
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security-Review Report SPIRE 01-02.2021
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. R. Peraglie, MSc. N. Krein

Index
Introduction

Scope

Test Methodology

Phase 1: General security posture checks

Phase 2: Manual code audits and penetration tests

Phase 1: General security posture checks

Application/Service/Project Specifics

Language Specifics

External Libraries & Frameworks

Configuration Concerns

Access Control

Logging/Monitoring

Unit/Regression and Fuzz-Testing

Documentation

Organization/Team/Infrastructure Specifics

Security Contact

Security Fix Handling

Bug Bounty

Bug Tracking & Review Process

Evaluating the Overall Posture

Phase 2: Manual code auditing & pentesting

Identified Vulnerabilities

SPI-01-003 WP2: Path normalization in Spiffe ID allows impersonation (Medium)

SPI-01-004 WP2: Server impersonation through legacy node API (High)

SPI-01-006 WP1: File-descriptor leak inside Linux peertracker (Medium)

Miscellaneous Issues

SPI-01-001 WP1: Build-system lacks security flags (Low)

Cure53, Berlin · 02/10/21 1/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SPI-01-002 WP1: SPIRE server stores private key.json world-accessible (Medium)

SPI-01-005 WP1: SPIRE links against outdated third-party modules (Medium)

SPI-01-007 WP1: Path traversal in Spiffe ID via potentially unsafe join token (Info)

SPI-01-008 WP1: Anti-SSRF hardening not applied for SDS API (Info)

Conclusions

Introduction
“SPIRE (the SPIFFE Runtime Environment) is a toolchain of APIs for establishing trust
between software systems across a wide variety of hosting platforms. SPIRE exposes
the SPIFFE Workload API, which can attest running software systems and issue
SPIFFE IDs and SVIDs to them. This in turn allows two workloads to establish trust
between each other, for example by establishing an mTLS connection or by signing and
verifying a JWT token. SPIRE can also enable workloads to securely authenticate to a
secret store, a database, or a cloud provider service.”

From https://github.com/spiffe/spire

This report describes the results of a security-centered assessment of the SPIRE
complex. Carried out by Cure53 at the beginning of 2021, the project included a
penetration test, a source code audit, as well as a broader security posture check of the
SPIRE software compound.

It should be clarified that SPIRE, a.k.a. the SPIFFE Runtime Environment, is a toolchain
of APIs for establishing trust between software systems across a wide variety of hosting
platforms. The work detailed here was requested by the Cloud Native Computing
Foundation (CNCF) in late 2020 and carried out by Cure53 in the second half of January
2021. A total of thirty-two days were invested into the project, given the objectives and
expected coverage.

To respond to the priorities set by CNCF/SPIRE, three work packages (WPs) were
delineated. In WP1, Cure53 reviewed the security posture of the SPIRE project more
broadly, moving on to source code audit of the SPIRE code base in WP2. Finally, a
penetration test against SPIRE deployment was executed in WP3. Notably, this structure
of the WPs, which go beyond standard pentesting and auditing and extend to checking
the general perimeter, typically characterized CNCF-related work.

Cure53, Berlin · 02/10/21 2/27

https://cure53.de/
https://github.com/spiffe/spire
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

White-box methods were used in this project, given that the source code is publicly
available as an OSS project. More generally, the approach is consistent with CNCF-
commissioned projects that Cure53 has been involved in. Furthermore, Cure53 had
access to a pre-configured environment set up by the SPIFFE team. Said deployment
offered a production-like test-surface for Cure53 to work with.

All preparations were done on time in January 2021, namely in CW02 and CW03.
Consequently, Cure53 could have a smooth start without any roadblocks in CW04.
Communications during the test were done using a channel on the SPIFFE Slack
workspace. Members of the Cure53 team participating in this assignment could join the
discussions and keep the SPIRE/SPIFFE team appraised of new developments in the
test. Besides frequent status, live-reporting was done so that the SPIFFE team could
address all findings pertinent to SPIRE as quickly as possible.

Overall, the SPIFFE team did a fantastic job in making things available and accessible
for the test. In connection to this, Cure53 achieved a very good coverage of the test-
targets across WP1-WP3 in the time-frame available for this exercise. Eight security-
relevant discoveries were made. Three items were classified to be security
vulnerabilities and five belong to a broader array of general weaknesses with lower
exploitation potential. Note that one of the findings was ranked as a High-level risk; other
issues - beyond two Medium-level threats - did not call for immediate action or
remediation. It can be argued that the evidence indicates a rather praiseworthy result for
SPIRE.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. In order to maximize gains
from the project, Cure53 then offers a series of methodology and coverage chapters, so
as to highlight what has been done and with which results, especially in the area of
security posture checks. Next, all findings will be discussed in grouped vulnerability and
miscellaneous categories, then following a chronological order in each grouping.
Alongside technical descriptions, PoC and mitigation advice are supplied when
applicable. Finally, the report will close with broader conclusions about this January
2021 project. Cure53 elaborates on the general impressions and reiterates the verdict
based on the testing team’s observations and collected evidence. Tailored hardening
recommendations for the SPIRE complex are also incorporated into the final section.

Cure53, Berlin · 02/10/21 3/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration Tests & Security Reviews against SPIRE

◦ WP1: Security posture of the SPIRE project
◦ WP2: Source code audit of SPIRE

▪ Main focus https://github.com/spiffe/spire/releases/tag/v0.12.0
▪ Misc focus https://github.com/spiffe/go-spiffe/releases/tag/v2.0.0-beta.4

◦ WP3: Penetration test against the SPIRE deployment
▪ 34.214.21.89 granola-global # Root Server
▪ 54.149.236.250 granola-regional-1 # Nested Server
▪ 54.184.34.192 granola-workload # Agent / Workload
▪ 18.223.247.8 acme-regional # Agent / Workload
▪ 3.131.153.201 acme-workload # Standalone Server
▪ 34.220.90.50 granola-regional-2 # Nested Server

Cure53, Berlin · 02/10/21 4/27

https://cure53.de/
https://github.com/spiffe/go-spiffe/releases/tag/v2.0.0-beta.4
https://github.com/spiffe/spire/releases/tag/v0.12.0
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology
This section zooms in on the metrics and methodologies used to evaluate security
characteristics of the SPIRE project and codebase. In addition, it includes results
pertinent to individual areas of the project’s security properties that were either selected
by Cure53 or singled out by other involved parties as calling for a closer inspection.

Similarly to previous tests for CNCF, this assignment was also divided into two phases.
The general security posture and maturity of the audited codebase of SPIRE has been
examined in Phase 1. The usage of external dependencies has been audited, security
constraints for SPIRE configurations were examined and the documentation had been
studied in depth in order to get a general idea of security awareness’ levels at SPIRE.

