
MapReduce Tutorial

Table of contents

1 Purpose...2

2 Prerequisites...2

3 Overview..2

4 Inputs and Outputs... 3

5 Example: WordCount v1.0.. 3

5.1 Source Code...3

5.2 Usage... 6

5.3 Walk-through...8

6 MapReduce - User Interfaces...9

6.1 Payload.. 9

6.2 Job Configuration.. 13

6.3 Task Execution & Environment.. 14

6.4 Job Submission and Monitoring..22

6.5 Job Input.. 25

6.6 Job Output... 27

6.7 Other Useful Features..28

7 Example: WordCount v2.0.. 35

7.1 Source Code...35

7.2 Sample Runs..41

7.3 Highlights.. 43

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Purpose

This document comprehensively describes all user-facing facets of the Hadoop MapReduce
framework and serves as a tutorial.

2. Prerequisites

Ensure that Hadoop is installed, configured and is running. More details:

• Single Node Setup for first-time users.
• Cluster Setup for large, distributed clusters.

3. Overview

Hadoop MapReduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into independent chunks which are
processed by the map tasks in a completely parallel manner. The framework sorts the outputs
of the maps, which are then input to the reduce tasks. Typically both the input and the output
of the job are stored in a file-system. The framework takes care of scheduling tasks,
monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the same, that is, the MapReduce
framework and the Hadoop Distributed File System (see HDFS Architecture Guide) are
running on the same set of nodes. This configuration allows the framework to effectively
schedule tasks on the nodes where data is already present, resulting in very high aggregate
bandwidth across the cluster.

The MapReduce framework consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The master is responsible for scheduling the jobs'
component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and supply map and reduce
functions via implementations of appropriate interfaces and/or abstract-classes. These, and
other job parameters, comprise the job configuration. The Hadoop job client then submits the
job (jar/executable etc.) and configuration to the JobTracker which then assumes the
responsibility of distributing the software/configuration to the slaves, scheduling tasks and
monitoring them, providing status and diagnostic information to the job-client.

MapReduce Tutorial

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

single_node_setup.html
cluster_setup.html
hdfs_design.html

Although the Hadoop framework is implemented in JavaTM, MapReduce applications need
not be written in Java.

• Hadoop Streaming is a utility which allows users to create and run jobs with any
executables (e.g. shell utilities) as the mapper and/or the reducer.

• Hadoop Pipes is a SWIG- compatible C++ API to implement MapReduce applications
(non JNITM based).

4. Inputs and Outputs

The MapReduce framework operates exclusively on <key, value> pairs, that is, the
framework views the input to the job as a set of <key, value> pairs and produces a set of
<key, value> pairs as the output of the job, conceivably of different types.

The key and value classes have to be serializable by the framework and hence need to
implement the Writable interface. Additionally, the key classes have to implement the
WritableComparable interface to facilitate sorting by the framework.

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3,
v3> (output)

5. Example: WordCount v1.0

Before we jump into the details, lets walk through an example MapReduce application to get
a flavour for how they work.

WordCount is a simple application that counts the number of occurences of each word in a
given input set.

This works with a local-standalone, pseudo-distributed or fully-distributed Hadoop
installation (Single Node Setup).

5.1. Source Code

WordCount.java

1. package org.myorg;

2.

3. import java.io.IOException;

4. import java.util.*;

MapReduce Tutorial

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/streaming/package-summary.html
api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
api/org/apache/hadoop/io/Writable.html
api/org/apache/hadoop/io/WritableComparable.html
single_node_setup.html

5.

6. import org.apache.hadoop.fs.Path;

7. import org.apache.hadoop.conf.*;

8. import org.apache.hadoop.io.*;

9. import org.apache.hadoop.mapred.*;

10. import org.apache.hadoop.util.*;

11.

12. public class WordCount {

13.

14. public static class Map extends
MapReduceBase implements
Mapper<LongWritable, Text, Text,
IntWritable> {

15. private final static IntWritable
one = new IntWritable(1);

16. private Text word = new Text();

17.

18. public void map(LongWritable key,
Text value, OutputCollector<Text,
IntWritable> output, Reporter
reporter) throws IOException {

19. String line = value.toString();

20. StringTokenizer tokenizer = new
StringTokenizer(line);

21. while
(tokenizer.hasMoreTokens()) {

22.
word.set(tokenizer.nextToken());

23. output.collect(word, one);

24. }

25. }

MapReduce Tutorial

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

26. }

27.

28. public static class Reduce extends
MapReduceBase implements
Reducer<Text, IntWritable, Text,
IntWritable> {

29. public void reduce(Text key,
Iterator<IntWritable> values,
OutputCollector<Text, IntWritable>
output, Reporter reporter) throws
IOException {

30. int sum = 0;

31. while (values.hasNext()) {

32. sum += values.next().get();

33. }

34. output.collect(key, new
IntWritable(sum));

35. }

36. }

37.

38. public static void main(String[]
args) throws Exception {

39. JobConf conf = new
JobConf(WordCount.class);

40. conf.setJobName("wordcount");

41.

42.
conf.setOutputKeyClass(Text.class);

43.
conf.setOutputValueClass(IntWritable.class);

44.

45. conf.setMapperClass(Map.class);

MapReduce Tutorial

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

46.
conf.setCombinerClass(Reduce.class);

47.
conf.setReducerClass(Reduce.class);

48.

49.
conf.setInputFormat(TextInputFormat.class);

50.
conf.setOutputFormat(TextOutputFormat.class);

51.

52.
FileInputFormat.setInputPaths(conf,
new Path(args[0]));

53.
FileOutputFormat.setOutputPath(conf,
new Path(args[1]));

54.

55. JobClient.runJob(conf);

57. }

58. }

59.

5.2. Usage

Assuming HADOOP_HOME is the root of the installation and HADOOP_VERSION is the
Hadoop version installed, compile WordCount.java and create a jar:

$ mkdir wordcount_classes
$ javac -classpath
${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar -d
wordcount_classes WordCount.java
$ jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ .

Assuming that:

• /usr/joe/wordcount/input - input directory in HDFS

MapReduce Tutorial

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

• /usr/joe/wordcount/output - output directory in HDFS

Sample text-files as input:

$ bin/hadoop dfs -ls /usr/joe/wordcount/input/
/usr/joe/wordcount/input/file01
/usr/joe/wordcount/input/file02
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01
Hello World Bye World
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02
Hello Hadoop Goodbye Hadoop

Run the application:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
/usr/joe/wordcount/input /usr/joe/wordcount/output

Output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

Applications can specify a comma separated list of paths which would be present in the
current working directory of the task using the option -files. The -libjars option
allows applications to add jars to the classpaths of the maps and reduces. The option
-archives allows them to pass comma separated list of archives as arguments. These
archives are unarchived and a link with name of the archive is created in the current working
directory of tasks. More details about the command line options are available at Commands
Guide.

Running wordcount example with -libjars, -files and -archives:
hadoop jar hadoop-examples.jar wordcount -files cachefile.txt
-libjars mylib.jar -archives myarchive.zip input output Here,
myarchive.zip will be placed and unzipped into a directory by the name "myarchive.zip".

Users can specify a different symbolic name for files and archives passed through -files and
-archives option, using #.

For example, hadoop jar hadoop-examples.jar wordcount -files
dir1/dict.txt#dict1,dir2/dict.txt#dict2 -archives

MapReduce Tutorial

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

commands_manual.html
commands_manual.html

mytar.tgz#tgzdir input output Here, the files dir1/dict.txt and dir2/dict.txt can
be accessed by tasks using the symbolic names dict1 and dict2 respectively. The archive
mytar.tgz will be placed and unarchived into a directory by the name "tgzdir".

5.3. Walk-through

The WordCount application is quite straight-forward.

The Mapper implementation (lines 14-26), via the map method (lines 18-25), processes one
line at a time, as provided by the specified TextInputFormat (line 49). It then splits the
line into tokens separated by whitespaces, via the StringTokenizer, and emits a
key-value pair of < <word>, 1>.

For the given sample input the first map emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

The second map emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

We'll learn more about the number of maps spawned for a given job, and how to control
them in a fine-grained manner, a bit later in the tutorial.

WordCount also specifies a combiner (line 46). Hence, the output of each map is passed
through the local combiner (which is same as the Reducer as per the job configuration) for
local aggregation, after being sorted on the keys.

The output of the first map:
< Bye, 1>
< Hello, 1>
< World, 2>

The output of the second map:
< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>

The Reducer implementation (lines 28-36), via the reduce method (lines 29-35) just
sums up the values, which are the occurence counts for each key (i.e. words in this example).

MapReduce Tutorial

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Thus the output of the job is:
< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>

The run method specifies various facets of the job, such as the input/output paths (passed
via the command line), key/value types, input/output formats etc., in the JobConf. It then
calls the JobClient.runJob (line 55) to submit the and monitor its progress.

