
Chapter 1 : Tasks Accomplished and Scripts Developed

1. OCR :​ Extract meaningful text from scanned pdf files in british-ufo-dataset
a. separate-pdf.sh : ​Script separates all pdf files in given input path/folder into separate page pdf

files
b. pdftotext.sh : ​Automates the generation of xyz_gs.tiff, xyz_im.tiff, xyz_gs.txt and xyz_im.txt

using both GhostScript and ImageMagick for .tiff file generation and Tesseract for .txt file
generation

c. extract_text.sh : ​Runs through all extracted text files in outtxt/ and pools locations into
files_list.txt

d. ocr-pipeline.sh ​: automation of text extraction using tesseract on pdf files with just
ImageMagick to observe different results

e. extract-text.sh: ​Fetches data from each of the files in outtxt/ and creates output.json file with
key - filepath and sub keys im (data collected from Imagemagick extraction) and gs (data
collected from Ghostscript extractions)

f. extract.py : ​Fetches data from each of the files in outtxt/ and creates output.json file with key -
filepath and sub keys im (data collected from Imagemagick extraction) and gs (data collected
from Ghostscript extractions)

g. extract-ocr-final.py : This script reads the output.json file in the split-british-ufo-files folder in
data (which contains the mapping of individual file extractions and their locations) extracts data
from all the listed files and provides clean output for the parser in json format for each page of
pdf files

2. Text Parser: ​Extract meaningful information from OCR text
a. clean_ocr.py ​:Attempts to filter text in “im” and “gs” fields by removing unicode characters that

are not printable, replace punctuation with spaces and remove multiple spaces.
b. pythonParser2.py : Parses over the output of previous python program to extract named

entities by using a ‘Named Entity Recognition Parser’ from texts and adds content (location,
date, description)to British ufo files (as extracted by OCR). Also populates NER fields with
Named Entities

3. Scrapping ufostalker, Object detection and image captioning ​: Scrape ufostalker.com and fetch
image urls and relevant text like location, description, lat,long and use object detection (tika dockers) to
populate UFO-v1 with more rows and relevant fields

a. ObjectRecognitionParser.java: ​Added a block of code that appends list of objects or captions
to a file

b. scrp.py ​: Selenium crawler that hits events on ufostalker.py to extract image urls only. We used
this initially to hit 9000 events and this took more than a day to complete due to blocking issues
and had to be split amongst teammates

c. ufo_stalker_json.py : Modified professor’s script to match our needs. Used ufostalker’s json
api to fetch data and append results with relevant details(like lat, long, county, location etc)
along with corresponding urls and zip codes.

d. filter-relevant-images.py : Filters relevant images and compares total overall crawled images
to results from scrapy.py and pics the intersection of urls

e. clean_ufotalker.py : Takes object, captions and urls from the results of object detection and
creates a mapping (into cleaned_ufostalker_content_urls askeys-2.json)

f. version2.2-ufo.py : Takes the resultant image to caption and object mappings and populates
the data fetched for each entry into version2.2 with location, description, object shape etc.

g. parser3.py : This code runs the extracted descriptions from ufostalker on stanford NLP tagger

to fetch and populate named entities (NER) Parses the ‘description’ field from the ‘object
detection’ output and applies Named Entity Recognition to recognise different entities and
populate relevant fields.

h. get_images.py​ : Downloads the images to a directory from the list of links given through a file
i. objects.py : Performs object detection and image captioning for all the UFO images using Tika.

Creates objects.txt and caption.txt file.
j. check_extension.py : Cleans the URLs received from UFO site. Only png, jpeg and gif are

considered.
4. NER : Ran the descriptions from v1 on 5 different Named Entity Recognizer packages with Tika app

and analyzed results
a. CoreNLP.py​: Takes “description” field in v1 as the input and uses Tika app plus Stanford

CoreNLP to extract name entities from it.
b. OpenNLP.py​: Takes “description” field in v1 as the input and uses Tika app plus OpenNLP to

extract name entities from it.
c. MITIE.py​: Takes “description” field in v1 as the input and uses Tika app with MIT information to

extract named entities from it.
d. NLTK.py​: Takes “description” field in v1 as the input and uses Tika app with natural language

toolkit (a python library) to extract named entities from it.
e. Grobid.py​: Takes “description” field in v1 as the input and uses Tika app with Grobid Quantities

(a JAVA library) to extract named entities from it.
Each script generates a file storing the name entities parsed by each package.

f. integrate_datasets.py​: Takes the files generated by the scripts above as inputs, creates new
fields in v2 (‘NER_*’).
CoreNLP, OpenNLP, MITIE :​ NER_LOCATION, NER_DATE, NER_MONEY,
NER_ORGANIZATION, NER_PERCENTAGE, NER_TIME, NER_PERSON
NLTK: ​NER_NAMES
GROBID:​ NER_MEASUREMENTS, NER_MEASUREMENT_NUMBERS,
NER_MEASUREMENT_UNITS

5. Retraining Last Layer for Image2Text ​:
Run retrain.py provided by Tensorflow according to the website:
https://www.tensorflow.org/tutorials/image_retraining
We used default hyperparameters to retrain the model.