This was followed by research into how security reports and vulnerabilities are handled
and whether a healthily secure infrastructure is seen as a serious matter. The latter
phase covered actual tests and audits against the SPIRE codebase, with the code
quality and its hardening evaluated.

Phase 1: General security posture checks

Because SPIRE is a relatively complex software architecture, Cure53 was pleased to
see extensive documentation and additional material, such as the provided Security
Self-Assessment. This greatly helped with Phase 1 of this project in which the general
security posture and overall code quality of the SPIRE project was inspected from a
high-level perspective.

This encompasses also the management processes such as the handling of vulnerability
disclosures, threat modeling approaches and general measures for code hardening. All
this gives a meta-level perception of the maturity and robustness that is not solely bound
to the code quality itself.

Phase 2: Manual code audits and penetration tests

In this Phase, Cure53 conducted an extensive source code analysis across the different
components of the SPIRE software stack. Since SPIRE has well-defined attacker
models containing risk-assessments, it is quite clear what issues to look out for and what
to concentrate on. As such, identification of security-relevant areas of the project's code
base was close-to-unnecessary and, in effect, Cure53 could quickly start with targeted
audits on sensitive parts of the system.

Cure53, Berlin · 02/10/21 5/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This also underlines the well-thought-out development process and self-reflection of the
developers that have the attacker's perspective in mind. While Cure53's goal was to
reach good coverage across the scope, such large-scale audits are always limited by the
budget and require a more isolated focus on the particularly sensitive parts of the code.
Consequently, this phase also determines which parts of the project's scope deserve
more focus in future audits.

Later chapters and especially the findings in the Identified Vulnerabilities and the
Miscellaneous Issues sections of this report highlight issues that were found during this
audit. Their implications for the SPIRE software complex are discussed there.

Phase 1: General security posture checks
This Phase is meant to provide a more detailed overview of the SPIRE project’s security
properties that are seen as somewhat separate from both the code and the SPIRE
software. The first few subsections of the posture audit focus on more abstract
components instead of judging the code quality itself.

Later subsections look at elements that are linked more strongly to the organizational
and team aspects of SPIRE. In addition to the items presented below, the Cure53 team
also focused on tasks that fostered a cross-comparative analysis of all observations.

• The documentation was examined to understand all provided functionality and
acquire examples of what a real-world deployment of SPIRE could look like.

• The extensive architectural design documentation as well as several parts of the
self-security assessments were reviewed.

• The network topology and connected parts of the overall architecture were
examined. This also included consideration of relevant configurations that are
necessary to deploy SPIRE. Some potential weaknesses were already spotted
there and are highlighted in the Configuration Concerns section of this report.

• The given code-base was reviewed for structural design, documentation and
comments. High-level code audits and common pitfalls in the Go programming
language were looked out for. For example, general issues such as incorrect
usage of the unsafe keyword can quickly be enumerated.

• Code issue reports from gosec were studied to check if there are any remaining
low-hanging fruit inside that simply have been overlooked during the codebase
development.

• External libraries and frameworks that are referenced in the code were studied
and checked to make sure they do not contain any publicly known vulnerabilities.
As highlighted in the External Libraries & Frameworks and the connected finding
under SPI-01-005, Cure53 proposed some improvements.

Cure53, Berlin · 02/10/21 6/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Normally, past vulnerability reports for SPIRE would have been checked out to
spot further interesting areas and generally monitor the disclosure process, yet
SPIRE has not received impactful vulnerability reports thus far.

• The security posture checks phase is concluded with an analysis of
organizational specifics, such as making sure there are good guidelines for
security contacts. Soundness of the bug tracking and review process was also
verified.

• Drawing on the evidence from the steps above, the project’s maturity was
evaluated; specific questions about the software were compiled from a general
catalogue according to applicability.

Application/Service/Project Specifics

In this section, Cure53 will share insights on the application-specific aspects which lead
to a good security posture. These include the choice of programming language,
selection and oversight of external third-party libraries, as well as other technical aspects
like logging, monitoring, test coverage and access control.

Language Specifics

Programming languages can provide functions that pose an inherent security risk and
their use is either deprecated or discouraged. For example, strcpy() in C has led to many
security issues in the past and should be avoided altogether. Another example would be
the manual construction of SQL queries versus the usage of prepared statements. The
choice of language and enforcing the usage of proper API functions are, therefore,
crucial for the overall security of the project.

Since SPIRE seamlessly integrates with software such as Envoy and can be built on top
of Kubernetes clusters, it comes as no surprise that Go has been chosen as a
programming language. Go has proven to offer higher levels of memory safety
compared to other languages that compile to native code. It is quite rare to spot direct
memory safety issues that other languages such as C and C++ suffer from.

Issues like buffer overflows, type confusions or Use-After-Free vulnerabilities are directly
taken care of by Go’s internal memory management system. The compiler equally
makes sure that memory bounds are automatically verified by placing checkpoints into
the generated assembly. Although it is still possible to write unsafe Go code, SPIRE
completely refrains from doing so.

While memory safety issues are of lesser concern in software stacks that build on Go,
Cure53 still focused on shortcomings represented by integer overflows and race
conditions through incorrectly placed mutexes. Although Go’s garbage collector is the

Cure53, Berlin · 02/10/21 7/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

saving grace in many situations that lead to Denial-of-Service, leaky memory stemming
from open file descriptors can signify threats in the form of bugs or input validation
issues.

External Libraries & Frameworks

External libraries and frameworks can also contain vulnerabilities but their benefits
outweigh the possible risks. Relying on sophisticated libraries is advised instead of
reinventing the wheel with every project. This is especially true for cryptographic
implementations, which are known to be prone to errors.

SPIRE mostly imports well-tested crypto packages of the Go language framework. This
includes crypto/rand, crypto/tls or crypto/x509. For transport mechanisms and the
different APIs, SPIRE mainly uses google.golang.org/grpc derived from protobufs
(github.com/golang/protobuf). While some of the direct dependencies are mostly up to
date, Cure53 noticed a significant list of outdated modules that are linked in the master
branch of spiffe/spire. This is additionally documented as a miscellaneous finding in SPI-
01-005. Only one outdated module was found to be suffering from a security vulnerability
but it should generally be considered to tidy up the dependency list. This generally
prevents shipping a product that includes vulnerable modules which are actually
mitigated in more recent versions.

With a significant number of third-party modules, dependency tracking and vulnerability
checking becomes no easy task. Consequently, it is recommended to automate this
process and have a build-system that takes major version changes for third-party
modules into consideration. For software written in Go, Cure53 had good experience
with go-mod-outdated1, which lists version changes for direct dependencies. Other hand
tools like OWASP Dependency-Check2 work with any language and pull additional data
from the NIST National Vulnerability Database3. This additionally helps in finding
outdated modules affected by issues and requiring immediate attention/ mitigation.

