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1 Introduction

“The world is governed by chance. Randomness stalks us every day of our lives.”

- Paul Auster

A random number is a number generated by a process, whose outcome is unpredictable,
and which cannot be subsequentially reliably reproduced. This definition works fine
provided that one has some kind of a black box - such a black box is usually called a
random number generator - that fulfills this task.

Random numbers find lots of applications in gambling, statistical sampling, computer
simulation, cryptography, completely randomized design, and other areas where produc-
ing an unpredictable result is desirable. Generally, in applications having unpredictability
as the paramount, such as in security applications, hardware generators are generally pre-
ferred over pseudo-random algorithms, where feasible.

With this basic idea of random numbers, a short note on the history of random numbers
may be looked at.

2 A Brief History of Random Numbers

“As an instrument for selecting at random, I have found nothing superior to dice. When
they are shaken and tossed in a basket, they hurtle so variously against one another and
against the ribs of the basket-work that they tumble wildly about, and their positions at
the outset afford no perceptible clue to what they will be even after a single good shake
and toss.”

- Francis Galton (1890 issue of Nature)

The randomness so beautifully and abundantly generated by nature has not always been
easy for us humans to extract and quantify. The oldest known dice were discovered in a
24th century B.C. tomb in the Middle East. More recently, around 1100 B.C. in China,
turtle shells were heated with a poker until they cracked at random, and a fortune teller
would interpret the cracks. Centuries after that, I Ching hexagrams for fortunetelling
were generated with 49 yarrow stalks laid out on a table and divided several times, with
results similar to performing coin tosses.

By the mid-1940s, RAND Corporation created a machine that would generate numbers
using a random pulse generator and gathered the results into a book titled A Million
Random Digits with 100,000 Normal Deviates. A similar machine, ERNIE, designed
by the now-famous Bletchley Park WWII codebreaking team in the 1940s, was used to
generate random numbers for the UK Premium Bond lottery. In 1951, randomness was
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finally formalized into a real computer, the Ferranti Mark 1, which shipped with a built-in
random number instruction that could generate 20 random bits at a time using electrical
noise. The feature was designed by Alan Turing.

But Turing’s random number instruction created too much uncertainty in an environ-
ment that was already so unpredictable. We expect consistency from our software, but
programs that used the instruction could never be run in any consistently repeatable way,
which made them nearly impossible to test.

The idea of a pseudo-random number generator(PRNG) which is expressed as a deter-
ministic math function was a solution to this problem. A PRNG can be called repeatedly
to deliver a sequence of random numbers, but under the same initial conditions (if given
the same initial “seed” value) it will always produce the same sequence.

John von Neumann developed a PRNG around 1946. His idea was to start with an initial
random seed value, square it, and slice out the middle digits. However, no matter what

seed value was used, the sequence would eventually fall into a short repeated cycle of
numbers, like 8100, 6100, 4100, 8100, 6100, 4100, ...

Avoiding cycles is impossible when you are working with a deterministic random function
whose subsequent value is based on the previous value. But what if the period of the
cycle is really, really big, such that it practically didn’t matter? The mathematician D. H.
Lehmer made good progress toward this idea in 1949 with a linear congruential generator

(LCG).

SSL was born around 1995, and its encryption scheme demanded a high quality PRNG.
By 1997, a team at SGI created LavaRand, which was a webcam pointed at a couple of
lava lamps on a desk. The image data from the camera was an excellent entropy source - a
True Random Number Generator (TRNG) like Turing’s - and it could generate 165Kb/s
of random data. A founder of Autodesk, John Walker, who was intent on spreading
randomness around the world created HotBits, a Random Numbers-as-a-Service app
backed by a geiger counter that guarantees true quantum randomness. Random.org,
created in 1998, provides free Truly Random Numbers. They now offer mobile apps for
truly random coin flipping, dice rolling, card shuffling, and so on.

The Mersenne Twister, created in 1997 by Makoto Matsumoto and Takuji Nishimura
is based on the idea of a linear feedback shift register (LFSR), which produces a deter-
ministic sequence with very long cycle periods. It has a period of 297 — 1, and it’s
still the default PRNG in many programming languages today. In 1999, Intel added an
on-chip random number generator to its i810 server chipset. Finally, new servers had a
good local source of randomness from thermal noise - a true random number generator
(TRNG), which was great, but still not as fast as software PRNGs. This brought us to
the cryptographically secure PRNG (CSPRNG). Open source hardware TRNGs such as
REDOUBLER and Infinite Noise TRNG have emerged in recent years.

Today, there are many variants of these algorithms for different speed, space, and security
requirements, and security experts are always looking for new ways to attack an imple-
mentation. But for most everyday uses, you can comfortably use the /dev/random special



file on most operating systems, or the rand () function in most programming languages,
to get a fast and endless stream of randomness.

3 What are truly random numbers?

“So much of life, it seems to me, is determined by pure randomness.”

- Sidney Poitier

Random numbers are numbers that occur in a sequence such that two conditions are met:
e The values are uniformly distributed over a defined interval or set, and
e [t is impossible to predict future values based on past or present ones.

These are the conditions of true randomness.

Truly random numbers are defined as those numbers that exhibit true randomness such as
the time between “tics” from a Geiger counter exposed to a radioactive element, measur-
ing atmospheric noise, thermal noise and other electromgnetic and quantum phenomena,
ete.

4 What are pseudo-random numbers?

“Anyone who considers arithmetical methods of producing random digits is of course in
a state of sin.”

- John von Neumann

Broadly speaking, pseudo-random numbers are those numbers that have the appearance
of randomness but nevertheless, exhibit a specific, repeatable pattern.

Pseudo-random numbers are a set of values or elements that is statistically random, but
is derived from a known starting point (called a seed) and is typically repeated over
and over. They provide necessary values for processes that require randomness, such
as creating test signals or for synchronizing sending and receiving devices in a spread
spectrum transmission. They are called “pseudo” random, because the algorithm can
repeat the sequence, and the numbers are thus not entirely random. Numbers calculated
by a computer through a deterministic process, cannot, by definition, be random.



5 What are the desirable properties of pseudo-random
numbers?

1. Uncorrelated Sequences - The sequences of random numbers should be serially
uncorrelated.

2. Long Period - The generator should be of long period. Ideally, the generator
should not repeat; practically, the repetition should occur only after the generation
of a very large set of random numbers.

3. Uniformity - The sequence of random numbers should be uniform, and unbiased.
That is, equal fractions of random numbers should fall into equal “areas” in space.
Eg. if random numbers on [0,1) are to be generated, it would be poor practice were
more than half to fall into [0, 0.1), presuming the sample size is sufficiently large.

4. Efficiency - The generator should be efficient. There should be low overhead for
massively parallel computations.

6 How are pseudo-random numbers different from
truly random numbers?

“The generation of random numbers is too important to be left to chance.”

