

Intel® Software Guard Extensions SDK for

Linux* OS

Developer Reference

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 2 -

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual
property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and
non-infringement, as well as any warranty arising from course of performance,
course of dealing, or usage in trade.

This document contains information on products, services and/or processes in
development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, sched-
ule, specifications and roadmaps.

The products and services described may contain defects or errors known as
errata which may cause deviations from published specifications. Current char-
acterized errata are available on request.

Intel technologies features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Learn more at
Intel.com, or from the OEM or retailer.

Copies of documents which have an order number and are referenced in this
document may be obtained by calling 1-800-548-4725 or by visiting www.in-
tel.com/design/literature.htm.

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation in
the U.S. and/or other countries.

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel micro-
processors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, func-
tionality, or effectiveness of any optimization on microprocessors not man-
ufactured by Intel. Microprocessor-dependent optimizations in this product
are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 3 -

© 2016 Intel Corporation.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 4 -

Revision History

Revision Number Description Revision
Date

1.5 SGX Linux 1.5 release May 2016

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 5 -

Introduction
Intel provides the Intel(R) Software Guard Extensions (Intel(R) SGX) SDK
Developer Reference for software developers who wish to harden their applic-
ation’s security using Intel Software Guard Extensions technology.

This document covers an overview of the technology, tutorials, tools,
API reference as well as sample code.

Intel(R) Software Guard Extensions SDK from Intel is a collection of APIs,
sample source code, libraries and tools that enables the software developer to
write and debug Intel(R) Software Guard Extensions applications in C/C++.

NOTE
Intel(R) Software Guard Extensions(Intel(R) SGX) technology is currently only
available on 6th Generation Intel(R) Core(TM) Processor (codenamed Skylake).

Intel(R) Software Guard Extensions Technology Overview

Intel(R) Software Guard Extensions is an Intel technology whose objective is to
enable a high-level protection of secrets. It operates by allocating hardware-
protected memory where code and data reside. The protected memory area
is called an enclave. Data within the enclave memory can only be accessed by
the code that also resides within the enclave memory space. Enclave code can
be invoked via special instructions. An enclave can be built and loaded as a
shared object on Linux* OS.

NOTE:
The enclave file can be disassembled, so the algorithms used by the enclave
developer will not remain secret.

Intel(R) Software Guard Extensions technology has a hard limit on the pro-
tected memory size, typically 64 MB or 128 MB. As a result, the number of act-
ive enclaves (in memory) is limited. Depending on the memory footprint of
each enclave, use cases suggest that 5-20 enclaves can reside in memory sim-
ultaneously.

Intel(R) Software Guard Extensions Security Properties

l Intel designs the Intel(R) Software Guard Extensions to protect against
software attacks:

o The enclave memory cannot be read or written from outside the
enclave regardless of current privilege level and CPU mode

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 6 -

(ring3/user-mode, ring0/kernel-mode, SMM, VMM, or another
enclave). The abort page is returned in such conditions.

o An enclave can be created with a debug attribute that allows a spe-
cial debugger (Intel(R) Software Guard Extensions debugger) to
view its content like a standard debugger. Production enclaves
(non-debug) cannot be debugged by software or hardware debug-
gers.

o The enclave environment cannot be entered via classic function
calls, jumps, register manipulation or stack manipulation. The only
way to call an enclave function is via a new instruction that per-
forms several protect checks. Classic function calls initiated by
enclave code to functions inside the enclave are allowed.

o CPU mode can only be 32 or 64 bit when executing enclave code.
Other CPU modes are not supported. An exception is raised in such
conditions.

l Intel designs the Intel(R) Software Guard Extensions to protect against
known hardware attacks:

o The enclave memory is encrypted using industry-standard encryp-
tion algorithms with replay protection.

o Tapping the memory or connecting the DRAM modules to another
system will only give access to encrypted data.

o The memory encryption key changes every power cycle randomly
(for example, boot/sleep/hibernate). The key is stored within the
CPU and it is not accessible.

o Intel(R) Software Guard Extensions is not designed to handle side
channel attacks or reverse engineering. It is up to the Intel(R) SGX
developers to build enclaves that are protected against these
types of attack.

Intel(R) Software Guard Extensions uses strong industry-standard algorithms
for signing enclaves. The signature of an enclave characterizes the content and
the layout of the enclave at build time. If the enclave’s content and layout are
not correct per the signature, then the enclave will fail to be initialized and,
hence, will not be executed. If an enclave is initialized, it should be identical to
the original enclave and will not be modified at runtime.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 7 -

Application Design Considerations

An Intel(R) Software Guard Extensions application design is different from
non- Intel(R) SGX application as it requires dividing the application into two
logical components:

l Trusted component. The code that accesses the secret resides here.
This component is also called an enclave. More than one enclave can
exist in an application.

l Untrusted component. The rest of the application including all its mod-
ules.1

The application writer should make the trusted part as small as possible. It is
suggested that enclave functionality should be limited to operate on the
secret data. A large enclave statistically has more bugs and (user created)
security holes than a small enclave.

The enclave code can leave the protected memory region and call functions in
the untrusted zone (by a special instruction). Reducing the enclave depend-
ency on untrusted code will also strengthen its protection against possible
attacks.

Embracing the above design considerations will improve protection as the
attack surface is minimized.

The application designer, as the first step to harnessing Intel(R) Software
Guard Extensions SDK in the application, must redesign or refactor the applic-
ation to fit these guidelines. This is accomplished by isolating the code mod-
ule(s) that access any secrets and then moving these modules to a separate
package/library. The details of how to create such an enclave are detailed in
the tutorials section. You can also see the demonstrations on creating an
enclave in the sample code that are shipped with the Intel(R) Software Guard
Extensions SDK.

Terminology and Acronyms

AE Architectural enclaves. Enclaves that are part of the Intel(R) Soft-
ware Guard Extensions framework. They include the quoting

1From an enclave standpoint, the operating system and VMM are not trusted
components, either.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 8 -

enclave (QE), provisioning enclave (PvE), launch enclave (LE)).
Attestation Prove authenticity. In case of platform attestation, prove the

identity of the platform.
ECALL Enclave call. A function call that enters the enclave.
EPID Intel(R) Enhanced Privacy ID.
HSM Hardware Security Module

IAS Intel(R)Attestation Service
LE Launch enclave, an architectural enclave from Intel, involved in

the licensing service.
Nonce An arbitrary number used only once to sign a cryptographic com-

munication.
OCALL Outside call. A function call that calls an untrusted function from

an enclave.
PvE Provisioning enclave, an architectural enclave from Intel, involved

in the Intel(R) Enhanced Privacy ID (EPID) Provision service to
handle the provisioning protocol.

QE Quoting enclave, an architectural enclave from Intel, involved in
the quoting service.

SGX Intel(R) Software Guard Extensions.
SigRL Signature revocation list
SMK Session MAC key
SVN Security version number. Used to version security levels of both

hardware and software components of the Software Guard
Extensions framework.

TCB Trusted computing base. Portions of hardware and software that
are considered safe and uncompromised. A system protection is
improved if the TCB is as small as possible, making an attack
harder.

Tested Environments

The Intel(R) Software Guard Extensions software stack – including the Intel(R)
SGX SDK and Platform Software (PSW) have been internally tested* by Intel
and shown to work under a number of configurations. See the release notes
for a list of supported environments.

Using Intel(R) SGX software under other environments may or may not work.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 9 -

*The results have been estimated based on Intel internal analysis and are
provided for informational purposes only. Any difference in system hardware
or software configuration may affect actual performance.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 10 -

Setting up an Intel(R) Software Guard Extension Project
This topic introduces how to use the features of Intel(R) Software Guard Exten-
sions SDK to create and manage Intel(R) SGX application projects.

Using Intel(R) Software Guard Extensions Eclipse* Plug-in

The Intel(R) Software Guard Extensions Eclipse* Plug-in helps the enclave
developer to maintain enclaves and untrusted related code inside Eclipse*
C/C++ projects.

To get more information on Intel(R) Software Guard Extensions Eclipse* Plug-
in, see Intel(R) Software Guard Extensions Eclipse* Plug-in Developer Guide
from the Eclipse Help content: Help > Help Contents > SGX Eclipse Plug-in
Developer Guide.

Intel(R) Software Guard Extensions Projects on Linux* OS

To create an Intel(R) Software Guard Extensions project on Linux* OS, you are
recommended to start using the directory structure and Makefiles from a
sample application in the Intel(R) SGX SDK. Once you understand how an Intel
SGX application is built, you may customize the project setup according to
your needs.

To develop an Intel SGX application, Intel(R) SGX SDK supports a few non-
standard configurations, not present in other SDKs. The following section
explains the various enclave project configurations as well as the cor-
responding Makefile options.

Enclave Project Configurations

Depending on the development stage you are at, choose one of the following
project configurations to build an enclave:

l Simulation: Enclaves can be build in this mode by passing SGX_
DEBUG=1 for debug simulation and no parameters for release simulation.
This is the default build mode. Single-step signing is the default method
to sign a simulation enclave.

l Debug: To use this configuration for an enclave, set SGX_MODE=HW and
SGX_DEBUG=1 as parameters to the Makefile during the build. Choosing
this configuration also allows the enclave to be launched in the enclave
debug mode. This is facilitated by enabling the SGX_DEBUG_FLAG that

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 11 -

is passed as one of the parameters to the sgx_create_enclave func-
tion. Single-step method is the default signing method for this project
configuration. The signing key used in this mode does not need to be
white-listed.

l Prerelease: An enclave is built in this mode by setting SGX_MODE=HW
and SGX_PRERELEASE=1 in the Makefile during the build. Under this
configuration, the enclave is launched in enclave debug mode. The Make-
file of the enclave defines the EDEBUG flag when SGX_PRERELEASE=1
is passed as a parameter to the Makefile during build. When the EDEBUG
preprocessor flag is defined, it enables the SGX_DEBUG_FLAG, which in
turn, launches the enclave in the enclave debug mode. Single-step
method is also the default signing method for the Prerelease con-
figuration. Like in the Debug configuration, the signing key does not need
to be white-listed either.

l Release: This mode is enabled in enclaves by passing SGX_MODE=HW to
the Makefile while building the project.SGX_DEBUG_FLAG is only
enabled when NDEBUG is not defined or EDEBUG is defined. In the
debug configuration, NDEBUG is undefined and hence SGX_DEBUG_
FLAG is enabled. In the prerelease configuration, NDEBUG and EDEBUG
are both defined, which enables SGX_DEBUG_FLAG. In the release mode
configuration, NDEBUG is defined and hence it disables SGX_DEBUG_
FLAG thereby launching the enclave in enclave release mode. Two-step
method is the default signing method for the Release configuration. The
enclave needs to be signed with a white-listed key.

For additional information on the different enclave signing methods, see The
Enclave Signing Tool and Enclave Signing Examples

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 12 -

Using Intel(R) Software Guard Extensions SDK Tools
This topic introduces how to use the following tools that the Intel(R) Software
Guard Extensions SDK provides:

l The Edger8r Tool

Generates interfaces between the untrusted components and enclaves.

l The Enclave Signing Tool

Generates the enclave metadata, which includes the enclave signature,
and adds such metadata to the enclave image.

l Enclave Debugger

Helps to debug an enclave.

l Performance Measurement using Intel(R) VTune(TM) Amplifier

Helps to measure the performance of the enclave code.

l Enclave Memory Measurement Tool

Helps to measure the usage of protected memory by the enclave at
runtime.

l CPUSVN Configuration Tool

Helps to simulate the CPUSVN upgrade/downgrade scenario without
modifying the hardware.

The Edger8r Tool

The Edger8r tool ships as part of the Intel(R) Software Guard Extensions SDK.
It generates edge routines by reading a user-provided EDL file. These edge
routines provide the interface between the untrusted application and the
enclave. Normally, the tool will run automatically as part of the enclave build
process. However, an advanced enclave writer may invoke the Edger8r manu-
ally.

When given an EDL file, for example, demo.edl, the Edger8r will by default
generate four files:

l demo_t.h – It contains prototype declarations for trusted proxies and
bridges.

l demo_t.c – It contains function definitions for trusted proxies and
bridges.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 13 -

l demo_u.h – It contains prototype declarations for untrusted proxies
and bridges.

l demo_u.c – It contains function definitions for untrusted proxies and
bridges.

Here is the usage description for the Edger8r tool:

Syntax:

sgx_edger8r [options] <.edl file> [another .edl file …]

Arguments:

[Options] Descriptions
--use-prefix Prefix the untrusted proxy with the enclave

name.
--header-only Generate header files only.
--search-path
<path>

Specify the search path of EDL files.

--untrusted Generate untrusted proxy and bridge routines
only.

--trusted Generate trusted proxy and bridge routines
only.

--untrusted-dir
<dir>

Specify the directory for saving the untrusted
code.

--trusted-dir <dir> Specify the directory for saving the trusted
code.

--help Print this help message.

If neither --untrusted nor --trusted is specified, the Edger8r will gen-
erate both.

Here, the path parameter has the same format as the PATH environment vari-
able, and the enclave name is the base file name of the EDL file (demo in this
case).

CAUTION:
The ISV must run the Edger8r tool in a protected malware-free environment
to ensure the integrity of the tool so that the generated code is not com-
promised. The ISV is ultimately responsible for the code contained in the
enclave and should review the code that the Edger8r tool generates.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 14 -

The Enclave Signing Tool

The Intel(R) Software Guard Extensions SDK provides a tool named sgx_sign
for you to sign enclaves. In general, signing an enclave is a process that
involves producing a signature structure that contains enclave properties such
as the enclave measurement. Once an enclave is signed in such structure, the
modifications to the enclave file (such as code, data, signature, and so on.) can
be detected. The signing tool also evaluates the enclave image for potential
errors and warns users about potential security hazards. sgx_sign is typically
set up by one of the configuration tools included in the Intel(R) SGX SDK and
runs automatically at the end of the build process. During the loading process,
the signature is checked to confirm that the enclave has not been tampered
with and has been loaded correctly.

Command-Line Syntax

To run sgx_sign, use the following command syntax:

sgx_sign <command> [args]

All valid commands are listed in the table below. See Enclave Signing
Examples for more information.

Table 1 Signing Tool Commands

CommandDescription Arguments
sign Sign the enclave using the private

key in one step.
Required: -enclave, -key,
-out

Optional: -config
gendata The first step of the 2-step signing

process. Generate the enclave sign-
ing material to be signed by an
external tool. This step dumps the
signing material, which consists of the
header and body sections of the
enclave signature structure (see the
Table Enclave Signature Structure in
this topic), into a file (256 bytes in
total).

Required: -enclave, -out

Optional: -config

catsig The second step of the 2-step sign-
ing process. Generate the signed
enclave with the input signature and

Required: -enclave, -key,
-out, -sig, -unisgned

Optional: -config

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 15 -

public key. The input signature is gen-
erated by an external tool based on
the data generated by the gendata
command. At this step, the signature
and buffer sections are generated.
The signature and buffer sections
together with the header and body
sections complete the enclave sig-
nature structure (see the Table
Enclave Signature Structure in this
topic).

All the valid command options are listed below:

Table 2 Signing Tool Arguments

Arguments Descriptions
-enclave
<file>

Specify the enclave file to be signed.

It is a required argument for the three commands.
-config
<file>

Specify the enclave configuration file

It is an optional argument for the three commands.
-out <file> Specify the output file.

It is required for the three commands.
Command Description
sign The signed enclave file.
gendata The file with the enclave sign-

ing material.
catsig The signed enclave file.

-key <file> Specify the signing key file. See File Formats for detailed
description.
Command Description
sign Private key.
gendata Not applicable.
catsig Public key.

-sig <file> Specify the file containing the signature corresponding to the
enclave signing material.

Only valid for catsig command.
-unsigned Specify the file containing the enclave signing material gen-

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 16 -

<file> erated by gendata.

Only valid for catsig command.

The arguments, including options and filenames,can be specified in any order.
Options are processed first, then filenames. Use one or more spaces or tabs to
separate arguments. Each option consists of an option identifier, a dash (-), fol-
lowed by the name of the option. The <file> parameter specifies the abso-
lute or relative path of a file.

sgx_sign generates the output file and returns 0 for success. Otherwise, it gen-
erates an error message and returns -1.

Table 3 Enclave Signature Structure

Section Name

Header

HEADERTYPE

HEADERLEN

HEADERVERSION

TYPE

MODVENDOR

DATE

SIZE

KEYSIZE

MODULUSSIZE

ENPONENTSIZE

SWDEFINED

RESERVED

Signature

MODULUS

EXPONENT

SIGNATURE

Body

MISCSELECT

MISCMASK

RESERVED

ATTRIBUTES

ATTRIBUTEMASK

ENCLAVEHASH

RESERVED

ISVPRODID

ISVSVN

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 17 -

Section Name

Buffer

RESERVED

Q1

Q2

Enclave Signing Key Management

An enclave project supports different signing methods needed by ISVs during
the enclave development life cycle.

l Single-step method using the ISV’s test private key:

The signing tool supports a single-step signing process, which requires
the access to the signing key pair on the local build system. However,
there is a requirement that any white-listed enclave signing key must be
managed in a hardware security module. Thus, the ISV’s test private key
stored in the build platform will not be white-listed and enclaves signed
with this key can only be launched in debug or prerelease mode. In this
scenario, the ISV manages the signing key pair, which could be gen-
erated by the ISV using his own means. Single-step method is the
default signing method for non-production enclave applications, which
are created with the Intel SGX project debug and prerelease profiles.

l 2-step method using an external signing tool:
1. First step: At the end of the enclave build process, the signing tool

generates the enclave signing material.

The ISV takes the enclave signing material file to an external sign-
ing platform/facility where the private key is stored, signs the sign-
ing material file, and takes the resulting signature file back to the
build platform.

2. Second step: The ISV runs the signing tool with the catsigcom-
mand providing the necessary information at the command line to
add the hash of the public key and signature to the enclave’s
metadata section.

The 2-step signing process protects the signing key in a separate facility.
Thus it is the default signing method for the Intel SGX project release
profile. This means it is the only method for signing production enclave
applications.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 18 -

File Formats

There are several files with various formats followed by the different options.
The file format details are listed below.

Table 4 Signing Tool File Formats

File Format Description
Enclave file Shared

Object
It is a standard Shared Object.

Signed
enclave file

Shared
Object

sgx_sign generates the signed enclave file , which
includes the signature, to the enclave file.

Configuration
file

XML See Enclave Configuration File.

Key file PEM Key file should follow the PEM format which contains an
unencrypted RSA 3072-bit key. The public exponent
must be 3.

Enclave hex
file

RAW It is a dump file of the enclave signing material data to
be signed with the private RSA key.

Signature file RAW It is a dump file of the signature generated at the ISV’s
signing facility. The signature should follow the RSA-
PKCS1.5 padding scheme. The signature should be gen-
erated using the v1.5 version of the RSA scheme with
an SHA-256 message digest.

Signing Key Files

The enclave signing tool only accepts key files in the PEM format and unen-
crypted. When an enclave project is created for the first time, you have to
choose either using an already existing signing key or automatically generating
one key for you. When you choose to import a pre-existing key, ensure that
such key is in PEM format and unencrypted. If that is not the case, convert the
signing key to the format accepted by the Signing Tool first. For instance, the
following command converts an encrypted private key in PKCS#8/DER format
to unencrypted PEM format:

openssl pkcs8 –inform DER –in private_pkcs8.der –outform
PEM –out private_pkcs1.pem

Depending on the platform OS, the openssl* utility might be installed already
or it may be shipped with the Intel(R) SGX SDK.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 19 -

Enclave Signing Examples

The following are typical examples for signing an enclave using the one-step
or the two-step method. When the private signing key is available at the build
platform, you may follow the one-step signing process to sign your enclave.
However, when the private key is only accessible in an isolated signing facility,
you must follow the two-step signing process described below.

l One-step signing process:
Signing an enclave using a private key available on the build system:

sgx_sign sign -enclave enclave.so -config config.xml
-out enclave_signed.so -key private.pem

l Two-step signing process:
Signing an enclave using a private key stored in an HSM, for instance:

1. Generate the enclave signing material.
sgx_sign gendata -enclave enclave.so -config con-
fig.xml -out enclave_hash.hex

2. At the signing facility, sign the file containing the enclave signing

material (enclave_hash.hex) and take the resulting signature

file (signature.hex) back to the build platform.

3. Sign the enclave using the signature file and public key.
sgx_sign catsig -enclave enclave.so -config con-
fig.xml -out enclave_signed.so -key public.pem
-sig signature.hex -unsigned enclave_hash.hex

The configuration file config.xml is optional. If you do not provide a con-
figuration file, the signing tool uses the default configuration values.

A single enclave signing tool is provided, which allows signing 32-bit and 64-
bit enclaves. In addition, on Windows* OS sgx_sign supports signing
enclaves in both PE and ELF formats.

OpenSSL* Examples

The following command lines are typical examples using OpenSSL*.

1. Generate a 3072-bit RSA private key. Use 3 as the public exponent
value.

openssl genrsa -out private_key.pem -3 3072

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 20 -

2. Produce the public part of a private RSA key.

openssl rsa -in private_key.pem -pubout -out public_
key.pem

3. Sign the file containing the enclave signing material.

openssl dgst -sha256 -out signature.hex -sign private_
key.pem -keyform PEM enclave_hash.hex

Enclave Debugger

You can leverage the helper script sgx-gdb to debug your enclave applic-
ations. To debug an enclave on a hardware platform, the <DisableDebug>
configuration parameter should be set to 0 in the enclave configuration file
config.xml, and you should set the Debug parameter to 1 in the sgx_cre-
ate_enclave(…) that creates the enclave. Debugging an enclave is similar
to debugging a shared library. However not all the standard features are avail-
able to debug enclaves. The following table lists some unsupported GDB com-
mands for enclave. sgx-gdb also supports measuring the enclave stack/heap
usage by the Enclave Memory Measurement Tool. See Enclave Memory Meas-
urement Tool for additional information.

Table 5 GDB Unsupported Commands

GDB CommandDescription
info sharedlibrary Does not show the status of the loaded enclave.

next/step Does not allows to execute the next/step outside the enclave from inside
the enclave. To go outside the enclave use the finish command.

call/print Does not support calling outside the enclave from within an enclave func-
tion, or calling inside the enclave from a function in the untrusted
domain.

charset Only supports GDB's default charset.

Performance Measurement using Intel(R) VTune(TM) Amplifier

You can use Intel® VTune™ Amplifier Application 2016 Update 2 to measure
the performance of SGX applications including the enclave. VTune Amplifier
application supports a new analysis type called SGX Hotspots that can be
used to profile the SGX Enclave Applications. You can use the default settings
of SGX Hotspots to profile the application and the enclave code. Precise

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 21 -

event based sampling (PEBS) helps to profile the SGX enclave code. The _PS
events represent precise events. You can add _PS events to the collection to
profile enclave code. Non precise events would not help with profiling SGX
enclave code.

You can use VTune Amplifier to measure the performance of enclave code
only when the enclave has been launched as a debug enclave. To launch the
enclave as a debug enclave, pass a value of 1 as the second parameter to the
sgx_create_enclave function which loads and initializes the enclave as
shown below. Use the pre-defined macro SGX_DEBUG_FLAG as the para-
meter, which equals 1 in the DEBUG and the PRE-RELEASE mode.

sgx_create_enclave(ENCLAVE_FILENAME, SGX_DEBUG_FLAG,
&token, &updated, &global_eid, NULL);

NOTE:
Only use VTune Amplifier to measure the performance in the DEBUG and
PRE-RELEASE mode because a DEBUG FLAG value of 1 cannot be passed in
to create an enclave in RELEASE configuration.

VTune Amplifier provides two options to profile applications:

l Run the applications using VTune Amplifier. If you use this approach, you
do not have to do anything special.

l Attach to an already running process or enclave application. If you use
this approach, define the environment variable as follows:

l 32bit:

INTEL_LIBITTNOTIFY32 = <VTune Installation
Dir>/lib32/runtime/ittnotify_collector.so

l 64bit:

INTEL_LIBITTNOTIFY64 = <VTune Installation
Dir>/lib64/runtime/ittnotify_collector.so

Once an enclave is loaded, the invoked ITT API of VTune Amplifier in the uRTS
passes information about the enclave to VTune and profiles SGX enclave
applications. When you attach VTune Amplifier to the application after invok-
ing ITT API of VTune Amplifier, the module information about the enclave is
cached in the ITT dynamic library and is used by the VTune Amplifier applic-
ation during attach to process. The following table describes the different
scenarios of how VTune is used to profile the enclave application.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 22 -

VTune Amplifier Invoc-
ation

Additional Con-
figuration

ITT API Res-
ult

uRTS Action

Launch the application
with VTune Amplifier

N/A VTune
Amplifier is
profiling

Set Debug OPTIN bit
and invoke Module
mapping API.

Late attach before invok-
ing ITT API for VTune
Amplifier profiling check
in sgx_cereate_
enclave

ITT environment
variable is set.

VTune
Amplifier is
profiling

Set Debug OPTIN bit
and invoke Module
mapping API.

ITT environment
variable is not
set.

VTune
Amplifier is
not profiling

Do not set Debug
OPTIN bit and do not
invoke Module map-
ping API.

Even though VTune is
running, it cannot pro-
file enclaves. You
need to set the envir-
onment variable.

Late attach after invok-
ing ITT API for VTune
Amplifier profiling check
in sgx_cereate_
enclave

ITT environment
variable is set.

VTune
Amplifier is
profiling

Set Debug OPTIN bit
and Invoke Module
mapping API.

Module information is
cached in the
ITT dynamic library
and provided to
VTune during attach
to process.

ITT environment
variable is not
set.

VTune
Amplifier is
not profiling

Do not set Debug
OPTIN bit and do not
Invoke Module map-
ping API.

Even though VTune is
running here it cannot
profile enclaves. You
need to set the envir-
onment variable.

Launch the application N/A VTune Do not set Debug

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 23 -

without VTune Amplifier Amplifier is
not profiling

OPTIN bit and do not
invoke Module map-
ping API.

Enclave Memory Measurement Tool

An enclave is an isolated environment. The Intel(R) Software Guard Extensions
SDK provides a tool called sgx_emmt to measure the real usage of protected
memory by the enclave at runtime.

Currently the enclave memory measurement tool provides the following two
functions:

1. Get the stack peak usage value for the enclave.
2. Get the heap peak usage value for the enclave.

When you get the accurate stack and heap usage information for your
enclaves, you can rework the enclave configuration file based on this inform-
ation to make full use of the protected memory. See Enclave Configuration
File for details.

On Linux* OS, the enclave memory measurement capability is provided by the
helper script sgx-gdb. The sgx-gdb is a GDB extension for you to debug
your enclave applications. See Enclave Debugger for details.

To measure how much protected memory an enclave uses, you should lever-
age sgx-gdb to launch GDB with sgx_emmt enabled and load the test applic-
ation which is using the enclave. You may also attach the debugger to a
running an Intel SGX application in order to measure the heap and stack sizes
of th enclave.

The sgx-gdb provides three commands pertaining the sgx_emmt tool:

Table 6 Enclave Memory Measurement Tool Commands

Command Description
enable sgx_emmt Enable the enclave memory measurement tool.

disable sgx_emmt Disable the enclave memory measurement tool.

show sgx_emmt Show whether the enclave memory measurement tool is enabled or not.

Here are the typical steps necessary to collect an enclave’s memory usage
information:

1. Leverage sgx-gdb to start a GDB session.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 24 -

2. Enable the enclave memory measurement function with enable sgx_
emmt.

3. Load and run the test application which is using the enclave.

CPUSVN Configuration Tool

CPUSVN stands for Security Version Number of the CPU, which affects the key
derivation and report generation process. CPUSVN is not a numeric concept
and will be upgraded/downgraded along with the hardware upgrade/-
downgrade. To simulate the CPUSVN upgrade/downgrade without modifying
the hardware, the Intel(R) Software Guard Extensions SDK provides a CPUSVN
configuration tool for you to configure the CPUSVN. The CPUSVN con-
figuration tool is for Intel(R) SGX simulation mode only.

Command-Line Syntax

To run the Intel(R) SGX CPUSVN configuration tool, use the following syntax:

sgx_config_cpusvn [Command]

The valid commands are listed in the table below:

Table 7 CPUSVN Configuration Tool Commands

Command Description
-upgrade Simulate a CPUSVN upgrade.

-downgrade Simulate a CPUSVN downgrade.

-reset Restore the CPUSVN to its default value.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 25 -

Enclave Development Basics
This topic introduces the following enclave development basics:

l Writing Enclave Functions
l Calling Functions inside the Enclave
l Calling Functions outside the Enclave
l Linking Enclave with Libraries
l Linking Application with Untrusted Libraries
l Enclave Definition Language Syntax
l Load and Unload an Enclave

The typical enclave development process includes the following steps:

1. Define the interface between the untrusted application and the enclave
in the EDL file.

2. Implement the application and enclave functions.
3. Build the application and enclave. In the build process, The Edger8r Tool

generates trusted and untrusted proxy/bridge functions. The Enclave
Signing Tool generates the metadata and signature for the enclave.

4. Run and debug the application in simulation and hardware modes. See
Enclave Debugger for more details.

5. Prepare the application and enclave for release.

Writing Enclave Functions

From an application perspective, making an enclave call (ECALL) appears as
any other function call when using the untrusted proxy function. Enclave func-
tions are plain C/C++ functions with several limitations.

The user can write enclave functions in C and C++ (native only). Other lan-
guages are not supported.

Enclave functions can rely on special versions of the C/C++ runtime libraries,
STL, synchronization and several other trusted libraries that are part of the
Intel(R) Software Guard Extensions SDK. These trusted libraries are spe-
cifically designed to be used inside enclaves.

The user can write or use other trusted libraries, making sure the libraries fol-
low the same rules as the internal enclave functions:

1. Enclave functions can’t use all the available 32-bit or 64-bit instructions.
To check a list of illegal instructions inside an enclave, see Intel(R)

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 26 -

Software Guard Extensions Programming Reference.
2. Enclave functions will only run in user mode (ring 3). Using instructions

requiring other CPU privileges will cause the enclave to fault.
3. Function calls within an enclave are possible if the called function is stat-

ically linked to the enclave (the function needs to be in the enclave
image file).Linux* Shared Objects are not supported.

CAUTION:
The enclave signing process will fail if the enclave image contains any unre-
solved dependencies at build time.

Calling functions outside the enclave is possible using what are called OCALLs.
OCALLs are explained in detail in the Calling Functions outside the Enclave sec-
tion.

Table 8 Summary of Intel(R) SGX Rules and Limitations

Feature Supported Comment
Languages Partially Native C/C++. Enclave interface functions are lim-

ited to C (no C++).
C/C++ calls to
other Shared
Objects

No Can be done by explicit external calls (OCALLs).

C/C++ calls to
System
provided
C/C++/STL
standard lib-
raries

No A trusted version of these libraries is supplied
with the Intel(R) Software Guard Extensions SDK
and they can be used instead.

OS API calls No Can be done by explicit external calls (OCALLs).
C++ frame-
works

No Including MFC*, QT*, Boost* (partially – as long as
Boost runtime is not used).

Call C++ class
methods

Yes Including C++ classes, static and inline functions.

Intrinsic func-
tions

Partially Supported only if they use supported instruc-
tions.

The allowed functions are included in the Intel(R)
Software Guard Extensions SDK.

Inline assembly Partially Same as the intrinsic functions.
Template func- Partially Only supported in enclave internal functions

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 27 -

tions
Ellipse (…) Partially Only supported in enclave internal functions
Varargs (va_
list)

Partially Only supported in enclave internal functions.

SynchronizationPartially The Intel(R) Software Guard Extensions SDK
provides a collection of functions/objects for
synchronization: spin-lock, mutex, and condition
variable.

Threading sup-
port

Partially Creating threads inside the enclave is not sup-
ported. Threads that run inside the enclave are
created within the (untrusted) application. Spin-
locks, trusted mutex and condition variables API
can be used for Thread Synchronization Prim-
itives.

Thread Local
Storage (TLS)

No Only implicitly via __thread.

Dynamic
memory alloc-
ation

Yes Enclave memory is a limited resource. Maximum
heap size is set at enclave creation.

C++ Exceptions Yes Although they have an impact on performance.
SEH Exceptions No The Intel(R) Software Guard Extensions SDK

provides an API to allow you to register functions,
or exception handlers, to handle a limited set of
hardware exceptions. See Custom Exception
Handling for more details.

Signals No Signals are not supported inside an enclave.

Calling Functions inside the Enclave

After an enclave is loaded successfully, you get an enclave ID which is
provided as a parameter when the ECALLs are performed. Optionally, OCALLs
can be performed within an ECALL. For example, assume that you need to com-
pute some secret inside an enclave, the EDL file might look like the following:

// demo.edl

enclave {

trusted {
public void get_secret([out] secret_t* secret);

};

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 28 -

untrusted {
// This OCALL is for illustration purposes only.
// It should not be used in a real enclave, // unless it is
during the development phase
// for debugging purposes.
void dump_secret([in] const secret_t* secret);

};
};

With the above EDL, the sgx_edger8r will generate an untrusted proxy func-
tion for the ECALL and a trusted proxy function for the OCALL:

Untrusted proxy function:

sgx_status_t get_secret(sgx_enclave_id_t eid, secret_t*
secret); // used by the application

Trusted proxy function:

sgx_status_t dump_secret(const secret_t* secret); //
used by the trusted functions

The generated untrusted proxy function will automatically call into the
enclave with the parameters to be passed to the real trusted function get_
secret inside the enclave. To initiate an ECALL in the application:

// An enclave call (ECALL) will happen here

secret_t secret;

sgx_status_t status = get_secret(eid, &secret);

The trusted functions inside the enclave can optionally do an OCALL to dump
the secret with the trusted proxy dump_secret. It will automatically call out
of the enclave with the given parameters to be received by the real untrusted
function dump_secret. The real untrusted function needs to be imple-
mented by the developer and linked with the application.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 29 -

Checking the Return Value

The trusted and untrusted proxy functions return a value of type sgx_
status_t. If the proxy function runs successfully, it will return SGX_
SUCCESS. Otherwise, it indicates a specific error described in Error Codes sec-
tion. You can refer to the sample code shipped with the SDK for examples of
proper error handling.

Calling Functions outside the Enclave

In exceptional cases, the code within the enclave needs to call external func-
tions which reside in untrusted (unprotected) memory. This type of function
call is named an OCALL.

These functions need to be declared in the EDL file in the untrusted section.
See Enclave Definition Language Syntax for more details.

The enclave image is loaded very similarly to how Linux* OS loads shared
objects. The function name space of the application is shared with the enclave
so the enclave code can indirectly call functions linked with the application
that created the enclave. Calling functions from the application directly is not
permitted and will raise an exception at runtime.

CAUTION:
The wrapper functions copy the parameters from protected (enclave)
memory to unprotected memory as the external function cannot access pro-
tected memory regions. In particular, the OCALL parameters are copied into
the untrusted stack. Depending on the number of parameters, the OCALL may
cause a stack overrun in the untrusted domain. The exception that this event
will trigger will appear to come from the code that the sgx_eder8r generates
based on the enclave EDL file. However, the exception can be easily detected
using the Intel(R) SGX debugger. Accessing protected memory from unpro-
tected memory will result in abort page semantics. This applies to all parts of
the protected memory including heap, stack, code and data.

CAUTION:
Accessing protected memory from unprotected memory will result in abort
page semantics. This applies to all parts of the protected memory including
heap, stack, code and data.

The wrapper functions will copy buffers (memory referenced by pointers) only
if these pointers are assigned special attributes in the EDL file.

CAUTION:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 30 -

Certain trusted libraries distributed with the Intel(R) Software Guard Exten-
sions SDK provide an API that internally makes OCALLs. Currently, the Intel(R)
Software Guard Extensions mutex, condition variable, and CPUID APIs from
libsgx_tstdc.a make OCALLs. Similarly, the trusted support library libsgx_tser-
vice.a, which provides services from the Platform Services Enclave (PSE-Op),
also makes OCALLs. Developers who use these APIs must first import the
needed OCALL functions from their corresponding EDL files. Otherwise,
developers will get a linker error when the enclave is built. See the Enclave
Definition Language Libraries - Creating a Trusted Library with Import/Export
Functions for details on how to import OCALL functions from a trusted library
EDL file.

CAUTION:
To help identify problems caused by missing imports, all OCALL functions
used in the Intel(R) Software Guard Extensions SDK have the suffix ocall. For
instance, the linker error below indicates that the enclave needs to import the
OCALLs sgx_thread_wait_untrusted_event_ocall() and sgx_
thread_set_untrusted_event_ocall() are needed in sethread_
mutex.obj, which is part of libsgx_tstdc.a.

libsgx_tstdc.a(sethread_mutex.o): In function `sgx_
thread_mutex_lock':

sethread_mutex.cpp:109: undefined reference to `sgx_
thread_wait_untrusted_event_ocall'

libsgx_tstdc.a(sethread_mutex.o): In function `sgx_
thread_mutex_unlock':

sethread_mutex.cpp:213: undefined reference to `sgx_
thread_set_untrusted_event_ocall'

CAUTION:
Abort page semantics:

An attempt to read from a non-existent or disallowed resource returns all ones
for data (abort page). An attempt to write to a non-existent or disallowed phys-
ical resource is dropped. This behavior is unrelated to exception type abort
(the others being Fault and Trap).

