

Table of Contents

● “Navigator 2.0”
○ Pages API
○ Imperative vs Declarative Navigation
○ Router
○ Example
○ Problems

● Beamer
○ Beam Location
○ Beam State
○ Flow
○ Example
○ Location Builders

● Flutter UXR

“Navigator 2.0”

Why quotation marks? It’s no longer officially referred to as that, but Router

● https://flutter.dev/docs/development/ui/navigation/deep-linking

The purpose of the new API is to replace the imperative navigation via push, pop,
etc. and achieve declarative navigation.

https://flutter.dev/docs/development/ui/navigation/deep-linking

“Navigator 2.0”

Why use it?

● Declarative navigation
● Deep links
● More Flutter-like
● Web URLs
● Interact with browser history

Pages API

● new property in Navigator widget: pages
○ https://api.flutter.dev/flutter/widgets/Navigator/pages.html
○ The list of pages that should be stacked on top of eachother

● new property in Navigator widget: onPopPage
○ https://api.flutter.dev/flutter/widgets/Navigator/onPopPage.html
○ What should happen when Navigator.of(context).pop() is invoked. Most

commonly: remove the last page from the pages list.

In order to use the new Pages API, both need to be provided.

https://api.flutter.dev/flutter/widgets/Navigator/pages.html
https://api.flutter.dev/flutter/widgets/Navigator/onPopPage.html

Imperative vs Declarative Navigation

Page1 Page2 Page3
Page1

push(Page2()) push(Page3()) popUntil(Page1())

Navigator(
 pages: [
 Page1(),
 Page2(),
],
)

Navigator(
 pages: [
 Page1(),
 Page2(),
 Page3(),
],
)

Navigator(
 pages: [
 Page1(),
],
)

imperative

declarative

imperativeimperative

declarative declarative

Router

Navigator’s Pages API is enough to achieve declarative navigation, but we need a
Router to use the full benefits, e.g. listening to the platform’s incoming routes.

● Top-most router that interacts with platform: MaterialApp.router()
○ https://api.flutter.dev/flutter/material/MaterialApp/MaterialApp.router.html
○ Needs routerDelegate and routeInformationParser
○ Has all other properties the same as MaterialApp() constructor

● Inner (nested) routers: Router widget
○ https://api.flutter.dev/flutter/widgets/Router-class.html

https://api.flutter.dev/flutter/material/MaterialApp/MaterialApp.router.html
https://api.flutter.dev/flutter/widgets/Router-class.html

Router

Responsible for handling the route information by creating a stack of pages that
should be displayed on screen. It (re)builds a Navigator widget and fills its pages
attribute (Pages API).

Consists of 4 building blocks, of which the most important is delegate.

● routeInformationProvider (defaults to PlatformRouteInformationProvider)
● routeInformationParser (parses RouteInformation into a type that delegate understands)
● routerDelegate (builds the Navigator widget)
● backButtonDispatcher (handles Android back button)

Example

https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade

https://gist.github.com/johnpryan/5ce79aee5b5f83cfababa97c9cf0a204

https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade
https://gist.github.com/johnpryan/5ce79aee5b5f83cfababa97c9cf0a204

Example
(App)

Example
(routeInformationParser)

Example
(routerDelegate)

Problems

1. How to handle a large application with 20-50 screens?
2. How to provide some data to just certain page stacks? (e.g. all the pages that

are shop related should have access to “cart provider”, but all the settings
pages should not)

3. Too specific implementation details in parser and delegate
4. Named routes
5. Simple, beginner-friendly API

Problems

?

Beamer

● https://pub.dev/packages/beamer
○ 262 likes
○ 92% popularity

● https://github.com/slovnicki/beamer
○ 186 stars
○ 46 forks
○ 14 contributors

● https://discord.gg/8hDJ7tP5Mz
○ 131 members

https://pub.dev/packages/beamer
https://github.com/slovnicki/beamer
https://discord.gg/8hDJ7tP5Mz

Beamer
History, motivation and goals

● Friendly Fire mobile/web/desktop app

● Full navigation control on all platforms
● Generic implementation for parser and delegate
● Separate the responsibility of building contextually different page stacks
● Robust, but simple
● Both declarative and imperative API (with declarative under the hood for both)
● Close to the original “Navigator 2.0” concept and flow (not reinventing the wheel)

Beamer
Key concepts

● BeamerParser (built in)
○ parses route information into BeamState

● BeamerDelegate (built in)
○ generic router delegate
○ decides BeamLocation via locationBuilder using BeamState
○ builds Navigator with pages provided by BeamLocation

● BeamLocation (developer extends it)
○ defines supported URIs
○ provides the rules for building a page stack

Beam Location

The most important construct with 3 roles:

● know which URIs it can handle: pathBlueprints
● know how to build a stack of pages: buildPages
● keep a state that provides a link between the first 2

The purpose of having multiple BeamLocations is to architecturally separate
unrelated "places" in an application.

For example, BooksLocation can handle all the pages related to books and
ArticlesLocation everything related to articles. In the light of this scoping,
BeamLocation also has a builder for wrapping an entire stack of its pages with
some Provider so the similar data can be shared between similar pages.

Beam Location

ProfileBeamLocation

ShopBeamLocation SettingsBeamLocation

Cart
Provider

Beam Location
(example)

Beam State

● A data object that represents the state of Beamer and BeamLocation
● Keeps various URI attributes such as pathBlueprintSegments,

pathParameters, queryParameters and arbitrary key-value data
● Can be created fromUri and transformed toUri
● Used while building pages and reporting the current route to platform

Flow

Platform

User
/my/path BeamStateBeamer

Parser

Beamer
Delegate
.location
Builder

BeamLocation

Beam
Location
.build
Pages

Beamer
Delegate
.build

Navigator

Problems 1, 2 and 3 solved.

Example
(App)

Example
(BeamLocation)

Example
(beaming)

● Declarative

● Imperative

Location Builders

● SimpleLocationBuilder
○ No need for custom

BeamLocations

● BeamerLocationBuilder
○ Beamer determines the

right BeamLocation

Problems 4 and 5 solved.

Flutter UXR

https://github.com/flutter/uxr/wiki/
Navigator-2.0-API-Usability-Rese
arch

https://github.com/flutter/uxr/wiki/Navigator-2.0-API-Usability-Research
https://github.com/flutter/uxr/wiki/Navigator-2.0-API-Usability-Research
https://github.com/flutter/uxr/wiki/Navigator-2.0-API-Usability-Research

Flutter UXR

● 3 finalists have been chosen for further study, one of which is beamer
○ https://github.com/flutter/uxr/issues/10#issuecomment-820669779

● Continuous study updates
○ https://github.com/flutter/uxr/issues/31

● Announcement of the winner is planned for July

https://github.com/flutter/uxr/issues/10#issuecomment-820669779
https://github.com/flutter/uxr/issues/31

Questions...

Thank you!

