
Quantum++

A C++11 quantum computing library

Author: Vlad Gheorghiu
Institute for Quantum Computing, University of Waterloo,

Waterloo, ON, N2L 3G1, Canada
vgheorgh@gmail.com

Version of: October 22, 2016

Abstract: Quantum++ is a modern general-purpose multi-threaded quantum com-
puting library written in C++11 and composed solely of header files. The library is
not restricted to qubit systems or specific quantum information processing tasks, being
capable of simulating arbitrary quantum processes. The main design factors taken in
consideration were the ease of use, portability, and performance. The library’s sim-
ulation capabilities are only restricted by the amount of available physical memory.
On a typical machine (Intel i5 8Gb RAM) Quantum++ can successfully simulate the
evolution of 25 qubits in a pure state or of 12 qubits in a mixed state reasonably fast.

Contents

1 Introduction 2

2 Installation 3

3 Data types, constants and global objects 3
3.1 Data types . 4
3.2 Constants . 4
3.3 Singleton classes and their global instances . 4

4 Simple examples 4
4.1 Gates and states . 5
4.2 Measurements . 6
4.3 Quantum operations . 8
4.4 Timing . 10
4.5 Input/output . 11
4.6 Exceptions . 12

5 Brief description of Quantum++ file structure 13

6 Advanced topics 13
6.1 Aliasing . 13
6.2 Type deduction via auto . 15
6.3 Optimizations . 15
6.4 Extending Quantum++ . 15

1

mailto:vgheorgh@gmail.com

Listings

1 Minimal example . 3
2 Gates and states . 5
3 Measurements . 6
4 Quantum operations . 8
5 Timing . 10
6 Input/output . 11
7 Exceptions . 12

1 Introduction

Quantum++, available online at http://vsoftco.github.io/qpp, is a C++11 general purpose quantum
computing library, composed solely of header files. It uses the Eigen 3 linear algebra library and, if avail-
able, the OpenMP multi-processing library. For additional Eigen 3 documentation see http://eigen.

tuxfamily.org/dox/. For a simple Eigen 3 quick ASCII reference see http://eigen.tuxfamily.org/dox/

AsciiQuickReference.txt.
The simulator defines a large collection of (template) quantum computing related functions and a few

useful classes. The main data types are complex vectors and complex matrices, which I will describe below.
Most functions operate on such vectors/matrices and always return the result by value. Collection of objects
are implemented via the standard library container std::vector<>, instantiated accordingly.

Although there are many available quantum computing libraries/simulators written in various program-
ming languages, see [1] for a comprehensive list, I hope what makes Quantum++ different is the ease of use,
portability and high performance. The library is not restricted to specific quantum information tasks, but
it is intended to be multi-purpose and capable of simulating arbitrary quantum processes. I have chosen
the C++ programming language (standard C++11) in implementing the library as it is by now a mature
standard, fully (or almost fully) implemented by most important compilers, and highly portable.

In the reminder of this manuscript I describe the main features of the library, “in a nutshell” fashion,
via a series of simple examples. I assume that the reader is familiar with the basic concepts of quantum
mechanics/quantum information, as I do not provide any introduction to this field. For a comprehensive
introduction to the latter see e.g. [2]. This document is not intended to be a comprehensive documentation,
but only a brief introduction to the library and its main features. For a detailed reference see the official
manual available as a .pdf file in ./doc/refman.pdf. For detailed installation instructions as well as for
additional information regarding the library see the main repository page at http://vsoftco.github.

io/qpp. If you are interesting in contributing, or for any comments or suggestions, please email me at
vgheorgh@gmail.com.

Quantum++ is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

Quantum++ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Quantum++. If not, see
http://www.gnu.org/licenses/.

2

http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
http://eigen.tuxfamily.org/
http://openmp.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/
http://eigen.tuxfamily.org/dox/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
mailto:vgheorgh@gmail.com
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
http://www.gnu.org/licenses/

2 Installation

To get started with Quantum++, first install the Eigen 3 library from http://eigen.tuxfamily.org into
your home directory1, as $HOME/eigen. You can change the name of the directory, but in the current
document I will use $HOME/eigen as the location of the Eigen 3 library. Next, download the Quantum++
library from http://vsoftco.github.io/qpp/ and unzip it into the home directory as $HOME/qpp. Finally,
make sure that your compiler supports C++11 and preferably OpenMP. For a compiler I recommend g++
version 4.8.2 or later or clang version 3.7 or later (previous versions of clang do not support OpenMP). You
are now ready to go!

