
Approximations Errors Sensitivity and Conditioning

Lecture 2: Approximations and Errors
BT 2020 – Numerical Methods for Biology

Karthik Raman
Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences

Initiative for Biological Systems Engineering (IBSE)
Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI)

RBCDSAI

Indian Institute of Technology Madras

https://home.iitm.ac.in/kraman/lab/
https://web.iitm.ac.in/ibse/
https://rbcdsai.iitm.ac.in/

1 / 29

https://home.iitm.ac.in/kraman/lab/
https://web.iitm.ac.in/ibse/
https://rbcdsai.iitm.ac.in/

Approximations Errors Sensitivity and Conditioning

Strategies for Computational Solutions
Problem Reduction

▶ Infinite-dimensional spaces⇝ Finite-dimensional spaces
▶ Integrals⇝ Finite sums
▶ Derivatives⇝ Finite differences
▶ Differential equations⇝ Algebraic Equations
▶ Non-linear Problems⇝ Linear Problems
▶ Complicated functions⇝ Simple functions, e.g. polynomials
▶ …

2 / 29

Approximations Errors Sensitivity and Conditioning

Approximations in Scientific Computation

▶ Engineering is all about approximation!
▶ So is scientific computing

▶ actually, we have no choice!
▶ we need to use discrete computer systems and representations to

work on continuous and infinite quantities!

▶ We need to compute accurately, using (limited) finite precision
arithmetic!

3 / 29

Approximations Errors Sensitivity and Conditioning

Sources of Approximation

Before Computation
▶ The model itself!
▶ Measurement errors

▶ e.g. arising out of instrument imprecision

▶ Previous computations

During Computation
▶ Truncation / discretisation
▶ Rounding

▶ Finite precision computation

4 / 29

Approximations Errors Sensitivity and Conditioning

Approximation: An Example

▶ What is the surface area of the earth?

A = 4πr2

Can you list the approximations involved?

5 / 29

Approximations Errors Sensitivity and Conditioning

Approximation: An Example

▶ What is the surface area of the earth?

A = πr2

Some approximations
▶ Shape of the earth!
▶ How do we measure the radius?

▶ Empirically?
▶ Based on other computations?

▶ Value of π!
▶ Precision of the computers used
▶ …

6 / 29

Approximations Errors Sensitivity and Conditioning

Absolute and Relative Errors

▶ Obviously, significance of an error is related to magnitude of
measured quantity

absolute error = approximate value− true value

relative error =
absolute error

true value

▶ Obviously, relative error is undefined if true value is zero
▶ Relative error can also be expressed in %

7 / 29

Sowmya

Sowmya

Sowmya

Approximations Errors Sensitivity and Conditioning

Precision vs. Accuracy

▶ Precision: Number of digits with which a number is expressed (recall
significant figures?)

▶ Accuracy: Number of correct significant digits
▶ If an approximate value has an error of ≈ 10−p, then its decimal

representation has ≈ p correct significant digits
▶ e.g. 3.6180339887498948482045868343656381177203 is a precise

number, but not an accurate representation for π
▶ Often, we may not know the true value itself — if we did, we may

not need to approximate it!

8 / 29

Sowmya

Sowmya

Approximations Errors Sensitivity and Conditioning

Data Error and Computational Error

▶ Let’s consider 1D problems to begin with, e.g. f : R → R
▶ Let the true value of the input be x⇒ desired true result is f(x)
▶ But, our input may be inexact, say x̂
▶ Also, our function computation may be approximate, say f̂

Total error = f̂(x̂) − f(x)

= (̂f(x̂) − f(x̂)) + (f(x̂) − f(x))

= computational error + propagated data error

9 / 29

Approximations Errors Sensitivity and Conditioning

Data Error and Computational Error

Total error = f̂(x̂) − f(x)

= (̂f(x̂) − f(x̂)) + (f(x̂) − f(x))

= computational error + propagated data error

▶ Here, f̂(x̂) − f(x̂) is the difference between exact and approximate
functions for the same input — pure computational error

▶ f(x̂) − f(x) denotes the difference between exact function values
due to error in the input — propagated data error
▶ Choice of algorithm has no impact on this!

10 / 29

Approximations Errors Sensitivity and Conditioning

Data Error and Computational Error
An Example

▶ Suppose we want a back-of-the-envelope calculation for sin(π/8)
▶ How will you approximate it, without a calculator?
▶ What is the computational error? What is the data error?

11 / 29

Approximations Errors Sensitivity and Conditioning

Data Error and Computational Error
An Example

▶ Suppose we want a back-of-the-envelope calculation for sin(π/8)
▶ How will you approximate it, without a calculator?
▶ What is the computational error? What is the data error?

