=0; you can’t have a sliding 

friction force without a normal force. However, Aj is not necessarily full rank so j jl ¢A
!

may 

be zero even if 0jl ¢ ¹
!

. 

Now the equations of motion become: 
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T Tu f
u b

N

l s
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+ + =
=
=

M G S
G

µ

!

!   (8.77) 

where each element of vector function N is one of the Nj and µ=diag(µj). Given an estimate λi 

for λ, we can approximate N locally to first order as 
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From (8.76) we can determine the general form for a block of the derivative: 

 
2

i
j

T i
j j j

i
j j

N

l l

l

l l
¢

¢ =

¶
=

¶

A A

A! !

!

! !   (8.79) 

Note that this is undefined when 0i
jl =A
!

, requiring special handling there. 

Define ( )i iNs l= µ .  Assume we have an initial estimate λ0, perhaps saved from the previous 

time step, and let 0 0( )Ns l= µ  be our initial estimate of the sliding friction magnitudes. We 

can refine this estimate using Newton iteration, terminating when 

 1i i tols s+

¥
- £   (8.80) 

for some tol based on user-requested accuracy. Substituting into (8.77) gives   
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The unknowns are u!  and lD . Rearranging, we get 
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We can solve now as for the linear case: 

 
1

1

( )
where now      ( )

i i

i i T T

f b
Nl

l + -

-
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= +

W GM
W GM G µS

  (8.83) 

That gives us λi+1 so we can calculate 1 1( )i iNs l+ += µ and check for convergence in (8.80). If 

we converged, then the solution is 1 1 1[ , , ] [ , , ]i i iu ul s l s+ + +=! ! . 

Note that the above describes a full Newton iteration, where the Jacobian is recalculated with 

each iteration. Because of the mild nonlinearity, we are likely to be able to converge quickly 

with a modified Newton, using only 0Nl  and 0W  unless one of the λ changes sign. However, 

as mentioned above, Jacobian Nλ will be undefined at Aλ=0. 
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8.6.2.5 Stiction to sliding transition 

When a contact was sticking but first begins to slide, there is no slip velocity to use to 

determine the sliding force direction. Instead we want the sliding force to oppose the (un-

known) impending slip direction. One reasonable approach is to record the last known 

stiction force direction and use that as the initial sliding force direction. Provided that the last 

stiction force and first sliding force are about the same, this is likely to be a good direction. 

However, it is possible that the stiction force exceeded its limit by a lot, and the coefficient of 

static friction may be much larger than the coefficient of dynamic friction, so there may be a 

large change in magnitude at the stictionàsliding transition. This may cause a change in 

direction that could make the final stiction force direction differ substantially from the 

direction of impending slip. 

A single friction element can be viewed as having three distinct “phase”: 

1. Stiction. The sliding velocity is zero; the magnitude and direction of the stiction force 

that will keep the sliding acceleration at zero are both unknown. This is implemented 

as a set of workless constraint equations. If the magnitude exceeds µsN, we transition 

to impending slip. 

2. Impending slip. The velocity is currently zero but the acceleration is not constrained. 

The magnitude is known as a function of the (unknown) normal force (µdN), and the 

direction should oppose the (unknown) acceleration. 

3. Sliding. The magnitude is known as a function of the (unknown) normal force, and 

the direction is known as a function of state (it opposes the sliding velocity). 

Here are the equations of motion with an impending slip friction element: 

 

T T

i d i

u f
u b

N

l s

s µ

+ + =
=
=

=
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G

e
e a a

!

!
  (8.84) 

where a is the friction-space (usually tangential) acceleration direction which is linearly 

dependent on the unknownsu! . We can get a good initial guess for the direction e using the 

last stiction force direction: /= -e λ λ   
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8.6.3 Event detection for unilateral constraints 

Once the set of active constraints has been determined, a Simbody simulation proceeds 

continuously with an unchanged active set until a contact event is detected. Then one of two 

event handlers is invoked: either the Impact Handler, or the Contact Handler.  

The Impact Handler is invoked when a velocity-level unilateral constraint condition would be 

violated, requiring a discontinuous change in velocities. There are two ways this can happen. 

Most commonly, a holonomic unilateral constraint like contact or a joint stop reaches its 

limit with a negative velocity, meaning further simulation would cause violation of the limit. 

Alternatively, failure to converge a sliding friction contact force requires an impulsive 

transition from sliding to sticking. 

The Contact Handler is invoked when an acceleration-level, or equivalently reaction force-

level, unilateral constraint condition would be violated. For example, change of a unilateral 

contact’s normal force from positive to negative requires invocation of the Contact Handler. 

The solution involves only changes to the active constraint set; no changes to velocity occur 

except very small projections of the active velocity constraints to satisfy velocity tolerances. 

The Contact Handler is also invoked as the last step of the Impact Handler, to determine the 

active set after the instantaneous velocity change has been completed. Figure 13 outlines this 

flow of control during a time stepping study. 
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Although one or more particular constraint condition violations will trigger an event, the 

handlers work with all relevant constraints simultaneously without giving the triggering 

event special consideration. 

TODO: Impact events: penetration, failure to converge sliding friction normal forces. 

TODO: Contact events: liftoff (normal force goes negative), contact (normal acceleration 

goes negative), stiction release (force exceeds µsN), slip-to-stick (slip velocity stops or 

reverses). 

8.7 Dynamic solution method 

The previous section glossed over some details of the system formulation that we’ll need to 

deal with here. Let’s first revisit the several types of constraint equations. Holonomic con-

straint equations p in equation (8.53) are those that are expressed at the q (position) level and 

represent meaningful physical properties of the system. Holonomic constraint equations 

involve only state variables at position stage or below, that is, q, t, parameters (instance 

Advance	time	
using	current	
active	set	

Determine	new	
active	constraint	

set	
	

Apply	impulsive	
velocity	change	

Impact	
event	

Event? 
No	 Contact	event	

Impact	Handler	

Contact	
Handler	

Figure 13: Flow of control during time stepping with unilateral contact and friction 
constraints. Time stepping begins with a feasible active set. Then the normal time stepping 
sequence is in blue and does not involve recalculation of the active set. 
 

Start	
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variables), and modeling choices. Holonomic constraint equations can be differentiated once 

to produce holonomic velocity constraint equations p! , and again to produce holonomic 

acceleration constraint equations p!! .  

The nonholonomic constraint equations v in equation (8.52) are those that are directly 

expressed in terms of system velocities, that is, at the u level, and also represent meaningful 

physical properties. Typical examples are “non slip” conditions like rolling or gears, but 

these can also include more global restrictions such as a conservation of energy constraint. 

Nonholonomic constraint equations involve state variables at the velocity stage and below, 

which includes the entire list given above for holonomic constraints plus the generalized 

speeds u. Nonholonomic constraint equations can be differentiated once to produce nonho-

lonomic acceleration constraint equations v! . 

The acceleration constraint equations a in equation (8.51) are those which are directly 

specified in terms of the system accelerations , or quantities which are linearly related to 

accelerations such as reaction forces or constraint forces. Like holonomic and nonholonomic 

constraints these are physically meaningful constraints. 

Also at position level are the quaternion normalization constraints n in equation(8.49), each 

of which involves only the coordinates of a single mobilizer and is present for numerical 

reasons rather than physical. These are produced by mobilizers which use quaternions to 

permit unrestricted orientation. Simbody’s implementation ensures that violation of quaterni-

on normalization constraints has no physical effect on the system. That is, a change to q 

which serves only to satisfy a quaternion normalization constraint is not permitted to cause 

any change to the system configuration. Quaternion normalization constraints exist only to 

reduce the number of degrees of freedom of a mobilizer’s four quaternions down to the three 

physical rotational degrees of freedom represented by its three mobilities u.  

Unlike the holonomic and nonholonomic constraints, there are no constraints at the velocity 

or acceleration level corresponding to the quaternion normalization constraint. Equation 

(8.48) constructs the quaternion derivatives in terms of the three independent u’s, ensuring by 

construction that the velocity-level constraints are satisfied. 

u!
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Note that the system equations include a block diagonal invertible linear mapping between 

the u’s and the time derivatives of the q’s, shown in equation (8.48): ( )q q u= N! . Although N 

is a rectangular matrix, it is invertible. Note that when the quaternion normalization con-

straints are not satisfied exactly, the 4x3 blocks Ni on the diagonal of N which correspond to 

quaternion qi will be scaled by |qi| so that the resulting q!  is the derivative of the unnormal-

ized quaternion. 

Here is the system in the form we actually solve in Simbody, with slow (discrete) variables 

not shown: 

kinematics 
( ) 0
q u
q
=
=
N

n
!

 (8.85) 

 dynamics 
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 (8.86) 

 velocity manifold 
0

( , ; ) 0
u
t q u

- =
=

P c
v

 (8.87) 

position manifold ( ; ) 0t q =p  (8.88) 

 relax fast variables ( , ; , ) 0dyn f ft y d y =r  (8.89) 

We are given initial condition 0 0 0 0( ) { , ( ), ( )}t t d t y t=S  such that equations (8.87)–(8.89) are 

satisfied, and are asked in a time stepping study to solve for d(t),  y(t) for t0≤t≤tfinal. 

 

Showing prescribed motion and fast variables: 

kinematics 
( ) 0
q u
q
=
=
N

n
!

 (8.90) 

dynamics bias

0
u
l
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 (8.91) 

 auxiliary ( , , , , , , )z z t q u z u l t= !! !  (8.92) 
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constraint matrix 

0

1 0

1 0

p

f

f f

p f fp ff

fp ff fp ff

fp ff

u
u

ì æ ö
- =ï ç ÷

è øï
ï æ öï
í ç ÷

æ ö æ öæ öï ç ÷= = ç ÷ ç ÷ç ÷ï ç ÷
ç ÷ ç ÷è øï ç ÷ç ÷ ç ÷ç ÷ï è ø è øè øî

g G b

P P
G

G G V V
A A

!
"

!

 (8.93) 
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velocity manifold 
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relax fast variables 
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 (8.100) 

 

Relaxation constraints (8.100) should be solved in stage order as shown, so that once fast 

variables have been calculated at one stage they can be dependencies in a later stage. Note 

that a relaxation solver at any stage may involve repeated state realizations through Accelera-

tion stage; the relaxation stage just determines which of the fast variables may be modified. 

(8.95) 

(8.96) 

(8.97) 

(8.98) 

(8.99) 
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For compactness, equation (8.100) doesn’t show the always-present dependency on yslow, and 

doesn’t show which variables in the state’s d partition can actually serve as dependencies; the 

rule is: any d variable is allowed except those in dfast which haven’t yet been computed in the 

relaxation sequence. As with the dynamic constraints in (8.94)-(8.99), relaxation constraints 

will in general consist of a mix of explicit and implicit equations, but we’re not breaking 

them out since there is no special treatment for them outside the relaxation solver itself. 
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9 Scaling and and accuracy 
A multibody system is modeled using a set of state variables, and a set of differential and 

algebraic equations that those variables must satisfy. There are many mathematically equiva-

lent ways to model the same system, and some of the modeling choices to be made are 

arbitrary. Some examples are: choice of units for various quantities; definitions of general-

ized coordinates and speeds; choice of which quantities to treat as independent and which 

dependent; and choice of which body is to serve as the base body for a chain. However, the 

resulting physically equivalent models are not numerically equivalent so can affect the actual 

solutions we obtain when doing computations, which are necessarily approximate. Such 

computations involve significant tradeoffs between CPU time and accuracy, so we usually 

want to use the loosest accuracy that is adequate for our purposes. The goal of scaling is to 

ensure that an accuracy specification (e.g., “1% accuracy”) can be applied in a physically 

meaningful way so that the behavior of a study is not dominated by arbitrary modeling 

choices. That is, we would like a given accuracy specification to yield the same physical 

results for all the physically equivalent models, regardless of any arbitrary choices that may 

have been made during construction of those models. 

There are two ways in which arbitrary modeling choices interact with accuracy requirements. 

These are: (1) scaling of system state variables, and (2) scaling of errors in the algebraic 

constraints. Our goal is to be able to determine a physically meaningful “unit change” to each 

state variable, and a physically meaningful “unit error” for each algebraic constraint. Then 

when solving the system equations we can define “accuracy” to mean calculation of state 

variables to some fraction of that unit change, and satisfaction of algebraic equations to some 

fraction of that unit error. We deal with multiple variables and equations by defining a scalar 

norm representing “overall change” and “overall error” and then requiring our computations 

to maintain those norms at or below the requested accuracy. 

9.1 Relative vs. absolute accuracy 

For some quantities we are satisfied to achieve relative accuracy, e.g. a result that is within 

1% of the correct value. In that case absolute errors of larger magnitude are acceptable when 

the numerical magnitude of a quantity is larger. However, one must be careful to avoid 
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situations in which a physically-meaningless change in magnitude of a measured quantity 

would result in a physically-significant difference in accuracy or behavior. For example, 

rotations are cyclical quantities, but the angular variables that define them can grow without 

bound, adding 2π with each revolution. There is no configuration change associated with 

those factors of 2π and no reason that the absolute angle should be determined less accurately 

as the revolution count increases. Less obviously, translational coordinates can also introduce 

physically-insignificant numerical changes. Consider a block on a sliding joint that hits a stiff 

spring stop at x=1 and a simulation that predicts its behavior as it encounters the stop. If you 

now lengthen the block’s travel and put the stop at x=1000, it would be incorrect to calculate 

x any less accurately because that could drastically change the calculation of the spring force, 

with significant consequences for the block’s predicted behavior. Common sense says a 

block should behave the same way in one place as another. Similarly, any change in the 

spatial location of a system involves changes to translational variables, yet should not affect 

the precision of results. Hence Simbody solves all configuration coordinates q to an absolute 

accuracy level independent of their current values. Note that this does mean that there can be 

a performance cost for choosing units far from unity; we deem that a more reasonable 

consequence than producing bad answers. 

