
Administer DI Server

This document supports Pentaho Business Analytics Suite 5.0 GA and Pentaho Data Integration 5.0 GA,
documentation revision August 22, 2013, copyright © 2013 Pentaho Corporation. No part may be reprinted without
written permission from Pentaho Corporation. All trademarks are the property of their respective owners.

Help and Support Resources
If you do not find answers to your quesions here, please contact your Pentaho technical support representative.

Support-related questions should be submitted through the Pentaho Customer Support Portal at
http://support.pentaho.com.

For information about how to purchase support or enable an additional named support contact, please contact your
sales representative, or send an email to sales@pentaho.com.

For information about instructor-led training, visit
http://www.pentaho.com/training.

Liability Limits and Warranty Disclaimer
The author(s) of this document have used their best efforts in preparing the content and the programs contained
in it. These efforts include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these
programs or the documentation contained in this book.

The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or claims.

Trademarks
Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation. All other trademarks are the
property of their respective owners. Trademarked names may appear throughout this document. Rather than list
the names and entities that own the trademarks or insert a trademark symbol with each mention of the trademarked
name, Pentaho states that it is using the names for editorial purposes only and to the benefit of the trademark
owner, with no intention of infringing upon that trademark.

Third-Party Open Source Software
For a listing of open source software used by each Pentaho component, navigate to the folder that contains the
Pentaho component. Within that folder, locate a folder named licenses. The licenses folder contains HTML.files that
list the names of open source software, their licenses, and required attributions.

Contact Us
Global Headquarters Pentaho Corporation
Citadel International, Suite 340
5950 Hazeltine National Drive
Orlando, FL 32822
Phone: +1 407 812-OPEN (6736)
Fax: +1 407 517-4575
http://www.pentaho.com

Sales Inquiries: sales@pentaho.com

http://support.pentaho.com
mailto:sales@pentaho.com
http://www.pentaho.com/training
http://www.pentaho.com
mailto:sales@pentaho.com

 | TOC | 3

Contents

Introduction..5
Specify Data Connections for the DI Server..6

JDBC Database Connections... 6
Define Native (JDBC) Database Connections.. 6

Add Drivers.. 7
Specify Native (JDBC) Connection Information... 7

Define JNDI Connections for the DI Server.. 11
Define OCI Connections for the DI Server..11

Add Drivers.. 11
Create OCI Connections..12
Add Database-Specific Options... 12
Advanced Configuration of Database Connections... 13
Define Connection Pooling.. 13
Connect to Clusters... 14
Modify Connections... 14

Create a Connection to the DI Repository...15
Implement Advanced Security for the DI Server..16

Configure LDAP for the DI Server.. 16
LDAP Properties.. 16

Manual JDBC Connection Configuration.. 18
Create LDAP/JDBC Hybrid Configuration for the DI Server... 18
Configure Microsoft Active Directory for the DI Server... 20

Import and Export PDI Content..22
Import Content Into a Repository..22

Use the Import Script From the Command Line.. 22
Export Content From the Repository.. 23

Create Clusters..24
Configure Carte to Be a Static Slave Instance... 24
Configure a Dynamic Cluster..24

Configure Carte as a Master (Load Balancer)... 24
Configure Carte to Be a Dynamic Slave Instance..25

Create a Cluster Schema in Spoon.. 26
Execute Transformations in a Cluster...27
Initialize Slave Servers in Spoon.. 27
Execute Scheduled Jobs on a Remote Carte Server... 28

Install License Keys Using the Command Line Interface.. 30
Assign Permissions to Use or Manage Database Connections.. 31
List of Server Ports Used by PDI...33

Change Service Port Numbers... 33
Change the DI Server URL..34
Logging and Monitoring... 35

Enable Logging...35
Log Rotation...35

Monitor Job and Transformation Results..36
slave-server-config.xml.. 37

Data Integration Operations Mart... 37
Install the DI Operations Mart.. 37
Set Up Database Connections...38
Create the DI Operations Mart...38
Configure Logging Data Collection.. 39
Update the Logging for the DI Operations Mart... 39
Load the Sample Data in the DI Operations Mart.. 40
Set Up and Distributethe Data Models...40
Give Users Access to the DI Operations Mart... 41

 | TOC | 4

Create Charts, Reports, and Dashboards Using PDI Operations Mart Data................................... 41
Logging Tables Status for the Data Integration Operations Mart...44
Logging Dimensions and Metrics for the Data Integration Operation Mart...................................... 45
Clean Up Operations Mart Tables... 50

Contents of the .kettle Directory.. 51
Change the PDI Home Directory Location (.kettle folder)...51

Back Up the DI Repository.. 52
Troubleshooting...53

Jobs scheduled on the Data Integration Server cannot execute a transformation on a remote Carte server53
Sqoop Import into Hive Fails...53

 | Introduction | 5

Introduction

In this section, you do some configuration tasks and fine-tuning so you can create ETL solutions that fit your needs.

Prerequisites

Before you begin, you must have installed Pentaho Data Integration software. If you chose to install the Pentaho
Business Analytics software you must go through a different configuration process. You must also have performed
some configuration tasks.

Expertise

The topics in this section are written for IT administrators who know where data is stored, how to connect to it, details
about the computing environment, and how to use the command line to issue commands for Microsoft Windows, Linux,
or Microsoft OS.

Tools

We provide a design tool, Spoon, that you can use to perform some tasks. Other tasks must be performed using the
command line interface.

Login Credentials

All of the configuration tasks that use Spoon require that you login to Spoon using a Pentaho administrator user name
and password.

 | Specify Data Connections for the DI Server | 6

Specify Data Connections for the DI Server

Pentaho Data Integration (PDI) allows you to make connections in each job and transformation through an input step.
Although users can create connections themselves, it is best to set up shared connections for your users so that
they can simply select the connection they need from a list. We help you download the correct drivers, choose the
connection type, and then create the connection.

JDBC Database Connections
To connect to databases, install the driver for your database, as well as define the access protocol and settings now.
You can choose from these access protocols.

• Native (JDBC): This is a commonly used access protocol. Please see details in the Database Access Protocol
Decision Table to ensure you make an informed choice.

• JNDI: This also is a commonly used access type. Please see details in the Database Access Protocol Decistion
Table to ensure you make an informed choice.

• ODBC: We do not support ODBC, and it is our recommendation that you use the JDBC driver instead the ODBC
driver. You should only use ODBC when there is the need to connect to unsupported databases by using the generic
database driver or other specific reasons. For more information, see Why Should You Avoid ODBC? on the Pentaho
public wiki.

• OCI:If you are connecting to an Oracle database, you must first install the appropriate OCI driver and add the OCI
connection.

Table 1: Database Access Protocol Decision Table

Choose OptionsIf You Are Interested In

Native (JDBC) JNDI

• Understanding options Native (JDBC) connections are the
easiest way to get going quickly. You
specify the connection information in
Spoon. The connections are controlled
by the DI Server.

If the connection information changes,
you change it in Spoon for each
connection you have defined.

JNDI connections are maintained in the
application server, offering more advanced
configuration options. One typical use case
is you may want to hide security credentials
from administrators of the Pentaho system.
You specify the connection information by
editing the context.xml file and selecting
JNDI as the access type in Spoon.

If the connection information changes, you
change the context.xml file.

• Expertise needed Knowledge of the JDBC driver and
options for your RDBMS

Knowledge of Tomcat or JBoss JNDI
connection procedures and options

• How much time it takes Approximately 10 minutes Approximately 30 minutes

• Recommendation Use for the Pentaho Trial Download,
evaluating, and rapid development.

Use for production or when the work
environment is distributed in a network.

Define Native (JDBC) Database Connections
Once you have chosen to use the Native (JDBC) access protocol, here are configuration and maintenance tasks you
can perform.