Configuration Concerns

Complex and adaptable software systems usually have many variable options which can
be configured accordingly to what the actually deployed application necessitates. While
this is a very flexible approach, it also leaves immense room for mistakes. As such, it
often creates the need for additional and detailed documentation, in particular when it
comes to security.

1https://github.com/psampaz/go-mod-outdated
2https://owasp.org/www-project-dependency-check/
3https://nvd.nist.gov/vuln/data-feeds

Cure53, Berlin · 02/10/21 8/27

https://cure53.de/
https://nvd.nist.gov/vuln/data-feeds
https://owasp.org/www-project-dependency-check/
https://github.com/psampaz/go-mod-outdated
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The attested agent path for many built-in node attestor plugins may be a risk due to
user-input embedded within the attested agent path, as seen in SPI-01-003 and SPI-01-
007. It is advised to consider this threat in the security section of the documentation.

At the same time, SPIRE APIs could be configured to be exposed via TCP instead of a
unix domain socket. However, this configuration is discouraged by the documentation for
the Agents Workload API. The same applies to turning off the TLS verification within go-
spiffe/v2, which is also highly discouraged by SPIRE documentation.

Configured workload and node attestor plugins could become a risk as they contain
critical and potentially vulnerable code that could allow attackers to impersonate agents
and workloads. If SPIFFE Federation is configured with an untrusted bundle endpoint,
poisoning the root of the certificate chain could be accomplished.

Access Control

Every access to SPIRE server that could potentially do harm or extract sensitive
information is primarily controlled via SSL client authentication and the local socket type.
The SSL verification is outsourced to Go’s built-in crypto/tls module and provides the
certificate authority specified by the user. The authorization code is redundant in modern
API and legacy API in such that the validations and checks performed are the same.
Therefore, it is recommended to remove the old legacy node and entry registration APIs
the code base to minimize redundancy.

The authorization logic distinguishes a total of five user-roles: unauthenticated, agent,
local, admin and other downstream servers. The local role will be assigned to peers that
connect locally via the unix domain socket. All other roles will be determined by the
presence of a valid client certificate and the associated Spiffe ID extracted from the
certificate. Every gRPC method provided by the server was explicitly assigned a set of
allowed user-roles required for invocation. Validated information relevant for
authorization is stored in a context persistently passed to all handlers.

Access Control on the Agents Workload API is primarily done physically by only
exposing the Workload and Secret Service Discovery API over a unix domain socket. It
requires workloads to obtain file-access to the UDS file. Additionally, a mandatory
security metadata key must be added to every request to the Workload API. This can
mitigate the impact of potential SSRF vulnerabilities in the network if access was indeed
given via TCP (which is discouraged in most scenarios by the documentation).

Cure53, Berlin · 02/10/21 9/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Logging/Monitoring

Having a good logging/monitoring system in place allows developers and users to
identify potential issues more easily or get an idea of what might be going wrong. It can
also provide security-relevant information, for example when a verification of a signature
fails. Consequently, having such a system in place has a positive influence on the
project.

On the one hand the SPIRE agents and the SPIRE server offer centralized logging via
the log_file flag of the corresponding configuration files with extra levels for verbosity.
This default setting here, however, is set to logging to STDOUT only, which should be
treated as suboptimal. Default logging to one of the standard /var/log directories should
be considered here.

On the other hand, both agents and servers allow exporting of metrics to external
collectors such as Datadog, M3, Prometheus and StatsD. This can be configured
through the server.conf and agent.conf, respectively. SPIRE offers a wide range of
telemetric data to be transferred; all are explained through dedicated documentation4.

Unit/Regression and Fuzz-Testing

While tests are essential for any project, their importance grows with the scale of the
endeavor. Especially for large-scale compounds, testing ensures that functionality is not
broken by code changes. Furthermore, it generally facilitates the premise where features
function the way they are supposed to. Regression tests also help guarantee that
previously disclosed vulnerabilities do not get reintroduced into the codebase. Testing is
therefore essential for the overall security of the project.

SPIRE extensively incorporates unit-tests in nearly all of their modules, giving a
comprehensive test coverage across the complete codebase. While walking through the
commit log, Cure53 also noticed test-cases for regressions that happened in the past,
like for bugs such as for #18635 or smaller DoS security issues, e.g., #5776. Especially
thorough testing is included for highly-sensitive code paths for verifying JWT-SVID
tokens or TLS certificate generation, as well as in the realm of correct URI parsing for
SPIFFE IDs. All in all, the process of unit-testing and its importance is well-understood at
SPIRE. There is high expectation that this approach continues throughout development
in the future.

4https://github.com/spiffe/spire/blob/master/doc/telemetry.md
5https://github.com/spiffe/spire/commit/1e5cda99b7d0934908d37dd2e27f039b479d8d4c
6https://github.com/spiffe/spire/pull/577

Cure53, Berlin · 02/10/21 10/27

https://cure53.de/
https://github.com/spiffe/spire/pull/577
https://github.com/spiffe/spire/commit/1e5cda99b7d0934908d37dd2e27f039b479d8d4c
https://github.com/spiffe/spire/blob/master/doc/telemetry.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Documentation

Good documentation contributes greatly to the overall state of the project. It can ease
the workflow and ensure final quality of the code. For example, having a coding
guideline which is strictly enforced during the patch review process ensures that the
code is readable and can be easily understood by various developers. Following good
conventions can also reduce the risk of introducing bugs and vulnerabilities to the code.

The overall quality of the documentation of SPIFFE/SPIRE is praiseworthy. It contains
every information that is necessary to understand the overall concept of the architecture,
how to deploy it and how to use it. It is structured in a way that step-wise guides help the
user to first learn about SPIRE's design and goals, and then explain how to set up
agents and servers, for example in regard to Kubernetes clusters. Each step gets a
dedicated section in the documentation, inclusive of extensive guides about
configurational details and scaling the architecture throughout multiple trust domains.

The content does not leave much room for questions and underlines the overall maturity
of the software and its concept. Apart from the linked CONTRIBUTING.md inside the
GitHub page, the documentation additionally contains a guideline on extending SPIRE,
mostly for the different plugin systems it supports. It appropriately advises caution when
using third-party plugin code. Extra sections on how to interact with workload APIs is
also offered.

What might be a little confusing for some is that documentation pages inside the GitHub
repository under https://github.com/spiffe/spire/tree/master/doc do not entirely match the
official one. The former often provides a little more detail on certain components of the
SPIRE architecture. Given that the doc pages on GitHub are regularly updated, it should
be considered to sync them with the official documentation more properly.