We next build a simple minimal example to test that the installation was successful. Create a directory
called $HOME/testing, and inside it create the file minimal.cpp, with the content listed in Listing 1. A
verbatim copy of the above program is also available at $HOME/qpp/examples/minimal.cpp.

1 // Minimal example

2 // Source: ./examples/minimal.cpp

3 #include <iostream>

4 #include "qpp.h"

5

6 using namespace qpp;

7

8 int main()

9 {

10 std::cout << "Hello Quantum++!\nThis is the |0> state:\n";

11 std::cout << disp(st.z0) << ’\n’;

12 }

Listing 1: Minimal example

Next, compile the file using a C++11 compliant compiler. In the following I assume you use g++, but
the building instructions are similar for other compilers. From the directory $HOME/testing type

g++ -std=c++11 -isystem $HOME/eigen -I $HOME/qpp/include minimal.cpp -o minimal

Your compile command may differ from the above, depending on the C++ compiler and operating system.
If everything went fine, the above command should build an executable minimal in $HOME/testing, which
can be run by typing ./minimal. The output should be similar to the following:

Hello Quantum++!

This is the |0> state:

1.0000

0

Listing 1 output

In line 4 of Listing 1 we include the main header file of the library qpp.h This header file includes all
other necessary internal Quantum++ header files. In line 11 we display the state |0〉 represented by the
singleton st.z0 in a nice format using the display manipulator disp().

3 Data types, constants and global objects

All header files of Quantum++ are located inside the ./include directory. All functions, classes and global
objects defined by the library belong to the namespace qpp. To avoid additional typing, I will omit the
prefix qpp:: in the rest of this document. I recommend to use using namespace qpp; in your main .cpp

file.
1I implicitly assume that you use a UNIX-like system, although everything should translate into Windows as well, with

slight modifications

3

http://vsoftco.github.io/qpp
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org/
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp/
http://openmp.org/
https://gcc.gnu.org/
http://clang.llvm.org
http://clang.llvm.org
http://openmp.org/
https://gcc.gnu.org/
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp

3.1 Data types

The most important data types are defined in the header file types.h. We list them in Table 1.

idx Index (non-negative integer), alias for std::size_t
bigint Big integer, alias for long long int

cplx Complex number, alias for std::complex<double>
cmat Complex dynamic matrix, alias for Eigen::MatrixXcd
dmat Double dynamic matrix, alias for Eigen::MatrixXd
ket Complex dynamic column vector, alias for Eigen::VectorXcd
bra Complex dynamic row vector, alias for Eigen::RowVectorXcd
dyn_mat<Scalar> Dynamic matrix template alias over the field Scalar, alias for

Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>

dyn_col_vect<Scalar> Dynamic column vector template alias over the field Scalar, alias for
Eigen::Matrix<Scalar, Eigen::Dynamic, 1>

dyn_row_vect<Scalar> Dynamic row vector template alias over the field Scalar, alias for
Eigen::Matrix<Scalar, 1, Eigen::Dynamic>

Table 1: User-defined data types

3.2 Constants

The important constants are defined in the header file constants.h and are listed in Table 2.

constexpr idx maxn = 64; Maximum number of allowed qu(d)its (subsystems)
constexpr double pi = 3.1415...; π
constexpr double ee = 2.7182...; e, base of natural logarithms
constexpr double eps = 1e-12; Used in comparing floating point values to zero
constexpr double chop = 1e-10; Used in display manipulators to set numbers to zero
constexpr double infty = ...; Used to denote infinity in double precision

constexpr cplx operator""_i

(unsigned long long int x)

User-defined literal for the imaginary number i :=
√
−1

constexpr cplx operator""_i

(unsigned long double int x)

User-defined literal for the imaginary number i :=
√
−1

cplx omega(idx D) D-th root of unity e2πi/D

Table 2: User-defined constants

3.3 Singleton classes and their global instances

Some useful classes are defined as singletons and their instances are globally available, being initialized at
runtime in the header file qpp.h, before main(). They are listed in Table 3.

4 Simple examples

All of the examples of this section are copied verbatim from the directory ./examples and are fully com-
pilable. For convenience, the location of the source file is displayed in the first line of each example as a
C++ comment. The examples are simple and demonstrate the main features of Quantum++. They cover

4

http://vsoftco.github.io/qpp

const Init& init = Init::get_instance(); Library initialization
const Codes& codes = Codes::get_instance(); Quantum error correcting codes
const Gates& gt = Gates::get_instance(); Quantum gates
const States& st = States::get_instance(); Quantum states
RandomDevices& rdevs =

RandomDevices::get_thread_local_instance();

Random devices/generators/engines

Table 3: Global singleton classes and instances

only a small part of library functions, but enough to get the interested user started. For an extensive ref-
erence of all library functions, including various overloads, the user should consult the complete reference
./doc/refman.pdf. See the rest of the examples (not discussed in this document) in ./examples/. for more
comprehensive code snippets.

