
Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Lecture 4,5,6: Floating Point Arithmetic
BT 2020 – Numerical Methods for Biology

Karthik Raman
Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences

Initiative for Biological Systems Engineering (IBSE)
Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI)

RBCDSAI

Indian Institute of Technology Madras

https://home.iitm.ac.in/kraman/lab/
https://web.iitm.ac.in/ibse/
https://rbcdsai.iitm.ac.in/

1 / 25

https://home.iitm.ac.in/kraman/lab/
https://web.iitm.ac.in/ibse/
https://rbcdsai.iitm.ac.in/

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

“There are 10 types of people in this world —
those who understand binary and those who
don’t!”

— Anonymous

2 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Binary Numbers

▶ Positional notation (Decimal):

18.015 = 1 × 101 + 8 × 100 + 0 × 10−1 + 1 × 10−2 + 5 × 10−3

▶ Binary is similar, except the base is now 2

(11.011)2 = 1×21+1×20+0×2−1+1×2−2+1×2−3 = 3.37510

▶ Fractions in binary only terminate if the denominator has 2 as the
only prime factor!

▶ (0.1̄)2 = ?

3 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Representing Integers on a Computer

▶ How many integers can you represent in n bits?
▶ (unsigned) 2n: 0, 1, 2, . . . , 2n − 1
▶ (signed) 2n: −2n−1,−2n−1 + 1, . . . , 0, 1, . . . , 2n−1 − 1
▶ In 32 bits, largest unsigned integer is 232 − 1 = 4, 294, 967, 295;

what happens if you add 1 to it?

▶ How many floating point numbers can you represent in n bits?
▶ (un)surprisingly, the answer is again 2n

▶ Which 2n numbers from R should we represent?
▶ Trade-off between precision and range

How do you represent floating point numbers on a
computer?

4 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating-Point Notation

▶ Similar to scientific notation, e.g. 2.018 × 103, 2.9979 × 108,
6.62607004 × 10−34

▶ The point floats, unlike in a fixed-point notation, where the number
decimals before and after the point are fixed — this is limiting —
why?

▶ Formally, any floating-point number system F is characterised by
four integers

▶ β, the base
▶ p, the precision
▶ [L,U], the exponent range

▶ Any floating-point number x ∈ F has the form

x = ±
(
d0 +

d1

β
+

d2

β2 + . . .+
dp−1

βp−1

)
βE; L ≤ E ≤ U

5 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating-Point Notation

x = ±
(
d0 +

d1

β
+

d2

β2 + . . .+
dp−1

βp−1

)
βE; L ≤ E ≤ U

▶ Typically, β = 2 on most computers
▶ Therefore, the digits di ∈ 0, 1
▶ The string of p digits d0d1 . . . dp−1 is called mantissa/significand;

d1d2 . . . dp−1 is fraction, E is exponent
▶ For IEEE single-precision, p = 24, L = −126, U = 127
▶ For IEEE double-precision, p = 53, L = −1, 022, U = 1, 023

6 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating-Point Notation
Normalisation

▶ A floating-point system is normalised if the leading digit d0 is always
non-zero, unless the number being represented is zero

▶ Normalisation is advantageous because
▶ No digits are wasted on leading zeroes, maximising precision
▶ Representation of each number is unique
▶ In a binary system, leading bit is anyway 1! — helps gain an extra bit

for precision

7 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating-Point Notation
Properties

▶ What is the number of normalised floating-point numbers?
▶ 2: 2 possibilities for sign
▶ 1: 1 choice for d0
▶ 2p−1: 2 choices for d1, d2, ..., dp−1
▶ U− L+ 1: possible choices for exponent

▶ For double precision, this value is 2 × 1 × 252 × 2046 + 1 (for zero)
▶ Smallest possible number is 1. 00 . . . 00︸ ︷︷ ︸

p−1 digits

×2L = 2−1022

8 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Implications of Floating-Point Representation

Suppose that we had a hypothetical base-10 computer with a 5-digit word
size. Assume that one digit is used for the sign, two for the exponent, and
two for the mantissa. For simplicity, assume that one of the exponent
digits is used for its sign, leaving a single digit for its magnitude. A general
representation of the number following normalisation would be

s1d1.d2 × 10s0d0

▶ What does the number line look like? Can you spot
▶ Where does overflow occur?
▶ Underflow?
▶ Hole around zero?