• Add Drivers
• Create Connections
• Add Database-Specific Options
• Configure Database Connections
• Define Connection Pooling

http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface
http://en.wikipedia.org/wiki/ODBC
http://wiki.pentaho.com/pages/viewpage.action?pageId=14850644
http://en.wikipedia.org/wiki/Oracle_Call_Interface

 | Specify Data Connections for the DI Server | 7

• Connect to Clusters
• Modify Connections

When you are done, please go on to the next stop on the Guide Post graphic.

Add Drivers

The DI Server and workstations need the appropriate driver to connect to the database that stores your data. Your
database administrator, Chief Intelligence Officer, or IT manager should be able to provide the appropriate driver. If not,
you can download drivers from your database vendor's website. See the Supported Technologies to ensure that your
database and its driver are supported by Pentaho.

Note: If you are using a Microsoft SQL Server (MSSQL), you might need to use an alternative, non-vendor-
supported driver called JTDS. Contact Pentaho support to ensure that you are adding the correct driver.

Installing Drivers

Once you have the correct driver, copy it to these directories.

DI Server: /pentaho/server/data-integration-server/tomcat/webapps/pentaho-di/WEB-INF/lib/
.

Spoon: data-integration/lib

You must restart Spoon for the driver to take effect.

There should be only one driver for your database in this directory. Ensure that there are no other versions of the same
vendor's driver in this directory. If there are, back up the old driver files and remove them to avoid version conflicts. This
is a concern when you are adding a driver for the same database type as your Pentaho solution repository. If you have
any concerns about how to proceed, contact Pentaho support.

When the driver files are in place restart the server.

Connecting to a Microsoft SQL Server Using Integrated or Windows Authentication

If you are using a Microsoft SQL Server (MSSQL), you might need to use an alternative, non-vendor-supported driver
called JTDS. Contact Pentaho support to ensure that you are adding the correct driver

For Microsoft Windows, most JDBC drivers support Type 2 integrated authentication through the
integratedSecurity connection string property. To use integrated authentication, copy the sqljdbc_auth.dll
file to all machines and directories to which you copied the JDBC driver. You can find this file in this location.

<installation directory>\sqljdbc_<version>\<language>\auth\

If running: Use the sqljdbc_auth.dll file here:

32-bit Java Virtual Machine (JVM) even if the operating
system is version x64

x86 folder

64-bit JVM on a x64 processor x64 folder

64-bit JVM on an Itanium processor IA64 folder

Specify Native (JDBC) Connection Information

Before you can create the connection, you must have installed the appropriate JDBC driver for your particular data.

Pentaho Data Integration (PDI) allows you to define connections to multiple databases provided by multiple
database vendors (MySQL, Oracle, PostgreSQL, and many more). PDI ships with the most suitable JDBC drivers for
PostgreSQL, our default database.

Note:

Pentaho recommends that you avoid using ODBC connections. The ODBC to JDBC bridge driver does not
always provide an exact match and adds another level of complexity that may affect performance. The only time
you may have to use ODBC is if there is no available JDBC driver. For details, this article explains "Why you
should avoid ODBC." http://wiki.pentaho.com/pages/viewpage.action?pageId=14850644.

http://wiki.pentaho.com/pages/viewpage.action?pageId=14850644

 | Specify Data Connections for the DI Server | 8

When you define a database connection, the connection information (for example, the user name, password, and
port number) is stored in the DI Repository and is available to other users when they connect to the repository. If you
are not using the DI Repository, the database connection information is stored in the XML file associated with the
transformation or job.

Connections that are available for use with a transformation or job are listed under the Database connections node in
the View pane in Spoon.

You must have information about your database, such as your database type, port number, user name and password,
before you define a JDBC connection. You can also set connection properties using variables. Variables provide you
with the ability to access data from multiple database types using the same transformations and jobs.

Note: Make sure to use clean ANSI SQL that works on all used database types.

1. From within Spoon, navigate to the View tab of the Explorer pane. Double-click on the Database connections
folder.
The Database Connection dialog box appears.

Section Name What to Do

Connection Name Type name that uniquely identifies your new connection

Connection Type Select the type of database to which you are connecting

Access Select your method of access. Available access types
depend on the connecting database type.

Host Name Type the name of the server that hosts the database to
which you are connecting. Alternatively, you can specify
the host by IP address.

 | Specify Data Connections for the DI Server | 9

Section Name What to Do

Database Name Enter the name of the database to which you are
connecting. If you are using a ODBC connection, enter
the Data Source Name (DSN) in this field.

Port Number Enter the TCP/IP port number if it is different from the
default.

User name Optionally, type the user name used to connect to the
database.

Password Optionally, type the password used to connect to the
database.

2. Click Test.
A confirmation message displays if Spoon is able to establish a connection with the target database.

3. Click OK to save your entries and exit the Database Connection dialog box.

4. From within the View tab, right-click on the connection and select Share from the list that appears.

This shares the connection with your users. They will be able to select the shared connection.

From within the View tab, click Explore to open the Database Explorer for an existing connection. This shows you
the schemas and tables inside the connection.

Add Database-Specific Options

Add database-specific options by adding parameters to the generated URL.

1. From within the Database Connection dialog box, select Options.

2. Select the first available row in the parameter table.

3. Choose the database type and enter a valid parameter name and its corresponding value.

Note: For more database-specific configuration help, click Help. A new browser opens and displays
additional information about configuring the JDBC connection for the currently selected database type.

4. Click OK to save your entries.

Advanced Configuration of Database Connections

The Advanced option in the Database Connection dialog box allows you to configure properties that are, for most
part, associated with how SQL is generated. These options allow you to set a standard across all of your SQL tools,
ETL tools and design tools. All database table names and column names are always upper case or lower case no
matter what users do in the tools.

Feature Description

Supports boolean data types Instructs PDI to use native boolean data types if
supported by the database.

Quote all in database Enables the databases to use a case-sensitive tablename
(for example MySQL is case-sensitive on Linux but not
case sensitive on Windows). If you quote the identifiers,
the databases will use a case sensitive tablename.

Force all to lower case Enables all identifiers to lower case.

Force all to upper case Enables all identifiers to upper case.

Preferred schema name... Enter the preferred schema name (for example,
MYSCHEMA).

Enter SQL name... Enter the SQL statement used to initialize a connection.

Pentaho has implemented a database-specific quoting system that allows you to use any name or character acceptable
to the supported databases' naming conventions.

Pentaho Data Integration contains a list of reserved words for most of the supported databases. To ensure that quoting
behaves correctly, Pentaho has implemented a strict separation between the schema (user/owner) of a table and

 | Specify Data Connections for the DI Server | 10

the table name itself. Doing otherwise makes it impossible to quote tables or fields with one or more periods in them
correctly. Placing periods in table and field names is common practice in some ERP systems (for example, fields such
as "V.A.T.")

To avoid quoting-related errors, a rule stops the Pentaho Data Integration from performing quoting activity when there is
a start or end quote in the table name or schema. This allows you to specify the quoting mechanism yourself.

Define Connection Pooling

Instead of having a connection open for each individual step in a transformation, you can set up a connection pool and
define options like the initial pool size, maximum pool size, and connection pool parameters. For example, you might
start with a pool of ten or fifteen connections, and as you run jobs or transformations, the unused connections drop off.
Pooling helps control database access, especially if you have transformations that contain many steps and that require
a large number of connections. Pooling can also be implemented when your database licensing restricts the number of
active concurrent connections.

This table shows descriptions of the pooling options.

Feature Description

Enable connection pooling Enables connection pooling

Pool Size Sets the initial size of the connection pool; sets the
maximum number of connections in the connection pool

Parameters Allows you to define additional custom pool parameters;
click Restore Defaults when appropriate

Description Allows you to add a description for your parameters

1. Select Enable Connection Pooling.

2. Type the initial pool size in the Initial: area and the maximum pool size in the Maximum: area.

3. Select the parameters you need from within the Parameters: area.
A Description of the parameter appears in the Description: area when you select a check box.