- Robert R. Coveyou

e Truly random numbers are generated by measuring certain aspects of physical phe-
nomena that is expected to be random such as cosmic background radiation or
radioactive decay and then compensates for possible biases whereas pseudo ran-
dom numbers are generated by computational algorithms that can produce long
sequences of apparently random results, which are in fact completely determined
by a shorter initial value, known as a seed value or key.

e The speed at which truly random numbers can be generated from natural sources
are dependent on the underlying phenomena being measured. Thus they are rate-
limited. Pseudo-random number generators are not rate-limited and large chunks
of random numbers can be generated easily.

e We cannot restart the truly random number generator and rerun the simulation
whereas the entire seemingly random sequence can be reproduced if the seed value
is known in a pseudo-random number generator.

While a pseudo-random number generator based solely on deterministic logic can never
be regarded as a true random number source in the purest sense of the word, in practice
they are generally sufficient even for demanding security-critical applications.



7 Applications of uniform random numbers: Moti-
vation for why we need random numbers

One of the earliest applications of random numbers was in the computation of integrals.
Let g(x) be a function and suppose we wanted to compute 6 where

0= /01 g(x)dx (1)

To compute the value of @, note that if U is uniformly distributed over (0,1) (i.e., with
probability density function (pdf) f(z) =1, 0 < z < 1), then we can express 6 as

0= Elg(U)] (2)

If Uy,...,Uy are independent Uniform (0,1) random variables, it thus follows that the
random variables g(Uy), ..., g(Ux) are independent and identically distributed random
variables having mean 6. Therefore, by the Strong Law of Large Numbers, it follows
that, with probability 1,

k

> gi]i) S EGU)] =0 as k- oo (3)

Hence we can approximate 6 by generating a large number of random numbers u; and
taking as our approximation the average value of g(u;). This approach to approximating
integrals is called the Monte Carlo approach.

An application of the above theory is the estimation of w. Suppose that the random
vector (X,Y) is uniformly distributed in the square of area 4 centred at the origin, i.e.,
it is a random point in the following region bordered by the blue lines.

[

0.5

—0.5 ¢

=

Let us consider the probability that the random point in this square is contained within
the inscribed red circle of radius 1.



<

0.5

Since (X,Y") is uniformly distributed in the square, it follows that

Areaof thecircle
PI(X,Y)isinthe circle] = PIX2+ Y? < 1] = =7 4
[(X,Y)isinthe circle] X"+ <1] Areaof the square 4 @)

Hence, if we generate a large number of random points in the square, the proportion
of points that fall within the circle will be approximately 7/4. Now, if X and Y were
independent and both were uniformly distributed over (-1,1), their joint density would

be

1
= - -1 <x<1

[l = f@f)=55=7 -1<z<l -1<y<l 9

Now, if U is uniform on (0,1) then 2U is uniform on (0,2), and so 2U — 1 is uniform
on (-1,1). Therefore, if we generate random numbers U; and Uy, set X = 2U; — 1 and
Y =2U, — 1 and define
1 ifa?+942<1
= { 0 otherwise (6)
then

mﬂzpw%mﬂguzg (7)

Hence we can estimate /4 by generating a large number of pairs of random numbers u,
uy and estimating 7 /4 by the fraction of pairs for which (2u; — 1)% + (2uy — 1)? < 1.

This has been illustrated by using the Linear Congruential Generator (LCG). We shall
explain the intricacies of the LCG later. At present, we shall proceed with the knowledge
that the LCG is a PRNG that generates uniform random numbers. The following table
gives us estimates of 7 for various sample sizes of pairs of uniform random numbers.

H Sample Size | Estimate of 7 H

102 3.04
10° 3.192
10 3.1264
10° 3.14424
10° 3.141272
107 3.141543




Thus, by generating uniform random numbers, we gradually approach the true value of
7 as we increase the sample size. Another application of uniform random numbers is
generation of values of random variables from arbitrary distributions. With this ability
to generate arbitrary random variables we will be able to simulate a probability sys-
tem, i.e., we will be able to generate according to the specified probability laws of the
system, all the random quantities of this system as it evolves over time. For example,
pairs of independent standard normally distributed random variables can be generated
from pairs of random observations from Uniform (0,1) distribution using the Box-Miiller
transformation.

8 States, periods, seeds and streams of pseudo-random
number generators

The typical random number generator provides a function with a name such as rand,
that can be invoked via an assignment like x = rand(). The result is then a simulated
draw from the Uniform (0,1) distribution. Here, we will treat rand as a black box and
postpone looking inside it until the next section.

The function rand maintains a state variable. What generally goes on inside rand is
state = update(state) followed by return(state), i.e., after modifying the state, it
returns some function of the new state. However, one thing becomes very clear. Because
the state variable must have a finite size, the random number generator cannot go on
forever without eventually revisiting a state it was in before. At that point it will start
repeating values it already delivered.

Suppose that we repeatedly call x; = rand () for ¢ > 1 and that the state of the generator
when z;, is produced is the same as it was when z;,_p was produced. Then z; = z,_p
holds for all ¢+ > 7¢. From ¢, onwards, the generator is a deterministic cycle with period
P. We will be simplifyng things and supposing that the random number generator has a
fixed period P and that x;, p = x; holds for all i.

It is pretty clear that a small value of P makes for a very poor simulation of random be-
haviour. Random number generators with very large periods are preferred. One general
guideline is that we will not use more than v/P random numbers from a given generator.
Hellekalek and L’Ecuyer (1998) describe how an otherwise good linear congruential gen-
erator starts to fail tests when about v/P numbers are used. Some linear congruential
generators have P = 232 — 1, which is far too small for Monte Carlo.

A random seed (or seed state, or just seed) is a number (or vector) used to initialize a
pseudo-random number generator, i.e., it is the initial state of the generator corresponding
to which zy would be produced. We can make a random number generator repeatable
by intervening and setting its seed before using it. When we don’t set the seed, random
seeds are often generated from the state of the computer system (such as the time), a
cryptographically secure pseudorandom number generator or from a hardware random
number generator. The choice of a good random seed is crucial in the field of computer
security. When a secret encryption key is pseudorandomly generated, having the seed



will allow one to obtain the key. High entropy is important for selecting good random
seed data.

In moderately complicated situations, we want to have two or more streams of ran-
dom numbers. Each stream should behave like a sequence of independent Uniform (0,1)
random variables. In addition the streams need to appear as if they are statistically
independent of each other. For example, we might use one stream of random numbers to
simulate customer arrivals and another to simulate their service times.

9 Uniform Pseudo-Random Number Generators

“Random numbers should not be generated with a method chosen at random.”

- Donald Knuth

There are essentially two categories of algorithms used to produce pseudo-random strings
of bits:

e Heuristic Pseudo Random Number Generators (Heuristic PRNGSs) - These
are algorithms designed to produce pseudo random strings of bits. The output
should be, but often isn’t, indistinguishable from random output, because it is com-
pletely determined by an initial value, called the PRNG’s seed. Heuristic PRNGs
are central in applications such as simulations (eg. for the Monte Carlo method),
electronic games (eg. for procedural generation), etc.

e Cryptographically Secure Pseudo Random Number Generators (CSPRNGs)
- These are generators designed with the same goal as above, but with the addi-
tional property that given some arbitrarily long (but obviously less than the period)
sequence of output from the generator, it should be computationally infeasible to
determine the next bit with greater certainty than 1/2. A CSPRNG must satisfy
all the statistical randomness tests a statistical PRNG does, but it also needs to be
unpredictable. It is designed to resist attempts by a human attacker to predict its
next output; it should be hard to tell it from a truly random sequence even if the
attacker knows the algorithm used to make it. As the name suggests, CSPRNGs
have many cryptographical applications such as key generation, nonces, one-time
pads (OTP), etc.