4.1 Gates and states

Let us introduce the main objects used by Quantum++: gates, states and basic operations. Consider the
code in Listing 2.

1 // Gates and states

2 // Source: ./examples/gates_states.cpp

3 #include <iostream>

4 #include "qpp.h"

5

6 using namespace qpp;

7

8 int main()

9 {

10 ket psi = st.z0; // |0> state

11 cmat U = gt.X;

12 ket result = U * psi;

13

14 std::cout << ">> The result of applying the bit-flip gate X on |0> is:\n";

15 std::cout << disp(result) << ’\n’;

16

17 psi = mket({1, 0}); // |10> state

18 U = gt.CNOT; // Controlled-NOT

19 result = U * psi;

20

21 std::cout << ">> The result of applying the gate CNOT on |10> is:\n";

22 std::cout << disp(result) << ’\n’;

23

24 U = randU(2);

25 std::cout << ">> Generating a random one-qubit gate U:\n";

26 std::cout << disp(U) << ’\n’;

27

28 result = applyCTRL(psi, U, {0}, {1}); // Controlled-U

29 std::cout << ">> The result of applying the CTRL-U gate on |10> is:\n";

30 std::cout << disp(result) << ’\n’;

5

http://vsoftco.github.io/qpp

31 }

Listing 2: Gates and states

A possible output is:

>> The result of applying the bit-flip gate X on |0> is:

0

1.0000

>> The result of applying the gate CNOT on |10> is:

0

0

0

1.0000

>> Generating a random one-qubit gate U:

0.6698 - 0.1818i -0.6900 + 0.2054i

-0.7128 - 0.1009i -0.6893 - 0.0805i

>> The result of applying the CTRL-U gate on |10> is:

0

0

0.6698 - 0.1818i

-0.7128 - 0.1009i

Listing 2 output

In line 4 of Listing 2 we bring the namespace qpp into the global namespace.
In line 10 we use the States singleton st to declare psi as the zero eigenvector |0〉 of the Z Pauli

operator. In line 11 we use the Gates singleton gt and assign to U the bit flip gate gt.X. In line 12 we
compute the result of the operation X|0〉, and display the result |1〉 in lines 14 and 15. In line 15 we use the
display manipulator disp(), which is especially useful when displaying complex matrices, as it displays the
entries of the latter in the form a+ bi, in contrast to the form (a, b) used by the C++ standard library. The
manipulator also accepts additional parameters that allows e.g. setting to zero numbers smaller than some
given value (useful to chop small values), and it is in addition overloaded for standard containers, iterators
and C-style arrays.

In line 17 we reassign to psi the state |10〉 via the function mket(). We could have also used the Eigen
3 insertion operator

ket psi(4); // must specify the dimension before insertion of elements via <<

psi << 0, 0, 1, 0;

however the mket() function is more concise. In line 18 we declare a gate U as the Controlled-NOT with
control as the first subsystem, and target as the last, using the global singleton gt. In line 19 we declare the
ket result as the result of applying the Controlled-NOT gate to the state |10〉, i.e. |11〉. We then display
the result of the computation in lines 21 and 22.

Next, in line 24 we generate a random unitary gate via the function randU(), then in line 28 apply the
Controlled-U, with control as the first qubit and target as the second qubit, to the state psi. Finally, we
display the result in lines 29 and 30.

4.2 Measurements

Let us now complicate things a bit and introduce measurements. Consider the example in Listing 3.

1 // Measurements

2 // Source: ./examples/measurements.cpp

3 #include <iostream>

4 #include <tuple>

6

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/

5 #include "qpp.h"

6

7 using namespace qpp;

8

9 int main()

10 {

11 ket psi = mket({0, 0});

12 cmat U = gt.CNOT * kron(gt.H, gt.Id2);

13 ket result = U * psi; // we have the Bell state (|00> + |11>) / sqrt(2)

14

15 std::cout << ">> We just produced the Bell state:\n";

16 std::cout << disp(result) << ’\n’;

17

18 // apply a bit flip on the second qubit

19 result = apply(result, gt.X, {1}); // we produced (|01> + |10>) / sqrt(2)

20 std::cout << ">> We produced the Bell state:\n";

21 std::cout << disp(result) << ’\n’;

