'Navigator 2.0"
and Beamer

Sandro Lovnicki,
Friendly Fire

Table of Contents

e “Navigator 2.0"

o Pages API
o Imperative vs Declarative Navigation
o Router
o Example
o Problems
e Beamer

o Beam Location

o Beam State

o Flow

o Example

o Location Builders

e Flutter UXR

“Navigator 2.0"

Why quotation marks? It's no longer officially referred to as that, but Router

e https://flutter.dev/docs/development/ui/navigation/deep-linking

Version note: Navigator 2.0 is now called Router, which allows you to declaratively set the displayed routes based on the

app’s current state. This APl is opt-in.

The purpose of the new API is to replace the imperative navigation via push, pop,
etc. and achieve declarative navigation.

https://flutter.dev/docs/development/ui/navigation/deep-linking

“Navigator 2.0"

Why use it?

Declarative navigation

Deep links

More Flutter-like

Web URLs

Interact with browser history

Pages API

e new property in Navigator widget: pages
o https://api.flutter.dev/flutter/widgets/Navigator/pages.html
o The list of pages that should be stacked on top of eachother

e new property in Navigator widget: onPopPage
o https://api.flutter.dev/flutter/widgets/Navigator/onPopPage.html
o What should happen when Navigator.of(context) .pop() is invoked. Most
commonly: remove the last page from the pages list.

In order to use the new Pages API, both need to be provided.

https://api.flutter.dev/flutter/widgets/Navigator/pages.html
https://api.flutter.dev/flutter/widgets/Navigator/onPopPage.html

Imperative vs Declarative Navigation

push(Page2()) push(Page3()) popUntil(Pagel())
imperative imperative imperative
Page1 — > —> —»
9) Page2 . .
declarative declarative declarative
Navigator (Navigator(Navigator(
pages: [pages: [pages: [
Page1(), Page1(), Page1(),
Page2(), Page2(), 1,
1, Page3(),)

) 1,
)

Router

Navigator’'s Pages APl is enough to achieve declarative navigation, but we need a
Router to use the full benefits, e.g. listening to the platform’s incoming routes.

e Top-most router that interacts with platform: MaterialApp.router()
o https://api.flutter.dev/flutter/material/MaterialApp/Material App.router.html
o Needs routerDelegate and routeInformationParser
o Has all other properties the same as MaterialApp() constructor
e Inner (nested) routers: Router widget
o https://api.flutter.dev/flutter/widgets/Router-class.html

https://api.flutter.dev/flutter/material/MaterialApp/MaterialApp.router.html
https://api.flutter.dev/flutter/widgets/Router-class.html

Router

Responsible for handling the route information by creating a stack of pages that
should be displayed on screen. It (re)builds a Navigator widget and fills its pages
attribute (Pages API).

Consists of 4 building blocks, of which the most important is delegate.

® routeInformationProvider (defaults to PlatformRouteInformationProvider)

® routeInformationParser (parses RouteInformation into a type that delegate understands)
® routerDelegate (builds the Navigator widget)

® backButtonDispatcher (handles Android back button)

Example

https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade

https://qist.github.com/johnpryan/5ce79aee5b5f83cfababa97c9cf0a204

https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade
https://gist.github.com/johnpryan/5ce79aee5b5f83cfababa97c9cf0a204

Example
(App)

class BooksApp extends StatefulWidget {
@override
State<StatefulWidget> createState() => _BooksAppState(),

class _BooksAppState extends State<BooksApp> {
BookRouterDelegate _routerDelegate = BookRouterDelegate();
BookRouteInformationParser _routeInformationParser =
BookRouteInformationParser();

@override
Widget build(BuildContext context) {
return MaterialApp.router(
title: 'Books App’,
routerDelegate: _routerDelegate,
routeInformationParser: _routelInformationParser,

)i

class BookRouteInformationParser extends RouteInformationParser<BookRoutePath> {

foverride
E I 3 Future<BookRoutePath> parseRouteInformation(
Xal I lp e ‘ RouteInformation routeInformation) async {
o final uri = Uri.parse(routeInformation. location);
(routeInformationParser) o ’

if (uri.pathSegments.length >= 2) {

var remaining = uri.pathSegments[1];

return BookRoutePath.details(int.tryParse(remaining));
} else {

return BookRoutePath.home();

@override
RouteInformation restoreRouteInformation(BookRoutePath path) {
if (path.isHomePage) {
return RouteInformation(location: '/');

}
if (path.isDetailsPage) {

return RouteInformation(location: '/book/${path.id}');

}

return null;

@override
Widget build(BuildContext context) {
return Navigator(
key: navigatorKey,
transitionDelegate: NoAnimationTransitionDelegate(),
Example
MaterialPage(
key: ValueKey('BooksListPage'),
(routerDEIegate) child: BooksListScreen(
books: books,
onTapped: _handleBookTapped,
)s
)
if (_selectedBook !'= null) BookDetailsPage(book: _selectedBook)