10 Some Heuristic PRNGs

10.1 Linear Congruential Generators (LCGs)

The majority of modern random number generators are based on simple recursions using
modular arithmetic. A well-known example is the linear congruential generator

(LCG).

The generator is defined by the recurrence relation

Xi =ag + alXi—l mod m (8)



where {X;} is the sequence of pseudo-random values,
m, m > 0 : modulus,

ai, 0 < ay < m : multiplier,

ag, 0 < ag < m : increment, and

Xo, 0 < Xo <m : seed value

are integer constants that specify the generator.

This method produces a sequence of integer values X; € {0,1,...,m — 1}, i.e., integers
modulo m. With good choices of the constants, a; and m, the X/s can simulate indepen-
dent random integers modulo m. The LCG takes on atmost m different values and so
has period P < m. Let us look at a few simple examples to see how these pseudo-random
number sequences behave and what their periods are like.

Let ap = 3,a7 = 5,m = 16 and the seed Xy = 9. The pseudo-random number sequence
is as follows:

9.0,3,2,13,4,7,6,1,8,11,10,5,12,15,14,9,0, 3,2, 13, .... (9)

This sequence has period P = 16, the maximum period possible. Now, let ag = 7,a; =
3,m = 16 and the seed Xy = 9. The pseudo-random number sequence is as follows:

9,2,13,14,1,10,5,6,9,2,13,14,1,10,5,6,9,2, 13, 14, .... (10)

This sequence has period P = 8 < m. Thus, for different choices of ag, a;, we get pseudo-
random number sequences of different periods for the same m. A commonly used choice
of m is m = 2* where most often, k = 32 or 64 is chosen to produce a particularly
efficient LCG. If; in addition to such a choice of m, we choose ay # 0, Hull-Dobell
Theorem states that a period equal to m will occur for all seed values if and only if the
following three conditions are satisfied:

1. m and ag are relatively prime,
2. a; — 1 is divisible by all prime factors of m, and
3. a; — 1 is divisible by 4 if m is divisible by 4.

It is to be noted that the LCG in (9) with maximum possible period satisfies Hull-Dobell
Theorem while the LCG in (10) does not satisfy the third condition of the theorem.

Now, let us go back to the estimation of 7 in Section 7. We had to initialise the LCG with
choices of ag, a; and m. Also, an initial seed was required. We picked a popular choice
of these values: ag = 1013904223, a; = 1664525, m = 232, The seed is obtained from the
system time so we will get a different “naturally occurring” seed every time we run the
code to estimate 7. To get Uniform(0,1) random numbers, divide the pseudo-random
number sequence {X;} by m = 232, This LCG has a very long period (= 232, which is
the maximum possible period since it satisfies Hull-Dobell theorem) and passes tests for
randomness. For eg., with seed X, = 2576389, let us generate 1000000 pseudo-random
numbers using this LCG and divide all these numbers by m = 232, We obtain mean
and variance of this sequence as 0.5002262 and 0.08328703 which are, for all practical
purposes, extremely close to the mean and variance of the Uniform(0,1) random variable,

10



i.e., 0.5 and 0.083333 respectively. In general, with these particular choices of ag, a; and
m, for any seed, the mean and variance of the resulting sequence are extremely close
to their Uniform(0,1) counterparts. This is not a very definitive test for randomness so
we have even applied the Runs test to this sequence to check for autocorrelation. The
Runs test had a p-value of 0.7987, which means the null hypothesis that the sequence is
random is accepted.

10.2 Multiplicative Congruential Generators (MCGs)

A Multiplicative Congruential Generator (MCG) is basically an LCG with ag = 0,
i.e., the generator is defined by the recurrence relation

Xi = G/IXifl mod m (11)

where {X;} is the sequence of pseudo-random values,
m, m > 0 : modulus,

ai, 0 < ay < m : multiplier, and

Xo, 0 < Xo <m : seed value

are integer constants that specify the generator.

An LCG is generally slower than an MCG. However, for the MCG, we cannot allow z; = 0
because then the sequence stays at 0. As a result, P < M — 1 for the MCG.

Choosing m to be a power of 2, most often m = 232 or m = 24, produces a particularly
efficient MCG, because this allows the modulus operation to be computed by simply
truncating the binary representation. For eg., 1101011 mod 23(= 1000) = 011 since we
divide 1101011 into two parts - 1101|011, the first part being the quotient on dividing
by 8 and the second the remainder, which is what we require. This form has maximal
period m/4 achieved if a; = 3 or a3 = 5 mod 8. The initial state Xy must be odd. It
can be shown that this form is equivalent to an LCG with m = m/4 and a¢ # 0 with
parameters satisfying Hull-Dobell theorem.

A more serious issue with the use of a power-of-two modulus is that the low bits have a
shorter period than the high bits. The lowest-order bit of X; never changes (X, is always
odd), and the next two bits (let us call them bit 1 and bit 2) alternate between two states.
If a; = 5 mod 8, bit 1 never changes and bit 2 alternates. The following example with
a; =93 =5 mod 8, m = 2% = 256, Xo = 19 (odd) illustrates this fact.

| Output of MCG in binary with a; =93 =5 mod 8, m = 2° = 256, Xo = 19 (odd) |
00010011 | 11100111 [ 11101011 [ 01011111 [ 10000011 | 10010111 | 11011011 [ 10001111
11110011 | 01000111 | 11001011 | 10111111 | 01100011 | 11110111 | 10111011 | 11101111
11010011 | 10100111 | 10101011 | 00011111 | 01000011 | 01010111 | 10011011 | 01001111
10110011 | 00000111 | 10001011 | 01111111 | 00100011 | 10110111 | 01111011 | 10101111
10010011 | 01100111 | 01101011 | 11011111 | 00000011 | 00010111 | 01011011 | 00001111
01110011 | 11000111 | 01001011 | 00111111 | 11100011 | 01110111 | 00111011 | 01101111
01010011 | 00100111 | 00101011 | 10011111 | 11000011 | 11010111 | 00011011 | 11001111
00110011 | 10000111 | 00001011 | 11111111 | 10100011 | 00110111 | 11111011 | 00101111
00010011 | 11100111 | 11101011 | 01011111 | 10000011 | 10010111 | 11011011 | 10001111

11



If a; = 3 mod 8, bit 2 never changes and bit 1 alternates. The following example with
a; = 27 =3 mod 8, m = 2% = 256, Xy = 201 (odd) illustrates this fact.

| Output of MCG in binary with a; = 27 = 3 mod 8, m = 2° = 256, X, = 201 (odd) |
11001001 | 00110011 | 01100001 | 00111011 | 00111001 | OO0O00011 | 01010001 | 10001011
10101001 | 11010011 | 01000001 | 11011011 | 00011001 | 10100011 | 00110001 | 00101011
10001001 | 01110011 | 00100001 | 01111011 | 11111001 | 01000011 | 00010001 | 11001011
01101001 | 00010011 | 00000001 | 00011011 | 11011001 | 11100011 | 11110001 | 01101011
01001001 | 10110011 | 11100001 | 10111011 | 10111001 | 10000011 | 11010001 | 00001011
00101001 | 01010011 | 11000001 | 01011011 | 10011001 | 00100011 | 10110001 | 10101011
00001001 | 11110011 | 10100001 | 11111011 | 01111001 | 11000011 | 10010001 | 01001011
11101001 | 10010011 | 10000001 | 10011011 | 01011001 | 01100011 | 01110001 | 11101011
11001001 | 00110011 | 01100001 | 00111011 | 00111001 | 00000011 | 01010001 | 10001011

Also, observe that bits 3 and 4 alternate with periods 4 and 8 respectively.