Remember…

▶ Between two real numbers, there are an infinite number of real numbers

▶ Between two floating-point numbers, there are a finite number of
floating-point numbers (maybe even zero!)

9 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

IEEE 754 Representation — Single Precision

▶ 32 bits
▶ 1 bit for the sign (s)
▶ 8 bits for exponent (e) — decides range
▶ 23 bits for mantissa (m) — precision

10 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

IEEE 754 Representation — Double Precision

▶ 64 bits
▶ 1 bit for the sign (s)
▶ 11 bits for exponent (e) — decides range
▶ 52 bits for mantissa (m) — precision

x = (−1)s · 1.m · 2eb−1023

▶ eb is stored by 11 bits — can range from 0 to 2047
▶ or, −1023 ≤ e ≤ 1024
▶ The extreme values −1023 (eb = 0 — all 0’s!) and 1024 (stored as

eb = 2047 — all 1’s) are special — leaving
−1022 = L ≤ e ≤ U = 1023

▶ m ∈ 0, 252

11 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

IEEE 754 Representation — Double Precision

x = (−1)s · 1.m · 2eb−1023

▶ Largest number: s = 0, m = 11 . . . 11︸ ︷︷ ︸
52 digits

, eb = 2046

▶ realmax = (−1)0 · (1 + (1 − 2−52)) · 21023 ≈ 21024

▶ Smallest positive number: s = 0, m = 0, eb = 1
▶ realmin = (−1)0 · (1 + 0) · 2−1022 = 2−1022

See also

https://en.wikipedia.org/wiki/Double-precision_floating-point_format#Double-precision_examples

12 / 25

https://en.wikipedia.org/wiki/Double-precision_floating-point_format#Double-precision_examples

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

IEEE 754 Representation — Double Precision

▶ m limits the precision of the floating point number
▶ 0 ≤ m < 1
▶ The format 2e · (1 +m) provides an implicitly stored 1, so doubles

actually have 53 bits of precision

13 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

IEEE 754 Representation — Double Precision
Examples

The number 1 is represented as

(1)020(1 + 0)

▶ s = 0, e = 0, f = 0 (eb = 1023)

You can use format hex in MATLAB to see the bit pattern of the
floating point number in hexadecimal. The first three hex digits (12 bits)
represent the sign bit and the biased exponent, and the remaining 13 hex
digits (52 bits) represent the mantissa.
For 1, the first 12 bits are 0 011 1111 1111 = 3ff

>> format hex
>> 1

3ff0000000000000

14 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating-Point Representation
More Examples

▶ How do you represent the number 12345?
▶ As an integer, the representation is 110000001110012

▶ As a float, the value will be 1.10000001110012 × 213

▶ To convert to IEEE 754, we need to add a sign bit (0), drop the 1. in
the fraction, and convert the rest of the representation to 52 bits by
adding trailing zeroes, and change the exponent to
13 + 1023 = 1036 = 100000011002

▶ The final representation will be
0|100 0000 1100|1000 0001 1100 1000 0000 0000 0000 0000 0000 0000
0000 0000 0000 = 40c81c800000000016

15 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Special Float-Point Values

The exponents 00016 and 7ff16 have a special meaning:
▶ 000000000002 = 00016 is used to represent a signed zero (if f = 0)

and subnormals (if f ̸= 0); and
▶ 111111111112 = 7ff16 is used to represent ∞ (if f = 0) and NaNs (if

f ̸= 0),
s = 0, e = 0 (eb = 1023), f = 111 1111 1111

>> Inf
7ff0000000000000

s = 1, e = 0, f = 111 1111 1111

>> -Inf
fff0000000000000

s = 0, e = 0, f ̸= 0

>> NaN
fff8000000000000

16 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Special Float-Point Values

s = 0, eb = 0, f = 0

>> 0
0000000000000000

What are the following numbers?