We'll learn more about JobConf, JobClient, Tool and other interfaces and classes a bit
later in the tutorial.

6. MapReduce - User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the
MapReduce framework. This should help users implement, configure and tune their jobs in a
fine-grained manner. However, please note that the javadoc for each class/interface remains
the most comprehensive documentation available; this is only meant to be a tutorial.

Let us first take the Mapper and Reducer interfaces. Applications typically implement
them to provide the map and reduce methods.

We will then discuss other core interfaces including JobConf, JobClient,
Partitioner, OutputCollector, Reporter, InputFormat, OutputFormat,
OutputCommitter and others.

Finally, we will wrap up by discussing some useful features of the framework such as the
DistributedCache, IsolationRunner etc.

6.1. Payload

Applications typically implement the Mapper and Reducer interfaces to provide the map
and reduce methods. These form the core of the job.

6.1.1. Mapper

Mapper maps input key/value pairs to a set of intermediate key/value pairs.

Maps are the individual tasks that transform input records into intermediate records. The
transformed intermediate records do not need to be of the same type as the input records. A
given input pair may map to zero or many output pairs.

MapReduce Tutorial

Page 9
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/Mapper.html

The Hadoop MapReduce framework spawns one map task for each InputSplit generated
by the InputFormat for the job.

Overall, Mapper implementations are passed the JobConf for the job via the
JobConfigurable.configure(JobConf) method and override it to initialize themselves. The
framework then calls map(WritableComparable, Writable, OutputCollector, Reporter) for
each key/value pair in the InputSplit for that task. Applications can then override the
Closeable.close() method to perform any required cleanup.

Output pairs do not need to be of the same types as input pairs. A given input pair may map
to zero or many output pairs. Output pairs are collected with calls to
OutputCollector.collect(WritableComparable,Writable).

Applications can use the Reporter to report progress, set application-level status messages
and update Counters, or just indicate that they are alive.

All intermediate values associated with a given output key are subsequently grouped by the
framework, and passed to the Reducer(s) to determine the final output. Users can control
the grouping by specifying a Comparator via
JobConf.setOutputKeyComparatorClass(Class).

The Mapper outputs are sorted and then partitioned per Reducer. The total number of
partitions is the same as the number of reduce tasks for the job. Users can control which keys
(and hence records) go to which Reducer by implementing a custom Partitioner.

Users can optionally specify a combiner, via JobConf.setCombinerClass(Class), to
perform local aggregation of the intermediate outputs, which helps to cut down the amount of
data transferred from the Mapper to the Reducer.

The intermediate, sorted outputs are always stored in a simple (key-len, key, value-len,
value) format. Applications can control if, and how, the intermediate outputs are to be
compressed and the CompressionCodec to be used via the JobConf.

6.1.1.1. How Many Maps?

The number of maps is usually driven by the total size of the inputs, that is, the total number
of blocks of the input files.

The right level of parallelism for maps seems to be around 10-100 maps per-node, although it
has been set up to 300 maps for very cpu-light map tasks. Task setup takes awhile, so it is
best if the maps take at least a minute to execute.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you'll end up with
82,000 maps, unless setNumMapTasks(int) (which only provides a hint to the framework) is

MapReduce Tutorial

Page 10
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/Mapper.html#map(K1, V1, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()
api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapred/JobConf.html#setCombinerClass(java.lang.Class)
api/org/apache/hadoop/io/compress/CompressionCodec.html
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)

used to set it even higher.

6.1.2. Reducer

Reducer reduces a set of intermediate values which share a key to a smaller set of values.

The number of reduces for the job is set by the user via JobConf.setNumReduceTasks(int).

Overall, Reducer implementations are passed the JobConf for the job via the
JobConfigurable.configure(JobConf) method and can override it to initialize themselves. The
framework then calls reduce(WritableComparable, Iterator, OutputCollector, Reporter)
method for each <key, (list of values)> pair in the grouped inputs. Applications
can then override the Closeable.close() method to perform any required cleanup.

Reducer has 3 primary phases: shuffle, sort and reduce.

6.1.2.1. Shuffle

Input to the Reducer is the sorted output of the mappers. In this phase the framework
fetches the relevant partition of the output of all the mappers, via HTTP.

6.1.2.2. Sort

The framework groups Reducer inputs by keys (since different mappers may have output
the same key) in this stage.

The shuffle and sort phases occur simultaneously; while map-outputs are being fetched they
are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from those
for grouping keys before reduction, then one may specify a Comparator via
JobConf.setOutputValueGroupingComparator(Class). Since
JobConf.setOutputKeyComparatorClass(Class) can be used to control how intermediate keys
are grouped, these can be used in conjunction to simulate secondary sort on values.

6.1.2.3. Reduce

In this phase the reduce(WritableComparable, Iterator, OutputCollector, Reporter) method is
called for each <key, (list of values)> pair in the grouped inputs.

The output of the reduce task is typically written to the FileSystem via
OutputCollector.collect(WritableComparable, Writable).

MapReduce Tutorial

Page 11
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/Reducer.html
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()
api/org/apache/hadoop/mapred/JobConf.html#setOutputValueGroupingComparator(java.lang.Class)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/fs/FileSystem.html
api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)

Applications can use the Reporter to report progress, set application-level status messages
and update Counters, or just indicate that they are alive.

The output of the Reducer is not sorted.

6.1.2.4. How Many Reduces?

The right number of reduces seems to be 0.95 or 1.75 multiplied by (<no. of nodes> *
mapred.tasktracker.reduce.tasks.maximum).

With 0.95 all of the reduces can launch immediately and start transfering map outputs as
the maps finish. With 1.75 the faster nodes will finish their first round of reduces and
launch a second wave of reduces doing a much better job of load balancing.

Increasing the number of reduces increases the framework overhead, but increases load
balancing and lowers the cost of failures.

The scaling factors above are slightly less than whole numbers to reserve a few reduce slots
in the framework for speculative-tasks and failed tasks.

6.1.2.5. Reducer NONE

It is legal to set the number of reduce-tasks to zero if no reduction is desired.

In this case the outputs of the map-tasks go directly to the FileSystem, into the output
path set by setOutputPath(Path). The framework does not sort the map-outputs before writing
them out to the FileSystem.

6.1.3. Partitioner

Partitioner partitions the key space.

Partitioner controls the partitioning of the keys of the intermediate map-outputs. The key (or
a subset of the key) is used to derive the partition, typically by a hash function. The total
number of partitions is the same as the number of reduce tasks for the job. Hence this
controls which of the m reduce tasks the intermediate key (and hence the record) is sent to for
reduction.

HashPartitioner is the default Partitioner.

6.1.4. Reporter

Reporter is a facility for MapReduce applications to report progress, set application-level
status messages and update Counters.

MapReduce Tutorial

Page 12
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/Partitioner.html
api/org/apache/hadoop/mapred/lib/HashPartitioner.html
api/org/apache/hadoop/mapred/Reporter.html

Mapper and Reducer implementations can use the Reporter to report progress or just
indicate that they are alive. In scenarios where the application takes a significant amount of
time to process individual key/value pairs, this is crucial since the framework might assume
that the task has timed-out and kill that task. Another way to avoid this is to set the
configuration parameter mapred.task.timeout to a high-enough value (or even set it to
zero for no time-outs).

Applications can also update Counters using the Reporter.

6.1.5. OutputCollector

OutputCollector is a generalization of the facility provided by the MapReduce framework to
collect data output by the Mapper or the Reducer (either the intermediate outputs or the
output of the job).

Hadoop MapReduce comes bundled with a library of generally useful mappers, reducers, and
partitioners.

6.2. Job Configuration

JobConf represents a MapReduce job configuration.

JobConf is the primary interface for a user to describe a MapReduce job to the Hadoop
framework for execution. The framework tries to faithfully execute the job as described by
JobConf, however:

• f Some configuration parameters may have been marked as final by administrators and
hence cannot be altered.

• While some job parameters are straight-forward to set (e.g. setNumReduceTasks(int)),
other parameters interact subtly with the rest of the framework and/or job configuration
and are more complex to set (e.g. setNumMapTasks(int)).

JobConf is typically used to specify the Mapper, combiner (if any), Partitioner,
Reducer, InputFormat, OutputFormat and OutputCommitter implementations.
JobConf also indicates the set of input files (setInputPaths(JobConf, Path...)
/addInputPath(JobConf, Path)) and (setInputPaths(JobConf, String) /addInputPaths(JobConf,
String)) and where the output files should be written (setOutputPath(Path)).