22

23 // measure the first qubit in the X basis

24 auto measured = measure(result, gt.H, {0});

25 std::cout << ">> Measurement result: " << std::get<0>(measured) << ’\n’;

26 std::cout << ">> Probabilities: ";

27 std::cout << disp(std::get<1>(measured), ", ") << ’\n’;

28 std::cout << ">> Resulting states:\n";

29 for (auto&& it : std::get<2>(measured))

30 std::cout << disp(it) << ’\n’;

31 }

Listing 3: Measurements

A possible output is:

>> We just produced the Bell state:

0.7071

0

0

0.7071

>> We produced the Bell state:

0

0.7071

0.7071

0

>> Measurement result: 0

>> Probabilities: [0.5000, 0.5000]

>> Resulting states:

0.7071

0.7071

-0.7071

0.7071

Listing 3 output

In line 12 of Listing 3 we use the function kron() to create the tensor product (Kronecker product)
of the Hadamard gate on the first qubit and identity on the second qubit, then we left-multiply it by the

7

Controlled-NOT gate. In line 13 we compute the result of the operation CNOTab(H ⊗ I)|00〉, which is the
Bell state (|00〉+ |11〉)/

√
2. We display it in lines 15 and 16.

In line 19 we use the function apply() to apply the gate X on the second qubit2 of the previously
produced Bell state. The function apply() takes as its third parameter a list of subsystems, and in our case
{1} denotes the second subsystem, not the first. The function apply(), as well as many other functions that
we will encounter, have a variety of useful overloads, see doc/refman.pdf for a detailed library reference.
In lines 20 and 21 we display the newly created Bell state.

In line 24 we use the function measure() to perform a measurement of the first qubit (subsystem {0})
in the X basis. You may be confused by the apparition of gt.H, however this overload of the function
measure() takes as its second parameter the measurement basis, specified as the columns of a complex
matrix. In our case, the eigenvectors of the X operator are just the columns of the Hadamard matrix. As
mentioned before, as all other library functions, measure() returns by value, hence it does not modify its
argument. The return of measure is a tuple consisting of the measurement result, the outcome probabilities,
and the possible output states. Technically measure() returns a tuple of 3 elements

std::tuple<qpp::idx, std::vector<double>, std::vector<qpp::cmat>>

The first element represents the measurement result, the second the possible output probabilities and the
third the output output states. Instead of using this long type definition, we use the new C++11 auto

keyword to define the type of the result measured of measure(). In lines 25–30 we use the standard
std::get<>() function to retrieve each element of the tuple, then display the measurement result, the
probabilities and the resulting output states.

4.3 Quantum operations

In Listing 4 we introduce quantum operations: quantum channels, as well as the partial trace and partial
transpose operations.

1 // Quantum operations

2 // Source: ./examples/quantum_operations.cpp

3 #include <iostream>

4 #include <vector>

5 #include "qpp.h"

6

7 using namespace qpp;

8

9 int main()

10 {

11 cmat rho = st.pb00; // projector onto the Bell state (|00> + |11>) / sqrt(2)

12 std::cout << ">> Initial state:\n";

13 std::cout << disp(rho) << ’\n’;

14

15 // partial transpose of first subsystem

16 cmat rhoTA = ptranspose(rho, {0});

17 std::cout << ">> Eigenvalues of the partial transpose "

18 << "of Bell-0 state are:\n";

19 std::cout << disp(transpose(hevals(rhoTA))) << ’\n’;

20

21 std::cout << ">> Measurement channel with 2 Kraus operators:\n";

22 std::vector<cmat> Ks{st.pz0, st.pz1}; // 2 Kraus operators

23 std::cout << disp(Ks[0]) << "\n and \n" << disp(Ks[1]) << ’\n’;

24

2Quantum++ uses the C/C++ numbering convention, with indexes starting from zero.

8

http://vsoftco.github.io/qpp

25 std::cout << ">> Superoperator matrix of the channel:\n";

26 std::cout << disp(kraus2super(Ks)) << ’\n’;

27

28 std::cout << ">> Choi matrix of the channel:\n";

29 std::cout << disp(kraus2choi(Ks)) << ’\n’;

30

31 // apply the channel onto the first subsystem

32 cmat rhoOut = apply(rho, Ks, {0});

33 std::cout << ">> After applying the measurement channel "

34 << "on the first qubit:\n";

35 std::cout << disp(rhoOut) << ’\n’;

36

37 // take the partial trace over the second subsystem

38 cmat rhoA = ptrace(rhoOut, {1});

39 std::cout << ">> After partially tracing down the second subsystem:\n";