Organization/Team/Infrastructure Specifics

This section will describe the areas Cure53 looked at to learn more about the security
qualities of the SPIRE project that cannot be linked to the code and software but rather
encompass handling of incidents. As such, it tackles the level of preparedness for critical
bug reports within the SPIRE development team. In addition, Cure53 also investigated
the levels of community involvement, i.e. through the use of bug bounty programs. While
a good level of code quality is paramount for a good security posture, the processes and
implementations around it can also make a difference in the final assessment of the
security posture.

Cure53, Berlin · 02/10/21 11/27

https://cure53.de/
https://github.com/spiffe/spire/tree/master/doc
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security Contact

To ensure a secure and responsible disclosure of security vulnerabilities, it is important
to have a dedicated point of contact. This person/team should be known, meaning that
all necessary information - such as an email address and preferably also encryption
keys of that contact - should be communicated appropriately.

SPIFFE/SPIRE mentions a security contact multiple times in their GitHub repository. The
SECURITY.md and the CONTRIBUTING.md as well as the README.md contain a
small section on where to report security vulnerabilities to. Except for the email address,
no guidelines on the report format or further details are provided. The sections
additionally lack a PGP key which would be beneficial for more severe vulnerability
reports. Additionally, the official documentation lacks further mention of a security
contact. The mentioned email address is not found outside of the GitHub repository.
Since many developers and users start with the documentation under https://spiffe.io/, a
dedicated section about a security contact might be helpful there as well.

Security Fix Handling

When fixing vulnerabilities in a public repository, it should not be obvious that a particular
commit addresses a security issue. Moreover, the commit message should not give a
detailed explanation of the issue. This would allow an attacker to construct an exploit
based on the patch and the provided commit message prior to the public disclosure of
the vulnerability. This means that there is a window of opportunity for attackers between
public disclosure and wide-spread patching or updating of vulnerable systems.
Additionally, as part of the public disclosure process, a system should be in place to
notify users about fixed vulnerabilities.

Walking through the commit log, SPIRE and go-spiffe-v2 did not receive fixes for
vulnerability reports so far. The only exception here is a security fix that would mean that
attackers with read log-files access could obtain JWT-SVIDs7. This is transparently
explained and even highlights the faulty commit that introduced this issue. Still, at the
time of writing, there is no real sample set to judge the handling of security fixes. At the
same time, SPIRE transparently highlighted security impact of version changes that
happened whenever security issues in important libraries were disclosed. There are a
few examples - such as issue #6908 or issue #12049 - that fix vulnerabilities in Golang
and where the commit log mentions the appropriate CVE to highlight what problems the
fix mitigates.

7https://github.com/spiffe/spire/pull/1953
8https://github.com/spiffe/spire/pull/690
9https://github.com/spiffe/spire/pull/1204

Cure53, Berlin · 02/10/21 12/27

https://cure53.de/
https://github.com/spiffe/spire/pull/1204
https://github.com/spiffe/spire/pull/690
https://github.com/spiffe/spire/pull/1953
https://spiffe.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Bug Bounty

Having a bug bounty program acts as a great incentive in rewarding researchers and
getting them interested in projects. Especially for large and complex projects that require
a lot of time to get familiar with the codebase, bug bounties work on the basis of the
potential reward for efforts.

The SPIRE project does not have a bug bounty program at present, however this should
not be strictly viewed in a negative way. This is because bug bounty programs require
additional resources and management, which are not always a given for all projects.
However, if resources become available, establishing a bug bounty program for SPIRE
should be considered. It is believed that such a program could provide a lot of value to
the project.

Bug Tracking & Review Process

A system for tracking bug reports or issues is essential for prioritizing and delegating
work. Additionally, having a review process ensures that no unintentional code, possibly
malicious code, is introduced into the codebase. This makes good tracking and review
into two core characteristics of a healthy codebase.

SPIRE’s readme page10 explains that bugs should be filed via the GitHub’s issue tracker.
There is no exact guideline or template on how to report bugs, leading to a rather messy
report system that makes it harder to distinguish between valid concerns and generic
feature requests.

Apart from that, contributions can be made through pull requests on GitHub. This is
thoroughly explained in the CONTRIBUTING.md11 file where the required coding
conventions and review process are described. Each pull request needs to be approved
by one or two maintainers to make sure all changes comply with the required standards,
in turn preventing submission of malicious or dysfunctional code.

Evaluating the Overall Posture

Choosing the Go programming language for the majority of code in this project has been
a good decision and almost automatically reduces the potential for introducing memory-
safety-related issues. Additionally, the excellent documentation along with the well-
documented processes for patches and contributions further reduce the risk of security
vulnerabilities being handled badly or remaining undetected.

10https://github.com/spiffe/spire#contribute-to-spire
11https://github.com/spiffe/spiffe/blob/master/CONTRIBUTING.md

Cure53, Berlin · 02/10/21 13/27

https://cure53.de/
https://github.com/spiffe/spiffe/blob/master/CONTRIBUTING.md
https://github.com/spiffe/spire#contribute-to-spire
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Note that a dedicated section in the publicly available documentation material also lists
the security audits and assessments that have already been carried out in the past, prior
to Cure53’s thorough posture review and code audit12. A topic worth-mentioning is that of
a bug bounty program, although it is understandable that smaller projects are likely
unable to secure funds for these. However, with future growth of the project and
potentially increased resources, a bug bounty scheme should definitely be considered.

Further, some concerns were raised and documented regarding the configurability and
the high-level of flexibility being a possible venue for mistakes and resulting
vulnerabilities in rolled-out deployments. Two issues were raised here, hinting towards a
more security-aware documentation of the configuration options for additional safety.

Phase 2: Manual code auditing & pentesting
This section comments on the code auditing coverage within areas of special interest
and documents the steps undertaken during the second phase of the audit against the
SPIRE software complex.

• While inspecting the JWT-SVID related parts, it was checked if SPIRE properly
permits and enforces the algorithms set by the specification and enforces a
single header.

• Relating to the server GRPC implementation, it was checked whether the agent
authentication requires a valid and signed certificate with agent attestation, with
special look at various plugins that make attestation obtainable.

• In the realm of authorization, diverse checks were executed against the
AuthorizeAnyOf, lolcaOrAdmin and downStream implementations. Special
attention was paid to the certificate check in the Node authz/authn parts, where a
missing check for the expiration of the certificate in the registration API was
spotted.

• Further checks were executed against the spire-agent and spire-server binaries
running on the provided test-systems using checksec (verifying binary protection
flags); a low severity finding was spotted here and filed as SPI-01-001.