Optionally, JobConf is used to specify other advanced facets of the job such as the
Comparator to be used, files to be put in the DistributedCache, whether
intermediate and/or job outputs are to be compressed (and how), debugging via
user-provided scripts (setMapDebugScript(String)/setReduceDebugScript(String)) , whether
job tasks can be executed in a speculative manner

MapReduce Tutorial

Page 13
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/OutputCollector.html
api/org/apache/hadoop/mapred/lib/package-summary.html
api/org/apache/hadoop/mapred/JobConf.html
api/org/apache/hadoop/conf/Configuration.html#FinalParams
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path[])
api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapred.JobConf,%20java.lang.String)
api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath(org.apache.hadoop.mapred.JobConf,%20java.lang.String)
api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath(org.apache.hadoop.mapred.JobConf,%20java.lang.String)
api/org/apache/hadoop/mapred/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#setMapDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setReduceDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setMapSpeculativeExecution(boolean)

setReduceSpeculativeExecution(boolean)) , maximum number of attempts per task
(setMaxMapAttempts(int)/setMaxReduceAttempts(int)) , percentage of tasks failure which
can be tolerated by the job
(setMaxMapTaskFailuresPercent(int)/setMaxReduceTaskFailuresPercent(int)) etc.

Of course, users can use set(String, String)/get(String, String) to set/get arbitrary parameters
needed by applications. However, use the DistributedCache for large amounts of
(read-only) data.

6.3. Task Execution & Environment

The TaskTracker executes the Mapper/ Reducer task as a child process in a separate
jvm.

The child-task inherits the environment of the parent TaskTracker. The user can specify
additional options to the child-jvm via the
mapred.{map|reduce}.child.java.opts configuration parameter in the
JobConf such as non-standard paths for the run-time linker to search shared libraries via
-Djava.library.path=<> etc. If the
mapred.{map|reduce}.child.java.opts parameters contains the symbol
@taskid@ it is interpolated with value of taskid of the MapReduce task.

Here is an example with multiple arguments and substitutions, showing jvm GC logging, and
start of a passwordless JVM JMX agent so that it can connect with jconsole and the likes to
watch child memory, threads and get thread dumps. It also sets the maximum heap-size of
the map and reduce child jvm to 512MB & 1024MB respectively. It also adds an additional
path to the java.library.path of the child-jvm.

<property>
<name>mapred.map.child.java.opts</name>
<value>
-Xmx512M -Djava.library.path=/home/mycompany/lib

-verbose:gc -Xloggc:/tmp/@taskid@.gc
-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false
</value>
</property>

<property>
<name>mapred.reduce.child.java.opts</name>
<value>
-Xmx1024M -Djava.library.path=/home/mycompany/lib

MapReduce Tutorial

Page 14
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#setReduceSpeculativeExecution(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapTaskFailuresPercent(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceTaskFailuresPercent(int)
api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String, java.lang.String)
api/org/apache/hadoop/conf/Configuration.html#get(java.lang.String, java.lang.String)

-verbose:gc -Xloggc:/tmp/@taskid@.gc
-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false
</value>
</property>

6.3.1. Memory Management

Users/admins can also specify the maximum virtual memory of the launched child-task, and
any sub-process it launches recursively, using
mapred.{map|reduce}.child.ulimit. Note that the value set here is a per process
limit. The value for mapred.{map|reduce}.child.ulimit should be specified in
kilo bytes (KB). And also the value must be greater than or equal to the -Xmx passed to
JavaVM, else the VM might not start.

Note: mapred.{map|reduce}.child.java.opts are used only for configuring the
launched child tasks from task tracker. Configuring the memory options for daemons is
documented in Configuring the Environment of the Hadoop Daemons.

The memory available to some parts of the framework is also configurable. In map and
reduce tasks, performance may be influenced by adjusting parameters influencing the
concurrency of operations and the frequency with which data will hit disk. Monitoring the
filesystem counters for a job- particularly relative to byte counts from the map and into the
reduce- is invaluable to the tuning of these parameters.

Users can choose to override default limits of Virtual Memory and RAM enforced by the
task tracker, if memory management is enabled. Users can set the following parameter per
job:

Name Type Description

mapred.task.maxvmem int A number, in bytes, that
represents the maximum
Virtual Memory task-limit for
each task of the job. A task will
be killed if it consumes more
Virtual Memory than this
number.

mapred.task.maxpmem int A number, in bytes, that
represents the maximum RAM
task-limit for each task of the
job. This number can be
optionally used by Schedulers
to prevent over-scheduling of

MapReduce Tutorial

Page 15
Copyright © 2008 The Apache Software Foundation. All rights reserved.

cluster_setup.html#Configuring+the+Environment+of+the+Hadoop+Daemons

tasks on a node based on RAM
needs.

6.3.2. Map Parameters

A record emitted from a map will be serialized into a buffer and metadata will be stored into
accounting buffers. As described in the following options, when either the serialization buffer
or the metadata exceed a threshold, the contents of the buffers will be sorted and written to
disk in the background while the map continues to output records. If either buffer fills
completely while the spill is in progress, the map thread will block. When the map is
finished, any remaining records are written to disk and all on-disk segments are merged into
a single file. Minimizing the number of spills to disk can decrease map time, but a larger
buffer also decreases the memory available to the mapper.

Name Type Description

io.sort.mb int The cumulative size of the
serialization and accounting
buffers storing records emitted
from the map, in megabytes.

io.sort.record.percent float The ratio of serialization to
accounting space can be
adjusted. Each serialized
record requires 16 bytes of
accounting information in
addition to its serialized size to
effect the sort. This percentage
of space allocated from
io.sort.mb affects the
probability of a spill to disk
being caused by either
exhaustion of the serialization
buffer or the accounting space.
Clearly, for a map outputting
small records, a higher value
than the default will likely
decrease the number of spills
to disk.

io.sort.spill.percent float This is the threshold for the
accounting and serialization
buffers. When this percentage
of either buffer has filled, their
contents will be spilled to disk
in the background. Let
io.sort.record.percent

MapReduce Tutorial

Page 16
Copyright © 2008 The Apache Software Foundation. All rights reserved.

be r, io.sort.mb be x, and
this value be q. The maximum
number of records collected
before the collection thread will
spill is r * x * q * 2^16.
Note that a higher value may
decrease the number of- or
even eliminate- merges, but will
also increase the probability of
the map task getting blocked.
The lowest average map times
are usually obtained by
accurately estimating the size
of the map output and
preventing multiple spills.

Other notes

• If either spill threshold is exceeded while a spill is in progress, collection will continue
until the spill is finished. For example, if io.sort.buffer.spill.percent is set
to 0.33, and the remainder of the buffer is filled while the spill runs, the next spill will
include all the collected records, or 0.66 of the buffer, and will not generate additional
spills. In other words, the thresholds are defining triggers, not blocking.

• A record larger than the serialization buffer will first trigger a spill, then be spilled to a
separate file. It is undefined whether or not this record will first pass through the
combiner.

6.3.3. Shuffle/Reduce Parameters

As described previously, each reduce fetches the output assigned to it by the Partitioner via
HTTP into memory and periodically merges these outputs to disk. If intermediate
compression of map outputs is turned on, each output is decompressed into memory. The
following options affect the frequency of these merges to disk prior to the reduce and the
memory allocated to map output during the reduce.

Name Type Description

io.sort.factor int Specifies the number of
segments on disk to be merged
at the same time. It limits the
number of open files and
compression codecs during the
merge. If the number of files
exceeds this limit, the merge
will proceed in several passes.
Though this limit also applies to

MapReduce Tutorial

Page 17
Copyright © 2008 The Apache Software Foundation. All rights reserved.

the map, most jobs should be
configured so that hitting this
limit is unlikely there.

mapred.inmem.merge.threshold int The number of sorted map
outputs fetched into memory
before being merged to disk.
Like the spill thresholds in the
preceding note, this is not
defining a unit of partition, but a
trigger. In practice, this is
usually set very high (1000) or
disabled (0), since merging
in-memory segments is often
less expensive than merging
from disk (see notes following
this table). This threshold
influences only the frequency of
in-memory merges during the
shuffle.

mapred.job.shuffle.merge.percentfloat The memory threshold for
fetched map outputs before an
in-memory merge is started,
expressed as a percentage of
memory allocated to storing
map outputs in memory. Since
map outputs that can't fit in
memory can be stalled, setting
this high may decrease
parallelism between the fetch
and merge. Conversely, values
as high as 1.0 have been
effective for reduces whose
input can fit entirely in memory.
This parameter influences only
the frequency of in-memory
merges during the shuffle.

mapred.job.shuffle.input.buffer.percentfloat The percentage of memory-
relative to the maximum
heapsize as typically specified
in
mapred.reduce.child.java.opts-
that can be allocated to storing
map outputs during the shuffle.
Though some memory should
be set aside for the framework,

MapReduce Tutorial

Page 18
Copyright © 2008 The Apache Software Foundation. All rights reserved.

in general it is advantageous to
set this high enough to store
large and numerous map
outputs.

mapred.job.reduce.input.buffer.percentfloat The percentage of memory
relative to the maximum
heapsize in which map outputs
may be retained during the
reduce. When the reduce
begins, map outputs will be
merged to disk until those that
remain are under the resource
limit this defines. By default, all
map outputs are merged to disk
before the reduce begins to
maximize the memory available
to the reduce. For less
memory-intensive reduces, this
should be increased to avoid
trips to disk.