OCALL functions have the following limitations/rules:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 31 -

l OCALL functions must be C functions, or C++ functions with C linkage.
l Pointers that reference data within the enclave must be annotated with

pointer direction attributes in the EDL file. The wrapper function will per-
form shallow copy on these pointers. See Pointers for more information.

l Exceptions will not be caught within the enclave. The user must handle
this in the untrusted wrapper function.

l OCALLs cannot have an ellipse (…) or a va_list in their prototype.

Example 1: The definition of a simple OCALL function

// foo.edl

enclave {

untrusted {
[cdecl] void foo(int param);

};
};

Step 1 – Add a declaration for foo in the EDL file

Step 2 (optional but highly recommended) – a write trusted, user-friendly
wrapper.

This function is part of the enclave’s trusted code.

The wrapper function ocall_foo function will look like:

void ocall_foo(int param)

{

// it is necessary to check the return value of foo()
if (foo(param) != SGX_SUCCESS)

abort();
}

Step 3 – write untrusted foo function

The sgx_edger8r will generate an untrusted bridge function which will call
the real untrusted function foo automatically. This untrusted bridge and the
target untrusted function are part of the application, not the enclave.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 32 -

Library Development for Enclaves

Trusted library is the term used to refer to a static library designed to be
linked with an enclave. The following list describes the features of trusted lib-
raries:

l Trusted libraries are components of an Intel(R) SGX-based solution. They
typically undergo a more rigorous threat evaluation and review process
than a regular static library.

l A trusted library is developed (or ported) with the specific purpose of
being used within an enclave. Therefore, it should not contain instruc-
tions that are not supported by the Intel(R) SGX architecture.

l A subset of the trusted library API may also be part of the enclave inter-
face. The trusted library interface that could be exposed to the untrus-
ted domain is defined in an EDL file. If present, this EDL file is a key
component of the trusted library.

l A trusted library may have to be shipped with an untrusted library. Func-
tions within the trusted library may make OCALLs outside the enclave. If
an external function that the trusted library uses is not provided by the
libraries available on the platform, the trusted library will require an
untrusted support library.

In summary, a trusted library, in addition to the .lib file containing the trus-
ted code and data, may also include an .edl file as well as an untrusted .lib
file.

This topic describes the process of developing a trusted library and provides
an overview of the main steps necessary to build an enclave that uses such a
trusted library.

1. The ISV provides a trusted library including the trusted functions
(without any edge-routines) and, when necessary, an EDL file and an
untrusted support library. To develop a trusted library, an ISV should cre-
ate an enclave project and manually modify the project settings to gen-
erate a .lib instead the .so target. This ensures the library is built with
the appropriate settings. The ISV might delete the EDL file from the pro-
ject if the trusted library only provides an interface to be invoked within
an enclave. The ISV should create a standard static library project for the
untrusted support library, if required.

2. Add a “from/import” statement with the library EDL file path and name

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 33 -

to the enclave EDL file. The import statement indicates which trusted
functions (ECALLs) from the library may be called from outside the
enclave and which untrusted functions (OCALLs) are called from within
the trusted library. You may import all ECALLs and OCALLs from the trus-
ted library or select a specific subset of them.

A library EDL file may import additional library EDL files building a hier-
archical structure. For additional details, See Enclave Definition Lan-
guage Libraries - Creating a Trusted Library with Import/Export
Functions.

3. During the enclave build process, the sgx_edger8r generates
proxy/bridge code for all the trusted and untrusted functions. The gen-
erated code accounts for the functions declared in the enclave EDL file
as well as any imported trusted library EDL file.

4. The trusted library and trusted proxy/bridge functions are linked to the
enclave code.

NOTE:
If you use the wildcard option to import a trusted library, the resulting
enclave contains the trusted bridge functions for all ECALLs and their cor-
responding implementations. The linker will not be able to optimize this
code out.

5. The Intel(R) SGX application is linked to the untrusted proxy/bridge
code. Similarly, when the wildcard import option is used, the untrusted
bridge functions for all the OCALLs will be linked in.

Avoiding Name Collisions

An application may be designed to work with multiple enclaves. In this scen-
ario, each enclave would still be an independent compilation unit resulting in a
separate SO file.

Enclaves, like regular SO files, should provide a unique interface to avoid name
collisions when an untrusted application is linked with the edge-routines of
several enclaves. The sgx_edger8r prevents name collisions among OCALL
functions because if automatically prepends the enclave name to the names of
the untrusted bridge functions. However, ISVs must ensure the uniqueness of
the ECALL function names across enclaves to prevent collisions among ECALL
functions.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 34 -

Despite having unique ECALL function names, name collision may also occur as
the result of developing an Intel(R) SGX application. This happens because an
enclave cannot import another SO file. When two enclaves import the same
ECALL function from a trusted library, the set of edge-routines for each
enclave will contain identical untrusted proxy functions and marshaling data
structures for the imported ECALL. Thus, the linker will emit an error when the
application is linked with these two sets of edge-routines. To build an applic-
ation with more than one enclave when these enclaves import the same ECALL
from a trusted library, ISVs have to:

1. Provide the --use-prefix option to sgx_edger8r, which will pre-
pend the enclave name to the untrusted proxy function names.

2. Prefix all ECALLs in their untrusted code with the enclave name, match-
ing the new proxy function names.

Linking Enclave with Libraries

This topic introduces how to link an enclave with the following types of lib-
raries:

l Dynamic libraries
l Static Libraries
l Simulation Libraries

Dynamic Libraries

An enclave shared object must not depend on any dynamically linked library
in any way. The enclave loader has been intentionally designed to prohibit
dynamic linking of libraries within an enclave. The protection of an enclave is
dependent upon obtaining an accurate measurement of all code and data that
is placed into the enclave at load time; thus, dynamic linking would add com-
plexity without providing any benefit over static linking.

CAUTION:
The enclave image signing process will fail if the enclave file has any unre-
solved dependencies.

Static Libraries

The user can link with static libraries as long as they do not have any depend-
encies.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 35 -

The Intel(R) Software Guard Extensions SDK provides the following collection
of trusted libraries.

Table 9 Trusted Libraries included in the Intel(R) SGX SDK

Name Description Comment
libsgx_
trts.a

Intel(R) SGX internals Must link when
running in HW
mode

libsgx_
trts_sim.a

Intel(R) SGX internals (simulation mode) Must link when
running in sim-
ulation mode

libsgx_
tstdc.a

Standard C library (math, string, and so on.) Must link

libsgx_
tstdcxx.a

Standard C++ libraries, STL Optional

libsgx_
tservice.a

Data seal/unseal (encryption), trusted Archi-
tectural Enclaves support, Elliptic Curve Diffie-
Hellman (EC DH) library, and so on.

Must link when
using HW mode

libsgx_
tservice_
sim.a

The counterpart of libsgx_tservice.a for sim-
ulation mode

Must link when
using simulation
mode

libsgx_
tcrypto.a

Cryptographic library Must link

libsgx_
tkey_
exchange.a

Trusted key exchange library Optional

Simulation Libraries

The Intel(R) SGX SDK provides simulation libraries to run application enclaves
in simulation mode (Intel(R) SGX hardware is not required). There are an
untrusted simulation library and a trusted simulation library. The untrusted
simulation library provides the functionality that the untrusted runtime library
requires to manage an enclave linked with the trusted simulation library,
including the simulation of the Intel(R) SGX instructions executed outside the
enclave: ECREATE, EADD, EEXTEND, EINIT, EREMOVE, and ECREATE. The trus-
ted simulation library is primarily responsible for simulating the Intel(R) SGX
instructions that can executed inside an enclave: EEXIT, EGETKEY, and
EREPORT.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 36 -

Linking Application with Untrusted Libraries

The Intel(R) Software Guard Extensions SDK provides the following collection
of untrusted libraries.

Table 10 Untrusted Libraries included in the Intel(R) SGX SDK

Name Description Comment
libsgx_urts.so Provides functionality for applic-

ations to manage enclaves
Must link when running
in HW mode.

libsgx_urts.so is
included in Intel(R)
SGX PSW

libsgx_urts_
sim.so

uRTS library used in simulation mode Dynamic linked

libsgx_uae_ser-
vice.so

Provides both enclaves and
untrusted applications access to
services provided by the AEs

Must link when running
in HW mode.

libsgx_uae_ser-
vice.so is included
in Intel(R) SGX PSW

libsgx_uae_ser-
vice_sim.so

Untrusted AE support library used in sim-
ulation mode

Dynamic linked

libsgx_ukey_
exchange.a

Untrusted key exchange library Optional

Enclave Definition Language Syntax

Enclave Definition Language (EDL) files are meant to describe enclave trusted
and untrusted functions and types used in the function prototypes. The
Edger8r Tool uses this file to create C wrapper functions for both enclave
exports (used by ECALLs) and imports (used by OCALLs).

EDL Template

enclave {

//Include files

//Import other edl files

//Data structure declarations to be used as parameters of the
//function prototypes in edl

trusted {
//Include file if any.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 37 -

//It will be inserted in the trusted header file (enclave_
t.h)

//Trusted function prototypes

};

untrusted {
//Include file if any.
//It will be inserted in the untrusted header file (enclave_
u.h)

//Untrusted function prototypes

};
};

The trusted block is optional only if it is used as a library EDL, and this EDL
would be imported by other EDL files. However the untrusted block is always
optional.

Every EDL file follows this generic format:

enclave {

// An EDL file can optionally import functions from other EDL
files.
from “other/file.edl” import foo, bar; // selective importing
from “another/file.edl” import *; // import all functions

// Include C headers, these headers will be included in the gen-
erated files.
// for both trusted and untrusted routines.
include "string.h"
include "mytypes.h"

// Type definitions (struct, union, enum), optional.
struct mysecret {

int key;
const char* text;

};
enum boolean { FALSE = 0, TRUE = 1 };

// Export functions (ECALLs), optional for library EDLs.
trusted {

//Include file if any.
//It will be inserted in trusted header file
include “trusted.h”

//Trusted function prototypes

public void set_secret([in] struct mysecret* psecret);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 38 -

void some_private_func(enum boolean b); // private ECALL
(non-root ECALL).

};

// Import functions (OCALLs), optional.
untrusted {

//Include file if any.
//It will be inserted in untrusted header file
include “untrusted.h”

//Untrusted function prototypes

// This OCALL is not allowed to make another ECALL.
void ocall_print();

// This OCALL can make an ECALL to function “some_private_
func”.
int another_ocall([in] struct mysecret* psecret)

allow(some_private_func);
};

};

Comments

Both types of C/C++ comments are valid.

Example

enclave {

include “stdio.h” // include stdio header
include “../../util.h” /* this header defines some custom public
types */

};

Include Headers

Include C headers which define types (C structs, unions, typedefs, etc.); oth-
erwise auto generated code cannot be compiled if these types are referenced
in EDL. The included header file can be global or belong to trusted functions
or untrusted functions only.

A global included header file doesn’t mean that the same header file is
included in the enclave and untrusted application code. In this case, the
enclave will use the stdio.h from the Intel(R) Software Guard Extensions
SDK. While the application code will use the stdio.h shipped with the host
compiler.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 39 -

Using the include directive is convenient when developers are migrating
existing code to enclave technology, since data types are defined already in
this case. Similar to other IDL languages like Microsoft* interface definition lan-
guage (MIDL*) and CORBA* interface definition language (OMG-IDL), a user can
define data types inside the EDL file and sgx_edger8r will generate a C
header file with the data type definitions. For a list of supported data types
with in EDL, see Basic Types.

Syntax

include “filename.h”

Example

enclave {

include “stdio.h” // global headers
include “../../util.h”

trusted {
include “foo.h” // for trusted functions only

};

untrusted {
include “bar.h” // for untrusted functions only

};
};

Keywords

The identifiers listed in the following table are reserved for use as keywords of
the Enclave Definition Language.

Table 11 EDL Reserved Keywords

Data Types
char short int float double void
int8_t int16_t int32_t int64_t size_t wchar_t
uint8_t uint16_t uint32_t uint64_t unsigned struct
union enum long
Pointer Parameter Handling
in out user_check count size readonly
isptr sizefunc string wstring
Others

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 40 -

enclave from import trusted untrusted include
public allow isary const propagate_errno
Function Calling Convention
cdecl stdcall fastcall dllimport

Basic Types

EDL supports the following basic types:

char, short, long, int, float, double, void, int8_t,
int16_t, int32_t, int64_t, size_t, wchar_t, uint8_t,
uint16_t, uint32_t, uint64_t, unsigned, struct, enum,
union.

It also supports long long and long double.

Basic data types can be modified using the C modifiers:

const, *, [].

Additional types can be defined by including a C header file.

Structures, Enums and Unions

Basic types and user defined data types can be used inside the struc-
ture/union except it differs from the standard in the following ways:

Illegal Syntax:

enclave{

// 1. Each member of the structure has to be
// defined separately
struct data_def_t{

int a, b, c; // Not allowed
// It has to be int a; int b; int c;

};

// 2. Bit fields in structures/unions are not allowed.
struct bitfields_t{

short i : 3;
short j : 6;
short k : 7;

};

//3. Nested structure definition not allowed
struct my_struct_t{

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 41 -

int out_val;
float out_fval;
struct inner_struct_t{

int in_val;
float in_fval;

};
};

};

Valid Syntax:

enclave{

include "user_types.h" //for ufloat: typedef float ufloat

struct struct_foo_t {
uint32_t struct_foo_0;
uint64_t struct_foo_1;

};

enum enum_foo_t {
ENUM_FOO_0 = 0,
ENUM_FOO_1 = 1

};

union union_foo_t {
uint32_t union_foo_0;
uint32_t union_foo_1;
uint64_t union_foo_3;

};

trusted {

public void test_char(char val);
public void test_int(int val);
public void test_long(long long val);

public void test_float(float val);
public void test_ufloat(ufloat val);
public void test_double(double val);
public void test_long_double(long double val);

public void test_size_t(size_t val);
public void test_wchar_t(wchar_t val);

public void test_struct(struct struct_foo_t val);
public void test_struct2(struct_foo_t val);

public void test_enum(enum enum_foo_t val);
public void test_enum2(enum_foo_t val);

public void test_union(union union_foot_t val);
public void test_union2(union_foo_t val);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 42 -

};

};

Pointers

EDL defines several attributes that can be used with pointers:

in, out, user_check, string, wstring, size, count, size-
func, isptr, readonly.

Each of them is explained in the following topics.

CAUTION:
The pointer attributes explained in this topic apply to ECALL and OCALL func-
tion parameters exclusively, not to the pointers returned by an ECALL or
OCALL function. Thus, pointers returned by an ECALL or OCALL function are
not checked by the edge-routines and must be verified by the enclave code.

Pointer Handling

The [in], [out] and [user_check] are used for handling pointers. The [in] and
[out] serve as direction attributes.

l [in] – when [in] is specified for a pointer argument, the parameter is
passed from the calling procedure to the called procedure. For an ECALL
the in parameter is passed from the application to the enclave, for an
OCALL the parameter is passed from the enclave to the application.

l [out] – when [out] is specified for a pointer argument, the parameter is
returned from the called procedure to the calling procedure. In an ECALL
function an out parameter is passed from the enclave to the application
and an OCALL function passes it from the application to the enclave.

l [in] and [out] attributes may be combined. In this case the parameter is
passed in both directions.

The direction attribute instructs the trusted edge-routines (trusted bridge
and trusted proxy) to copy the buffer pointed by the pointer. In order to copy
the buffer contents, the trusted edge-routines have to know how much data
needs to be copied. For this reason, the direction attribute is usually followed
by a size, count or sizefunc modifier. If neither of these are provided nor
the pointer is NULL, the trusted edge-routine assumes a count of one. When
a buffer is being copied, the trusted bridge must avoid overwriting enclave

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 43 -

memory in an ECALL and the trusted proxy must avoid leaking secrets in an
OCALL. To accomplish this goal, pointers passed as ECALL parameters must
point to untrusted memory and pointers passed as OCALL parameters must
point to trusted memory. If these conditions are not satisfied, the trusted
bridge and the trusted proxy will report an error, respectively, and the ECALL
and OCALL functions will not be executed.

In ECALLs, the trusted bridge checks that the marshaling structure does not
overlap enclave memory, and automatically allocates space on the trusted
stack to hold a copy of the structure. Then it checks that pointer parameters
with their full range do not overlap with enclave memory. When a pointer to
untrusted memory with attribute in is passed to the enclave, the trusted
bridge allocates memory inside the enclave and copies the memory pointed
to by the pointer from outside to the enclave memory. When a pointer to
untrusted memory with the out attribute is passed to the enclave, the trusted
bridge allocates a buffer in trusted memory, zeroes the buffer contents to
clear any previous secrets and passes a pointer to this buffer to the trusted
function. After the trusted function returns, the trusted bridge copies the con-
tents of the trusted buffer to untrusted memory. When the in and out attrib-
utes are combined, the trusted bridge allocates memory inside the enclave,
makes a copy of the buffer in trusted memory before calling the trusted func-
tion, and once the trusted function returns, the trusted bridge copies the con-
tents of the trusted buffer to untrusted memory. The amount of data copied
out is the same as the amount of data copied in.

NOTE:
Due to the fact that the sgx_edger8r tool does not know how to check the
return value of the real trusted function, the generated code will always copy
the buffer outside the enclave when the buffer corresponds to an ECALL
pointer parameter declared with the “out” attribute. You must clear all sens-
itive data from that buffer on failure.

For OCALLs, the trusted proxy allocates memory on the outside stack to pass
the marshaling structure and checks that pointer parameters with their full
range are within enclave. When a pointer to trusted memory with attribute in
is passed from an enclave (an OCALL), the trusted proxy allocates memory out-
side the enclave and copies the memory pointed by the pointer from inside
the enclave to untrusted memory. When a pointer to trusted memory with the
out attribute is passed from an enclave (an OCALL), the trusted proxy alloc-
ates a buffer on the untrusted stack, and passes a pointer to this buffer to the
untrusted function. After the untrusted function returns, the trusted proxy

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 44 -

copies the contents of the untrusted buffer to trusted memory. When the in
and out attributes are combined, the trusted proxy allocates memory outside
the enclave, makes a copy of the buffer in untrusted memory before calling
the untrusted function, and after the untrusted function returns the trusted
proxy copies the contents of the untrusted buffer to trusted memory. The
amount of data copied out is the same as the amount of data copied in.

Before the trusted bridge returns, it frees all the trusted heap memory alloc-
ated at the beginning of the ECALL function for pointer parameters with a dir-
ection attribute. Similarly, when the trusted proxy function returns, it frees all
the untrusted stack memory allocated at the beginning of the OCALL function
for pointer parameters with a direction attribute. Attempting to use a buffer
allocated by the trusted bridge or trusted proxy after these functions return
will result in undefined behavior.

You may use the direction attribute to trade protection for performance.
Otherwise, you must use the user_check attribute described below and val-
idate the data obtained from untrusted memory via pointers before using it,
since the memory a pointer points to could change unexpectedly because it is
stored in untrusted memory. However, the direction attribute does not help
with structures that contain pointers. In this scenario, developers have to val-
idate and copy the buffer contents, recursively if needed, themselves.

Attribute: user_check

In certain situations, the restrictions imposed by the direction attribute may
not support the application needed for data communication across the
enclave boundary. For instance, a buffer might be too large to fit in enclave
memory and needs to be fragmented into smaller blocks that are then pro-
cessed in a series of ECALLs, or an application might require passing a pointer
to trusted memory (enclave context) as an ECALL parameter.

To support these specific scenarios, the EDL language provides the user_
check attribute. Parameters declared with the user_check attribute do not
undergo any of the checks described for [in] and [out] attributes.
However, the ISV must understand the risks associated with passing pointers
in and out the enclave, in general, and the user_check attribute, in par-
ticular. The ISV must ensure that all the pointer checking and data copying are
done correctly or risk compromising enclave secrets.

Example

enclave {

trusted {

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 45 -

public void test_ecall_user_check([user_check] int * ptr);

public void test_ecall_in([in] int * ptr);

public void test_ecall_out([out] int * ptr);

public void test_ecall_in_out([in, out] int * ptr);

};

untrusted {

void test_ocall_user_check([user_check] int * ptr);

void test_ocall_in([in] int * ptr);

void test_ocall_out([out] int * ptr);

void test_ocall_in_out([in, out] int * ptr);

};

};

Illegal Syntax:

enclave {

trusted {

// 1.Pointers without any direction attributes
// or ‘user_check’ are not allowed in edl.

public void test_ecall_not(int * ptr);

// 2.Function pointers are not allowed

public void test_ecall_func([in]int (*func_ptr)());

};
};

In the example shown above:

For ECALL:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 46 -

l [user_check]: In the function test_ecall_user_check, the pointer
ptr will not be verified; you should verify if the pointer has been passed
to the trusted function. The buffer pointed to by ptr is not copied to
inside buffer either.

l [in]: In the function test_ecall_in, a buffer with the same size as the
data type of ‘ptr’(int) will be allocated inside the enclave. Content poin-
ted to by ptr, one integer value, will be copied into the new allocated
memory inside. Any changes performed inside the enclave will not be vis-
ible to the untrusted application.

l [out]: In the function test_ecall_out, a buffer with the same size as
the data type of ‘ptr’(int) will be allocated inside the enclave, but the
content pointed to by ptr, one integer value will not be copied. Instead,
it will be initialized to zero. After the trusted function returns, the buffer
inside the enclave will be copied to the outside buffer pointed to by
ptr.

l [in, out]: In the function test_ecall_in_out, a buffer with the same
size will be allocated inside the enclave, the content pointed to by ptr,
one integer value, will be copied to this buffer. After returning, the buffer
inside the enclave will be copied to the outside buffer.

For OCALL:

l [user_check]: In the function test_ocall_user_check, the pointer
ptr will not be verified; the buffer pointed to by ptr is not copied to an
outside buffer. Besides, the application cannot read/modify the memory
pointed to by ptr, if ptr points to enclave memory.

l [in]: In the function test_ocall_in , a buffer with the same size as the
data type of ptr(int) will be allocated in 'application' side (untrusted
side). Content pointed to by ptr will be copied into the newly allocated
memory outside. Any changes performed by the applicationwill not be
visible inside the enclave.

l [out]: In the function test_ocall_out, a buffer with the same size as
the data type of ptr(int) will be allocated on theapplication side (untrus-
ted side) and its content will be initialized to zero.After the untrusted
function returns, the buffer outside the enclave will be copied to the
enclave buffer pointed to by ptr.

l [in, out]: In the function test_ocall_in_out, a buffer with the same
size will be allocated in the application side, the content pointed to by

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 47 -

ptr will be copied to this buffer. After returning, the buffer outside the
enclave will be copied into the inside enclave buffer.

The following table summarizes wrapper function behaviors when using the
in/out attributes:

Table 12 wrapper function behaviors when using the in/out attributes

ECALL OCALL
user_
check

Pointer is not checked. Users must per-
form the check and/or copy.

Pointer is not checked. Users
must perform the check
and/or copy

in Buffer copied from the application into
the enclave. Afterwards, changes will
only affect the buffer inside enclave.
Safe but slow.

Buffer copied from the
enclave to the application.
Must be used if pointer points
to enclave data.

out Trusted wrapper function will allocate a
buffer to be used by the enclave. Upon
return, this buffer will be copied to the
original buffer.

The untrusted buffer will be
copied into the enclave by
the trusted wrapper function.
Safe but slow.

in,
out

Combines in and out behavior. Data is
copied back and forth.

Same as ECALLs.

Buffer Size Calculation

The generalized formula for calculating the buffer size using these attributes:

Total number of bytes = count * size

l The above formula holds when both count and size/sizefunc are
specified.

l size can be specified by either size or sizefunc attribute.
l If count is not specified for the pointer parameter, then it is assumed to

be equal to 1, for example, count=1. Then total number of bytes equals
to size/sizefunc.

l If size is not specified, then the buffer size is calculated using the
above formula where size is sizeof (element pointed by the pointer).

Attribute: size

The size attribute is used to indicate the buffer size in bytes used for copy
depending on the direction attribute ([in]/[out]) (when there is no count
attribute specified). This attribute is needed because the trusted bridge

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 48 -

needs to know the whole range of the buffer passed as a pointer to ensure it
does not overlap with the enclave memory, and to copy the contents of the
buffer from untrusted memory to trusted memory and/or vice versa depend-
ing on the direction attribute. The size may be either an integer constant or
one of the parameters to the function. size attribute is generally used for
void pointers.

Attribute: sizefunc

The sizefunc attribute modifier depends on a user defined trusted function
which is called by the edge-routines to get the number of bytes to be copied.
The sizefunc has similar functionality as the sizeof() operator. An
example of where sizefunc can be used is for marshaling variable-length
structures, which are buffers whose total size is specified by a combination of
values stored at well-defined locations inside the buffer (although typically it
is at a single location). To prevent “check first, use later” type of attacks, size-
func is called twice. In the first call, sizefunc operates in untrusted
memory. The second time, sizefunc operates in the data copied into trus-
ted memory. If the sizes returned by the two sizefunc calls do not match,
the trusted bridge will cancel the ECALL and will report an error to the untrus-
ted application. Note that sizefunc must not be combined with the size
attribute. sizefunc cannot be used with out alone, however sizefunc
with both in and out is accepted. Additionally, users cannot define size-
func as strlen or wcslen. In all these scenarios, the sgx_edger8r will
throw an error. Strings should not be passed with the sizefunc modifier, but
with the string or wstring keyword. sizefunc can be used with the
count attribute which gives the total length to be equal to sizefunc *
count. The following items are the prototype of the trusted sizefunc that
you need to define inside the enclave:

size_t sizefunc_function_name(const parameter_type * p);

Where parameter_type is the data type of the parameter annotated with
the sizefunc attribute. If you do not provide the definition of the sizefunc
function, the linker will report an error.

NOTE
The function implementing a sizefunc should validate the input pointer
carefully, before really using it. Since the function is called before the pointer
is checked by the generated code.

Example

enclave{

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 49 -

trusted {

// Copies '100' bytes

public void test_size1([in, size=100] void* ptr, size_t len);

// Copies ‘len’ bytes

public void test_size2([in, size=len] void* ptr, size_t len);

// Copies cnt * sizeof(int) bytes

public void test_count([in, count=cnt] int* ptr, unsigned
cnt);

// Copies cnt * len bytes

public void test_count_size([in, count=cnt, size=len] int*
ptr,

unsigned cnt, size_t len);

// Copies get_packet_size bytes
// User must provide a function definition that matches
// size_t get_packet_size(const void* ptr);

void test_sizefunc([in, sizefunc=get_packet_size] void* ptr);

// Copies (get_packet_size * cnt) bytes

void test_sizefunc2(
[in, sizefunc=get_packet_size, count=cnt] void*
ptr,
unsigned cnt);

};
};

Illegal Syntax:

enclave{

include "user_types.h"

trusted {

// size/count/sizefunc attributes must be used with
// pointer direction ([in, out])

void test_attribute_cant([size=len] void* ptr, size_t len);

// Cannot use sizefunc and size together

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 50 -

void test_sizefunc_size(
[in, size=100, sizefunc=packet_len] header* h);

// Cannot use strlen or wcslen as sizefunc

void test_sizefunc_strlen([in, sizefunc=strlen] header* h);
void test_sizefunc_wcslen([in, sizefunc=wcslen] header* h);

};
};

Attribute: count

Count attribute is used to indicate a block of sizeof element pointed by the
pointer in bytes used for copy depending on the direction attribute. The
count and size attribute modifiers serve the same purpose. The number of
bytes copied by the trusted bridge or trusted proxy is the product of the
count and the size of the data type to which the parameter points. The count
may be either an integer constant or one of the parameters to the function.

The size and count attribute modifiers may also be combined. In this case,
the trusted edge-routine will copy a number of bytes that is the product of
the count and size parameters (size*count) specified in the function declar-
ation in the EDL file.

Strings

The attributes string and wstring indicate that the parameter is a NULL
terminated C string or a NULL terminated wchar_t string, respectively. To
prevent "check first, use later" type of attacks, the trusted edge-routine first
operates in untrusted memory to determine the length of the string. Once the
string has been copied into the enclave, then the trusted bridge explicitly
NULL terminates the string. The size of the buffer allocated in trusted memory
accounts for the length is determined in the first step as well as the size of the
string termination character.

NOTE
The string and wstring attributes must not be combined with any other
modifier such as size, count or sizefunc. string and wstring cannot
be used with out alone, however, string and wstring with both in and
out are accepted. In these cases, the sgx_edger8r will report an error.

Example

enclave {

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 51 -

include "user_types.h" // for typedef void * pBuf;
 // and typedef void const * pBuf2;

trusted {

// Cannot use [out] with "string/wstring" alone
// Using [in] , or [in, out] is acceptable

public void test_string([in, out, string] char* str);

public void test_wstring([in, out, wstring] char* wstr);

public void test_const_string([in, string] const char* str);

public void test_isptr(
[in, isptr, size=len] pBufptr,
size_t len);

public void test_isptr_readonly(
[in, out, isptr, readonly, size=len] pBuf2ptr,
size_t len);

};
};

Illegal Syntax:

enclave {

include "user_types.h" //for typedef void const * pBuf2;

trusted {

// string/wstring attributes must be used
// with pointer direction

void test_string_cant([string] char* ptr);

// string/wstring attributes cannot be used
// with [out] attribute

void test_string_out([out, string] char* str);

// sizefunc can’t be used for strings, use [string/wstring]

void test_string_sizefunc_cant(
[in, string, sizefunc=packet_len] header* h);

// Cannot use [out] when using [readonly] attribute

void test_isptr_readonly_cant(
[in, out, isptr, readonly, size=len] pBuf2ptr,

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 52 -

size_t len);
};

};

In the above example, when the string attribute is used for function test_
string, strlen(str)+1 is used as the size for copying the string in and out
of the enclave. The extra byte is for null termination.

In the function test_wstring, wcslen(str)+1 (two-byte units) will be
used as the size for copying the string in and out of the enclave.

In the function test_isptr_readonly, pBuf2 (typedef void const *
pBuf2) is a user defined pointer type, so isptr is used to indicate that it is a
user defined type. Also, the ptr is readonly, so you cannot use the out
attribute. The size attribute indicates the number of bytes to be copied to
the enclave memory.

CAUTION:
Pointers should be decorated with either a pointer direction attribute in, out
or a user_check attribute explicitly.

EDL cannot analyze C typedefs and macros found in C headers. If a pointer
type is aliased to a type/macro that does not have an asterisk (*), the EDL
parser may report an error or not properly copy the pointer’s data.

In such cases, declare the function prototype to use types that have an aster-
isk.

Example:

void foo([in, size=4] PVOID buffer); // error, PVOID is
not a pointer in EDL

void foo([in, size=4] void* buffer); // OK

void foo([in, isptr, size=4] PVOID buffer);

// OK, “isptr” indicates “PVOID” is pointer
type.

void foo(HWND hWnd);

// OK, opaque type, copy by value.
// Actual address must be in untrusted memory

User Defined Data Types

The Enclave Definition Language (EDL) supports user defined data types, but
should be defined in a header file. Any basic datatype which is typedef’ed into

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 53 -

another becomes a user defined data type.

Some user data types need to be annotated with special EDL attributes, such
as isptr, isary and readonly, explained below. If one of these attributes
is missing when a user-defined type parameter requires it so, the compiler will
emit a compilation error in the code that sgx_edger8r generates.

When there is a user defined data type for pointer, isptr is used to indicate
that the user defined parameter is a pointer. See Pointers for more inform-
ation.

When there is a user defined data type for arrays, isary is used to indicate
that the user defined parameter is an array. See Arrays for more information.

const Keyword and readonly Attribute

The EDL language accepts the const keyword with the same meaning as the
const keyword in the C standard. However, the support for this keyword is
limited in the EDL language. It may only be used with pointers and as the out-
ermost qualifier. This satisfies the most important usage in Intel(R) SGX, which
is to detect conflicts between const pointers (pointers to const data) with the
out attribute. Other forms of the const keyword supported in the C stand-
ard are not supported in the EDL language.

When an ECALL or OCALL parameter is a user defined type of a pointer to a
const data type, the parameter should be annotated with the readonly
attribute.

Arrays

The Enclave Definition Language (EDL) supports multidimensional, fixed-size
arrays to be used in data structure definition and parameter declaration. Zero-
length array and flexible array member, however, are not supported. The spe-
cial attribute isary is used to designate function parameters that are of a
user defined type array.

Example

enclave {

include "user_types.h" //for uArray - typedef int uArray[10];

trusted {

public void test_array([in] int arr[4]);

public void test_array_multi([in] int arr[4][4]);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 54 -

public void test_isary([in, isary, size=len] uArray arr,
size_tlen);

};
};

Illegal Syntax:

enclave {

include "user_types.h" //for uArray - typedef int uArray[10];

trusted {

// Flexible array is not supported
public void test_flexible(int arr[][4]);

// Zero-length array is not supported.
public void test_zero(int arr[0]);

// User-defined array types need "isary"
public void test_miss_isary([in, size=len] uArray arr,

size_t len);

};
};

Support for arrays also includes attributes [in], [out] and [user_check],
which are similar in usage to the pointers.

Propagating errno in OCALLs

OCALLs may use the propagate_errno attribute. When you use this attrib-
ute, the sgx_edger8r produces slightly different edge-routines. The errno
variable inside the enclave, which is provided by the trusted Standard C lib-
rary, is overwritten with the value of errno in the untrusted domain before
the OCALL returns. The trusted errno is updated upon OCALL completion
regardless whether the OCALL was successful or not. This does not change the
fundamental behavior of errno. A function that fails must set errno to indic-
ate what went wrong. A function that succeeds, in this case the OCALL, is
allowed to change the value of errno.

Example

enclave {

trusted {
public void test_file_io(void);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 55 -

};

untrusted {

FILE * fopen(
[in,string] const char * filename,
[in,string] const char * mode) propagate_errno;

int fclose([user_check] FILE * stream) propagate_errno;

size_t fwrite(
[in, size=size, count=count] const void * buf-
fer,
size_t size,
size_t count,
[user_check]FILE * stream) propagate_errno;

};
};

Enclave Definition Language Libraries - Creating a Trusted Library with Import/Ex-
port Functions

You can implement export and import functions in external trusted libraries,
akin to static libraries in the untrusted domain. To add these functions to an
enclave, use the enclave definition language (EDL) library import mechanism.

Use the EDL keywords from and import to add a library EDLfile to an
enclave EDL file is done .

The from keyword specifies the location of the library EDL file. Relative and
full paths are accepted. Relative paths are relative to the location of the EDL
file.

The import keyword specifies the functions to import. An asterisk (*) can be
used to import all functions from the library. More than one function can be
imported by writing a list of function names separated by commas.

Syntax

from “lib_filename.edl” import func_name, func2_name;

Or

from “lib_filename.edl” import *;

Example

enclave {

from “secure_comms.edl” import send_email, send_sms;

from "../../sys/other_secure_comms.edl" import *;

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 56 -

};

A library EDL file may import another EDL file, which in turn, may import
another EDL file, creating a hierarchical structure as shown below:

// enclave.edl

enclave {

from “other/file_L1.edl” import *; // Import all functions
};

// Trusted library file_L1.edl

enclave {

from "file_L2.edl" import *;

trusted {
public void test_int(int val);

};
};

// Trusted library file_L2.edl

enclave {

from "file_L3.edl" import *;

trusted {
public void test_ptr(int* ptr);

};
};

// Trusted library file_L3.edl

enclave {

trusted {
public void test_float(float flt);

};
};

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 57 -

Allowing Untrusted Functions to Call Trusted Functions

The default behavior is that the untrusted functions (specified in the untrus-
ted section in the EDL file) of an enclave cannot call any of the trusted func-
tions of this enclave.

If you want to grant an untrusted function access to an enclave exported func-
tion, specify this access using the allow keyword.

Syntax

untrusted {

<function prototype> allow (func_name, func2_name, …);
};

Example

enclave {

trusted {
public void get_secret([out] secret_t* secret);
void set_secret([in] secret_t* secret);

};
untrusted {

void replace_secret(
[in] secret_t* new_secret,
[out] secret_t* old_secret)
allow (set_secret);

};
};

Public and Private ECALLs

Trusted functions are divided into public ECALLs and private ECALLs. Public
ECALLs are those explicitly decorated with a public keyword, without this
keyword, they will be treated as private ECALLs.

A public ECALL can always be directly called or called from a specific OCALL,
whereas a private ECALL can only be called from a specific OCALL. Take the
above EDL as an example, set_secret can only be called within the OCALL
replace_secret.