▶ 8000 0000 0000 000016

▶ 0 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 00012

▶ 0 000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 1111 1111 11112

▶ 4009 21fb 5444 2d1816

▶ 3cb0 0000 0000 000016

17 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

NaNs and Infs

▶ Invalid operations such as
√
−1 and log(−1) produce NaN

▶ Any operation involving a NaN produces another NaN
▶ All comparisons involving NaN return false
▶ Operations with Inf are as expected:

▶ Inf + finite = Inf
▶ Inf / Inf = NaN
▶ finite/Inf = 0
▶ Inf + Inf = Inf
▶ Inf − Inf = NaN

18 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Some Consequences of Floating-Point Arithmetic

>> 0.1+0.2-0.3
5.5511e-17

>> sin(pi/6)^2 + cos(pi/6)^2 - 1
0

>> 1- sin(pi/6)^2 - cos(pi/6)^2
-1.1102e-16

>> 1- sin(pi/3)^2 - cos(pi/3)^2
0

>> c = 0; for k=1:10, c = c + 0.1; end, for k
=1:10 c = c - 0.1; end, disp(c)
2.7756e-17

>> c = 0; for k=1:10, c = c + 0.125; end, for
k=1:10 c = c - 0.125; end, disp(c)

0

19 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Some Consequences of Floating-Point Arithmetic

>> 0.1+0.1+0.1
3fd3333333333334

>> 0.3
3fd3333333333333

>> 2^53+1-2^53
0

>> 2^53+2-2^53
2

20 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating Point Disasters

▶ Ariane 5 explosion
▶ Patriot Missile Failure
▶ “Rounding error changes Parliament makeup” (Germany, 1992)
▶ …

Read about these and post on Piazza!

21 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

How Not To Use Floating-Point Arithmetic …

▶ Floating-Point comparisons! if f==g
▶ Instead if (abs(f-g) < tol)
▶ Recall absolute and relative errors

▶ Testing for convergence while x_new=̃x_old e.g. cos(x) = x
▶ Test may never be satisfied, because of oscillatory bit patterns
▶ Or may take too long!

▶ Catastrophic cancellations may occur
▶ Be careful with additions, subtractions!
▶ e.g. x2 + 54.32x+ 0.1 = 0, with four-digit rounding
▶ Catastrophic cancellation

▶ Effects of round-off usually accumulate slowly, but
▶ Subtracting nearly equal numbers leads to severe loss of precision (or

adding two numbers of very different magnitude)—error caused by a
single operation (“catastrophic”)

▶ Round-off is inevitable—good algorithms minimise the effect of
round-off

▶ Know machine precision εmach!

22 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating-Point Arithmetic: Simple Workarounds

▶ Can the formula be re-arranged?
▶ e.g. √

x+ 1 − 1 =
x√

x+ 1 + 1

▶ How to rearrange the quadratic equation formula?

23 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Floating-Point Representation
Other things to read about

▶ Gradual underflow
▶ Rounding
▶ Floating-point operations

24 / 25

Binary Numbers IEEE 754 Floating Point Gotchas! Summary

Summary

▶ IEEE 754 has unified floating-point representations across
architectures

▶ Double precision provides excellent precision and range in 64 bits
▶ All floating-point numbers have a sign bit, some bits for the

normalised mantissa, and some bits for the exponent
▶ Special representations exist for 0, Inf, NaN etc.
▶ Numerical methods need to be aware of the approximations that

arise due to floating-point calculations
▶ There are known “good practices” that one must observe while

working with floating-point numbers

25 / 25

	Binary Numbers
	IEEE 754
	Floating Point Gotchas!
	Summary