Other notes

• If a map output is larger than 25 percent of the memory allocated to copying map outputs,
it will be written directly to disk without first staging through memory.

• When running with a combiner, the reasoning about high merge thresholds and large
buffers may not hold. For merges started before all map outputs have been fetched, the
combiner is run while spilling to disk. In some cases, one can obtain better reduce times
by spending resources combining map outputs- making disk spills small and parallelizing
spilling and fetching- rather than aggressively increasing buffer sizes.

• When merging in-memory map outputs to disk to begin the reduce, if an intermediate
merge is necessary because there are segments to spill and at least io.sort.factor
segments already on disk, the in-memory map outputs will be part of the intermediate
merge.

6.3.4. Directory Structure

The task tracker has local directory, ${mapred.local.dir}/taskTracker/ to create
localized cache and localized job. It can define multiple local directories (spanning multiple
disks) and then each filename is assigned to a semi-random local directory. When the job
starts, task tracker creates a localized job directory relative to the local directory specified in
the configuration. Thus the task tracker directory structure looks as following:

• ${mapred.local.dir}/taskTracker/distcache/ : The public distributed

MapReduce Tutorial

Page 19
Copyright © 2008 The Apache Software Foundation. All rights reserved.

cache for the jobs of all users. This directory holds the localized public distributed cache.
Thus localized public distributed cache is shared among all the tasks and jobs of all users.

• ${mapred.local.dir}/taskTracker/$user/distcache/ : The private
distributed cache for the jobs of the specific user. This directory holds the localized
private distributed cache. Thus localized private distributed cache is shared among all the
tasks and jobs of the specific user only. It is not accessible to jobs of other users.

• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/ : The
localized job directory
• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/work/

: The job-specific shared directory. The tasks can use this space as scratch space and
share files among them. This directory is exposed to the users through the
configuration property job.local.dir. The directory can accessed through the
API JobConf.getJobLocalDir(). It is available as System property also. So, users
(streaming etc.) can call System.getProperty("job.local.dir") to
access the directory.

• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/jars/
: The jars directory, which has the job jar file and expanded jar. The job.jar is the
application's jar file that is automatically distributed to each machine. Any library jars
that are dependencies of the application code may be packaged inside this jar in a
lib/ directory. This directory is extracted from job.jar and its contents are
automatically added to the classpath for each task. The job.jar location is accessible to
the application through the api JobConf.getJar() . To access the unjarred directory,
JobConf.getJar().getParent() can be called.

• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/job.xml
: The job.xml file, the generic job configuration, localized for the job.

• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/$taskid
: The task directory for each task attempt. Each task directory again has the following
structure :
• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/$taskid/job.xml

: A job.xml file, task localized job configuration, Task localization means that
properties have been set that are specific to this particular task within the job. The
properties localized for each task are described below.

• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/$taskid/output
: A directory for intermediate output files. This contains the temporary map
reduce data generated by the framework such as map output files etc.

• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/$taskid/work
: The current working directory of the task. With jvm reuse enabled for tasks, this
directory will be the directory on which the jvm has started

• ${mapred.local.dir}/taskTracker/$user/jobcache/$jobid/$taskid/work/tmp
: The temporary directory for the task. (User can specify the property

MapReduce Tutorial

Page 20
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#getJobLocalDir()
api/org/apache/hadoop/mapred/JobConf.html#getJar()

mapred.child.tmp to set the value of temporary directory for map and
reduce tasks. This defaults to ./tmp. If the value is not an absolute path, it is
prepended with task's working directory. Otherwise, it is directly assigned. The
directory will be created if it doesn't exist. Then, the child java tasks are executed
with option -Djava.io.tmpdir='the absolute path of the tmp
dir'. Pipes and streaming are set with environment variable, TMPDIR='the
absolute path of the tmp dir'). This directory is created, if
mapred.child.tmp has the value ./tmp

6.3.5. Task JVM Reuse

Jobs can enable task JVMs to be reused by specifying the job configuration
mapred.job.reuse.jvm.num.tasks. If the value is 1 (the default), then JVMs are
not reused (i.e. 1 task per JVM). If it is -1, there is no limit to the number of tasks a JVM can
run (of the same job). One can also specify some value greater than 1 using the api
JobConf.setNumTasksToExecutePerJvm(int)

6.3.6. Configured Parameters

The following properties are localized in the job configuration for each task's execution:

Name Type Description

mapred.job.id String The job id

mapred.jar String job.jar location in job directory

job.local.dir String The job specific shared scratch
space

mapred.tip.id String The task id

mapred.task.id String The task attempt id

mapred.task.is.map boolean Is this a map task

mapred.task.partition int The id of the task within the job

map.input.file String The filename that the map is
reading from

map.input.start long The offset of the start of the
map input split

map.input.length long The number of bytes in the
map input split

MapReduce Tutorial

Page 21
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#setNumTasksToExecutePerJvm(int)

mapred.work.output.dir String The task's temporary output
directory

Note: During the execution of a streaming job, the names of the "mapred" parameters are
transformed. The dots (.) become underscores (_). For example, mapred.job.id becomes
mapred_job_id and mapred.jar becomes mapred_jar. To get the values in a streaming job's
mapper/reducer use the parameter names with the underscores.

6.3.7. Task Logs

The standard output (stdout) and error (stderr) streams of the task are read by the
TaskTracker and logged to ${HADOOP_LOG_DIR}/userlogs

6.3.8. Distributing Libraries

The DistributedCache can also be used to distribute both jars and native libraries for use in
the map and/or reduce tasks. The child-jvm always has its current working directory added to
the java.library.path and LD_LIBRARY_PATH. And hence the cached libraries can
be loaded via System.loadLibrary or System.load. More details on how to load shared
libraries through distributed cache are documented at native_libraries.html

6.4. Job Submission and Monitoring

JobClient is the primary interface by which user-job interacts with the JobTracker.

JobClient provides facilities to submit jobs, track their progress, access component-tasks'
reports and logs, get the MapReduce cluster's status information and so on.

The job submission process involves:

1. Checking the input and output specifications of the job.
2. Computing the InputSplit values for the job.
3. Setting up the requisite accounting information for the DistributedCache of the job,

if necessary.
4. Copying the job's jar and configuration to the MapReduce system directory on the

FileSystem.
5. Submitting the job to the JobTracker and optionally monitoring it's status.

Job history files are also logged to user specified directory
hadoop.job.history.user.location which defaults to job output directory. The
files are stored in "_logs/history/" in the specified directory. Hence, by default they will be in
mapred.output.dir/_logs/history. User can stop logging by giving the value none for
hadoop.job.history.user.location

MapReduce Tutorial

Page 22
Copyright © 2008 The Apache Software Foundation. All rights reserved.

http://java.sun.com/javase/6/docs/api/java/lang/System.html#loadLibrary(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/lang/System.html#load(java.lang.String)
native_libraries.html#Loading+native+libraries+through+DistributedCache
api/org/apache/hadoop/mapred/JobClient.html

User can view the history logs summary in specified directory using the following command
$ bin/hadoop job -history output-dir
This command will print job details, failed and killed tip details.
More details about the job such as successful tasks and task attempts made for each task can
be viewed using the following command
$ bin/hadoop job -history all output-dir

User can use OutputLogFilter to filter log files from the output directory listing.

Normally the user creates the application, describes various facets of the job via JobConf,
and then uses the JobClient to submit the job and monitor its progress.

6.4.1. Job Authorization

Job level authorization and queue level authorization are enabled on the cluster, if the
configuration mapred.acls.enabled is set to true. When enabled, access control
checks are done by (a) the JobTracker before allowing users to submit jobs to queues and
administering these jobs and (b) by the JobTracker and the TaskTracker before allowing
users to view job details or to modify a job using MapReduce APIs, CLI or web user
interfaces.

A job submitter can specify access control lists for viewing or modifying a job via the
configuration properties mapreduce.job.acl-view-job and
mapreduce.job.acl-modify-job respectively. By default, nobody is given access in
these properties.

However, irrespective of the job ACLs configured, a job's owner, the superuser and cluster
administrators (mapreduce.cluster.administrators) and queue administrators of
the queue to which the job was submitted to
(mapred.queue.queue-name.acl-administer-jobs) always have access to
view and modify a job.

A job view ACL authorizes users against the configured
mapreduce.job.acl-view-job before returning possibly sensitive information about
a job, like:

• job level counters
• task level counters
• tasks's diagnostic information
• task logs displayed on the TaskTracker web UI
• job.xml showed by the JobTracker's web UI

Other information about a job, like its status and its profile, is accessible to all users, without

MapReduce Tutorial

Page 23
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/OutputLogFilter.html

requiring authorization.