Unlike configuration variables, velocity variables u may reasonably be solved to relative 

accuracies in most cases*. Arbitrary constants in q are eliminated by differentiation, so do not 

appear in q!  or u. For auxiliary state variables z relative accuracy may or may not be appro-

priate; Simbody assumes that relative accuracy for z is sufficient unless told otherwise. 

When a u or z is near zero, relative accuracy becomes too strict. In that case an absolute 

accuracy requirement should be used instead. The absolute accuracy requirement for a 

variable represents a “good enough” level that is acceptable no matter what fractional error of 

the current value that represents. For example, say accuracy α=0.1% (10−3) has been request-

ed for a forward dynamics study. If the current value of a variable x is 10−6 units, an error 

                                                

 

* This may not be acceptable for u’s that are involved in constraints, since constraint errors generally involve 

the differences between velocities. 
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estimate no larger than 10−9 units would be required to produce a relative accuracy of 0.1%, 

requiring a very small step size. However, if the absolute error requirement for x were 10−5 

units, then an error estimate as large as 10−5 units would be acceptable, despite that being 

1000% of the current value. 

 

9.2 Weighting and absolute accuracy 

An important practical consideration for any multibody formulation is that the state variables 

{ , , }y q u z=  vary widely in effect, or weight, by which we mean the degree to which a unit 

change in the numerical value of a state variable affects a physically meaningful quantity of 

interest. There are several causes for the uneven weights of state variables. To begin with, 

they are expressed in different units—q’s are typically lengths, angles, or quaternions; u’s are 

typically length/time or angle/time; z’s can be anything at all. Weighting differences are even 

more pronounced in internal coordinate formulations like Simbody’s, since the effect of a 

state variable depends strongly on its position in the multibody tree. A unit change δqi to an 

angular coordinate near the system base will have a much larger effect (on almost anything 

you might care to measure) than the identical change made to a coordinate which rotates only 

a lone terminal body.  

 

Figure 14 depicts this situation. If we hope to achieve a given level of accuracy with regard 

to the positioning of the end point P marked with a red square, we need to calculate q1 more 

accurately than q2. For example, say d1=10 nm and d2=0.5 nm. Then an error ε=0.1 radians in 

q1 induces an error of d1ε=1 nm in P’s location, while that same error in q2 induces only 

d2ε=0.05 nm of positioning error. In this situation we say that state q1 has more weight than 

q1 

q2 

d1 

Figure 14: Weighting of q1 and q2 are very different 
with respect to the position of the end point P. 

d2 
P 
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q2 with respect to the location of P. If we consider a unit change of P to be 1nm, we can 

define a corresponding “unit change” of q1 in this case to be δq1=0.1 radians while δq2=2 

radians. Each of those unit changes will move P by 1nm. States which are “more important” 

will have a numerically smaller unit change. Note that “unit change” does not mean “small 

change.” Rather, this is the quantity to which the requested accuracy α is applied.  

Even in the simple example of Figure 14 it is clear that the weights of state variables are not 

constant but change as a function of system configuration. Thus weights may need to be 

recalculated periodically as a system moves during a study. Fortunately, in practice 

weighting does not need to be done perfectly to yield substantial improvements over un-

scaled variables. That permits us to treat weights as constants in the discussion to follow; in 

practice they are updated only occasionally. Also, in practice there is no single quantity P 

that we can use to neatly define unit changes for each of the generalized coordinates. 

This concept of “unit change” 0iyd >  for each state variable yi is used to define the “always 

good enough” absolute error requirement iya d×  for use when relative error iya ×  is not 

allowed or too stringent. We can then define a diagonal weighting matrix W, where the ith 

diagonal element is 1/i iw yd= , the “unit weight” of state variable yi. For example, referring 

again to Figure 14, if we want to scale by the geometric consequences of the state variables 

on P’s location we could use 1 1 11/ dw qd ==  and 2 2 21/ dw qd == . Then we would define W as 

follows: 

1

2

0
0
d
d

æ öç ÷
è ø

W !  

In the above discussion we have oversimplified the choice of weights for q by choosing a 

system in which q u=! . In general, however, we have  ( )q q u= N!  (and ( )u q q+= N ! ). That 

means the effective weights on q contain arbitrary factors due to choice of coordinates in 

addition to physical considerations. However, given weights on u (which are physical) we 

can easily determine the corresponding q!  weights. So instead of determining weights from 

P q¶ ¶ we instead look at P u¶ ¶! . Thus “unit change” estimates are provided for the mobilities 

u, which are physical quantities, rather than on the generalized coordinates q which can be 

chosen somewhat arbitrarily. So we work only with the nxn diagonal weighting matrix Wu; 

there is no separate Wq. Instead, it may be calculated as 
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 q u
+=W NW N  (9.1) 

which ensures that the appropriate kinematic relationship holds between the weighted 

velocity variables, that is ( )w wq q u=N!  where qwq q=W! !  and uwu u=W . Note that although 

Wu is diagonal, positive, and constant, Wq is block-diagonal, signed, and q-dependent since 

N=N(q). (Note that although + =N N I , + ¹NN I .) If there are auxiliary state variables z they 

will have independent weights Wz. Then we have 
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 (9.2) 

Even when Wu=I, Wq can be significant for orientation coordinates. Some configurations of 

quaternions have one or more coordinates with zero weight (because they act only to change 

the length of the quaternion and thus produce no rotation). Euler angle coordinates near 

singular configurations have one coordinate whose weight approaches infinity; proper 

weighting ensures the simulation remains accurate in near-singular configurations, although 

possibly with a significant performance penalty. 

We can combine relative accuracy requirements with the absolute “unit change” estimates 

into a matrix E to form the error norm: 
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 (9.3) 

Now let ey represent the vector of ny unweighted error estimates introduced by a step in the 

numerical solution for y(t). Then y yf e= E  is the vector giving for each state variable the 

unitless fractional error represented by the value in ey. We can define the error 2-norm 

y yE 2
e f!  and error ∞-norm y yE

e f
¥ ¥
! . We don’t use the 2-norm directly, but instead 

use the related RMS norm 

y yERMS E

1

y

e e
n

!  
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where ny is the number of state variables, because the RMS norm does not grow with the 

problem size. (The ∞-norm is already size-independent.) Now we can provide a precise 

meaning for the notion “solve for y(t) to an accuracy α”: either y ERMS
e a£  or (stricter) 

y E
e a

¥
£  at each step during the study. Typically we’ll require that q, u, and z norms 

separately meet the required accuracy to avoid mixing dissimilar variables in the RMS case. 

9.3 Scaling of constraint errors 

The nonlinear algebraic equations defining the system, such as equations (8.52) and (8.53), 

cannot be solved exactly by a numerical computation. Instead, they will be met with some 

residual error. We would like to keep that error below a specified “tolerance” level during a 

study. As with the state variable weighting problem above, we have to deal with the issue 

that there are many separate algebraic equations, and the errors they produce will not be 

measured in the same units. This is especially important when mixing position (holonomic) 

and velocity (nonholonomic) constraints, since velocity constraint errors need to be in units 

comparable to the time derivatives of the position constraint errors. Also, if any acceleration-

only constraints are provided their errors must be in units comparable to the 2nd time deriva-

tive of the holonomic constraint errors. 

The formulation used by Simbody ensures that the acceleration-level constraints are solved to 

machine precision at the same time we solve for the accelerations. So our numerical integra-

tion methods do not need to deal with acceleration constraint tolerances; we’ll just take what 

we get from solving system (8.86). However, if you are using your own methods you might 

find it useful to scale the acceleration errors. In any case we do need to actively control the 

errors in velocity, position, and quaternion normalization constraints. As with state variables, 

we want to be able to provide a consistent physical meaning for a statement like “solve the 

constraint equations to 1% accuracy.” 

To do this we define a set of unit constraint errors p v a, , 0t t t > , one for each of the mp position 

(holonomic) and mv velocity (nonholonomic) and ma acceleration-only constraint equations. 

Each of these has appropriate units for its constraint equation, e.g. angle or length for a 

holonomic constraint, speed for a nonholonomic constraint, and accelerations for accelera-

tion-only constraints. Each ti should represent the violation that is to be considered a “unit 
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violation” of the ith constraint (“unit” doesn’t necessarily mean “small”). By default each unit 

constraint error is 1, meaning 1 length unit, 1 radian, 1 radian/time unit, etc. 

To estimate tolerances for holonomic first and second derivatives, and nonholonomic deriva-

tives, we use a System-defined characteristic time scale parameter tc. This parameter gives a 

typical “time of interest” over which we expect to see significant behavior. This should be 

roughly the rate at which you could expect interesting reporting data, not necessarily the 

highest frequency in the system. For example, given the time scale, we consider an appropri-

ate unit velocity error for a distance constraint derivative to be one unit distance error per tc. 

A biomechanical or robotic system might have a timescale of 100ms, a biomolecular system 

100fs, and an orbital problem might have a timescale of 10 or 100s. Somewhat counterintui-

tively, a long time scale puts more stringent requirements on velocity constraints since they 

have much longer to drift in that case. Our default time scale is 0.1 time units. 

Now we can define diagonal constraint weighting matrices Tp, Tpv, Tpva whose diagonal 

elements are the weights for the combined constraints at position, velocity, and acceleration 

levels (that is, velocity level includes holonomic derivatives, etc.). Note that “unit error” has 

the inverse sense to “weight”—while a larger weight means “more important” a larger unit 

error means “less important,” so we invert unit errors in T to create weights. Here is how the 

constraint weighting matrices are defined: 
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. (9.4) 

Unlike relative weights of state variables, which can change as the state variable values 

change, we expect T to remain fixed once specified since tolerances are absolute quantities. 

Now define , ,p pv pvae e e  as the vectors containing the current, unweighted errors for each 

constraint equation at each level. We can now calculate the tolerance norms 
T 2p p pe e= T  

and 
Tp p pe e
¥ ¥
= T  and similarly for pv and pva. These treat all constraint errors uniformly. 
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As in the previous section, in practice we will use the RMS norm 1
TRMS Tp

p pm
e e=  or 

∞-norm 
Tpe ¥

 rather than the 2-norm to remove effects due just to problem size, and define 

the phrase “meeting tolerance to accuracy α” to mean 

 max( , )p p pv pvnorm norm
e e a£T T  (9.5) 

where norm=RMS or (stricter) norm=∞. 

9.4 Scaling at the acceleration level 

Acceleration-level constraint weightings Tpva do not matter when using Simbody’s standard 

formulation since accelerations are calculated to machine precision. Even when the con-

straints are redundant accelerations are uniquely determined, however in that case the con-

straint forces are not unique. Simbody will calculate a least-squares solution to the constraint 

forces which tends to spread the load evenly among the redundant constraints. You can in 

theory provide a weighting lW  to influence the norm in which that least squares calculation 

is performed. However, that is not the same as the acceleration error weighting Tpva. Instead, 

lW  is used to capture the relative stiffness of the compliant elements that are being modeled 

rigidly with constraints. This is a rather obscure nuance and is unlikely to be useful in 

practice – if you really care about how the forces are distributed you will probably want to 

use compliant elements. However, here is a proof that acceleration-level weighting has no 

effect except when there are redundant constraints. 

Scaling on the constraint forces would be incorporated as follows. First, we want to solve for 

the scaled multipliers (using just W here to represent lW ): 

 ( ) ( )W WMu G f Mu G fl l+ = Þ + =W W! !
T T  (9.6) 

(W is symmetric.) This shows how the scaling transfers to the constraint Jacobian, so the 

acceleration constraint equation is scaled like this: 

 ( )G u b=W W!  (9.7) 

Note that once we have Wl  we can unscale this for use with the original constraints via 

                      1
Wl l-=W . (9.8) 

Multiplying (9.6) through by M−1 and then WG and substituting from (9.7) gives: 
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 1 1( ) ( )WGM G GM f bl- -= -W W WT  (9.9) 

In the underdetermined case we can solve for a least squares Wl using the pseudoinverse: 

 1 1( ) ( )W GM G GM f bl - + -= -W W WT  (9.10) 

But if 1GM G- T has full rank then so does the scaled version, and the pseudoinverse is just the 

ordinary matrix inverse so we can rewrite (9.10) as 

 

1 1 1

1 1 1 1 1

1 1 1 1

1

( ) ( )

( ) ( )

( ) ( )

W

U

GM G GM f b

GM G GM f b

GM G GM f b

l

l

- - -

- - - - -

- - - -

-

= -

= -

= -

=

W W W

W W W

W

W

T

T

T
 (9.11) 

where Ul  is just the multiplier we would have calculated without scaling. Unscaling Wl  

using equation (9.8) gives 1
W U Ul l l l-= = =W WW , that is, the final λ is just the unscaled one. 