A very famous example of an MCG is RANDU . Developed by IBM, it is widely con-
sidered to be one of the most ill-conceived random number generators ever designed. It
is defined by taking a; = 65539(= 2'¢ + 3) and m = 23!. If one generates a sequence
of pseudo-random numbers using RANDU and computes sample moments, the results
look good with the k' order sample moment =~ 1/(k+ 1). However, this is not sufficient.
The numbers must be free of correlations with each other and RANDU fails badly in this
regard.

Let us generate triplets of numbers Xy, Xx1, Xx12, and plot them in 3-dimensional space.
Ideally, they should fill a cube of unit side uniformly. However, it turns out that all the
triplets of random numbers generated by RANDU lie on only 15 planes. In fact, the
combination (9X} — 6 X1 + Xj12)/2% is an integer. We have

Xip1 = (29 + 3) Xy, (12)

2'0 +3)2 X,
232 4+ 6 x 216 +9) X, (13)
=22 +6 x (2" +3) - 9)X,
= 6Xk+1 - 9Xk mod 231
since 232 mod 23! = 0. Hence, 9X; — 6 X411 + Xipo is a multiple of 23! and thus, on
dividing by 23!, we obtain an integer. In fact, this integer is restricted to values between
-5 and 9. Let us plot the (9X; — 6Xp, 1 + Xyy2)/23 values of 1000 triplets versus X, /23!
values generated by RANDU with seed X, = 314159. The plot clearly shows that all

triplets of points generated by RANDU lie on one of the 15 planes 9x — 6y + z = m,
where m = =5, —4, ..., 8, 9.

Xiro = (2" + 3) X1
= (
= (
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Plot of 1000 triplets generated by RANDU
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10.3 Multiple Recursive Generators (MRGs)

A generalisation of the MCG is the Multiple Recursive Generator (MRG), which is
defined by the recurrence relation

Xi = alXi—l + CIQXZ'_Q + ...+ ClkXi_k mod m, k 2 1 (14)

where {X;} is the sequence of pseudo-random values,

m, m > 0 : modulus,

a;, 0 < a; <m : sequence of multipliers, and

Xoy X1y ooy X1, 0< X; <m, i =0,1,....,k — 1 : seed values (initial states)
are integer constants that specify the generator.

The MRG will start to repeat as soon as k consecutive values x;, ..., x; 1 duplicate
some previously seen consecutive k-tuple. There are m* of these, and just like with
the MCG, the state with k consecutive 0's cannot be allowed. Therefore, P < m* — 1.
To show that the period is greater than m, let us take a simple example: k = 3,a =
(ay,as,a3) = (13,4,5),m = 16 = 2* and seed Xy = 2,X; = 3, X, = 11, we get the

13



following pseudo-random number sequence.

2,3, 11,5,12,7,4,12,15,7,3,14,5,8,2,3,7,1,8,15,8,12,7,3,15,2,5,4,2,3,3,13,4, 7,12, 12,
15,15,11,6,5,0,2,3,15,9,0,15,0,12,7,11,7,10,5,12, 2, 3, 11,5,12,7, ....
(15)

Observe that this sequence has period P = 56 = 8 x 7 = 2471 x (2¥ —1). We have tinkered
with various choices of parameters to get the maximum possible period. The results we
got are stated here. For the choices of parameters, k = 3,a = (5,4,19),m = 32 = 2°
and seed Xg = 1, X, = 17, X5 = 20, we get a pseudo-random numer sequence of period
P =112 = 16 x 7 = 2°°! x (2 — 1). For the choices of parameters, k = 4,a =
(29,22,14,5),m = 32 = 25 and seed Xy = 1,X; = 17, X, = 20, X3 = 9, we obtain a
pseudo-random number sequence of period P = 240 = 16 x 15 = 257! x (2F — 1). Thus,
we observe the following pattern:

For an MRG with modulus m = 2P, the maximum possible period that can be attained
is P = 2P~1 x (2¥ — 1) for appropriately chosen a and seed values.

However, this turns out to be false. Let m be a prime number and k£ > 1 be an integer.
Let us construct a Galois field of order m*, which is denoted by GF(m*), as follows:

e Take F to be the field of residues modulo m with addition and multiplication
modulo m as the binary operations.

e Let Fx] be the set of all polynomials in the variable x with coefficients from the
field F, i.e., F[z] = { co+cio+...+cpa® 1 k is a non-negative integer, cy, ..., c, € F'}.

e Select an irreducible polynomial g(z) € F[z] of degree k. (A non-zero polynomial
g(x) € F[z] is said to be irreducible over F if for any fi(x), fo(z) € Flz] with

f(x) = fi(@) fo(x), either deg(fi(x)) = 0 or deg(f2(x)) = 0)
e Then, F[z]/g(x) provides the required Galois field.

For example, let us construct a Galois field of order 23. The polynomial f(z) = 23+ z+1
is seen to be irreducible over GF(2). Thus, the desired Galois field is given by F[z]|/f(z).
The elements of this field can be represented by 0,1, z, z+1, 22, 2?4+ 1, 2> +x, 22 +2x+1. It
is interesting to observe that the successive powers of x in this field generate all the non-
zero elements of the field as 2! =z, 22 =2, 23 =+ 1, 2* =22+ 2, 2° =22 +2+ 1,25 =
22+ 1,27 = 1. An element of a field with this property is called a primitive element of
the field. An irreducible polynomial f(z) over GF(p) of degree k is said to be a primitive
polynomial if x is a primitive element in the field GF(m*) = F[z]/f(z). Some primitive
polynomials are listed below.

| GF(m") | Primitive Polynomial over GF(m) |

22 2 +ax+1
23 B +r+1
24 4+l
2° 2+ 2?41
32 22+ x4+ 2
33 2+ 2r+1
52 2+ x+2
72 x> +x+3
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Tables of primitive polynomials over various Galois fields are available in Tables of Finite

Fields by Alanen and Knuth (1964).

Let us define the characteristic polynomial of an MRG as f(x) = 2¥—a;2* "' —...—a;. The
maximum period of an MRG is m”* — 1, which is achieved if and only if its characteristic
polynomial f(z) is a primitive polynomial over GF(m). Let us illustrate this with an
MRG with m = 7,k = 2. The primitive polynomial over GF(7) is f(z) = z* + = + 3.
Now, we choose a as follows.