A job modification ACL authorizes users against the configured
mapreduce.job.acl-modify-job before allowing modifications to jobs, like:

• killing a job
• killing/failing a task of a job
• setting the priority of a job

These operations are also permitted by the queue level ACL,
"mapred.queue.queue-name.acl-administer-jobs", configured via mapred-queue-acls.xml.
The caller will be able to do the operation if he/she is part of either queue admins ACL or job
modification ACL.

The format of a job level ACL is the same as the format for a queue level ACL as defined in
the Cluster Setup documentation.

6.4.2. Job Control

Users may need to chain MapReduce jobs to accomplish complex tasks which cannot be
done via a single MapReduce job. This is fairly easy since the output of the job typically goes
to distributed file-system, and the output, in turn, can be used as the input for the next job.

However, this also means that the onus on ensuring jobs are complete (success/failure) lies
squarely on the clients. In such cases, the various job-control options are:

• runJob(JobConf) : Submits the job and returns only after the job has completed.
• submitJob(JobConf) : Only submits the job, then poll the returned handle to the

RunningJob to query status and make scheduling decisions.
• JobConf.setJobEndNotificationURI(String) : Sets up a notification upon job-completion,

thus avoiding polling.

6.4.3. Job Credentials

In a secure cluster, the user is authenticated via Kerberos' kinit command. Because of
scalability concerns, we don't push the client's Kerberos' tickets in MapReduce jobs. Instead,
we acquire delegation tokens from each HDFS NameNode that the job will use and store
them in the job as part of job submission. The delegation tokens are automatically obtained
for the HDFS that holds the staging directories, where the job job files are written, and any
HDFS systems referenced by FileInputFormats, FileOutputFormats, DistCp, and the
distributed cache. Other applications require to set the configuration
"mapreduce.job.hdfs-servers" for all NameNodes that tasks might need to talk during the job
execution. This is a comma separated list of file system names, such as

MapReduce Tutorial

Page 24
Copyright © 2008 The Apache Software Foundation. All rights reserved.

cluster_setup.html#Configuring+the+Hadoop+Daemons
api/org/apache/hadoop/mapred/JobClient.html#runJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/JobClient.html#submitJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/RunningJob.html
api/org/apache/hadoop/mapred/JobConf.html#setJobEndNotificationURI(java.lang.String)

"hdfs://nn1/,hdfs://nn2/". These tokens are passed to the JobTracker as part of the job
submission as Credentials.

Similar to HDFS delegation tokens, we also have MapReduce delegation tokens. The
MapReduce tokens are provided so that tasks can spawn jobs if they wish to. The tasks
authenticate to the JobTracker via the MapReduce delegation tokens. The delegation token
can be obtained via the API in JobClient.getDelegationToken. The obtained token must then
be pushed onto the credentials that is there in the JobConf used for job submission. The API
Credentials.addToken can be used for this.

The credentials are sent to the JobTracker as part of the job submission process. The
JobTracker persists the tokens and secrets in its filesystem (typically HDFS) in a file within
mapred.system.dir/JOBID. The TaskTracker localizes the file as part job localization. Tasks
see an environment variable called HADOOP_TOKEN_FILE_LOCATION and the
framework sets this to point to the localized file. In order to launch jobs from tasks or for
doing any HDFS operation, tasks must set the configuration
"mapreduce.job.credentials.binary" to point to this token file. Either of these variables may
be set to a comma-separated list of paths, each of which refers to a complete token file.

The HDFS delegation tokens passed to the JobTracker during job submission are are
cancelled by the JobTracker when the job completes. This is the default behavior unless
mapreduce.job.complete.cancel.delegation.tokens is set to false in the JobConf. For jobs
whose tasks in turn spawns jobs, this should be set to false. Applications sharing JobConf
objects between multiple jobs on the JobClient side should look at setting
mapreduce.job.complete.cancel.delegation.tokens to false. This is because the Credentials
object within the JobConf will then be shared. All jobs will end up sharing the same tokens,
and hence the tokens should not be canceled when the jobs in the sequence finish.

Apart from the HDFS delegation tokens, arbitrary secrets can also be passed during the job
submission for tasks to access other third party services. The APIs JobConf.getCredentials or
JobContext.getCredentials() should be used to get the credentials object and then
Credentials.addSecretKey should be used to add secrets.

For applications written using the old MapReduce API, the Mapper/Reducer classes need to
implement JobConfigurable in order to get access to the credentials in the tasks. A reference
to the JobConf passed in the JobConfigurable.configure should be stored. In the new
MapReduce API, a similar thing can be done in the Mapper.setup method. The api
JobConf.getCredentials() or the api JobContext.getCredentials() should be used to get the
credentials reference (depending on whether the new MapReduce API or the old MapReduce
API is used). Tasks can access the secrets using the APIs in Credentials

6.5. Job Input

MapReduce Tutorial

Page 25
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/security/Credentials.html
api/org/apache/hadoop/mapred/jobclient/getdelegationtoken
api/org/apache/hadoop/security/Credentials.html#addToken(org.apache.hadoop.io.Text,org.apache.hadoop.security.token.Token)
api/org/apache/hadoop/mapred/JobConf.html#getCredentials()
api/org/apache/hadoop/mapreduce/JobContext.html#getcredentials
api/org/apache/hadoop/security/Credentials.html#addSecretKey(org.apache.hadoop.io.Text,byte[])
api/org/apache/hadoop/mapred/jobconfigurable
api/org/apache/hadoop/mapred/jobconfigurable/configure
api/org/apache/hadoop/mapreduce/mapper/setup
api/org/apache/hadoop/mapred/JobConf.html#getCredentials()
api/org/apache/hadoop/mapreduce/JobContext.html#getcredentials
api/org/apache/hadoop/security/Credentials.html

InputFormat describes the input-specification for a MapReduce job.

The MapReduce framework relies on the InputFormat of the job to:

1. Validate the input-specification of the job.
2. Split-up the input file(s) into logical InputSplit instances, each of which is then

assigned to an individual Mapper.
3. Provide the RecordReader implementation used to glean input records from the

logical InputSplit for processing by the Mapper.

The default behavior of file-based InputFormat implementations, typically sub-classes of
FileInputFormat, is to split the input into logical InputSplit instances based on the total
size, in bytes, of the input files. However, the FileSystem blocksize of the input files is
treated as an upper bound for input splits. A lower bound on the split size can be set via
mapred.min.split.size.

Clearly, logical splits based on input-size is insufficient for many applications since record
boundaries must be respected. In such cases, the application should implement a
RecordReader, who is responsible for respecting record-boundaries and presents a
record-oriented view of the logical InputSplit to the individual task.

TextInputFormat is the default InputFormat.

If TextInputFormat is the InputFormat for a given job, the framework detects
input-files with the .gz extensions and automatically decompresses them using the
appropriate CompressionCodec. However, it must be noted that compressed files with
the above extensions cannot be split and each compressed file is processed in its entirety by a
single mapper.

6.5.1. InputSplit

InputSplit represents the data to be processed by an individual Mapper.

Typically InputSplit presents a byte-oriented view of the input, and it is the
responsibility of RecordReader to process and present a record-oriented view.

FileSplit is the default InputSplit. It sets map.input.file to the path of the input
file for the logical split.

6.5.2. RecordReader

RecordReader reads <key, value> pairs from an InputSplit.

Typically the RecordReader converts the byte-oriented view of the input, provided by the
InputSplit, and presents a record-oriented to the Mapper implementations for

MapReduce Tutorial

Page 26
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/InputFormat.html
api/org/apache/hadoop/mapred/FileInputFormat.html
api/org/apache/hadoop/mapred/TextInputFormat.html
api/org/apache/hadoop/mapred/InputSplit.html
api/org/apache/hadoop/mapred/FileSplit.html
api/org/apache/hadoop/mapred/RecordReader.html

processing. RecordReader thus assumes the responsibility of processing record
boundaries and presents the tasks with keys and values.

6.6. Job Output

OutputFormat describes the output-specification for a MapReduce job.

The MapReduce framework relies on the OutputFormat of the job to:

1. Validate the output-specification of the job; for example, check that the output directory
doesn't already exist.

2. Provide the RecordWriter implementation used to write the output files of the job.
Output files are stored in a FileSystem.

TextOutputFormat is the default OutputFormat.

6.6.1. OutputCommitter

OutputCommitter describes the commit of task output for a MapReduce job.

The MapReduce framework relies on the OutputCommitter of the job to:

1. Setup the job during initialization. For example, create the temporary output directory for
the job during the initialization of the job. Job setup is done by a separate task when the
job is in PREP state and after initializing tasks. Once the setup task completes, the job
will be moved to RUNNING state.

2. Cleanup the job after the job completion. For example, remove the temporary output
directory after the job completion. Job cleanup is done by a separate task at the end of the
job. Job is declared SUCCEDED/FAILED/KILLED after the cleanup task completes.

3. Setup the task temporary output. Task setup is done as part of the same task, during task
initialization.

4. Check whether a task needs a commit. This is to avoid the commit procedure if a task
does not need commit.

5. Commit of the task output. Once task is done, the task will commit it's output if required.
6. Discard the task commit. If the task has been failed/killed, the output will be cleaned-up.