4. Click OK to save your selections and close the Database Connection dialog box.

Connect to Clusters

This option allows you to enable clustering for the database connection and create connections to the data partitions.
To create a new data partition, enter a Partition ID and the Host Name, Port, Database, User Name, and Password
for connecting to the partition.

Modify Connections

This table contains information about other database-related connection tasks you can perform.

Task Description

Edit a Connection Right-click on the connection name and select Edit.

Duplicate a Connection Right-click on the connection name and select Duplicate.

Copy to a Clipboard Allows you to copy the XML defining the step to the
clipboard. You can then paste this step into another
transformation. Double-click on the connection name in
the tree or right-click on the connection name and select
Copy to Clipboard.

Delete a Connection Double-click on the connection name in the tree or right-
click on the connection name and select Delete.

SQL Editor To execute SQL command against an existing
connection, right-click on the connection name and select
SQL Editor.

Clear the Database Cache To speed up connections Pentaho Data Integration uses
a database cache. When the information in the cache no

 | Specify Data Connections for the DI Server | 11

Task Description

longer represents the layout of the database, right-click on
the connection in the tree and select Clear DB Cache....
This command is commonly used when databases tables
have been changed, created or deleted.

Share a Connection Rather than redefining a connection each time you create
a job or transformation on your local device, right-click
and select Share to share the connection information
among jobs and transformations.

Exploring the Database Double-click on the connection name in the tree or right-
click on the connection name and select Explore.

Show dependencies Right-click a connection name and select Show
dependencies to see all of the transformations and jobs
that use this database connection.

Define JNDI Connections for the DI Server
Pentaho has supplied a way of configuring a JNDI connection for "local" Pentaho Data Integration use so that you
do not have an application server continuously running during the development and testing of transformations. To
configure, edit the properties file called jdbc.properties located at ...\data-integration-server\pentaho-
solutions\system\simple-jndi.

Note: It is important that the information stored in jdbc.properties mirrors the content of your application server
data sources.

Define OCI Connections for the DI Server
Once you have chosen to use the OCI access protocol, here are configuration and maintenance tasks you can perform.

• Add Drivers
• Create OCI Connections
• Add Database-Specific Connections
• Advanced Configuration of Database Connections
• Define Connection Pooling
• Connect to Clusters
• Modify Connections

When you are done, please go on to the next stop on the Guide Post graphic.

Add Drivers

The DI Server and workstations need the appropriate driver to connect to the database that stores your data. Your
database administrator, Chief Intelligence Officer, or IT manager should be able to provide the appropriate driver. If not,
you can download drivers from your database vendor's website. See the Supported Technologies to ensure that your
database and its driver are supported by Pentaho.

Note: If you are using a Microsoft SQL Server (MSSQL), you might need to use an alternative, non-vendor-
supported driver called JTDS. Contact Pentaho support to ensure that you are adding the correct driver.

Installing Drivers

Once you have the correct driver, copy it to these directories.

DI Server: /pentaho/server/data-integration-server/tomcat/webapps/pentaho-di/WEB-INF/lib/
.

Spoon: data-integration/lib

You must restart Spoon for the driver to take effect.

 | Specify Data Connections for the DI Server | 12

There should be only one driver for your database in this directory. Ensure that there are no other versions of the same
vendor's driver in this directory. If there are, back up the old driver files and remove them to avoid version conflicts. This
is a concern when you are adding a driver for the same database type as your Pentaho solution repository. If you have
any concerns about how to proceed, contact Pentaho support.

When the driver files are in place restart the server.

Connecting to a Microsoft SQL Server Using Integrated or Windows Authentication

If you are using a Microsoft SQL Server (MSSQL), you might need to use an alternative, non-vendor-supported driver
called JTDS. Contact Pentaho support to ensure that you are adding the correct driver

For Microsoft Windows, most JDBC drivers support Type 2 integrated authentication through the
integratedSecurity connection string property. To use integrated authentication, copy the sqljdbc_auth.dll
file to all machines and directories to which you copied the JDBC driver. You can find this file in this location.

<installation directory>\sqljdbc_<version>\<language>\auth\

If running: Use the sqljdbc_auth.dll file here:

32-bit Java Virtual Machine (JVM) even if the operating
system is version x64

x86 folder

64-bit JVM on a x64 processor x64 folder

64-bit JVM on an Itanium processor IA64 folder

Create OCI Connections

1. Start the web application and DI Servers, log into the Spoon, then click on Tools > Database > Explore.
The Data Sources dialog box appears.

2. Click the plus icon (+) on the right and select JDBC.
The Database Connection dialog box appears with General highlighted in the left navigation pane.

3. In the Connection Name field, enter a name that uniquely describes this connection. The name can have spaces,
but it cannot have special characters, such as #, $, %, and alike.

4. In the Database Type list, select Oracle.

5. In the Access list, select OCI.

6. Enter Settings as directed by the Oracle OCI documentation.

a) In the SID field, enter the Oracle system ID that uniquely identifies the database on the system.
b) In the Tablespace for Data field, enter the name of the tablespace where the data is stored.
c) In the Tablespace for Indicies field, enter the name of the tablespace where the indicies are stored.
d) Enter the User Name and Password required to access the database.

7. Click Test.
A success message appears if the connection is established.

8. To save the connection, click OK twice.
This connection name appears in the list of available data sources in the Data Sources dialog box. If you want
to use Advanced, Options, or Pooling, refer to the Oracle OCI documentation to understand how to specify these
settings.

Add Database-Specific Options

Add database-specific options by adding parameters to the generated URL.

1. From within the Database Connection dialog box, select Options.

2. Select the first available row in the parameter table.

3. Choose the database type and enter a valid parameter name and its corresponding value.

Note: For more database-specific configuration help, click Help. A new browser opens and displays
additional information about configuring the JDBC connection for the currently selected database type.

4. Click OK to save your entries.

http://docs.oracle.com/cd/B28359_01/java.111/b31224/instclnt.htm
http://docs.oracle.com/cd/B28359_01/java.111/b31224/instclnt.htm

 | Specify Data Connections for the DI Server | 13

Advanced Configuration of Database Connections

The Advanced option in the Database Connection dialog box allows you to configure properties that are, for most
part, associated with how SQL is generated. These options allow you to set a standard across all of your SQL tools,
ETL tools and design tools. All database table names and column names are always upper case or lower case no
matter what users do in the tools.

Feature Description

Supports boolean data types Instructs PDI to use native boolean data types if
supported by the database.

Quote all in database Enables the databases to use a case-sensitive tablename
(for example MySQL is case-sensitive on Linux but not
case sensitive on Windows). If you quote the identifiers,
the databases will use a case sensitive tablename.

Force all to lower case Enables all identifiers to lower case.

Force all to upper case Enables all identifiers to upper case.

Preferred schema name... Enter the preferred schema name (for example,
MYSCHEMA).

Enter SQL name... Enter the SQL statement used to initialize a connection.

Pentaho has implemented a database-specific quoting system that allows you to use any name or character acceptable
to the supported databases' naming conventions.

Pentaho Data Integration contains a list of reserved words for most of the supported databases. To ensure that quoting
behaves correctly, Pentaho has implemented a strict separation between the schema (user/owner) of a table and
the table name itself. Doing otherwise makes it impossible to quote tables or fields with one or more periods in them
correctly. Placing periods in table and field names is common practice in some ERP systems (for example, fields such
as "V.A.T.")

To avoid quoting-related errors, a rule stops the Pentaho Data Integration from performing quoting activity when there is
a start or end quote in the table name or schema. This allows you to specify the quoting mechanism yourself.

Define Connection Pooling

Instead of having a connection open for each individual step in a transformation, you can set up a connection pool and
define options like the initial pool size, maximum pool size, and connection pool parameters. For example, you might
start with a pool of ten or fifteen connections, and as you run jobs or transformations, the unused connections drop off.
Pooling helps control database access, especially if you have transformations that contain many steps and that require
a large number of connections. Pooling can also be implemented when your database licensing restricts the number of
active concurrent connections.