• It was examined whether any outdated or vulnerable third-party software
dependencies affect SPIRe, for instance linking against gorm v1.9.9 which is
vulnerable to an SQLi that was fixed in software version v1.9.10.

• The team also looked at the user-permissions the spire-agent and spire-server
are running with. It has to be noted that the customer confirmed that the spire-
agent was running with root privileges due to the deployment setup that has been
provided, whereas - in real-world scenarios - the spire-agent must not
necessarily run with root privileges.

12https://github.com/spiffe/spire#security-assessments

Cure53, Berlin · 02/10/21 14/27

https://cure53.de/
https://github.com/spiffe/spire#security-assessments
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Further inspected features included the datastore cache (dscache) of the SPIRE
server and its locking mechanism using mutexes, as well as the entry cache
used for caching registration entries of agents of the SPIRE server and similar
processes. No issues have been spotted here.

• Checks were executed against the Trust Bundle Bootstrapping performed by the
SPIRE agent for establishing the initial trust. No issues were spotted here.

• Multiple checks were executed against the SPIRE Workload API. The unix
domain socket was found to have permissions of 0777, meaning anyone on the
system running the spire-agent can connect() to the socket and interact with it.

• The developers are also aware that the workload API socket is completely
unauthenticated.

• The workload API was found to have no rate-limiting implemented; the
developers are aware of the potential risk of a malicious workload attempting to
DoS the agent (assuming discover_workload_path is set to true) by enforcing the
agent to calculate the sha256 checksum of very large binaries during attestation.

• Workload attestation is a crucial component of SPIRE and any ways of
subverting workload attestation could result in stealing identities of neighboring
workloads. No issues were spotted in this area.

• Special attention was given to the implementation of the JWT token verification
the software in scope performs; no issues were spotted though.

• The team also inspected the implementation of the node attestators for the
agent. Node attestation is best being performed on a case-by-case basis, e.g.
leveraging AWS or GCP-based node attestation implies that the computing
platform is assumed to be trustworthy, and leveraging Kubernetes for workload
attestation implies that the Kubernetes deployment is assumed to be trustworthy.

• The join_token is responsible for attesting the agent's identity using a one-time-
use pre-shared key. Here, the team checked the generation of the Join token,
which is using uuid.newV4(). Its validation on the SPIRE server-side was also
reviewed.

• Further checks in this realm included auditing of the code for potential integer
overflows / underflows as well as potential race condition vulnerabilities and
TOCTOU issues. No discoveries were made.

• Audits were also performed against the peertracker, with a particular focus on
Linux. One potential file descriptor leak results in a Denial-of-Service situation
described in SPI-01-006.

• Cure53 paid attention to the active-active setup between granola-regional-1 and
granola-regional-2. Both server instances have the same datastore settings and
server configurations. Such a setup is solely achieved through the configuration
of all servers in the same trust domain to read and write to the same shared
datastore. One of the goals of reviewing such an active-active setup was to

Cure53, Berlin · 02/10/21 15/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

identify potential attacks that should only be performed once and how an active-
active cluster mitigates the risk of an attacker racing in such scenarios.

• The upstream authority setup between granola-regional-1, granola-regional-2
and granola-global has been reviewed but no issues have been identified.

• The team also looked into go-spiffe’s particulars in terms of fetching and
validating SVID’s, but no issues worth-reporting have been spotted.

• Finally, checks were also performed against the Federation features, but no ways
of subverting the federation relationship have been spotted.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. SPI-01-001) for the purpose of facilitating any
future follow-up correspondence.

SPI-01-003 WP2: Path normalization in Spiffe ID allows impersonation (Medium)

It was found that the SPIRE implementation applies unspecified, undocumented and
inconsistent path normalization when parsing or constructing the Spiffe ID. The path
normalization is occasionally applied by SPIRE and was adopted from the filesystem
with respect to anomalies like the current (./) or parent (../) directory.

This allows adversaries to launch a path traversal attack when user-supplied data is
embedded within the path part of the Spiffe ID. This path traversal attack can be
combined with encoded URL entities that are inconsistently decoded. This allows for
several bypasses of security checks and could lead to the misidentification or
impersonation of another node, agent or server.

Affected File:
support/k8s/k8s-workload-registrar/mode-reconcile/controllers/pod_controller.go

Affected Code:
func (r *PodReconciler) makeSpiffeIDForPod(pod *corev1.Pod) *spiretypes.SPIFFEID
{
 var spiffeID *spiretypes.SPIFFEID
 switch r.Mode {
 case PodReconcilerModeServiceAccount:
 spiffeID = r.makeID(path.Join("/ns", pod.Namespace, "sa",
pod.Spec.ServiceAccountName))
 case PodReconcilerModeLabel:

Cure53, Berlin · 02/10/21 16/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 if val, ok := pod.GetLabels()[r.Value]; ok:
 spiffeID = r.makeID(path.Join("/", val))
 case PodReconcilerModeAnnotation:
 if val, ok := pod.GetAnnotations()[r.Value]; ok:
 spiffeID = r.makeID(path.Join("/", val))
 }
 return spiffeID
}

The Kubernetes workload registrar can be configured to use the value of a Kubernetes-
specific pod label. If the value of this pod label is partially or fully attacker-controlled, the
path normalization applied by path.Join can be used to specify an arbitrary identity. A
similar approach was used for some node attestator plugins, allowing to configure the
template for the attested Spiffe ID to include potentially user-controlled data, such as the
AWS instance tags, prior to path normalization.

Affected File:
pkg/common/idutil/spiffeid.go

Affected Code:
func AgentURI(trustDomain, p string) *url.URL {
 return &url.URL{
 Scheme: "spiffe",
 Host: trustDomain,
 Path: path.Join("spire", "agent", p),
 }
}

Attackers could occasionally use URL encoding to the path traversal attack as the path
of a Spiffe ID are sometimes URL-decoded by Spiffe with the Parse function of Go’s
built-in url package.

Affected File:
pkg/common/idutil/spiffeid.go

Affected Code:
func ParseSpiffeID(spiffeID string, mode ValidationMode) (*url.URL, error) {
 u, err := url.Parse(spiffeID)
 [...]

 return normalizeSpiffeIDURL(u), nil
}

Cure53, Berlin · 02/10/21 17/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The Spiffe specification leaves the interpretation of the path of a Spiffe ID to the
administrator. On the one hand, specifying the Spiffe ID as an URL comes with the
comfort and rich presence of many parsers that can be used from all languages. On the
other hand, this diversity pairs tightly with differences in the URL parsing, path and
character normalization. This can be a covert security pitfall when the verifier or the
issuer treats two distinct entities with ambiguous identities.