1
class BookRouterDelegate extends RouterDelegate<BookRoutePath> onPopPage: (route, result) {

with ChangeNotifier, PopNavigatorRouterDelegateMixin<BookRoutePath> { if (!route.didPop(result)) {
final GlobalKey<NavigatorState> navigatorKey; return false;

Book’-selackecBaok; // Update the list of pages by setting _selectedBook to null

_selectedBook = null;
List<Book> books = [notifylListeners();

Book('Stranger in a Strange Land', 'Robert A. Heinlein'),
Book('Foundation', 'Isaac Asimov'),
Book('Fahrenheit 451', 'Ray Bradbury'),

1; }

return true;
i
)i

BookRouterDelegate() : navigatorKey = GlobalKey<NavigatorState>(); foverride
Future<void> setNewRoutePath(BookRoutePath path) async {
if (path.isDetailsPage) {
BookRoutePath get currentConfiguration => _selectedBook == null _selectedBook = books[path.id];
? BookRoutePath.home() }

BookRoutePath.details(books.index0f(_selectedBook)); }

void _handleBookTapped(Book book) {
_selectedBook = book;
notifylListeners();

}

Problems

1. How to handle a large application with 20-50 screens?

2. How to provide some data to just certain page stacks? (e.g. all the pages that
are shop related should have access to “cart provider”, but all the settings
pages should not)

3. Too specific implementation details in parser and delegate

Named routes

5. Simple, beginner-friendly API

e

Problems

/I\ I I
e rlrl rlrlrl
1
S

beamer 0.14.0

Published Jun 8, 2021 « & beamer.dev w‘_:hull sz) « Latest: 0.14.0 / Prerelease: 1.0.0-pre.4.0

FLUTTER ANDROID 10S LINUX MACOS WEB WINDOWS

Readme Changelog Example Installing Versions Scores Admin

commits 39/month j stars 186
;‘;;» closed pull requests &9

contributors [

7 uymeacoye

Handle your application routing, synchronize it with browser URL and more. Beamer uses the power of
Router and implements all the underlying logic for you.

262 130
Publisher

@ beamer.dev

Metadata

A routing package that
lets you navigate through
guarded page stacks and
URLs using the Router and
Navigator's Pages API, aka
"Navigator 2.0".

Repository (GitHub)

View/report issues

Documentation

API reference

advanced_books

Beamer

animated_rail

authentication_bloc

e https://pub.dev/packages/beamer

o 262 likes
o 92% popularity

authentication_riverpod
books_bloc
bottom_navigation

bottom_navigation_multiple_beamers

e https://qithub.com/slovnicki/beamer

o 186 stars
o 46 forks
o 14 contributors

deep_location
guards
location_builders
nested navigation

e https://discord.qq/8hDJ7tP5Mz

o 131 members

provider

README.md

https://pub.dev/packages/beamer
https://github.com/slovnicki/beamer
https://discord.gg/8hDJ7tP5Mz

Beamer
History, motivation and goals

e Friendly Fire mobile/web/desktop app

Full navigation control on all platforms

Generic implementation for parser and delegate

Separate the responsibility of building contextually different page stacks
Robust, but simple

Both declarative and imperative API (with declarative under the hood for both)
Close to the original “Navigator 2.0" concept and flow (not reinventing the wheel)

Beamer
Key concepts

e BeamerParser (builtin)
O parses route information into BeamState
e BeamerDelegate (builtin)
O generic router delegate
O decides BeamLocation via locationBuilder using BeamState
O builds Navigator with pages provided by BeamLocation

e BeamlLocation (developer extends it)

o defines supported URIs
o provides the rules for building a page stack

Beam Location

The most important construct with 3 roles:

e know which URIs it can handle: pathBlueprints
e know how to build a stack of pages: buildPages
e keep a state that provides a link between the first 2

The purpose of having multiple BeamLocations is to architecturally separate
unrelated "places” in an application.

For example, BooksLocation can handle all the pages related to books and
ArticlesLocation everything related to articles. In the light of this scoping,
BeamLocation also has a builder for wrapping an entire stack of its pages with
some Provider so the similar data can be shared between similar pages.

Beam Location
e I
B
/ N\
e
l

class BooksLocation extends BeamLocation {
BooksLocation(BeamState state) : super(state);

Beam Location

@override
(example) List<String> get pathBlueprints => ['/books/:bookId'];
@override
List<BeamPage> buildPages(BuildContext context, BeamState state) => [
BeamPage (

key: ValueKey('home'),
child: HomeScreen(),
), // BeamPage
if (state.uri.pathSegments.contains('books'))
BeamPage (
key: ValueKey('books'),
child: BooksScreen(),
), // BeamPage
if (state.pathParameters.containsKey('bookId'))
BeamPage (
key: ValueKey('book-${state.pathParameters|['bookId']}"),
child: BookDetailsScreen(
books.firstWhere(
(book) => book['id'] == state.pathParameters['bookId']!),
), // BookDetailsScreen
), // BeamPage
| &

Beam State

e A data object that represents the state of Beamer and BeamLocation

e Keeps various URI attributes such as pathBlueprintSegments,
pathParameters, queryParameters and arbitrary key-value data

e (Can be created fromUri and transformed toUri

e Used while building pages and reporting the current route to platform

|
— (.

g /my/path

Flow

Problems 1, 2 and 3 solved.