This table shows descriptions of the pooling options.

Feature Description

Enable connection pooling Enables connection pooling

Pool Size Sets the initial size of the connection pool; sets the
maximum number of connections in the connection pool

Parameters Allows you to define additional custom pool parameters;
click Restore Defaults when appropriate

Description Allows you to add a description for your parameters

1. Select Enable Connection Pooling.

2. Type the initial pool size in the Initial: area and the maximum pool size in the Maximum: area.

3. Select the parameters you need from within the Parameters: area.
A Description of the parameter appears in the Description: area when you select a check box.

 | Specify Data Connections for the DI Server | 14

4. Click OK to save your selections and close the Database Connection dialog box.

Connect to Clusters

This option allows you to enable clustering for the database connection and create connections to the data partitions.
To create a new data partition, enter a Partition ID and the Host Name, Port, Database, User Name, and Password
for connecting to the partition.

Modify Connections

This table contains information about other database-related connection tasks you can perform.

Task Description

Edit a Connection Right-click on the connection name and select Edit.

Duplicate a Connection Right-click on the connection name and select Duplicate.

Copy to a Clipboard Allows you to copy the XML defining the step to the
clipboard. You can then paste this step into another
transformation. Double-click on the connection name in
the tree or right-click on the connection name and select
Copy to Clipboard.

Delete a Connection Double-click on the connection name in the tree or right-
click on the connection name and select Delete.

SQL Editor To execute SQL command against an existing
connection, right-click on the connection name and select
SQL Editor.

Clear the Database Cache To speed up connections Pentaho Data Integration uses
a database cache. When the information in the cache no
longer represents the layout of the database, right-click on
the connection in the tree and select Clear DB Cache....
This command is commonly used when databases tables
have been changed, created or deleted.

Share a Connection Rather than redefining a connection each time you create
a job or transformation on your local device, right-click
and select Share to share the connection information
among jobs and transformations.

Exploring the Database Double-click on the connection name in the tree or right-
click on the connection name and select Explore.

Show dependencies Right-click a connection name and select Show
dependencies to see all of the transformations and jobs
that use this database connection.

 | Create a Connection to the DI Repository | 15

Create a Connection to the DI Repository

Users need a place to store and schedule their transformations and jobs. This place is called the DI repository. You
must create a connection to this repository, which is part of the DI Server.

1. Click on Tools > Repository > Connect Access to access the Repository Connection dialog box.

2. In the Repository Connection dialog box, click the add button (+).

3. Select DI Repository and click OK.
The Repository Configuration dialog box appears.

4. Enter the URL associated with your repository. Enter an ID and name for your repository.

5. Click Test to ensure your connection is properly configured. If you see an error message, make sure you started
your DI server is started and that the Repository URL is correct.

6. Click OK to exit the Success dialog box.

7. Click OK to exit the Repository Configuration dialog box.
Your new connection appears in the list of available repositories.

8. Enter your user name and password for the repository and click OK

 | Implement Advanced Security for the DI Server | 16

Implement Advanced Security for the DI Server

There are several different ways to handle security other than with the default Pentaho security.

Configure LDAP for the DI Server
Your directory server must be available in order to perform this procedure.

Follow these instructions to configure your DI Server to authenticate against an LDAP service.

1. Stop the DI Server.

2. Open /pentaho-solutions/system/security.properties with a text editor.

3. Change the value of the provider property to ldap, then save and close the file.

4. Open /pentaho-solutions/system/ldap.properties. Update adminRole and adminUser for your system,
replacing adminRole with the administrator role that you have defined in your LDAP server, and replacing adminUser
with the user name that has the administrator role assigned to it.

 adminRole=cn\=Administrator,ou\=roles
 adminUser=uid\=admin,ou\=users

5. In ldap.properties, replace the localhost address to match your IP address.

6. In ldap.properties, also change the password to your password.

7. Start the Data Integration Server.

You are running the Pentaho Data Integration Server in LDAP mode, though you will need to consult LDAP Properties
for more information on LDAP and Microsoft Active Directory configuration settings.

LDAP Properties

You can manually configure LDAP values by editing the /pentaho-solutions/system/applicationContext-
security-ldap.properties file in the DI Server directory.

Connection Information (Context)

These entries define the connection to the LDAP server and the user/password used to perform directory searches
against it.

LDAP Property Purpose Example

contextSource.providerUrl LDAP connection URL contextSource.providerUrl=ldap://
holly:389/DC=Valyant,DC=local

contextSource.userDn Distinguished name of a user with
read access to directory

contextSource.userDn=CN=Administrator,CN=Users,DC=
Valyant,DC=local

contextSource.password Password for the specified user contextSource.password=secret

Users

These options control how the LDAP server is searched for usernames that are entered in the Pentaho login dialog box.

The {0} token is replaced by the username from the login dialog.

The example above defines DC=Valyant,DC=local in contextSource.providerURL. Given that definition, you
would not need to repeat that in userSearch.searchBase below because it is appended automatically to the defined
value here.

LDAP Property Purpose Example

userSearch.searchBase Base (by username) for user
searches

userSearch.searchBase=CN=Users

 | Implement Advanced Security for the DI Server | 17

LDAP Property Purpose Example

userSearch.searchFilter Filter (by username) for user
searches. The attribute you specify
here must contain the value that you
want your users to log into Pentaho
with. Active Directory usernames are
represented by sAMAccountName;
full names are represented by
displayName.

userSearch.searchFilter=
(sAMAccountName={0})

Populator

The populator matches fully distinguished user names from userSearch to distinguished role names for roles those
users belong to.

The {0} token will be replaced with the user DN found during a user search; the {1} token is replaced with the
username entered in the login screen.

LDAP Property Purpose Example

populator.convertToUpperCase Indicates whether or not retrieved role
names are converted to uppercase

populator.convertToUpperCase=false

populator.groupRoleAttribute The attribute to get role names from populator.groupRoleAttribute=cn

populator.groupSearchBase Base (by user DN or username) for
role searches.

populator.groupSearchBase=ou=
Pentaho

populator.groupSearchFilter The special nested group filter for
Active Directory is shown in the
example; this will not work with non-
MSAD directory servers.

populator.groupSearchFilter=
(memberof:1.2.840.113556.1.4.1941:=
({0}))

populator.rolePrefix A prefix to add to the beginning of
the role name found in the group role
attribute; the value can be an empty
string.

populator.rolePrefix=

populator.searchSubtree Indicates whether or not the search
must include the current object and all
children. If set to false, the search
must include the current object only.

populator.searchSubtree=true

All Authorites Search

These entries populate roles that appear in the Admin tab . These should be similar or identical to the Populator
entries.

LDAP Property Purpose Example

allAuthoritiesSearch.roleAttribute The attribute used for role values allAuthoritiesSearch.roleAttribute=cn

allAuthoritiesSearch.searchBase Base for all roles searches allAuthoritiesSearch.searchBase=ou=
Pentaho

allAuthoritiesSearch.searchFilter Filter for all roles searches.
Active Directory requires that the
objectClass value be set to group.

allAuthoritiesSearch.searchFilter=
(objectClass=group)

All User Name Search

These entries populate the users that appear on the Admin tab and can only be set manually in the /pentaho-
solutions/system/applicationContext-security-ldap.properties file. These entities are not made
available in the User Console.

 | Implement Advanced Security for the DI Server | 18

LDAP Property Purpose Example

allUsernamesSearch.usernameAttributeThe attribute used for user values allUsernamesSearch.
usernameAttribute=sAMAccountName

allUsernamesSearch.searchBase Base for "all users" searches allUsernamesSearch.searchBase=
CN=users

allUsernamesSearch.searchFilter Filter for "all users" searches allUsernamesSearch.searchFilter=
objectClass=person

Manual JDBC Connection Configuration
You must have existing security tables in a relational database in order to proceed with this task.