6. Merge datasets:​ merge v1, british ufo sightings, ufostalker
a. merge.py : merges v1-withNER.json, british-ufo-withNER.json, ufo_stalker_withNER.json to

create v2.json (version 2)
This merges 60095(v1-withNER) , 1732 (british-ufo-withNER) and 8563 (ufo_stalker_withNER)
to produce 70390 (v2.json)

b. jsonToTSV.py: converts v2.json to v2.tsv

Final dataset has 35 columns/keys:
['CO Mean', 'NER_DATE', 'NER_LOCATION', 'NER_MEASUREMENTS',
'NER_MEASUREMENT_NUMBERS', 'NER_MEASUREMENT_UNITS', 'NER_MONEY', 'NER_NAMES',
'NER_NORMALIZED_MEASUREMENTS', 'NER_ORGANIZATION', 'NER_PERCENTAGE', 'NER_PERSON',
'NER_TIME', 'O3 Mean', 'SO2 Mean', 'airport_distance', 'airport_name', 'cancer_incidence_counts_allraces',
'cancer_incidence_counts_hispanic', 'cancer_incidence_counts_white', 'county', 'death rate', 'description',
'duration', 'image-captions', 'image-objects', 'image-url', 'latitude', 'location', 'longitude', 'population',
'reported_at', 'shape', 'sighted_at', 'zipcode']

https://www.tensorflow.org/tutorials/image_retraining

image-* columns added from object detection and caption generation of ufo-stalker images.

NER_* columns added from NER performed using 5 different models.

Chapter 2 : Analysis

1. What questions did your new joined datasets allow you to answer about the UFO sightings
previously unanswered?
By adding new rows to the UFO v1 dataset we had more data to analyze UFO patterns. This was also
supported with new Columns or Features in the sightings. The most important features were the objects
detected from images. We discovered a few keywords (like nematode, spotlight etc - please see bar
chart on next page) that indicated accurately the presence of orbs in the sky. This helped us
understand the nature of the sightings as to how other features perform in the presence of these
keywords in the object field. Adding Named Entity features to all the rows helped us analyse the
authenticity of some sightings. This was particularly helpful in analyzing the British UFO data which had
poor description. Given we applied the best techniques within our discretion to enhance OCR
implementation, it still lacked enough data extraction from the scanned PDFs. Also, in places where no
named entities were recognized or where descriptions were less than three words, we could conclude
that these reportings added little value to the dataset.

2. How well did the image captions accurately describe the UFO object types?
One would expect the image captioning model to predict captions like ‘an unidentified flying object
spotted’ or ‘something strange flying in the sky’. The models being trained on general images had little
data on UFO’s to predict. So we observed different factors to decide if a caption was accurate or not.

1. The caption identifies the presence of an object in the sky (if image has one)
2. The caption uses at least one of the objects detected from the image
3. The caption closely describes the location or scenery of the image

Based on these three features as our assumptions, we observed that 71% of the captions were
relevant to the images and could imply the presence of UFO objects. Examples include "a view of a city
skyline from a plane", "a person flying through the air while riding a snowboard".
Now, given we scrap our assumptions from before - the model tends to perform poorly in coordination
with the object types. There were close to 21% image captions that accurately described anything close
to the UFO object types. The following images and their captions show one of each results

3. What about the identified objects in the image?
The object detection model performed with a high accuracy in detecting objects in the image. The
images with "possible" UFO detection had similar set of words in their object list. These include
nematode, spotlight, jellyfish, balloon, parachute, roundworm ​etc. We thus assume without any
harm, that these words represent possible UFO sighting. Also, in other general images, the objects
were detected with a good accuracy. For example,

img_2866.jpeg - [​balloon, parachute, chute, airship,​ ​dirigible​]

img_2756.jpeg - [​flagpole, flagstaff, seashore, coast, seacoast, sea-coast, lakeside,
lakeshore​]

4. How well did OCR work?

OCR using Tesseract did not provide best results. We concluded that the reason was poor quality of
scanned pdfs. A lot of the data was garbled and difficult to understand. We observed that pdf pages
when converted to images using ImageMagick did not only lose some clarity but when applying OCR to
the image made little progress in text extraction. However, applying effective data cleaning and noise
reduction techniques boosted the OCR results upto 23%

5. What did you have to do to clean up the noise in the data?
We explored GhostScript as an alternative to ImageMagick and found out that using GhostScript to

convert pdf to tiff files
on images with white
backgrounds was more
productive as
compared to
ImageMagick, where
as on images with
black/dark
backgrounds, the
opposite was true. So
we compare the results
as we can see
alongside where left is
a conversion of PDF to
TIFF using
GhostScript(GS) and

right is a conversion of the same PDF to TIFF using ImageMagick(IM). Note the clarity difference in the
text on white background and the text on black background. This analysis supported our decision to
developed a script - pdftotext.sh that would generate both tiffs, using IM and GS and run tesseract on
the resultant TIFF files to enable comprehensive extraction of content from scanned PDFs. Doing this

allowed us to choose the best results from both tools and improved the number of accurate word
extractions by 23%.