That proves that weighting the acceleration constraints and multipliers has no effect for 

systems with full rank. 

9.5 Accuracy 

To summarize, we now have a way to define what is meant by solving a multibody 

system to a given accuracy, say α=0.1%. We will have defined a locally-constant 

weighting matrix W on changes to the state variables u and z (and implying a 

weighting on changes to q) and a constant reciprocal tolerance matrix T on the absolute 

errors in the constraint equations, appropriately time-scaled. W defines a “unit change” for 

each state variable, and T defines a “unit error” for each constraint equation. We also have 

information that defines what we consider “full scale” for each state variable, so that we can 

interpret accuracy as a request for precision as a fraction of the full scale value. The block 

diagonal matrix E combines relative scaling with the absolute unit changes in W to define 

the error norm. 

Then we have solved a trajectory to an accuracy α =0.1% (for example) when both 

max( , , ) 0.001
and max( , ) 0.001

q q u u z zEnorm EnormEnorm

p p pv pvTnorm Tnorm

e e e
e e

£
£

E E E
T T

 (9.12) 

hold for each step of the solution, where Enorm and Tnorm are RMS or ∞	norms. 
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Although constraint accuracy is maintained throughout a simulation, it is important to 

emphasize that accuracy of the state variables is a local phenomenon. Many multibody 

systems are inherently chaotic, meaning that their long term behavior is arbitrarily sensitive 

to initial conditions and numerical errors and hence not predictable. Only local measures of 

accuracy make sense for such systems. One may think of this as ensuring that the simulation 

accurately simulates some system which is very similar to the one under study. Without such 

accuracy control there is no guarantee that any such system is being simulated. 
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10 Time Stepping 
The system described by equations (8.85)–(8.88) is an overdetermined system since there are 

more equations than unknowns. The nq+n+nz+m unknowns are q,u,z and λ. The first line of 

equation (8.85) provides only n independent equations, but the second adds nquat more for a 

total of nq kinematic equations. Then equation (8.86) provides n+m* with the first line and nz 

more with the second line. That leaves (8.87) and (8.88) as 2mp+mv “extra” equations. These 

equations define the position and velocity constraint manifolds on which the solutions q(t) 

and u(t) are expected to lie (that is, the values of q and u should always satisfy those equa-

tions). If equations (8.85) and (8.86) could be integrated perfectly, the solutions would 

indeed stay on the manifolds since they start out that way and equations (8.85) and (8.86) 

satisfy the constraint derivatives. However, truncation error inherent in methods for approx-

imate numerical integration allows the solution to drift away from the manifolds. The “extra” 

equations can be employed rigorously to eliminate this drift, and in fact improve the solution 

overall, using the method of coordinate projection8 to be discussed below. We’ll make use 

here of the scaling, tolerance, and accuracy theory from Chapter 9. 

10.1 Coordinate projection 

Given an arbitrary value for the state variables, some or all of the constraint equations may 

fail to be satisfied. Since accelerations are computed quantities rather than states, we can 

always calculate them to satisfy the acceleration constraint equations. However, since t, q, 

and u are independent states we may find position and velocity constraints are not satisfied. 

In cases where the equations are expected to be arbitrarily far from being satisfied (typically 

prior to the start of a study), we may need special analyses to attempt to find values which 

satisfy the constraints. However, during a dynamic simulation it will typically be the case 

that the constraints will almost be satisfied, meaning that q and u just need to be “cleaned up” 

a little. This cleaning up process can be thought of as taking state variables which have left 
                                                

 

* When G doesn’t have full row rank (meaning some of the constraints are redundant or inconsistent), we 
introduce other conditions to select the “best” solution for the underdetermined λ. Specifically, we choose the 
value for λ that minimizes |λ|2 in the redundant situation, and the value which minimizes the 2-norm of the 
residual error in equation (8.86) if the constraints are (slightly) inconsistent. 
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the required constraint manifold and projecting them back to the manifold via the shortest 

path (smallest change in a weighted norm) we can make. 

We define 

 
1

n

1
( ) ( )

1nquat

q qe

æ ö-ç ÷
= = ç ÷

ç ÷ç ÷-è ø

q
n

q

!  (10.1) 

 p ( ) (t; )q qe = p  (10.2) 

 pv ( ) (t,q; )u ue
é ù

= ê ú
ë û

p
v
!

 (10.3) 

 pva ( ) (t,q,u; )u ue
é ù
ê ú= ê ú
ê úë û

p
v
a

!!

! ! !  (10.4) 

where arguments before the semicolon are fixed at their current values. Note that these are 

unweighted errors; εp and εpv need to be weighted using the constraint weighting matrices Tp 

and Tpv discussed in section 9.3. When some of the q and u values are known due to pre-

scribed motion (see section 8.3), then q={qp, qf} and u={up, uf} and we are only able to 

modify the free variables qf and uf to satisfy the violated constraints. 

Then we would like to find the smallest change to qf that will drive εp to 0, and the smallest 

change to uf that will drive εpv to 0. Those “smallest” changes correspond to a least squares 

projection in a weighted direction we call the error norm (E norm), normal to the constraint 

manifold, for which a theorem given in reference 8 guarantees that this projection also 

improves the solution to the differential equations. See section 9.1 for a discussion of the E 

norm. εpva is satisfied exactly when we solve equation (8.86), and εn is always satisfied 

simply by normalizing the quaternions k qÌn , which is a 2-norm projection that can be 

done separately from everything else, although no projection is done for quaternions that are 

contained in qp. 

The projection equations are underdetermined, nonlinear equations, but we expect to be close 

to a solution so they can be solved efficiently with Newton iteration or similar methods. To 

avoid an excess of subscripts we will drop the subscript “f” here, but keep in mind that we 
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are working only with free variables, and matrix columns corresponding to prescribed 

variables are removed. All constraint equations remain, however, even as the number of 

variables available to solve them is reduced by prescribed motion. 

The full Newton steps in projection are  

 
( ) ( )

q p p

( 1) ( )
q

( ) ( )
 iterate

i i
ELS

i i
ELS

q q q

q q q

eD

+ +
D

ü= ï
ý

= - ïþ

P T

E
 (10.5) 

 ( ) final: | |last
k k k kq" Ì =n n n n  (10.6) 
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 (10.7) 

where  

 q p q q( ) ( )q q +=P T P E  (10.8) 

 p 1
u

v

( )
( )

( )
ct q

q
q

-é ù
= ê ú
ë û

T P
V E

T V
 (10.9) 

 1
q u q u( )+ + - += Þ =E NW N E NW N  (10.10) 

 qand       ( ) ( )q q +=P P N . (10.11) 

(Columns of qP  and V  corresponding to prescribed variables are removed.) 

We iterate (10.5) until we have calculated a final value ( )lastq  that satisfies the holonomic 

constraint equations (10.2) to within a specified tolerance, then using equation (10.6) project 

the quaternions in ( )lastq  via their normalization constraints (10.1). That gives us finalq  which 

satisfies all the constraints (10.1) and (10.2). We then iterate (10.7) with V  calculated at 
finalq  while solving for the final velocity value finalu  which satisfies the velocity constraints 

(10.3). Note that we must perform a least squares solution to the linear system at each 

iteration, and that the diagonal weighting matrices Eu, Tp, and Tv must be constant during the 

iteration (although Eq may change a little). Typically, P and V are block-structured matrices 

(and weighting preserves that structure). For efficiency, uncoupled blocks should be treated 

separately in equations (10.5) and (10.7). 
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Normalizing a quaternion as in equation (10.6) is the least squares projection of the four-

dimensional quaternion onto its constraint manifold, a three-dimensional sphere of unit 

radius. However, quaternion projection is done in an unweighted norm since it is a constraint 

on the numerical values of the quaternion elements unrelated to the physical effect of those 

elements. By construction, the physical effect of a change in the length of a quaternion in 

Simbody is zero. Note also that there are no velocity or acceleration constraints correspond-

ing to the quaternion normalization constraint, because those constraints are satisfied exactly 

by the quaternion derivatives we calculate from the generalized speeds u. 

A very similar problem arises when we have a vector in the q or u basis, and we would like 

to remove the component of that vector which is normal to the constraint manifold, in the 

weighted norm. For example, when an integrator has computed a pre-projection absolute 

error estimate vector { }y q u z, ,e e e e=  in its computation of integrated state variables 

y={q,u,z}, we know that performing the above constraint projection will remove the compo-

nent of the error in the weighted constraint-normal direction (for proof, see ref. 8 and ref. 10, 

§3.8.2), and also the component of error along the length of quaternions. So we can now 

reduce that error estimate by subtracting out any component it might have had in the direc-

tions we just fixed, which may allow us to take a bigger step. In that case the projections are 

 
final final

q wq q q q

q q q wq

( ) ( )
 no iteration

q e q e

e e e
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E
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 final final
q ˆ: ( )     quaternions

k k k k k ke e e e e¢ ¢ ¢ ¢" Ì = -q q q q n n!  (10.13) 
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ü= ï
ý

= - ïþ
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 (10.14) 

(Here as above we are working only with the error slots corresponding to free variables, not 

prescribed ones.) 

Again we need to find least-squares solutions to the underdetermined systems (10.12) and 

(10.14). Then we set { }y q u zˆ ˆ ˆ ˆ, ,e e e e=  as the new (absolute, unweighted) error estimate. Note 

that these use the same (final) iteration matrices as above with a different right hand side. 

Equations (10.12) and (10.14) are linear systems so no iteration is needed, and again block 
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structure in P and V should be exploited for efficiency. After this projection the integrator 

should use the revised estimate yê  as its error estimate instead of the original estimate ye  

(using the W norm). 

We can use a pseudoinverse to find the least squares solution at each step. The pseudoinverse 

A+ of an mxn matrix A, with m<=n and full row rank (i.e. rank(A)=m) is given by 

A+=AT(AAT)–1, although computing A+ that way can be numerically inaccurate. Using an 

SVD or faster complete orthogonal factorization (QTZ) we can compute a numerically well-

conditioned pseudoinverse even in the case of redundant constraints, i.e., rank(A)<m.  

Looking now at the weighted holonomic position constraint iteration matrix qP  in equation 

(10.8) we see that the pseudo inverse we need is  

1
q p q q p u( ) ( )+ + + - + += =P T P W T PNW N  

The corresponding velocity constraint projection from (10.9) is 

1
p u

1
v u

ct
+-

+
-

é ù
= ê ú
ë û

T PW
V

T VW
 

When there are no non-holonomic constraints, we have =V P  the velocity projection is just  

1
p u( )ct

+ + - += =V P T PW  

The constraint projections can be performed sequentially (for proof, see ref. 10, §3.8.3). First, 

with t fixed at t̂  we must find some ( )lastq q=  that satisfies the holonomic constraint equa-

tions to within a specified tolerance. Then we normalize the quaternions in  ( )lastq  (which by 

construction cannot affect any of the holonomic constraints) and call the result finalq . After 

that we freeze q at finalq  and proceed to find u that satisfies the velocity constraint equations 

to within a specified tolerance. Note that the holonomic velocity constraint equations (i.e., 

first time derivatives of the holonomic constraint equations) and nonholonomic constraint 

equations must be dealt with simultaneously since they can be coupled.  
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10.2 Simplified equations 

For use with a generic coordinate projection integrator, the Simbody equations can be viewed 

in the following simplified form: 

     differential eqns. ( , )y f t y=!  (10.15) 

     algebraic eqns. ( , ) 0c t y =  (10.16) 

     initial conditions 0 0( , ) 0c t y =  (10.17) 

with the guarantee that equation (10.15) is solved in such a way that any new constraints 

introduced by time-differentiating equation (10.16) are satisfied automatically; that is, 

( , , ( , )) 0c t y f t y =!  whenever equations (10.15) and (10.16) are satisfied. There is an nyxny 

block-diagonal weighting matrix E and an ncxnc diagonal tolerance matrix T, and corre-

sponding norms as discussed in Chapter 9. To solve this system to accuracy α, the following 

two conditions must be satisfied at each integration step: 

  y ERMS
e a£  (10.18) 

   
TRMS

( , )c t y a£  (10.19) 

where the ye  are the post-projection local state errors introduced by an integration step. 

When conditions (10.18) and (10.19) are met, the integrator can accept the step. 

10.3 Update rates for state variables 

During a time-stepping study, Simbody supports three distinct update rates for time-varying 

variables in S : slow (discrete), dynamic, and fast. Slow variables are updated only occasion-

ally upon occurrence of events and never change during a continuous interval. Dynamic 

variables follow differential equations, evolve smoothly during continuous intervals, and 

have well-defined time derivatives. Fast variables are those whose response may be consid-

ered instantaneous on the scale of the dynamic variables. The dynamic system is thus always 

in quasi-static equilibrium with respect to the fast variables, whose values may be determined 

by difference equations, equilibrium conditions, or algorithmically. Fast variables change 

continuously in response to dynamic ones but can affect dynamic time evolution only indi-

rectly by affecting the dynamic variables’ derivatives.  
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Only variables in the State’s y partition can be dynamic. So we can partition the state by 

update rate as follows: 

 
slow slow slow

fast fast fast

dyn dyn

d y
d y
y
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È
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!