It is recommended to mention within the Spiffe specification that the interpretation of the
Spiffe ID MUST be consistent across all workloads, agents and servers, especially those
including any path normalization like URL decoding, Path Normalization or Unicode
Normalization. This could be supported by supplying a reference/default interpretation
and, perhaps, supplemented with an implementation of parsing the Spiffe-ID in multiple
languages.

SPI-01-004 WP2: Server impersonation through legacy node API (High)

It was found that the legacy node API suffers from a logical flaw that allows malicious
agents to request and receive a x509 peer certificate for other workloads, agents or
servers within the same trust domain. The handler of the FetchX509SVID method
offered by the server's legacy gRPC node API does not properly validate the Spiffe ID
but only validates the entry ID associated with certificate signing requests received from
authenticated agents.

This handling signifies the risk of malicious or compromised agents performing identity
theft or impersonation attacks against any peers of the trust domain. The issue could be
abused to perform Man-in-the-Middle (MitM) attacks intercepting sensitive information.

Affected File:
pkg/server/endpoints/node/handler.go

Affected Code:
func (h *Handler) buildSVID(ctx context.Context, id string, csr *CSR, regEntries
map[string]*common.RegistrationEntry) (*node.X509SVID, error) {
 entry, ok := regEntries[id]
 if !ok {
 [...]
 return nil, errors.New("not entitled to sign CSR for given ID type")
 }

 svid, err := h.c.ServerCA.SignX509SVID(ctx, ca.X509SVIDParams{
 SpiffeID: csr.SpiffeID,
 PublicKey: csr.PublicKey,
 TTL: time.Duration(entry.Ttl) * time.Second,
 DNSList: entry.DnsNames,

Cure53, Berlin · 02/10/21 18/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 })

Log File Excerpt:
Jan 24 13:24:52 granola-regional-2 spire-server[1212]: ... msg="This API is
deprecated and will be removed in a future release" method=/spire.api.node.Node/
FetchX509SVID subsystem_name=api
Jan 24 13:24:52 granola-regional-2 spire-server[1212]: ... msg="Signing SVID"
address="54.184.34.192:56706"
caller_id="spiffe://granola-co/spire/agent/aws_iid/006101183245/us-west-2/i-
00a447038625dd336" spiffe_id="spiffe://granola-co/spire/server"
subsystem_name=node_api
Jan 24 13:24:52 granola-regional-2 spire-server[1212]: ... msg="Signed X509
SVID" expiration="2021-01-24T14:24:52Z"
spiffe_id="spiffe://granola-co/spire/server" subsystem_name=ca

Reproduction Steps:
1. Receive the entryID of a workload for a targeted spire-agent
2. Build the modified spire-agent via make
3. Run the modified spire-agent via CLI as follows:

◦ spire-agent fetchx509 <targetServerAddress> <spiffeIDToBeSigned>
<entryID> <certificateDirectory>

4. For instance, use the following command as root from granola-workload:
◦ spire-agent fetchx509 'granola-co.spiffe.me:8081' 'spiffe://granola-

co/spire/server' '7de77de9-6897-4f0f-917d-45de852dc2ee'
/etc/spire/.data

5. The response of the gRPC request will now be printed. If successful, it will
contain the signed x509 certificate. Additionally, the log file of the spire-server will
match the excerpt from above.

The Spiffe ID of the certificate signing request should be confirmed to match the Spiffe
ID of the registration entry that is identified by the entry ID supplied by the agent.
Alternatively, support for the legacy node API could be dropped, mitigating this
vulnerability in full.

SPI-01-006 WP1: File-descriptor leak inside Linux peertracker (Medium)

During a review of the workload API, it was noticed that the spire-agent keeps track of
workload processes by having open file descriptors of the workload’s process
/proc/<pid> entry. Under specific circumstances, the function newLinuxWatcher() does
not add the opened file descriptor to the returned linuxWatcher object.

This can, for example, occur whenever the function getStarttime(), invoked by
newLinuxWatcher(), returns an error message. An attacker could leverage this flaw and
cause the agent’s peertracker to exercise this code path many, many times. Hitting the

Cure53, Berlin · 02/10/21 19/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

maximum open file limit set by the Linux operating system would result in DoS. It has to
be noted that this value is configurable and potentially different on different Linux
systems, however, the provided test-servers had the limit of open file handles per
process set to 1024.

Affected File:
spire/pkg/common/peertracker/tracker_linux.go

Affected Code:
func newLinuxWatcher(info CallerInfo) (*linuxWatcher, error) {

// If PID == 0, something is wrong...
if info.PID == 0 {

return nil, errors.New("could not resolve caller information")
}

procPath := fmt.Sprintf("/proc/%v", info.PID)

// Grab a handle to proc first since that's the fastest thing we can
do

procfd, err := syscall.Open(procPath, syscall.O_RDONLY, 0)
if err != nil {

return nil, fmt.Errorf("could not open caller's proc directory:
%v", err)

}

starttime, err := getStarttime(info.PID)
if err != nil {

return nil, err
}

return &linuxWatcher{
gid: info.GID,
pid: info.PID,
procPath: procPath,
procfd: procfd,
starttime: starttime,
uid: info.UID,

}, nil
}

It is important to properly keep track of open file descriptors. Cure53 recommends
closing the opened file handle whenever getstarttime() fails, in order to eliminate the risk
of DoS.

Cure53, Berlin · 02/10/21 20/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SPI-01-001 WP1: Build-system lacks security flags (Low)

While checking the properties of the compiled spire-agent and spire-server binaries, it
has been identified that the resulting binaries do not have the compiler time security
hardening flags enabled. The following security hardening options - applicable and
executable - are missing:

• PIE (spire-agent and spire-server)
• RELRO (spire-agent and spire-server)
• Stack Canaries / Stack-Smashing Protection (spire-agent)
• FORTIFY_SOURCE (spire-agent)

A detailed description of the referred security hardening compiler flags can be found
online13.

Shell excerpt:
The following PoC demonstrates the lack of compile time security hardening flags by
using the checksec.sh14 utility on two of the provided server systems.

34.214.21.89 (granola-global - Root Server)
root@granola-global:/home/ubuntu/tmp/checksec.sh# ./checksec --proc-all
[...]
COMMAND PID RELRO STACK CANARY SECCOMP NX/PaX PIE FORTIFY
[...]
-server 450 Partial RELRO Canary found No Seccomp NX enabled No PIE Yes
[...]