▶ sin(π/8) ≈ sin(3/8) ≈ 3/8 = 0.3750(!)
▶ Using a calculator, sin(π/8) = 0.382683432... ≈ 0.3827
▶ Total error = f̂(x̂) − f(x) = 0.3750 − 0.3827 = −0.0077
▶ Propagated data error, arising out of inexact input is

f(x̂) − f(x) = sin(3/8) − sin(π/8) ≈ 0.3663 − 0.3827 = −0.0164
▶ Computational error, cause by truncating infinite series is

f̂(x̂) − f(x̂) = 3/8 − sin(3/8) ≈ 0.3750 − 0.3663 = 0.0087
▶ In this case, the errors are of opposing signs, offsetting one another!
▶ In other cases, they may reinforce one another!
▶ How to get more accurate??

12 / 29

Approximations Errors Sensitivity and Conditioning

Truncation Error vs. Rounding Error

Computational error can be further split into:

Truncation/Discretisation Error
▶ Difference between the true result (for actual input) and the result

that would be produced by a given algorithm using exact /
infinite-precision arithmetic

▶ The algorithm may truncate an infinite series (e.g. Taylor series),
replace derivatives by finite differences etc.

Rounding Error
▶ Difference between the result produced by a given algorithm using

exact arithmetic and the result produced by the same algorithm
using finite-precision rounded arithmetic

▶ Arises out of the inexactness in representation of real numbers and
arithmetic operations on these numbers

13 / 29

Approximations Errors Sensitivity and Conditioning

Truncation Error
Example — Finite Difference Approximation

For a differentiable function f : R → R, consider the finite difference
approximation to the first derivative,

f ′(x) ≈ f(x+ h) − f(x)
h

By Taylor’s theorem,

f(x+ h) = f(x) + hf ′(x) + f ′′(θ)h2/2

for some θ ∈ [x, x+ h]. So, the truncation error of the finite difference
approximation is bounded by Mh/2, where M is a bound on |f ′′(t)| for t
near x.

14 / 29

Approximations Errors Sensitivity and Conditioning

Rounding Error
Example — Finite Difference Approximation

If the error in function values in bounded by ϵ, the rounding error in
evaluating the finite difference formula is bounded by 2ϵ/h. The total
computation errors is therefore:

Mh
2

+
2ϵ
h

Clearly, as we decrease h, one term increases, while the other decreases ⇒
there’s a trade-off.
The above function has its minimum at h = 2

√
ϵ/M.

15 / 29

Approximations Errors Sensitivity and Conditioning

How to Reduce Error?

▶ Truncation error can be reduced by using better approximations, e.g.
more terms in the expansion

▶ For instance, a more accurate finite difference formula can be used:

f ′(x) ≈ f(x+ h) − f(x− h)
2h

▶ Rounding error can be reduced by working with higher-precision
arithmetic (harder?)

16 / 29

Approximations Errors Sensitivity and Conditioning

Errors in Practice

▶ Although both truncation and rounding errors are important, in
practice, one or the other tends to dominate

▶ Roughly speaking,
▶ Rounding error dominates purely algebraic problems with finite

solution algorithms, while
▶ Truncation error dominates in problems involving integrals,

derivatives, non-linearities etc. that require a theoretically infinite
solution process

▶ The distinctions made among different types of errors are important
for understanding the behaviour of numerical algorithms

▶ However, in practice, it is not necessary (or even possible!) to
precisely delineate the different individual errors — advantageous to
lump them all together

17 / 29

Approximations Errors Sensitivity and Conditioning

Evaluating Complex Functions — Taylor Series

ex = 1 + x+
x2

2!
+

x3

3!
+ . . . =

∞∑
n=0

xn

n!

sin(x) = x−
x3

3!
+

x5

5!
+ . . . =

∞∑
n=0

(−1)n
x(2n+1)

(2n+ 1)!

cos(x) = 1 −
x2

2!
+

x4

4!
+ . . . =

∞∑
n=0

(−1)n
x(2n)

(2n)!

Nth-order Taylor polynomial for y = f(x) at x0 is:

pN(x) = f(x0)+ f ′(x0)(x− x0)+
f ′′(x0)

2!
(x− x0)2+ . . .+

f(N)(x0)
N!

(x− x0)N

⇒ pN(x) =
N∑

n=0

f(n)(x0)
n!

(x− x0)n

18 / 29

Approximations Errors Sensitivity and Conditioning

Truncation Error — Exercise

Use Taylor Series expansions with n = 0 . . . 6 to approximate
f(x) = cos(x) at xi+1 = π/3 on the basis of the value of f(x) and its
derivatives at xi = π/4.

19 / 29

Approximations Errors Sensitivity and Conditioning

Forward Error and Backward Error

▶ Garbage in⇝ Garbage out!
▶ If input data are accurate to only four significant digits, we can

expect no more than four significant digits in computed result, no
matter how accurate an algorithm we use!