If task could not cleanup (in exception block), a separate task will be launched with same
attempt-id to do the cleanup.

FileOutputCommitter is the default OutputCommitter. Job setup/cleanup tasks
occupy map or reduce slots, whichever is free on the TaskTracker. And JobCleanup task,
TaskCleanup tasks and JobSetup task have the highest priority, and in that order.

6.6.2. Task Side-Effect Files

MapReduce Tutorial

Page 27
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/OutputFormat.html
api/org/apache/hadoop/mapred/OutputCommitter.html

In some applications, component tasks need to create and/or write to side-files, which differ
from the actual job-output files.

In such cases there could be issues with two instances of the same Mapper or Reducer
running simultaneously (for example, speculative tasks) trying to open and/or write to the
same file (path) on the FileSystem. Hence the application-writer will have to pick unique
names per task-attempt (using the attemptid, say
attempt_200709221812_0001_m_000000_0), not just per task.

To avoid these issues the MapReduce framework, when the OutputCommitter is
FileOutputCommitter, maintains a special
${mapred.output.dir}/_temporary/_${taskid} sub-directory accessible via
${mapred.work.output.dir} for each task-attempt on the FileSystem where the
output of the task-attempt is stored. On successful completion of the task-attempt, the files in
the ${mapred.output.dir}/_temporary/_${taskid} (only) are promoted to
${mapred.output.dir}. Of course, the framework discards the sub-directory of
unsuccessful task-attempts. This process is completely transparent to the application.

The application-writer can take advantage of this feature by creating any side-files required
in ${mapred.work.output.dir} during execution of a task via
FileOutputFormat.getWorkOutputPath(), and the framework will promote them similarly for
succesful task-attempts, thus eliminating the need to pick unique paths per task-attempt.

Note: The value of ${mapred.work.output.dir} during execution of a particular
task-attempt is actually ${mapred.output.dir}/_temporary/_{$taskid}, and
this value is set by the MapReduce framework. So, just create any side-files in the path
returned by FileOutputFormat.getWorkOutputPath() from MapReduce task to take advantage
of this feature.

The entire discussion holds true for maps of jobs with reducer=NONE (i.e. 0 reduces) since
output of the map, in that case, goes directly to HDFS.

6.6.3. RecordWriter

RecordWriter writes the output <key, value> pairs to an output file.

RecordWriter implementations write the job outputs to the FileSystem.

6.7. Other Useful Features

6.7.1. Submitting Jobs to Queues

Users submit jobs to Queues. Queues, as collection of jobs, allow the system to provide

MapReduce Tutorial

Page 28
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/RecordWriter.html

specific functionality. For example, queues use ACLs to control which users who can submit
jobs to them. Queues are expected to be primarily used by Hadoop Schedulers.

Hadoop comes configured with a single mandatory queue, called 'default'. Queue names are
defined in the mapred.queue.names property of the Hadoop site configuration. Some
job schedulers, such as the Capacity Scheduler, support multiple queues.

A job defines the queue it needs to be submitted to through the
mapred.job.queue.name property, or through the setQueueName(String) API. Setting
the queue name is optional. If a job is submitted without an associated queue name, it is
submitted to the 'default' queue.

6.7.2. Counters

Counters represent global counters, defined either by the MapReduce framework or
applications. Each Counter can be of any Enum type. Counters of a particular Enum are
bunched into groups of type Counters.Group.

Applications can define arbitrary Counters (of type Enum) and update them via
Reporter.incrCounter(Enum, long) or Reporter.incrCounter(String, String, long) in the map
and/or reduce methods. These counters are then globally aggregated by the framework.

6.7.3. DistributedCache

DistributedCache distributes application-specific, large, read-only files efficiently.

DistributedCache is a facility provided by the MapReduce framework to cache files
(text, archives, jars and so on) needed by applications.

Applications specify the files to be cached via urls (hdfs://) in the JobConf. The
DistributedCache assumes that the files specified via hdfs:// urls are already present on
the FileSystem.

The framework will copy the necessary files to the slave node before any tasks for the job are
executed on that node. Its efficiency stems from the fact that the files are only copied once
per job and the ability to cache archives which are un-archived on the slaves.

DistributedCache tracks the modification timestamps of the cached files. Clearly the
cache files should not be modified by the application or externally while the job is executing.

DistributedCache can be used to distribute simple, read-only data/text files and more
complex types such as archives and jars. Archives (zip, tar, tgz and tar.gz files) are
un-archived at the slave nodes. Files have execution permissions set.

MapReduce Tutorial

Page 29
Copyright © 2008 The Apache Software Foundation. All rights reserved.

capacity_scheduler.html
api/org/apache/hadoop/mapred/JobConf.html#setQueueName(java.lang.String)
api/org/apache/hadoop/mapred/Reporter.html#incrCounter(java.lang.Enum, long)
api/org/apache/hadoop/mapred/Reporter.html#incrCounter(java.lang.String, java.lang.String, long amount)
api/org/apache/hadoop/filecache/DistributedCache.html

The files/archives can be distributed by setting the property
mapred.cache.{files|archives}. If more than one file/archive has to be
distributed, they can be added as comma separated paths. The properties can also be set by
APIs DistributedCache.addCacheFile(URI,conf)/
DistributedCache.addCacheArchive(URI,conf) and
DistributedCache.setCacheFiles(URIs,conf)/ DistributedCache.setCacheArchives(URIs,conf)
where URI is of the form hdfs://host:port/absolute-path#link-name. In
Streaming, the files can be distributed through command line option
-cacheFile/-cacheArchive.

Optionally users can also direct the DistributedCache to symlink the cached file(s) into
the current working directory of the task via the
DistributedCache.createSymlink(Configuration) api. Or by setting the configuration property
mapred.create.symlink as yes. The DistributedCache will use the fragment of
the URI as the name of the symlink. For example, the URI
hdfs://namenode:port/lib.so.1#lib.so will have the symlink name as
lib.so in task's cwd for the file lib.so.1 in distributed cache.

The DistributedCache can also be used as a rudimentary software distribution
mechanism for use in the map and/or reduce tasks. It can be used to distribute both jars and
native libraries. The DistributedCache.addArchiveToClassPath(Path, Configuration) or
DistributedCache.addFileToClassPath(Path, Configuration) api can be used to cache files/jars
and also add them to the classpath of child-jvm. The same can be done by setting the
configuration properties mapred.job.classpath.{files|archives}. Similarly
the cached files that are symlinked into the working directory of the task can be used to
distribute native libraries and load them.

6.7.3.1. Private and Public DistributedCache Files

DistributedCache files can be private or public, that determines how they can be shared on
the slave nodes.

• "Private" DistributedCache files are cached in a local directory private to the user whose
jobs need these files. These files are shared by all tasks and jobs of the specific user only
and cannot be accessed by jobs of other users on the slaves. A DistributedCache file
becomes private by virtue of its permissions on the file system where the files are
uploaded, typically HDFS. If the file has no world readable access, or if the directory
path leading to the file has no world executable access for lookup, then the file becomes
private.

• "Public" DistributedCache files are cached in a global directory and the file access is
setup such that they are publicly visible to all users. These files can be shared by tasks
and jobs of all users on the slaves. A DistributedCache file becomes public by virtue of

MapReduce Tutorial

Page 30
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/filecache/DistributedCache.html#addCacheFile(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addCacheArchive(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheFiles(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheArchives(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#createSymlink(org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addArchiveToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addFileToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)

its permissions on the file system where the files are uploaded, typically HDFS. If the file
has world readable access, AND if the directory path leading to the file has world
executable access for lookup, then the file becomes public. In other words, if the user
intends to make a file publicly available to all users, the file permissions must be set to be
world readable, and the directory permissions on the path leading to the file must be
world executable.

6.7.4. Tool

The Tool interface supports the handling of generic Hadoop command-line options.

Tool is the standard for any MapReduce tool or application. The application should delegate
the handling of standard command-line options to GenericOptionsParser via
ToolRunner.run(Tool, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:
-conf <configuration file>
-D <property=value>
-fs <local|namenode:port>
-jt <local|jobtracker:port>

6.7.5. IsolationRunner

IsolationRunner is a utility to help debug MapReduce programs.

To use the IsolationRunner, first set keep.failed.task.files to true (also
see keep.task.files.pattern).

Next, go to the node on which the failed task ran and go to the TaskTracker's local
directory and run the IsolationRunner:
$ cd <local path>/taskTracker/${taskid}/work
$ bin/hadoop org.apache.hadoop.mapred.IsolationRunner
../job.xml

IsolationRunner will run the failed task in a single jvm, which can be in the debugger,
over precisely the same input.

Note that currently IsolationRunner will only re-run map tasks.

6.7.6. Profiling

Profiling is a utility to get a representative (2 or 3) sample of built-in java profiler for a
sample of maps and reduces.