Follow the instructions below to switch from Pentaho default security to JDBC security, which will allow you to use your
own security tables.

Note: If you are using the BA Server and choose to switch to a JDBC security shared object, you will no longer
be able to use the role and user administration settings in the Administration portion of the User Console.

1. Stop the BA Server by running the stop-pentaho script.

2. Open /pentaho-solutions/system/security.properties with a text editor.

3. Change the value of the provide property to jdbc.

4. Open /pentaho-solutions/system/applicationContext-pentaho-security-jdbc.xml with a text
editor, find this line:

<import resource="applicationContext-spring-security-jdbc.xml" />
<import resource="applicationContext-pentaho-security-jdbc.xml" />
 <entry key="Admin" value="Administrator"/>
</util:map>

5. By default, the role Admin is mapped to Administrator. Change Admin to the appropriate administrator role in
your JDBC authentication database.

6. Verify that the SQL statements are the correct syntax for your database, and that they reference the correct tables,
roles, and actions.

7. Save the file and close the editor.

8. Start the server by running the start-pentaho script.

The server is configured to authenticate users against the specified database.

Create LDAP/JDBC Hybrid Configuration for the DI Server
You must have a working directory server with an established configuration, and a database containing your user roles
before continuing.

It is possible to use a directory server for user authentication and a JDBC security table for role definitions. This is
common in situations where LDAP roles cannot be redefined for DI Server use. Follow the below instructions to switch
the BA Server's authentication backend from the Pentaho data access object to an LDAP/JDBC hybrid.

Note: Replace the pentahoAdmins and pentahoUsers references in the examples below with the appropriate
roles from your LDAP configuration.

1. Stop the DI Server and Spoon.

2. Open /pentaho-solutions/system/security.properties with a text editor.

3. Change the value of the property provider to ldap.

4. Open the /pentaho-solutions/system/pentahoObjects.spring.xml with a text editor.

5. Find this code block and change the providerName to jdbc.

 <pen: bean id="UserDetailsService"
class ="org.springframework.security.userdetails.UserDetailsService">

 | Implement Advanced Security for the DI Server | 19

 <pen:attributes>
 <pen:attr key="providerName" value="jackrabbit"/>
 </pen:attributes>

 <pen:publish as-type="INTERFACES">
 <pen:attributes>
 <pen:attr key="priority" value="50"/>
 </pen:attributes>
 </pen:publish>

 </pen:bean>

6. Edit the /pentaho-solutions/system/applicationContext-pentaho-security-jdbc.xml file and add
the following two bean definitions, changing the connection and JDBC details to match your security database.

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="org.hsqldb:hsql://localhost:9002/
userdb" />
 <property name="url" value="jdbc:hsqldb:hsql://localhost:9002/userdb" />
 <property name="username" value="sa" />
 <property name="password" value="" />
</bean>
<bean id="userDetailsService"
class="org.springframework.security.userdetails.jdbc.JdbcDaoImpl">
 <property name="dataSource">
 <ref local="dataSource" />
 </property>
 <property name="authoritiesByUsernameQuery">
 <value> <![CDATA[SELECT username, authority FROM
 granted_authorities WHERE username = ?}}></value>
 </property>
 <property name="usersByUsernameQuery">
 <value> <![CDATA[SELECT username,
 password, enabled FROM users WHERE username = ?]]>
 </value>
 </property>
</bean>

7. Edit the /pentaho-solutions/system/data-access/settings.xml file and modify the user and role
settings to match your LDAP configuration:

<!– roles with data access permissions –>
<data-access-roles>pentahoAdmins</data-access-roles>
<!– users with data access permissions –>
<!–
<data-access-users></data-access-users>
–>
<!– roles with datasource view permissions –>
<data-access-view-roles>pentahoUsers,pentahoAdmins</data-access-view-roles>
<!– users with datasource view permissions –>
<!– <data-access-view-users></data-access-view-users> –>
<!– default view acls for user or role –>
<data-access-default-view-acls>31</data-access-default-view-acls>

8. Save and close the file, then open /pentaho-solutions/system/applicationContext-pentaho-
security-jdbc.xml. Find this code block and change Admin to an appropriate administrator role in your JDBC
authentication database.

<!-- map ldap role to pentaho security role -->
<util:map id="jdbcRoleMap">
 <entry key="Admin" value="Administrator"/>
</util:map>

9. Delete the /tomcat/work/ and /tomcat/temp/ directories.

10.Start the DI Server and Spoon.

11.Log into Spoon.

 | Implement Advanced Security for the DI Server | 20

12.Configure the Pentaho LDAP connection as explained in LDAP Properties on page 16.

The DI Server is configured to authenticate users against your directory server.

Configure Microsoft Active Directory for the DI Server
The server does not recognize any difference among LDAP-based directory servers, including Active Directory.
However, the way that you modify certain LDAP-specific files will probably be different for Microsoft Active Directory
(MSAD) than for more traditional LDAP implementations. Below are some tips for specific MSAD-specific configurations
that you might find helpful.

Binding

MSAD allows you to uniquely specify users in two ways, in addition to the standard DN. If the standard DN is not
working, try one of the two below. Each of the following examples is shown in the context of the userDn property of the
Spring Security DefaultSpringSecurityContextSource bean.

Note: The examples in this section use DefaultSpringSecurityContextSource. Be aware that you may need
to use the same notation (Kerberos or Windows domain) in all of your DN patterns.

Kerberos notation example for pentahoadmin@mycompany.com:

File: applicationContext-security-ldap.properties

contextSource.providerUrl=ldap\://mycompany\:389
contextSource.userDn=pentahoadmin@mycompany.com
contextSource.password=omitted

Windows domain notation example for MYCOMPANY\pentahoadmin:

File: applicationContext-security-ldap.properties

contextSource.providerUrl=ldap\://mycompany\:389
contextSource.userDn=MYCOMPANY\pentahoadmin
contextSource.password=omitted

Referrals

If more than one Active Directory instance is serving directory information, it may be necessary to enable referral
following. This is accomplished by modifying the DefaultSpringSecurityContextSource bean.

<bean id="contextSource"
 class="org.springframework.security.ldap.DefaultSpringSecurityContextSource">
 <constructor-arg value="${contextSource.providerUrl}"/>
 <property name="userDn" value="${contextSource.userDn}"/>
 <property name="password" value="${contextSource.password}"/>
 <property name="referral" value="follow" />
</bean>

User DN Patterns vs. User Searches

In the LdapAuthenticator implementations provided by Spring Security (BindAuthenticator for instance), you must
either specify a userDnPatterns, or a userSearch, or both. If you're using the Kerberos or Windows domain notation,
you should use userDnPatterns exclusively in your LdapAuthenticator.

Note: The reason for suggesting userDnPatterns when using Kerberos or Windows domain notation is that
the LdapUserSearch implementations do not give the control over the DN that userDnPatterns does. (The
LdapUserSearch implementations try to derive the DN in the standard format, which might not work in Active
Directory.)

Note, however, that LdapUserDetailsService requires an LdapUserSearch for its constructor.

User DN Pattern example:

<bean id="authenticator"

 | Implement Advanced Security for the DI Server | 21

class="org.springframework.security.providers.ldap.authenticator.BindAuthenticator">
<constructor-arg>
 <ref local="contextSource"/>
 </constructor-arg>
 <propertyname="userDnPatterns">
 <list>
 <value>{0}@mycompany.com
 </value> <!-- and/or -->
 <value>domain\{0}</value>
 </list>
 </property>
</bean>

In user searches, the sAMAccountName attribute should be used as the username. The searchSubtree property
(which influences the SearchControls) should most likely be true. Otherwise, it searches the specified base plus one
level down.