An enclave EDL must have one or more public ECALLs, otherwise the Enclave
functions cannot be called at all and sgx_edger8r will report an error in this
case.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 58 -

Enclave Configuration File

The enclave configuration file is an XML* based file containing the user
defined parameters of an enclave. This XML file, as one part of the enclave pro-
ject, contains the information of the enclave metadata. A tool named sgx_sign
uses this file as an input to create the signature and metadata for the enclave.
Here is an example of the configuration file:

<EnclaveConfiguration>

<ProdID>100</ProdID>
<ISVSVN>1</ISVSVN>
<StackMaxSize>0x50000</StackMaxSize>
<HeapMaxSize>0x100000</HeapMaxSize>
<TCSNum>1</TCSNum>
<TCSPolicy>1</TCSPolicy>
<DisableDebug>0</DisableDebug>
<MiscSelect>0</MiscSelect>
<MiscMask>0xFFFFFFFF</MiscMask>

</EnclaveConfiguration>

The table below lists the elements defined in the configuration file. All of them
are optional. Without a configuration file or if an element is not present in the
configuration file, the default value will be used.

Table 13 Enclave Configuration Default Values

Tag Description Default Value
ProdID ISV assigned Product ID. 0
ISVSVN ISV assigned SVN. 0
TCSNum The number of TCS. Must be greater

than 0.
1

TCSPolicy TCS management policy.

0 – TCS is bound to the untrusted
thread.
1 – TCS is not bound to the untrusted
thread.

1

StackMaxSize The maximum stack size per thread.
Must be 4KB aligned.

0x40000

HeapMaxSize The maximum heap size for the pro-
cess. Must be 4KB aligned.

0x100000

DisableDebug Enclave cannot be debugged. 0 - Enclave can be
debugged

MiscSelect The desired Misc feature. 0

MiscMask The mask bits for the Misc feature. 0xFFFFFFFF

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 59 -

The TCSNum must be greater than 0. StackMaxSize and HeapMaxSize
must be 4K byte aligned. MiscSelect and MiscMask are for future func-
tional extension. Currently, MiscSelect must be 0. Otherwise the cor-
responding enclave may not be loaded successfully.

To avoid wasting the valuable protected memory resource, you can properly
adjust the StackMaxSize and HeapMaxSize by using the measurement
tool sgx_emmt. See Enclave Memory Measurement Tool for details.

If there is no enough stack for the enclave, ECALL returns the error code SGX_
ERROR_STACK_OVERRUN. This error code gives the information to enclave
writer that the StackMaxSize may need further adjustment.

Load and Unload an Enclave

Enclave source code is built as a dynamic link library. To use an enclave, the
enclave.so should be loaded into enclave memory by calling the API sgx_cre-
ate_enclave(). The enclave.somust be signed by sgx_sign. When loading
an enclave for the first time, the loader will get a launch token and save it back
to the in/out parameter token. The user can save the launch token into a file,
so that when loading an enclave for the second time, the application can get
the launch token from the saved file. Providing a valid launch token can
enhance the load performance. To unload an enclave, the user must call sgx_
destroy_enclave() interface with parameter sgx_enclave_id_t.

The sample code to load and unload an Enclave is shown below.

#include <stdio.h>

#include <tchar.h>

#include "sgx_urts.h"

#define ENCLAVE_FILE _T("Enclave.signed.so")

int main(int argc, char* argv[])

{

sgx_enclave_id_t eid;
sgx_status_t ret = SGX_SUCCESS;
sgx_launch_token_t token = {0};
int updated = 0;

// Create the Enclave with above launch token.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 60 -

ret = sgx_create_enclave(ENCLAVE_FILE, SGX_DEBUG_FLAG, &token,
&updated, &eid, NULL);
if (ret != SGX_SUCCESS) {

printf("App: error %#x, failed to create enclave.\n", ret);
return -1;

}

// A bunch of Enclave calls (ECALL) will happen here.

// Destroy the enclave when all Enclave calls finished.
if(SGX_SUCCESS != sgx_destroy_enclave(eid))

return -1;

return 0;
}

Handling Power Events

The protected memory encryption keys that are stored within an SGX-
enabled CPU are destroyed with every power event, including suspend and
hibernation.

Thus, when a power transition occurs, the enclave memory will be removed
and all enclave data will not be accessible after that. As a result, when the sys-
tem resumes, any subsequent ECALL will fail returning the error code SGX_
ERROR_ENCLAVE_LOST. This specific error code indicates the enclave is lost
due to a power transition.

An SGX application should have the capability to handle any power transition
that might occur while the enclave is loaded in protected memory. To handle
the power event and resume enclave execution with minimum impact, the
application must be prepared to receive the error code SGX_ERROR_
ENCLAVE_LOST when an ECALL fails. When this happens, one and only one
thread from the application must destroy the enclave, sgx_destroy_
enclave(), and reload it again, sgx_create_enclave(). In addition, to
resume execution from where it was when the enclave was destroyed, the
application should periodically seal and save enclave state information on the
platform and use this information to restore the enclave to its original state
after the enclave is reloaded.

The Power Transition sample code included in the SDK demonstrates this pro-
cedure.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 61 -

Intel(R) Software Guard Extensions Sample Code
After installing the Intel(R) Software Guard Extensions SDK, the sample code is
under the sub-folder samples.

l The SampleEnclave project shows how to create an enclave.
l

l The LocalAttestation project shows how to use the Intel Elliptical Curve
Diffie-Hellman key exchange library to establish a trusted channel
between two enclaves running on the same platform.

l The RemoteAttestation project shows how to use the Intel remote attest-
ation and key exchange library in the remote attestation process.

l The X509 project shows how Intel(R) SGX can be used along with
OpenSSL* to verify an X509 certificate safely.

Sample Enclave

The project SampleEnclave is designed to show you how to write an enclave
from scratch. This topic demonstrates the following basic aspects of enclave
features:

l Initialize and destroy an enclave
l Create ECALLs and/or OCALLs
l Call trusted libraries inside the enclave

The source code is shipped with an installation package of the Intel(R) SGX
SDK in $(SGXSDKInstallPath)SampleCode/SampleEnclave. A Make-
file is provided to build the SampleEnclave on Linux.

NOTE:
If the sample project is located in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

Configure and Enable Intel(R) SGX

Some OEM systems support configuration and enabling of Intel(R) SGX in the
BIOS via an SW Control Interface. The Intel SGX PSW exposes an API that ALL
applications should call prior to creating an application. The API sgx_
enable_device configures and enables the Intel SGX device if the platform
has NOT been previously enabled. If the BIOS configures Intel SGX as result of
the call, then a reboot is required for the BIOS configuration to take affect
(Intel SGX will not be available for use until after the reboot). Please, refer to

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 62 -

the query_sgx_status function in the Sample Application for use of this
API. For additional details on sgx_enable_device, refer to the Library
Functions and Type Reference section of this document.

Initialize an Enclave

Before establishing any trusted transaction between an application and an
enclave, the enclave itself needs to be correctly created and initialized. The
procedure is demonstrated as shown in this section.

Retrieve the Saved Token

If the launch token was saved in a previous transaction, it can be retrieved and
used for subsequent enclave initializations. The launch token should be saved
in a per-user directory or a registry entry in case it would be used in a multi-
user environment.

Create an Enclave

After the launch token is retrieved, developers are able to create an enclave
instance by calling sgx_create_enclave provided by the sgx_urts library.
Any error returned by this function should be handled. For example, you can
simply convert them to meaningful error messages. See sgx_create_enclave
for details. .

Store the Updated Token

After the enclave is correctly created and initialized, you may need to save the
token if it has been updated. The fourth parameter of sgx_create_enclave
indicates whether or not an update has been performed.

ECALL/OCALL Functions

The ECALL is an entry point for an application to utilize Intel(R) SGX cap-
abilities; it not only includes a functional declaration in the trusted section of
an EDL file, but also an actual functional implementation inside the enclave.

An OCALL provides an access point that enables you to use operating system
capabilities outside the enclave such as system calls, I/O operations, and so on.
A public ECALL is mandatory for writing an enclave, while OCALLs are optional.

This sample demonstrates basic EDL syntax used by ECALL/OCALL functions,
as well as using trusted libraries inside the enclave. You may see Enclave Defin-
ition Language Syntax for syntax details and Trusted Libraries for C/C++ sup-
port.

EDL Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 63 -

Syntax Category Attributes Covered
Array [], isary
Data Types struct, enum, union, char, int, float, double, size_t, wchar_t
Function public, private, cdecl, dllimport, allow
Pointer user_check, in, out, string, const, size, count, isptr,

readonly, sizefunc

Trusted Libraries

Library Category Functionalities Covered
Standard C Library Memory Allocation and Free
Standard C++
Library

C++ Exception, STL <map> Template

Trusted Thread
Library

Mutex, Condition Variable

Destroy an Enclave

To release the enclave memory, you need to invoke sgx_destroy_enclave
provided by the sgx_urts library. It will recycle the EPC memory and untrus-
ted resources used by that enclave instance.

Power Transition

If a power transition occurs, the enclave memory will be removed and all the
enclave data will be inaccessible. Consequently, when the system is resumed,
each of the in-process ECALLS and the subsequent ECALLs will fail with the
error code SGX_ERROR_ENCLAVE_LOST which indicates the enclave is lost
due to a power transition.

An Intel(R) Software Guard Extensions project should have the capability to
handle the power transition which might impact its behavior. The project
named PowerTransition describes one method of developing Intel(R) Soft-
ware Guard Extensions projects that handle power transitions. See ECALL-
Error-Code Based Retry for more info.

PowerTransition demonstrates the following scenario: an enclave instance is
created and initialized by one main thread and shared with three other child
threads; The three child threads repeatedly ECALL into the enclave, manip-
ulate secret data within the enclave and backup the corresponding encrypted
data outside the enclave; After all the child threads finish, the main thread des-
troys the enclave and frees the associated system resources. If a power trans-
ition happens, one and only one thread will reload the enclave and restore the

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 64 -

secret data inside the enclave with the encrypted data that was saved outside
and then continues the execution.

The PowerTransition sample code is released with Intel(R) SGX SDK in
$(SGXSDKInstallPath)SampleCode/PowerTransition. A Makefile is
provided to build the sample code on Linux* OS.

NOTE:
If the sample project locates in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

ECALL-Error-Code Based Retry

After a power transition, an Intel(R) SGX error code SGX_ERROR_ENCLAVE_
LOST will be returned for the current ECALL. To handle the power transition
and continue the project without impact, you need to destroy the invalid
enclave to free resources first and then retry with a newly created and ini-
tialized enclave instance, as depicted in the following figure.

Figure 1 Power Transition Handling Flow Chart

ECALLs in Demonstration

PowerTransition demonstrates handling the power transition in two types of
ECALLs:

1. Initialization ECALL after enclave creation.
2. Normal ECALL to manipulate secrets within the enclave.

Initialization ECALL after Enclave Creation

PowerTransition illustrates one initialization ECALL after enclave creation
which is shown in the following figure:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 65 -

Figure 2 Enclave Initialization ECall after Enclave Creation Flow Chart

sgx_create_enclave is a key API provided by the uRTS library for enclave cre-
ation. For sgx_create_enclave, a mechanism of power transition handling is
already implemented in the uRTS library. Therefore, it is unnecessary to manu-
ally handle power transition for this API.

NOTE:
To concentrate on handling a power transition, PowerTransition assumes the
enclave file and the launch token are located in the same directory as the
application. See Sample Enclave for how to store the launch token properly.

Normal ECALL to Process Secrets within the Enclave

This is the most common ECALL type into an enclave. PowerTransition demon-
strates the power transition handling for this type of ECALL in a child thread
after the enclave creation and initialization by the main thread, as depicted in
the figure below. Since the enclave instance is shared by the child threads, it is
required to make sure one and only one child thread to re-creates and re-ini-
tializes the enclave instance after the power transition and the others utilize
the re-created enclave instance directly. PowerTransition confirms this point
by checking whether the Enclave ID is updated.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 66 -

Figure 3 Regular ECALL Flow Chart

NOTE:
During the ECALL process, it is recommended to back up the confidential data
as cipher text outside the enclave frequently. Then we can use the backup
data to restore the enclave to reduce the power transition impacts.

Attestation

In the Intel(R) Software Guard Extensions architecture, attestation refers to
the process of demonstrating that a specific enclave was established on the
platform. The Intel(R) SGX Architecture provides two attestation mechanisms:

l One creates an authenticated assertion between two enclaves running
on the same platform referred to as local attestation.

l The second mechanism extends local attestation to provide assertions
to 3rd parties outside the platform referred to as remote attestation.
The remote attestation process leverages a quoting service.

The Intel(R) Software Guard Extensions SDK provides APIs used by applic-
ations to implement the attestation process.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 67 -

Local Attestation

Local attestation refers to two enclaves on the same platform authenticating
to each other using the SGX REPORT mechanism before exchanging inform-
ation. In an Intel(R) SGX application, multiple enclaves might collaborate to per-
form certain functions. After the two enclaves verify the counterpart is
trustworthy, they can exchange information on a protected channel, which typ-
ically provides confidentiality, integrity and replay protection. The local attest-
ation and protected channel establishment uses the REPORT based Diffie-
Hellman Key Exchange* protocol.

You can find a sample solution shipped with the Intel(R) Software Guard Exten-
sions SDK at $(SGXSDKInstallPath)SampleCode/Local_Attest-
ation directory. A Makefile is provided to compile the project.

NOTE:
If the sample project locates in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

The sample code shows an example implementation of local attestation,
including protected channel establishment and secret message exchange
using enclave to enclave function call as an example.

Diffie-Hellman Key Exchange Library and Local Attestation Flow

The local attestation sample in the SDK uses the Diffie-Hellman (DH) key
exchange library to establish a protected channel between two enclaves. The
DH key exchange APIs are described in sgx_dh.h. The key exchange library
is part of the Intel(R) SGX application SDK trusted libraries. It is statically
linked with the enclave code and exposes APIs for the enclave code to gen-
erate and process local key exchange protocol messages. The library is com-
bined with other libraries and is built into the final library called libsgx_
tservice.a that is part of the SDK release.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 68 -

Figure 4 Local Attestation Flow with the DH Key Exchange Library

The figure above represents the usage of DH key exchange library. A local
attestation flow consists of the following steps:

1. ISV Enclave 1 calls the Intel ECDH key exchange library to initiate the ses-
sion with the initiator role.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 69 -

2. The Enclave 1 does an OCALL into the untrusted code requesting the Dif-
fie-Hellman Message 1 and session id.

3. The untrusted code does an ECALL into Enclave 2.
4. Enclave 2 in turn calls the ECDH key exchange library to initiate the ses-

sion with the responder role.
5. Enclave 2 calls the key exchange library to generate DH Message 1 ga

|| TARGETINFO Enclave 2.
6. DH Message 1 is sent back from Enclave 2 to Enclave 1 through an ECALL

return to the untrusted code followed by an OCALL return into Enclave
1.

7. Enclave 1 processes the Message 1 using the key exchange library API
and generates DH Message 2 gb||[Report Enclave 1(h(ga ||
gb))]SMK.

8. DH Message 2 is sent to the untrusted side through an OCALL.
9. The untrusted code does an ECALL into Enclave 2 giving it the DH Mes-

sage 2 and requesting DH Message 3.
10. Enclave 2 calls the key exchange library API to process DH Message 2

and generates DH Message 3 [ReportEnclave2(h(gb || ga)) ||
Optional Payload]SMK.

11. DH Message 3 is sent back from Enclave2 to Enclave1 through an ECALL
return to the untrusted code followed by an OCALL return into Enclave
1.

12. Enclave 2 uses the key exchange library to process DH Message 3 and
establish the session.

13. Messages exchanged between the enclaves are protected by the AEK.

Protected Channel Establishment

The following figure illustrates the interaction between two enclaves, namely
the source enclave and the destination enclave, to establish a session. The
application initiates a session between the source enclave and the destination
enclave by doing an ECALL into the source enclave, passing in the enclave id of
the destination enclave. Upon receiving the enclave id of the destination
enclave, the source enclave does an OCALL into the core untrusted code
which then does an ECALL into the destination enclave to exchange the mes-
sages required to establish a session using ECDH Key Exchange* protocol.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 70 -

Figure 5 Secure Channel Establishment Flow with the DH Key Exchange
Library

Secret Message Exchange and Enclave to Enclave Call

The following figure illustrates the message exchange between two enclaves.
After the establishment of the protected channel, session keys are used to
encrypt the payload in the message(s) being exchanged between the source
and destination enclaves. The sample code implements interfaces to encrypt

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 71 -

the payload of the message. The sample code also shows the implementation
of an enclave calling a function from another enclave. Call type, target function
ID, total input parameter length and input parameters are encapsulated in the
payload of the secret message sent from the caller (source) Enclave and the
callee (destination) enclave. As one enclave cannot access memory of another
enclave, all input and output parameters, including data indirectly referenced
by a parameter needs to be marshaled across the two enclaves. The sample
code uses Intel(R) SGX SDK trusted cryptographic library to encrypt the pay-
load of the message. Through such encryption, message exchange is just the
secret and in case of the enclave to enclave call is the marshaled destination
enclave’s function id, total parameter length and all the parameters. The des-
tination enclave decrypts the payload and calls the appropriate function. The
results of the function call are encrypted using the session keys and sent back
to the source enclave.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 72 -

Figure 6 Secret Message Exchange Flow with the DH Key Exchange Library

Remote Attestation

Generally speaking, Remote Attestation is the concept of a HW entity or of a
combination of HW and SW gaining the trust of a remote provider or producer
of some sort. With Intel(R) SGX, Remote Attestation software includes the

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 73 -

app’s enclave and the Intel-provided Quoting Enclave (QE) and Provisioning
Enclave (PvE). The attestation HW is the Intel(R) SGX enabled CPU.

Remote Attestation alone is not enough for the remote party to be able to
securely deliver their service (secrets or assets). Securely delivering services
also requires a secure communication session. Remote Attestation is used dur-
ing the establishment of such a session. This is analogous to how the familiar
SSL handshake includes both authentication and session establishment.

The Intel(R) Software Guard Extensions SDK includes sample code showing:

l How an application enclave can attest to a remote party.
l How an application enclave and the remote party can establish a secure

session.

The SDK includes a remote session establishment or key exchange (KE) lib-
raries that can be used to greatly simplify these processes.

You can find the sample code for remote attestation in the directory
$(SGXSDKInstallPath)SampleCode/RemoteAttestation.

NOTE:
To run the sample code in the hardware mode, you need to access to Internet.

NOTE:
If the sample project is located in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

Intel(R) SGX uses an anonymous signature scheme, Enhanced Privacy ID
(EPID), for authentication (for example, attestation). The supplied key
exchange libraries implement a Sigma-like protocol for session establishment.
Sigma is a protocol that includes a Diffie-Hellman key exchange, but also
addresses the weaknesses of DH. The protocol Intel(R) SGX uses differs from
the Sigma protocol that’s used in IKE v1 and v2 in that the Intel(R) SGX plat-
form uses EPID to authenticate while the service provider uses PKI. (In Sigma,
both parties use PKI.) Finally, the KE libraries require the service provider to
use an ECDSA, not an RSA, key pair in the authentication portion of the pro-
tocol and the libraries use ECDH for the actual key exchange.

Remote Key Exchange (KE) Libraries

The RemoteAttestation sample in the SDK uses the remote KE libraries as
described above to create a remote attestation of an enclave, and uses that

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 74 -

attestation during establishment of a secure session (a key exchange).

There are both untrusted and trusted KE libraries. The untrusted KE library is
provided as a static library, libsgx_ukey_exchange.a. The Intel(R)
SGX application needs to link with this library and include the header file
sgx_ukey_exchange.h, containing the prototypes for the APIs that the KE
trusted library exposes.

The trusted KE library is also provided as a static library. As a trusted library,
the process for using it is slightly different than that for the untrusted KE lib-
rary. The main difference relates to the fact that the trusted KE library
exposes ECALLs called by the untrusted KE library. This means that the library
has a corresponding EDL file, sgx_tkey_exchange.edl, which has to be
imported in the EDL file for the application enclave that uses the library. We
can see this in code snippet below, showing the complete contents of app_
enclave.edl, the EDL file for the app enclave in the sample code.

enclave {

from "sgx_tkey_exchange.edl" import *;
include "sgx_key_exchange.h"
include "sgx_trts.h"
trusted {

public sgx_status_t enclave_init_ra(
int b_pse,
[out] sgx_ra_context_t *p_context);

public sgx_status_t enclave_ra_close(
sgx_ra_context_t context);

};
};

It’s worth noting that sgx_key_exchange.h contains types specific to
remote key exchange and must be included as shown above as well as in the
untrusted code of the application that uses the enclave. Finally, sgx_tkey_
exchange.h is a header file that includes prototypes for the APIs that the
trusted library exposes, but that are not ECALLs, i.e., APIs called by ISV code in
the application enclave.

Remote Attestation and Protected Session Establishment

This topic describes the functionality of the remote attestation sample in
detail.

NOTE:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 75 -

In the sample code, the service provider is modeled as a Shared Object, ser-
vice_provider.so. The sample service provider does not depend on Intel
(R) SGX headers, type definitions, libraries, and so on. This was done to demon-
strate that the Intel SGX is not required in any way when building a remote
attestation service provider.

Figure 7 Remote Attestation and Trust Channel Establishment Flow

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 76 -

An Intel(R) Software Guard Extensions (Intel(R) SGX) application would typ-
ically begin by requesting service (for example, media streaming) from a ser-
vice provider (SP) and the SP would respond with a challenge. This is not
shown in the figure. The figure begins with the app’s reaction to the challenge.

1. The flow starts with the app entering the enclave that will be the end-
point of the KE, passing in b_pse, a flag indicating whether the app/en-
clave uses Platform Services.

2. If b_pse is true, then the isv enclave shall call trusted AE support library
with sgx_create_pse_session() to establish a session with PSE.

3. Code in the enclave calls sgx_ra_init(), passing in the SP’s ECDSA
public key, g_sp_pub_key, and b_pse. The integrity of g_sp_pub_
key is a public key is important so this value should just be built into isv_
enclave.

4. Close PSE session by sgx_close_pse_session() if a session is estab-
lished before. The requirement is that, if the app enclave uses Platform
Services, the session with the PSE must already be established before
the app enclave calls sgx_ra_init().

5. sgx_ra_init() returns the KE context to the app enclave and the
app enclave returns the context to the app.

6. The application calls sgx_get_extended_epid_group_id() and
sends the value returned in p_extended_epid_group_id to the
server in msg0.

7. The server checks whether the extended EPID group ID is supported. If
the ID is not supported, the server aborts remote attestation.

NOTE:
Currently, the only valid extended EPID group ID is zero. The server
should verify this value is zero. If the EPID group ID is not zero, the server
aborts remote attestation.

8. The application calls sgx_ra_get_msg1(), passing in this KE's context.
Figure 3 shows the app also passing in a pointer to the untrusted proxy
corresponding to sgx_ra_get_ga, exposed by the TKE. This reflects
the fact that the names of untrusted proxies are enclave-specific.

9. sgx_ra_get_msg1() builds an S1 message = (ga || GID) and returns it
to the app.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 77 -

10. The app sends S1 to the service provider (SP) by ra_network_send_
receive(), it will call sp_ra_proc_msg1_req() to process S1 and
generate S2.

11. Application eventually receives S2 = gb || SPID || 2-byte
TYPE || SigSP(gb, ga) || CMAC

SMK
(gb || SPID || 2-byte

TYPE || SigSP(gb, ga)) || SigRL.
12. The application calls sgx_ra_proc_msg2(), passing in S2 and the con-

text.
13. The code in sgx_ra_proc_msg2() builds S3 = CMAC

SMK
(M)||M

where M = ga ||PS_SECURITY_PROPERTY|| QUOTE and returns it.
Platform Services Security Information is included only if the app/en-
clave uses Platform Services.

14. Application sends the msg3 to the SP by ra_network_send_
receive(), and the SP verifies the msg3.

15. SP returns the verification result to the application.

At this point, a session has been established and keys exchanged. Whether the
service provider thinks the session is secure and uses it depends on the secur-
ity properties of the platform as indicated by the S3 message. If the platform’s
security properties meet the service provider’s criteria, then the service pro-
vider can use the session keys to securely deliver a secret and the app enclave
can consume the secret any time after it retrieves the session keys by calling
sgx_ra_get_keys() on the trusted KE library. This is not shown in the fig-
ure, nor is the closing of the session. Closing the session requires entering the
app enclave and calling sgx_ra_close() on the trusted KE library, among
other app enclave-specific cleanup.

Debugging a Remote Attestation Service Provider

As an ISV writing the remote attestation service provider, you may want to
debug the message flow. One way to do this would be to provide pre-gen-
erated messages that can be replayed and verified. However, not that S1 mes-
sage = (GID || ga) includes the random component ga generated
inside an enclave. Also, the remote attestation service provider generates a
random public+private key pair as part of its msg2 generation, but without
any interaction with Intel(R) SGX. Finally, each of these has state or context
that is associated with cryptographic operations and is used to ensure that cer-
tain calls being made are in the correct order and that the state is consistent.
These characteristics help protect the remote attestation flow against attacks,
but also make it more difficult to replay pre-generated messages.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 78 -

To overcome these, the cryptographic library is modified and used (only) by
the sample service provider. Any time that key generation, signing, or other
operation requests a random number, the number 9 is returned. This means
that the crypto functions from libsample_libcrypto.so are predictable
and cryptographically weak. If we can replay msg1 send from the isv_app,
the sample service_provider. will always generate the exact same msg2.
We now have a sufficient system to replay messages sent by the isv_app
and have it verify that the responses sent by the remote service are the expec-
ted ones.

To replay messages and exercise this verification flow, pass in 1 or 2 as a com-
mand-line argument when running the sample application isv_app. The
isv_app will ignore errors generated by the built-in checks in the Intel SGX.
Developers wishing to debug their remote attestation service provider should
be able to temporarily modify their cryptographic subsystem to behave in a
similar manner as the libsample_libcrypto.so and replay the pre-com-
puted messages stored in sample_messages.h. The responses from their
own remote attestation service provider should match the ones generated by
ours, which are also stored in sample_messages.h.

NOTE
Do not use the sample cryptographic library provided in this sample in pro-
duction code.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 79 -

Library Functions and Type Reference
This topic includes the following sub-topics to describe library functions and
type reference for Intel(R) Software Guard Extensions SDK:

l Untrusted Library Functions
l Trusted Libraries
l Function Descriptions
l Types and Enumerations
l Error Codes

Untrusted Library Functions

The untrusted library functions can only be called from application code - out-
side the enclave.

The untrusted libraries built for the hardware mode contain a string with the
release number. The string version, which uses the library name as the prefix,
is defined when the library is built. The string version consists of various para-
meters such as the product number, SVN revision number, build number, and
so on. This mechanism ensures all untrusted libraries shipped in a given Intel
(R) SGX PSW/SDK release have the same version number and allows quick
identification of the untrusted libraries linked into an untrusted component.

For instance, libsgx_urts.so contains a string version SGX_URTS_
VERSION_1.0.0.0. The last digit varies depending on the specific Intel SGX
PSW/SDK release number.

Enclave Creation and Destruction

These functions are used to either create or destroy enclaves:

l sgx_create_enclave
l sgx_destroy_enclave

Quoting Functions

These functions allow application enclaves to ensure that they are running on
an Intel(R) Software Guard Extensions environment.

NOTE:
To run these functions in the hardware mode, you need to access to Internet.
Configure the system network proxy settings if needed.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 80 -

l sgx_init_quote
l sgx_get_quote_size
l sgx_get_quote
l sgx_report_attestation_status

Untrusted Key Exchange Functions

These functions allow exchanging of secrets between ISV’s server and
enclaves. They are used in concert with the trusted Key Exchange functions.

NOTE:
To run these functions in the hardware mode, you need to access to Internet.
Configure the system network proxy settings if needed.

l sgx_ra_get_msg1
l sgx_ra_proc_msg2

Untrusted Platform Service Function

This function helps ISVs determine what Intel(R) SGX Platform Services are
supported by the platform.

NOTE:
To run this function in the hardware mode, you need to access to Internet. Con-
figure the system network proxy settings if needed.

l sgx_get_ps_cap

Trusted Libraries

The trusted libraries are static libraries that linked with the enclave binary.
The Intel(R) Software Guard Extensions SDK ships with several trusted lib-
raries that cover domains such as standard C/C++ libraries, synchronization,
encryption and more.

These functions/objects can only be used from within the enclave.

Trusted libraries built for HW mode (for example, not for simulation) contain a
string with the release number. The string version, which uses the library name
as prefix, is defined when the SDK is built and consists of various parameters
such as the product number, SVN revision number, build number, and so on.
This mechanism ensures all trusted libraries shipped in a given SDK release
will have the same version number and allows quick identification of the trus-
ted libraries linked into an enclave.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 81 -

For instance, libsgx_tstdc.a contains a string version like SGX_TSTDC_
VERSION_1.0.0.0. Of course, the last digits vary depending on the SDK
release.

CAUTION:
Do not link the enclave with any untrusted library including C/C++ standard lib-
raries. This action will either fail the enclave signing process or cause a runtime
failure due to the use of restricted instructions.

Trusted Runtime System

The Intel(R) SGX trusted runtime system (tRTS) is a key component of the
Intel(R) Software Guard Extensions SDK. It provides the enclave entry point
logic as well as other functions to be used by enclave developers.

l Intel(R) Software Guard Extensions Helper Functions
l Custom Exception Handling

Intel(R) Software Guard Extensions Helper Functions

The tRTS provides the following helper functions for you to determine
whether a given address is within or outside enclave memory.

l sgx_is_within_enclave
l sgx_is_outside_enclave

The tRTS provides a wrapper to the RDRAND instruction to generate a true
random number from hardware. The C/C++ standard library functions rand
and srand functions are not supported within an enclave because they only
provide pseudo random numbers. Instead, enclave developers should use the
sgx_read_rand function to get true random numbers.

l sgx_read_rand

Custom Exception Handling

The Intel(R) Software Guard Extensions SDK provides an API to allow you to
register functions, or exception handlers, to handle a limited set of hardware
exceptions. When one of the enclave supported hardware exceptions occurs
within the enclave, the registered exception handlers will be called in a spe-
cific order until an exception handler reports that it has handled the excep-
tion. For example, issuing a CPUID instruction inside an Enclave will result in a
#UD fault (Invalid Opcode Exception). ISV enclave code can call sgx_
register_exception_handler to register a function of type sgx_excep-
tion_handler_t to respond to this exception. To check a list of enclave

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 82 -

supported exceptions, see Intel(R) Software Guard Extensions Programming
Reference.

NOTE:
Custom exception handling is only supported in HW mode. Although the
exception handlers can be registered in simulation mode, the exceptions can-
not be caught and handled within the enclave.

NOTE:
OCALLs are not allowed in the exception handler.

Note:

If the exception handlers can not handle the exceptions, abort() is called.
abort() makes the enclave unusable and generates another exception.

The Custom Exception Handling APIs are listed below:

l sgx_register_exception_handler
l sgx_unregister_exception_handler

Custom Exception Handler for CPUID Instruction

If an ISV requiresusing the CPUID information within an enclave, then the
enclave code must make an OCALL to perform the CPUID instruction in the
untrusted application. The Intel(R) SGX SDK provides two functions in the lib-
rary sgx_tstdc to obtain CPUID information through an OCALL:

l sgx_cpuid
l sgx_cpuid_ex

In addition, the Intel SGX SDK also provides the following intrinsics which call
the above functions to obtain CPUID data:

l __cpuid
l __cpuidex

Both the functions and intrinsics result in an OCALL to the uRTS library to
obtain CPUID data. The results are returned from an untrusted component in
the system. It is recommended that threat evaluation be performed to ensure
that CPUID return values are not problematic. Ideally, sanity checking of the
return values should be performed.

If an ISV's enclave uses a third party library which executes the CPUID instruc-
tion, then the ISV would need to provide a custom exception handler to

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 83 -

handle the exception generated from issuing the CPUID instruction (unless the
third party library registers its own exception handler for CPUID support). The
ISV is responsible for analyzing the usage of the specific CPUID result
provided by the untrusted domain to ensure it does not compromise the
enclave security properties. Recommended implementation of the CPUID
exception handler involves:

1. ISV analyzes the third party library CPUID usages, identifying required
CPUID results.

2. ISV enclave code initialization routine populates a cache of the required
CPUID results inside the enclave. This cache might be maintained by the
RTS or by ISV code.

3. ISV enclave code initialization routine registers a custom exception hand-
ler.

4. The custom exception handler, when invoked, examines the exception
information and faulting instruction. If the exception is caused by a
CPUID instruction:

1. Retrieve the cached CPUID result and populate the CPUID instruc-
tion output registers.

2. Advance the RIP to bypass the CPUID instruction and complete the
exception handling.

Trusted Service Library

The Intel(R) Software Guard Extensions SDK provides a trusted library named
sgx_tservice for secure data manipulation and protection. The sgx_tser-
vice library provides the following trusted functionality and services:

l Intel(R) Software Guard Extensions Instruction Wrapper Functions
l Intel(R) Software Guard Extensions Sealing and Unsealing Functions
l Untrusted Platform Service Function
l Diffie–Hellman (DH) Session Establishment Functions

Intel(R) Software Guard Extensions Instruction Wrapper Functions

The sgx_tservice library provides functions for getting specific keys and
for creating and verifying an enclave report. The API functions are listed
below:

l sgx_get_key
l sgx_create_report
l sgx_verify_report

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 84 -

Intel(R) Software Guard Extensions Sealing and Unsealing Functions

The sgx_tservice library provides the following functions:

l Exposes APIs to create sealed data which is both confidentiality and
integrity protected.

l Exposes an API to unseal sealed data inside the enclave.
l Provides APIs to authenticate and verify the input data with AES-GMAC.

See the following related topics for more information.

l sgx_seal_data
l sgx_seal_data_ex
l sgx_unseal_data
l sgx_mac_aadata
l sgx_mac_aadata_ex
l sgx_unmac_aadata

The library also provides APIs to help calculate the sealed data size, encrypt
text length, and Message Authentication Code (MAC) text length.

l sgx_calc_sealed_data_size
l sgx_get_add_mac_txt_len
l sgx_get_encrypt_txt_len

SealLibrary Introduction

When an enclave is instantiated, it provides protections (confidentiality and
integrity) to the data by keeping it within the boundary of the enclave. Enclave
developers should identify enclave data and/or state that is considered secret
and potentially needs preservation across the following enclave destruction
events:

l Application is done with the enclave and closes it.
l Application itself is closed.
l The platform is hibernated or shutdown.

In general, the secrets provisioned within an enclave are lost when the enclave
is closed. However if the secret data needs to be preserved during one of
these events for future use within an enclave, it must be stored outside the
enclave boundary before closing the enclave. In order to protect and preserve
the data, a mechanism is in place which allows enclave software to retrieve a
key unique to that enclave. This key can only be generated by that enclave on
that particular platform. Enclave software uses that key to encrypt data to the

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 85 -

platform or to decrypt data already on the platform. Refer to these encrypt
and decrypt operations as sealing and unsealing respectively as the data is
cryptographically sealed to the enclave and platform.

To provide strong protection against potential key-wear-out attacks, a unique
seal key is generated for each data blob encrypted with the sgx_seal_data
API call. A key ID for each encrypted data blob is stored in clear alongside the
encrypted data blob. The key ID is used to re-generate the seal key to decrypt
the data blob.

AES-GCM (AES – Advanced Encryption Standard) is utilized to encrypt and
MAC-protect the payload. To protect against software-based side channel
attacks, the crypto implementation of AES-GCM utilizes AES-NI, which is
immune to software-based side channel attacks. The Galois/Counter Mode
(GCM) is a mode of operation of the AES algorithm. GCM assures authenticity
of the confidential data (of up to about 64 GB per invocation) using a universal
hash function. GCM can also provide authentication assurance for additional
data (of practically unlimited length per invocation) that is not encrypted. GCM
can also provide authentication assurance for additional data (of practically
unlimited length per invocation) that is not encrypted. If the GCM input con-
tains only data that is not to be encrypted, the resulting specialization of GCM,
called GMAC (Galois Message Authentication Code), is simply an authentication
mode for the input data. The sgx_mac_aadata API call restricts the input to
non-confidential data to provide data origin authentication only. The single
output of this function is the authentication tag.

Example Use Cases

One example is that an application may start collecting secret state while
executing that needs to be preserved and utilized on future invocations of
that application. Another example is during application installation, a secret
key may need to be preserved and verified upon starting the application.

For these cases the seal APIs can be utilized to seal the secret data (key or
state) in the examples above, and then unseal the secret data when needed.

Sealing

1. Use sgx_calc_sealed_data_size to calculate the number of bytes
to allocate for the sgx_sealed_data_t structure.

2. Allocate memory for the sgx_sealed_data_t structure.
3. Call sgx_seal_data to perform sealing operation
4. Save the sealed data structure for future use.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 86 -

Unsealing

1. Use sgx_get_encrypt_txt_len and sgx_get_add_mac_txt_
len to determine the size of the buffers to allocate in terms of bytes.

2. Allocate memory for the decrypted text and additional text buffers.
3. Call sgx_unseal_data to perform the unsealing operation.

Trusted Platform Service Functions

The sgx_tservice library provides the following functions that allow an ISV
to use platform services and get platform services security property.