S
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  (10.20) 

where 

 

with  

slow slow slow

dyn dyn dyn

fast fast fast

slow dyn fast

y q u
y q u z

y q u
y y y y
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= È È
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 (10.21) 

There also exists a set of time derivatives y q u z= È È! ! ! ! , with 

 
0slow fast

dyn dyn

y y
dy y
dt

= =

=

! !

!
 (10.22) 

Note that slowy!  is zero because slowy  is constant during a step, while fasty!  is zero for the 

opposite reason:  fasty  changes so quickly that by the time we look it has already reached 

equilibrium and is thus no longer changing. There are no derivatives defined for variables in 

x, which are not permitted to be dynamic (although they can be fast or slow). 

When we want to denote variables which affect a particular stage and also have a particular 

update rate, we combine the sub- and superscripts, for example, 
pos pos pos
fast fast fast fastd qÇ = È!S S S . Note that a variable’s stage effect is an inherent property of 

that variable, while the rate at which it is to be updated is a run time choice that may be 

different under different circumstances. 

At run time we must choose for every mobilizer: 

• How motion is driven: forces, acceleration, velocity, or position 

• The rate at which the driven motion is updated: slow (discrete), dynamic, or fast. A 
force-driven mobilizer is always dynamic. 

When mobilizer j is updated dynamically, it is driven by differential equations relating 

position q[j] and velocity u[j] to acceleration [ ]u j! . Normally, [ ]u j!  is calculated as a response 
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to forces, with u[j] and then q[j] calculated from [ ]u j!  by numerical integration. In that case 

the dynamic mobilizer j is said to be free. When motion is known analytically, the mobilizer 

is said to be prescribed. Both free and prescribed mobilizers are considered dynamic mobi-

lizers since they are both defined by time-varying differential equations. If instead the driven 

motion is fast or slow, we have a fast or slow mobilizer, resp. All mobilities of a multi-dof 

mobilizer must have the same update rate (that is, slow, prescribed, free, or fast). Note that 

for any mobilizer that is driven at acceleration or velocity level, higher levels are determined 

by numerical integration and are thus free. 

There are some restrictions on the use of “fast” motion, because fast variables may not 

directly affect dynamic ones: (1) If a mobilized body is fast, then all its children and de-

scendents in the multibody tree must also be fast. (2) If a constraint involves any fast body or 

mobility, that makes it a fast constraint that is not part of the dynamic system. Instead it is 

solved taking the dynamic variables as fixed, with only the fast variables varying. 

 

Driven	by	 Update	
rate	

u!  u q 

forces dynamic 
(free) ( ), , , ,f pu t q u z u! !  fu dt= ò  2

fq dt= òò  

acceleration dynamic 
(prescribed) ( , , )p pr pru t q u!  fu dt= ò  2

fq dt= òò  

velocity 

dynamic 
(prescribed) pu d dt=!  ( , )p pru t q  fq dt= ò  

fast 0pu =!  fastu : alge-
braic fq dt= ò  

slow 0pu =!  slowu : event-
driven fq dt= ò  

position 

dynamic 
(prescribed) 

2 2
pu d dt=!  pu d dt=  ( )pq t  

fast 0pu =!  0pu =  fastq : alge-
braic 

slow 0pu =!  0pu =  slowq : event-
driven 
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Structured variables d that can affect time-varying quantities can be evaluated either continu-

ously (fast) or at discrete times (slow); variables that affect model or instance parameters or 

are just used for reporting can’t be continuous. Here the continuous variables cannot be 

defined by differential equations; they are always algebraic (or algorithmic). 

 dmodel,instance,report  dtime,pos,vel,dyn,acc
 

fast n/a fastd : algebraic 

slow slowd : event-
driven 

slowd : event-
driven 

 

Also note that “end of step” can be an event, so event-driven (slow) variables can be updated 

as frequently as every step. However, they will not be updated during integration stages and 

cannot affect integrator step size selection in the current step.  

10.3.1 Coupling 

Variables which are mutually coupled must be solved simultaneously which can be computa-

tionally expensive. In many cases, modeling considerations dictate that some variables are 

“stronger” than others so coupling is only in the direction from driving variables to driven 

ones, lending an ordering to the computation that avoids some simultaneity. Simbody sup-

ports four levels of coupling for computations at a given realization stage: 

1. Slow (discrete): these variables are event driven so are not updated at all during a 

continuous interval. Their values are taken as given at the beginning of a continuous 

interval and can affect all subsequent calculations but are themselves unaffected. 

2. Dynamic, prescribed: these are q, u, z, or u!  variables defined by differential equa-

tions with explicit analytic solutions based only on already-available values. For ex-

ample: positions as a function of time. This could represent an extremely high-

bandwidth controller, or a locked joint. Prescribed accelerations are not affected by 

forces. 

3. Dynamic, free: these are q, u, or z variables calculated by numerical integration.  Cor-

responding accelerations u!  can additionally be coupled by algebraic constraint equa-

tions, which equations can depend on prescribed accelerations. They can thus be driv-
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en by prescribed variables at the same level (e.g. prescribed velocity can drive free 

velocity) but not vice versa. A dynamic position can affect a prescribed velocity since 

that’s a later stage. z!  variables cannot be coupled via constraints. 

4. Fast (quasi-static): these variables are calculated from the values of dynamic variables 

(free or prescribed). They can affect forces so will change the behavior of free varia-

bles indirectly, through subsequent accelerations or by interaction with the numerical 

integration method’s error test. 

Free dynamic variables yf are approximated numerically by an integration method, then any 

of them that are subject to constraint equations may need to be projected back to the con-

straint manifold via the System’s project() solvers. Prescribed dynamic variables yp are 

simply set to their appropriate values via the System’s prescribe() solvers, once their 

dependencies are available. Finally, we must solve for the fast variables dfast and yfast using 

the System’s relax() solver.  

Depending on the operation we are performing, it will be convenient to partition S  in a 

variety of different ways. 

Variable type S={d,t,y} 
y={q,u,z} 

stage(t)=Time 
stage(q)=Position 
stage(u)=Velocity 
stage(z)=Force 
stage(x) varies 

scalar 
variables 

y 

q Generalized coordinates 
(positions)  

u Generalized speeds (veloci-
ties) 

z Force variables 

d structured variables 

t time 

Simulation S={Sdef, t, Svar, Sreport} 

Sdef ={Stopo, Smodel, 
Sinstance} 

Svar ={Spos, Svel, Sforce, 
Sacc } 

Sdef 
 

variables that define the modeled 
system: topology, model, instance 

t time 

Svar 
variant properties of the modeled 
system: position, velocity, forces, 
acceleration 

Sreport “output” states for reporting 

Time step-

ping 

 

Spres ={qp, up} 

Sfree ={qf, uf, z} 

Sfast ={qfast, ufast, dfast} 

continuous 
variables  

Spres prescribed analytically 

Sfree 
determined by numerical 
integration 

Sfast 
Quasi-static variables 
determined algebraically 
after Spres and Sfree 
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Sslow={qslow, uslow, dslow} 
 Sslow Discrete “slow” variables (updated 

occasionally upon event occurrence) 

 

10.4 How to take a time step 

Here we deconstruct a single time step into its constituent parts. 

Special handling is required at the start of a time stepping study. Time and all state variables 

must be given initial values, and then these must be modified to satisfy all constraints, 

starting with prescribed motion. The resulting state must be fully realized using to-be-

updated values for discrete variables, as though we had just completed a zero-length step. 

Then we can take the first step as though it were any arbitrary step. 

1. Handle events as needed, updating discrete states, realize through Acceleration stage. 

2. Take trial step of continuous system (with projection), with success metric. 

3. If metric unacceptable, reduce step and return to 2. 

4. Check for Time-stage event triggers and handle them; <= Instance stage change is a 

restart meaning later event triggers are forgotten. 

5. Realize(Positions); check for Position-stage event triggers and handle them; <= In-

stance stage change is a restart. 

6. Repeat for Velocity, Force and Acceleration-stage event triggers. 

7. If simulation is not done, go to step 1 to begin the next step. 

Taking a trial step of the continuous system (we just updated discrete variables). Continuous 

system consists of dynamic (prescribed and free), and “fast” variables qfast, ufast, zfast, and dfast. 

There are a series of integrator stage evaluations and then a final setting of the state variables 

in which differential variables are projected to their constraint manifold. 

All steps begin like this: 

• If there are pending triggered events (at t+ ): 
o  Set t t+= . Call time-triggered handlers to change slow variables; re-evaluate 

, ,y e c! ; revise list of pending events 
o Repeat for pending position, velocity, dynamics, acceleration-triggered events 
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• If there are any beginning-of-step handlers, call them and re-evaluate. This cannot 
cause any other events to occur.  

• Set t0=t, y0=y; invalidate d0 
• y! = realize[A](d,t,y) 
• Set 0y y=! !  
• Next step size to attempt is h 

 

Fixed step explicit Euler (DAE step only): 

• Only stage: 
à 0 0

free free freey y h y¢ = + × !  

Set 0t t h= + ; realize[T](t) 
presq = prescribeQ(t) 

freeq : projectQ( ,pres freeq q¢ ) 

presu = prescribeU( , ,pres freet q q ) 

freeu : projectU( ,pres freeu u¢ ) 
Test convergence of projection. (bad: shrink h gotoà) 

,fast fastd y : relax[TPVFA]( , , ( , ); ,fast fast fast fastt y y d y d y! ) 
Test convergence of relaxation. (bad: shrink h gotoà) 

•  (Error test OK.) Check for events. If any: 
o Localize event(s) to window  ( , ]w t t- +=  
o Back up the state to t t-= : 

( )freey t-¢ = interpolate( 0, ,free freet y y- ¢ ) 
,pres freey y = presAndProjQU( , freet y- ¢ ) 
,fast fastx y : relax[TPVFA]( , , ( , ); ,fast fast fast fastt y y d y d y-

! ) 
o (Projection and relaxation must converge or there is something seriously 

wrong.) 
• Successful, event-free step taken to time t. May be events pending for time t+ . 

 
Explicit trapezoid (w/explicit Euler error estimator):  

• First stage: 
à 1 0 0

free free freey y h y= + × !  
0t t h= + ; realize[T]( t ) 

1
presy = prescribeQU( 1, freet y ) 
1 1,fast fastd y : relax[TPVFA]( 1, , ( , ); ,fast fast fast fastt y y d y d y! ) 

Test convergence of relaxation. (bad: shrink h gotoà) 
• Final stage: 
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1y! = realize[A]( 1 1, ,t d y ) 
0 0 1

2 ( )h
free free free freey y y y¢ = + +! !  

1
free free freey ye ¢ ¢= -  

, ,pres free freey y e = presAndProjQU( , ,pres free freey y e¢ ¢ ) 

Test freee and convergence of projection. (bad: shrink h gotoà) 

,fast fastd y : relax[TPVFA]( , , ( , ); ,fast fast fast fastt y y d y d y! ) 
Test convergence of relaxation. (bad: shrink h gotoà) 

•  (Error test OK.) Check for events. If any: 
o Localize event(s) to window  ( , ]w t t- +=  
o Back up the state to t t-= : 

( )freey t-¢ = interpolate( 0, ,free freet y y- ¢ ) 
,pres freey y = presAndProj[PVF]( , freet y- ¢ ) 

,fast fastx y : relax[TPVFA]( , , ( , ); ,fast fast fast fastt y y x y x y-
! ) 

o (Projection and relaxation must converge or there is something seriously 
wrong.) 

• Successful, event-free step taken to time t. May be events pending for time t+ . 
 

Verlet 

• First stage: 
à

20 0 0
2
h

free free free freeq q h q q¢ = + × + ×! !!  
0t t h= + ; realize[T]( t ) 
,pres freeq q = presAndProjQ( , freet q¢ );  

realize[P]( ,t q )  

presu = prescribeU( , ,pres freet q q ) 
1 0 0
free free freeu u h u= + × ! ; 1 0 0z z h z= + × !  

realize[V]( , ,t q u )  
1 ,fast fastd q : relax[TP]( 1, , ( , ); ,dyn fast fast fast fastt y y d y d q! ) 

k=1 
• Loop until u and z are converged: 

,k k
fast fastd uz : relax[VFA]( , , ( , ); ,k

dyn fast fast fast fastt y y x y x uz! ) 

,k ku z! ! =realize[VFA]( , , ,k kt q u z )    expensive once 
++k 

0 0 1
2 ( )k kh

free free free freeu u u u -= + +! ! ; 0 0 1
2 ( )k khz z z z -= + +! !  

1 1;k k k k
u zu u z zd d- -= - = -  

If δ not converged, continue looping. 
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;k k
free freeu u z z¢ ¢= =  

• u and z have converged to 2nd order 
free freeq u¢ ¢= N!  

Compute low order estimates: 
0 0 1 1

2 ( ); ;h
free free free free free freeq q q q u u z z¢¢ ¢ ¢¢ ¢¢= + - = =! !  

free free freey ye ¢ ¢¢ ¢= -  error estimate 

,free qe = projErrEstQ( ,free qe ¢ ) 

,,free free uzuz e = presAndProjU( ,, ,pres free free uzy uz e¢ ¢ ) 

Test freee and convergence of projection. (bad: shrink h gotoà) 

,fast fastd uz : relax[VFA]( , , ( , ); ,dyn fast fast fast fastt y y d y d uz! ) 
Test convergence of relaxation. (bad: shrink h gotoà) 

• Successful continuous step to t. Now check for events. 
 