MapReduce Tutorial

Page 31
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/util/GenericOptionsParser.html
api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])
api/org/apache/hadoop/mapred/IsolationRunner.html

User can specify whether the system should collect profiler information for some of the tasks
in the job by setting the configuration property mapred.task.profile. The value can
be set using the api JobConf.setProfileEnabled(boolean). If the value is set true, the task
profiling is enabled. The profiler information is stored in the user log directory. By default,
profiling is not enabled for the job.

Once user configures that profiling is needed, she/he can use the configuration property
mapred.task.profile.{maps|reduces} to set the ranges of MapReduce tasks to
profile. The value can be set using the api JobConf.setProfileTaskRange(boolean,String). By
default, the specified range is 0-2.

User can also specify the profiler configuration arguments by setting the configuration
property mapred.task.profile.params. The value can be specified using the api
JobConf.setProfileParams(String). If the string contains a %s, it will be replaced with the
name of the profiling output file when the task runs. These parameters are passed to the task
child JVM on the command line. The default value for the profiling parameters is
-agentlib:hprof=cpu=samples,heap=sites,force=n,thread=y,verbose=n,file=%s

6.7.7. Debugging

The MapReduce framework provides a facility to run user-provided scripts for debugging.
When a MapReduce task fails, a user can run a debug script, to process task logs for
example. The script is given access to the task's stdout and stderr outputs, syslog and jobconf.
The output from the debug script's stdout and stderr is displayed on the console diagnostics
and also as part of the job UI.

In the following sections we discuss how to submit a debug script with a job. The script file
needs to be distributed and submitted to the framework.

6.7.7.1. How to distribute the script file:

The user needs to use DistributedCache to distribute and symlink the script file.

6.7.7.2. How to submit the script:

A quick way to submit the debug script is to set values for the properties
mapred.map.task.debug.script and
mapred.reduce.task.debug.script, for debugging map and reduce tasks
respectively. These properties can also be set by using APIs
JobConf.setMapDebugScript(String) and JobConf.setReduceDebugScript(String) . In
streaming mode, a debug script can be submitted with the command-line options
-mapdebug and -reducedebug, for debugging map and reduce tasks respectively.

MapReduce Tutorial

Page 32
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#setProfileEnabled(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setProfileTaskRange(boolean,%20java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setProfileParams(java.lang.String)
mapred_tutorial.html#DistributedCache
api/org/apache/hadoop/mapred/JobConf.html#setMapDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setReduceDebugScript(java.lang.String)

The arguments to the script are the task's stdout, stderr, syslog and jobconf files. The debug
command, run on the node where the MapReduce task failed, is:
$script $stdout $stderr $syslog $jobconf

Pipes programs have the c++ program name as a fifth argument for the command. Thus for
the pipes programs the command is
$script $stdout $stderr $syslog $jobconf $program

6.7.7.3. Default Behavior:

For pipes, a default script is run to process core dumps under gdb, prints stack trace and gives
info about running threads.

6.7.8. JobControl

JobControl is a utility which encapsulates a set of MapReduce jobs and their dependencies.

6.7.9. Data Compression

Hadoop MapReduce provides facilities for the application-writer to specify compression for
both intermediate map-outputs and the job-outputs i.e. output of the reduces. It also comes
bundled with CompressionCodec implementation for the zlib compression algorithm. The
gzip file format is also supported.

Hadoop also provides native implementations of the above compression codecs for reasons
of both performance (zlib) and non-availability of Java libraries. More details on their usage
and availability are available here.

6.7.9.1. Intermediate Outputs

Applications can control compression of intermediate map-outputs via the
JobConf.setCompressMapOutput(boolean) api and the CompressionCodec to be used via
the JobConf.setMapOutputCompressorClass(Class) api.

6.7.9.2. Job Outputs

Applications can control compression of job-outputs via the
FileOutputFormat.setCompressOutput(JobConf, boolean) api and the
CompressionCodec to be used can be specified via the
FileOutputFormat.setOutputCompressorClass(JobConf, Class) api.

If the job outputs are to be stored in the SequenceFileOutputFormat, the required

MapReduce Tutorial

Page 33
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/jobcontrol/package-summary.html
api/org/apache/hadoop/io/compress/CompressionCodec.html
http://www.zlib.net/
http://www.gzip.org/
native_libraries.html
api/org/apache/hadoop/mapred/JobConf.html#setCompressMapOutput(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setMapOutputCompressorClass(java.lang.Class)
api/org/apache/hadoop/mapred/FileOutputFormat.html#setCompressOutput(org.apache.hadoop.mapred.JobConf,%20boolean)
api/org/apache/hadoop/mapred/FileOutputFormat.html#setOutputCompressorClass(org.apache.hadoop.mapred.JobConf,%20java.lang.Class)
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html

SequenceFile.CompressionType (i.e. RECORD / BLOCK - defaults to RECORD) can
be specified via the SequenceFileOutputFormat.setOutputCompressionType(JobConf,
SequenceFile.CompressionType) api.

6.7.10. Skipping Bad Records

Hadoop provides an option where a certain set of bad input records can be skipped when
processing map inputs. Applications can control this feature through the SkipBadRecords
class.

This feature can be used when map tasks crash deterministically on certain input. This
usually happens due to bugs in the map function. Usually, the user would have to fix these
bugs. This is, however, not possible sometimes. The bug may be in third party libraries, for
example, for which the source code is not available. In such cases, the task never completes
successfully even after multiple attempts, and the job fails. With this feature, only a small
portion of data surrounding the bad records is lost, which may be acceptable for some
applications (those performing statistical analysis on very large data, for example).

By default this feature is disabled. For enabling it, refer to
SkipBadRecords.setMapperMaxSkipRecords(Configuration, long) and
SkipBadRecords.setReducerMaxSkipGroups(Configuration, long).

With this feature enabled, the framework gets into 'skipping mode' after a certain number of
map failures. For more details, see
SkipBadRecords.setAttemptsToStartSkipping(Configuration, int). In 'skipping mode', map
tasks maintain the range of records being processed. To do this, the framework relies on the
processed record counter. See
SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS and
SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS. This counter enables the
framework to know how many records have been processed successfully, and hence, what
record range caused a task to crash. On further attempts, this range of records is skipped.

The number of records skipped depends on how frequently the processed record counter is
incremented by the application. It is recommended that this counter be incremented after
every record is processed. This may not be possible in some applications that typically batch
their processing. In such cases, the framework may skip additional records surrounding the
bad record. Users can control the number of skipped records through
SkipBadRecords.setMapperMaxSkipRecords(Configuration, long) and
SkipBadRecords.setReducerMaxSkipGroups(Configuration, long). The framework tries to
narrow the range of skipped records using a binary search-like approach. The skipped range
is divided into two halves and only one half gets executed. On subsequent failures, the
framework figures out which half contains bad records. A task will be re-executed till the

MapReduce Tutorial

Page 34
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/SkipBadRecords.html
api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setAttemptsToStartSkipping(org.apache.hadoop.conf.Configuration, int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_MAP_PROCESSED_RECORDS
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_REDUCE_PROCESSED_GROUPS
api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)

acceptable skipped value is met or all task attempts are exhausted. To increase the number of
task attempts, use JobConf.setMaxMapAttempts(int) and
JobConf.setMaxReduceAttempts(int).

Skipped records are written to HDFS in the sequence file format, for later analysis. The
location can be changed through SkipBadRecords.setSkipOutputPath(JobConf, Path).

7. Example: WordCount v2.0

Here is a more complete WordCount which uses many of the features provided by the
MapReduce framework we discussed so far.

This needs the HDFS to be up and running, especially for the DistributedCache-related
features. Hence it only works with a pseudo-distributed or fully-distributed Hadoop
installation.

7.1. Source Code

WordCount.java

1. package org.myorg;

2.

3. import java.io.*;

4. import java.util.*;

5.

6. import org.apache.hadoop.fs.Path;

7. import
org.apache.hadoop.filecache.DistributedCache;

8. import org.apache.hadoop.conf.*;

9. import org.apache.hadoop.io.*;

10. import org.apache.hadoop.mapred.*;

11. import org.apache.hadoop.util.*;

12.

13. public class WordCount extends
Configured implements Tool {

14.

MapReduce Tutorial

Page 35
Copyright © 2008 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setSkipOutputPath(org.apache.hadoop.mapred.JobConf, org.apache.hadoop.fs.Path)
single_node_setup.html#SingleNodeSetup
single_node_setup.html#Fully-Distributed+Operation

15. public static class Map extends
MapReduceBase implements
Mapper<LongWritable, Text, Text,
IntWritable> {

16.

17. static enum Counters {
INPUT_WORDS }

18.

19. private final static IntWritable
one = new IntWritable(1);

20. private Text word = new Text();

21.

22. private boolean caseSensitive =
true;

23. private Set<String>
patternsToSkip = new
HashSet<String>();

24.