40 std::cout << disp(rhoA) << ’\n’;

41

42 // compute the von-Neumann entropy

43 double ent = entropy(rhoA);

44 std::cout << ">> Entropy: " << ent << ’\n’;

45 }

Listing 4: Quantum operations

The output of this program is:

>> Initial state:

0.5000 0 0 0.5000

0 0 0 0

0 0 0 0

0.5000 0 0 0.5000

>> Eigenvalues of the partial transpose of Bell-0 state are:

-0.5000 0.5000 0.5000 0.5000

>> Measurement channel with 2 Kraus operators:

1.0000 0

0 0

and

0 0

0 1.0000

>> Superoperator matrix of the channel:

1.0000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1.0000

>> Choi matrix of the channel:

1.0000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1.0000

>> After applying the measurement channel on the first qubit:

0.5000 0 0 0

0 0 0 0

0 0 0 0

9

0 0 0 0.5000

>> After partially tracing down the second subsystem:

0.5000 0

0 0.5000

>> Entropy: 1.0000

Listing 4 output

The example should by now be self-explanatory. In line 11 of Listing 4 we define the input state rho as
the projector onto the Bell state (|00〉+ |11〉)/

√
2, then display it in lines 12 and 13.

In lines 16–19 we partially transpose the first qubit, then display the eigenvalues of the resulting matrix
rhoTA.

In lines 21–23 we define a quantum channel Ks consisting of two Kraus operators: |0〉〈0| and |1〉〈1|,
then display the latter. Note that Quantum++ uses the std::vector<cmat> container to store the Kraus
operators and define a quantum channel.

In lines 25–29 we display the superoperator matrix as well as the Choi matrix of the channel Ks.
Next, in lines 32–35 we apply the channel Ks to the first qubit of the input state rho, then display the

output state rhoOut.
In lines 38–40 we take the partial trace of the output state rhoOut, then display the resulting state rhoA.
Finally, in lines 43 and 44 we compute the von-Neumann entropy of the resulting state and display it.

4.4 Timing

To facilitate simple timing tasks, Quantum++ provides a Timer class that uses internally a std::steady_clock.
The program in Listing 5 demonstrate its usage.

1 // Timing

2 // Source: ./examples/timing.cpp

3 #include <iomanip>

4 #include <iostream>

5 #include <vector>

6 #include "qpp.h"

7

8 using namespace qpp;

9

10 int main()

11 {

12 std::cout << std::setprecision(8); // increase the default output precision

13

14 // get the first codeword from Shor’s [[9,1,3]] code

15 ket c0 = codes.codeword(Codes::Type::NINE_QUBIT_SHOR, 0);

16

17 Timer<> t; // declare and start a timer

18 std::vector<idx> perm = randperm(9); // declare a random permutation

19 ket c0perm = syspermute(c0, perm); // permute the system

20 t.toc(); // stops the timer

21 std::cout << ">> Permuting subsystems according to " << disp(perm, ", ");

22 std::cout << "\n>> It took " << t << " seconds to permute the subsytems.\n";

23

24 t.tic(); // restart the timer

25 std::cout << ">> Inverse permutation: ";

26 std::cout << disp(invperm(perm), ", ") << ’\n’;

27 ket c0invperm = syspermute(c0perm, invperm(perm)); // permute again

10

http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp

28 std::cout << ">> It took " << t.toc();

29 std::cout << " seconds to un-permute the subsystems.\n";

30

31 std::cout << ">> Norm difference: " << norm(c0invperm - c0) << ’\n’;

32 }

Listing 5: Timing

A possible output of this program is:

>> Permuting subsystems according to [0, 4, 7, 1, 5, 6, 8, 3, 2]

>> It took 0.00060100 seconds to permute the subsytems.

>> Inverse permutation: [0, 3, 8, 7, 1, 4, 5, 2, 6]

>> It took 0.00035900 seconds to un-permute the subsystems.

>> Norm difference: 0.00000000

Listing 5 output

In line 12 of Listing 5 we change the default output precision from 4 to 8 decimals after the delimiter.
In line 15 we use the Codes singleton codes to retrieve in c0 the first codeword of the Shor’s [[9, 1, 3]]

quantum error correcting code.
In line 17 we declare an instance timer of the class Timer. In line 18 we declare a random permutation

perm via the function randperm(). In line 19 we permute the codeword according to the permutation perm

using the function syspermute() and store the result . In line 20 we stop the timer. In line 21 we display
the permutation, using an overloaded form of the disp() manipulator for C++ standard library containers.
The latter takes a std::string as its second parameter to specify the delimiter between the elements of the
container. In line 22 we display the elapsed time using the ostream operator<<() operator overload for
Timer objects.