Example

(App)

class MyApp extends StatelessWidget {
final routerDelegate = BeamerDelegate(
locationBuilder: (state) => BooksLocation(state),
); // BeamerDelegate

@override
Widget build(BuildContext context) {
return MaterialApp.router(
routerDelegate: routerDelegate,
routeInformationParser: BeamerParser(),
); // MaterialApp.router
¥
}

class BooksLocation extends BeamLocation {
BooksLocation(BeamState state) : super(state);

Example

@override
(BeamLocatlon) List<String> get pathBlueprints => ['/books/:bookId'];
@override
List<BeamPage> buildPages(BuildContext context, BeamState state) => [
BeamPage (

key: ValueKey('home'),
child: HomeScreen(),
), // BeamPage
if (state.uri.pathSegments.contains('books'))
BeamPage (
key: ValueKey('books'),
child: BooksScreen(),
), // BeamPage
if (state.pathParameters.containsKey('bookId'))
BeamPage (
key: ValueKey('book-${state.pathParameters|['bookId']}"),
child: BookDetailsScreen(
books.firstWhere(
(book) => book['id'] == state.pathParameters['bookId']!),
), // BookDetailsScreen
), // BeamPage
| &

Example
(beaming)

e Declarative

Beamer.of (context).currentBeamLocation.update(
(state) => state.copyWith(
pathBlueprintSegments: ['books', ':bookId'],
pathParameters: {'bookId': '3'},
¥Ys
);

e Imperative

ﬁeamer.of(context).beamToNamed('/books/3');

Location Builders

final routerDelegate = BeamerDelegate(
)) . locationBuilder: SimpleLocationBuilder(
e SimpleLocationBuilder routes: {
5 N6y [Freveve | ot GL GG '/': (context, state) => HomeScreen(),
'/books': (context, state) => BooksScreen(),
BeamLocations ' /books/:bookId': (context, state) {
final bookId = int.parse(state.pathParameters['bookId']!);
return BookDetailsScreen(bookId: bookId);
s

13
), // SimpleLocationBuilder

); // BeamerDelegate

final routerDelegate = BeamerDelegate(

o BeamerlocationBuilder locationBuilder: BeamerLocationBuilder(

o Beamer determines the beamLocations: [

right BeamLocation : BooksLocation(),

), // BeamerLocationBuilder
); // BeamerDelegate

Problems 4 and 5 solved.

Flutter UXR

https://qgithub.com/flutter/uxr/wiki/
Navigator-2.0-API-Usability-Rese

arch

Navigator 2.0 API Usability Research

Tao Dong edited this page on May 1 - 18 revisions

TL; DR

This project aims to establish a usability standard and a method for designing high-level navigation APIs for Flutter. If you have
any feedback after reading this page, please post your comments to this issue. The latest status of this project can be found in
issue #31. This project is also referred to as Routing API Research.

Motivation

The Navigator 2.0 API in Flutter provides many desirable enhancements on the original Navigator API, but it's also considered
to be complex and hard to use by Flutter users. To simplify Navigator 2.0, the Flutter user community has started experimenting
with alternate APIs. Flutter's DevRel team has also explored potential simplifications via an experimental package called
page_router. We would like to make sure these explorations are fruitful and converging on an API that makes common
navigation patterns straightforward to implement. To achieve this outcome, we are following the User-Centered Design process
to create a high-level navigation API for Flutter.

Goals

« Design or endorse an easy-to-use package for implementing common navigation patterns, especially for use cases on the
web.

« Establish a model API design process for Flutter's future development

Non-goals

In this project, we are not pursuing the following goals, but they remain a possibility in the future:

« Making the page_router package production-ready
« Changing the existing Navigator 2.0 API

https://github.com/flutter/uxr/wiki/Navigator-2.0-API-Usability-Research
https://github.com/flutter/uxr/wiki/Navigator-2.0-API-Usability-Research
https://github.com/flutter/uxr/wiki/Navigator-2.0-API-Usability-Research

Flutter UXR

e 3 finalists have been chosen for further study, one of which is beamer
o https://aithub.com/flutter/uxr/issues/10#issuecomment-820669779

e Continuous study updates
o https://qithub.com/flutter/uxr/issues/31

e Announcement of the winner is planned for July

https://github.com/flutter/uxr/issues/10#issuecomment-820669779
https://github.com/flutter/uxr/issues/31

Questions...

Thank you!