25. private long numRecords = 0;

26. private String inputFile;

27.

28. public void configure(JobConf
job) {

29. caseSensitive =
job.getBoolean("wordcount.case.sensitive",
true);

30. inputFile =
job.get("map.input.file");

31.

32. if
(job.getBoolean("wordcount.skip.patterns",
false)) {

33. Path[] patternsFiles = new

MapReduce Tutorial

Page 36
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Path[0];

34. try {

35. patternsFiles =
DistributedCache.getLocalCacheFiles(job);

36. } catch (IOException ioe) {

37. System.err.println("Caught
exception while getting cached
files: " +
StringUtils.stringifyException(ioe));

38. }

39. for (Path patternsFile :
patternsFiles) {

40. parseSkipFile(patternsFile);

41. }

42. }

43. }

44.

45. private void parseSkipFile(Path
patternsFile) {

46. try {

47. BufferedReader fis = new
BufferedReader(new
FileReader(patternsFile.toString()));

48. String pattern = null;

49. while ((pattern =
fis.readLine()) != null) {

50. patternsToSkip.add(pattern);

51. }

52. } catch (IOException ioe) {

53. System.err.println("Caught
exception while parsing the cached

MapReduce Tutorial

Page 37
Copyright © 2008 The Apache Software Foundation. All rights reserved.

file '" + patternsFile + "' : " +
StringUtils.stringifyException(ioe));

54. }

55. }

56.

57. public void map(LongWritable key,
Text value, OutputCollector<Text,
IntWritable> output, Reporter
reporter) throws IOException {

58. String line = (caseSensitive) ?
value.toString() :
value.toString().toLowerCase();

59.

60. for (String pattern :
patternsToSkip) {

61. line = line.replaceAll(pattern,
"");

62. }

63.

64. StringTokenizer tokenizer = new
StringTokenizer(line);

65. while
(tokenizer.hasMoreTokens()) {

66.
word.set(tokenizer.nextToken());

67. output.collect(word, one);

68.
reporter.incrCounter(Counters.INPUT_WORDS,
1);

69. }

70.

71. if ((++numRecords % 100) == 0) {

MapReduce Tutorial

Page 38
Copyright © 2008 The Apache Software Foundation. All rights reserved.

72. reporter.setStatus("Finished
processing " + numRecords + "
records " + "from the input file: "
+ inputFile);

73. }

74. }

75. }

76.

77. public static class Reduce extends
MapReduceBase implements
Reducer<Text, IntWritable, Text,
IntWritable> {

78. public void reduce(Text key,
Iterator<IntWritable> values,
OutputCollector<Text, IntWritable>
output, Reporter reporter) throws
IOException {

79. int sum = 0;

80. while (values.hasNext()) {

81. sum += values.next().get();

82. }

83. output.collect(key, new
IntWritable(sum));

84. }

85. }

86.

87. public int run(String[] args)
throws Exception {

88. JobConf conf = new
JobConf(getConf(), WordCount.class);

89. conf.setJobName("wordcount");

90.

MapReduce Tutorial

Page 39
Copyright © 2008 The Apache Software Foundation. All rights reserved.

91.
conf.setOutputKeyClass(Text.class);

92.
conf.setOutputValueClass(IntWritable.class);

93.

94. conf.setMapperClass(Map.class);

95.
conf.setCombinerClass(Reduce.class);

96.
conf.setReducerClass(Reduce.class);

97.

98.
conf.setInputFormat(TextInputFormat.class);

99.
conf.setOutputFormat(TextOutputFormat.class);

100.

101. List<String> other_args = new
ArrayList<String>();

102. for (int i=0; i < args.length;
++i) {

103. if ("-skip".equals(args[i])) {

104.
DistributedCache.addCacheFile(new
Path(args[++i]).toUri(), conf);

105.
conf.setBoolean("wordcount.skip.patterns",
true);

106. } else {

107. other_args.add(args[i]);

108. }

109. }

110.

MapReduce Tutorial

Page 40
Copyright © 2008 The Apache Software Foundation. All rights reserved.

111.
FileInputFormat.setInputPaths(conf,
new Path(other_args.get(0)));

112.
FileOutputFormat.setOutputPath(conf,
new Path(other_args.get(1)));

113.

114. JobClient.runJob(conf);

115. return 0;

116. }

117.

118. public static void main(String[]
args) throws Exception {

119. int res = ToolRunner.run(new
Configuration(), new WordCount(),
args);

120. System.exit(res);

121. }

122. }

123.

7.2. Sample Runs

Sample text-files as input:

$ bin/hadoop dfs -ls /usr/joe/wordcount/input/
/usr/joe/wordcount/input/file01
/usr/joe/wordcount/input/file02
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01
Hello World, Bye World!
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02
Hello Hadoop, Goodbye to hadoop.

Run the application:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount

MapReduce Tutorial

Page 41
Copyright © 2008 The Apache Software Foundation. All rights reserved.

/usr/joe/wordcount/input /usr/joe/wordcount/output

Output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop, 1
Hello 2
World! 1
World, 1
hadoop. 1
to 1

Notice that the inputs differ from the first version we looked at, and how they affect the
outputs.

Now, lets plug-in a pattern-file which lists the word-patterns to be ignored, via the
DistributedCache.

$ hadoop dfs -cat /user/joe/wordcount/patterns.txt
\.
\,
\!
to

Run it again, this time with more options:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
-Dwordcount.case.sensitive=true /usr/joe/wordcount/input
/usr/joe/wordcount/output -skip
/user/joe/wordcount/patterns.txt

As expected, the output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 1
Hello 2
World 2
hadoop 1

Run it once more, this time switch-off case-sensitivity:

MapReduce Tutorial

Page 42
Copyright © 2008 The Apache Software Foundation. All rights reserved.

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
-Dwordcount.case.sensitive=false /usr/joe/wordcount/input
/usr/joe/wordcount/output -skip
/user/joe/wordcount/patterns.txt

Sure enough, the output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
bye 1
goodbye 1
hadoop 2
hello 2
world 2

7.3. Highlights

The second version of WordCount improves upon the previous one by using some features
offered by the MapReduce framework:

• Demonstrates how applications can access configuration parameters in the configure
method of the Mapper (and Reducer) implementations (lines 28-43).

• Demonstrates how the DistributedCache can be used to distribute read-only data
needed by the jobs. Here it allows the user to specify word-patterns to skip while
counting (line 104).

• Demonstrates the utility of the Tool interface and the GenericOptionsParser to
handle generic Hadoop command-line options (lines 87-116, 119).

• Demonstrates how applications can use Counters (line 68) and how they can set
application-specific status information via the Reporter instance passed to the map
(and reduce) method (line 72).

Java and JNI are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

MapReduce Tutorial

Page 43
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Purpose
	2 Prerequisites
	3 Overview
	4 Inputs and Outputs
	5 Example: WordCount v1.0
	5.1 Source Code
	5.2 Usage
	5.3 Walk-through

	6 MapReduce - User Interfaces
	6.1 Payload
	6.1.1 Mapper
	6.1.1.1 How Many Maps?

	6.1.2 Reducer
	6.1.2.1 Shuffle
	6.1.2.2 Sort
	6.1.2.2.1 Secondary Sort

	6.1.2.3 Reduce
	6.1.2.4 How Many Reduces?
	6.1.2.5 Reducer NONE

	6.1.3 Partitioner
	6.1.4 Reporter
	6.1.5 OutputCollector

	6.2 Job Configuration
	6.3 Task Execution & Environment
	6.3.1 Memory Management
	6.3.2 Map Parameters
	6.3.3 Shuffle/Reduce Parameters
	6.3.4 Directory Structure
	6.3.5 Task JVM Reuse
	6.3.6 Configured Parameters
	6.3.7 Task Logs
	6.3.8 Distributing Libraries

	6.4 Job Submission and Monitoring
	6.4.1 Job Authorization
	6.4.2 Job Control
	6.4.3 Job Credentials

	6.5 Job Input
	6.5.1 InputSplit
	6.5.2 RecordReader

	6.6 Job Output
	6.6.1 OutputCommitter
	6.6.2 Task Side-Effect Files
	6.6.3 RecordWriter

	6.7 Other Useful Features
	6.7.1 Submitting Jobs to Queues
	6.7.2 Counters
	6.7.3 DistributedCache
	6.7.3.1 Private and Public DistributedCache Files

	6.7.4 Tool
	6.7.5 IsolationRunner
	6.7.6 Profiling
	6.7.7 Debugging
	6.7.7.1 How to distribute the script file:
	6.7.7.2 How to submit the script:
	6.7.7.3 Default Behavior:

	6.7.8 JobControl
	6.7.9 Data Compression
	6.7.9.1 Intermediate Outputs
	6.7.9.2 Job Outputs

	6.7.10 Skipping Bad Records

	7 Example: WordCount v2.0
	7.1 Source Code
	7.2 Sample Runs
	7.3 Highlights