54.149.236.250 (granola-regional-1 - Nested Server)
root@granola-regional-1:/home/ubuntu/tmp/checksec.sh# ./checksec --proc-all
[...]
COMMAND PID RELRO STACK CANARY SECCOMP NX/PaX PIE FORTIFY
[...]
-agent 446 No RELRO No canary found No Seccomp NX enabled No PIE No
-server 449 Partial RELRO Canary found No Seccomp NX enabled No PIE Yes
[...]

13https://wiki.archlinux.org/index.php/Arch_package_guidelines/Security#Golang
14https://github.com/slimm609/checksec.sh

Cure53, Berlin · 02/10/21 21/27

https://cure53.de/
https://github.com/slimm609/checksec.sh
https://wiki.archlinux.org/index.php/Arch_package_guidelines/Security#Golang
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 encourages the use of all existing compiler security features in order to raise the
bar for attackers who aim to exploit vulnerabilities within SPIRE. The missing features
can be enabled by incorporating the following flags in the build-system:

export GOFLAGS='-buildmode=pie'
export CGO_CPPFLAGS="-D_FORTIFY_SOURCE=2"
export CGO_LDFLAGS="-Wl,-z,relro,-z,now"
export CGO_LDFLAGS='-fstack-protector'

SPI-01-002 WP1: SPIRE server stores private key.json world-accessible (Medium)

During an audit of the spire-server-related source code, it was noticed that the key.json
file, holding sensitive information such as JWT-Signer and x509-CA private keys, is
opened and stored with file permissions 0644.

This insecure default file permissions grants read permissions to anyone. It is important
to note that the configured umask of the Linux system, where the spire-server binary is
invoked, gets applied when creating the referred key.json file. Thus, the actual file
permissions strongly depend on the configured umask value.

Affected File:
spire/pkg/server/plugin/keymanager/disk/disk.go

Affected Code:
func writeEntries(path string, entries []*base.KeyEntry) error {

data := &entriesData{
Keys: make(map[string][]byte),

}
for _, entry := range entries {

keyBytes, err := x509.MarshalPKCS8PrivateKey(entry.PrivateKey)
if err != nil {

return err
}
data.Keys[entry.Id] = keyBytes

}

jsonBytes, err := json.MarshalIndent(data, "", "\t")
if err != nil {

return newError("unable to marshal entries: %v", err)
}

if err := diskutil.AtomicWriteFile(path, jsonBytes, 0644); err != nil {
return newError("unable to write entries: %v", err)

}

Cure53, Berlin · 02/10/21 22/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

return nil
}

The following output was captured on the granola-local host and shows that sensitive
information is stored within the referred keys.json file.

Shell excerpt:
root@granola-global:/etc/spire# cat keys.json
{

"keys": {
"JWT-Signer-A":

"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgnHN6i3MmltAFIunvAfFCGm65d0sxBOt
Xhny6gqf4xQqhRANCAAQ+u3j23JuqxnRHiuWjhuQ1cItJFluxRjTm+HVXENeq6KAX3QgqpxkarVuG+SZ
jS0A0TzoqJHd1M7yMvdD+zR19",

"JWT-Signer-B":
"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgt9/m9kbtMmFmTNSVX1OukhId2B3fBIs
FIKTPs4tUiiqhRANCAAQHP6raGmLbnrIQp5FzRSFTrVSEEbLh3tgXSgIxokHYnb9bVK9mJa+rpUjMw7r
l77w7CWhqRKjEvevBRvhVFPNd",

"x509-CA-A":
"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgRKQFwCWb/cWN2XM0gkz9P9Rt7O7LeG4
2eJ7Tm7x/tgWhRANCAASI/
Pl5gMAxim1iD0tn0ILvkwz7N5JuyqluIvM4MZ050g8bWsus47jtzzbHi6VT6Xp/
yDLM8fmWQtXsrvBOgYyA",

"x509-CA-B":
"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgHtk+zLvKi4gpH1ILq3ywafZ3i/
c4HOez3HV7IoyCwBWhRANCAAQIEDGWWk/HgBDBA1gRcRH01B/
V+pbNdQVp63RrGQ0PQ7P1+Q5ScSD38qs8S2eKmQ1o9/rFdFTjusWqgGF0A/ru"

}

In the example output depicted above, the configured umask on the provided granola-
local host prevented read access of the keys.json file because of the restrictive umask
settings.

Sensitive information, such as private-keys, should never be stored with file permissions
0644. 0600 should be used instead, only granting read and write permissions to the
owner of the file.

SPI-01-005 WP1: SPIRE links against outdated third-party modules (Medium)

While reviewing all third-party dependencies that are linked within SPIRE-v0.12’s
codebase, it was noticed that the go.mod file (the file that lists all dependency
requirements and their versions) contains a list of outdated modules. A few noteworthy
mentions are enumerated in the list below.

Cure53, Berlin · 02/10/21 23/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Excerpt with outdated modules:
• github.com/Azure/azure-sdk-for-go

◦ Linked v44.0.0 instead of v50.1.0
• github.com/mattn/go-sqlite3

◦ Linked v1.10.0 instead of v1.14.6
• github.com/sirupsen/logrus

◦ Linked v1.4.2 instead of v1.7.0
• github.com/jinzhu/gorm

◦ Linked v1.9.9 instead of v1.9.16
• etc…

Especially newer versions of the mentioned gorm library contain fixes for one CVE15 that
was reported for versions below 1.9.10. Although the patch for this CVE was reverted at
some point (since it can be considered a non-issue), the current situation with the
dependency management is not optimal. At present, especially security fixes that
happen during version changes will go unnoticed. This is also mentioned in the maturity
section in the beginning of this report where potential automated solutions are
highlighted. It is recommended to make sure that version changes for dependencies are
included in the build process of SPIRE.

SPI-01-007 WP1: Path traversal in Spiffe ID via potentially unsafe join token (Info)

It was found that the join token supplied by the user is then used for the attested Spiffe
ID. This could be dangerous if the datastore plugin cuts the join token16 or performs
mutations on the join tokens before looking them up. This could be abused to bypass the
allow-list and perform attacks similar to SPI-01-003.

Affected File:
pkg/server/api/agent/v1/service.go

Affected Code:
func (s *Service) attestJoinToken(ctx context.Context, token string)
(*nodeattestor.AttestResponse, error) {
 log := rpccontext.Logger(ctx).WithField(telemetry.NodeAttestorType,
"join_token")

 resp, err := s.ds.FetchJoinToken(ctx, &datastore.FetchJoinTokenRequest{
 Token: token,
 })
 [...]