22 —at —ay =24+ +3
=22 — (—=1)z — (-3) (16)
=22—6xr—4 modT

Thus, a; = 6,a, = 4. The pseudo-random number sequence generated by this MRG is

57 37 37 2’ 37 57 07 6’ ]‘727 27 6’ 2’ 1707 47 37 67 6747 67 37 07 57 2’ 47 47 57 4’ 27 07 176’ 5’ 57 17 57 67 07 3747
1,1,3,1,4,0,2,5, 3,3,2
(17)

This MRG has period P = 48 = 72 — 1, which is the maximum possible period. Thus, in
this way, for a large prime m and any integer k, given the required primitive polynomial,
we can construct an MRG of maximum possible period, m* — 1, which will be very large
since m is large. Now, on dividing every number in the sequence by m, we get a uniform
pseudo-random number sequence.

Lagged Fibonacci Generators which take the form
X=X, + X,y mod m, rs>1, r<s (18)

for carefully chosen r,s and m are an important special case, because they are fast. A
particular case of a Lagged Fibonacci Generator is r = 37,5 = 100, m = 23°. The period
of this generator is around 2!%°. This generator has been invented by Knuth (2002) and
is generally called “Knuth-TAOCP-2002". TAOCP stands for The Art of Computer

Programming, Knuth’s famous book.

10.4 Inversive Congruential Generators (ICGs)

A relatively new and quite different generator type is the Inversive Congruential
Generator (ICG). Let m > 3 be a prime number. When x # 0, define 2! as the unique
number in {0,1,...,m — 1} with zz=! = 1 mod m. By convention, 0~! = 0.

There are several ways to compute the modular multiplicative inverse x~!. Since m is
prime, we obtain =1 by the following simple formula.
v =2""2 mod m (19)
The ICG update is
_Ja+ alX;_ll mod m if X; 1 #0
XZ N { Qo if Xi—l =0 (20)
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The sequence must have X; = X after finitely many steps and since the next element
depends only on its predecessor, X;;; = X;i; etc. Thus, the period P < m. If the
polynomial f(z) = 2 + agz + a; is primitive over GF(m), then the sequence will have
the maximum possible period. Such polynomials are also called inversive maximal period
polynomials. For eg., the minimal polynomial over GF(5) is 2% + z + 2. So, with ag =
2,a1 = 1,m =5 and seed Xy = 1, the pseudo-random number sequence is

1,3,0,2,4,1,3,0,2,4,1, ... (21)

This sequence has maximum possible period, 5. Again, the minimal polynomial over
GF(7)is 22 +x+ 3. So with ay = 3,a; = 1,m = 7 and seed X, = 1, the pseudo-random
number sequence is

1,4,0,3,6,2,5,1,4,0,3,6,2,5,1, ... (22)

This sequence has period 7, again the maximum possible. Dividing the sequence gener-
ated by an ICG by m, we get a uniform pseudo-random number sequence. Thus, we can
extend the above idea to large prime numbers to get better sequences of longer periods.

There are three main ways to choose m. Sometimes it is advantageous to choose m to
be a large prime number. The value 23! — 1 is popular because it can be exploited in
conjunction with 32 bit integers to get great speed. A prime number of the form 2% — 1
is called a Mersenne prime. Another choice is to take m = 2" for some integer r > 1.
For the MRG, it is reasonable to combine a small m with a large k to get a large value
of m* — 1. The third choice, with m = 2, is especially convenient because it allows fast
bitwise operations to be used.

10.5 Linear Feedback Shift Register (LFSR)

MRGs with m = 2 are called Linear Feedback Shift Register LFSR generators, i.e.,
they are defined by the recurrence relation

Xi=a1Xi 1+ aX; o+ ...+ X;p mod m(=2), kE>1 (23)

where {X;} is the sequence of pseudo-random values,

m = 2 : modulus,

a;, 0 < a; <m : sequence of multipliers, and

Xo, X1,y X1, 0< Xg<m, i =0,1,.... k — 1 : seed values (initial states)
are integer constants that specify the generator.

They are also called Tausworthe generators.

Since each output is a bit (0 or 1), we could also write the a}s and initial zis as bits as
follows.

Xi=a X1+ aXi o+ ... +axX;,— mod m(=2), k>1 (24)

where {X;} is the sequence of pseudo-random values,
m = 2 : modulus,
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a;, a; € {0,1} : sequence of multipliers, and
Xo, X1, o0y Xp1, X; €{0,1},i=0,1,...,k — 1 : seed values (initial states)
are integer constants that specify the generator.

A k-bit word is defined as a sequence of k 1’s and 0’s. For eg., 1011 is a 4-bit word,
01010110 is an 8-bit word, etc. The output of the LFSR is generated as random bits. We
take k of these at a time to form a k-bit word, then shift by 1 position, form another & bit
word, and so on. For eg., for k = 4, we form the first 4-bit word as Xy.X; X5 X3, then shift
by 1 position and form the second word as X; X, X3X,, and so on. We could convert these
binary numbers into decimal form because we are used to dealing with decimal numbers
and then divide by 2% to get a uniform pseudo-random number sequence. We could also
directly convert them into a uniform sequence by using the formula Zle 27 X;, where
X1X5... X}, is the k-bit word which is treated as 0.X7X5...X,. Let us take the following
example: k =4,a = (a1, az,as3,a4) = (1,1,0,1) and seed Xy =0, X; =1, Xy =0, X5 = 0.
We get the following pseudo-random sequence.

0,1,0,0,0,1,1,0, 1,0, 0,0,1,1, .... (25)

The 4-bit words formed are given in the table below.

’ Time \ 4-bit word \ Fractional form ‘

1 0100 0.2500
2 1000 0.5000
3 0001 0.0625
4 0011 0.1875
) 0110 0.3750
6 1101 0.8125
7 1010 0.6250
8 0100 0.2500

This LFSR has period 7. For any LFSR, there are 2¥ possible k-bit words that can be
formed but the all zero word cannot be achieved unless one starts with it and if one
does actually start with the all zero word, an entire sequence of zeroes will be obtained.
So there are 2¥ — 1 possible words, which is the maximum possible period. A sequence
produced by a length & LFSR which has period 2* —1 is called a PN-sequence (pseudo-
noise sequence). It is possible to characterise LFSRs that produce PN-sequences, again
using the concept of primitive polynomials. We define the characteristic polynomial of
an LFSR as the polynomial f(z) = 2% + a;2"~ ' + ... + ap_12' + ax. We shall use the
following facts about polynomials f(z) with coefficients in GF'(2):

e Every polynomial f(x) with coefficients in GF(2) having f(0) = 1 divides a? + 1
for some p. The smallest p for which this is true is the period of f(x).

e An irreducible polynomial of degree k& has a period which divides 2% — 1.

e An irreducible polynomial of degree k whose period is 2¥ — 1 is called a primitive
polynomial.