This API is only available in simulation mode.

l sgx_create_pse_session
l sgx_close_pse_session
l sgx_get_ps_sec_prop
l sgx_get_trusted_time
l sgx_create_monotonic_counter_ex
l sgx_create_monotonic_counter
l sgx_destroy_monotonic_counter
l sgx_increment_monotonic_counter
l sgx_read_monotonic_counter

NOTE
One application is not able to access the monotonic counter created by
another application in the simulation mode. This also affects two different
applications using the same enclave.

Diffie–Hellman (DH) Session Establishment Functions

These functions allow an ISV to establish secure session between two enclaves
using the EC DH Key exchange protocol.

l sgx_dh_init_session
l sgx_dh_responder_gen_msg1
l sgx_dh_initiator_proc_msg1
l sgx_dh_responder_proc_msg2
l sgx_dh_initiator_proc_msg3

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 87 -

C Standard Library

The Intel(R) Software Guard Extensions SDK includes a trusted version of the
C standard library. The library is named sgx_tstdc (trusted standard C), and
can only be used inside an enclave. Standard C headers are located under
$(SGXSDKInstallPath)include/tlibc.

sgx_tstdc provides a subset of C99 functions that are ported from
OpenBSD* project. Some functions are not allowed to use inside the enclave
for following reasons:

l The definition implies usage of a restricted CPU instruction.
l The definition is known to be unsafe or insecure.
l The definition implementation is too large to fit inside an enclave or

relies heavily on information from the untrusted domain.
l The definition is compiler specific, and not part of the standard.
l The definition is a part of the standard, but it is not supported by a spe-

cific compiler.

See Unsupported C Standard Functions for a list of unsupported C99 defin-
itions within an enclave.

Locale Functions

A trusted version of locale functions is not provided primarily due to the size
restriction. Those functions rely heavily on the localization data (normally 1MB
to 2MB), which should be preloaded into the enclave in advance to ensure
that it will not be modified from the untrusted domain. This practice would
increase the footprint of an enclave, especially for those enclaves not depend-
ing on the locale functionality. Moreover, since localization data is not avail-
able, wide character functions inquiring enclave locale settings are not
supported either.

Random Number Generation Functions

The random functions srand and rand are not supported in the Intel(R) SGX
SDK C library. A true random function sgx_read_rand is provided in the
tRTS library by using the RDRAND instruction. However, in the Intel(R) SGX
simulation environment, this function still generates pseudo random numbers
because RDRAND may not be available on the hardware platform.

String Functions

The functions strcpy and strcat are not supported in the Intel(R) SGX SDK
C library. You are recommended to use strncpy and strncat instead.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 88 -

Abort Function

The abort() function is supported within an enclave but has different beha-
vior. When a thread calls the abort function, it makes the enclave unusable by
setting the enclave state to a specific value that allows the tRTS and applic-
ation to detect and report this event. The aborting thread generates an excep-
tion and exits the enclave, while other enclave threads continue running
normally until they exit the enclave. Once the enclave is in the unusable state,
subsequent enclave calls and OCALL returns generate the same error indic-
ating that the enclave is no longer usable. After all thread calls abort, the
enclave is locked and cannot be recovered. You have to destroy, reload and
reinitialize the enclave to make it usable again.

Thread Synchronization Primitives

Multiple untrusted threads may enter an enclave simultaneously as long as
more than one thread context is defined by the application and created by
the untrusted loader. Once multiple threads execute concurrently within an
enclave, they will need some forms of synchronization mechanism if they
intend to operate on any global data structure. In some cases, threads may use
the atomic operations provided by the processor’s ISA. In the general case,
however, they would use synchronization objects and mechanisms similar to
those available outside the enclave.

The Intel(R) Software Guard Extensions SDK already supports mutex and con-
ditional variable synchronization mechanisms by means of the following API
and data types defined in the Types and Enumerations section. Some func-
tions included in the trusted Thread Synchronization library may make calls
outside the enclave (OCALLs). Developers who use these APIs must first
import needed OCALL functions from the sgx_tstdc.edl file. Otherwise,
developers will get a linker error when the enclave is being built; see Calling
Functions outside the Enclave for additional details. The table below illus-
trates the primitives that the Intel(R) SGX Thread Synchronization library sup-
ports, as well as the OCALLs that each API function needs.

Function API OCall Function
Mutex Synchronization sgx_thread_

mutex_init
sgx_thread_
mutex_destroy
sgx_thread_
mutex_lock

sgx_thread_wait_untrusted_
event_ocall

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 89 -

sgx_thread_
mutex_trylock
sgx_thread_
mutex_unlock

sgx_thread_set_untrusted_
event_ocall

Condition Variable Syn-
chronization

sgx_thread_cond_
init
sgx_thread_cond_
destroy
sgx_thread_cond_
wait

sgx_thread_wait_untrusted_
event_ocall

sgx_thread_setwait_untrusted_
events_ocall

sgx_thread_cond_
signal

sgx_thread_set_untrusted_
event_ocall

sgx_thread_cond_
broadcast

sgx_thread_set_multiple_untrus-
ted_events_ocall

Thread Management sgx_thread_self

Query CPUID inside Enclave

The Intel(R) Software Guard Extensions SDK provides two functions for
enclave developers to query a subset of CPUID information inside the enclave:

l sgx_cpuid
l sgx_cpuidex

GCC* Built-in Functions

GCC* provides built-in functions with optimization purposes. When GCC recog-
nizes a built-in function, it will generate the code more efficiently by lever-
aging its optimization algorithms. GCC always treats functions with __
builtin_ prefix as built-in functions, such as __bultin_malloc, __
builtin_strncpy, and so on. In many cases, GCC tries to use the built-in
variant for standard C functions, such as memcpy, strncpy, and abort. A call
to the C library function is generated unless the -fno-builtin compiler
option is specified.

GCC optimizes built-in functions in certain cases. If GCC does not expand the
built-in function directly, it will call the corresponding library function (without

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 90 -

the __builtin_ prefix). The trusted C library must supply a version of the
functions to ensure the enclave is always built correctly.

The trusted C library does not contain any function considered insecure (for
example, strcpy) or that may contain illegal instructions in Intel SGX (for
example, fprintf). However, the ISV should be aware that GCC may intro-
duce security risks into an enclave if the compiler inlines the code cor-
responding to an insecure built-in function. In this case, the ISV may use the -
fno-builtin or -fno-builtin-function options to suppress any
unwanted built-in code generation.

See Unsupported GCC* Built-in Functions within an enclave for a list of unsup-
ported GCC built-ins.

C++ Language Support

The Intel(R) Software Guard Extensions SDK provides a trusted library for C++
support inside the enclave. C++ developers would utilize advanced C++ fea-
tures that require C++ runtime libraries.

The ISO/IEC 14882:2003 C++ standard is chosen as the baseline for the Intel
(R) Software Guard Extensions SDK trusted library. Most of standard C++ fea-
tures are fully supported inside the enclave, and including:

1. Dynamic memory management with new/delete;
2. Global initializers are supported (usually used in the construction of

global objects);
3. Run-time Type Identification (RTTI);
4. C++ exception handling inside the enclave.

Currently, global destructors are not supported due to the reason that EPC
memory will be recycled when destroying an enclave.

NOTE
C++ objects are not supported in enclave interface definitions. If an applic-
ation needs to pass a C++ object across the enclave boundary, recommended
implementation is to store the C++ object’s data in a C struct and marshal the
data across the enclave interface. Then you need to instantiate the C++ object
in the other domain with the marshaled ‘C’ struct passed in to the constructor
(or you may update existing instantiated objects with appropriate operators).

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 91 -

C++ Standard Library

The Intel(R) Software Guard Extensions SDK includes a trusted version of the
C++ standard library (including STL) that conforms to the C++03 standard.
The library is ported from STLport.

As for C++ standard library, most functions will work just as its untrusted part,
but here is a high level summary of features that are supported inside the
enclave:

1. I/O related functions and classes, like <iostream>;
2. Functions depend on locale library;
3. Any other functions that require system calls.

Furthermore, C functions can be used as the language for trusted and untrus-
ted interfaces. While you can use C++ to develop your enclaves, you should
not pass C++ objects across the enclave boundary.

Cryptography Library

The Intel(R) Software Guard Extensions SDK includes a trusted cryptography
library named sgx_tcrypto. It includes the cryptographic functions used by
other trusted libraries included in the SDK, such as the sgx_tservice lib-
rary. Thus, the functionality provided by this library is somewhat limited. If you
need additional cryptographic functionality, you would have to develop your
own trusted cryptographic library.

l sgx_sha256_msg
l sgx_sha256_init
l sgx_sha256_update
l sgx_sha256_get_hash
l sgx_sha256_close
l sgx_rijndael128GCM_encrypt
l sgx_rijndael128GCM_decrypt
l sgx_rijndael128_cmac_msg
l sgx_cmac128_init
l sgx_cmac128_update
l sgx_cmac128_final
l sgx_cmac128_close
l sgx_aes_ctr_encrypt
l sgx_aes_ctr_decrypt
l sgx_ecc256_open_context

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 92 -

l sgx_ecc256_close_context
l sgx_ecc256_create_key_pair
l sgx_ecc256_compute_shared_dhkey
l sgx_ecc256_check_point
l sgx_ecdsa_sign
l sgx_ecdsa_verify

Trusted Key Exchange Functions

These functions allow an ISV to exchange secrets between its server and its
enclaves. They are used in concert with untrusted Key Exchange functions.

l sgx_ra_init
l sgx_ra_get_keys
l sgx_ra_close

Function Descriptions

This topic describes various functions including their syntax, parameters,
return values, and requirements.

NOTE
When an API function lists an EDL in its requirements, users need to explicitly
import such library EDL file in their enclave's EDL.

sgx_create_enclave

Loads the enclave using its file name and initializes it using a launch token.

Syntax

sgx_status_t sgx_create_enclave(

const char *file_name,
const int debug,
sgx_launch_token_t *launch_token,
int *launch_token_updated,
sgx_enclave_id_t *enclave_id,
sgx_misc_attribute_t *misc_attr

);

Parameters

file_name [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 93 -

Name or full path to the enclave image.

debug [in]

The valid value is 0 or 1.

0 indicates to create the enclave in non-debug mode. An enclave created in
non-debug mode cannot be debugged.

1 indicates to create the enclave in debug mode. The code/data memory
inside an enclave created in debug mode is accessible by the debugger or
other software outside of the enclave and thus is not under the same memory
access protections as an enclave created in non-debug mode.

Enclaves should only be created in debug mode for debug purposes. A helper
macro SGX_DEBUG_FLAG is provided to create an enclave in debug mode. In
release builds, the value of SGX_DEBUG_FLAG is 0. In debug and pre-release
builds, the value of SGX_DEBUG_FLAG is 1 by default.

launch_token [in/out]

A pointer to an sgx_launch_token_t object used to initialize the enclave to be
created. Must not be NULL. The caller can provide an all-0 buffer as the sgx_
launch_token_t object, in which case, the function will attempt to create a
valid sgx_launch_token_t object and store it in the buffer. The caller should
store the sgx_launch_token_t object and re-use it in future calls to create the
same enclave. Certain platform configuration changes can invalidate a pre-
viously stored sgx_launch_token_t object. If the token provided is not valid,
the function will attempt to update it to a valid one.

launch_token_updated [out]

The output is 0 or 1. 0 indicates the launch token has not been updated. 1
indicates the launch token has been updated.

enclave_id [out]

A pointer to an sgx_enclave_id_t that receives the enclave ID or handle. Must
not be NULL.

misc_attr [out, optional]

A pointer to an sgx_misc_attribute_t structure that receives the misc select
and attributes of the enclave. This pointer may be NULL if the information is
not needed.

Return value

SGX_SUCCESS

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 94 -

The enclave was loaded and initialized successfully.

SGX_ERROR_INVALID_ENCLAVE

The enclave file is corrupted.

SGX_ERROR_INVALID_PARAMETER

The ‘enclave_id’, ‘updated’ or ‘token’ parameter is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete sgx_create_enclave().

SGX_ERROR_ENCLAVE_FILE_ACCESS

The enclave file can’t be opened. It may be caused by enclave file not being
found or no privilege to access the enclave file.

SGX_ERROR_INVALID_METADATA

The metadata embedded within the enclave image is corrupt or missing.

SGX_ERROR_INVALID_VERSION

The enclave metadata version (created by the signing tool) and the untrusted
library version (uRTS) do not match.

SGX_ERROR_INVALID_SIGNATURE

The signature for the enclave is not valid.

SGX_ERROR_OUT_OF_EPC

The protected memory has run out. For example, a user is creating too many
enclaves, the enclave requires too much memory, or we cannot load one of the
Architecture Enclaves needed to complete this operation.

SGX_ERROR_NO_DEVICE

The SGX device is not valid. This may be caused by the SGX driver not being
installed or the SGX driver being disabled.

SGX_ERROR_MEMORY_MAP_CONFLICT

During enclave creation, there is a race condition for mapping memory
between the loader and another thread. The loader may fail to map virtual
address. If this error code is encountered, create the enclave again.

SGX_ERROR_DEVICE_BUSY

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 95 -

The SGX driver or low level system is busy when creating the enclave. If this
error code is encountered, we suggest creating the enclave again.

SGX_ERROR_MODE_INCOMPATIBLE

The target enclave mode is incompatible with the mode of the current RTS.
For example, a 64-bit application tries to load a 32-bit enclave or a simulation
uRTS tries to load a hardware enclave.

SGX_ERROR_SERVICE_UNAVAILABLE

sgx_create_enclave() needs the AE service to get a launch token. If the
service is not available, the enclave may not be launched.

SGX_ERROR_SERVICE_TIMEOUT

The request to the AE service timed out.

SGX_ERROR_SERVICE_INVALID_PRIVILEGE

The request requires some special attributes for the enclave, but is not priv-
ileged.

SGX_ERROR_NDEBUG_ENCLAVE

The enclave is signed as a product enclave and cannot be created as a debug-
gable enclave.

SGX_ERROR_UNDEFINED_SYMBOL

The enclave contains an undefined symbol.

The signing tool should typically report this type of error when the enclave is
built.

SGX_ERROR_INVALID_MISC

The MiscSelct/MiscMask settings are not correct.

SGX_ERROR_UNEXPECTED

An unexpected error is detected.

Description

The sgx_create_enclave function will load and initialize the enclave using
the enclave file name and a launch token. If the launch token is incorrect, it will
get a new one and save it back to the input parameter “token”, and the para-
meter “updated” will indicate that the launch token was updated.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 96 -

If both enclave and license are valid, the function will return a value of SGX_
SUCCESS. The enclave ID (handle) is returned via the enclave_id parameter.

The library libsgx_urts.a provides this function to load an enclave with
Intel(R) SGX hardware, and it cannot be used to load an enclave linked with
the simulation library. On the other hand, the simulation library libsgx_
urts_sim.a exposes an identical interface which can only load a simulation
enclave. Running in simulation mode does not require Intel(R) SGX hard-
ware/driver. However, it does not provide hardware protection.

The randomization of the load address of the enclave is dependent on the
operating system. The address of the heap and stack is not randomized and is
at a constant offset from the enclave base address. A compromised loader or
operating system (both of which are outside the TCB) can remove the ran-
domization entirely. The enclave writer should not rely on the randomization
of the base address of the enclave.

Requirements

Header sgx_urts.h
Library
libsgx_urts.a or libsgx_urts_sim.a (simulation)
sgx_destroy_enclave

The sgx_destroy_enclave function destroys an enclave and frees its asso-
ciated resources.

Syntax

sgx_status_t sgx_destroy_enclave(

const sgx_enclave_id_t enclave_id
);

Parameters

enclave_id [in]

An enclave ID or handle that was generated by sgx_create_enclave.

Return value

SGX_SUCCESS

The enclave was unloaded successfully.

SGX_ERROR_INVALID_ENCLAVE_ID

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 97 -

The enclave ID (handle) is not valid. The enclave has not been loaded or the
enclave has already been destroyed.

Description

The sgx_destroy_enclave function destroys an enclave and releases its
associated resources and invalidates the enclave ID or handle.

The function will block until no other threads are executing inside the enclave.

It is highly recommended that the sgx_destroy_enclave function be
called after the application has finished using the enclave to avoid possible
deadlocks.

The library libsgx_urts.aexposes this function to destroy a previously cre-
ated enclave in hardware mode, while libsgx_urts_sim.a provides a sim-
ulative counterpart.

See more details in Load and Unload an Enclave.

Requirements

Header sgx_urts.h
Library libsgx_urts.a or libsgx_urts_sim.a (simulation)

sgx_init_quote

sgx_init_quote returns information needed by an Intel(R) SGX application
to get a quote of one of its enclaves.

Syntax

sgx_status_t sgx_init_quote(

sgx_target_info_t *p_target_info,
sgx_epid_group_id_t *p_gid

);

Parameters

p_target_info [out]

Allows an enclave for which the quote is being created, to create report that
only QE can verify.

p_gid [out]

ID of platform’s current EPID group.

Return value

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 98 -

SGX_SUCCESS

All of the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The EPID blob is corrupted.

SGX_ERROR_BUSY

The requested service is temporarily not available

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED

Intel(R) SGX needs to be updated.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

Calling sgx_init_quote is the first thing an Intel(R) Software Guard Exten-
sions application does in the process of getting a quote of an enclave. The con-
tent of p_target_info changes when the QE changes. The content of p_gid
changes when the platform SVN changes.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 99 -

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_uae_service.h
Library libsgx_uae_service.a or libsgx_uae_service_sim.a

(simulation)

sgx_get_quote_size

sgx_get_quote_size returns the required buffer size for the quote.

Syntax

sgx_status_t sgx_get_quote_size(

const uint8_t *p_sig_rl,
uint32_t *p_quote_size

);

Parameters

p_sig_rl [in]

Optional revoke list of signatures, can be NULL.

p_quote_size [out]

Indicate the size of quote buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_quote_size pointer is invalid or the other input parameters are cor-
rupted.

Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx_get_quote,
call sgx_get_quote_size first to get the buffer size and then allocate
enough memory for the quote.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 100 -

Header sgx_uae_service.h
Library libsgx_uae_service.a or libsgx_uae_service_sim.a

(simulation)

sgx_get_quote

sgx_get_quote generates a linkable or un-linkable QUOTE.

Syntax

sgx_status_t sgx_get_quote(

const sgx_report_t *p_report,
sgx_quote_sign_type_t quote_type,
const sgx_spid_t *p_spid,
const sgx_quote_nonce_t *p_nonce,
const uint8_t *p_sig_rl,
uint32_t sig_rl_size,
sgx_report_t *p_qe_report,
sgx_quote_t *p_quote,
uint32_t quote_size

);

Parameters

p_report [in]

Report of enclave for which quote is being calculated.

quote_type [in]

SGX_UNLINKABLE_SIGNATURE for unlinkable quote or SGX_LINKABLE_
SIGNATURE for linkable quote.

p_spid [in]

ID of service provider.

p_nonce [in]

Optional nonce, if p_qe_report is not NULL, then nonce should not be NULL
as well.

p_sig_rl [in]

Optional revoke list of signatures, can be NULL.

sig_rl_size [in]

Size of p_sig_rl, in bytes. If the p_sig_rl is NULL, then sig_rl_size
shall be 0.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 101 -

p_qe_report [out]

Optional output. If not NULL, report of QE target to the calling enclave will be
copied to this buffer, and in this case, nonce should not be NULL as well.

p_quote [out]

The major output of get_quote, the quote itself, linkable or unlinkable
depending on quote_type input. quote cannot be NULL.

quote_size [in]

Indicates the size of the quote buffer. To get the size, user shall call sgx_
get_quote_size first.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

The EPID group membership has been revoked. The platform is not trusted.
Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 102 -

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED

Intel(R) SGX needs to be updated.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

Both EPID Member and Verifier need to know the Group Public Key and the
EPID Parameters used. These values not being returned by either sgx_init_
quote() or sgx_get_quote() reflects the reliance on the Intel(R) Attest-
ation Service (IAS). With the IAS in place, simply sending the GID to the IAS
(through the Intel(R) SGX application and PS) is sufficient for the IAS to know
which public key and parameters to use.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_uae_service.h
Library libsgx_uae_service.a or libsgx_uae_service_sim.a

(simulation)

sgx_ra_get_msg1

sgx_ra_get_msg1 is used to get the remote attestation and key exchange
protocol message 1 to send to a service provider. The application enclave
should use sgx_ra_init function to create the remote attestation and key
exchange process context, and return to the untrusted code, before the
untrusted code can invoke this function.

Syntax

sgx_status_t sgx_ra_get_msg1(

sgx_ra_context_t context,
sgx_enclave_id_t eid,
sgx_ecall_get_ga_trusted_t p_get_ga,
sgx_ra_msg1_t *p_msg1

);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 103 -

Parameters

context [in]

Context returned by the sgx_ra_init function inside the application
enclave.

eid [in]

ID of the application enclave which is going to be attested.

p_get_ga [in]

Function pointer of the ECALL proxy sgx_ra_get_ga generated by sgx_
edger8r. The application enclave should link with sgx_tkey_exchange lib-
rary and import sgx_tkey_exchange.edl in the enclave EDL file to expose
the ECALL proxy for sgx_ra_get_ga.

p_msg1 [out]

Message 1 used by the remote attestation and key exchange protocol.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

The EPID group membership has been revoked. The platform is not trusted.
Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_UPDATE_NEEDED

Intel(R) SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 104 -

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

The application also passes in a pointer to the untrusted proxy corresponding
to sgx_ra_get_ga, which is exposed by the trusted key exchange library.
This reflects the fact that the names of untrusted proxies are enclave-specific.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_ukey_exchange.h
Library libsgx_ukey_exchange.a

sgx_ra_proc_msg2

sgx_ra_proc_msg2 is used to process the remote attestation and key
exchange protocol message 2 from the service provider and generate mes-
sage 3 to send to the service provider. If the service provider accepts mes-
sage 3, negotiated session keys between the application enclave and the
service provider are ready for use. The application enclave can use sgx_ra_
get_keys function to retrieve the negotiated keys and can use sgx_ra_
close function to release the context of the remote attestation and key
exchange process. If processing message 2 results in an error, the application
should notify the service provider of the error or the service provider needs a

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 105 -

time-out mechanism to terminate the remote attestation transaction when it
does not receive message 3.

Syntax

sgx_status_t sgx_ra_proc_msg2(

sgx_ra_context_t context,
sgx_enclave_id_t eid,
sgx_ecall_proc_msg2_trusted_t p_proc_msg2,
sgx_ecall_get_msg3_trusted_t p_get_msg3,
const sgx_ra_msg2_t *p_msg2,
uint32_t msg2_size,
sgx_ra_msg3_t **pp_msg3,
uint32_t *p_msg3_size

);

Parameters

context [in]

Context returned by sgx_ra_init.

eid [in]

ID of the application enclave which is going to be attested.

p_proc_msg2 [in]

Function pointer of the ECALL proxy sgx_ra_proc_msg2_trusted_t gen-
erated by sgx_edger8r. The application enclave should link with sgx_
tkey_exchange library and import the sgx_tkey_exchange.edl in the
EDL file of the application enclave to expose the ECALL proxy for sgx_ra_
proc_msg2.

p_get_msg3 [in]

Function pointer of the ECALL proxy sgx_ra_get_msg3_trusted_t gen-
erated by sgx_edger8r. The application enclave should link with sgx_
tkey_exchange library and import the sgx_tkey_exchange.edl in the
EDL file of the application enclave to expose the ECALL proxy for sgx_ra_
get_msg3.

p_msg2 [in]

sgx_ra_msg2_t message 2 from the service provider received by applic-
ation.

msg2_size [in]

The length of p_msg2 (in bytes).

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 106 -

pp_msg3 [out]

sgx_ra_msg3_t message 3 to be sent to the service provider. The message
buffer is allocated by the sgx_ukey_exchange library. The caller should
free the buffer after use.

p_msg3_size [out]

The length of pp_msg3 (in bytes).

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

The EPID group membership has been revoked. The platform is not trusted.
Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_UPDATE_NEEDED

Intel(R) SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 107 -

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_INVALID_SIGNATURE

The signature is invalid.

SGX_ERROR_MAC_MISMATCH

Indicates verification error for reports, sealed data, etc.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

The sgx_ra_proc_msg2 processes the incoming message 2 and returns
message 3. Message 3 is allocated by the library, so the caller should free it
after use.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_ukey_exchange.h
Library libsgx_ukey_exchange.a

sgx_report_attestation_status

sgx_report_attestation_status reports information from the Intel
Attestation Server during a remote attestation to help to decide whether a
TCB update is required. It is recommended to always call sgx_report_
attestation_status after a remote attestation transaction when it results
in a Platform Info Blob (PIB).

The attestation_status indicates whether the ISV server decided to
trust the enclave or not.

l The value pass:0 indicates that the ISV server trusts the enclave. If the
ISV server trusts the enclave and platform services, sgx_report_
attestation_status will not take actions to correct the TCB that will
cause negative user experience such as long latencies or requesting a

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 108 -

TCB update.
l The value fail:!=0 indicates that the ISV server does not trust the

enclave. If the ISV server does not trust the enclave or platform services,
sgx_report_attestation_statuswill take all actions to correct
the TCB which may incur long latencies and/or request the application to
update one of the SGX’s TCB components. It is the ISV’s responsibility to
provide the TCB component updates to the client platform.

Syntax

sgx_status_t sgx_report_attestation_status (

const sgx_platform_info_t* p_platform_info
int attestation_status,
sgx_update_info_bit_t* p_update_info

);

Parameters

p_platform_info [in]

Pointer to opaque structure received from Intel Attestation Server.

attestation_status [in]

The value indicates whether remote attestation succeeds or fails. If attestation
succeeds, the value is 0. If it fails, the value will be others.

p_update_info [out]

Pointer to the buffer that receives the update information only when the
return value of sgx_report_attestation_status is SGX_ERROR_
UPDATE_NEEDED.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The EPID blob is corrupted.

SGX_ERROR_UPDATE_NEEDED

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 109 -

Intel(R) SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_BUSY

This service is temporarily unavailable.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

The application calls sgx_report_attestation_status after remote
attestation to help to recover the TCB.

Requirements

Header sgx_uae_service.h
Library libsgx_uae_service.a or libsgx_uae_service_sim.a

(simulation)

sgx_get_ps_cap

sgx_get_ps_cap returns the platform service capability of the platform.

Syntax

sgx_status_t sgx_get_ps_cap(

sgx_ps_cap_t* p_sgx_ps_cap
);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 110 -

Parameters

p_sgx_ps_cap [out]

A pointer to sgx_ps_cap_t structure indicates the platform service capability
of the platform.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The ps_cap pointer is invalid.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_UNEXPECTED

An unexpected error is detected.

Description

Before using Platform Services provided by the trusted Architecture Enclave
support library, you need to call sgx_get_ps_cap first to get the capability
of the platform.

Requirements

Header sgx_uae_service.h
Library libsgx_uae_service.a or libsgx_uae_service_sim.a

(simulation)

sgx_is_within_enclave

The sgx_is_within_enclave function checks that the buffer located at
the pointer addr with its length of size is an address that is strictly within
enclave address space.

Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 111 -

int sgx_is_within_enclave (

const void *addr,
size_t size

);

Parameters

addr [in]

The start address of the buffer.

size [in]

The size of the buffer.

Return value

1

The buffer is strictly within the enclave address space.

0

The whole buffer or part of the buffer is not within the enclave, or the buffer is
wrapped around.

Description

sgx_is_within_enclave simply compares the start and end address of
the buffer with the enclave address space. It does not check the property of
the address. Given a function pointer, you sometimes need to confirm whether
such a function is within the enclave. In this case, it is recommended to use
sgx_is_within_enclave with a size of 1.

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_is_outside_enclave

The sgx_is_outside_enclave function checks that the buffer located at
the pointer addr with its length of size is an address that is strictly outside
enclave address space.

Syntax

int sgx_is_outside_enclave (

const void *addr,

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 112 -

size_t size
);

Parameters

addr [in]

The start address of the buffer.

size [in]

The size of the buffer.

Return value

1

The buffer is strictly outside the enclave address space.

0

The whole buffer or part of the buffer is not outside the enclave, or the buffer
is wrapped around.

Description

sgx_is_outside_enclave simply compares the start and end address of
the buffer with the enclave address space. It does not check the property of
the address.

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_read_rand

The sgx_read_rand function is used to generate a random number inside
the enclave.

Syntax

sgx_status_t sgx_read_rand(

unsigned char *rand,
size_t length_in_bytes

);

Parameters

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 113 -

rand [out]

A pointer to the buffer that receives the random number. The pointer cannot
be NULL. The rand buffer can be either within or outside the enclave, but it is
not allowed to be across the enclave boundary or wrapped around.

length_in_bytes [in]

The length of the buffer (in bytes).

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Invalid input parameters detected.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the valid random number gen-
eration process.

Description

The sgx_read_rand function is provided to replace the C standard pseudo-
random sequence generation functions inside the enclave, since these stand-
ard functions are not supported in the enclave, such as rand, srand, etc. For
HW mode, the function generates a real-random sequence; while for sim-
ulation mode, the function generates a pseudo-random sequence.

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_register_exception_handler

sgx_register_exception_handler allows developers to register an
exception handler, and specify whether to prepend (when is_first_hand-
ler is equal to 1) or append the handler to the handler chain.

Syntax

void* sgx_register_exception_handler(

int is_first_handler,
sgx_exception_handler_t exception_handler

);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 114 -

Parameters

is_first_handler [in]

Specify the order in which the handler should be called. If the parameter is
nonzero, the handler is the first handler to be called. If the parameter is zero,
the handler is the last handler to be called.

exception_handler [in]

The exception handler to be called

Return value

Non-zero

Indicates the exception handler is registered successfully. The return value is
an open handle to the custom exception handler.

NULL

The exception handler was not registered.

Description

The Intel(R) SGX SDK supports the registration of custom exception handler
functions. You can write your own code to handle a limited set of hardware
exceptions. For example, a CPUID instruction inside an enclave will effectively
result in a #UD fault (Invalid Opcode Exception). ISV enclave code can have an
exception handler to prevent the enclave from being trapped into an excep-
tion condition. See Custom Exception Handling for more details.

Calling sgx_register_exception_handler allows you to register an
exception handler, and specify whether to prepend (when is_first_hand-
ler is nonzero) or append the handler to the handler chain.

After calling sgx_register_exception_handler to prepend an excep-
tion handler, a subsequent call to this function may add another exception
handler at the beginning of the handler chain. Therefore the order in which
exception handlers are called does not only depend on the value of the is_
first_handler parameter, but more importantly depends on the order in
which exception handlers are registered.

NOTE:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 115 -

Custom exception handling is only supported in hardware mode. Although the
exception handlers can be registered in simulation mode, the exceptions can-
not be caught and handled within the enclave.

Requirements

Header sgx_trts_exception.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_unregister_exception_handler

sgx_unregister_exception_handler is used to unregister a custom
exception handler.

Syntax

int sgx_unregister_exception_handler(

void* handler
);

Parameters

handler [in]

A handle to the custom exception handler previously registered using the
sgx_register_exception_handler function.

Return value

Non-zero

The custom exception handler is unregistered successfully.

0

The exception handler was not unregistered (not a valid pointer, handler not
found).

Description

The Intel(R) SGX SDK supports the registration of custom exception handler
functions. An enclave developer can write their own code to handle a limited
set of hardware exceptions. See Custom Exception Handling for more details.

Calling sgx_unregister_exception_handler allows developers to unre-
gister an exception handler that was registered earlier.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 116 -

Header sgx_trts_exception.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_spin_lock

The sgx_spin_lock function acquires a spin lock within the enclave.

Syntax

uint32_t sgx_spin_lock(

sgx_spinlock_t * lock
);

Parameters

lock [in]

The trusted spin lock object to be acquired.

Return value

0

This function always returns zero after the lock is acquired.

Description

sgx_spin_lock modifies the value of the spin lock by using compiler atomic
operations. If the lock is not available to be acquired, the thread will always
wait on the lock until it can be acquired successfully.

Requirements

Header sgx_spinlock.h
Library libsgx_tstdc.a

sgx_spin_unlock

The sgx_spin_unlock function releases a spin lock within the enclave.

Syntax

uint32_t sgx_spin_unlock(

sgx_spinlock_t * lock
);

Parameters

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 117 -

lock [in]

The trusted spin lock object to be released.

Return value

0

This function always returns zero after the lock is released.

Description

sgx_spin_unlock resets the value of the spin lock, regardless of its current
state. This function simply assigns a value of zero to the lock, which indicates
the lock is released.

Requirements

Header sgx_spinlock.h
Library libsgx_tstdc.a

sgx_thread_mutex_init

The sgx_thread_mutex_init function initializes a trusted mutex object
within the enclave.

Syntax

int sgx_thread_mutex_init(

sgx_thread_mutex_t * mutex,
const sgx_thread_mutexattr_t * unused

);

Parameters

mutex [in]

The trusted mutex object to be initialized.

unused [in]

Unused parameter reserved for future user defined mutex attributes. [NOT
USED]

Return value

0

The mutex is initialized successfully.

EINVAL

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 118 -

The trusted mutex object is invalid. It is either NULL or located outside of
enclave memory.

Description

When a thread creates a mutex within an enclave, sgx_thread_mutex_
init simply initializes the various fields of the mutex object to indicate that
the mutex is available. sgx_thread_mutex_init creates a non-recursive
mutex. The results of using a mutex in a lock or unlock operation before it has
been fully initialized (for example, the function call to sgx_thread_mutex_
init returns) are undefined. To avoid race conditions in the initialization of a
trusted mutex, it is recommended statically initializing the mutex with the
macro SGX_THREAD_MUTEX_INITIALIZER, SGX_THREAD_NON_
RECURSIVE_MUTEX_INITIALIZER ,of, or SGX_THREAD_RECURSIVE_
MUTEX_INITIALIZER instead.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_destroy

The sgx_thread_mutex_destroy function destroys a trusted mutex
object within an enclave.

Syntax

int sgx_thread_mutex_destroy(

sgx_thread_mutex_t * mutex
);

Parameters

mutex [in]

The trusted mutex object to be destroyed.

Return value

0

The mutex is destroyed successfully.

EINVAL

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 119 -

The trusted mutex object is invalid. It is either NULL or located outside of
enclave memory.

EBUSY

The mutex is locked by another thread or has pending threads to acquire the
mutex.

Description

sgx_thread_mutex_destroy resets the mutex, which brings it to its initial
status. In this process, certain fields are checked to prevent releasing a mutex
that is still owned by a thread or on which threads are still waiting.

NOTE:
Locking or unlocking a mutex after it has been destroyed results in undefined
behavior. After a mutex is destroyed, it must be re-created before it can be
used again.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_lock

The sgx_thread_mutex_lock function locks a trusted mutex object within
an enclave.

Syntax

int sgx_thread_mutex_lock(

sgx_thread_mutex_t * mutex
);

Parameters

mutex [in]

The trusted mutex object to be locked.

Return value

0

The mutex is locked successfully.

EINVAL

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 120 -

The trusted mutex object is invalid.

Description

To acquire a mutex, a thread first needs to acquire the corresponding spin
lock. After the spin lock is acquired, the thread checks whether the mutex is
available. If the queue is empty or the thread is at the head of the queue the
thread will now become the owner of the mutex. To confirm its ownership, the
thread updates the refcount and owner fields. If the mutex is not available, the
thread searches the queue. If the thread is already in the queue, but not at the
head, it means that the thread has previously tried to lock the mutex, but it
did not succeed and had to wait outside the enclave and it has been
awakened unexpectedly. When this happens, the thread makes an OCALL and
simply goes back to sleep. If the thread is trying to lock the mutex for the first
time, it will update the waiting queue and make an OCALL to get suspended.
Note that threads release the spin lock after acquiring the mutex or before
leaving the enclave.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a mutex. Do not split the critical section protected by a
mutex across root ECALLs.

Requirements

Header sgx_thread.h sgx_tsrdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_trylock

The sgx_thread_mutex_trylock function tries to lock a trusted mutex
object within an enclave.

Syntax

int sgx_thread_mutex_trylock(

sgx_thread_mutex_t * mutex
);

Parameters

mutex [in]

The trusted mutex object to be try-locked.

Return value

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 121 -

0

The mutex is locked successfully.

EINVAL

The trusted mutex object is invalid.

EBUSY

The mutex is locked by another thread or has pending threads to acquire the
mutex.

Description

A thread may check the status of the mutex, which implies acquiring the spin
lock and verifying that the mutex is available and that the queue is empty or
the thread is at the head of the queue. When this happens, the thread
acquires the mutex, releases the spin lock and returns 0. Otherwise, the
thread releases the spin lock and returns EINVAL/EBUSY. The thread is not sus-
pended in this case.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a mutex. Do not split the critical section protected by a
mutex across root ECALLs.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_unlock

The sgx_thread_mutex_unlock function unlocks a trusted mutex object
within an enclave.

Syntax

int sgx_thread_mutex_unlock(

sgx_thread_mutex_t * mutex
);

Parameters

mutex [in]

The trusted mutex object to be unlocked.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 122 -

Return value

0

The mutex is unlocked successfully.

EINVAL

The trusted mutex object is invalid or it is not locked by any thread.

EPERM

The mutex is locked by another thread.