Next, in line 24 we reset the timer, then display the inverse permutation of perm in lines 25 and 26. In
line 27 we permute the already permuted state c0perm according to the inverse permutation of perm, and
store the result in c0invperm. In lines 28 and 29 we display the elapsed time. Note that in line 28 we used
directly t.toc() in the stream insertion operator, since, for convenience, the member function Timer::toc()

returns a const Timer&.
Finally, in line 31, we verify that by permuting and permuting again using the inverse permutation we

recover the initial codeword, i.e. the norm difference has to be zero.

4.5 Input/output

We now introduce the input/output functions of Quantum++, as well as the input/output interfacing with
MATLAB. The program in Listing 6 saves a matrix in both Quantum++ internal format as well as in
MATLAB format, then loads it back and tests that the norm difference between the saved/loaded matrix is
zero.

1 // Input/output

2 // Source: ./examples/input_output.cpp

3 #include <iostream>

4 #include "qpp.h"

5 #include "MATLAB/matlab.h" // must be explicitly included

6

7 using namespace qpp;

8

9 int main()

10 {

11 // Quantum++ native input/output

11

http://vsoftco.github.io/qpp
http://www.mathworks.com/products/matlab/
http://vsoftco.github.io/qpp
http://www.mathworks.com/products/matlab/

12 cmat rho = randrho(256); // an 8 qubit density operator

13 save(rho, "rho.dat"); // save it

14 cmat loaded_rho = load<cmat>("rho.dat"); // load it back

15 // display the difference in norm, should be 0

16 std::cout << ">> Norm difference load/save: ";

17 std::cout << norm(loaded_rho - rho) << ’\n’;

18

19 // interfacing with MATLAB

20 saveMATLABmatrix(rho, "rho.mat", "rho", "w");

21 loaded_rho = loadMATLABmatrix<cmat>("rho.mat", "rho");

22 // display the difference in norm, should be 0

23 std::cout << ">> Norm difference MATLAB load/save: ";

24 std::cout << norm(loaded_rho - rho) << ’\n’;

25 }

Listing 6: Input/output

The output of this program is:

>> Norm difference load/save: 0.0000

>> Norm difference MATLAB load/save: 0.0000

Listing 6 output

Note that in order to use the MATLAB input/output interface support, you need to explicitly include
the header file MATLAB/matlab.h, and you also need to have MATLAB or MATLAB compiler installed,
otherwise the program fails to compile. See the file ./README.md for extensive details about compiling with
MATLAB support.

4.6 Exceptions

Most Quantum++ functions throw exceptions in the case of unrecoverable errors, such as out-of-range input
parameters, input/output errors etc. The exceptions are handled via the class Exception, derived from
std::exception. The exception types are hard-coded inside the strongly-typed enumeration (enum class)
Exception::Type. If you want to add more exceptions, augment the enumeration Exception::Type and
also modify accordingly the member function Exception::construct_exception_msg_(), which constructs
the exception message displayed via the overridden virtual function Exception::what(). Listing 7 illustrates
the basics of exception handling in Quantum++.

1 // Exceptions

2 // Source: ./examples/exceptions.cpp

3 #include <exception>

4 #include <iostream>

5 #include "qpp.h"

6

7 using namespace qpp;

8

9 int main()

10 {

11 cmat rho = randrho(16); // 4 qubits (subsystems)

12 try

13 {

14 double mInfo = qmutualinfo(rho, {0}, {4}); // throws qpp::Exception

15 std::cout << ">> Mutual information between first and last subsystem: ";

16 std::cout << mInfo << ’\n’;

12

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp

17 }

18 catch (const std::exception& e)

19 {

20 std::cout << ">> Exception caught: " << e.what() << ’\n’;

21 }

22 }

Listing 7: Exceptions

The output of this program is:

>> Exception caught: IN qpp::qmutualinfo(): Subsystems mismatch dimensions!

Listing 7 output

In line 11 of Listing 7 we define a random density matrix on four qubits (dimension 16). In line 14, we
compute the mutual information between the first and the 5-th subsystem. Line 14 throws an Exception

of type Exception::Type::SUBSYS_MISMATCH_DIMS, as there are only four systems. We next catch the
exception in line 18 via the std::exception base class. We could have also used directly the class Exception,
however using the base class allows the catching of other exceptions, not just of the type Exception. Finally,
in line 20 we display the corresponding exception message.