User Search example:

<bean id="userSearch"
class="org.springframework.security.ldap.search.FilterBasedLdapUserSearch">
 <constructor-arg index="0" value="DC=mycompany,DC=com" />
 <constructor-arg index="1">
 <value>(sAMAccountName={0})</value>
 </constructor-arg> <constructor-arg index="2">
 <ref local="contextSource" />
 </constructor-arg>
 <property name="searchSubtree" value="true"/>
</bean>

Nested Groups

You can remove nested or transitive groups out of Active Directory. In the LDAP popular group filter, enter the following
LDAP filter for MSAD nested groups:

(member:1.2.840.113556.1.4.1941:={0})

This will search down the whole tree of nested groups.

 | Import and Export PDI Content | 22

Import and Export PDI Content

You can import and export PDI content to and from a repository by using PDI's built-in functions, explained in these
subsections.

Note: Among other purposes, these procedures are useful for backing up and restoring content in the solution
repository. However, users, roles, permissions, and schedules will not be included in import/export operations.
If you want to back up these things, you should follow the procedure in How To Backup the Solution Repository
instead.

Import Content Into a Repository
You must be logged into the repository in Spoon.

Follow the instructions below to import the repository.

1. In Spoon, go to Tools > Repository > Import Repository.

2. Locate the export (XML) file that contains the solution repository contents.

3. Click Open.
The Directory Selection dialog box appears.

4. Select the directory in which you want to import the repository.

5. Click OK.

6. Enter a comment, if applicable.

7. Wait for the import process to complete.

8. Click Close.

The full contents of the repository are now in the directory you specified.

Use the Import Script From the Command Line

The import script is a command line utility that pulls content into an enterprise or database repository from two kinds of
files: Individual KJB or KTR files, or complete repository export XML files.

You must also declare a rules file that defines certain parameters for the data integration content you're importing. We
provide a sample file called import-rules.xml, included with the standard Data Integration client tool distribution. It
contains all of the potential rules with comments that describe what each rule does. You can either modify this file, or
copy its contents to another file; regardless, you must declare the rules file as a command line parameter.

Options

The table below defines command line options for the import script. Options are declared with a dash: - followed by the
option, then the = (equals) sign and the value.

Parameter Definition/value

rep The name of the enterprise or database repository to
import into.

user The repository username you will use for authentication.

pass The password for the username you specified with user.

dir The directory in the repository that you want to copy the
content to.

limitdir Optional. A list of comma-separated source directories
to include (excluding those directories not explicitly
declared).

file The path to the repository export file that you will import
from.

rules The path to the rules file, as explained above.

 | Import and Export PDI Content | 23

Parameter Definition/value

comment The comment that will be set for the new revisions of the
imported transformations and jobs.

replace Set to Y to replace existing transformations and jobs in the
repository. Default value is N.

coe Continue on error, ignoring all validation errors.

version Shows the version, revision, and build date of the PDI
instance that the import script interfaces with.

sh import.sh -rep=PRODUCTION -user=admin -pass=12345 -dir=/ -
file=import-rules.xml -rules=import-rules.xml -coe=false -replace=true -
comment="New version upload from UAT"

Export Content From the Repository
You must be logged into the repository through Spoon.

Follow the instructions below to export the repository.

1. In Spoon, go to Tools > Repository > Export Repository.

2. In the Save As dialog box, browse to the location where you want to save the export file.

3. Type a name for your export file in the File Name text box..

Note: The export file will be saved in XML format regardless of the file extension used.

4. Click Save.

The export file is created in the location you specified. This XML file is a concatenation of all of the data integration
content you selected. It is possible to break it up into individual KTR and KJB files by hand or through a transformation.

 | Create Clusters | 24

Create Clusters

You can set up Carte to operate as a standalone execution engine for a job or transformation. Within Spoon, you
can define one or more Carte servers and send jobs and transformations to them on an individual basis. However,
in some cases you will want to set up a cluster of Carte servers so that you don't have to manage Carte instance
assignments by hand. You may also need to use several servers to improve performance on resource-intensive jobs
or transformations. In these scenarios, you will establish a cluster of Carte servers. There are two paradigms for Carte
clustering:

A static cluster is a Spoon instance managing Carte slave nodes that have been explicitly defined in the user interface.

A dynamic cluster is a single master Carte server with a variable number of available Carte slave node registered with
it.

Static clusters are a good choice for smaller environments where you don't have a lot of machines (virtual or real) to
use for PDI transformations. Dynamic clusters are more appropriate in environments where transformation performance
is extremely important, or there can potentially be multiple concurrent transformation executions. Architecturally, the
primary difference between a static and dynamic cluster is whether it's Spoon or Carte doing the load balancing.

Configure Carte to Be a Static Slave Instance
Follow the directions below to set up static Carte slave servers.

Note: If you already have Carte installed on the target machines, you can skip the initial installation steps.

1. Retrieve a pdi-ee-client archive package from the Pentaho Customer Support Portal.

2. On each machine that will act as a Carte server (slave), create a /pentaho/design-tools/ directory.

3. Unpack the archive to the /pentaho/design-tools/ directory on each machine.

Two directories will be created: data-integration and license-installer.

4. Use the license utility to install the PDI Enterprise Edition license, if applicable.

5. Copy over any required JDBC drivers and PDI plugins from your development instances of PDI to the Carte
instances.

6. Run the Carte script with an IP address, hostname, or domain name of this server, and the port number you want it
to be available on.

./carte.sh 127.0.0.1 8081

7. If you will be executing content stored in a DI Repository, copy the repositories.xml file from the .kettle directory
on your workstation to the same location on your Carte slave.

Without this file, the Carte slave will be unable to connect to the DI Repository to retrieve content.

8. Ensure that the Carte service is running as intended, accessible from your primary PDI development machines, and
that it can run your jobs and transformations.

9. To start this slave server every time the operating system boots, create a startup or init script to run Carte at boot
time with the same options you tested with.

You now have one or more Carte slave servers that you can delegate job and transformation work to in the Repository
Explorer.

Configure a Dynamic Cluster
Follow the procedures below to set up one or more Carte slave servers and a Carte master server to load-balance
them.

Configure Carte as a Master (Load Balancer)

This procedure is only necessary for dynamic cluster scenarios in which one Carte server will load-balance multiple
slave Carte instances. If you are implementing a static cluster, which is where Carte slaves are individually declared in
the PDI user interface, then skip these instructions.

 | Create Clusters | 25

Follow the process below to establish a dynamic Carte load balancer (master server).

Note: You do not have to use Carte as a load balancer; you can use the DI Server instead. If you decide to use
the DI Server, you must enable the proxy trusting filter as explained in Execute Scheduled Jobs on a Remote
Carte Server on page 28, then set up your dynamic Carte slaves and define the DI Server as the master.

Note: If you already have Carte installed on the target machine, you can skip the initial installation steps.

1. Retrieve a pdi-ee-client archive package from the Pentaho Customer Support Portal.

2. Create a /pentaho/design-tools/ directory.

3. Unpack the archive to the /pentaho/design-tools/ directory on each machine.

Two directories will be created: data-integration and license-installer.

4. Copy over any required JDBC drivers from your development instances of PDI to the Carte instances.

5. Create a carte-master-config.xml configuration file using the following example as a basis:

<slave_config>
<!-- on a master server, the slaveserver node contains information about this Carte
 instance -->
 <slaveserver>
 <name>Master</name>
 <hostname>localhost</hostname>
 <port>9001</port>
 <username>cluster</username>
 <password>cluster</password>
 <master>Y</master>
 </slaveserver>
</slave_config>

Note: The <name> must be unique among all Carte instances in the cluster.

6. Run the Carte script with the carte-slave-config.xml parameter.

./carte.sh carte-master-config.xml

7. Ensure that the Carte service is running as intended.

8. To start this master server every time the operating system boots, create a startup or init script to run Carte at boot
time with the same config file option you specified earlier.