Description

Before a thread releases a mutex, it has to verify it is the owner of the mutex. If
that is the case, the thread decreases the refcount by 1 and then may either
continue normal execution or wakeup the first thread in the queue. Note that
to ensure the state of the mutex remains consistent, the thread that is
awakened by the thread releasing the mutex will then try to acquire the
mutex almost as in the initial call to the sgx_thread_mutex_lock routine.

Requirements

Header sgx_thread.h sgxtstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_init

The sgx_thread_cond_init function initializes a trusted condition vari-
able within the enclave.

Syntax

int sgx_thread_cond_init(

sgx_thread_cond_t * cond,
const sgx_thread_condattr_t * unused

);

Parameters

cond [in]

The trusted condition variable.

attr [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 123 -

Unused parameter reserved for future user defined condition variable attrib-
utes. [NOT USED]

Return value

0

The condition variable is initialized successfully.

EINVAL

The trusted condition variable is invalid. It is either NULL or located outside
enclave memory.

Description:

When a thread creates a condition variable within an enclave, it simply ini-
tializes the various fields of the object to indicate that the condition variable is
available. The results of using a condition variable in a wait, signal or broadcast
operation before it has been fully initialized (for example, the function call to
sgx_thread_cond_init returns) are undefined. To avoid race conditions
in the initialization of a condition variable, it is recommended statically ini-
tializing the condition variable with the macro SGX_THREAD_COND_
INITIALIZER.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_destroy

The sgx_thread_cond_destroy function destroys a trusted condition vari-
able within an enclave.

Syntax

int sgx_thread_cond_destroy(

sgx_thread_cond_t * cond
);

Parameters

cond [in]

The trusted condition variable to be destroyed.

Return value

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 124 -

0

The condition variable is destroyed successfully.

EINVAL

The trusted condition variable is invalid. It is either NULL or located outside
enclave memory.

EBUSY

The condition variable has pending threads waiting on it.

Description

The procedure first confirms that there are no threads waiting on the con-
dition variable before it is destroyed. The destroy operation acquires the spin
lock at the beginning of the operation to prevent other threads from signaling
to or waiting on the condition variable.

NOTE
Acquiring or releasing a condition variable after it has been destroyed results
in undefined behavior. After a condition variable is destroyed, it must be re-
created before it can be used again.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_wait

The sgx_thread_cond_wait function waits on a condition variable within
an enclave.

Syntax

int sgx_thread_cond_wait(

sgx_thread_cond_t * cond,
sgx_thread_mutex_t * mutex

);

Parameters

cond [in]

The trusted condition variable to be waited on.

mutex [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 125 -

The trusted mutex object that will be unlocked when the thread is blocked in
the condition variable.

Return value

0

The thread waiting on the condition variable is signaled by other thread
(without errors).

EINVAL

The trusted condition variable or mutex object is invalid or the mutex is not
locked.

EPERM

The trusted mutex is locked by another thread.

Description:

A condition variable is always used in conjunction with a mutex. To wait on a
condition variable, a thread first needs to acquire the condition variable spin
lock. After the spin lock is acquired, the thread updates the condition variable
waiting queue. To avoid the lost wake-up signal problem, the condition vari-
able spin lock is released after the mutex. This order ensures the function
atomically releases the mutex and causes the calling thread to block on the
condition variable, with respect to other threads accessing the mutex and the
condition variable. After releasing the condition variable spin lock, the thread
makes an OCALL to get suspended. When the thread is awakened, it acquires
the condition variable spin lock. The thread then searches the condition vari-
able queue. If the thread is in the queue, it means that the thread was already
waiting on the condition variable outside the enclave, and it has been
awakened unexpectedly. When this happens, the thread releases the con-
dition variable spin lock, makes an OCALL and simply goes back to sleep.
Otherwise, another thread has signaled or broadcasted the condition variable
and this thread may proceed. Before returning, the thread releases the con-
dition variable spin lock and acquires the mutex, ensuring that upon returning
from the function call the thread still owns the mutex.

NOTE
Threads check whether they are in the queue to make the Intel SGX condition
variable robust against attacks to the untrusted event.

A thread may have to do up to two OCALLs throughout the sgx_thread_
cond_wait function call.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 126 -

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_signal

The sgx_thread_cond_signal function wakes a pending thread waiting
on the condition variable.

Syntax

int sgx_thread_cond_signal(

sgx_thread_cond_t * cond
);

Parameters

cond [in]

The trusted condition variable to be signaled.

Return value

0

One pending thread is signaled.

EINVAL

The trusted condition variable is invalid.

Description

To signal a condition variable, a thread starts acquiring the condition variable
spin-lock. Then it inspects the status of the condition variable queue. If the
queue is empty it means that there are not any threads waiting on the con-
dition variable. When that happens, the thread releases the condition variable
and returns. However, if the queue is not empty, the thread removes the first
thread waiting in the queue. The thread then makes an OCALL to wake up the
thread that is suspended outside the enclave, but first the thread releases the
condition variable spin-lock. Upon returning from the OCALL, the thread con-
tinues normal execution.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 127 -

sgx_thread_cond_broadcast

The sgx_thread_cond_broadcast function wakes all pending threads
waiting on the condition variable.

Syntax

int sgx_thread_cond_broadcast(

sgx_thread_cond_t * cond
);

Parameters

cond [in]

The trusted condition variable to be broadcasted.

Return value

0

All pending threads have been broadcasted.

EINVAL

The trusted condition variable is invalid.

ENOMEM

Internal memory allocation failed.

Description

Broadcast and signal operations on a condition variable are analogous. The
only difference is that during a broadcast operation, the thread removes all
the threads waiting on the condition variable queue and wakes up all the
threads suspended outside the enclave in a single OCALL.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_self

The sgx_thread_self function returns the unique thread identification.

Syntax

sgx_thread_t sgx_thread_self(

void

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 128 -

);

Return value

The return value cannot be NULL and is always valid as long as it is invoked by
a thread inside the enclave.

Description

The function is a simple wrap of get_thread_data() provided in the tRTS,
which provides a trusted thread unique identifier.

NOTE:
This identifier does not change throughout the life of an enclave.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_cpuid

The sgx_cpuid function performs the equivalent of a cpuid() function call or
intrinisic which executes the CPUID instruction to query the host processor for
the information about supported features.

NOTE:
This function performs an OCALL to execute the CPUID instruction.

Syntax

sgx_status_t sgx_cpuid(

int cpuinfo[4],
int leaf

);

Parameters

cpuinfo [in, out]

The information returned in an array of four integers. This array must be loc-
ated within the enclave.

leaf [in]

The leaf specified for retrieved CPU info.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 129 -

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates the parameter cpuinfo is invalid, which would be NULL or outside the
enclave.

Description

This function provides the equivalent of the cpuid() function or intrinsic. The
function executes the CPUID instruction for the given leaf (input). The CPUID
instruction provides processor feature and type information that is returned in
cpuinfo, an array of 4 integers to specify the values of EAX, EBX, ECX and EDX
registers. sgx_cpuid performs an OCALL by invoking oc_cpuidex to get the
info from untrusted side because the CPUID instruction is an illegal instruction
in the enclave domain.

For additional details, see Intel(R) 64 and IA-32 Architectures Software
Developer's Manual for the description on the CPUID instruction and its indi-
vidual leafs. (Leaf corresponds to EAX in the PRM description).

NOTE

1. As the CPUID instruction is executed by an OCALL, the results should not
be trusted. Code should verify the results and perform a threat eval-
uation to determine the impact on trusted code if the results were
spoofed.

2. The implementation of this function performs an OCALL and therefore,
this function will not have the same serializing or fencing behavior of
executing a CPUID instruction in an untrusted domain code flow.

Requirements

Header sgx_cpuid.h sgx_tstdc.edl

Library libsgx_tstdc.a

sgx_cpuidex

The sgx_cpuidex function performs the equivalent of a cpuid_ex() func-
tion call or intrinisic which executes the CPUID instruction to query the host
processor for the information about supported features.

NOTE:

http://www.intel.cn/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 130 -

This function performs an OCALL to execute the CPUID instruction.

Syntax

sgx_status_t sgx_cpuidex(

int cpuinfo[4],
int leaf,
int subleaf

);

Parameters

cpuinfo [in, out]

The information returned in an array of four integers. The array must be loc-
ated within the enclave.

leaf[in]

The leaf specified for retrieved CPU info.

subleaf[in]

The sub-leaf specified for retrieved CPU info.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates the parameter cpuinfo is invalid, which would be NULL or outside the
enclave.

Description

This function provides the equivalent of the cpuid() function or intrinsic.
The function executes the CPUID instruction for the given leaf (input). The
CPUID instruction provides processor feature and type information returned
in cpuinfo, an array of 4 integers to specify the values of EAX, EBX, ECX and
EDX registers. sgx_cpuid performs an OCALL by invoking oc_cpuidex to get
the info from untrusted side because the CPUID instruction is an illegal instruc-
tion in the enclave domain.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 131 -

For additional details, see Intel(R) 64 and IA-32 Architectures Software
Developer's Manual for the description on the CPUID instruction and its indi-
vidual leafs. (Leaf corresponds to EAX in the PRM description).

NOTE

1. As the CPUID instruction is executed by an OCALL, the results should not
be trusted. Code should verify the results and perform a threat eval-
uation to determine the impact on trusted code if the results were
spoofed.

2. The implementation of this function performs an OCALL and therefore,
this function will not have the same serializing or fencing behavior of
executing a CPUID instruction in an untrusted domain code flow.

Requirements

Header sgx_cpuid.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_get_key

The sgx_get_key function generates a 128-bit secret key using the input
information. This function is a wrapper for the SGX EGETKEY instruction.

Syntax

sgx_status_t sgx_get_key(

const sgx_key_request_t *key_request,
sgx_key_128bit_t *key

);

Parameters

key_request [in]

A pointer to a sgx_key_request_t object used for selecting the appropriate
key and any additional parameters required in the derivation of that key. The
pointer cannot be NULL and must be located within the enclave. See details
on the sgx_key_request_t to understand initializing this structure before call-
ing this function.

key [out]

A pointer to the buffer that receives the cryptographic key output. The
pointer cannot be NULL and must be located within enclave memory.

http://www.intel.cn/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 132 -

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

key_request buffer must be non-NULL and located within the enclave.

key buffer must be non-NULL and located within the enclave.

key_request and key_request->key_policy should not have any
reserved bits set.

SGX_ERROR_OUT_OF_MEMORY

Indicates an error that the enclave is out of memory.

SGX_ERROR_INVALID_ATTRIBUTE

Indicates the key_request requests a key for a KEYNAME which the enclave
is not authorized.

SGX_ERROR_INVALID_CPUSVN

Indicates key_request->cpu_svn is beyond platform CPUSVN value

SGX_ERROR_INVALID_ISVSVN

Indicates key_request->isv_svn is greater than the enclave’s ISVSVN

SGX_ERROR_INVALID_KEYNAME

Indicates key_request->key_name is an unsupported value

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the key generation process.

Description

The sgx_get_key function generates a 128-bit secret key from the pro-
cessor specific key hierarchy with the key_request information. If the func-
tion fails with an error code, the key buffer will be filled with random numbers.
The key_request structure needs to be initialized properly to obtain the
requested key type. See sgx_key_request_t for structure details.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 133 -

Header sgx_utils.h
Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-

ulation)

sgx_create_report

The sgx_create_report function tries to use the information of the target
enclave and other information to create a cryptographic report of the enclave.
This function is a wrapper for the SGX EREPORT instruction.

Syntax

sgx_status_t sgx_create_report(

const sgx_target_info_t *target_info,
const sgx_report_data_t *report_data,
sgx_report_t *report

);

Parameters

target_info [in]

A pointer to the sgx_target_info_t object that contains the information of the
target enclave, which is able to cryptographically verify the report sgx_
verify_report.

l If the pointer value is NULL, The sgx_create_report function
retrieves information about the calling enclave, but the generated report
cannot be verified by any enclave.

l If the pointer value is not NULL the target_info buffer must be within
the enclave.

See sgx_target_info_t for structure details.

report_data [in]

A pointer to the sgx_report_data_t object which contains a set of data used
for communication between the enclaves. This pointer is allowed to be NULL.
If it is not NULL, the report_data buffer must be within the enclave. See
sgx_report_data_t for structure details.

report [out]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 134 -

A pointer to the buffer that receives the cryptographic report of the enclave.
The pointer cannot be NULL and the report buffer must be within the enclave.
See sgx_report_t for structure details.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

An error is reported if any of the parameters are non-NULL pointers but the
memory is not within the enclave or the reserved fields of the data structure
are not set to zero.

SGX_ERROR_OUT_OF_MEMORY

Indicates that the enclave is out of memory.

Description

Use the function sgx_create_report to create a cryptographic report for
inter-enclave attestation. The report describes the contents of the source for
calling enclave. The report is passed to the target enclave. The target enclave
can cryptographically verify that the report was generated on the same plat-
form and the source enclave is running on the same platform. This function is a
wrapper for the SGX EREPORT instruction.

Before the source enclave calls sgx_create_report to generate a report, it
needs to populate target_info with information about the target enclave
that verifies the report. The target enclave may obtain this information calling
sgx_create_report with a NULL pointer and pass it to the source enclave
at the beginning of the inter-enclave process.

Requirements

Header sgx_utils.h
Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-

ulation)

sgx_verify_report

The sgx_verify_report function provides software verification for the
report which is expected to be generated by the sgx_create_report function.

Syntax

sgx_status_t sgx_verify_report(

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 135 -

const sgx_report_t * report
);

Parameters

report[in]

A pointer to an sgx_report_t object that contains the cryptographic report to
be verified. The pointer cannot be NULL and the report buffer must be within
the enclave.

Return value

SGX_SUCCESS

Verification success.

SGX_ERROR_INVALID_PARAMETER

The report object is invalid.

SGX_ERROR_MAC_MISMATCH

Indicates report verification error.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the report verification process.

Description

The sgx_verify_report performs a cryptographic CMAC function of the
input sgx_report_data_t object in the report using the report key. Then the
function compares the input report MAC value with the calculated MAC value
to determine whether the report is valid or not.

Requirements

Header sgx_utils.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_calc_sealed_data_size

The sgx_calc_sealed_data_size function is a helper function for the
seal library which should be used to determine how much memory to allocate
for the sgx_sealed_data_t structure.

Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 136 -

uint32_t sgx_calc_sealed_data_size(

const uint32_t add_mac_txt_size,
const uint32_t txt_encrypt_size

);

Parameters

add_mac_txt_size [in]

Length of the optional additional data stream in bytes. The additional data will
not be encrypted, but will be part of the MAC calculation.

txt_encrypt_size [in]

Length of the data stream to be encrypted in bytes. This data will also be part
of the MAC calculation.

Return value

If the function succeeds, the return value is the minimum number of bytes that
need to be allocated for the sgx_sealed_data_t structure. If the function fails,
the return value is 0xFFFFFFFF. It is recommended that you check the return
value before use it to allocate memory.

Description

The function calculates the number of bytes to allocate for the sgx_sealed_
data_t structure. The calculation includes the fixed portions of the structure as
well as the two input data streams: encrypted text and optional additional
MAC text.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_get_add_mac_txt_len

The sgx_get_add_mac_txt_len function is a helper function for the seal
library which should be used to determine how much memory to allocate for
the additional_MAC_text buffer output from the sgx_unseal_data func-
tion.

Syntax

uint32_t sgx_get_add_mac_txt_len(

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 137 -

const sgx_sealed_data_t *p_sealed_data
);

Parameters

p_sealed_data [in]

Pointer to the sealed data structure which was populated by the sgx_seal_
data function.

Return value

If the function succeeds, the number of bytes in the optional additional MAC
data buffer is returned. If this function fails, the return value is 0xFFFFFFFF. It
is recommended that you check the return value before use it to allocate
memory.

Description

The function calculates the minimum number of bytes to allocate for the out-
put MAC data buffer returned by the sgx_unseal_data function.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_get_encrypt_txt_len

The sgx_get_encrypt_txt_len function is a helper function for the seal
library which should be used to calculate the minimum number of bytes to
allocate for decrypted data returned by the sgx_unseal_data function.

Syntax

uint32_t sgx_get_encrypt_txt_len(

const sgx_sealed_data_t *p_sealed_data
);

Parameters

p_sealed_data [in]

Pointer to the sealed data structure which was populated during by the sgx_
seal_data function.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 138 -

Return value

If the function succeeds, the number of bytes in the encrypted data buffer is
returned. Othewise, the return value is 0xFFFFFFFF. It is recommended that
you check the return value before use it to allocate memory.

Description

The function calculates the minimum number of bytes to allocate for decryp-
ted data returned by the sgx_unseal_data function.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_seal_data

This function is used to AES-GCM encrypt the input data. Two input data sets
are provided: one is the data to be encrypted; the second is optional addi-
tional data that will not be encrypted but will be part of the GCM MAC cal-
culation which also covers the data to be encrypted.

Syntax

sgx_status_t sgx_seal_data(

const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t text2encrypt_length,
const uint8_t * p_text2encrypt,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

additional_MACtext_length [in]

Length of the additional Message Authentication Code (MAC) data in bytes.
The additional data is optional and thus the length can be zero if no data is
provided.

p_addtional_MACtext [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 139 -

Pointer to the additional Message Authentication Code (MAC) data. This addi-
tional data is optional and no data is necessary (NULL pointer can be passed,
but additional_MACtext_length must be zero in this case).

NOTE:
This data will not be encrypted. This data can be within or outside the enclave,
but cannot cross the enclave boundary.

text2encrypt_length [in]

Length of the data stream to be encrypted in bytes. Must be non-zero.

p_text2encrypt [in]

Pointer to the data stream to be encrypted. Must not be NULL. Must be within
the enclave.

sealed_data_size [in]

Number of bytes allocated for the sgx_sealed_data_t structure. The calling
code should utilize helper function sgx_calc_sealed_data_size to
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer to store the sealed data.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
helper function sgx_calc_sealed_data_size to determine the required
buffer size. The sealed data must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l If additional_MACtext_length is non-zero, p_additional_MAC-
text cannot be NULL.

l p_additional_MACtext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 140 -

l p_text2encrypt must be non-zero.
l p_text2encrypt buffer must be within the enclave.
l sealed_data_size must be equal to the required buffer size, which

is calculated by the function sgx_calc_sealed_data_size.
l p_sealed_data buffer must be within the enclave.
l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx_seal_data function retrieves a key unique to the enclave and uses
that key to encrypt the input data buffer. This function can be utilized to pre-
serve secret data after the enclave is destroyed. The sealed data blob can be
unsealed on future instantiations of the enclave.

The additional data buffer will not be encrypted but will be part of the MAC
calculation that covers the encrypted data as well. This data may include
information about the application, version, data, etc which can be utilized to
identify the sealed data blob since it will remain plain text

Use sgx_calc_sealed_data_size to calculate the number of bytes to
allocate for the sgx_sealed_data_t structure. The input sealed data buffer and
text2encrypt buffers must be allocated within the enclave.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_seal_data_ex

This function is used to AES-GCM encrypt the input data. Two input data sets
are provided: one is the data to be encrypted; the second is optional addi-
tional data that will not be encrypted but will be part of the GCM MAC cal-
culation which also covers the data to be encrypted. This is the expert mode
version of function sgx_seal_data.

Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 141 -

sgx_status_t sgx_seal_data_ex(

const uint16_t key_policy,
const sgx_attributes_t attribute_mask,
const sgx_misc_select_t misc_mask,
const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t text2encrypt_length,
const uint8_t * p_text2encrypt,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

key_policy [in]

Specifies the policy to use in the key derivation. Function sgx_seal_data
uses the MRSIGNER policy.

Key policy name Value Description

Key policy name Value Description
KEYPOLICY_
MRENCLAVE

0x00-
01

Derive key using the enclave’s ENCLAVE
measurement register

KEYPOLICY_MRSIGNER 0x00-
02

Derive key using the enclave’s SIGNER meas-
urement register

attribute_mask [in]

Identifies which platform/enclave attributes to use in the key derivation. See
the definition of sgx_attributes_t to determine which attributes will be
checked. Function sgx_seal_data uses flags=0xfffffffffffffff3,
xfrm=0.

misc_mask [in]

The misc mask bits for the enclave. Reserved for future function extension.

additional_MACtext_length [in]

Length of the additional data to be MAC’ed in bytes. The additional data is
optional and thus the length can be zero if no data is provided.

p_addtional_MACtext [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 142 -

Pointer to the additional data to be MAC’ed of variable length. This additional
data is optional and no data is necessary (NULL pointer can be passed, but
additional_MACtext_length must be zero in this case).

NOTE:
This data will not be encrypted. This data can be within or outside the enclave,
but cannot cross the enclave boundary.

text2encrypt_length [in]

Length of the data stream to be encrypted in bytes. Must be non-zero.

p_text2encrypt [in]

Pointer to the data stream to be encrypted of variable length. Must not be
NULL. Must be within the enclave.

sealed_data_size [in]

Number of bytes allocated for sealed_data_t structure. The calling code
should utilize helper function sgx_calc_sealed_data_size to determine
the required buffer size.

p_sealed_data [out]

Pointer to the buffer that is populated by this function.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
helper function sgx_calc_sealed_data_size to determine the required
buffer size. The sealed data must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l If additional_MACtext_length is non-zero, p_additional_
MACtext cannot be NULL.

l p_additional_MACtext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 143 -

l p_text2encrypt must be non-zero.
l p_text2encrypt buffer must be within the enclave.
l sealed_data_size must be equal to the required buffer size, which

is calculated by the function sgx_calc_sealed_data_size.
l p_sealed_data buffer must be within the enclave.
l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx_seal_data_ex is an extended version of sgx_seal_data. It
provides parameters for you to identify how to derive the sealing key (key
policy and attributes_mask). Typical callers of the seal library should be
able to use sgx_seal_data and the default values provided for key_
policy (MR_SIGNER) and an attribute mask which includes the RESERVED,
INITED and DEBUG bits. Users of this function should have a clear under-
standing of the impact on using a policy and/or attribute_mask that is dif-
ferent from that in sgx_seal_data.

Requirement

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_unseal_data

This function is used to AES-GCM decrypt the input sealed data structure.
Two output data sets result: one is the decrypted data; the second is the
optional additional data that was part of the GCM MAC calculation but was not
encrypted. This function provides the converse of sgx_seal_data and
sgx_seal_data_ex.

Syntax

sgx_status_t sgx_unseal_data(

const sgx_sealed_data_t * p_sealed_data,
uint8_t * p_additional_MACtext,

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 144 -

uint32_t * p_additional_MACtext_length,
uint8_t * p_decrypted_text,
uint32_t * p_decrypted_text_length

);

Parameters

p_sealed_data [in]

Pointer to the sealed data buffer to be AES-GCM decrypted. Must be within
the enclave.

p_addtional_MACtext [out]

Pointer to the additional data part of the MAC calculation. This additional data
is optional and no data is necessary. The calling code should call helper func-
tion sgx_get_mac_add_text_len to determine the required buffer size
to allocate. (NULL pointer can be passed, if additional_MACtext_length
is zero).

p_additional_MACtext_length [in, out]

Pointer to the length of the additional MAC data buffer in bytes. The calling
code should call helper function sgx_get_mac_add_text_len to determ-
ine the minimum required buffer size. The sgx_unseal_data function
returns the actual length of decrypted addition data stream.

p_decrypted_text [out]

Pointer to the decrypted data buffer which needs to be allocated by the call-
ing code. Use sgx_get_encrypt_txt_len to calculate the minimum num-
ber of bytes to allocate for the p_decrypted_text buffer. Must be
within the enclave.

p_decrypted_text_length [in, out]

Pointer to the length of the decrypted data buffer in byte. The buffer length
of p_decrypted_text must be specified in p_decrypted_text_length as
input. The sgx_unseal_data function returns the actual length of decryp-
ted addition data stream. Use sgx_get_encrypt_txt_len to calculate the
number of bytes to allocate for the p_decrypted_text buffer. Must be
within the enclave.

Return value

SGX_SUCCESS

Indicates success.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 145 -

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l If additional_mactext_length is non-zero, p_additional_mac-
text cannot be NULL.

l p_additional_mactext buffer can be within or outside the enclave,
but cannot across the enclave boundary.

l p_decrypted_text and p_decrypted_text_length must be
within the enclave.

l p_decrypted_text and p_addtitional_MACtext buffer must be
big enough to receive the decrypted data.

l p_sealed_data buffer must be within the enclave.
l Input buffers cannot cross an enclave boundary.

SGX_ERROR_INVALID_CPUSVN

The CPUSVN in the sealed data blob is beyond the CPUSVN value of the plat-
form.

SGX_ERROR_INVALID_ISVSVN

The ISVSVN in the sealed data blob is greater than the ISVSVN value of the
enclave.

SGX_ERROR_MAC_MISMATCH

The tag verification failed during unsealing. The error may be caused by a plat-
form update, software update, or sealed data blob corruption. This error is
also reported if other corruption of the sealed data structure is detected.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a cryptography library failure.

Description

The sgx_unseal_data function AES-GCM decrypts the sealed data so that
the enclave data can be restored. This function can be utilized to restore
secret data that was preserved after an earlier instantiation of this enclave
saved this data.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 146 -

The calling code needs to allocate the additional data buffer and the decryp-
ted data buffer. To determine the minimum memory to allocate for these buf-
fers, helper functions sgx_get_mac_add_text_len and sgx_get_
encrypt_txt_len are provided. The decrypted text buffer must be alloc-
ated within the enclave.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_mac_aadata

This function is used to authenticate the input data with AES-GMAC.

Syntax

sgx_status_t sgx_mac_aadata(

const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

additional_MACtext_length [in]

Length of the plain text to provide authentication for in bytes.

p_addtional_MACtext [in]

Pointer to the plain text to provide authentication for.

NOTE:
This data is not encrypted. This data can be within or outside the enclave, but
cannot cross the enclave boundary.

sealed_data_size [in]

Number of bytes allocated for the sealed_data_t structure. The calling
code should utilize the helper function sgx_calc_sealed_data_size to
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer to store the sealed_data_t structure.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 147 -

NOTE:
The calling code must allocate the memory for this buffer and should utilize
the helper function sgx_calc_sealed_data_size with 0 as the txt_
encrypt_size to determine the required buffer size. The sealed_data_t
structure must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l p_additional_mactext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

l sealed_data_size must be equal to the required buffer size, which
is calculated by the function sgx_calc_sealed_data_size.

l p_sealed_data buffer must be within the enclave.
l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a crypto library failure, or the RDRAND instruction fails to generate a
random number.

Description

The sgx_mac_aadata function retrieves a key unique to the enclave and
uses that key to generate the authentication tag based on the input data buf-
fer. This function can be utilized to provide authentication assurance for addi-
tional data (of practically unlimited length per invocation) that is not
encrypted. The data origin authentication can be demonstrated on future
instantiations of the enclave using the MAC stored into the data blob.

Use sgx_calc_sealed_data_size to calculate the number of bytes to
allocate for the sgx_sealed_data_t structure. The input sealed data buffer
must be allocated within the enclave.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 148 -

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_mac_aadata_ex

This function is used to authenticate the input data with AES-GMAC. This is
the expert mode version of the function sgx_mac_aadata.

Syntax

sgx_status_t sgx_mac_aadata_ex(

const uint16_t key_policy,
const sgx_attributes_t attribute_mask,
const sgx_misc_select_t misc_mask,
const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

key_policy [in]

Specifies the policy to use in the key derivation. Function sgx_mac_aadata
uses the MRSIGNER policy.

Key policy name Value Description
KEYPOLICY_
MRENCLAVE

0x00-
01

Derive key using the enclave’s ENCLAVE
measurement register

KEYPOLICY_MRSIGNER 0x00-
02

Derive key using the enclave’s SIGNER meas-
urement register

attribute_mask [in]

Identifies which platform/enclave attributes to use in the key derivation. See
the definition of sgx_attributes_t to determine which attributes will be
checked. Function sgx_mac_aadata uses flag-
s=0xfffffffffffffff3, xfrm=0.

misc_mask [in]

The MISC_SELECT mask bits for the enclave. Reserved for future function
extension.

additional_MACtext_length [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 149 -

Length of the plain text data stream to be MAC’ed in bytes.

p_addtional_MACtext [in]

Pointer to the plain text data stream to be MAC’ed of variable length.

NOTE:
This data is not encrypted. This data can be within or outside the enclave, but
cannot cross the enclave boundary.

sealed_data_size [in]

Number of bytes allocated for the sealed_data_t structure. The calling
code should utilize the helper function sgx_calc_sealed_data_size to
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer that is populated by this function.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
the helper function sgx_calc_sealed_data_size with 0 as the txt_
encrypt_size to determine the required buffer size. The sealed_data_t
structure must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l p_additional_mactext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

l sealed_data_size must be equal to the required buffer size, which
is calculated by the function sgx_calc_sealed_data_size.

l p_sealed_data buffer must be within the enclave.
l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 150 -

SGX_ERROR_UNEXPECTED

Indicates crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx_mac_aadata_ex is an extended version of sgx_mac_aadata. It
provides parameters for you to identify how to derive the sealing key (key
policy and attributes_mask). Typical callers of the seal library should be
able to use sgx_mac_aadata and the default values provided for key_
policy (MR_SIGNER) and an attribute mask which includes the RESERVED,
INITED and DEBUG bits. Before you use this function, you should have a clear
understanding of the impact of using a policy and/or attribute_mask that
is different from that in sgx_mac_aadata.

Requirement

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_unmac_aadata

This function is used to verify the authenticity of the input sealed data struc-
ture using AES-GMAC. This function verifies the MAC generated with sgx_
mac_aadataorsgx_mac_aadata_ex.

Syntax

sgx_status_t sgx_unmac_aadata(

const sgx_sealed_data_t * p_sealed_data,
uint8_t * p_additional_MACtext,
uint32_t * p_additional_MACtext_length,

);

Parameters

p_sealed_data [in]

Pointer to the sealed data structure to be authenticated with AES-GMAC. Must
be within the enclave.

p_addtional_MACtext [out]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 151 -

Pointer to the plain text data stream that was AES-GMAC protected. You
should call the helper function sgx_get_add_mac_text_len to determine
the required buffer size to allocate.

p_additional_MACtext_length [in, out]

Pointer to the length of the plain text data stream in bytes. Upon successful
tag matching,sgx_unmac_datasets this parameter with the actual length of
the plaintext stored in p_additional_MACtext.

Return value

SGX_SUCCESS

The authentication tag in the sealed_data_t structure matches the expec-
ted value.

SGX_ERROR_INVALID_PARAMETER

This parameter indicates an error if the parameters do not meet any of the fol-
lowing conditions:

l p_additional_MACtext buffers can be within or outside the enclave,
but cannot cross the enclave boundary.

l p_addtitional_MACtext buffers must be big enough to receive the
plain text data.

l p_sealed_data buffers must be within the enclave.
l Input buffers cannot cross an enclave boundary.

SGX_ERROR_INVALID_CPUSVN

The CPUSVN in the data blob is beyond the CPUSVN value of the platform.

SGX_ERROR_INVALID_ISVSVN

The ISVSVN in the data blob is greater than the ISVSVN value of the enclave.

SGX_ERROR_MAC_MISMATCH

The tag verification fails. The error may be caused by a platform update, soft-
ware update, or corruption of the sealed_data_t structure.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a cryptography library failure.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 152 -

Description

The sgx_unmac_aadata function verifies the tag with AES-GMAC. Use this
function to demonstrate the authenticity of data that was preserved by an
earlier instantiation of this enclave.

You need to allocate additional data buffer. To determine the minimum
memory to allocate for additional data buffers, use the helper function sgx_
get_add_mac_text_len.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_sha256_msg

The sgx_sha256_msg function performs a standard SHA256 hash over the
input data buffer.

Syntax

sgx_status_t sgx_sha256_msg(

const uint8_t *p_src,
uint32_t src_len,
sgx_sha256_hash_t *p_hash

);

Parameters

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_hash [out]

A pointer to the output 256bit hash resulting from the SHA256 calculation.
This pointer must be non-NULL and the caller allocates memory for this buffer.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 153 -

Return value

SGX_SUCCESS

The SHA256 hash function is performed successfully.

SGX_ERROR_INVALID_PARAMETER

Input pointers are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The SHA256 hash calculation failed.

Description

The sgx_sha256_msg function performs a standard SHA256 hash over the
input data buffer. Only a 256-bit version of the SHA hash is supported. (Other
sizes, for example 512, are not supported in this minimal cryptography lib-
rary).

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update… Update, Final procedure should be used to com-
pute a SHA256 bit hash over multiple input data sets.

A zero-length input data buffer is supported but the pointer must be non-
NULL.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_sha256_init

sgx_sha256_init returns an allocated and initialized SHA algorithm con-
text state. This should be part of the Init, Update … Update, Final process
when the SHA hash is to be performed over multiple datasets. If a complete
dataset is available, the recommend call is sgx_sha256_msg to perform the
hash in a single call.

Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 154 -

sgx_status_t sgx_sha256_init(

sgx_sha_state_handle_t* p_sha_handle
);

Parameters

p_sha_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA256 state is allocated and initialized properly.

SGX_ERROR_INVALID_PARAMETER

The pointer p_sha_handle is invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The SHA256 state is not initialized properly due to an internal cryptography
library failure.

Description

Calling sgx_sha256_init is the first set in performing a SHA256 hash over
multiple datasets. The caller does not allocate memory for the SHA256 state
that this function returns. The state is specific to the implementation of the
cryptography library; thus the allocation is performed by the library itself. If
the hash over the desired datasets is completed or any error occurs during
the hash calculation process, sgx_sha256_close should be called to free
the state allocated by this algorithm.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 155 -

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_sha256_update

sgx_sha256_update performs a SHA256 hash over the input dataset
provided. This function supports an iterative calculation of the hash over mul-
tiple datasets where the sha_handle contains the intermediate results of the
hash calculation over previous datasets.

Syntax

sgx_status_t sgx_sha256_update(

const uint8_t *p_src,
uint32_t src_len,
sgx_sha_state_handle_t sha_handle

);

Parameters

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The input parameter(s) are NULL.

SGX_ERROR_UNEXPECTED

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 156 -

An internal cryptography library failure occurred while performing the
SHA256 hash calculation.

Description

This function should be used as part of a SHA256 calculation over multiple
datasets. If a SHA256 hash is needed over a single data set, function sgx_
sha256_msg should be used instead. Prior to calling this function on the first
dataset, the sgx_sha256_init function must be called first to allocate and ini-
tialize the SHA256 state structure which will hold intermediate hash results
over earlier datasets. The function sgx_sha256_get_hash should be used
to obtain the hash after the final dataset has been processed by this function.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_sha256_get_hash

sgx_sha256_get_hash obtains the SHA256 hash after the final dataset has
been processed (by calls to sgx_sha256_update).

Syntax

sgx_status_t sgx_sha256_get_hash(

sgx_sha_state_handle_t sha_handle,
sgx_sha256_hash_t* p_hash

);

Parameters

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple datasets.

p_hash [out]

This is a pointer to the 256-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Return value

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 157 -

SGX_SUCCESS

The hash is obtained successfully.

SGX_ERROR_INVALID_PARAMETER

The pointers are NULL.

SGX_ERROR_UNEXPECTED

The SHA256 state passed in is likely problematic causing an internal cryp-
tography library failure.

Description

This function returns the hash after performing the SHA256 calculation over
one or more datasets using the sgx_sha256_update function. Memory for
the hash should be allocated by the calling function. The handle to SHA256
state used in the sgx_sha256_update calls must be passed in as input.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_sha256_close

sgx_sha256_close cleans up and deallocates the SHA256 state that was
allocated in function sgx_sha256_init.

Syntax

sgx_status_t sgx_sha256_close(

sgx_sha_state_handle_t sha_handle
);

Parameters

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 158 -

Return value

SGX_SUCCESS

The SHA256 state was deallocated successfully.

SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

Calling sgx_sha256_close is the last step after performing a SHA256 hash
over multiple datasets. The caller uses this function to deallocate memory
used to store the SHA256 calculation state.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_rijndael128GCM_encrypt

sgx_rijndael128GCM_encrypt performs a Rijndael AES-GCM encryption
operation. Only a 128bit key size is supported by this Intel(R) SGX SDK cryp-
tography library.

Syntax

sgx_status_t sgx_rijndael128GCM_encrypt(

const sgx_aes_gcm_128bit_key_t *p_key,
const uint8_t *p_src,
uint32_t src_len,
uint8_t *p_dst,
const uint8_t *p_iv,
uint32_t iv_len,
const uint8_t *p_aad,
uint32_t aad_len,
sgx_aes_gcm_128bit_tag_t *p_out_mac

);

Parameters

p_key [in]

A pointer to key to be used in the AES-GCM encryption operation. The size
must be 128 bits.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 159 -

p_src [in]

A pointer to the input data stream to be encrypted. Buffer could be NULL if
there is AAD text.

src_len [in]

Specifies the length on the input data stream to be encrypted. This could be
zero but p_src and p_dst should be NULL and aad_len must be greater
than zero.

p_dst [out]

A pointer to the output encrypted data buffer. This buffer should be allocated
by the calling code.

p_iv [in]

A pointer to the initialization vector to be used in the AES-GCM calculation.
NIST AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

Specifies the length on input initialization vector. The length should be 12 as
recommended by NIST.

p_aad [in]

A pointer to an optional additional authentication data buffer which is used in
the GCM MAC calculation. The data in this buffer will not be encrypted. The
field is optional and could be NULL.

aad_len [in]

Specifies the length of the additional authentication data buffer. This buffer is
optional and thus the size can be zero.

p_out_mac [out]

This is the output GCM MAC performed over the input data buffer (data to be
encrypted) as well as the additional authentication data (this is optional data).
The calling code should allocate this buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If key, MAC, or IV pointer is NULL.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 160 -

If AAD size is > 0 and the AAD pointer is NULL.