5 Brief description of Quantum++ file structure

A brief description of the Quantum++ file structure is presented in Figure 1. The directories and their brief
descriptions are emphasized using bold fonts. The main header file qpp.h is emphasized in red fonts.

6 Advanced topics

6.1 Aliasing

Aliasing occurs whenever the same Eigen 3 matrix/vector appears on both sides of the assignment operator,
and happens because of Eigen 3’s lazy evaluation system. Examples that exhibit aliasing:

mat = 2 * mat;

or

mat = mat.transpose();

Aliasing does not occur in statements like

mat = f(mat);

where f() returns by value. Aliasing produces in general unexpected results, and should be avoided at all
costs.

Whereas the first line produces aliasing, it is not dangerous, since the assignment is done in a one-to-one
manner, i.e. each element (i, j) on the left hand side of the assignment operator is solely a function of the the
same (i, j) element on the right hand side, i.e. mat(i, j) = f(mat(i, j)), ∀i, j. The problem appears whenever
coefficients are being combined and overlap, such as in the second example, where mat(i, j) = mat(j, i), ∀i, j.
To avoid aliasing, use the member function eval() to transform the right hand side object into a temporary,
such as

mat = 2 * mat.eval();

13

http://vsoftco.github.io/qpp
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/

./

doc/ . Documentation
html/ . HTML documentation

index.html ..Main HTML documentation file
quick.pdf ..Quick reference guide
refman.pdf ...Complete reference

examples/ . Usage examples
ex*.cpp ..Example source files

include/ . Header files
MATLAB/ .MATLAB support

matlab.h .. Input/output interfacing with MATLAB
classes/ . Class definitions

codes.h ..Quantum error correcting codes
exception.h ...Exceptions
gates.h ...Quantum gates
idisplay.h ..Interface for stream extraction
init.h ...Initialization
random devices.h ...Random devices
states.h ..Quantum states
timer.h ...Timing

experimental/ Experimental/test functions/classes, do not use or modify
experimental.hExperimental/test functions/classes

internal/ . Internal implementation details, do not use/modify
classes/ . Internal class definitions

iomanip.h ...Input/output manipulators
singleton.h ..Singleton pattern via CRTP

util.h ..Internal utility functions
constants.h ...Constants
entanglement.h ...Entanglement functions
entropies.h ...Entropy functions
functions.h ..Generic quantum computing functions
input output.h ... Input/output functions
instruments.h ..Measurement functions
macros.h ..Preprocessor macros
number theory.h ..Number theory functions
operations.h ...Quantum operation functions
qpp.hQuantum++ main header file, includes all other necessary headers
random.h ...Randomness functions
statistics.h ...Statistics functions
traits.h ...Type traits
types.h ...Type aliases

unit tests/ . Unit testing with Google Mock/Test (included in lib)
CHANGES ..Modifications added by each version
CMakeLists.txtcmake configuration file, builds ./examples/minimal.cpp and the unit tests
COPYING ...GNU General Public License version 3
README.md ..Building instructions
RELEASE.md ..Release notes
VERSION ...Version number
run OSX MATLAB Script for running with MATLAB support under OS X

Figure 1: Quantum++ file structure

14

In general, aliasing can not be detected at compile time, but can be detected at runtime whenever
the compile flag EIGEN_NO_DEBUG is not set. Quantum++ does not set this flag in debug mode. I highly
recommend to first compile your program in debug mode to detect aliasing run-time assertions, as well as
other possible issues that may have escaped you, such as assigning to a matrix another matrix of different
dimension etc.

For more details about aliasing, see the official Eigen 3 documentation at http://eigen.tuxfamily.

org/dox/group__TopicAliasing.html.

6.2 Type deduction via auto

Avoid the usage of auto when working with Eigen 3 expressions, e.g. avoid writing code like

auto mat = A * B + C;

but write instead

cmat mat = A * B + C;

or

auto mat = (A * B + C).eval();

to force evaluation, as otherwise you may get unexpected results. The “problem” lies in the Eigen 3 lazy
evaluation system and reference binding, see e.g. http://stackoverflow.com/q/26705446/3093378 for
more details. In short, the reference to the internal data represented by the expression A * B + C is dangling
at the end of the auto mat = A * B + C; statement.

6.3 Optimizations

Whenever testing your application, I recommend compiling in debug mode, as Eigen 3 run-time assertions
can provide extremely helpful feedback on potential issues. Whenever the code is production-ready, you
should always compile with optimization flags turned on, such as -O3 (for g++) and -DEIGEN_NO_DEBUG.
You should also turn on the OpenMP (if available) multi-processing flag (-fopenmp for g++), as it enables
multi-core/multi-processing with shared memory. Eigen 3 uses multi-processing when available, e.g. in
matrix multiplication. Quantum++ also uses multi-processing in computationally-intensive functions.