15https://www.cvedetails.com/cve/CVE-2019-15562/
16An example of a similar flaw in MySQL is illustrated here:
 https://mathiasbynens.be/notes/mysql-utf8mb4

Cure53, Berlin · 02/10/21 24/27

https://cure53.de/
https://mathiasbynens.be/notes/mysql-utf8mb4
https://www.cvedetails.com/cve/CVE-2019-15562/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 tokenPath := path.Join("spire", "agent", "join_token", token)

It is recommended to use the join token returned by the datastore instead of using the
one sent by the agent. By doing so, implementation flaws of the datastore that cut the
join token at specific characters or internally before looking them up are mitigated by
design.

SPI-01-008 WP1: Anti-SSRF hardening not applied for SDS API (Info)

It was found that additional hardening gained through the anti-SSRF token is only
applied to the workload API. This introduces the risk of software that runs on the
workload being prone to a non-blind SSRF vulnerability, potentially granting attackers
access to the unhardened Secret Discovery Service (SDS).

Affected File:
pkg/agent/endpoints/middleware.go

Affected Code:
func verifySecurityHeader(ctx context.Context, fullMethod string)
(context.Context, error) {
 if isWorkloadAPIMethod(fullMethod) && !hasSecurityHeader(ctx) {
 return nil, status.Error(codes.InvalidArgument, "security header missing
from request")
 }
 return ctx, nil
}

It is recommended to accept but consider this risk in the security section of the
documentation pertinent to configuring SDS. Relevant endpoints of the workload API
should be listed to have the users additionally informed that the SDS API is unprotected
against SSRF attacks.

Cure53, Berlin · 02/10/21 25/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
This comprehensive report demonstrates that the SPIRE project, which is the SPIFFE
Runtime Environment, has been created with security in mind. The involved members of
the Cure53 team, who were commissioned by CNCF to complete this broadly-scope
security examination in January 2021, could not find any severe (or Critical) security
flaws within the SPIRE complex.

Despite an in-depth review of various high impact components of SPIRE, the work
asserted the maintenance of high security levels. The meanwhile pretty massive
codebase of SPIRE made a solid impression, clearly showcasing that the in-house
developers are aware of secure programming principles.

The choice of the programming language, GoLang, positively contributes to the general
security posture and reduces the exposure to risks. In addition, it eliminates some bug
classes significantly, as is the case with memory corruption issues and the likes often
found in C/C++. Cure53 must underline that the SPIRE workload attestation API is a
very interesting target for attackers, meaning that it should be protected with uttermost
scrutiny. It was not possible to subvert the workload attestation process, however, one
potential Denial-of-Service issue has been spotted (SPI-01-006).

The examination revealed that the Go build process has not been taking full advantage
of existing binary protection flags hardening, which exposes SPIFFE binaries to potential
exploitation vectors (SPI-01-001). Due to the provided setup, an audit of some platform
specific plugins, e.g. Kubernetes and docker workload attestation, was only possible
from a static code analysis perspective. Considering the maturity of the SPIFFE/SPIRE
design concept and its architecture, Cure53 was left with a very good impression on the
whole.

To reiterate, the codebase, together with its extensive documentation, is very clean,
well-structured and easy to follow. Despite the fact that there are some weaknesses
here and there, like outdated third-party libraries (see SPI-01-005), or lacking input
validation (as in SPI-01-004), the overall quality of the whole project can be judged as
quite mature.

Note that issue SPI-01-004 presents an attractive attack-vector for attackers who wish to
escalate the identity of a spire-agent into a spire-server. Its presence stresses the
importance of SPIRE's decision to remove the deprecated legacy node API. While this
was found to be an anomaly, SPI-01-001 was present throughout the examined code of
SPIRE. This seems to be a more fundamental issue that could have arisen from the
SPIFFE specification. The security-relevance of building, parsing and interpreting

Cure53, Berlin · 02/10/21 26/27

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SPIFFE IDs consistently in all environments of all federated Trust Zones is thereby
resonated. In addition, the specification could stress the danger of embedding user input
into attested SPIFFE IDs while applying Path Normalization as observed in SPI-01-001
or SPI-01-007.

Judging by the rest of the issues and the complexity of the project, it can be argued that
the developers of the reference implementation of SPIFFE have proven their awareness
of modern vulnerabilities. The mitigations they have crafted and utilized are capable of
reducing the attack preponderance of the SPIRE complex on the whole, as evident from
a small number and generally limited numbers of findings. This is especially impressive
in the face of the sheer size of the codebase, indicating that there really is not that much
to improve from the auditors’ perspective. With remediation of the issues highlighted by
Cure53 above, the already high level of security would be increased even further.

Finally, it is important to stress the good flow and efficiency of the communication
between the testers and the SPIFFE team. No questions were left unanswered and the
provided self-security assessments fostered understanding the concepts and security
model of the whole project. Additional material regarding potential attacker models and
greater worries also served the purpose of streamlining testing efforts. To conclude,
while several issues were spotted and documented in this January 2021 project, the
overall impressions of the state of security and its documentation are positive. It is clear
that the SPIRE project maintainers are on the right track regarding security.

Cure53 would like to thank Andres Vega, Agustín Martínez Fayó, Andrew Harding and
Evan Gilman from the SPIRE team as well as Chris Aniszczyk of The Linux Foundation,
for their excellent project coordination, support and assistance, both before and during
this assignment. Special gratitude needs to be extended to The Linux Foundation for
sponsoring this project.

Cure53, Berlin · 02/10/21 27/27

https://cure53.de/
mailto:mario@cure53.de

	Security-Review Report SPIRE 01-02.2021
	Index
	Introduction
	Scope
	Test Methodology
	Phase 1: General security posture checks
	Phase 2: Manual code audits and penetration tests

	Phase 1: General security posture checks
	Application/Service/Project Specifics
	Language Specifics
	External Libraries & Frameworks
	Configuration Concerns
	Access Control
	Logging/Monitoring
	Unit/Regression and Fuzz-Testing
	Documentation

	Organization/Team/Infrastructure Specifics
	Security Contact
	Security Fix Handling
	Bug Bounty
	Bug Tracking & Review Process

	Evaluating the Overall Posture

	Phase 2: Manual code auditing & pentesting
	Identified Vulnerabilities
	SPI-01-003 WP2: Path normalization in Spiffe ID allows impersonation (Medium)
	SPI-01-004 WP2: Server impersonation through legacy node API (High)
	SPI-01-006 WP1: File-descriptor leak inside Linux peertracker (Medium)

	Miscellaneous Issues
	SPI-01-001 WP1: Build-system lacks security flags (Low)
	SPI-01-002 WP1: SPIRE server stores private key.json world-accessible (Medium)
	SPI-01-005 WP1: SPIRE links against outdated third-party modules (Medium)
	SPI-01-007 WP1: Path traversal in Spiffe ID via potentially unsafe join token (Info)
	SPI-01-008 WP1: Anti-SSRF hardening not applied for SDS API (Info)

	Conclusions