If source size is > 0 and the source pointer or destination pointer are NULL.

If both source pointer and AAD pointer are NULL.

If IV Length is not equal to 12 (bytes).

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

The Galois/Counter Mode (GCM) is a mode of operation of the AES algorithm.
GCM [NIST SP 800-38D] uses a variation of the counter mode of operation for
encryption. GCM assures authenticity of the confidential data (of up to about
64 GB per invocation) using a universal hash function defined over a binary
finite field (the Galois field).

GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM provides
stronger authentication assurance than a (non-cryptographic) checksum or
error detecting code. In particular, GCM can detect both accidental modi-
fications of the data and intentional, unauthorized modifications.

It is recommended that the source and destination data buffers are allocated
within the enclave. The AAD buffer could be allocated within or outside
enclave memory. The use of AAD data buffer could be information identifying
the encrypted data since it will remain in clear text.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_rijndael128GCM_decrypt

sgx_rijndael128GCM_decrypt performs a Rijndael AES-GCM decryption
operation. Only a 128bit key size is supported by this Intel(R) SGX SDK cryp-
tography library.

Syntax

sgx_status_t sgx_rijndael128GCM_decrypt(

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 161 -

const sgx_aes_gcm_128bit_key_t *p_key,
const uint8_t *p_src,
uint32_t src_len,
uint8_t *p_dst,
const uint8_t *p_iv,
uint32_t iv_len,
const uint8_t *p_aad,
uint32_t aad_len,
const sgx_aes_gcm_128bit_tag_t *p_in_mac

);

Parameters

p_key [in]

A pointer to key to be used in the AES-GCM decryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be decrypted. Buffer could be NULL if
there is AAD text.

src_len [in]

Specifies the length on the input data stream to be decrypted. This could be
zero but p_src and p_dst should be NULL and aad_len must be greater
than zero.

p_dst [out]

A pointer to the output decrypted data buffer. This buffer should be allocated
by the calling code.

p_iv [in]

A pointer to the initialization vector to be used in the AES-GCM calculation.
NIST AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

Specifies the length on input initialization vector. The length should be 12 as
recommended by NIST.

p_aad [in]

A pointer to an optional additional authentication data buffer which is
provided for the GCM MAC calculation when encrypting. The data in this buf-
fer was not encrypted. The field is optional and could be NULL.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 162 -

aad_len [in]

Specifies the length of the additional authentication data buffer. This buffer is
optional and thus the size can be zero.

p_in_mac [in]

This is the GCM MAC that was performed over the input data buffer (data to
be encrypted) as well as the additional authentication data (this is optional
data) during the encryption process (call to sgx_rijndael128GCM_
encrypt).

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If key, MAC, or IV pointer is NULL.

If AAD size is > 0 and the AAD pointer is NULL.

If source size is > 0 and the source pointer or destination pointer are NULL.

If both source pointer and AAD pointer are NULL.

If IV Length is not equal to 12 (bytes).

SGX_ERROR_MAC_MISMATCH

The input MAC does not match the MAC calculated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

The Galois/Counter Mode (GCM) is a mode of operation of the AES algorithm.
GCM [NIST SP 800-38D] uses a variation of the counter mode of operation for
encryption. GCM assures authenticity of the confidential data (of up to about

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 163 -

64 GB per invocation) using a universal hash function defined over a binary
finite field (the Galois field).

GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM provides
stronger authentication assurance than a (non-cryptographic) checksum or
error detecting code. In particular, GCM can detect both accidental modi-
fications of the data and intentional, unauthorized modifications.

It is recommended that the destination data buffer is allocated within the
enclave. The AAD buffer could be allocated within or outside enclave memory.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_rijndael128_cmac_msg

The sgx_rijndael128_cmac_msg function performs a standard 128bit
CMAC hash over the input data buffer.

Syntax

sgx_status_t sgx_rijndael128_cmac_msg(

const sgx_cmac_128bit_key_t *p_key,
const uint8_t *p_src,
uint32_t src_len,
sgx_cmac_128bit_tag_t *p_mac

);

Parameters

p_key [in]

A pointer to key to be used in the CMAC hash operation. The size must be 128
bits.

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 164 -

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_mac [out]

A pointer to the output 128-bit hash resulting from the CMAC calculation. This
pointer must be non-NULL and the caller allocates memory for this buffer.

Return value

SGX_SUCCESS

The CMAC hash function is performed successfully.

SGX_ERROR_INVALID_PARAMETER

The key, source or MAC pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An unexpected internal cryptography library.

Description

The sgx_rijndael128_cmac_msg function performs a standard CMAC
hash over the input data buffer. Only a 128-bit version of the CMAC hash is
supported.

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update… Update, Final procedure should be used to com-
pute a CMAC hash over multiple input data sets.

A zero-length input data buffer is supported, but the pointer must be non-
NULL.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 165 -

sgx_cmac128_init

sgx_cmac128_init returns an allocated and initialized CMAC algorithm con-
text state. This should be part of the Init, Update … Update, Final process
when the CMAC hash is to be performed over multiple datasets. If a complete
dataset is available, the recommended call is sgx_rijndael128_cmac_
msg to perform the hash in a single call.

Syntax

sgx_status_t sgx_cmac128_init(

const sgx_cmac_128bit_key_t *p_key,
sgx_cmac_state_handle_t* p_cmac_handle

);

Parameters

p_key [in]

A pointer to key to be used in the CMAC hash operation. The size must be 128
bits.

p_cmac_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC 128-bit hash. The algorithm stores the intermediate
results of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The CMAC hash state is successfully allocated and initialized.

SGX_ERROR_INVALID_PARAMETER

The key or handle pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 166 -

Calling sgx_cmac128_init is the first set in performing a CMAC 128-bit
hash over multiple datasets. The caller does not allocate memory for the
CMAC state that this function returns. The state is specific to the imple-
mentation of the cryptography library and thus the allocation is performed by
the library itself. If the hash over the desired datasets is completed or any
error occurs during the hash calculation process, sgx_cmac128_close should
be called to free the state allocated by this algorithm.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_cmac128_update

sgx_cmac128_update performs a CMAC 128-bit hash over the input data-
set provided. This function supports an iterative calculation of the hash over
multiple datasets where the cmac_handle contains the intermediate results of
the hash calculation over previous datasets.

Syntax

sgx_status_t sgx_cmac128_update(

const uint8_t *p_src,
uint32_t src_len,
sgx_cmac_state_handle_t cmac_handle

);

Parameters

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

cmac_handle [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 167 -

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The source pointer or cmac handle is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred while performing the CMAC
hash calculation.

NOTE:
If an unexpected error occurs, then the CMAC state is not freed (CMAC
handle). In this case, call sgx_cmac128_close to free the CMAC state to
avoid memory leak.

Description

This function should be used as part of a CMAC 128-bit hash calculation over
multiple datasets. If a CMAC hash is needed over a single data set, function
sgx_rijndael128_cmac128_msg should be used instead. Prior to calling
this function on the first dataset, the sgx_cmac128_init function must be
called first to allocate and initialize the CMAC state structure which will hold
intermediate hash results over earlier datasets. The function sgx_cmac128_
final should be used to obtain the hash after the final dataset has been pro-
cessed by this function.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 168 -

sgx_cmac128_final

sgx_cmac128_final obtains the CMAC 128-bit hash after the final dataset
has been processed (by calls to sgx_cmac128_update).

Syntax

sgx_status_t sgx_cmac128_final(

sgx_cmac_state_handle_t cmac_handle,
sgx_cmac_128bit_tag_t* p_hash

);

Parameters

cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

p_hash [out]

This is a pointer to the 128-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Return value

SGX_SUCCESS

The hash is obtained successfully.

SGX_ERROR_INVALID_PARAMETER

The hash pointer or CMAC handle is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The CMAC state passed in is likely problematic causing an internal cryp-
tography library failure.

NOTE:
If an unexpected error occurs, then the CMAC state is freed (CMAC handle). In
this case, please call sgx_cmac128_close to free the CMAC state to avoid
memory leak.

Description

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 169 -

This function returns the hash after performing the CMAC 128-bit hash cal-
culation over one or more datasets using the sgx_cmac128_update func-
tion. Memory for the hash should be allocated by the calling code. The handle
to CMAC state used in the sgx_cmac128_update calls must be passed in
as input.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_cmac128_close

sgx_cmac128_close cleans up and deallocates the CMAC algorithm con-
text state that was allocated in function sgx_cmac128_init.

Syntax

sgx_status_t sgx_cmac128_close(

sgx_cmac_state_handle_t cmac_handle
);

Parameters

cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

The CMAC state was deallocated successfully.

SGX_ERROR_INVALID_PARAMETER

The CMAC handle is NULL.

Description

Calling sgx_cmac128_close is the last step after performing a CMAC hash
over multiple datasets. The caller uses this function to deallocate memory
used for storing the CMAC algorithm context state.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 170 -

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_aes_ctr_encrypt

sgx_aes_ctr_encrypt performs a Rijndael AES-CTR encryption operation
(counter mode). Only a 128bit key size is supported by this Intel(R) SGX SDK
cryptography library.

Syntax

sgx_status_t sgx_aes_ctr_encrypt(

const sgx_aes_ctr_128bit_key_t *p_key,
const uint8_t *p_src,
const uint32_t src_len,
uint8_t *p_ctr,
const uint32_t ctr_inc_bits,
uint8_t *p_dst,

);

Parameters

p_key [in]

A pointer to key to be used in the AES-CTR encryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be encrypted.

src_len [in]

Specifies the length on the input data stream to be encrypted.

p_ctr [in]

A pointer to the initialization vector to be used in the AES-CTR calculation.

ctr_inc_bits [in]

Specifies the number of bits in the counter to be incremented.

p_dst [out]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 171 -

A pointer to the output encrypted data buffer. This buffer should be allocated
by the calling code.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If key, source, destination, or counter pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

This function encrypts the input data stream of a variable length according to
the CTR mode as specified in [NIST SP 800-38A]. The counter can be thought
of as an IV which increments on successive encryption or decryption calls. For
a given dataset or data stream, the incremented counter block should be used
on successive calls of the encryption process for that given stream. However,
for new or different datasets/streams, the same counter should not be reused,
instead initialize the counter for the new data set.

It is recommended that the source, destination and counter data buffers are
allocated within the enclave.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_aes_ctr_decrypt

sgx_aes_ctr_decrypt performs a Rijndael AES-CTR decryption operation
(counter mode). Only a 128bit key size is supported by this Intel(R) SGX SDK
cryptography library.

Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 172 -

sgx_status_t sgx_aes_ctr_decrypt(

const sgx_aes_gcm_128bit_key_t *p_key,
const uint8_t *p_src,
const uint32_t src_len,
uint8_t *p_ctr,
const uint32_t ctr_inc_bits,
uint8_t *p_dst

);

Parameters

p_key [in]

A pointer to key to be used in the AES-CTR decryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be decrypted.

src_len [in]

Specifies the length of the input data stream to be decrypted.

p_ctr [in]

A pointer to the initialization vector to be used in the AES-CTR calculation.

ctr_inc_bits [in]

Specifies the number of bits in the counter to be incremented.

p_dst [out]

A pointer to the output decrypted data buffer. This buffer should be allocated
by the calling code.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If key, source, destination, or counter pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 173 -

An internal cryptography library failure occurred.

Description

This function decrypts the input data stream of a variable length according to
the CTR mode as specified in [NIST SP 800-38A]. The counter can be thought
of as an IV which increments on successive encryption or decryption calls. For
a given dataset or data stream, the incremented counter block should be used
on successive calls of the decryption process for that given stream. However,
for new or different datasets/streams, the same counter should not be reused,
instead initialize the counter for the new data set.

It is recommended that the source, destination and counter data buffers are
allocated within the enclave.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_ecc256_open_context

sgx_ecc256_open_context returns an allocated and initialized context
for the elliptic curve cryptosystem over a prime finite field, GF(p). This context
must be created prior to calling sgx_ecc256_create_key_pair or sgx_
ecc256_compute_shared_dhkey. When the calling code has completed
its set of ECC operations, sgx_ecc256_close_context should be called to
cleanup and deallocate the ECC context.

NOTE:
Only a field element size of 256 bits is supported.

Syntax

sgx_status_t sgx_ecc256_open_context(

sgx_ecc_state_handle_t *p_ecc_handle
);

Parameters

p_ecc_handle [out]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 174 -

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The ECC256 GF(p) state is allocated and initialized properly.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The ECC context state was not initialized properly due to an internal cryp-
tography library failure.

Description

sgx_ecc256_open_context is utilized to allocate and initialize a 256-bit
GF(p) cryptographic system. The caller does not allocate memory for the ECC
state that this function returns. The state is specific to the implementation of
the cryptography library and thus the allocation is performed by the library
itself. If the ECC cryptographic function using this cryptographic system is com-
pleted or any error occurs, sgx_sha256_close_context should be called
to free the state allocated by this algorithm.

Public key cryptography successfully allows to solving problems of information
safety by enabling trusted communication over insecure channels. Although
elliptic curves are well studied as a branch of mathematics, an interest to the
cryptographic schemes based on elliptic curves is constantly rising due to the
advantages that the elliptic curve algorithms provide in the wireless com-
munications: shorter processing time and key length.

Elliptic curve cryptosystems (ECCs) implement a different way of creating pub-
lic keys. As elliptic curve calculation is based on the addition of the rational
points in the (x,y) plane and it is difficult to solve a discrete logarithm from
these points, a higher level of safety is achieved through the cryptographic
schemes that use the elliptic curves. The cryptographic systems that encrypt

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 175 -

messages by using the properties of elliptic curves are hard to attack due to
the extreme complexity of deciphering the private key.

Using of elliptic curves allows shorter public key length and encourages cryp-
tographers to create cryptosystems with the same or higher encryption
strength as the RSA or DSA cryptosystems. Because of the relatively short key
length, ECCs do encryption and decryption faster on the hardware that
requires less computation processing volumes.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_ecc256_close_context

sgx_ecc256_close_context cleans up and deallocates the ECC 256 GF
(p) state that was allocated in function sgx_ecc256_open_context.

NOTE:
Only a field element size of 256 bits is supported.

Syntax

sgx_status_t sgx_ecc256_close_context(

sgx_ecc_state_handle_t ecc_handle
);

Parameters

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 176 -

The ECC 256 GF(p) state was deallocated successfully.

SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

sgx_ecc256_close_context is used by calling code to deallocate
memory used for storing the ECC 256 GF(p) state used in ECC cryptographic
calculations.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_ecc256_create_key_pair

sgx_ecc256_create_key_pair generates a private/public key pair on
the ECC curve for the given cryptographic system. The calling code is respons-
ible for allocating memory for the public and private keys. sgx_ecc256_
open_context must be called to allocate and initialize the ECC context prior
to making this call.

Syntax

sgx_status_t sgx_ecc256_create_key_pair(

sgx_ec256_private_t *p_private,
sgx_ec256_public_t *p_public,
sgx_ecc_state_handle_t ecc_handle

);

Parameters

p_private [out]

A pointer to the private key which is a number that lies in the range of [1, n-1]
where n is the order of the elliptic curve base point.

NOTE:
Value is LITTLE ENDIAN.

p_public [out]

A pointer to the public key which is an elliptic curve point such that:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 177 -

public key = private key * G, where G is the base point of the elliptic curve.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The public/private key pair was successfully generated.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key or public key is invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The key creation process failed due to an internal cryptography library failure.

Description

This function populates private/public key pair. The calling code allocates
memory for the private and public key pointers to be populated. The function
generates a private key p_private and computes a public key p_public of
the elliptic cryptosystem over a finite field GF(p).

The private key p_private is a number that lies in the range of [1, n-1]
where n is the order of the elliptic curve base point.

The public key p_public is an elliptic curve point such that p_public =
p_private *G, where G is the base point of the elliptic curve.

The context of the point p_public as an elliptic curve point must be created
by using the function sgx_ecc256_open_context.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 178 -

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_ecc256_compute_shared_dhkey

sgx_ecc256_compute_shared_dhkey generates a secret key shared
between two participants of the cryptosystem. The calling code should alloc-
ate memory for the shared key to be generated by this function.

Syntax

sgx_status_t sgx_ecc256_compute_shared_dhkey(

sgx_ec256_private_t *p_private_b,
sgx_ec256_public_t *p_public_ga,
sgx_ec256_dh_shared_t *p_shared_key,
sgx_ecc_state_handle_t ecc_handle

);

Parameters

p_private_b [in]

A pointer to the local private key.

NOTE:
Value is LITTLE ENDIAN.

p_public_ga [in]

A pointer to the remote public key.

NOTE:
Value is LITTLE ENDIAN.

p_shared_key [out]

A pointer to the secret key generated by this function which is a common
point on the elliptic curve.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 179 -

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The public/private key pair was successfully generated.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key, public key, or shared key pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The key creation process failed due to an internal cryptography library failure.

Description

This function computes the Diffie-Hellman shared key based on the enclave’s
own (local) private key and remote enclave’s public Ga Key. The calling code
allocates memory for shared key to be populated by this function.

The function computes a secret number sharedKey, which is a secret key
shared between two participants of the cryptosystem.

In cryptography, metasyntactic names such as Alice as Bob are normally used
as examples and in discussions and stand for participant A and participant B.

Both participants (Alice and Bob) use the cryptosystem for receiving a com-
mon secret point on the elliptic curve called a secret key (sharedKey). To
receive a secret key, participants apply the Diffie-Hellman key-agreement
scheme involving public key exchange. The value of the secret key entirely
depends on participants.

According to the scheme, Alice and Bob perform the following operations:

1. Alice calculates her own public key pubKeyA by using her private key

privKeyA: pubKeyA = privKeyA * G, where G is the base point of the
elliptic curve.

2. Alice passes the public key to Bob.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 180 -

3. Bob calculates his own public key pubKeyB by using his private key

privKeyB: pubKeyB = privKeyB * G, where G is a base point of the elliptic
curve.

4. Bob passes the public key to Alice.

5. Alice gets Bob's public key and calculates the secret point shareKeyA. When
calculating, she uses her own private key and Bob's public key and applies the
following formula:

shareKeyA = privKeyA * pubKeyB = privKeyA * privKeyB *
G.

6. Bob gets Alice's public key and calculates the secret point shareKeyB. When
calculating, he uses his own private key and Alice's public key and applies the
following formula:

shareKeyB = privKeyB * pubKeyA = privKeyB * privKeyA *
G.

As the following equation is true privKeyA * privKeyB * G =
privKeyB * privKeyA * G, the result of both calculations is the same,
that is, the equation shareKeyA = shareKeyB is true. The secret point serves as
a secret key.

Shared secret shareKey is an x-coordinate of the secret point on the elliptic
curve. The elliptic curve domain parameters must be hitherto defined by the
function: sgx_ecc256_open_context.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.aor libsgx_tcrypto_opt.a

sgx_ecc256_check_point

sgx_ecc256_check_point checks whether the input point is a valid point
on the ECC curve for the given cryptographic system. sgx_ecc256_open_
context must be called to allocate and initialize the ECC context prior to
making this call.

Syntax

sgx_status_t sgx_ecc256_check_point(

const sgx_ec256_public_t *p_point,

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 181 -

const sgx_ecc_state_handle_t ecc_handle,
int *p_valid

);

Parameters

p_point [in]

A pointer to the point to perform validity check on.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

p_valid [out]

A pointer to the validation result.

Return value

SGX_SUCCESS

The validation process is performed successfully. Check p_valid to get the val-
idation result.

SGX_ERROR_INVALID_PARAMETER

If the input ecc handle, p_point or p_valid is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

sgx_ecc256_check_point validates whether the input point is a valid
point on the ECC curve for the given cryptographic system.

The typical validation result is one of the two values:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 182 -

1 - The input point is valid

0 – The input point is not valid

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_ecdsa_sign

sgx_ecdsa_sign computes a digital signature with a given private key over
an input dataset.

Syntax

sgx_status_t sgx_ecdsa_sign(

const uint8_t *p_data,
uint32_t data_size,
sgx_ec256_private_t *p_private,
sgx_ec256_signature_t *p_signature,
sgx_ecc_state_handle_t ecc_handle

);

Parameters

p_data [in]

A pointer to the data to calculate the signature over.

data_size [in]

The size of the data to be signed.

p_private [in]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

p_signature [out]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 183 -

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The digital signature is successfully generated.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key, data, or signature pointer is NULL. If the
data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The signature generation process failed due to an internal cryptography lib-
rary failure.

Description

This function computes a digital signature over the input dataset based on the
input private key.

A message digest is a fixed size number derived from the original message
with an applied hash function over the binary code of the message. (SHA256
in this case)

The signer's private key and the message digest are used to create a sig-
nature.

A digital signature over a message consists of a pair of large numbers, 256-bits
each, which the given function computes.

The scheme used for computing a digital signature is of the ECDSA scheme, an
elliptic curve of the DSA scheme.

The keys can be generated and set up by the function: sgx_ecc256_cre-
ate_key_pair.

The elliptic curve domain parameters must be created by function: sgx_
ecc256_open_context.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 184 -

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_ecdsa_verify

sgx_ecdsa_verify verifies the input digital signature with a given public
key over an input dataset.

Syntax

sgx_status_t sgx_ecdsa_verify(

const uint8_t *p_data,
uint32_t data_size,
const sgx_ec256_public_t *p_public,
sgx_ec256_signature_t *p_signature,
uint8_t *p_result,
sgx_ecc_state_handle_t ecc_handle

);

Parameters

p_data [in]

A pointer to the signed dataset to verify.

data_size [in]

The size of the dataset to have its signature verified.

p_public [in]

A pointer to the public key to be used in the calculation of the signature.

NOTE:
Value is LITTLE ENDIAN.

p_signature [in]

A pointer to the signature to be verified.

NOTE:
Value is LITTLE ENDIAN.

p_result [out]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 185 -

A pointer to the result of the verification check populated by this function.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The digital signature verification was performed successfully. Check p_result
to get the verification result.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, public key, data, result or signature pointer is NULL or
the data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The verification process failed due to an internal cryptography library failure.

Description

This function verifies the signature for the given data set based on the input
public key.

A digital signature over a message consists of a pair of large numbers, 256-bits
each, which could be created by function: sgx_ecdsa_sign. The scheme
used for computing a digital signature is of the ECDSA scheme, an elliptic
curve of the DSA scheme.

The typical result of the digital signature verification is one of the two values:

SGX_ECValid - Digital signature is valid

SGX_ECInvalidSignature - Digital signature is not valid

The elliptic curve domain parameters must be created by function: sgx_
ecc256_open_context.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 186 -

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a or libsgx_tcrypto_opt.a

sgx_create_pse_session

sgx_create_pse_session creates a session with the PSE.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_create_pse_session(

void
);

Return value

SGX_SUCCESS

Session is created successfully.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED

Intel(R) SGX needs to be updated.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 187 -

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurred.

Description

An Intel(R) SGX enclave first calls sgx_create_pse_session()in the pro-
cess to request platform service.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_close_pse_session

sgx_close_pse_session closes a session created by sgx_create_pse_
session.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_close_pse_session(

void
);

Return value

SGX_SUCCESS

Session is closed successfully.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs.

Description

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 188 -

An Intel(R) SGX enclave calls sgx_close_pse_session() when there is no
need to request platform service.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_get_ps_sec_prop

sgx_get_ps_sec_prop gets a data structure describing the security prop-
erty of the platform service.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_get_ps_sec_prop (

sgx_ps_sec_prop_desc_t* security_property
);

Parameters

security_property [out]

A pointer to the buffer that receives the security property descriptor of the
platform service. The pointer cannot be NULL.

Return value

SGX_SUCCESS

Security property is returned successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.

Description

Gets a data structure that describes the security property of the platform ser-
vice.

The caller should call sgx_create_pse_session to establish a session
with the platform service enclave before calling this API.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 189 -

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_get_trusted_time

sgx_get_trusted_time gets trusted time from the AE service.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_get_trusted_time(

sgx_time_t* current_time,
sgx_time_source_nonce_t* time_source_nonce

);

Parameters

current_time [out]

Trusted Time Stamp in seconds relative to a reference point. The reference
point does not change as long as the time_source_nonce has not changed.
The pointer cannot be NULL.

time_source_nonce [out]

A pointer to the buffer that receives the nonce which indicates time source.
The pointer cannot be NULL.

Return value

SGX_SUCCESS

Trusted time is obtained successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 190 -

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs.

Description

current_time contains time in seconds and time_source_nonce con-
tains nonce associate with the time. The caller should compare time_
source_nonce against the value returned from the previous call of this API if
it needs to calculate the time passed between two readings of the Trusted
Timer. If the time_source_nonce of the two readings do not match, the dif-
ference between the two readings does not necessarily reflect time passed.

The caller should call sgx_create_pse_session to establish a session
with the platform service enclave before calling this API.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_create_monotonic_counter_ex

sgx_create_monotonic_counter_ex creates a monotonic counter.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_create_monotonic_counter_ex(

uint16_t owner_policy,
const sgx_attributes_t * owner_attribute_mask,
sgx_mc_uuid_t * counter_uuid,
uint32_t * counter_value

);

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 191 -

Parameters

owner_policy [in]

The owner policy of the monotonic counter.

l 0x1 means enclaves with same signing key can access the monotonic
counter

l 0x2 means enclave with same measurement can access the monotonic
counter

l 0x3 means enclave with same measurement as well as signing key can
access the monotonic counter.

l Owner policy values of 0x0 or any bits set beyond bits 0 and 1 will cause
SGX_ERROR_INVALID_PARAMETER

owner_attribute_mask [in]

Mask of owner attribute, in the format of sgx_attributes_t.

counter_uuid [out]

A pointer to the buffer that receives the monotonic counter ID. The pointer
cannot be NULL.

counter_value [out]

A pointer to the buffer that receives the monotonic counter value. The pointer
cannot be NULL.

Return value

SGX_SUCCESS

Monotonic counter is created successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the parameters is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_MC_OVER_QUOTA

The enclave has reached the quota of Monotonic Counters it can maintain.

SGX_ERROR_MC_USED_UP

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 192 -

Monotonic counters are used out.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by the architectural enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs.

Description

Call sgx_create_monotonic_counter_ex to create a monotonic counter
with the given owner_policy and owner_attribute_mask.

The caller should call sgx_create_pse_session to establish a session
with the platform service enclave before calling this API.

Creating a monotonic counter (MC) involves writing to the non-volatile
memory available in the platform. Repeated write operations could cause the
memory to wear out during the normal lifecycle of the platform. Intel(R) SGX
prevents this by limiting the rate at which MC operations can be performed. If
you exceed the limit, the MC operation may return SGX_ERROR_BUSY for sev-
eral minutes.

Intel(R) SGX limits the number of monotonic counters (MC) an enclave can cre-
ate. To avoid exhausting the available quota, an SGX application should record
the MC UUID that sgx_create_monotonic_counter_ex returns and des-
troy a MC when it is not needed any more. If an enclave reaches its quota and
previously created MC UUIDs have not been recorded, you may restore the

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 193 -

MC service after uninstalling the SGX PSW and installing it again. This pro-
cedure deletes all MCs created by any enclave in that system.

NOTE
One application is not able to access the monotonic counter created by
another application in simulation mode. This also affects two different applic-
ations using the same enclave.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_create_monotonic_counter

sgx_create_monotonic_counter creates a monotonic counter with
default owner policy and default user attribute mask.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_create_monotonic_counter(

sgx_mc_uuid_t * counter_uuid,
uint32_t * counter_value

);

Parameters

counter_uuid [out]

A pointer to the buffer that receives the monotonic counter ID. The pointer
cannot be NULL.

counter_value [out]

A pointer to the buffer that receives the monotonic counter value. The pointer
cannot be NULL.

Return value

SGX_SUCCESS

Monotonic counter is created successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 194 -

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_MC_OVER_QUOTA

The enclave has reached the quota of Monotonic Counters it can maintain.

SGX_ERROR_MC_USED_UP

Monotonic counters are used out.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs.

Description

Call sgx_create_monotonic_counter to create a monotonic counter
with the default owner policy 0x1, which means enclaves with same signing
key can access the monotonic counter and default owner_attribute_mask
0xFFFFFFFFFFFFFFCB.

The caller should call sgx_create_pse_session to establish a session
with the platform service enclave before calling this API.

Creating a monotonic counter (MC) involves writing to the non-volatile
memory available in the platform. Repeated write operations could cause the

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 195 -

memory to wear out during the normal lifecycle of the platform. Intel(R) SGX
prevents this by limiting the rate at which MC operations can be performed. If
you exceed the limit, the MC operation may return SGX_ERROR_BUSY for sev-
eral minutes.

Intel(R) SGX limits the number of MCs an enclave can create. To avoid exhaust-
ing the available quota, an SGX application should record the MC UUID that
sgx_create_monotonic_counter returns and destroy a MC when it is
not needed any more. If an enclave reaches its quota and previously created
MC UUIDs have not been recorded, you may restore the MC service after unin-
stalling the SGX PSW and installing it again. This procedure deletes all MCs cre-
ated by any enclave in that system.

NOTE
One application is not able to access the monotonic counter created by
another application in simulation mode. This also affects two different applic-
ations using the same enclave.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_destroy_monotonic_counter

sgx_destroy_monotonic_counter destroys a monotonic counter cre-
ated by sgx_create_monotonic_counter or sgx_create_mono-
tonic_counter_ex.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_destroy_monotonic_counter(

const sgx_mc_uuid_t * counter_uuid
);

Parameters

counter_uuid [in]

The monotonic counter ID to be destroyed.

Return value

SGX_SUCCESS

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 196 -

Monotonic counter is destroyed successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_MC_NOT_FOUND

The Monotonic Counter does not exist or has been invalidated.

SGX_ERROR_MC_NO_ACCESS_RIGHT

The enclave doesn't have the access right to specified Monotonic Counter.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs.

Description

Calling sgx_destroy_monotonic_counter after a monotonic counter is
not needed anymore.

The caller should call sgx_create_pse_session to establish a session
with the platform service enclave before calling this API.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 197 -

sgx_destroy_monotonic_counter fails if the calling enclave does not
match the owner policy and the attributes specified in the call that created
the monotonic counter.

Destroying a Monotonic Counter (MC) involves writing to the non-volatile
memory available in the platform. Repeated write operations could cause the
memory to wear out during the normal lifecycle of the platform. Intel(R) SGX
prevents this by limiting the rate at which MC operations can be performed. If
you exceed the limit, the MC operation may return SGX_ERROR_BUSY for sev-
eral minutes.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_increment_monotonic_counter

sgx_increment_monotonic_counter increments a monotonic counter
value by 1.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_increment_monotonic_counter(

const sgx_mc_uuid_t * counter_uuid,
uint32_t * counter_value

);

Parameters

counter_uuid [in]

The Monotonic Counter ID to be incremented.

counter_value [out]

A pointer to the buffer that receives the Monotonic Counter value. The pointer
cannot be NULL.

Return value

SGX_SUCCESS

Monotonic Counter is incremented successfully.

SGX_ERROR_INVALID_PARAMETER

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 198 -

Any of the pointers is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_MC_NOT_FOUND

The Monotonic Counter does not exist or has been invalidated.

SGX_ERROR_MC_NO_ACCESS_RIGHT

The enclave does not have the access right to specified Monotonic Counter.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs.

Description

Call sgx_increment_monotonic_counter to increase a monotonic
counter value by 1.

The caller should call sgx_create_pse_session to establish a session
with the platform service enclave before calling this API.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 199 -

sgx_increment_monotonic_counter fails if the calling enclave does not
match the owner policy and the attributes specified in the call that created
the monotonic counter.

Incrementing a monotonic counter (MC) involves writing to the non-volatile
memory available in the platform. Repeated write operations could cause the
memory to wear out during the normal lifecycle of the platform. Intel(R) SGX
prevents this by limiting the rate at which MC operations can be performed. If
you exceed the limit, the MC operation may return SGX_ERROR_BUSY for sev-
eral minutes.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

sgx_read_monotonic_counter

sgx_read_monotonic_counter returns the value of a monotonic counter.

This API is only available in simulation mode.

Syntax

sgx_status_t sgx_increment_monotonic_counter(

const sgx_mc_uuid_t * counter_uuid,
uint32_t * counter_value

);

Parameters

counter_uuid [in]

The monotonic counter ID to be read.

counter_value [out]

A pointer to the buffer that receives the monotonic counter value. The pointer
cannot be NULL.

Return value

SGX_SUCCESS

Monotonic counter is read successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 200 -

SGX_ERROR_MC_NOT_FOUND

the Monotonic Counter does not exist or has been invalidated.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by the user or the Architectural
Enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurred.

Description

Call sgx_read_monotonic_counter to read the value of a monotonic
counter.

The caller should call sgx_create_pse_session to establish a session
with the platform service enclave before calling this API.

sgx_read_monotonic_counter fails if the calling enclave does not match
the owner policy and the attributes specified in the call that created the mono-
tonic counter.

Requirements

Header sgx_tae_service.h sgx_tae_service.edl

Library libsgx_tservice_sim.a (simulation)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 201 -

sgx_ra_init

The sgx_ra_init function creates a context for the remote attestation and
key exchange process.

Syntax

sgx_status_t sgx_ra_init(

const sgx_ec256_public_t * p_pub_key,
int b_pse,
sgx_ra_context_t * p_context

);

Parameters

p_pub_key [in] (Little Endian)

The EC public key of the service provider based on the NIST P-256 elliptic
curve.

b_pse [in]

If true, platform service information is needed in message 3. The caller should
make sure a PSE session has been established using sgx_create_pse_ses-
sion before attempting to establish a remote attestation and key exchange
session involving platform service information.

p_context [out]

The output context for the subsequent remote attestation and key exchange
process, to be used in sgx_ra_get_msg1 and sgx_ra_proc_msg2.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation, or contexts reach
the limits.

SGX_ERROR_AE_SESSION_INVALID

The session is invalid or ended by the server.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 202 -

SGX_ERROR_UNEXPECTED

Indicates that an unexpected error occurred.

Description

This is the first API user should call for a key exchange process. The context
returned from this function is used as a handle for other APIs in the key
exchange library.

Requirements

Header sgx_tkey_exchange.h sgx_tkey_exchange.edl

Library libsgx_tkey_exchange.a

sgx_ra_get_keys

The sgx_ra_get_keys function is used to get the negotiated keys of a
remote attestation and key exchange session. This function should only be
called after the service provider accepts the remote attestation and key
exchange protocol message 3 produced by sgx_ra_proc_msg2.

Syntax

sgx_status_t sgx_ra_get_keys(

sgx_ra_context_t context,
sgx_ra_key_type_t type,
sgx_ra_key_128_t *p_key

);

Parameters

context [in]

Context returned by sgx_ra_init.

type [in]

The type of the keys, which can be SGX_RA_KEY_MK, SGX_RA_KEY_SK, or
SGX_RA_VK.

If the RA context was generated by sgx_ra_init, the returned SGX_RA_
KEY_MK, SGX_RA_KEY_SK or SGX_RA_VK is derived from the Diffie-Hellman
shared secret elliptic curve field element between the service provider and
the application enclave using the following Key Derivation Function (KDF):

KDK = AES-CMAC(key0, gab x-coordinate)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 203 -

SGX_RA_KEY_VK = AES-CMAC(KDK,
0x01||’VK’||0x00||0x80||0x00)

SGX_RA_KEY_MK = AES-CMAC(KDK,
0x01||’MK’||0x00||0x80||0x00)

SGX_RA_KEY_SK = AES-CMAC(KDK,
0x01||’SK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the Key derivation calculation is the Diffie-Hellman shared secret
elliptic curve field element in Little Endian format. The plain text used in each
key calculation includes:

l a counter (0x01)
l a label: the ASCII representation of one of the strings 'VK', 'MK' or 'SK' in

Little Endian format
l a bit length (0x80)

p_key [out]

The key returned.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.

SGX_ERROR_INVALID_STATE

Indicates this API is invoked in incorrect order, it can be called only after a suc-
cess session has been established. In other words, sgx_ra_proc_msg2
should have been called and no error returned.

Description

After a successful key exchange process, this API can be used in the enclave to
get specific key associated with this remote attestation and key exchange ses-
sion.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 204 -

Header sgx_tkey_exchange.h sgx_tkey_exchange.edl

Library libsgx_tkey_exchange.a

sgx_ra_close

Call the sgx_ra_close function to release the remote attestation and key
exchange context after the process is done and the context isn’t needed any-
more.