Since most Quantum++ functions return by value, in assignments of the form

mat = f(another_mat);

there is an additional copy assignment operator when assigning the temporary returned by f() back to mat.
As far as I know, this extra copy operation is not elided. Unfortunately, Eigen 3 does not yet support move
semantics, which would have got rid of this additional assignment via the corresponding move assignment
operator. If in the future Eigen 3 will support move semantics, the additional assignment operator will
be “free”, and you won’t have to modify any existing code to enable the optimization; the Eigen 3 move
assignment operator should take care of it for you.

Note that in a line of the form

cmat mat = f(another_mat);

most compilers perform return value optimization (RVO), i.e. the temporary on the right hand side is
constructed directly inside the object mat, the copy constructor being elided.

6.4 Extending Quantum++

Most Quantum++ operate on Eigen 3 matrices/vectors, and return either a matrix or a scalar. In principle,
you may be tempted to write a new function such as

cmat f(const cmat& A){...}

15

http://vsoftco.github.io/qpp
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/group__TopicAliasing.html
http://eigen.tuxfamily.org/dox/group__TopicAliasing.html
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://stackoverflow.com/q/26705446/3093378
http://eigen.tuxfamily.org/
https://gcc.gnu.org/
http://openmp.org/
https://gcc.gnu.org/
http://eigen.tuxfamily.org/
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://vsoftco.github.io/qpp
http://eigen.tuxfamily.org/

The problem with the approach above is that Eigen 3 uses expression templates as the type of each expression,
i.e. different expressions have in general different types, see the official Eigen 3 documentation at http:

//eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html for more details. The correct way
to write a generic function that is guaranteed to work with any matrix expression is to make your function
template and declare the input parameter as Eigen::MatrixBase<Derived>, where Derived is the template
parameter. For example, the Quantum++ transpose() function is defined as

1 template<typename Derived>

2 dyn_mat<typename Derived::Scalar>

3 transpose(const Eigen::MatrixBase<Derived>& A)

4 {

5 const dyn_mat<typename Derived::Scalar>& rA = A.derived();

6

7 // check zero-size

8 if (!internal::check_nonzero_size(rA))

9 throw Exception("qpp::transpose()", Exception::Type::ZERO_SIZE);

10

11 return rA.transpose();

12 }

It takes an Eigen 3 matrix expression, line 3, and returns a dynamic matrix over the scalar field of the
expression, line 2. In line 5 we implicitly convert the input expression A to a dynamic matrix rA over the
same scalar field as the expression, via binding to a const reference, therefore paying no copying cost. We
then use rA instead of the original expression A in the rest of the function. Note that most of the time it is
OK to use the original expression, however there are some cases where you may get a compile time error if
the expression is not explicitly casted to a matrix. For consistency, I use this reference binding trick in the
code of all Quantum++ functions.

As you may have already seen, Quantum++ consists mainly of a collection of functions and few classes.
There is no complicated class hierarchy, and you can regard the Quantum++ API as a medium-level API.
You may extend it to incorporate graphical input, e.g. use a graphical library such as Qt, or build a more
sophisticated library on top of it. I recommend to read the source code and make yourself familiar with the
library before deciding to extend it. You should also check the complete reference manual ./doc/refman.pdf
for an extensive documentation of all functions and classes. I hope you find Quantum++ useful and wish
you a happy usage!

Acknowledgements

I acknowledge financial support from Industry Canada and from the Natural Sciences and Engineering
Research Council of Canada (NSERC). I thank Kassem Kalach for carefully reading this manuscript and
providing useful suggestions.

References

[1] List of QC simulators, available online at http://www.quantiki.org/wiki/List_of_QC_simulators.
Last accessed: October 22, 2016.

[2] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, 5th edition, 2000.

16

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
http://vsoftco.github.io/qpp
http://eigen.tuxfamily.org/
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
http://vsoftco.github.io/qpp
http://qt-project.org/
http://vsoftco.github.io/qpp
http://www.quantiki.org/wiki/List_of_QC_simulators

	Introduction
	Installation
	Data types, constants and global objects
	Data types
	Constants
	Singleton classes and their global instances

	Simple examples
	Gates and states
	Measurements
	Quantum operations
	Timing
	Input/output
	Exceptions

	Brief description of Quantum++ file structure
	Advanced topics
	Aliasing
	Type deduction via auto
	Optimizations
	Extending Quantum++