Observe that f(z) = z* + 2® + 1 is an irreducible polynomial over GF(2). To find its
period, we have to find the smallest p such that f(x) divides 2P + 1. Clearly, p > 4. Also,
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the period divides 2* — 1 = 15, thus, it must be either 5 or 15. Now,

P Hl=(+ D)@ +25+1) + (2% +2) (26)
so f(x) does not divide z° + 1. But,
P4l = (" 202 ¥ b et 2+ )t 2 1) (27)

so f(z) divides x> + 1. Thus, f(z) = 2* + 2® + 1 has period 15 and is a primitive
polynomial. As a result, let us look at the LFSR with k = 4,a = (1,0,0,1) and seed
Xo=0,X1=0,Xy=0,X35=1.

’ Time ‘ 4-bit word ‘ Fractional form ‘

1 0001 0.0625
2 0011 0.1875
3 0111 0.4375
4 1111 0.9375
) 1110 0.8750
6 1101 0.8125
7 1010 0.6250
8 0101 0.3125
9 1011 0.6875
10 0110 0.3750
11 1100 0.7500
12 1001 0.5625
13 0010 0.1250
14 0100 0.2500
15 1000 0.5000
16 0001 0.0625

So, this sequence has period P = 15 = 2* — 1, which is the maximum possible period.
In this manner, for higher powers of 2, we require primitive polynomials of degree k£ to
construct LSFRs of maximum period, 2 — 1. For eg., we have listed all the 6 degree
primitive polynomials in the following table.

’ No. ‘ Primitive Polynomial ‘ a ‘
1 2+ +1 (0,0,0,0,1,1)
2 2+ ad+1 (1,0,0,0,0,1)
3 | 2+ +2*+2+1|(1,0,0,1,1,1)
4 | 2+ +2t+2+1 | (1,1,0,0,1,1)
5 |2+ +23+22+1(1,0,1,1,0,1)
6 | 2°+a2*+23+2+1((0,1,1,0,1,1)

Thus, if we choose a as any of the 6 given in the table, we will get an LFSR with period
P = 63 = 2% — 1. For every degree k, the following table lists the period, factors of the
period and the number of primitive polynomials of that degree.
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Degree ‘ Period ‘

Factors of period

‘ No. of primitive polynomials of this degree ‘

3 7 7 2
4 15 3,5 2

5 31 31 6

6 63 3,3, 7 6

7 127 127 18

8 255 3,5, 17 16

9 511 7,73 48

10 1,023 3,11, 31 60

11 2,047 23, 89 176

12 4,005 3,3,5,7, 13 144

13 8,191 8191 630

14 16,383 3,43, 127 756

15 32,767 7,31, 151 1,800

16 65,535 3,5, 17, 257 2,043

17 131,071 131071 7,710
18 262,143 3,3,3,7, 19, 73 7,776
19 524,287 524287 27594
20 1,048,575 3,5, 5, 11, 31, 41 24,000
21 2,097,151 7.7, 127, 337 84,672
22 4,194,303 3, 23, 89, 683 120,032
23 8,388,607 47, 178481 356,960
24 16,777,215 | 3,3, 5, 7, 13, 17, 241 276,480
25 33,554,431 31, 601, 1801 1,296,000
26 67,108,363 3, 2731, 8101 1,719,900
27 | 134,217,727 7,73, 262657 4,202,496
28 | 268,435,455 | 3,529, 43, 113, 127 4,741,632
29 | 536,870,911 233, 1103, 2089 18,407,808
30 | 1,073,741,823 | 3, 3, 7, 11, 31, 151, 331 17,820,000
31 | 2,147,483,647 2147483647 69,273,666
32 | 4,294,967,205 | 3, 5, 17, 257, 65537 Not Available

10.6 Generalised Feedback Shift Register (GFSR)

The Generalised Feedback Shift Register (GFSR) makes use of the XOR operator
in Boolean algebra. We denote the XOR operator by @. Let X1, Xo, ..., X € {0,1}. The

output of an XOR operator is determined as follows.

| 1 if thereareodd number of 1's among X/s
X10X @ DXy = { 0 if thereare even number of 1's among X|s (28)

The GFSR generator is given by
Xi = CLle;l D CZQX'L'*Z b ... CLkXi,k, k>1 (29)

where {X;} is the sequence of pseudo-random values, and
a;, a; € {0,1} : sequence of multipliers.
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Again, we are left to wonder for what choice of @ = (a1, as, ..., ax) we will get the maximum
possible period, which is 2¥—1, because k consecutive zeroes cannot be obtained unless one
starts with it, and if one starts with & consecutive zeroes, a whole sequence of zeroes will be
obtained. Once again, the answer is: if the polynomial f(z) = z*+a,2* ... 4ap_12' +ay
is a primitive polynomial over GF(2), then the sequence {X;} will have maximal period
2% — 1. For example, the 5" degree primitive polynomial over GF(2) is 2° + 2%+ 1 so let
us choose a = (0,0,1,0,1). The GFSR then boils down to X; = Xj_3 @ Xj_5. Starting
with the seed Xy = X; = Xy = X3 = Xy = 1, we get the following pseudo random
sequence:

1,1,1,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0,1, 1, 1, 1, 1,0,0, ....

(30)
Observe that the sequence has period P = 31 = 2° — 1, which is the maximal period. In
order to produce a better random sequence, let us take the first 31 bits of this sequence and
apply Kendall’s algorithm. Although there are several versions of Kendall’s algorithm,
what each version essentially does is shift the original sequence

1111100011011101010000100{101100 (31)
forward by 6 bits, i.e.,
1011001111100011011101010]000100 (32)

Repeat this process 3 more times to get the following table:

‘ Sequence ‘
11111000110111010100001001011060
10110011111000110111010100001060
0001001011001111100011011101010
1010100001001011001111100011011
0110111010100001001011001111100

»ch,ow»—og

Finally, we take the columns to form 5-bit words. Thus, we get 31 pseudo random 5-bit
words as follows.

’ No. \ Word \ No. \ Word \ No. \ Word \ No. \ Word ‘
Wiy | 11010 | W5 | 10001 | W5 | 11011 | W, | 11100
Ws | 10011 | Wg | 00001 | Wy, | 01101 | Wg | 01000
Wy | 11101 | Wi | 11110 | W4y | 01001 | Wis | 10000
Wis | 10110 | Wiy | 10100 | Wis | 01110 | Wie | 11111
Wiz | 00100 | Wig | 11000 | Wig | 01011 | Wy | 01010
Wo1 | 00111 | Was | 01111 | Wa3 | 10010 | Way | 01100
Was | 00101 | Wag | 10101 | Wa, | 00011 | Wag | 10111
Wag | 11001 | W3o | 00110 | W3q | 00010

Each W; is a 5-bit word, which can be converted to a fraction between 0 and 1 so as to
generate uniform pseudo-random numbers.
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10.7 Twisted GFSR (TGFSR)

Let Xz = X11X12sz and Xj = leXjQ---Xjk be two k-bit words. Xz D Xj = (le D
Xi1)(Xi2® Xj2)...(Xix ® Xji). For eg., 10010101 = (160)(041)(060)(14 1) = 1100.
A modification of the GFSR was proposed by “twisting” the bit pattern in X;_,_,. This
is done by viewing the X;’s as w-vectors and premultiplying X;_,_, by a w x w matrix,
A. The recurrence then becomes

Xi = Xi—p EB AXi—p—q (33)
where {X;} is the sequence of w-bit pseudo-random values. Also, let k£ = p+ q.