Syntax

sgx_status_t sgx_ra_close(

sgx_ra_context_t context
);

Parameters

context [in]

Context returned by sgx_ra_init.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates the context is invalid.

Description

At the end of a key exchange process, the caller needs to use this API in an
enclave to clear and free memory associated with this remote attestation ses-
sion.

Requirements

Header sgx_tkey_exchange.h sgx_key_exchange.edl

Library libsgx_tkey_exchange.a

sgx_dh_init_session

Initialize DH secure session according to the caller’s role in the establishment.

Syntax

sgx_status_t sgx_dh_init_session(

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 205 -

sgx_dh_session_role_t role,
sgx_dh_session_t * session

);

Parameters

role [in]

Indicates which role the caller plays in the secure session establishment.

The value of role of the initiator of the session establishment must be SGX_
DH_SESSION_INITIATOR.

The value of role of the responder of the session establishment must be SGX_
DH_SESSION_RESPONDER.

session [out]

A pointer to the instance of the DH session which contains entire information
about session establishment.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

Session is initialized successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

Requirements

Header sgx_dh.h

Library libsgx_tservice.aor libsgx_tservice_sim.a (sim-
ulation)

.

sgx_dh_responder_gen_msg1

Generates MSG1 for the responder of DH secure session establishment and
records ECC key pair in session structure.

Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 206 -

sgx_status_t sgx_dh_responder_gen_msg1(

sgx_dh_msg1_t * msg1,
sgx_dh_session_t * dh_session

);

Parameters

msg1 [out]

A pointer to an sgx_dh_msg1_t msg1 buffer. The buffer holding the msg1
message, which is referenced by this parameter, must be within the enclave.

The DH msg1 contains the responder’s public key and report based target
info.

dh_session [in/out]

A pointer that points to the instance of sgx_dh_session_t. The buffer hold-
ing the DH session information, which is referenced by this parameter, must
be within the enclave.

NOTE
As output, the DH session structure contains the responder’s public key and
private key for the current session.

Return value

SGX_SUCCESS

MSG1 is generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 207 -

Header sgx_dh.h

Library libsgx_tservice.aor libsgx_tservice_sim.a (sim-
ulation)

sgx_dh_initiator_proc_msg1

The initiator of DH secure session establishment handles msg1 sent by respon-
der and then generates msg2, and records initiator’s ECC key pair in DH ses-
sion structure.

Syntax

sgx_status_t sgx_dh_initiator_proc_msg1(

const sgx_dh_msg1_t * msg1,
sgx_dh_msg2_t * msg2,
sgx_dh_session_t * dh_session

);

Parameters

msg1 [in]

Point to dh message 1 buffer generated by session responder, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

msg2 [out]

Point to dh message 2 buffer, and the buffer must be in enclave address
space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

dh_session [in/out]

Point to dh session structure that is used during establishment, and the buffer
must be in enclave address space.

NOTE

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 208 -

The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

msg1 is processed and msg2 is generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Header sgx_dh.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_dh_responder_proc_msg2

The responder handles msg2 sent by initiator and then derives AEK, updates
session information and generates msg3.

Syntax

sgx_status_t sgx_dh_responder_proc_msg2(

const sgx_dh_msg2_t * msg2,
sgx_dh_msg3_t * msg3,
sgx_dh_session_t * dh_session,
sgx_key_128bit_t * aek,
sgx_dh_session_enclave_identity_t * initiator_identity

);

Parameters

msg2 [in]

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 209 -

Point to dh message 2 buffer generated by session initiator, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

msg3 [out]

Point to dh message 3 buffer generated by session responder in this function,
and the buffer must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

dh_session [in/out]

Point to dh session structure that is used during establishment, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

aek [out]

A pointer that points to instance of sgx_key_128bit_t. The aek is derived
as follows:

KDK := CMAC(key0, LittleEndian(gab x-coordinate))

AEK = AES-CMAC(KDK, 0x01||’AEK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the AEK calculation includes:

l a counter (0x01)
l a label: the ASCII representation of the string 'AEK' in Little Endian

format)
l a bit length (0x80)

NOTE

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 210 -

The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

initiator_identity [out]

A pointer that points to instance of sgx_dh_session_enclave_iden-
tity_t. Identity information of initiator includes isv svn, isv product id, the
enclave attributes, MRSIGNER, and MRENCLAVE. The buffer must be in
enclave address space. The caller should check the identity of the peer and
decide whether to trust the peer and use the aek.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

msg2 is processed and msg3 is generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_KDF_MISMATCH

Indicates the key derivation function does not match.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Header sgx_dh.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 211 -

sgx_dh_initiator_proc_msg3

The initiator handles msg3 sent by responder and then derives AEK, updates
session information and gets responder’s identity information.

Syntax

sgx_status_t sgx_dh_initiator_proc_msg3(

const sgx_dh_msg3_t * msg3,
sgx_dh_session_t * dh_session,
sgx_key_128bit_t * aek,
sgx_dh_session_enclave_identity_t * responder_identity

);

Parameters

msg3 [in]

Point to dh message 3 buffer generated by session responder, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

dh_session [in]

Point to dh session structure that is used during establishment, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

aek [out]

A pointer that points to instance of sgx_key_128bit_t. The aek is derived
as follows:

KDK:= CMAC(key0, LittleEndian(gab x-coordinate))

AEK = AES-CMAC(KDK, 0x01||’AEK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the AEK calculation includes:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 212 -

l a counter (0x01)
l a label: the ASCII representation of the string 'AEK' in Little Endian format
l a bit length (0x80)

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

responder_identity [out]

Identity information of responder including isv svn, isv product id, the enclave
attributes, MRSIGNER, and MRENCLAVE. The buffer must be in enclave
address space. The caller should check the identity of the peer and decide
whether to trust the peer and use the aek or the msg3_body.additional_
prop field of msg3.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

The function is done successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Header sgx_dh.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 213 -

Types and Enumerations

This topic introduces the types and error codes in the following topics:

l Type Descriptions
l Error Codes

Type Descriptions

This topic section describes the following data types provided by the Intel(R)
SGX:

l sgx_enclave_id_t
l sgx_launch_token_t
l sgx_exception_vector_t
l sgx_exception_type_t
l sgx_cpu_context_t
l sgx_exception_info_t
l sgx_exception_handler_t
l sgx_spinlock_t
l sgx_thread_t
l sgx_thread_mutex_t
l sgx_thread_mutexattr_t
l sgx_thread_cond_t
l sgx_thread_condattr_t
l sgx_misc_select_t
l sgx_attributes_t
l sgx_misc_attribute_t
l sgx_isv_svn_t
l sgx_cpu_svn_t
l sgx_key_id_t
l sgx_key_128bit_t
l sgx_key_request_t
l sgx_measurement_t
l sgx_mac_t
l sgx_report_data_t
l sgx_prod_id_t
l sgx_target_info_t
l sgx_report_body_t
l sgx_report_t
l sgx_aes_gcm_data_t

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 214 -

l sgx_sealed_data_t
l sgx_epid_group_id_t
l sgx_basename_t
l sgx_quote_t
l sgx_quote_sign_type_t
l sgx_spid_t
l sgx_quote_nonce_t
l sgx_time_source_nonce_t
l sgx_time_t
l sgx_ps_cap_t
l sgx_ps_sec_prop_desc_t
l sgx_mc_uuid_t
l sgx_ra_context_t
l sgx_ra_key_128_t
l sgx_ra_key_type_t
l sgx_ra_msg1_t
l sgx_ra_msg2_t
l sgx_ra_msg3_t
l sgx_ecall_get_ga_trusted_t
l sgx_ecall_get_msg3_trusted_t
l sgx_ecall_proc_msg2_trusted_t
l sgx_platform_info_t
l sgx_update_info_bit_t
l sgx_dh_msg1_t
l sgx_dh_msg2_t
l sgx_dh_msg3_t
l sgx_dh_msg3_body_t
l sgx_dh_session_enclave_identity_t
l sgx_dh_session_role_t
l sgx_dh_session_t

sgx_enclave_id_t

An enclave ID, also referred to as an enclave handle. Used as a handle to an
enclave by various functions.

Syntax

typedef uint64_t sgx_enclave_id_t;

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 215 -

Header sgx_eid.h

sgx_launch_token_t

An opaque type used to hold enclave license information. Used by sgx_cre-
ate_enclave to initialize an enclave. The license is generated by the enclave
licensing service.

See more details in Load and Unload an Enclave.

Syntax

typedef uint8_t sgx_launch_token_t[1024];

Requirements

Header sgx_urts.h

sgx_exception_vector_t

The sgx_exception_vector_t enumeration contains the enclave sup-
ported exception vectors. If the exception vector is #BP, the exception type is
SGX_EXCEPTION_SOFTWARE; otherwise, the exception type is SGX_
EXCEPTION_HARDWARE.

Syntax

typedef enum _sgx_exception_vector_t

{

SGX_EXCEPTION_VECTOR_DE = 0, /* DIV and DIV instructions */
SGX_EXCEPTION_VECTOR_DB = 1, /* For Intel use only */
SGX_EXCEPTION_VECTOR_BP = 3, /* INT 3 instruction */
SGX_EXCEPTION_VECTOR_BR = 5, /* BOUND instruction */
SGX_EXCEPTION_VECTOR_UD = 6, /* UD2 instruction or reserved
opcode */
SGX_EXCEPTION_VECTOR_MF = 16, /* x87 FPU floating-point or
WAIT/FWAI instruction. */
SGX_EXCEPTION_VECTOR_AC = 17, /* Any data reference in memory */
SGX_EXCEPTION_VECTOR_XM = 19, /* SSE/SSE2/SSE3 floating-point
instruction */

} sgx_exception_vector_t;

Requirements

Header sgx_trts_exception.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 216 -

sgx_exception_type_t

The sgx_exception_type_t enumeration contains values that specify the
exception type. If the exception vector is #BP (BreakPoint), the exception
type is SGX_EXCEPTION_SOFTWARE; otherwise, the exception type is SGX_
EXCEPTION_HARDWARE.

Syntax

typedef enum _sgx_exception_type_t

{

SGX_EXCEPTION_HARDWARE = 3,
SGX_EXCEPTION_SOFTWARE = 6,

} sgx_exception_type_t;

Requirements

Header sgx_trts_exception.h

sgx_cpu_context_t

The sgx_cpu_content_t structure contains processor-specific register
data. Custom exception handling uses sgx_cpu_context_t structure to
record the CPU context at exception time.

Syntax

#if defined (_M_X64) || defined (__x86_64__)

typedef struct _cpu_context_t
{

uint64_t rax;
uint64_t rcx;
uint64_t rdx;
uint64_t rbx;
uint64_t rsp;
uint64_t rbp;
uint64_t rsi;
uint64_t rdi;
uint64_t r8;
uint64_t r9;
uint64_t r10;
uint64_t r11;
uint64_t r12;
uint64_t r13;
uint64_t r14;
uint64_t r15;
uint64_t rflags;
uint64_t rip;

} sgx_cpu_context_t;

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 217 -

#else

typedef struct _cpu_context_t
{

uint32_t eax;
uint32_t ecx;
uint32_t edx;
uint32_t ebx;
uint32_t esp;
uint32_t ebp;
uint32_t esi;
uint32_t edi;
uint32_t eflags;
uint32_t eip;

} sgx_cpu_context_t;
#endif

Members

rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8 – r15

64-bit general purpose registers

rflags

64-bit program status and control register

rip

64-bit instruction pointer

eax, ecx, edx, ebx, esp, ebp, esi, edi

32-bit general purpose registers

eflags

32-bit program status and control register

eip

32-bit instruction pointer

Requirements

Header sgx_trts_exception.h

sgx_exception_info_t

A structure of this type contains an exception record with a description of the
exception and processor context record at the time of exception.

Syntax

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 218 -

typedef struct _exception_info_t

{

sgx_cpu_context_t cpu_context;
sgx_exception_vector_t exception_vector;
sgx_exception_type_t exception_type;

} sgx_exception_info_t;

Members

cpu_context

The context record that contains the processor context at the exception time.

exception_vector

The reason the exception occurs. This is the code generated by a hardware
exception.

exception_type

The exception type.

SGX_EXCEPTION_HARDWARE(3) indicates a HW exception.

SGX_EXCEPTION_SOFTWARE(6) indicates a SW exception.

Requirements

Header sgx_trts_exception.h

sgx_exception_handler_t

Callback function that serves as a custom exception handler.

Syntax

typedef int (* sgx_exception_handler_t) (sgx_exception_
info_t *info);

Members

info

A pointer to sgx_exception_info_t structure that receives the exception
information.

Return value

EXCEPTION_CONTINUE_SEARCH (0)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 219 -

The exception handler did not handle the exception and the RTS should call
the next exception handler in the chain.

EXCEPTION_CONTINUE_EXECUTION (-1)

The exception handler handled the exception and the RTS should continue
the execution of the enclave.

Requirements

Header sgx_trts_exception.h

sgx_spinlock_t

Data type for a trusted spin lock.

Syntax

typedef volatile uint32_t sgx_spinlock_t;

Members

sgx_spinlock_t defines a spin lock object inside the enclave.

Requirements

Header sgx_spinlock.h

sgx_thread_t

Data type to uniquely identify a trusted thread.

Syntax

typedef uintptr * sgx_thread_t;

Members

sgx_thread_t is an opaque data type with no member fields visible to
users. This data type is subject to change. Thus, enclave code should not rely
on the contents of this data object.

Requirements

Header sgx_thread.h

sgx_thread_mutex_t

Data type for a trusted mutex object.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 220 -

Syntax

typedef struct sgx_thread_mutex

{

size_t m_refcount;
uint32_t m_control;
volatile uint32_t m_lock;
sgx_thread_t m_owner;
sgx_thread_queue_t m_queue;

} sgx_thread_mutex_t;

Members

m_control

Flags to define whether a mutex is recursive or not.

m_refcount

Reference counter of the mutex object. It will be increased by 1 if the mutex is
successfully acquired, and be decreased by 1 if the mutex is released.

NOTE
The counter will be greater than one only if the mutex is recursive.

m_lock

The spin lock used to guarantee atomic updates to the mutex object.

m_owner

The thread that currently owns the mutex writes its unique thread identifier in
this field, which otherwise is NULL. This field is used for error checking, for
instance to ensure that only the owner of a mutex releases it.

m_queue

Ordered list of threads waiting to acquire the ownership of the mutex. The
queue itself is a structure containing a head and a tail for quick insertion and
removal under FIFO semantics.

Requirements

Header sgx_thread.h

sgx_thread_mutexattr_t

Attribute for the trusted mutex object.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 221 -

Syntax

typedef struct sgx_thread_mutex_attr

{

unsigned char m_dummy;
} sgx_thread_mutexattr_t;

Members

m_dummy

Dummy member not supposed to be used.

Requirements

Header sgx_thread.h

sgx_thread_cond_t

Data type for a trusted condition variable.

Syntax

typedef struct sgx_thread_cond

{

sgx_spinlock_t m_lock;
sgx_thread_queue_t m_queue;

} sgx_thread_cond_t;

Members

m_lock

The spin lock used to guarantee atomic updates to the condition variable.

m_queue

Ordered list of threads waiting on the condition variable. The queue itself is a
structure containing a head and a tail for quick insertion and removal under
FIFO semantics.

Requirements

Header sgx_thread.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 222 -

sgx_thread_condattr_t

Attribute for the trusted condition variable.

Syntax

typedef struct sgx_thread_cond_attr

{

unsigned char m_dummy;
} sgx_thread_condattr_t;

Members

m_dummy

Dummy member not supposed to be used.

Requirements

Header sgx_thread.h

sgx_misc_select_t

Enclave misc select bits. The value is 4 byte in length. Currently all the bits are
reserved for future extension.

Requirements

Header sgx_attributes.h

sgx_attributes_t

Enclave attributes definition structure.

NOTE
When specifying an attributes mask used in key derivation, at a minimum the
flags that should be set are INITED, DEBUG and RESERVED bits.

NOTE
The XGETBV instruction can be executed to determine the register sets which
are part of the XSAVE state which corresponds to the xfrm value of attributes.
Since the save state is dependent on the host system and operating system,
an attributes mask generally does not include these bits (XFRM is set to 0).

Syntax

typedef struct _sgx_attributes_t

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 223 -

{

uint64_t flags;
uint64_t xfrm;

} sgx_attributes_t;

Members

flags

Flags is a combination of the following values.

Value Description
SGX_FLAGS_INITTED
0x0000000000000001ULL

The enclave is initialized

SGX_FLAGS_DEBUG
0x0000000000000002ULL

The enclave is a debug enclave

SGX_FLAGS_MODE64BIT
0x0000000000000004ULL

The enclave runs in 64 bit mode

SGX_FLAGS_PROVISION_KEY
0x0000000000000010ULL

The enclave has access to a provision key

SGX_FLAGS_LICENSE_KEY
0x0000000000000020ULL

The enclave has access to a license key

SGX_FLAGS_RESERVED
0xFFFFFFFFFFFFFFC8ULL

A mask used to ensure that reserved bits are zero.
Reserved bits are bit 3 and bits 6-63.

xfrm

Similar to XCR0, xfrm is a combination of the following values.

Value Description
SGX_XFRM_LEGACY
0x0000000000000003ULL

FPU and SSE states are saved

SGX_XFRM_AVX
0x0000000000000006ULL

AVX state is saved

Requirements

Header sgx_attributes.h

sgx_misc_attribute_t

Enclave misc_select and attributes definition structure.

Syntax

typedef struct _sgx_misc_attributes_t

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 224 -

{

sgx_attributes_t secs_attr;
sgx_misc_select_t misc_select;

} sgx_misc_attribute_t;

Members

secs_attr

The Enclave attributes.

misc_select

The Enclave misc select configuration.

Requirements

Header sgx_attributes.h

sgx_isv_svn_t

ISV security version. The value is 2 bytes in length. Use this value in key deriv-
ation and obtain it by getting an enclave report (sgx_create_report).

Requirements

Header sgx_key.h

sgx_cpu_svn_t

sgx_cpu_svn_t is a 128-bit value representing the CPU security version.
Use this value in key derivation and obtain it by getting an enclave report
(sgx_create_report).

Syntax

#define SGX_CPUSVN_SIZE 16

typedef struct _sgx_cpu_svn_t {

uint8_t svn[SGX_CPUSVN_SIZE];
} sgx_cpu_svn_t;

Requirements

Header sgx_key.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 225 -

sgx_key_id_t

sgx_key_id_t is a 256 bit value used in the key request structure. The
value is generally populated with a random value to provide key wear-out pro-
tection.

Syntax

#define SGX_KEYID_SIZE 32

typedef struct _sgx_key_id_t {

uint8_t id[SGX_KEYID_SIZE];
} sgx_key_id_t;

Requirements

Header sgx_key.h

sgx_key_128bit_t

A 128 bit value that is the used to store a derived key from for example the
sgx_get_key function.

Requirements

Header sgx_key.h

sgx_key_request_t

Data structure of key request which is used for selecting the appropriate key
and any additional parameters required in the derivation of that key. This is
the input parameter for the sgx_get_key function.

Syntax

typedef struct _key_request_t {

uint16_t key_name;
uint16_t key_policy;
sgx_isv_svn_t isv_svn;
uint16_t reserved1;
sgx_cpu_svn_t cpu_svn;
sgx_attributes_t attribute_mask;
sgx_key_id_t key_id;
sgx_misc_select_t misc_mask;
uint8_t reserved2[436];

} sgx_key_request_t;

Members

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 226 -

key_name

The name of the key requested. Possible values are below:

Key Name Value Description
KEYSELECT_
LICENSE

0x0000 License key

KEYSELECT_
PROVISION

0x0001 Provisioning key

KEYSELECT_
PROVISION_SEAL

0x0002 Provisioning seal key

KEYSELECT_REPORT 0x0003 Report key
KEYSELECT_SEAL 0x0004 Seal key

key_policy

Identify which inputs are required to be used in the key derivation. Possible
values are below:

Key policy name Value Description
KEYPOLICY_MRENCLAVE 0x0001 Derive key using the enclave’s

ENCLAVE measurement
register

KEYPOLICY_MRSIGNER 0x0002 Derive key using the enclave’s
SIGNER measurement register

NOTE
If MRENCLAVE is used, then that key can only be rederived by that particular
enclave.

NOTE
If MRSIGNER is used, then another enclave with the same ISV_SVN could
derive the key as well which is useful for applications that instantiate more
than one enclave and would like to pass data. The key derived could be used
in the encryption process for the data passed between the enclaves.

isv_svn

The ISV security version number that should be used in the key derivation.

reserved1

Reserved for future use. Must be zero.

cpu_svn

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 227 -

The TCB security version number that should be used in the key derivation.

attribute_mask

The attributes mask used to determine which enclave attributes must be
included in the key. It only impacts the derivation of seal key, provisioning key
and provisioning seal key. See the definition of sgx_attributes_t.

key_id

Value for key wear-out protection. Generally initialized with a random number.

misc_maks

The misc mask used to determine which enclave misc select must be included
in the key. Reserved for future function extension.

reserved2

Reserved for future use. Must be set to zero.

Requirements

Header sgx_key.h

sgx_measurement_t

sgx_measurement_t is a 256-bit value representing the enclave meas-
urement.

Syntax

#define SGX_HASH_SIZE 32

typedef struct _sgx_measurement_t {

uint8_t m[SGX_HASH_SIZE];
} sgx_measurement_t;

Requirements

Header sgx_report.h

sgx_mac_t

This type is utilized as storage for the 128-bit CMAC value of the report data.

Requirements

Header sgx_report.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 228 -

sgx_report_data_t

sgx_report_data_t is a 512-bit value used for communication between
the enclave and the target enclave. This is one of the inputs to the sgx_cre-
ate_report function.

Syntax

#define SGX_REPORT_DATA_SIZE 64

typedef struct _sgx_report_data_t {

uint8_t d[SGX_REPORT_DATA_SIZE];
} sgx_report_data_t;

Requirements

Header sgx_report.h

sgx_prod_id_t

A 16-bit value representing the ISV enclave product ID. This value is used in
the derivation of some keys.

Requirements

Header sgx_report.h

sgx_target_info_t

Data structure of report target information. This is an input to function sgx_
create_report and sgx_init_quote which is used to identify the
enclave (its measurement and attributes) which will be able to verify the
REPORT that is generated.

Syntax

typedef struct _targe_info_t

{

sgx_measurement_t mr_enclave;
sgx_attributes_t attributes;
uint8_t reserved1[4];
sgx_misc_select_t misc_select;
uint8_t reserved2[456];

} sgx_target_info_t;

Members

mr_enclave

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 229 -

The enclave hash of the target enclave

attributes

The attributes of the target enclave

reserved1

Reserved for future use. Must be set to zero.

misc_select

The misc select bits for the target enclave. Reserved for future function exten-
sion.

reserved2

Reserved for future use. Must be set to zero.

Requirements

Header sgx_report.h

sgx_report_body_t

This data structure, which is part of the sgx_report_t structure, contains
information about the enclave.

Syntax

typedef struct _report_body_t

{

sgx_cpu_svn_t cpu_svn;
sgx_misc_select_t misc_select;
uint8_t reserved1[28];
sgx_attributes_t attributes;
sgx_measurement_t mr_enclave;
uint8_t reserved2[32];
sgx_measurement_t mr_signer;
uint8_t reserved3[96];
sgx_prod_id_t isv_prod_id;
sgx_isv_svn_t isv_svn;
uint8_t reserved4[60];
sgx_report_data_t report_data;

} sgx_report_body_t;

Members

cpu_svn

The security version number of the host system TCB (CPU).

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 230 -

misc_select

The misc select bits for the target enclave. Reserved for future function exten-
sion.

reserved1

Reserved for future use. Must be set to zero.

attributes

The attributes for the enclave. See sgx_attributes_t for the definitions of these
flags.

mr_enclave

The measurement value of the enclave.

reserved2

Reserved for future use. Must be set to zero.

mr_signer

The measurement value of the public key that verified the enclave.

reserved3

Reserved for future use. Must be set to zero.

isv_prod_id

The ISV Product ID of the enclave.

isv_svn

The ISV security version number of the enclave.

reserved4

Reserved for future use. Must be set to zero.

report_data

A set of data used for communication between the enclave and the target
enclave.

Requirements

Header sgx_report.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 231 -

sgx_report_t

Data structure that contains the report information for the enclave. This is the
output parameter from the sgx_create_report function. This is the input
parameter for the sgx_init_quote function.

Syntax

typedef struct _report_t

{

sgx_report_body_t body;
sgx_key_id_t key_id;
sgx_mac_t mac;

} sgx_report_t;

Members

body

The data structure containing information about the enclave.

key_id

Value for key wear-out protection.

mac

The CMAC value of the report data using report key.

Requirements

Header sgx_report.h

sgx_aes_gcm_data_t

The structure contains the AES GCM* data, payload size, MAC* and payload.

Syntax

typedef struct _aes_gcm_data_t

{

uint32_t payload_size;
uint8_t reserved[12];
uint8_t payload_tag[SGX_SEAL_TAG_SIZE];
uint8_t payload[];

} sgx_aes_gcm_data_t;

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 232 -

Members

payload_size

Size of the payload data which includes both the encrypted data followed by
the additional authenticated data (plain text). The full payload array is part of
the AES GCM MAC calculation.

reserved

Padding to allow the data to be 16 byte aligned.

payload_tag

AES-GMAC of the plain text, payload, and the sizes

payload

The payload data buffer includes the encrypted data followed by the optional
additional authenticated data (plain text),which is not encrypted.

NOTE
The optional additional authenticated data (MAC or plain text) could be data
which identifies the seal data blob and when it was created.

Requirements

Header sgx_tseal.h

sgx_sealed_data_t

Sealed data blob structure containing the key request structure used in the
key derivation. The data structure has been laid out to achieve 16 byte align-
ment. This structure should be allocated within the enclave when the seal
operation is performed. After the seal operation, the structure can be copied
outside the enclave for preservation before the enclave is destroyed. The
sealed_data structure needs to be copied back within the enclave before
unsealing.

Syntax

typedef struct _sealed_data_t

{

sgx_key_request_t key_request;
uint32_t plain_text_offset;
uint8_t reserved[12];
sgx_aes_gcm_data_t aes_data;

} sgx_sealed_data_t;

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 233 -

Members

key_request

The key request used to derive the seal key.

plain_text_offset

The offset within the aes_data structure payload to the start of the optional
additional MAC text.

reserved

Padding to allow the data to be 16 byte aligned.

aes_data

Structure contains the AES GCM data (payload size, MAC, and payload).

Requirements

Header sgx_tseal.h

sgx_epid_group_id_t

Type for EPID group id

Syntax

typedef uint8_t sgx_epid_group_id_t[4];

Requirements

Header sgx_quote.h

sgx_basename_t

Type for base name used in sgx_quote.

Syntax

typedef struct _basename_t

{

uint8_t name[32];
} sgx_basename_t;

Members

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 234 -

name

The base name used in sgx_quote.

Requirements

Header sgx_quote.h

sgx_quote_t

Type for quote used in remote attestation.

Syntax

typedef struct _quote_t

{

uint16_t version;
uint16_t sign_type;
sgx_epid_group_id_t epid_group_id;
sgx_isv_svn_t qe_svn;
uint8_t reserved[6];
sgx_basename_t basename;
sgx_report_body_t report_body;
uint32_t signature_len;
uint8_t signature[];

} sgx_quote_t;

Members

version

The version of the quote structure.

sign_type

The indicator of the EPID signature type.

epid_group_id

The EPID group id of the platform belongs to.

qe_svn

The svn of the QE.

reserved

The reserved field of sgx_quote_t, used to keep structure aligned.

basename

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 235 -

The base name used in sgx_quote.

report_body

The report body of the application enclave.

signature_len

The size in byte of the following signature.

signature

The place holder of the variable length signature.

Requirements

Header sgx_quote.h

sgx_quote_sign_type_t

Enum indicates the quote type, linkable or un-linkable

Syntax

typedef enum {

SGX_UNLINKABLE_SIGNATURE,
SGX_LINKABLE_SIGNATURE

} sgx_quote_sign_type_t;

Requirements

Header sgx_quote.h

sgx_spid_t

Type for a service provider ID.

Syntax

typedef struct _spid_t

{

uint8_t id[16];
} sgx_spid_t;

Members

id

The ID of the service provider.

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 236 -

Header sgx_quote.h

sgx_quote_nonce_t

This data structure indicates the quote nonce.

Syntax

typedef struct _sgx_quote_nonce

{

uint8_t rand[16];
} sgx_quote_nonce_t;

Members

rand

The 16 bytes random number used as nonce.

Requirements

Header sgx_quote.h

sgx_time_source_nonce_t

Nonce of time source. It’s opaque to users.

Syntax

typedef uint8_t sgx_time_source_nonce_t[32];

Requirements

Header sgx_tae_service.h

sgx_time_t

Type for trusted time.

Syntax

typedef uint64_t sgx_time_t;

Requirements

Header sgx_tae_service.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 237 -

sgx_ps_cap_t

Type indicating the platform service capability.

Syntax

typedef struct _sgx_ps_cap_t

{

uint32_t ps_cap0;
uint32_t ps_cap1;

} sgx_ps_cap_t;

Members

ps_cap0

Bit 0 : Trusted Time service

Bit 1 : Monotonic Counter service

Bit 2-31 : Reserved

ps_cap1

Bit 0-31 : Reserved

Requirements

Header sgx_uae_service.h

sgx_ps_sec_prop_desc_t

Security property descriptor of platform service. It’s opaque to users.

Syntax

typedef struct _ps_sec_prop_desc

{

uint8_t sgx_ps_sec_prop_desc[256];
} sgx_ps_sec_prop_desc_t;

Requirements

Header sgx_tae_service.h

sgx_mc_uuid_t

The data structure of a monotonic counter.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 238 -

Syntax

#define SGX_MC_UUID_COUNTER_ID_SIZE 3

#define SGX_MC_UUID_NONCE_SIZE 13

typedef struct _mc_uuid

{

uint8_t counter_id[SGX_MC_UUID_COUNTER_ID_SIZE];
uint8_t nonce[SGX_MC_UUID_NONCE_SIZE];

} sgx_mc_uuid_t;

Members

counter_id

ID number of the monotonic counter.

nonce

Nonce associated with the monotonic counter.

Requirements

Header sgx_tae_service.h

sgx_ra_context_t

Type for a context returned by the key exchange library.

Syntax

typedef uint32_t sgx_ra_context_t;

Requirements

Header sgx_key_exchange.h

sgx_ra_key_128_t

Type for 128 bit key used in remote attestation.

Syntax

typedef uint8_t sgx_ra_key_128_t[16];

Requirements

Header sgx_key_exchange.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 239 -

sgx_ra_key_type_t

Enum of the key types used in remote attestation.

Syntax

typedef enum _sgx_ra_key_type_t

{

SGX_RA_KEY_SK = 1,
SGX_RA_KEY_MK,
SGX_RA_KEY_VK,

} sgx_ra_key_type_t;

Requirements

Header sgx_key_exchange.h

sgx_ra_msg1_t

This data structure describes the message 1 that is used in remote attestation
and key exchange protocol.

Syntax

typedef struct _sgx_ra_msg1_t

{

sgx_ec256_public_t g_a;
sgx_epid_group_id_t gid;

} sgx_ra_msg1_t;

Members

g_a (Little Endian)

The public EC key of an application enclave, based on NIST P-256 elliptic
curve.

gid (Little Endian)

ID of the EPID group of the platform belongs to.

Requirements

Header sgx_key_exchange.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 240 -

sgx_ra_msg2_t

This data structure describes the message 2 that is used in the remote attest-
ation and key exchange protocol.

Syntax

typedef struct _sgx_ra_msg2_t

{

sgx_ec256_public_t g_b;
sgx_spid_t spid;
uint16_t quote_type;
uint16_t kdf_id;
sgx_ec256_signature_t sign_gb_ga;
sgx_mac_t mac;
uint32_t sig_rl_size;
uint8_t sig_rl[];

} sgx_ra_msg2_t;

Members

g_b (Little Endian)

Public EC key of service provider, based on the NIST P-256 elliptic curve.

spid

ID of the service provider

quote_type (Little Endian)

Indicates the quote type, linkable (1) or un-linkable (0).

kdf_id (Litte Endian)

Key derivation function id.

sign_gb_ga (Litte Endian)

ECDSA Signature of (g_b||g_a), using the service provider’s ECDSA private key
corresponding to the public key specified in sgx_ra_init function, where
g_b is the public EC key of the service provider and g_a is the public key of
application enclave, provided by the application enclave, in the remote attest-
ation and key exchange message 1.

mac

AES-CMAC of gb, spid 2-byte TYPE, 2-byte KDF-ID, and sign_gb_ga using
SMK as the AES-CMAC key. SMK is derived as follows:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 241 -

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

l a counter (0x01)
l a label: the ASCII representation of the string 'SMK' in Little Endian

format
l a bit length (0x80)

sig_rl_size

Size of the sig_rl, in bytes.

sig_rl

Pointer to the EPID Signature Revocation List Certificate of the EPID group
identified by the gid in the remote attestation and key exchange message 1.

Requirements

Header sgx_key_exchange.h

sgx_ra_msg3_t

This data structure describes message 3 that is used in the remote attestation
and key exchange protocol.

Syntax

typedef struct _sgx_ra_msg3_t

{

sgx_mac_t mac;
sgx_ec256_public_t g_a;
sgx_ps_sec_prop_desc_t ps_sec_prop;
uint8_t quote[];

} sgx_ra_msg3_t;

Members

mac

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 242 -

AES-CMAC of g_a, ps_sec_prop, GID, and quote[], using SMK. SMK is derived
follows:

KDK = AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

l a counter (0x01)
l a label (the ASCII representation of the string 'SMK' in Little Endian

format)
l a bit length (0x80)

g_a (Little Endian)

Public EC key of application enclave

ps_sec_prop

Security property of the Intel(R) SGX Platform Service. If the Intel(R) SGX Plat-
form Service security property information is not required in the remote
attestation and key exchange process, this field will be all 0s.

quote

Quote returned from sgx_get_quote. The first 32-byte report_body.re-
port_data field in Quote is set to SHA256 hash of ga, gb and VK, and the
second 32-byte is set to all 0s. VK is derived from the Diffie-Hellman shared
secret elliptic curve field element between the service provider and the
application enclave:

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’VK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 243 -

l a counter (0x01)
l a label (the ASCII representation of the string 'SMK' in Little Endian

format)
l a bit length (0x80).

Requirements

Header sgx_key_exchange.h

sgx_ecall_get_ga_trusted_t

Function pointer of proxy function generated from sgx_tkey_
exchange.edl.

Syntax

typedef sgx_status_t (* sgx_ecall_get_ga_trusted_t)(

sgx_enclave_id_t eid,
int* retval,
sgx_ra_context_t context,
sgx_ec256_public_t *g_a // Little Endian

);

Note that the 4th parameter this function takes should be in little endian
format.

Requirements

Header sgx_ukey_exchange.h

sgx_ecall_proc_msg2_trusted_t

Function pointer of proxy function generated from sgx_tkey_
exchange.edl.

Syntax

typedef sgx_status_t (* sgx_ecall_proc_msg2_trusted_t)(

sgx_enclave_id_t eid,
int* retval,
sgx_ra_context_t context,
const sgx_ra_msg2_t *p_msg2,
const sgx_target_info_t *p_qe_target,
sgx_report_t *p_report,
sgx_quote_nonce_t *p_nonce

);

Requirements

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 244 -

Header sgx_ukey_exchange.h

sgx_ecall_get_msg3_trusted_t

Function pointer of proxy function generated from sgx_tkey_
exchange.edl.

Syntax

typedef sgx_status_t (* sgx_ecall_get_msg3_trusted_t)(

sgx_enclave_id_t eid,
int* retval,
sgx_ra_context_t context,
uint32_t quote_size,
sgx_report_t* qe_report,
sgx_ra_msg3_t *p_msg3,
uint32_t msg3_size

);

Requirements

Header sgx_ukey_exchange.h

sgx_platform_info_t

This opaque data structure indicates the platform information received from
Intel Attestation Server.

Syntax

#define SGX_PLATFORM_INFO_SIZE 101

typedef struct _platform_info

{

uint8_t platform_info[SGX_PLATFORM_INFO_SIZE];
} sgx_platform_info_t;

Members

platform_info

The platform information.

Requirements

Header sgx_quote.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 245 -

sgx_update_info_bit_t

Type for information of what components of SGX need to be updated and
how to update them.

Syntax

typedef struct _update_info_bit

{

int ucodeUpdate;
int csmeFwUpdate;
int pswUpdate;

} sgx_update_info_bit_t;

Members

ucodeUpdate

Whether the ucode needs to be updated.

csmeFwUpdate

Whether the csme firmware needs to be updated.

pswUpdate

Whether the platform software needs to be updated.

Requirements

Header sgx_quote.h

sgx_dh_msg1_t

Type for MSG1 used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_msg1_t

{

sgx_ec256_public_t g_a;
sgx_target_info_t target;

} sgx_dh_msg1_t;

Members

g_a (Little Endian)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 246 -

Public EC key of responder enclave of DH session establishment, based on the
NIST P-256 elliptic curve.

target

Report target info to be used by the peer enclave to generate the Intel(R) SGX
report in the message 2 of the DH secure session protocol.