You now have a Carte master to use in a dynamic cluster. You must configure one or more Carte slave servers in order
for this to be useful.

Configure Carte to Be a Dynamic Slave Instance

Follow the directions below to set up static Carte slave servers.

Note: If you already have Carte installed on the target machines, you can skip the initial installation steps.

1. Retrieve a pdi-ee-client archive package from the Pentaho Customer Support Portal.

2. On each machine that will act as a Carte server (slave), create a /pentaho/design-tools/ directory.

3. Unpack the archive to the /pentaho/design-tools/ directory on each machine.

Two directories will be created: data-integration and license-installer.

4. Copy over any required JDBC drivers and PDI plugins from your development instances of PDI to the Carte
instances.

5. Create a carte-slave-config.xml configuration file using the following example as a basis:

<slave_config>
<!-- the masters node defines one or more load balancing Carte instances that will
 manage this slave -->
 <masters>
 <slaveserver>
 <name>Master</name>

 | Create Clusters | 26

 <hostname>localhost</hostname>
 <port>9000</port>
<!-- uncomment the next line if you want the DI Server to act as the load balancer
 -->
<!-- <webAppName>pentaho-di</webAppName> -->
 <username>cluster</username>
 <password>cluster</password>
 <master>Y</master>
 </slaveserver>
 </masters>

 <report_to_masters>Y</report_to_masters>
<!-- the slaveserver node contains information about this Carte slave instance -->
 <slaveserver>
 <name>SlaveOne</name>
 <hostname>localhost</hostname>
 <port>9001</port>
 <username>cluster</username>
 <password>cluster</password>
 <master>N</master>
 </slaveserver>
</slave_config>

Note: The slaveserver <name> must be unique among all Carte instances in the cluster.

6. Run the Carte script with the carte-slave-config.xml parameter.

./carte.sh carte-slave-config.xml

7. If you will be executing content stored in a DI Repository, copy the repositories.xml file from the .kettle directory
on your workstation to the same location on your Carte slave.

Without this file, the Carte slave will be unable to connect to the DI Repository to retrieve PDI content.

8. Ensure that the Carte service is running as intended.

9. To start this slave server every time the operating system boots, create a startup or init script to run Carte at boot
time with the same config file option you specified earlier.

You now have a Carte slave to use in a dynamic cluster. You must configure a Carte master server or use the DI Server
as a load balancer.

Create a Cluster Schema in Spoon
Clustering allows transformations and transformation steps to be executed in parallel on more than one Carte server.
The clustering schema defines which slave servers you want to assign to the cluster and a variety of clustered
execution options.

Begin by selecting the Kettle cluster schemas node in the Spoon Explorer View. Right-click and select New to open
the Clustering Schema dialog box.

Option Description

Schema name The name of the clustering schema

Port Specify the port from which to start numbering ports
for the slave servers. Each additional clustered step
executing on a slave server will consume an additional
port.

Note: To avoid networking problems, make sure
no other networking protocols are in the same
range .

Sockets buffer size The internal buffer size to use

 | Create Clusters | 27

Option Description

Sockets flush interval rows The number of rows after which the internal buffer is sent
completely over the network and emptied.

Sockets data compressed? When enabled, all data is compressed using the Gzip
compression algorithm to minimize network traffic

Dynamic cluster If checked, a master Carte server will perform load-
balancing operations, and you must define the master
as a slave server in the feild below. If unchecked, Spoon
will act as the load balancer, and you must define the
available Carte slaves in the field below.

Slave Servers A list of the servers to be used in the cluster. You must
have one master server and any number of slave servers.
To add servers to the cluster, click Select slave servers
to select from the list of available slave servers.

Execute Transformations in a Cluster
To run a transformation on a cluster, access the Execute a transformation screen and select Execute clustered.

To run a clustered transformation via a job, access the Transformation job entry details screen and select the
Advanced tab, then select Run this transformation in a clustered mode?.

To assign a cluster to an individual transformation step, right-click on the step and select Clusterings from the
context menu. This will bring up the cluster schema list. Select a schema, then click OK.

When running transformations in a clustered environment, you have the following options:

• Post transformation — Splits the transformation and post it to the different master and slave servers
• Prepare execution — Runs the initialization phase of the transformation on the master and slave servers
• Prepare execution — Runs the initialization phase of the transformation on the master and slave servers
• Start execution — Starts the actual execution of the master and slave transformations.
• Show transformations — Displays the generated (converted) transformations that will be executed on the cluster

Initialize Slave Servers in Spoon
Follow the instructions below to configure PDI to work with Carte slave servers.

1. Open a transformation.

2. In the Explorer View in Spoon, select Slave Server.

3. Right-click and select New.
The Slave Server dialog box appears.

4. In the Slave Server dialog box, enter the appropriate connection information for the Data Integration (or Carte) slave
server. The image below displays a connection to the Data Integration slave server.

Option Description

Server name The name of the slave server

Hostname or IP address The address of the device to be used as a slave

Port Defines the port you are for communicating with the
remote server

Web App Name Used for connecting to the DI server and set to pentaho-
di by default

User name Enter the user name for accessing the remote server

Password Enter the password for accessing the remote server

 | Create Clusters | 28

Option Description

Is the master Enables this server as the master server in any
clustered executions of the transformation

Note: When executing a transformation or job in a clustered environment, you should have one server set up
as the master and all remaining servers in the cluster as slaves.

Below are the proxy tab options:

Option Description

Proxy server hostname Sets the host name for the Proxy server you are using

The proxy server port Sets the port number used for communicating with the
proxy

Ignore proxy for hosts: regexp|separated Specify the server(s) for which the proxy should not be
active. This option supports specifying multiple servers
using regular expressions. You can also add multiple
servers and expressions separated by the ' | ' character.

5. Click OK to exit the dialog box. Notice that a plus sign (+) appears next to Slave Server in the Explorer View.

Execute Scheduled Jobs on a Remote Carte Server
Follow the instructions below if you need to schedule a job to run on a remote Carte server. Without making these
configuration changes, you will be unable to remotely execute scheduled jobs.

Note: This process is also required for using the DI Server as a load balancer in a dynamic Carte cluster.

1. Stop the DI Server and remote Carte server.

2. Copy the repositories.xml file from the .kettle directory on your workstation to the same location on your Carte
slave.

Without this file, the Carte slave will be unable to connect to the DI Repository to retrieve PDI content.

3. Open the /pentaho/server/data-integration-server/tomcat/webapps/pentaho-di/WEB-INF/
web.xml file with a text editor.

4. Find the Proxy Trusting Filter filter section, and add your Carte server's IP address to the param-value element.

<filter>
 <filter-name>Proxy Trusting Filter</filter-name>
 <filter-class>org.pentaho.platform.web.http.filters.ProxyTrustingFilter</filter-
class>
 <init-param>
 <param-name>TrustedIpAddrs</param-name>
 <param-value>127.0.0.1,192.168.0.1</param-value>
 <description>Comma separated list of IP addresses of a trusted hosts.</
description>
 </init-param>
 <init-param>
 <param-name>NewSessionPerRequest</param-name>
 <param-value>true</param-value>
 <description>true to never re-use an existing IPentahoSession in the
 HTTP session; needs to be true to work around code put in for BISERVER-2639</
description>
 </init-param>
</filter>

5. Uncomment the proxy trusting filter-mappings between the <!-- begin trust --> and <!-- end trust --> markers.

 <!-- begin trust -->
 <filter-mapping>
 <filter-name>Proxy Trusting Filter</filter-name>
 <url-pattern>/webservices/authorizationPolicy</url-pattern>

 | Create Clusters | 29

 </filter-mapping>

 <filter-mapping>
 <filter-name>Proxy Trusting Filter</filter-name>
 <url-pattern>/webservices/roleBindingDao</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>Proxy Trusting Filter</filter-name>
 <url-pattern>/webservices/userRoleListService</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>Proxy Trusting Filter</filter-name>
 <url-pattern>/webservices/unifiedRepository</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>Proxy Trusting Filter</filter-name>
 <url-pattern>/webservices/userRoleService</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>Proxy Trusting Filter</filter-name>
 <url-pattern>/webservices/Scheduler</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>Proxy Trusting Filter</filter-name>
 <url-pattern>/webservices/repositorySync</url-pattern>
 </filter-mapping>
 <!-- end trust -->

6. Save and close the file, then edit the carte.sh or Carte.bat startup script on the machine that runs your Carte server.