This is called a Twisted GFSR (TGFSR). A typical example of the matrix A is

(0 1. 0 .. 0 ]
0 0 1 .. 0
A= 0
00 0 .. 1
(a0 a1 az ... Oy

We wish to see whether there exists conditions under which maximal period sequences
can be generated. Let ¢4(t) be the characteristic polynomial of the matrix A. The
maximum period possible is 2** — 1 if and only if ¢4(t” +t*) is a primitive polynomial of
degree kw over GF'(2), where k = p + ¢q. For matrices defined as above, we can use the
fact that ¢4 (t) = t“ + Z;‘U_ol a;t'. Let us look at the simplest case possible, where w = 2.

Take ag =1,a; = 1. Thus:,
0 1
=
The characteristic polynomial of A is given by ¢4(t) = t*—t—1 = t*+t+1. Now, we take
p=1,g=1,50k=2and go(tP+t*) = (£2+t)2+(12+t)+1 = "4+ 2834+ 212+t +1 = t*+t+1,
which is a primitive polynomial of degree 4 over GF(2). Now, take seed X, = 00, X; = 01.
The TGFSR is given by X; = X, 1 & AX,;_5. We get the following sequence.

00, 01,01,10,01,00,11,11,01, 11,00, 10, 10,11, 10,00, 01,01, 10, ... (34)
It can be observed that this sequence has period P = 15 = 2* — 1 = 222 — 1, which
is the maximum period possible. Let us also look at the case of w = 3. We choose

apg = 1,@1 = O,(IQ =1. ThUS,

A:

— O O

10
01
01

The characteristic polynomial of A is given by ¢a(t) = t3 + ¢ + 1. Now, we take
p=1g=1s0k=2and gps(tP+t*) = (P +1)> + (2 +¢)* +1 ="+ 35+ 3t* + 3+t +
234+ 12 +1 =5+ 15 + 3+ 12 + 1, which is a primitive polynomial of degree 6 over GF'(2).
Now, take seed Xy = 010, X; = 000. The TGFSR is given by X; = X; 1 & AX;_». We
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get the following sequence.

010, 000, 100, 100, 101, 100, 110, 111,010, 100, 000, 001,001, 010, 001, 101, 110, 100, 001, 000,
011,011, 100,011,010, 101,001,011,000,111,111,001, 111, 100,010,011, 111,000, 110, 110,
011,110,001, 100, 111,110,000, 101, 101, 111, 101,011,001, 110, 101, 000, 010, 010, 110, 010,
111,011, 101,010, 000, 100, ....

(35)

This sequence has period P = 63 = 26 — 1 = 22%3 — 1, which is the maximum period
possible.

A slight variation of the TGFSR is the Mersenne Twister. The name comes from the
fact that 2P — 1 are called Mersenne primes. Mersenne Twister generates a sequence of
word vectors considered as uniform pseudo-random integers between 0 and 2% — 1, where
w is the number of bits in the word. It is based on the following recurrence relation:

Xign = Xiom © (XMXL DA, i=0,1,2,... (36)

where, {X;} is the sequence of w-bit pseudo-random values,

n: degree of recurrence,

m,1 < m < n: integer,

A: w x w matriz of the form given above,

X' upper or leftmost w — r bits of X;,

XL 2 lower or rightmost r bits of Xy,

r,0 <r <w—1: separation point of one word,

(X XL,): concatenation vector obtained by concatenating (X and X!,,) in that order,
and

Xo, X1, ..., Xpy — 11 seed values (initial states)

are constants which specify the Mersenne twister.

The most commonly used version of the Mersenne Twister algorithm is based on the
Mersenne prime, 2'%9%7 — 1. The standard implementation of the Mersenne twister,
MT19937, uses a 32-bit word length. The coefficients for MT19937 are:

(w,n,m,r) = (32,624,397,31), a = 9908B0D Fi4

It has been proved that MT19937 attains its maximum period, which is 2" — 1 =
919937 _ |

11 Some Cryptographically Secure PRNGs (CSPRNGs)
11.1 Indirection Shift Accumulation Add Count (ISAAC)

Indirection Shift Accumulation Add Count (ISAAC) is a cryptographically secure
pseudorandom number generator and a stream cipher designed by Robert J. Jenkins Jr.
in 1993. The ISAAC algorithm uses an array of 256 four-octet integers as the internal
state, writing the results to another 256 four-octet integer array, from which they are
read one at a time until empty, at which point they are recomputed. The computation
consists of altering i-element with (i & 128)-element, two elements of the state array
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found by indirection, an accumulator, and a counter, for all values of i from 0 to 255.
Since it only takes about 19 32-bit operations for each 32-bit output word, it is very fast
on 32-bit computers.

Many implementations of ISAAC are so fast that they can compete with other high speed
PRNGs, even with those designed primarily for speed not for security. Only a few other
generators of such high quality and speed exist in usage. The best attack till date needs
4.67 x 10?45 to recover the inital state. This result has had no practical impact on the
security of ISAAC.

11.2 BLUMBLUMSHUB

BLUMBLUMSHUB (BBS) is a pseudorandom number generator proposed in 1986
by Lenore Blum, Manuel Blum and Michael Shub. Let p and ¢ be two large primes and
m = pq. Define u = (p—1)(¢—1). Choose an integer e, 1 < e < u such that gcd(u,e) = 1.
BBS takes the form

X;=X{, mod m (37)

At each step of the algorithm, some output is commonly derived from x; which is most
commonly the parity bit of x;. A parity bit is a bit added to a string of binary code to
ensure that the total number of 1-bits in the string is even or odd. We shall take even
parity bits as output.

The seed zg should be an integer that is co-prime to m (i.e. p and ¢ are not factors of
x9) and not 1 or 0. The two primes, p and ¢ should be congruent to 3 (mod 4) and
gcd(o(p), ¢(q)) should be small (this makes the cycle length large), where ¢ is Euler’s
totient function. In number theory, Euler’s totient function counts the positive integers
up to a given integer n that are relatively prime to n. It can be calculated using the
following formula:

o(n) = n (1 - }g, (38)

where the product is over the distinct prime numbers dividing n. The first 99 values of
¢ are given below.

¢(n) for 1 <n <99

|+ 0 [1]2]3[4[5]6[7[8]F9]
O N/A[1 |1 |2]2]42]6]4]6
10| 4 (10| 4 |12][6 |8 |8 [16] 6 |18
20| 8 |12[10[22] 8 [20 12|18 |12 28

30 8 [30]16 (20|16 24|12 |36 |18 |24
40 | 16 |40 |12 |42 |20 |24 | 22|46 | 16 | 42
50 | 20 |32|24|52|18[40 |24 |36 |28|58
60| 16 (60|30 |36 |32 |48 |20 |66 |32 |44
70| 24 | 70|24 |72]36|40 |36 |60 |24|78
80 | 32 | 54|40 | 82|24 |64 |42 |56 |40 |88
90 | 24 | 72|44 |60 |46 | 72|32 |96 |42 |60




Observe from the table that ¢(47) = 46 and ¢(83) = 82, which means that gcd(¢(47), p(83)) =
2. Let us take p = 47 and ¢ = 83. Thus, u = (47—1) x (83—1). Let us choose e = 3 since
gcd(u,e) = 1. This gives us a sequence of period P = 88. The corresponding output
(based on even parity bits) that we get from the sequence with seed Xy = 51 is:

0,0,1,0,0,1,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,1,1,0,0,1,0,0, 1, 1,
0,0,0,1,1,1,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,0, 0,0, 0,
0,0,1,0,0,1,1,0,0,0,0, 1,0, ....