6. Of the incorporated British UFO sightings, how many of them could also similarly be explained
akin to the sightings from the first assignment?
1732 entries were similar out of a total of 1968 entries. We evaluate similarity of sightings based on the
description extracted, and shape of objects detected. Having done NER on the dataset (both v1 and
british ufo files) we could establish a better similarity measure between the two datasets by using the
NER features (like NER_PERSON, NER_LOCATION and NER_ORGANIZATION)

7. Were there any new object types introduced by the British UFO sightings?
Yes. “Bowl”, “lamps”, “roundworm”, “coin”, “globe” were some of the new shapes that were found.

8. How well were the British UFO sightings described?
From manual reading of PDF files of the British UFO dataset, we observed that there was a variation in
the details provided in descriptions. Where some reportings were perfectly described with accurate
adjectives, others had only a few words to say. We observed that 44% of the scanned PDFs had
enough information to add to description apart from location and other features. The only bottleneck
was the poor quality of the scanned PDFs that hindered bringing all this valuable information into clean
usable format. Further, we hoped to explore handwritten text extraction to improve the results (but
could not explore due to lack of time)

9. Was there a lot of missing data?
Indeed there was a lot of missing data related to the shape and latitude/longitude. Our parser could
identify numbers but wasn’t intelligent enough to recognize the context of the number (whether the
number was for population, duration, time)

10. Of the UFO images, how many of the images actually generated image captions and/or objects
that described the UFO and not just the background scenery?
We observed that close to 43% of the images (from ufo stalker) or ~3.6k images had relevant
information regarding UFO objects. Of these, 37% also included descriptions about the scenery.

11. Also include your thoughts about OCR pipelining, and Image Captioning/Object identification –

what was easy about using it? What wasn’t?
The best part about the OCR pipeline is it helped us understand the importance of automating scripts.
This is the biggest advantage when dealing with big data. The OCR pipleine improved our clarity in the
steps involved and how to make a valuable sequence of commands iterative to the requires solution.
Further analysis and probing helped us understand the advantages of ImageMagick and GhostScript
and this we unofficially shared with some other teams too. This helped us explore different flags and
support provided by the different tools.
Image Captioning/ Object identification was effective and produced best results of the two types of data
extraction techniques applied in this assignment. The tools were easy to use and had clear
documentation. We also observed that adding a new flag to the tika-app to process all images in bulk
would solve the object detection pipelining.

Chapter 3 : Extra Credit Analysis
1. Extract Credit 1 : NER

a. Comparing the performance of Tika with different NLP packages for NER:
i. CoreNLP, OpenNLP, MITIE packages worked best to identify specific Named Entities

like location, date, money, organization, time, person and percentage.
ii. NLTK was best able to identify names only
iii. Grobid Quantities recognized any expressions of measurements (e.g. pressure,

temperature, etc.).
b. Processing text files is time- and space- consuming, so we processed a subset of the v1

dataset. Particularly, CoreNLP and OpenNLP consumed extensive resources and thus we
decided to apply NER for close to 8000 entries in v1 dataset. In
data/Results/final/v1-withNER.json holds all our additions to v1. Further we used StanfordNLP
tagger to tag the british ufo files and ufostalker entries with Named entities. (this proved to be
faster than other packages, though could evaluate a limited set of entities and not a variety of
them)

2. Extra Credit 2:​ ​Retrain last layer of images for Image2Text.
a. We re-trained the last layer of the model using 4000 images from our ufo-stalker image

collection.
b. This was time intensive and we could not completely evaluate the performance of the re trained

model and thus did not submit a pull request. However, we attach code herewith and hope to
evaluate the model later and submit a pull request.

Chapter 4 : Conclusion

We wrote a TikaParser (code/object-detection-ufostalker/ObjectDetectionParser.java)for object detection and
have attached the code herewith. This code modifies existing code to reroute tika’s abilities for multiple image
inputs. We hope to clean this code and make it more general and then submit a pull request to the github
repository.

Further, we could not completely write a TikaParser for the British UFO files as we faced several issues with
running Tika, and some of which were open issues as observed on the github issues page. Trying to fix these
issues costed us an entire week with little progress and thus we decided to write a simple python parser that
works with basic string matching to detect information and also uses advanced NLP techniques like Named
Entity Recognition to populate features in out v2 dataset.
Log.txt file in code/ shows the logs of running ImageMagick and Ghostscript on a series of PDFs to record
success or failure of the actions.