 

10.4.1 Setting the values of prescribed variables 

Prescribed variables py yÌ  and py yÌ! !  are defined by analytically-known explicit func-

tions. These include ( )pq t , ( , )p dynu t q , ( , , )p dyn dynu t q u! . ( dyn pres freeq q qÈ! , etc.) Note that 

earlier-stage prescribed and dynamic variables can affect later-stage prescribed ones. 

A System defines prescribeQ() and prescribeU() solvers which sets the values for 

that stage’s prescribed variables, taking values of earlier-stage variables as given. Be sure to 

call them in this order: prescribeQ(), projectQ(), prescribeU(), projectU(). 

10.4.2 Relaxation of fast variables 

After the values of time and the differential variables ,pres freey y yÌ  have been calculated by 

an integrator, the fast variables fasty yÌ  and fastd dÌ  need to be allowed to respond to the 

new values, to attain a new quasi-static equilibrium. We call this process “relaxation” alt-

hough in general a System is permitted to use any method to solve for these variables, 

provided the correct order of dependencies is followed. A System provides a relax(stage, 

tol) solver which will drive a particular stage’s fast variables to their new equilibrium, 

solving the associated equations to the given tolerance.  

The time-stepping relaxation stages and the variables relaxed at each stage are as follows: 
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1. time
fastd :   relax(Time) 

2. pos,fast fastq d :  relax(Position) 
3. vel,fast fastu d :  relax(Velocity) 
4. force

fastd :   relax(Force) 
5. acc

fastd :   relax(Acceleration) 

A System may also support relaxation of report-stage variables reportd  and definition-stage 
variables modeld  and instanced , but these are not relevant for time stepping. 
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11 Simbody Force Subsystems refer-
ence guide 

Simbody comes with a predefined set of commonly-used force subsystems. Each of these is 

an independent, self-contained set of related features, and users may add their own force 

subsystems as well. 

11.1 General Force Subsystem 

Simbody comes with a force subsystem called GeneralForceSubsystem.  It can be used to 

add a variety of standard forces to a system, such as linear springs and dampers.  It also 

provides a mechanism for adding user defined forces. 

11.2 Hertz/Hunt and Crossley contact model subsystem 

Simbody comes with a force subsystem class called HuntCrossleyContact. This section 

describes the theory behind it. 

11.2.1 Motivation 

Most engineers, physicists and computer scientists are introduced to contact problems using 

the concept of coefficient of restitution. The idea presented is that when two objects collide, 

they will rebound in a predictable way with the rebound velocity being a known fraction e of 

the impact velocity.  

 

Unfortunately, it is rarely mentioned that this concept is only usable in the most 

limited cases. Many difficulties arise trying to apply this in a multibody dynamics 

context; in particular the presence and motion of the other bodies and the forces 

applied to them (which change constantly and are not know in advance) change the rebound 

velocity. Also, it is well known in the field of contact mechanics (and to anyone who has 

watched closely as a ball bounces) that the coefficient of restitution is very sensitive to the 

impact velocity. In fact, in contact mechanics the normal way to approximate the coefficient 

of restitution is 1 ie cv= -  for small impact velocity iv , where c is a material property. An 

enormous amount of empirical data supports that—at low velocities, normal materials have a 
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coefficient of restitution that drops linearly with impact velocity. The classic work in this 

field is reference 13. Even with this improvement to the functional form of e, the results are 

rarely applicable outside the realm of freely falling bodies. In multibody dynamics, the 

coefficient of restitution is something to be computed, along with the rest of the system’s 

motion, not something that can be known in advance! 

To obtain usable results in a multibody context, we need a method that can calculate forces 

produced during contact, rather than impulsive velocity changes. That permits contact to be 

treated as yet another force among the many that influence the behavior of multibody sys-

tems, ensuring that accurate (or at least reasonable!) behavior will result. Only once you can 

obtain physically correct results with some model, should an optimization like “treat 

contact as an instantaneous event” be attempted, and even then one might wonder if it is 

worth the effort. 

11.2.2 The model 

This model is based on Hertz theory of elastic contact,11 and the Hunt and Crossley model for 

damping.12 The idea is to predict contact behavior during a dynamic simulation working only 

from material properties and geometry. This is a frictionless model but it can be used as a 

starting point for several useful frictional models. 

To apply Hertz theory, we need two linearly elastic materials in non-conforming contact, 

where the dimensions of the contact patch are small compared to the curvatures, and small 

compared to the overall dimensions of the object. Hertz theory can be used for general 

curved shapes (including cylinders) provided they can be approximated by paraboloids at the 

contact point; however, we will discuss only sphere-sphere and sphere-halfspace contact 

here. For Hunt and Crossley, the impact velocities should be small enough not to cause 

permanent yielding of the materials. Within these regimes, the model produces a good match 

for empirical data, such as that found in reference 13. Outside these limits, the model can still 

produce surprisingly useful results when fit to experimental data, because the form of the 

model has a structure which captures the most significant aspects of contact for many pur-

poses. It is especially well-suited for soft contacts such as are common in biology, even 

though those are well out of the range that the rigorous theory presented here can support. I 

speculate that it works well in most applications because the results of interest don’t usually 
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depend on precise details of contact, only that it behaves in a qualitatively correct manner. As 

an example, if you get a stiffness parameter too low, the model will compensate by allowing 

more deformation with the result being that you get the same forces (such as are needed to 

keep a foot going through the floor) although the precise deformation of the foot and floor 

are not obtained. This may be acceptable for researchers who are more interested in studying 

some other aspect of the model, knee flexion for example. 

For the rest of this section, please refer to Figure 15 which defines the geometry of contact. 

We will consider a collision between two bodies, B1 and B2, in which a sphere attached to B1 

contacts a sphere or halfspace attached to B2. During the collision (which will occur over an 

extended period of time, not impulsively), our goal will be to determine instantaneous values 

for the contact force f, the contact patch orientation n and radius a, and a unique contact point 

P at which we can apply equal and opposite forces to the two contacting bodies. We will be 

given the spatial locations and velocities of the undeformed geometric objects in contact, and 

will easily be able to determine the total deformation x that must have occurred because of 

the apparent overlap between the undeformed objects. However, in order to find the contact 

point P and the compression rates of each body (needed to compute dissipation), we have to 

determine the individual deformations 1x  of B1 and 2x  of B2, where 1 2x x x= +  and 

1 2x x x= +! ! ! . 

The thin lines in the figure are intended to show the undeformed shape while the thicker lines 

give a (crude) depiction of the deformed shape. Note the assumption that the contact patch is 

planar, circular of radius a, centered at P and oriented with normal n pointing towards body 

B1. With these conventions, the scalar force f that we will calculate (applied equal and 

opposite to the two bodies at P) is always positive, and the vector force fn is applied to body 

B1 at P, while we apply −fn to body B2 at P. From the diagram one might think it doesn’t 

matter where along the line between the centers we apply the force. However, it is important 

to keep in mind that the colliding objects are in general only attached to a larger body—they 

do not constitute the whole body. That means the applied force is also generating moments 

on the bodies, and those moments depend critically on exactly where the force is applied. 
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We expect to be given the following material properties for each body: 

Property Symbol Units Comments 

Radius of curvature R Length Measured at the contact point 

Young’s modulus E Pressure stress/strain = (force/unit area) / (% deformation) 

Poisson’s ratio ν Unitless 
ratio 

ratio of transverse contraction to deformation (0–½ for 
normal materials); related to preservation of volume 
during strain; rubber has ν=½  

Dissipation coefficient c 1/velocity −slope of coef. of restitution vs. velocity at low veloci-
ties; i.e., coef. of restitution e=1−cvi for impact velocity 
vi 

 

For our purposes, we combine Young’s modulus E and Poisson’s ratio ν into a single “stiff-

ness” property called the plane-strain modulus E*=E/(1−ν2). This is measured as the pressure 

per unit area induced by a fractional deformation (strain). The MKS unit is Pascals which are 

Newtons/m2. Below are some typical values as ballpark figures only; please don’t rely on 

them. (Note that the stiffnesses are given in gigapascals, i.e. 109 N/m2!) 

Material Young’s 

modulus E 

Poisson’s 

ratio ν 
Plane-

strain 

Dissipation 

coefficient 

R2 

R1 

*
1 1,E c  

 

,x x!  

 

2 2
,x x!  

1

1

1

1 22 (1 )
x s x

x s x s xxx
=
= - = - =

 

O1• 

O2• 

n 

 • P 

1 2

1 2

1 1 1

2 2 2

O O
O O
O (RP )
O (R )

x
x

-
=

-

= - -
= + -

n

n
n

 

*
2 2,E c

 

 

1 1
,x x!  

a¬ ®
 

 

B2 

B1 

Figure 15: Contact geometry for the 
Hertz/Hunt and Crossley model. 



 

  125  

(GPa) (unitless) modulus E* 

(GPa) 

(s/m) 

Rubber 0.01 0.5 .0133 0.05? 

Bacteriophage 

capsid 

2 0.4(?) 2.4 ? 

Nylon 3 0.4 3.6 ? 

Lead 14 0.42 17 0.4? 

Concrete 25 0.15 25.6 ? 

Steel 200 0.3 220 0.08? 

Diamond 1100 0.2 1150 ? 

 

Of these, Young’s modulus and Poisson’s ratio can be obtained easily from handbooks for 

most materials, but the dissipation coefficient is harder to get. It would be very useful to 

relate this to standard properties such as hardness and yield stress (if that’s possible) but for 

now it has to be measured or estimated as the slope of the coefficient of restitution-vs.-

velocity curve at low velocities. References 12 and 13 provide or imply some values for c, 

but they should be taken with a grain of salt. Note that this situation is still better than the 

standard approach of supplying a coefficient of restitution e directly—at least c is a material 

property so can be expected to produce correct behavior over a range of velocities.  

Hertz contact theory says the relationship between force fHz and displacement x depends only 

on the relative curvature R of the two bodies at the contact point, and on an effective plane 

strain modulus E*, and the contact patch radius a is an even simpler function 

3 2 1 2*4
Hz 3 ,f RE x a R x= =  

Hunt and Crossley start with the above formula for fHz and add a dissipation term: 

3
HC Hz 2(1 )f f cx= + !  

where c is an effective dissipation coefficient combining the material properties of the two 

contacting materials. 
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Note that although the materials are assumed linear, the force-displacement relationship is 

nonlinear because of the changing geometry during contact. This complicates the calculation 

of the effective stiffness E*. The literature seems to suggest * * * * *
1 2 1 2( )E E E E E= +  but this 

would be inconsistent with the Hertz relationship, by the following reasoning. First, the 

relative curvature is a geometric property and is straightforward to calculate: 

1 2 1 2( )R R R R R= + . Looking at the figure, note that the contact situation depicted should be 

indistinguishable from one in which B1 (the top, red body) had met an infinitely rigid half-

space, with a displacement of  instead of x, provided that B1’s radius were R instead of R1. 

The effective stiffness in that case would be just the stiffness *
1E  of B1. Hertz theory would 

then give 3 / 2*4
1 1 13f RE x= . By the same reasoning, we can view B1 as a rigid half space and 

see that the force on B2 (with radius changed to R) would be unchanged at 3 / 2*4
2 2 23f RE x= . 

But the forces must be the same on both bodies and the same as 3 2*4
3f RE x= . Recalling 

that , we now have enough information to write E* in terms of  and *
2E : 

( )
( )

3 23 2 3 2

2 / 3 2 / 3 2 / 3

3
22 / 3 2 / 3

2 / 3 2 / 3

* * *
1 1 2 2 1 2

* * *
1 1 2 2 1 2

* *
* 1 2

* *
1 2

E x E x E x x

E x E x E x x

E EE
E E

= = +

Þ = = +

æ ö
Þ = ç ÷+è ø

 

Note that this combining formula is close, but not identical, to . The 

general scheme is that if your force/displacement dependency has an exponent n, as in 
nf kx= , then the combining scheme for the material stiffness is 

1/ 1/

1/ 1/

* *
* 1 2

* *
1 2

n n

n n

n
E EE
E E

æ ö
= ç ÷+è ø

 

We can now rearrange this for our case where n=3/2 to determine how x is split into and 

2x  given the stiffnesses of the materials, the result we need to determine the contact point 

location P: 

1x

1 2x x x= + *
1E

* * * * *
1 2 1 2( )E E E E E= +

1x
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2
3 2 / 3

2 / 3 2 / 3

2
3 2 / 3

2 / 3 2 / 3

*
2

1 *
1 1 2

*
1

2 1*
2 1 2

EEx x x
E E E

EEx x x x x
E E E

æ ö
= =ç ÷ +è ø

æ ö
= = = -ç ÷ +è ø

 

By inspection, the time derivatives 1x!  and 2x! are split in the same ratios, which gives us a 

way to define an equivalent dissipation coefficient for x! : ( )1 1 2 11c c s c s= + - , where 

( )2 / 3 2 / 3 2 / 3

1 2 1 2s E E E= + . To summarize, here are the combining rules we use: 

3
22 / 3 2 / 3

2 / 3 2 / 3

2 / 3 2 / 3

2 / 3 2 / 3 2 / 3 2 / 3

* *
*1 2 1 2

* *
1 2 1 2

2 1
1 2 1

1 2 1 2

1 1 2 2

1 1 2 2 1 1 2 2

,

, 1

,

R R E ER E
R R E E

E Es s s
E E E E

x s x x s x
cx c x c x c c s c s

æ ö
= = ç ÷+ +è ø

= = = -
+ +

= =
= + Þ = +! ! !