▶ Suppose we want to compute y = f(x) (again f : R → R) — we
obtain an approximate value ŷ

▶ The discrepancy between the computed and true values,
∆y = ŷ− y is called forward error

▶ This is often difficult to compute …

20 / 29

Approximations Errors Sensitivity and Conditioning

Forward Error and Backward Error

▶ Alternately, let’s consider the approximate solution obtained to be
the exact solution for a modified problem

▶ Now, “How large a modification to the original problem is required
to give the result actually obtained?”

▶ Or, “How much data error in the initial input x would be required to
explain all of the error in the output?”

▶ ∆x = x̂− x, where f(x̂) = ŷ is the backward error

x y = f(x)

x̂ ŷ = f̂(x) = f(x̂)

f

backward
error

f

forward
error

f̂

▶ Note that the equality f(x̂) = f̂(x) is due to the choice of x̂ — this
requirement defines x̂

21 / 29

Approximations Errors Sensitivity and Conditioning

Forward Error and Backward Error

x y = f(x)

x̂ ŷ = f̂(x) = f(x̂)

f

backward
error

f

forward
error

f̂

Example

▶ As an approximation to y =
√

2, let us use ŷ = 1.4
▶ |∆y| = |̂y− y| = |1.4 − 1.4142 . . . | ≈ 0.0142(≈ 1%)

▶ What is the x̂ that would give the value of 1.4? 1.42 = 1.96
▶ Backward error = |1.96 − 2| = 0.04(2%)

22 / 29

Approximations Errors Sensitivity and Conditioning

Forward Error and Backward Error
Another Example

Consider y = cos(x). What are the errors in computing cos(x) using the
truncated Taylor expansion 1 − x2/2, for x = π/3

23 / 29

Approximations Errors Sensitivity and Conditioning

Sensitivity and Conditioning

▶ Difficulties in solving a problem accurately are not always due to an
ill-conceived formula or algorithm, but may be inherent in the
problem being solved

▶ Even with exact computation, the solution to the problem may be
highly sensitive to perturbations in the input data

▶ A problem is said to be insensitive, or well-conditioned, if a given
relative change in the input data causes a reasonably commensurate
relative change in the solution

▶ A problem is said to be sensitive, or ill-conditioned, if the relative
change in the solution can be much larger than that in the input
data

▶ More formally, we define the condition number of a problem f at x as

24 / 29

Approximations Errors Sensitivity and Conditioning

Sensitivity and Conditioning
Condition Number

Condition number =
|relative change in solution|

|relative change in input data|

Cond =
|(f(x̂) − f(x))/f(x)|

|(x̂− x)/x|
=

|(ŷ− y)/y|
|(x̂− x)/x|

=
|∆y/y|
|∆x/x|

|Relative forward error| = |condition number|× |Relative backward error|

Thus, the condition number can be interpreted as an “amplification factor” that
relates forward error to backward error. If a problem is ill-conditioned (large
condition number), then the relative forward error (perturbation in solution)
can be large even if the backward error (relative perturbation in input) is small.

25 / 29

Approximations Errors Sensitivity and Conditioning

Condition Number for a Differentiable Function

Absolute forward error = f(x+ ∆x) − f(x) ≈ f ′(x)∆x

Relative forward error =
f(x+ ∆x) − f(x)

f(x)
≈ f ′(x)∆x

f(x)

Condition number ≈ f ′(x)∆x/f(x)
∆x/x

=

∣∣∣∣xf ′(x)f(x)

∣∣∣∣
26 / 29

Approximations Errors Sensitivity and Conditioning

Stability and Accuracy

▶ The concept of stability of a computational algorithm is analogous
to conditioning of a mathematical problem

▶ Both deal with the effects of perturbations
▶ Stability — refers to the effects of computational error on the result

computed by an algorithm
▶ Conditioning — refers to the effects of data error on the solution to a

problem
▶ An algorithm is stable if the result it produces is relatively insensitive

to perturbations due to approximations made during the
computation

27 / 29

Approximations Errors Sensitivity and Conditioning

Stability and Accuracy

▶ From the viewpoint of backward error analysis, an algorithm is stable
if the result it produces is the exact solution to a nearby problem

▶ i.e. the effect of perturbations during the computation is no worse
than the effect of a small amount of data error in the input

▶ A stable algorithm produces exactly the correct result for nearly the
correct problem

▶ Accuracy refers to the closeness of a computed solution to the true
solution

▶ Stability does not by itself guarantee accuracy — accuracy depends
on the conditioning of the problem as well as algorithm stability

28 / 29

Approximations Errors Sensitivity and Conditioning

Stability and Accuracy

▶ Stability tells us that the solution obtained is exact for a nearby
problem — but the solution to that nearby problem is not
necessarily close to the solution to the original problem unless the
problem is well-conditioned

▶ Inaccuracy can stem from applying
▶ a stable algorithm to an ill-conditioned problem
▶ an unstable algorithm to a well-conditioned problem

▶ Stable algorithm + well-conditioned problem ⇒ accurate solution!

29 / 29

	Approximations
	Errors
	Sensitivity and Conditioning