Requirements

Header sgx_dh.h

sgx_dh_msg2_t

Type for MSG2 used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_msg2_t

{

sgx_ec256_public_t g_b;
sgx_report_t report;
uint8_t cmac[SGX_DH_MAC_SIZE];

} sgx_dh_msg2_t;

Members

g_b (Little Endian)

Public EC key of initiator enclave of DH session establishment, based on the
NIST P-256 elliptic curve.

report

Intel(R) SGX report of initiator enclave of DH session establishment. The first
32-byte of the report_data field of the report is set to SHA256 hash of g_a
and g_b, where g_a is the EC Public key of the responder enclave and g_b is
the EC public key of the initiator enclave. The second 32-byte of the report_
data field is set to all 0s.

cmac[SGX_DH_MAC_SIZE]

AES-CMAC value of g_b,report, 2-byte KDF-ID, and 0x00s using SMK as the
AES-CMAC key. SMK is derived as follows:

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 247 -

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

l a counter (0x01)
l a label: the ASCII representation of the string 'SMK' in Little Endian

format
l a bit length (0x80)

Requirements

Header sgx_dh.h

sgx_dh_msg3_t

Type for MSG3 used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_msg3_t

{

uint8_t cmac[SGX_DH_MAC_SIZE];
sgx_dh_msg3_body_t msg3_body;

} sgx_dh_msg3_t;

Members

cmac[SGX_DH_MAC_SIZE]

CMAC value of message body of MSG3, using SMK as the AES-CMAC key. SMK
is derived as follows:

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 248 -

l a counter (0x01)
l a label: the ASCII representation of the string 'SMK' in Little Endian

format
l a bit length (0x80)

msg3_body

Variable length message body of MSG3.

Requirements

Header sgx_dh.h

sgx_dh_msg3_body_t

Type for message body of the MSG3 structure used in DH secure session
establishment.

Syntax

typedef struct _sgx_dh_msg3_body_t

{

sgx_report_t report;
uint32_t additional_prop_length;
uint8_t additional_prop[0];

} sgx_dh_msg3_body_t;

Members

report

Intel(R) SGX report of responder enclave. The first 32-byte of the report_data
field of the report is set to SHA256 hash of g_b and g_a, where g_a is the EC
Public key of the responder enclave and g_b is the EC public key of the ini-
tiator enclave. The second 32-byte of the report_data field is set to all 0s.

additional_prop_length

Length of additional property field in bytes.

additional_prop[0]

Variable length buffer holding additional data that the responder enclave may
provide.

Requirements

Header sgx_dh.h

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 249 -

sgx_dh_session_enclave_identity_t

Type for enclave identity of initiator or responder used in DH secure session
establishment.

Syntax

typedef struct _sgx_dh_session_enclave_identity_t

{

sgx_cpu_svn_t cpu_svn;
uint8_t reserved_1[32];
sgx_attributes_t attributes;
sgx_measurement_t mr_enclave;
uint8_t reserved_2[32];
sgx_measurement_t mr_signer;
uint8_t reserved_3[96];
sgx_prod_id_t isv_prod_id;
sgx_isv_svn_t isv_svn;

} sgx_dh_session_enclave_identity_t;

Members

cpu_svn

Security version number of CPU.

reserved_1[32]

Reserved 32 bytes.

attributes

SGX attributes of enclave.

mr_enclave

Measurement of enclave.

reserved_2[32]

Reserved 32 bytes.

mr_signer

Measurement of enclave signer.

reserved_3[96]

Reserved 96 bytes.

isv_prod_id (Little Endian)

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 250 -

Product ID of ISV enclave.

isv_svn (Little Endian)

Security version number of ISV enclave.

Requirements

Header sgx_dh.h

sgx_dh_session_role_t

Type for role of establishing a DH secure session used in DH secure session
establishment.

Syntax

typedef enum _sgx_dh_session_role_t

{

SGX_DH_SESSION_INITIATOR,
SGX_DH_SESSION_RESPONDER

} sgx_dh_session_role_t;

Members

SGX_DH_SESSION_INITIATOR

Initiator of a DH session establishment.

SGX_DH_SESSION_RESPONDER

Responder of a DH session establishment.

Requirements

Header sgx_dh.h

sgx_dh_session_t

Type for session used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_session_t

{

uint8_t sgx_dh_session[SGX_DH_SESSION_DATA_SIZE];
} sgx_dh_session_t;

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 251 -

Members

sgx_dh_session

Data of DH session.

The array size of sgx_dh_session SGX_DH_SESSION_DATA_SIZE is defined as
200 bytes.

Requirements

Header sgx_dh.h

Error Codes

Table 14 Error code

Value Error Name Description
0x0000 SGX_SUCCESS
0x0001 SGX_ERROR_

UNEXPECTED
An unexpected error.

0x0002 SGX_ERROR_
INVALID_
PARAMETER

The parameter is incorrect.

0x0003 SGX_ERROR_
OUT_OF_
MEMORY

There is not enough memory available to complete
this operation.

0x0004 SGX_ERROR_
ENCLAVE_LOST

The enclave is lost after power transition or used in
child process created by fork().

0x0005 SGX_ERROR_
INVALID_STATE

The API is invoked in incorrect order or state.

0x1001 SGX_ERROR_
INVALID_
FUNCTION

The ECALL/OCALL function index is incorrect.

0x1003 SGX_ERROR_
OUT_OF_TCS

The enclave is out of TCS.

0x1006 SGX_ERROR_
ENCLAVE_
CRASHED

The enclave has crashed.

0x1007 SGX_ERROR_
ECALL_NOT_
ALLOWED

ECALL is not allowed at this time. For examples:

l ECALL is not public.
l ECALL is blocked by the dynamic entry table.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 252 -

l A nested ECALL is not allowed during global ini-
tialization.

0x1008 SGX_ERROR_
OCALL_NOT_
ALLOWED

OCALL is not allowed during exception handling.

0x1009 SGX_ERROR_
STACK_
OVERRUN

Stack overrun occurs within the enclave.

0x2000 SGX_ERROR_
UNDEFINED_
SYMBOL

The enclave contains an undefined symbol.

0x2001 SGX_ERROR_
INVALID_
ENCLAVE

The enclave image is incorrect.

0x2002 SGX_ERROR_
INVALID_
ENCLAVE_ID

The enclave ID is invalid.

0x2003 SGX_ERROR_
INVALID_
SIGNATURE

The signature is invalid.

0x2004 SGX_ERROR_
NDEBUG_
ENCLAVE

The enclave is signed as product enclave and can-
not be created as a debuggable enclave.

0x2005 SGX_ERROR_
OUT_OF_EPC

There is not enough EPC available to load the
enclave or one of the Architecture Enclaves needed
to complete the operation requested.

0x2006 SGX_ERROR_
NO_DEVICE

Cannot open device.

0x2007 SGX_ERROR_
MEMORY_MAP_
CONFLICT

Page mapping failed in driver.

0x2009 SGX_EEROR_
INVALID_
METADATA

The metadata is incorrect.

0x200C SGX_ERROR_
DEVICE_BUSY

Device is busy.

0x200DSGX_ERROR_
INVALID_

Metadata version is inconsistent between uRTS and
sgx_sign or the uRTS is incompatible with the cur-

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 253 -

VERSION rent platform.
0x200E SGX_ERROR_

MODE_
INCOMPATIBLE

The target enclave (32/64 bit or HS/Sim) mode is
incompatible with the uRTS mode.

0x200F SGX_ERROR_
ENCLAVE_FILE_
ACCESS

Can’t open enclave file.

0x2010 SGX_ERROR_
INVALID_MISC

The MiscSelect/MiscMask settings are incorrect.

0x3001 SGX_ERROR_
MAC_
MISMATCH

Indicates report verification error.

0x3002 SGX_ERROR_
INVALID_
ATTRIBUTE

The enclave is not authorized.

0x3003 SGX_ERROR_
INVALID_
CPUSVN

The CPU SVN is beyond the CPU SVN value of the
platform.

0x3004 SGX_ERROR_
INVALID_
ISVSVN

The ISV SVN is greater than the ISV SVN value of
the enclave.

0x3005 SGX_ERROR_
INVALID_
KEYNAME

Unsupported key name value.

0x4001 SGX_ERROR_
SERVICE_
UNAVAILABLE

AE service did not respond or the requested service
is not supported.

0x4002 SGX_ERROR_
SERVICE_
TIMEOUT

The request to AE service timed out.

0x4003 SGX_ERROR_
AE_INVALID_
EPIDBLOB

Indicates an EPID blob verification error.

0x4004 SGX_ERROR_
SERVICE_
INVALID_
PRIVILEDGE

Enclave has no privilege to get launch token.

0x4005 SGX_ERROR_ The EPID group membership has been revoked. The

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 254 -

EPID_MEMBER_
REVOKED

platform is not trusted. Updating the platform and
retrying will not remedy the revocation.

0x4006 SGX_ERROR_
UPDATE_
NEEDED

Intel(R) SGX needs to be updated.

0x4007 SGX_ERROR_
NETWORK_
FAILURE

Network connecting or proxy setting issue is
encountered.

0x4008 SGX_ERROR_
AE_SESSION_
INVALID

The session is invalid or ended by server.

0x400a SGX_ERROR_
BUSY

The requested service is temporarily not available.

0x400c SGX_ERROR_
MC_NOT_
FOUND

The Monotonic Counter does not exist or has been
invalidated.

0x400d SGX_ERROR_
MC_NO_
ACCESS_RIGHT

The caller does not have the access right to the spe-
cified VMC.

0x400e SGX_ERROR_
MC_USED_UP

No monotonic counter is available.

0x400f SGX_ERROR_
MC_OVER_
QUOTA

Monotonic counters reached quota limit.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 255 -

Appendix
This topic provides the following reference information:

l Unsupported GCC* Compiler Options for Enclaves
l Unsupported Intel(R) Compilers Options for Enclaves
l Unsupported Intel(R) Compiler Libraries
l Unsupported GCC* Built-in Functions
l Unsupported C Standard Functions
l Unsupported C++ Standard Classes and Functions
l Unsupported C and C++ Keywords

Unsupported GCC* Compiler Options for Enclaves

The following GCC* options are not supported to build enclaves.

Table 15 Unsupported GCC Compiler Options

Option Category Remark
-fopenmp Options con-

trolling C dia-
lect.

Depends on Pthreads.
 -fgnu-tm Depends on libitm (transactional memory).
-fhosted OS functions not supported within

enclaves.
 -fuse-cxa-atexit Options con-

trolling C++ dia-
lect.

Depends on atexit(), which is not supported within
an enclave.

All options Options con-
trolling object-
ive-C and
objective-C++.

Objective C/C++ not supported.

All options Options for
debugging a pro-
gram.

All options because of runtime support required.
Separate Intel(R) SGX debugger support provided.

-fmudflap, -fmud-
flapth, –fmudflapir

Optimization
options.

Dependent on libmudflap.

-fexec-char-
set=charset,

-fwide-exec-char-
set=charset

Options con-
trolling the pre-
processor.

Only providing partial support for UTF-8.

-x objective-c Objective-C is not supported within an
enclave.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 256 -

 -lobjc Linker options. Objective C not supported.

-pie, -s Used for executables.

-shared-libgcc,

-static-libgcc

Enclaves cannot depend on libgcc.

 -static-libstdc++ Intel(R) SGX SDK provides an Intel SGX version of
the C++ standard library.

-T script Need to control the format of enclave
code.

-mglibc Hardware
models and
configurations
for

GNU*/Linux*
options.

Intel SGX SDK provides an Intel SGX compatible C
standard library.

-muclibc, -mbionic, -
mandroid, -tno-
android-cc, -tno-
android-ld

Not applicable.

-msoft-float Hardware mod-
els and con-
figurations for
Intel & AMD*
x86-x64
options.

Run-time emulation of floating point is not sup-
ported.

-m96bit-long-double 96-bit not supported.

-mthreads Depends on mingwthrd.

-mcmodel=small, -
mcmodel=kernel, -
mcmodel=medium, -
mcmodel=large

Linker will fail.

All options Hardware mod-
els and con-
figurations for
Intel & AMD*
x86-x64 Win-
dows* options

All options because these are only used with Cyg-
win* or MinGW*.

-fbounds-check Options for code
generation con-
ventions

Currently for Java* and Fortran* front-ends, not
C/C++.

-fpie, -fPIE Only pertains to executable files.

-fpie, -pie compilation option -fpie and linking option -pie can-
not be used at the same time under simulation
mode if TLS support is required.

-fpie, -shared -fpic compilation option -fpie and linking option -shared
-fpic cannot be used at the same time under both
simulation mode and 64-bit hardware mode if TLS
support is required.

-finstrument-functions ISV would need to provide support for functions_

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 257 -

_cyg_profile_func_enter and __
cyg_profile_func_exit if this option is
needed.

-fsplit-stack Requires libgcc runtime support.

Unsupported Intel(R) Compilers Options for Enclaves

The following Intel(R) compilers options are not supported to build enclaves.

Table 16 Unsupported Intel Compiler Options

Option Description
-hotpatch[=n] This code generation option is not applicable.
-xcode This option does not apply to Intel(R) SGX because for

this check to be effective, the source file containing the
main program or the dynamic library main function
should be compiled with this option enabled. Since this
compiler option does not have the intended behavior
(host architecture check), then the /Qax or /arch
options are recommended.

-cilk-serialize -
guide-file[=fil-
lename]

-guide-file-append
[=filename]

-ipp[=lib] -[no]opt
calloc -[no-]opt-
matmul -tbb

These advanced optimization options are not supported.

-f[no-]instrument-
functions -prof-
data-order

-no-prof-data-
order -prof-dir -
prof-file <f>

-prof-func-groups -
no-prof-func-
groups

-prof-func-order -
no-prof-func-order

These profile guided optimizations (PGO) options are not
supported.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 258 -

Option Description
-prof-gen[x] -prof-
hotness-
threshold=n

-[-no]-prof-src-dir -
prof-src-root=dir

-prof-src-root-cwd
-prof-use
[=keyword]

-prof-value-pro-
filing[=keyword]

-profile-functions -
profile-loops-
s=keyword

-profile-loops-
report[=n]
-tcollect[lib] -tcol-
lect-filter filename

–tcheck

These optimization report options are not supported.

-openmp -
openmp-stubs

-openmp-report
{0|1|2} -openmp-
report[=n]

-openmp-lib=type

-openmp-link-
k=library -openmp-
task=model

-openmp-
threadprivate=type

-openmp-
threadprivate=type

These OpenMP* and parallel processing options are not
supported.

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 259 -

Option Description
-par-affinity=[mod-
ifier,...]type[,per-
mute][,offset]

-par-num-thread-
s=n -par-report[n]

-par-runtime-con-
trol[n] -no-par-
runtime-control

-par-schedule-
keyword[=n] -par-
threshold[n]

-parallel -parallel-
source-info[=n]

-no-parallel-
source-info
-[no-]inline-calloc This inline option is not supported.
-check=keyword[,
keyword...]

This language option is not supported.

-Bdynamic -
dynamic-linker -
shared-intel

These linker options are not supported.

Unsupported Intel(R) Compiler Libraries

The Intel(R) compiler libraries that are not supported within an enclave are:

Table 17 Unsupported Intel Compiler Libraries

Option Description Remark
cilkrts.lib Cilk runtime system.
libchkp.lib

libchkpwrap.lib

Run-time pointer checker lib-
raries.

libiomp5mt.lib,

libiompprof5mt.lib,

libiompstubs5mt.lib

OpenMP* libraries.

libipgo.lib Intel(R) Profile-Guide Optim-

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 260 -

ization (PGO) runtime support
library.

pdbx.lib,

pdbxinst.lib

Intel(R) Parallel Debugger Exten-
sion runtime libraries.

libicaio.lib Asynchronous I/O library. I/O is not sup-
ported in an
enclave.

libbfp754.lib Binary floating-point math lib-
rary.

It is not utilized
by the compiler.

libmatmul.lib Matrix multiplication library. It depends on
the OpenMP lib-
rary.

Unsupported GCC* Built-in Functions

The following table illustrates unsupported GCC* built-in functions inside the
enclave. Using any of these built-in functions will result in a linker error during
the compilation of the enclave.

The complete list of GCC built-in functions is available at http://gc-
c.gnu.org/onlinedocs/gcc-4.7.2/gcc/X86-Built_002din-Functions.html#X86-
Built_002din-Functions.

Table 18 Unsupported GCC Compiler Built-in Functions

Non supported: Math built-ins
__builtin_signbitd32 __builtin_signbitd64 __builtin_signbitd128

__builtin_finited32 __builtin_finited64 __builtin_finited128

__builtin_isinfd32 __builtin_isinfd64 __builtin_isinfd128

__builtin_isnand32 __builtin_isnand64 __builtin_isnand64

Not Supported: String/memory built-ins
__builtin_strcat __builtin_strcpy __builtin_strdup

__builtin_stpcpy

Not Supported: I/O related built-ins

__builtin_fprintf __builtin_fprintf_unlocked __builtin_putc

__builtin_putc_unlocked __builtin_fputc __builtin_fputc_unlocked

__builtin_fputs __builtin_fputs_unlocked __builtin_fscanf

__builtin_fwrite __builtin_fwrite_unlocked __builtin_printf

__builtin_printf_unlocked __builtin_putchar __builtin_putchar_unlocked

__builtin_puts __builtin_puts_unlocked __builtin_scanf

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 261 -

__builtin_sprintf __builtin_sscanf __builtin_vfprintf

__builtin_vfscanf __builtin_vprintf __builtin_vscanf

__builtin_vsprintf __builtin_vsscanf

Not Supported: wctype built-in

__builtin_iswalnum __builtin_iswalpha __builtin_iswblank

__builtin_iswcntrl __builtin_iswdigit __builtin_iswgraph

__builtin_iswlower __builtin_iswprint __builtin_iswpunct

__builtin_iswspace __builtin_iswupper __builtin_iswxdigit

__builtin_towlower __builtin_towupper

Not Supported: Process control built-ins

__builtin_execl __builtin_execlp __builtin_execle

__builtin_execv __builtin_execvp __builtin_execve

__builtin_exit __builtin_fork __builtin__exit

__builtin__Exit

Non Supported: Object size checking built-ins

__builtin___fprintf_chk __builtin___printf_chk __builtin___vfprintf_chk

__builtin___vprintf_chk

Non Supported: Miscellaneous built-ins

__builtin_dcgettext __builtin_dgettext __builtin_gettext

__builtin_strfmon

Non Supported: Profiling Hooks

__cyg_profile_func_enter __cyg_profile_func_exit

Non Supported: TLS Emulation

target.emutls.get_address target.emutls.register_common

Non supported: Ring 0 built-ins

_writefsbase_u32 _writefsbase_u64 _writegsbase_u32

_writegsbase_u64 __rdpmc __rdtsc

__rdtscp

Non Supported: OpenMP* built-ins

__builtin_omp_get_thread_num __builtin_omp_get_num_threads

__builtin_GOMP_atomic_start __builtin_GOMP_atomic_end

__builtin_GOMP_barrier __builtin_GOMP_taskwait

__builtin_GOMP_taskyield __builtin_GOMP_critical_start

__builtin_GOMP_critical_end __builtin_GOMP_critical_name_start

__builtin_GOMP_critical_name_end __builtin_GOMP_loop_static_start

__builtin_GOMP_loop_dynamic_start __builtin_GOMP_loop_guided_start

__builtin_GOMP_loop_runtime_start __builtin_GOMP_loop_ordered_static_start

__builtin_GOMP_loop_ordered_dynamic_start __builtin_GOMP_loop_ordered_guided_

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 262 -

start

__builtin_GOMP_loop_ordered_runtime_start __builtin_GOMP_loop_static_next

__builtin_GOMP_loop_dynamic_next __builtin_GOMP_loop_guided_next

__builtin_GOMP_loop_runtime_next __builtin_GOMP_loop_ordered_static_next

__builtin_GOMP_loop_ordered_dynamic_next __builtin_GOMP_loop_ordered_guided_next

__builtin_GOMP_loop_ordered_runtime_next __builtin_GOMP_loop_ull_static_start

__builtin_GOMP_loop_ull_dynamic_start __builtin_GOMP_loop_ull_guided_start

__builtin_GOMP_loop_ull_runtime_start __builtin_GOMP_loop_ull_ordered_static_
start

__builtin_GOMP_loop_ull_ordered_dynamic_
start

__builtin_GOMP_loop_ull_static_next

__builtin_GOMP_loop_ull_ordered_guided_
start

__builtin_GOMP_loop_ull_dynamic_next

__builtin_GOMP_loop_ull_ordered_runtime_
start

__builtin_GOMP_loop_ull_guided_next

__builtin_GOMP_loop_ull_runtime_next __builtin_GOMP_loop_ull_ordered_static_
next

__builtin_GOMP_loop_ull_ordered_dynamic_
next

__builtin_GOMP_parallel_loop_static_start

__builtin_GOMP_loop_ull_ordered_guided_
next

__builtin_GOMP_parallel_loop_dynamic_
start

__builtin_GOMP_loop_ull_ordered_runtime_
next

__builtin_GOMP_parallel_loop_guided_start

__builtin_GOMP_parallel_loop_runtime_start __builtin_GOMP_loop_end

__builtin_GOMP_loop_end_nowait __builtin_GOMP_ordered_start

__builtin_GOMP_ordered_end __builtin_GOMP_parallel_start

__builtin_GOMP_parallel_end __builtin_GOMP_task

__builtin_GOMP_sections_start __builtin_GOMP_sections_next

__builtin_GOMP_parallel_sections_start __builtin_GOMP_sections_end

__builtin_GOMP_sections_end_nowait __builtin_GOMP_single_start

__builtin_GOMP_single_copy_start __builtin_GOMP_single_copy_end

Unsupported C Standard Functions

You cannot use the following Standard C functions within the enclave; oth-
erwise, the compilation would fail.

Table 19 Unsupported C Standard Functions

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 263 -

Header
file

Header
file in
SGX?

Unsupported Definition

Macros/Types Functions

complex.h No complex, _complex_
I,

imaginary, _ima-
ginary_I,

I,

#pragma STDC CX_
LIMITED_RANGE on-
off-switch

cacos(), cacosf(), cacosl(), casin(), casinf(), casinl
(), catan(), catanf(), catanl(), ccos(), ccosf(), ccosl
(), csin(), csinf(), csinl(), ctan(), ctanf(), ctanl(),
cacosh(), cacoshf(), cacoshl(), casinh(), casinhf(),
casinhl(), catanh(), catanhf(), catanhl(), ccosh(),
ccoshf(), ccoshl(), csinh(), csinhf(), csinhl(),
ctanh(), ctanhf(), ctanhl(), cexp(), cexpf(), cexpl(),
clog(), clogf(), clogl(), cabs(), cabsf(), cabsl(),
cpow(), cpowf(), cpowl(), csqrt(), csqrtf(), csqrtl
(), carg(), cargf(), cargl(), cimag(), cimagf(), cimagl
(), conj(), conjf(), conjl(), cproj(), cprojf(), cprojl(),
creal(), crealf(), creall()

fenv.h No fenv_t, fexcept_t,

FE_DIVBYZERO,

FE_INEXACT,

FE_INVALID,

FE_OVERFLOW,

FE_UNDERFLOW,

FE_ALL_EXCEPT,

FE_DOWNWARD,

FE_TONEAREST,

FE_TOWARDZERO,

FE_UPWARD,

FE_DFL_ENV,

#pragma STDC
FENV_ACCESS on-
off-switch

feclearexcept(), fegetexceptflag(),
feraiseexcept(), fesetexceptflag(),
fetestexcept(), fegetround(), feset-
round(), fegetenv(), feholdexcept(),
fesetenv(), feupdateenv()

inttypes.h Yes SCNdN, SCNiN, SCNoN,
SCNuN, SCNxN,
SCNdLEASTN,
SCNiLEASTN,

wcstoimax(),

wcstoumax()

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 264 -

Header
file

Header
file in
SGX?

Unsupported Definition

Macros/Types Functions

SCNoLEASTN,
SCNuLEASTN,
SCNxLEASTN,
SCNdFASTN, SCNiFASTN,
SCNoFASTN,
SCNuFASTN,
SCNxFASTN, SCNdMAX,
SCNiMAX, SCNoMAX,
SCNuMAX, SCNxMAX,
SCNdPTR, SCNiPTR,
SCNoPTR, SCNuPTR,
SCNxPTR

locale.h No LC_ALL, LC_
COLLATE,

LC_CTYPE,

LC_MONETARY,

LC_NUMERIC,

LC_TIME, struct
lconv

setlocale(),

localeconv()

setjmp.h No jmp_buf setjmp(),

longjmp()
signal.h No sig_atomic_t, SIG_DFL,

SIG_ERR, SIG_IGN,
SIGABRT, SIGFPE, SIGILL,
SIGINT, SIGSEGV,
SIGTERM

signal(),

raise()

stdio.h Yes fpos_t,

_IOFBF, _IOLBF,

_IONBF,

FILENAME_MAX,

FOPEN_MAX,

L_tmpnam,

remove(), rename(), tmpfile(), tmpnam
(), fclose(), fflush(), fopen(), freopen(),
setbuf(), setvbuf(), fprintf(), fscanf(),
printf(), scanf(), sprintf(), sscanf(),
vfprintf(), vfscanf(), vprintf(), vscanf(),
vsprintf(), vsscanf(), fgetc(), fgets(),
fputc(), fputs(), getc(), getchar(), gets(),
putc(), putchar(), puts(), ungetc(), fread
(), fwrite(), fgetpos(), fseek(), fsetpos(),

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 265 -

Header
file

Header
file in
SGX?

Unsupported Definition

Macros/Types Functions

SEEK_CUR, SEEK_
END, SEEK_SET,
TMP_MAX, stderr,
stdin, stdout

ftell(), rewind(), clearerr(), feof(), ferror
(), perror()

stdlib.h Yes rand(), srand(), atexit(), exit(), _Exit(), getenv(),
system()

string.h Yes strcpy(), strcat(), strstr()*

tgmath.h No

time.h Yes clock(), mktime(), time(), ctime(), gmtime(), loc-
altime()

wchar.h Yes fwprintf(), fwscanf(), swscanf(), vfwprintf(), vfws-
canf(), vswscanf(), vwprintf(), vwscanf(), wprintf
(), wscanf(), fgetwc(), fgetws(), fputwc(), fputws
(), fwide(), getwc(), getwchar(), putwc(), put-
wchar(), ungetwc(), wcstod(), wcstof(), wcstold
(), wcstol(), wcstoll(), wcstoul(), wcstoull(),
wcscpy(), wcscat(), wcsftime(),wctob()

wctype.h Yes iswalnum(), iswalpha(), iswblank(), iswcntrl(),
iswdigit(), iswgraph(), iswlower(), iswprint(), isw-
punct(), iswspace(), iswupper(), iswxdigit(),
wctype(), towlower(), towupper(), towctrans(),
wctrans(),

(*) The trusted standard C library does not support char strstr(const
char*, const char*). However, it does support the variant const
char* strstr (const char*, const char*) is supported.

NOTE
Trusted C library is enhanced to avoid format string attacks. Any attempts to
use %n in printf-family functions such as snprintf will result in a run-time
error.

Unsupported C++ Standard Classes and Functions

The following table lists unsupported C++03 classes and functions inside an
enclave. Also, the table does not include unsupported C functions. See Unsup-
ported C Standard Functions for detailed information.

Table 20 Unsupported C++ Standard Classes and Functions

Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS

- 266 -

Class Cat-
egory

Partially
Supported

Unsupported Classes

Stream Iter-
ators

No istream_iterator, ostream_iterator, istreambuf_iterator, ostre-
ambuf_iterator

Input/Output
Library

No basic_streambuf, basic_istream, basic_ostream, basic_iostream,
basic_filebuf, basic_ifstream, basic_ofstream, basic_fstream,
basic_stringbuf, basic_istringstream, basic_ostringstream, basic_
stringstream

Locales No locale, use_facet, has_facet

Unsupported C and C++ Keywords

The following keywords are not supported in an enclave.

Table 21 Unsupported C and C++ Keywords

__transaction_atomic __transaction_relaxed __transaction_cancel

The following GCC* specific attributes are not supported in an enclave.

Table 22 Unsupported GCC* Compiler Attributes

destructor transaction_callable transaction_unsafe

transaction_safe transaction_may_cancel_outer transaction_pure

transaction_wrap disinterrupt

	Introduction
	Intel(R) Software Guard Extensions Technology Overview
	Intel(R) Software Guard Extensions Security Properties
	Application Design Considerations
	Terminology and Acronyms
	Tested Environments

	Setting up an Intel(R) Software Guard Extension Project
	Using Intel(R) Software Guard Extensions Eclipse* Plug-in
	Intel(R) Software Guard Extensions Projects on Linux* OS
	Enclave Project Configurations

	Using Intel(R) Software Guard Extensions SDK Tools
	The Edger8r Tool
	The Enclave Signing Tool
	Command-Line Syntax
	Enclave Signing Key Management
	File Formats
	Signing Key Files
	Enclave Signing Examples
	OpenSSL* Examples

	Enclave Debugger
	Performance Measurement using Intel(R) VTune(TM) Amplifier
	Enclave Memory Measurement Tool
	CPUSVN Configuration Tool

	Enclave Development Basics
	Writing Enclave Functions
	Calling Functions inside the Enclave
	Checking the Return Value

	Calling Functions outside the Enclave
	Library Development for Enclaves
	Avoiding Name Collisions

	Linking Enclave with Libraries
	Dynamic Libraries
	Static Libraries
	Simulation Libraries
	Linking Application with Untrusted Libraries

	Enclave Definition Language Syntax
	Comments
	Include Headers
	Keywords
	Basic Types
	Structures, Enums and Unions
	Pointers
	Pointer Handling
	Attribute: user_check

	Buffer Size Calculation
	Attribute: size
	Attribute: sizefunc
	Attribute: count

	Strings
	User Defined Data Types
	const Keyword and readonly Attribute

	Arrays
	Propagating errno in OCALLs
	Enclave Definition Language Libraries - Creating a Trusted Library with Impor...
	Allowing Untrusted Functions to Call Trusted Functions
	Public and Private ECALLs

	Enclave Configuration File
	Load and Unload an Enclave
	Handling Power Events

	Intel(R) Software Guard Extensions Sample Code
	Sample Enclave
	Configure and Enable Intel(R) SGX
	Initialize an Enclave
	Retrieve the Saved Token
	Create an Enclave
	Store the Updated Token

	ECALL/OCALL Functions
	Destroy an Enclave

	Power Transition
	ECALL-Error-Code Based Retry
	ECALLs in Demonstration
	Initialization ECALL after Enclave Creation
	Normal ECALL to Process Secrets within the Enclave

	Attestation
	Local Attestation
	Diffie-Hellman Key Exchange Library and Local Attestation Flow
	Protected Channel Establishment
	Secret Message Exchange and Enclave to Enclave Call

	Remote Attestation
	Remote Key Exchange (KE) Libraries
	Remote Attestation and Protected Session Establishment
	Debugging a Remote Attestation Service Provider

	Library Functions and Type Reference
	Untrusted Library Functions
	Enclave Creation and Destruction
	Quoting Functions
	Untrusted Key Exchange Functions
	Untrusted Platform Service Function

	Trusted Libraries
	Trusted Runtime System
	Intel(R) Software Guard Extensions Helper Functions
	Custom Exception Handling
	Custom Exception Handler for CPUID Instruction

	Trusted Service Library
	Intel(R) Software Guard Extensions Instruction Wrapper Functions
	Intel(R) Software Guard Extensions Sealing and Unsealing Functions
	SealLibrary Introduction
	Example Use Cases

	Trusted Platform Service Functions
	Diffie–Hellman (DH) Session Establishment Functions
	C Standard Library
	Locale Functions
	Random Number Generation Functions
	String Functions
	Abort Function
	Thread Synchronization Primitives
	Query CPUID inside Enclave

	GCC* Built-in Functions
	C++ Language Support
	C++ Standard Library

	Cryptography Library
	Trusted Key Exchange Functions

	Function Descriptions
	sgx_create_enclave
	sgx_destroy_enclave
	sgx_init_quote
	sgx_get_quote_size
	sgx_get_quote
	sgx_ra_get_msg1
	sgx_ra_proc_msg2
	sgx_report_attestation_status
	sgx_get_ps_cap
	sgx_is_within_enclave
	sgx_is_outside_enclave
	sgx_read_rand
	sgx_register_exception_handler
	sgx_unregister_exception_handler
	sgx_spin_lock
	sgx_spin_unlock
	sgx_thread_mutex_init
	sgx_thread_mutex_destroy
	sgx_thread_mutex_lock
	sgx_thread_mutex_trylock
	sgx_thread_mutex_unlock
	sgx_thread_cond_init
	sgx_thread_cond_destroy
	sgx_thread_cond_wait
	sgx_thread_cond_signal
	sgx_thread_cond_broadcast
	sgx_thread_self
	sgx_cpuid
	sgx_cpuidex
	sgx_get_key
	sgx_create_report
	sgx_verify_report
	sgx_calc_sealed_data_size
	sgx_get_add_mac_txt_len
	sgx_get_encrypt_txt_len
	sgx_seal_data
	sgx_seal_data_ex
	sgx_unseal_data
	sgx_mac_aadata
	sgx_mac_aadata_ex
	sgx_unmac_aadata
	sgx_sha256_msg
	sgx_sha256_init
	sgx_sha256_update
	sgx_sha256_get_hash
	sgx_sha256_close
	sgx_rijndael128GCM_encrypt
	sgx_rijndael128GCM_decrypt
	sgx_rijndael128_cmac_msg
	sgx_cmac128_init
	sgx_cmac128_update
	sgx_cmac128_final
	sgx_cmac128_close
	sgx_aes_ctr_encrypt
	sgx_aes_ctr_decrypt
	sgx_ecc256_open_context
	sgx_ecc256_close_context
	sgx_ecc256_create_key_pair
	sgx_ecc256_compute_shared_dhkey
	sgx_ecc256_check_point
	sgx_ecdsa_sign
	sgx_ecdsa_verify
	sgx_create_pse_session
	sgx_close_pse_session
	sgx_get_ps_sec_prop
	sgx_get_trusted_time
	sgx_create_monotonic_counter_ex
	sgx_create_monotonic_counter
	sgx_destroy_monotonic_counter
	sgx_increment_monotonic_counter
	sgx_read_monotonic_counter
	sgx_ra_init
	sgx_ra_get_keys
	sgx_ra_close
	sgx_dh_init_session
	sgx_dh_responder_gen_msg1
	sgx_dh_initiator_proc_msg1
	sgx_dh_responder_proc_msg2
	sgx_dh_initiator_proc_msg3

	Types and Enumerations
	Type Descriptions
	sgx_enclave_id_t
	sgx_launch_token_t
	sgx_exception_vector_t
	sgx_exception_type_t
	sgx_cpu_context_t
	sgx_exception_info_t
	sgx_exception_handler_t
	sgx_spinlock_t
	sgx_thread_t
	sgx_thread_mutex_t
	sgx_thread_mutexattr_t
	sgx_thread_cond_t
	sgx_thread_condattr_t
	sgx_misc_select_t
	sgx_attributes_t
	sgx_misc_attribute_t
	sgx_isv_svn_t
	sgx_cpu_svn_t
	sgx_key_id_t
	sgx_key_128bit_t
	sgx_key_request_t
	sgx_measurement_t
	sgx_mac_t
	sgx_report_data_t
	sgx_prod_id_t
	sgx_target_info_t
	sgx_report_body_t
	sgx_report_t
	sgx_aes_gcm_data_t
	sgx_sealed_data_t
	sgx_epid_group_id_t
	sgx_basename_t
	sgx_quote_t
	sgx_quote_sign_type_t
	sgx_spid_t
	sgx_quote_nonce_t
	sgx_time_source_nonce_t
	sgx_time_t
	sgx_ps_cap_t
	sgx_ps_sec_prop_desc_t
	sgx_mc_uuid_t
	sgx_ra_context_t
	sgx_ra_key_128_t
	sgx_ra_key_type_t
	sgx_ra_msg1_t
	sgx_ra_msg2_t
	sgx_ra_msg3_t
	sgx_ecall_get_ga_trusted_t
	sgx_ecall_proc_msg2_trusted_t
	sgx_ecall_get_msg3_trusted_t
	sgx_platform_info_t
	sgx_update_info_bit_t
	sgx_dh_msg1_t
	sgx_dh_msg2_t
	sgx_dh_msg3_t
	sgx_dh_msg3_body_t
	sgx_dh_session_enclave_identity_t
	sgx_dh_session_role_t
	sgx_dh_session_t

	Error Codes

	Appendix
	Unsupported GCC* Compiler Options for Enclaves
	Unsupported Intel(R) Compilers Options for Enclaves
	Unsupported Intel(R) Compiler Libraries
	Unsupported GCC* Built-in Functions
	Unsupported C Standard Functions
	Unsupported C++ Standard Classes and Functions
	Unsupported C and C++ Keywords