 

Now we can apply the Hunt and Crossley model, which starts with Hertz contact and adds a 

dissipation term: 

3 2* 34
3 2

max( , 0)

max( (1 ), 0)
HCf f

RE x cx

=

= + !
 

The max() is needed only when an active force is “yanking” two contacting bodies apart; the 

force will never be negative in normal contact/response conditions (see reference 14 for 

proof). The “yanking” situation corresponds to pulling the bodies apart faster than they can 

undeform.  

 

11.2.3 Extension to include Friction  

TBD 

Friction models need to know the normal force, and sometimes the contact patch dimensions, 

and the Hertz/Hunt and Crossley model provides those.  
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We hope to provide a simple, continuous model with functionality like that described in 

reference 15, which is able to accurately model sticking, pre-sliding, and sliding friction 

behavior and exhibit empirically observed Stribeck, Coulomb and viscous friction effects 

without adding intermittent constraints to the multibody model and event detection to the 

numerical methods. 

 

11.3 DuMM — Molecular mechanics force field 

Simbody comes with a force subsystem class called DuMMForceFieldSubsystem, 

which we’ll abbreviate “DuMM” below. This is intended to provide a straightforward imple-

mentation of conventional molecular mechanics force fields, for use in experimenting with 

rigid-body molecule models, and to serve as sample code for someone who would like to 

write or port a good molecular mechanics force field for Simbody. It is not intended for 

production work! 

11.3.1 Background 

Molecular mechanics (MM) uses classical approximations of molecular interactions. It is 

thus suited only for circumstances in which quantum effects are not dominant; in practice 

that means simulations which do not form or break covalent bonds between atoms. Fortu-

nately this includes a lot of biologically interesting behavior such as binding, aggregation, 

protein folding, and other cases where molecules rearrange rather than form or break. 

Atomic force models are conventionally divided into two categories: bonded and non-

bonded. Bonded forces act between or among covalently-bound “neighbor” atoms. Since 

each atom can form only a small number of bonds, the number of bonded interactions is 

O(na) in the number of atoms na. Non-bonded forces, on the other hand, represent interactions 

between each atom and all the other atoms. These are electronic in nature and comprise 

Coulomb forces and van der Waals forces. Because the number of such forces is O(na
2), these 

terms dominate the computational cost of the force field for all but the smallest systems. 
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11.3.2 Basic concepts 

The primary concepts supported by DuMM are the force field, molecule, and body. The 

resulting model permits matter to be coarse-grained  (that is, large bodies interconnected by 

mobilizers and constraints) while retaining detailed atomic forces and geometry. The same 

methods are used to produce systems from ones where atoms are free to move anywhere in 

Cartesian space, to systems where all the atoms move together as a rigid body, to anything in 

between. Different molecules or pieces of molecules can be modeled at different granularity 

in the same simulation. 

11.3.2.1 Force field 

The force field provides broad atom classes providing van der Waals parameters for particu-

lar elements in particular covalent environments. All bonded terms are specified in terms of 

these atom classes. A larger set of charged atom types is defined which combine atom classes 

with particular partial charges. Each atom in the molecule is classified as a particular charged 

atom type, which implicitly provides the partial charge, van der Waals parameters, and 

element. Then the force field provides bonded terms for stretch, bend, and torsion, defined as 

a pair, triple, or quad of atom classes. 

The force field definition includes a few global parameters as well, such as how to scale 

charge and van der Waals forces for closely-bonded atoms, and how to mix van der Waals 

parameters for dissimilar atom classes. 

11.3.2.2 Molecules 

Molecules are built from three concepts: atoms, bonds, and clusters. The only information 

required in the definition of an atom is its charged atom type as described above. An integer 

atomId is assigned and returned to the caller, so that every atom in the system has a unique 

atomId. A bond connects a pair of atoms, with at most one bond allowed between any pair.  

A cluster is a rigid grouping of atoms. When a cluster is defined it is assigned a unique 

clusterId, which is returned to the caller as a handle for future references to that cluster. Each 

cluster has its own reference frame, like a body, and when initially created a cluster consists 

only of that reference frame. Whenever an atom is placed in a cluster, it is given a station 

(position) with respect to that cluster’s reference frame. Clusters may be placed within larger 
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clusters, in which case a Transform is used to specify the configuration (location and orienta-

tion) of the child cluster’s reference frame with respect to the parent cluster’s frame. An atom 

may appear only once within a cluster or any of its subclusters. However, an atom may be 

placed in multiple clusters as long as those clusters are independent. 

Once a cluster has been populated with atoms, it can calculate its own mass properties which 

can then be used in the construction of bodies. 

11.3.2.3 Bodies 

Once molecules have been constructed by adding atoms and bonds and then partitioning the 

atoms into clusters, a mapping of the atoms to SimbodyMatterSubsystem bodies can 

be made. Bodies serve as a “top level” cluster, and atoms and clusters can be attached to 

bodies. Any time an atom is attached to a body it is given a station in the body’s reference 

frame, and a cluster is given a configuration (Transform). 

Note that mass properties are not automatically determined by attaching atoms and clusters to 

bodies. Rather, bodies must have mass properties assigned at the time they are defined in the 

SimbodyMatterSubsystem. Typically, the mass properties as calculated by clusters, 

and the masses of individual atoms, will be used in calculating the appropriate mass proper-

ties but that is not required. 

Once the bodies are assigned, DuMMForceFieldSubsystem will figure out which of its 

atoms are on different bodies, and consequently which of the bonded terms cross bodies. 

Bonded and nonbonded terms that act only within a single body are ignored. 

There is no automatic mapping of mobilizer coordinates to bonds, and in fact there is not 

necessarily any direct mapping possible. Optionally, you may assign particular mobilities to 

any of the cross-body bonded terms (such as a sliding mobility to a bond stretch term or a 

rotating mobility to a bond torsion angle). Bonded terms which depend directly on mobilities 

can be calculated very efficiently, and it can be very convenient to have a coordinate which 

corresponds directly to a bonded term.  (TODO: bond mapping not implemented yet). 
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11.3.3 Units 

There are a number of molecular mechanics unit systems in popular use. DuMM supports a 

single “native” unit system but provides conversions to and from the others. The native unit 

system is sometimes called “MD units” and is defined by the following units: length in 

nanometers (nm, 10-9 m), mass in daltons (Da, g/mol, atomic mass units), and time in picose-

conds (ps, 10-12 seconds). Angles are measured as unitless radians. In this set of units, a 

typical bond has a length of about 0.15 nm, a hydrogen atom has mass about 1 Da, and 

substantial motion occurs on a scale of about 1 ps. 

This is a particularly appealing set of units because when combined consistently into energy 

(mass x length2/time2) we get energy per mole in g-nm2/ps2=103kg-m2/s2 =1kJ. That is, our 

energy unit is 1 kilojoule/mol which is one of the energy units popular among molecular 

mechanics practitioners. (Our consistent unit of force is then the kJ/nm = 1 Da-nm/ps2.) 

The other popular unit system, perhaps somewhat more chemist-friendly than ours, is the 

kcal-Ångströms (KA) system. It uses the kilocalorie (kcal) for energy, where 1 kcal = 4.184 

kJ, and the Ångström (Å, 0.1 nm) for length (those are both exact conversions), degrees for 

angles, and ps for time. However, there is no reasonable consistent set of units in which 

energy is measured in kcals, so there is always a conversion involved in this system.* The 

DuMM subsystem provides alternate methods dealing directly in kcals, Ångstroms, and 

degrees so that users who think better in KA units can continue to do so, hopefully resulting 

in a smaller chance of errors being made. Whenever we use these nonstandard units we 

include “KA” in the method and argument names; any time no unit system is specified you 

may assume we are using MD units as described above. And no matter which methods were 

called initially, anyone who looks at internal data should be aware that our internal units are 

kJ, nm, ps, and radians. 

                                                

 

* Typically, energy is calculated in the consistent unit of decajoules/mol (Da-A2/ps2) and then divided by 418.4 

when no one is looking. 
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11.3.4 Defining a force field 

TODO 

11.3.5 Defining the molecules 

TODO 

11.3.6 Defining bodies and attaching the molecule to them 

TODO 

11.3.7 Running a simulation 

TODO 

11.3.8 Theory 

TODO 
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12 Appendix: derivations 
This collects detailed derivations for and discussion about some of the results presented 

earlier. 

12.1 Notation for multibody theory 

When discussing physical quantities that arise in multibody dynamics, we must be very 

precise. We need to describe exactly what quantity we mean, how it was measured, and in 

what coordinate system we have decided to express the result. In the worst case, this can 

result in a complicated forest of super- and subscripts, however there are defaults which 

cover most cases. Here is the worst-case, fully-decorated symbol: 

 

The type of quantity (the central black symbol) is the only required piece. The right subscript 

conveys the particular instance being measured. The superscripts are bodies, frames, or 

points. When useful, points are considered to be the origin of a frame that is parallel to the 

point’s body frame, but with the origin shifted to the point. That frame is then considered the 

“measured in” and “expressed in” frame unless otherwise stated. 

Here are the symbols we conventionally use for particular quantities, shown in nice typogra-

phy and then the crude equivalent we have to use in code. 

G 
 

G 
 

The unique Ground body, and the inertial (Cartesian) refer-
ence frame fixed to it. Technically this is a MobilizedBody, 
although it doesn’t do a lot of moving. 

B 
Bi 

B 
Bi 

The mobilized body under discussion. The same symbol is 
used to mean the body frame associated with that body. 

P 
PB 

P 
Pb 

The parent (inboard) body of the mobilized body under 
discussion, or the parent of a particular body B. 

Q
F M

i
Bé ù

ê ú
ë û

 

“From” point or 
frame 

Expressed-in, if 
not M 

“To” point or 
frame 

Type of quantity 
and which instance 
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M 
MB 

M 
Mb 

The mobilizer frame for the mobilized body under discus-
sion, or for a particular mobilized body B. The M frame is 
fixed to the body, and is related to the body frame by the 
constant transform B MX . 

F 
FB 

F 
Fb 

The fixed (reference) frame for the mobilized body under 
discussion, or for a particular body B. The F frame is fixed to 
the parent body P, and is related to the parent’s body frame 
by the constant transform P FX . 

FO Fo The origin point of some frame F. 

BC Bc The mass center (a point) of some body B. By default this is 
the vector from the B origin to the mass center, expressed in 
B. 

mB mb The mass of some body B. 

GB Gb The gyration matrix of body B. By default this is taken about 
the B origin and expressed in the B frame. 

JB Jb The inertia of body B, where JB=mBGB. By default this is 
taken about the B origin and expressed in the B frame. 

A BR  R_AB The 3x3 rotation matrix whose columns are the B frame’s 
axes expressed in the A frame. 

R Sp  
A Bp  
 
[ ]G A Bp  

p_RS 
 

p_AB 
 

p_AB_G 

The position vector from point R to point S, expressed in the 
same frame as R. If R or S are the names of bodies or coordi-
nate frames, the origins of those frames are used as the 
points; that is, O OA BA Bp p= . If the position vector is ex-
pressed in a frame other than the “from” point’s frame, we 
use the bracket notation shown. 

A BX  X_AB The spatial transform (rotation and translation) expressing 
frame B in frame A. ( )A B A B A BX R p= . 

A BV  
A QV  

V_AB 
 
V_AQ 

The spatial velocity of frame B in A, expressed in A. This 
includes the angular velocity of B in A and the linear velocity 
of BO in A as a stacked pair of vectors expressed in A. A 
different point Q (fixed in B) can be specified as shown in 
which case the linear velocity is of Q in A rather than of BO. 
Q can be considered a coordinate frame parallel to B but with 
its origin shifted to Q. 
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A BA  
A QA  

A_AB 
 
A_AQ 

The spatial acceleration of frame B in A, expressed in A. 
This includes the angular acceleration of B in A and the linear 
acceleration of BO in A as a stacked pair of vectors expressed 
in A. A different point Q (fixed in B) can be specified as 
shown in which case the linear acceleration is of Q in A 
rather than of BO. Q can be considered a coordinate frame 
parallel to B but with its origin shifted to Q. 

MORE 

TODO 

  

 

The right superscript defines the physical quantity by specifying the frame to which a physi-

cal quantity is attached, and optionally a point other than the frame’s origin to which the 

physical quantity is referred. The inertia of body B, taken about B’s origin would be JB, but if 

the inertia were instead taken about B’s center of mass point CB , the symbol would be CB
BJ .  

The left superscript specifies how we are to take the measurement of the physical quantity. 