(39)

It is to be observed that the period of BLUMBLUMSHUB is significantly less when
compared to the previous PRNGs that we have seen so far. However, it is much more
secure than the previous ones since the main difficulty of predicting BBS’s output lies in
the intractability of the “quadratic residuosity” problem, which is:

Given a composite number n, find whether x is a perfect square modulo n.

It has been proven that this is as hard as cracking the RSA public-key cryptosystem
which involves the factoring of a large composite.

11.3 devUrandom

In Unix-like operating systems, /dev/random, /dev/urandom and /dev/arandom are spe-
cial files that serve as pseudo-random number generators. They allow access to environ-
mental noise collected from device drivers and other sources.

12 A proposed PRNG

I have thought of an idea to increase the period of the BLUMBLUMSHUB generator
in Section 11.2 in the following way. It will involve two stage randomisation. Take the
first 101 bits from the sequence generated by choosing p = 47,q = 83,e = 3 with seed
X() = 51:

0,0,1,0,0,1,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,1,1,0,0,1,0,0, 1, 1,
0,001,1,1,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,0, 0,0, 0,
0,0,1,0,0,1,1,0,0,0,0,1,0,....

(40)

We will form k-bit words from this sequence. Take £ = 6. Form the first 6-bit word by

taking the first 6 bits of the sequence. To get the next 6-bit words, follow the algorithm
given below.

e Step 1: Set pos = 1.
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e Step 2: Let r = LCG(ap = 17,a; = 29, m = 2% seed = get.seed(2) mod2°,n = 1),
where get.seed(2) generates a random integer which is the last two digits of the
system time given by R. Thus, r is a random integer between 0 and 63 which has
been generated by the LCG algorithm.

e Step 3: pos = pos + r.
e Step 4: If pos <101 — 6+ 1 = 96, go to step 5. Else, go to step 6.

e Step 5: Form a new 6-bit word by taking 6 consecutive bits starting from X,.
Go to step 7.

e Step 6: Form a new 6-bit word by taking 101 — pos + 1 consecutive bits starting
from X,,s and 6 — (101 — pos + 1) consecutive bits starting from X, i.e., the 6-bit
word will look like XposXpos+1--X101X1X2-~X6—(101—p+1)- Go to step 7.

e Step 7: To form a new word, go to step 2. Otherwise, exit.

Convert each of the 6-bit words to fractions between 0 and 1 to get a uniform pseudo-
random sequence. For eg., let us generate 100 6-bit words in this manner and perform
Runs test on them. We get a p — value of 0.4214, which implies we can conclude that
the sequence comes from a random process.

Because of the randomness created in the shift in position while forming words from
consecutive bits by the introduction of an LCG, the period of the sequence of k-bit words
will be very large. This shows that we need not remain confined to one specific algorithm
only while generating pseudo-random numbers. We could think of ways to combine two
or more algorithms to obtain pseudo-random sequences having longer periods. Also,
they should be harder to crack by a hacker who wants to intercept the information. This
combining of various algorithms is an area which requires more research.

13 Run-time Comparison

First, let us compare the run-times of an LCG, RANDU and R’s own uniform random
number generator, runif. We observe the run-times for values of n (sample size) ranging
from 10" to 107. The parameters that we choose for LCG are: ay = 1013904223, a; =
1664525, m = 23!, For RANDU, the parameters are: a; = 65539, m = 23!. The seed
is chosen entirely randomly from the last 7 digits of the system time given by R. The
following table contains the run-times.

| n | runif [ LCG [ RANDU |
10 [ 0.00 | 0.00 [ 0.00
102 [ 0.00 | 0.00 [ 0.00
10° [ 0.00 | 0.00 [ 0.00
10* [ 0.00 | 0.01 [ 0.00
10° [ 0.00 | 0.05 [ 0.03
105 0.06 [ 044 [ 041
107 058 [ 459 [ 4.22
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The graph below plots how the run-time increases. It can be observed that runif has a
significantly lesser run-time than both RANDU and LCG. Also, for n < 10*, LCG and
RANDU are almost equally fast. But for n > 10*, RANDU is slightly better than LCG
in terms of the run-time.

Run-times of various PRNGs
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Next, let us compare the run-times of the algorithms covered in this paper. For the
comparison to make sense, the parameters of each of the algorithms must be of the same
order. So, we consider m = 2%, wherever m # 2 and consider k = 6, wherever m = 2.
Parameters of the algorithms are chosen randomly (from system time) from 1 to 64 but
satisfying the necessary requirements (if any). Seeds are also chosen randomly (from
system time) but appropriately. The following table gives us the run-times of the various
algorithms to obtain n pseudo-random numbers.

| n | LCG | MCG | MRG | LFSR | GFSR | TGFSR | BBS (with LCG) |

10% | 0.00 | 0.00 | 0.00 | 0.00 0.02 0.00 0.00
10° | 0.00 | 0.00 | 0.00 | 0.02 0.02 0.02 0.04
10* | 0.00 | 0.00 | 0.01 | 0.08 0.12 0.30 0.26
10° | 0.04 | 0.05 | 0.14 | 0.79 1.22 3.01 2.49
10° | 0.41 | 0.39 | 1.55 | 7.96 | 12.15 31.57 27.53

The following graph plots the run-times of the various algorithms.
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It can be observed that as far as run-time is concerned, LCG and MCG are the best
and TGFSR is the worst among all the algorithms. MRG has a slightly higher runtime
than that of LCG. The run-times of the others are quite high but the rate of increase
of run-time for LFSR and GFSR is not as high as the rate of increase of run-time for
TGFSR and our own designed BBS (with LCG). So, the graph makes it clear that a price
to pay for higher periods is higher run-times, i.e., slower algorithms.

27



14 References

e Sheldon Ross. Simulation.

e J.D. Alanen, Donald E. Knuth. Tables of Finite Fields. Sankhya: The Indian
Journal of Statistics, Series A, Vol. 26, December, 1994, pp. 305-328.

e Christophe Dutang, Diethelm Wuertz. A note on random number generation.
September, 2009.

e Lih-Yuan Deng, Jyh-Jen Horng Shiau, Henry Horng-Shing Lu. Large-Order Mult:-
ple Recursive Generators with Modulus 23* — 1. INFORMS Journal on Computing,
Articles in Advance, 2011, pp. 1-12.

e Makoto Matsumoto, Yoshiharu Kurita. Twisted GFSR Generators. Transactions
on Modeling and Computer Simulation (TOMACS), April, 1992.

o cn.wikipedia.org
o http://www-math.ucdenver.edu/ wcherowi/courses/mb410/m&410fsr.html
o www.mazimintegrated.com/en/app-notes/index.mup/id/4400

e math.stackexchange.com

28