Typically this is just a frame F, so that the measurement is done with respect to that frame’s 

coordinate system and from the frame’s origin, and by default the resulting measure numbers 

are expressed in F. However, a “measured about” point can be provided which is different 

from the origin. As an example, if body B’s center of mass point CB  is to be measured in the 

local frame of another body A, we would write A CBp  (a vector from body A’s origin to body 

B’s center of mass point). If instead we want the vector from A’s center of mass to B’s, the 

symbol would be C CA Bp  where the expressed-in frame A is inferred from CA . In both cases 

the vector would be expressed in A. If instead it was to be expressed in the ground frame G, 

we would write [ ]C C C C
G A B A BG Ap R p= × . 

Time derivatives with respect to the expressed-in frame are denoted with an overdot. For 

example 

[ ] [ ]( )
[ ] [ ]

[ ] [ ]

C C

CB

CB

C C

C C

C C

G
G GA B A B

G GA A BC

G GA A BC G A

dp p
dt

p p

p pw

= +

= + ´

!

"

#

"

"
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where for any quantity Q expressed in frame A and an arbitrary frame B: 

[ ]
[ ]

[ ]

[ ] [ ] [ ]

[ ]

( )

B A B A A

B A B A A B A B A A

BB A A

A
A A

B BB B BA A A A

B BA B A A

Q R Q

Q R Q R Q

Q
dQ Q
dt
dQ Q Q Q
dt

Q Q

w

w

w

´

´

´

×

× = × ×

= ×

é ù= +ë û

é ù= + ×ë û

!

"

"

#

"#

" #

"#

"

 

12.2 Re-expressing spatial quantities 

For any quantity Q we use the notation [ ]Z Q  to mean “Q re-expressed in frame Z.” Note that 

this never changes the physical quantity being represented, just the frame in which the 

measure numbers of that quantity are expressed. If v is a vector currently expressed in frame 

A, then [ ]Z Z Av R v×! . If M is a tensor (matrix) currently expressed in frame A, then

[ ] ( )Z Z A Z A Z A A ZM R M R R M R× × = × ×!
T

. We use similar definitions for spatial quantities. If 

V is a spatial vector currently expressed in frame A, then we define  

0
0

Z A
Z A

Z A

R
R V V

R
æ ö

× ×ç ÷
è ø
!  . For example, 

0
0 O

O

Z A BZ A Z A A BZ A B Z A A B A B
BZ A Z A A Z BA

R R
V R V V

R R v v

ww
æ öé ùæ ö æ ö× ë ûç ÷é ù = × = =ç ÷ ç ÷ë û ç ÷× ç ÷è ø è ø é ùë ûè ø

! . 

To re-express a spatial inertia matrix M from frame A to frame Z, write 

[ ]

[ ] [ ]
[ ]

3

3

0 0

0 0

( )

( )
( )

Z A A Z

Z A A Z

Z Z A Z A

Z A A Z Z A

Z A

Z Z

Z

R R

R R

M R M R

R R R
M m

R

m

´

´

´

´

= × ×

æ öæ ö æ ö
= ç ÷ç ÷ ç ÷ -è ø è ø è ø

æ ö
ç ÷=
ç ÷-è ø

p
p 1

p

p 1

!

T

G

G
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where we have made use of identity (3.6), the fact that if U is a 3x3 orthogonal matrix, then 

U U (U )´ ´× × = ×v vT . (Recall that rotation matrices are orthogonal.) 

12.3 Rigid body shifting of spatial quantities 

Rigid body shifting is used during processing of the multibody tree to transfer the effect of 

inboard kinematic quantities (velocities and accelerations) in an outboard direction, and to 

shift applied forces and spatial inertias from outboard bodies in an inward direction. The 

rigid body shift matrix P QS  is used to shift a spatial motion vector (e.g., velocity or accelera-

tion) at point Q to the equivalent spatial motion vector acting at point P. The transpose of that 

matrix ( )*Q P P QS S!
T

 is used to shift a spatial force vector (e.g., force or impulse) acting at 

point P to the equivalent spatial force acting at point Q, and both forms are used when 

shifting inertias. The operators are 

1 0
1

P Q
P QS
p´

æ ö
ç ÷
è ø
!       and     ( ) 1

*
0 1

P Q
Q P P Q p
S S ´æ ö-

= ç ÷
è ø

!
T  

so that   P QP Q
P Q P QV S V
v v p
w w

w
æ ö æ ö

= × =ç ÷ ç ÷- ´è ø è ø
!   

and   *
P Q P

Q Q P P
Q P

p f
F S F

f f
µ µæ ö- ´æ ö

= × = ç ÷ç ÷
è ø è ø
! . 

12.3.1 Rigid body shift of rigid body spatial inertia 

To shift a spatial inertia matrix about a point Q to another point P of the same rigid body, if 

stored using a gyration matrix, use 
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( ) ( )

( )

3

2 2

3

2

3

3

1 01

10 1
*

P Q

P Q

Q Q C
Q PP P Q Q

B Q C

Q Q C P C P C

B P C

C P C P C

B P C

P P C

B P C

p

p

p
M S M S m

p

p p p
m

p

p p
m

p

p
m

p

´

´

´

´

´ ´ ´

´

´ ´

´

´

´

-

æ öæ ö æ ö= × × = ç ÷ç ÷ ç ÷- è øè øè ø
æ ö- +ç ÷=
ç ÷-è ø
æ ö+ç ÷=
ç ÷-è ø
æ ö

= ç ÷
-è ø

1

1

1

1

G

G

G

G

 

where P C P Q Q Cp p p= + . 

Note that there is no mention of expressed-in frame; the shifting operators assume that all 

quantities are expressed in the same frame. Op counts for the above are 

P C P Q Q Cp p p= +  3 

( )2Q Cp´ , ( )2P Cp´  22 (11 each) 
PG   12 (2 adds) 

TOTAL 37 flops 
 

12.4 Inversion of rigid body spatial inertia 

In case you find yourself with a need to invert a rigid body spatial inertia, you can do it very 

efficiently. We have symmetric, positive definite 

 
3

p
M m

p
´

´

æ ö
= ç ÷-è ø1

G
 (12.1) 

Then its inverse is also a symmetric matrix  

 
1

3 3

1

*1

where ( )

M
p p pm

p

-

´ ´ ´ ´

-
´

Gæ ö
= ç ÷G G +è ø

G =

1T

2G -

 (12.2) 

So even though this is a 6x6 matrix, only a symmetric 3x3 need be inverted. 

This can be a very useful optimization for lone rigid bodies on free joints to Ground, where 

the joint matrix H is a constant identity matrix in Ground. In that case the mobility space 
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mass matrix D H PH= T  (see below) is just the body’s rigid body spatial inertia M re-

expressed in Ground and is itself a rigid body spatial inertia. 

Because of the orthogonality of rotation matrices, we also have 

 
1 1 1 1( ) ( ) ( )B F B B B F F B B B F B

F F
M R M R R M R M

- - - -é ù é ù=ë û ë û! !  (12.3) 

which may permit the inverse spatial inertia to be usefully precalculated in some cases.  

Note that an articulated body inertia is a general symmetric matrix so there is no “trick” way 

to invert it as there is for a rigid body spatial inertia. 

12.5 Articulated body inertia 

An articulated body inertia (ABI) matrix P(q) contains the spatial inertia properties that a 

body appears to have when it is the free base body of an articulated multibody tree in a given 

configuration q. Despite the complex relative motion that occurs within a multibody tree, at 

any given configuration q there is still a linear relationship between a spatial force F applied 

to a point of the base body and the resulting acceleration A of that body and that point: 

( )F P q A c= + , where c is a velocity-dependent inertial bias force. P is thus analogous to a 

rigid body spatial inertia (RBI), but for a body which has other bodies connected to it by 

joints which are free to move. 

An ABI P is a symmetric 6x6 spatial matrix, consisting of 2x2 blocks of 3x3 matrices, 

similar to the RBI. However, unlike the RBI which has only 10 independent elements, all 21 

non-repeated elements of P are significant. For example, the apparent mass of an articulated 

body depends on which way you push on it, and in general there is no well-defined center of 

mass. This is a much more expensive matrix to manipulate than an RBI. In Simbody's 

formulation, we only work with ABIs in the Ground frame, so there is never a need to rotate 

or re-express them. (That is achieved by rotating RBIs prior to using them to construct the 

ABIs.) Thus only shifting operations need be performed when transforming ABIs from body 

to body. Cheap rigid body shifting is done when moving an ABI within a body or across a 

prescribed mobilizer; otherwise we have to perform an articulated shift operation which is 

quite expensive. For a full discussion of the properties of articulated body inertias, see 
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Section 7.1 (pp. 119-123) of Roy Featherstone's excellent 2008 book, Rigid Body Dynamics 

Algorithms.2 

As a spatial matrix, an articulated body inertia is composed these of 3x3 subblocks: 

 BP æ ö
= ç ÷
è ø

J F
F MT  (12.4) 

Here M  is the mass distribution (symmetric), F  is the first mass moment distribution (full), 

and J  is an inertia (second mass moment, symmetric). 

12.5.1 Rigid body shift of articulated body inertia 

Rigid body shifting of ABIs is done when an ABI is shifted across a prescribed (or welded) 

mobilizer. This is done with a rigid body shift operator P BS  as above. Here we’re given an 

ABI PB expressed in the Ground frame, taken about the origin BO of body B. We would like 

to shift it to the origin PO of its parent body’s frame P, crossing the prescribed mobilizer 

connecting B to P. 

 

1 01

10 1
* B PP P B B p

p
P S P S ´

´-

æ öæ öæ ö= × × = ç ÷ç ÷ ç ÷
è ø è øè ø

¢ ¢æ ö
= ç ÷¢è ø

T

T

J F
F M

J F
F M

 (12.5) 

where 

 p´¢ = +F F M  (12.6) 

 p p´ ´¢ ¢= + -J J F FT  (12.7) 

Note that symmetry of J  is preserved in equation (12.7) because  

 
{ } { }( )

p p p p p p

p p p p
´ ´ ´ ´ ´ ´

´ ´ ´ ´

¢- = - -

= + -

F F F F M

F F M

T T

T T T T
 (12.8) 

and each of the quantities in {} is symmetric. Therefore we need only calculate the lower 

halves of p´F
T  and p´¢F  which, if done carefully, requires fewer calculations than calculat-

ing the symmetric terms in (12.8) directly would. Flop counts are: 

p´M  (full) 24 
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p´¢ = +F F M  9 
half of p p´ ´¢+F FT  33 

¢J  6 
TOTAL 72 flops 

 

This is a little less than twice as expensive as a rigid body shift of a rigid body inertia, which 

isn’t bad considering there are more than twice as many meaningful elements in an ABI than 

an RBI. Unfortunately, this is the easy case! 

12.5.2 Articulated shift of an articulated body inertia 

This is the single most expensive operation in the Simbody kernel. We have the articulated 

body inertia PB of a child body B which we would like to shift to its parent body A, but 

accounting for the movable (free, non-prescribed) mobilizer connecting B to A. That means 

that prior to a final rigid body shift from child to parent we have to remove the inertia pro-

jected on the current directions of the mobilities, since the parent can’t “feel” that inertia 

through the floppy mobilizer in those directions. The projection of the ABI onto the mobili-

ties is 1B BP P HD H P-¢ = T  and the final result we’re looking for is * ( )A A B B B AP S P P S¢+ = - . 

Here BD H P H= T  is a symmetric, positive definite nxn mobility-space mass matrix; H is the 

6xn hinge matrix associated with the connecting mobilizer. 

  Pin/slider 
joint 

Free joint 

6( )B
nP H ´  66n 66 396 

sym: ( )B
n nD H P H´ = T  211 11

2 2n n+  11 231 

sym: 1D-  (use Cholesky) 35
6 n +n/, / = 10 (?) 10 240 

1
6 ( )B
nG P H D-
´ =  12n2–6n 6 396 

sym: 6 6 ( )BP G P H¢́ = T  42n–21 21 231 

sym: BP P P¢¢ ¢= -  21 21 21 
sym: *A B B AP S P S¢¢¢ ¢¢=  72 (see above) 72 72 
sym: AP P¢¢¢+=  21 21 21 

total 3 25
6 17.5 117.5 93n n n+ + +   228 1608 

   

n 0 1 2 3 4 5 6 
total/per dof 93 228 404/202 625/209 896/224 1222/245 1608/268 
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This is unlikely to be the optimal computation of an articulated shift but it is the best I could 

come up with for now. The above is a general-case treatment; there are many special cases 

that could be exploited some of which are discussed below. 

In addition to PA, several of the intermediate quantities in the above calculation are needed 

for subsequent operations, such as calculating accelerations. These are D, D–1, and G. 

12.5.3 Terminal bodies and base bodies 

In a typical multibody tree, a substantial fraction of the bodies are terminal, meaning they 

have no outboard children, or base, meaning their parent body is Ground. For a terminal body 

we have 
GB BP Mé ù= ë û , that is, the articulated body inertia is just the rigid body inertia of B, 

re-expressed in the Ground frame (and that is still a rigid body inertia matrix). We would like 

to use that fact to reduce the op count required for the articulated shift of PB to its parent.  

Although PB in the terminal-body case is an ordinary rigid body inertia, from inspecting the 

above table it is not obvious how to get much out of that except a modest savings in calculat-

ing PBH because D, D–1, and G still need to be calculated and Pʹ, Pʹʹ, Pʹʹʹ, and PA are all 

articulated body inertias. A few possible special cases: 

• If H is constant when expressed in the body frame B, then 

( ) ( )B B B BD H P H H M H= =T T  is constant. (It doesn’t matter what frame you calcu-

late in since D is in mobility space which is its own coordinate system.) Thus D and 
1D-  can be precalculated. Unfortunately it is much more common for H to be con-

stant in the parent body frame than in the child. 

• For base bodies we don’t need to update the parent’s (Ground’s) articulated body in-

ertia since that is already infinite. Thus Pʹ, Pʹʹ, Pʹʹʹ, and PA calculates are all unneces-

sary. 

• Particles (lone point masses) and spherical rigid bodies are common special cases that 

can be handled extremely efficiently since their spatial inertia matrices are constant 

under rotation. 
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• A lone, free rigid body is a common case that can be handled efficiently. Here H can 

be made an identity matrix in Ground or in the body frame. With H identity in 

Ground, D is a rigid body spatial inertia, which can be inverted very efficiently (see 

section 12.4). With H identity in the body, D is a constant as discussed above so can 

be precalculated. 

12.6 Modal analysis and implicit integration 

In this section we discuss the related needs of modal analysis (that is, normal modes in 

internal coordinates) and implicit integration. Both of these require that the system equations 

of motion be differentiated with respect to the generalized coordinates and speeds. That is we 

want to calculate the dynamic, internal coordinate Jacobian 

                             
qq qu qz

uq uu uz

zq zu zz

q q q u q z
u q u u u z
z q z u z z

é ù ¶ ¶ ¶ ¶ ¶ ¶é ù
ê ú ê ú= = ¶ ¶ ¶ ¶ ¶ ¶ê ú ê ú
ê ú ê ú¶ ¶ ¶ ¶ ¶ ¶ë ûë û

J J J
J J J J

J J J

! ! !

! ! !

! ! !

 (5) 

Modal analysis is typically done with all speeds set to zero, so only the submatrix Juq is of 

interest. If q is such that the system is stable (at a local energy minimum), then the eigenval-

ues of this matrix are the normal modes of the system about that equilibrium point and the 

corresponding eigenvectors are the modal basis (that is, they represent the coordinated 

motion involved in each of the normal modes). 

Given the system equations of motion, note that one can easily obtain an approximation to J 

by perturbing the state variables (this is called a finite difference approximation to J). Sim-

body 1.0 should, at a minimum, support that method. However, it is both inaccurate and 

extremely expensive to compute. Finite differencing loses about half the available precision, 

and requires O(n) calculations of the system accelerations to form an n´n matrix. In molecu-

lar dynamics straightforward force calculations are typically O(n2), so this can mean the 

Jacobian calculation is a prohibitive O(n3). In any case the force calculations are very expen-

sive and doing O(n) of them to get a half-accurate Jacobian is not a very good deal. Analyti-

cal methods exist which allow Juq to be calculated from the spatial force derivatives (energy 

Hessian), to full accuracy and in much less time, with the total calculation being O(n2). Note 

that this is within a constant factor of optimal for filling in a matrix with n2 elements. 
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If possible, Simbody 1.0 should include a good modern method for calculating J analytically, 

but if that can’t be done it should at least provide an interface designed to support such a 

calculation in the next release. 

For implicit integration the required matrix is the full J (with nonzero velocities) rather than 

just Juq. However, that is not much worse. Calculating the Juq submatrix is by far the most 

difficult part since it involves the Hessian of the potential energy and (formally) the partial 

derivatives of the mass matrix inverse with respect to the q’s. 

12.7 Root finding and optimization 

The needed computations here depend on the kind of problems being solved. They typically 

require Jacobians of various calculations with respect to the generalized coordinates and 

speeds. J as defined above can be very useful for minimizations involving search for equilib-

ria. For satisfying constraints, the partial derivatives of the constraint equations (8.52) and 

(8.53) are required and Simbody can provide those analytically. 

Root finding problems can be difficult when the coordinates are constrained, so it is conven-

ient to define a new set of fully-independent coordinates. It is easy to create a localized 3-

coordinate representation for orientation about a current set of q’s which will remain valid 

even for large perturbations, using the N and 1-N  operators provided by Simbody to work 

with the kinematic coupling matrix N. Reduced sets of coordinates for more general con-

straints may have limited validity ranges and have to be recalculated periodically during a 

root finding or optimization run. 
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12.8 Operator form of Simbody interface 

(NOT DONE YET) The Simbody subsystem follows the response/operator/solver scheme 

described elsewhere. Arguments in brackets indicate the stage at which the operator is 

available; other symbols are the runtime arguments. 
 

Operator Stage Method Description 

[ ]qq u= N!  Position void calcQDot(State, Vector 

u, Vector& qdot) 

Convert generalized 

speeds to generalized 

coordinate time deriva-

tives. 

[ , ] [ ]q u qq u u= +N N!!! ! !  
Velocity void calcQDotDot(State, 

Vector udot, Vector& qdotdot) 

Convert generalized speed 

time derivatives to 

generalized coordinate 2nd 

time derivatives. 

a [ ]

c [ ]

bias [ , ]

inv a c bias

q

q

q u

f a

f
f
f f f f

l

=

=

=

= + +

M

G
τ

T

 

Force void calcMa(State, Vector a, 

Vector& f) 

Inverse dynamics. Can use 

as residual (implicit) form 

of equations : 

inv applied
[q,u] [t,q,u]
( , ) 0f u fl - =!

 

1
[ ]qa f-=M  

1
tree [ ] bias

[q,u]

loop tree cons

1
cons a tree

( )

λ(ε ( )))

qu f f

u u u

u u

-

-

= -

= -

=

M

M G

!

! ! !

! !
T

 

Force void calcMInverseF(State, 

Vector f, Vector& a) 

void calcTreeUdot(State, 

Vector f, Vector& udot) 

Forward dynamics. 

a [ ] [ , , ]q t q uae = +G b  Force void calcAccelerationCon-

straintErr(State, Vector a, 

Vector& aerr) 

Maps accelerations a to 

the acceleration constraint 

errors they entail. 

a

[ , , , ]t q u u

e
é ù
ê ú= ê ú
ê úë û

p
v
a

!

!!

!  

Acceleration const Vector& getAccelera-

tionConstraintErr(State) 
Maps accelerations u!  to 

the acceleration constraint 

errors they entail. 
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v
[ , , ]t q u

e
é ù

= ê ú
ë û

p
v
!

 
Velocity const Vector& getVelocityCon-

straintErr(State) 

Given a set of generalized 

speeds u, return the 

velocity constraint errors 

they entail. 

p [ , ]t qe = p  Position const Vector& getPositionCon-

straintErr(State) 

Given a set of generalized 

coordinates q, return the 

position constraint errors 

they entail. 

[ ] a( ) ql e- += 1GM GT  Force void calcMultipliers(State, 

Vector aerr, Vector& lambda) 

Given a set of acceleration 

constraint violations, 

calculate the multipliers 

needed to eliminate them. 

[ ]qf F= JT  Position void calcTreeEquivalentForc-

es(State, Vector_<SpatialVec> 

bodyForces, Vector& joint-

Forces) 

Given a set of body forces 

and torques, convert them 

to hinge forces ignoring 

constraints. 

[ ]qV u= J  Position  Given a set of generalized 

speeds, compute the 

equivalent spatial 

velocities of each body. 

ke=ke[q](u) Position Real calcKineticEnergy(State, 

Vector u) 

Given a set of generalized 

speeds, calculate the 

resulting kinetic energy. 

 

 

12.9 Misc 

This is material that should probably be removed. 
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Quaternion 
normalization 

position level 
only n = 0 ( ) 1i i iq q q= -n T   

Prescribed 
motion 

prescribed 
coordinates 

q qÍ  
u uÍ  

holonomic 

(index 3) 

Local to each 
prescribed 

mobilizer i. 

Given: position  ( )i iq t= q   

velocity (index 2) p, ( , )i i iu t q= u  1
p, ( , ) ( ) ( )i i i i it q q t-=u N q!  

acceleration 
(index 1) p, ( , , )i i i iu t q u=m!  p, p,( , , ) ( , )i i i i it q u t q=m u!  

nonholo-
nomic 

(index 2) 

Given: velocity  v ( , )u t q= u   

acceleration 
(index 1) v ( , , )u t q u=m!  v v( , , ) ( , )t q u t q=m u!  

acceleration 
only (index 1) Given: acceleration  a ( , , )u t q u=m!   

General 
constraints 

free coordi-
nates q̂ qÍ  

û uÍ  

holonomic 

(index 3) 

Given: position 
ˆ( ) 0q =p  

ˆ( , , ) 0t q q =p   

velocity ˆ( ) 0u =p!  
(index 2) 

ˆ ˆ ( , , ) 0u t q u- =P c  

ˆ ˆ
ˆ ˆu q

¶ ¶
= =
¶ ¶
p pP N
!    

u q
¶ ¶

= =
¶ ¶
p pP N
!  

u
t
¶æ ö= - +ç ÷¶è ø

pc P  

acceleration ˆ( ) 0u =p !!!  
(index 1) 

p
ˆ ˆ ( , , , ) 0u t q u u- =P b! !

 p
ˆ û= -b c P!!  

Nonholo-
nomic 

(index 2) 

Given: velocity 
ˆ( ) 0u =v  

ˆ( , , , ) 0t q u u =v   

acceleration ˆ( ) 0u =v !!  
(index 1) 

v
ˆ ˆ ( , , , ) 0u t q u u- =V b! !

 

ˆ
û

¶
=
¶

v
V      

u

¶
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¶

v
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v u u
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¶ ¶
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¶ ¶
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ç ÷
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v v

b N V !  

acceleration 
only (index 1) 

Given: acceleration 
ˆ( ) 0u =a !  

a
ˆ ˆ ( , , , ) 0u t q u u- =A b! !

 
Note that a must be linear 
in û! . 

All index 1 
constraints 

collect contributions from all the 
shaded rows above 

( , , )
ˆ ˆ ( , , , ) 0

u t q u

u t q u u

=

- =
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=
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ê úë û

b
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b
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v
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=
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ê ú
ê úë û

m
m m

m
 

Table 1: the three classes of constraint equations dealt with by Simbody. 
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An in-progress attempt to include prescribed motion in the above table – please ignore for now. 

Quaternion 
normalization 

position level 
only n = 0 ( ) 1i i iq q q= -n T   

Prescribed 
motion 

prescribed 
coordinates 

qp upq qÍ  

up pu uÍ  

pu uÍ! !  

holonomic 

(index 3) 

Local to each 
prescribed 

mobilizer i. 

Given: position  , ( )qp i iq t= q   

velocity (index 2) , p, ,( , )qp i i qp iu t q= u  1
p, , ,( , ) ( ) ( )i qp i i qp i it q q t-=u N q!  

acceleration 
(index 1) 

, p, ,

,

( , ,

)
qp i i qp i

qp i

u t q
u

=m!
 p, , ,

p, ,

( , , )

( , )
i qp i qp i

i qp i

t q u
t q=

m
u!

 

nonholo-
nomic 

(index 2) 

Given: velocity  v ( , )upu t q= u   

acceleration 
(index 1) v ( , , )upu t q u=m!  v v( , , ) ( , )t q u t q=m u!  

acceleration 
only (index 1) Given: acceleration  a ( , , )pu t q u=m!   

General 
constraints 

free coordi-
nates 

qf qpq q q= -  

uf upu u u= -  

f pu u u= -! ! !  

holonomic 

(index 3) 

Given: position 
( ) 0qfq =p  

( , , ) 0qp qft q q =p   

velocity ( ) 0qfu =p!  

(index 2) 

( , , )

0
qf qpu t q u-

=

P c
 

qf
qf qfu q

¶ ¶
= =
¶ ¶
p pP N
!    

p qp
qp qpu q

¶ ¶
= =
¶ ¶
p pP N
!  

p qput
¶æ ö= - +ç ÷¶è ø

pc P  

acceleration ( ) 0qfu =p!! !  
(index 1) 

p ( , , , )

0
qf qpu t q u u-

=

P b! !

 
p qfu= -b c P!!  

Nonholo-
nomic 

(index 2) 

Given: velocity 
( ) 0ufu =v  

( , , , ) 0up uft q u u =v   

acceleration 
( ) 0ufu =v! !  
(index 1) 

v ( , , , )

0
uf upu t q u u-

=

V b! !

 

ufu

¶
=
¶

v
V      p

upu

¶
=
¶

v
V   

v p upu u
t q

¶ ¶
= - + +

¶ ¶

æ ö
ç ÷
è ø
v v

b N V !  
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acceleration 
only (index 1) 

Given: acceleration 
( ) 0fu =a !  

a ( , , , )

0
f pu t q u u-

=

A b! !
 

Note that a must be linear 
in fu! . 

All index 1 
constraints 

collect contributions from all the 
shaded rows above 

( , , )

( , , , )

0

p

f p

u t q u
u t q u u

=

-

=

m
G b

!

! !  =
é ù
ê ú
ê úë û

P
G V
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p

v

a

=
é ù
ê ú
ê úë û

b
b b
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p

v
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=
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ê ú
ê úë û

m
m m

m
 

Table 2: the three classes of constraint equations dealt with by Simbody. 
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