7. Add -Dpentaho.repository.client.attemptTrust=true to the java line at the bottom of the file.

java $OPT -Dpentaho.repository.client.attemptTrust=true org.pentaho.di.www.Carte
 "${1+$@}"

8. Save and close the file.

9. Start your Carte and DI Server

You can now schedule a job to run on a remote Carte instance.

 | Install License Keys Using the Command Line Interface | 30

Install License Keys Using the Command Line Interface

1. Download the .lic file you want to install.

2. Copy your .lic files to the DI Server.

3. Navigate to the licenses directory.
pdi/pdi-ee/data-integration/licenses

4. Run the license installation script.

a) For Linux: Run install_license.sh with the install switch and the location and name of your .lic file as a
parameter. You can specify multiple .lic files separated by spaces. Be sure to use backslashes to escape any
spaces in the path or file name.
install_license.sh install /home/dvader/downloads/Pentaho/BI/Platform/Enterprise/
Edition.lic

b) For Windows: Run install_license.bat with the install switch and the location and name of your license
file as a parameter.
install_license.bat install "C:\Users\dvader\Downloads\Pentaho BA Platform
Enterprise Edition.lic"

 | Assign Permissions to Use or Manage Database Connections | 31

Assign Permissions to Use or Manage Database Connections

You may have several connections to your data that you do not want to share with all of your users. When connected
to the DI Server, Spoon gives you the ability to make your data visible to only the users and roles that you specify. You
can assign permission to allow users and roles to read, write, or delete the connection. You can also delegate the ability
to assign these permissions to another user or role.

Connection definitions are stored in the DI Repository. The Spoon Repository Explorer enables you to browse the
available connections and select the one for which you want to assign permissions.

1. From within Spoon, click on Tools > Repository > Explore. The Repository Explorer on
[Your_DI_Repository_Name] dialog box appears.

2. Select the Connections tab.

3. Select the connection for which you want to assign permissions.

4. From the User/Role area, select the user or role for which you want to assign permissions.

5. Check the permissions you want to assign to the selected user or role.

Selection Selection Result

Read For this user or role, the connection appears in the
connection list and can be selected for use. If users or
roles have permission to read a transformation or job but
not to a referenced database connection, they cannot
open the transformation or job and an error message
appears.

Write This user or role can edit the connection definition.

Delete This user or role can permanently remove the
connection definition from the list..

 | Assign Permissions to Use or Manage Database Connections | 32

Selection Selection Result

Manage Access Control This user or role can assign read, write, and delete
permissions to other users or roles.

6. Click Apply.

7. Click Close to exit the dialog box.

 | List of Server Ports Used by PDI | 33

List of Server Ports Used by PDI

The port numbers below must be available internally on the machine that runs the DI Server. The only exception is
SampleData, which is only for evaluation and demonstration purposes and is not necessary for production systems. If
you are unable to open these ports, or if you have port collisions with existing services, refer to Change Service Port
Numbers on page 33 for instructions on how to change them.

Service Port Number

Data Integration Server 9080

H2 (SampleData) 9092

Embedded BA Server (Jetty) 10000

Change Service Port Numbers

DI Server (Tomcat)

Edit the /pentaho/server/data-integration-server/tomcat/conf/server.xml file and change the port
numbers in the section shown below.

<!-- A "Connector" represents an endpoint by which requests are received
 and responses are returned. Documentation at :
 Java HTTP Connector: /docs/config/http.html (blocking & non-blocking)
 Java AJP Connector: /docs/config/ajp.html
 APR (HTTP/AJP) Connector: /docs/apr.html
 Define a non-SSL HTTP/1.1 Connector on port 9080
 -->
 <Connector URIEncoding="UTF-8" port="9080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="9443" />
 <!-- A "Connector" using the shared thread pool-->
 <!--
 <Connector URIEncoding="UTF-8" executor="tomcatThreadPool"
 port="9080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="9443" />

Note: You may also have to change the SSL and SHUTDOWN ports in this file, depending on your
configuration.

Next, follow the directions in Change the DI Server URL on page 34 to accommodate for the new port number.

Embedded BA Server (Jetty)

This server port is hard-coded in Pentaho Data Integration and cannot be changed. If port 10000 is unavailable, the
system will increment by 1 until an available port is found.

 | Change the DI Server URL | 34

Change the DI Server URL

You can change the DI Server hostname from localhost to a specific IP address, hostname, or domain name by
following these instructions. This procedure is also a requirement if you are changing the DI Server port number.

1. Stop the DI Server through your preferred means.

2. Open the /pentaho/server/data-integration-server/tomcat/webapps/pentaho-di/WEB-INF/
web.xml file with a text editor.

3. Modify the value of the fully-qualified-server-url element appropriately.

<context-param>
 <param-name>fully-qualified-server-url</param-name>
 <param-value>http://localhost:9080/pentaho-di/</param-value>
</context-param>

4. Save and close the file.

5. Start the DI Server.

The DI Server is now configured to reference itself at the specified URL.

 | Logging and Monitoring | 35

Logging and Monitoring

This section contains information on DI Server and client tool logging and status monitoring.

Enable Logging
The logging functionality in Data Integration enables you to more easily troubleshoot complex errors and failures, and
measure performance. To turn on logging in Data Integration, follow the below procedure.

1. Create a database or table space called pdi_logging.

2. Start Spoon, and open a transformation or job for which you want to enable logging.

3. Go to the Edit menu and select Settings...

The Settings dialog appears.

4. Select the Logging tab.

5. In the list on the left, select the function you want to log.

6. Click the New button next to the Log Connection field.

The Database Connection dialogue appears.

7. Enter your database connection details, then click Test to ensure that they are correct. Click OK when you are done.

8. Look through the list of fields to log, and ensure that the correct fields are selected.

Warning: Monitoring the LOG_FIELD field can negatively impact BA Server or DI Server performance.
However, if you don't select all fields, including LOG_FIELD, when configuring transformation logging, you
will not see information about this transformation in the Operations Mart logging.

Logging is enabled for the job or transformation.

When you run a job or transformation that has logging enabled, you have the option of choosing the log verbosity level
in the execution dialogue:

• Nothing Do not record any output
• Error Only show errors
• Minimal Only use minimal logging
• Basic This is the default level
• Detailed Give detailed logging output
• Debug For debugging purposes, very detailed output
• Row level Logging at a row level. This will generate a lot of log data

If the Enable time option is enabled, all lines in the logging will be preceded by the time of day.

Log Rotation

This procedure assumes that you do not have or do not want to use an operating system-level log rotation service. If
you are using such a service on your Pentaho server, connect to the BA Server and Data Integration Server and use
that instead of implementing this solution.

The Business Analysis and Data Integration servers use the Apache log4j Java logging framework to store server
feedback. The default settings in the log4j.xml configuration file may be too verbose and grow too large for some
production environments. Follow these instructions to modify the settings so that Pentaho server log files are rotated
and compressed.

1. Stop all relevant Pentaho servers.

2. Download a .zip archive of the Apache Extras Companion for log4j package: Apache Logging Services.

3. Unpack the apache-log4j-extras JAR file from the zip archive, and copy it to the following locations:

• Business Analytics Server: /tomcat/webapps/pentaho/WEB-INF/lib/
• Data Integration Server: /tomcat/webapps/pentaho-di/WEB-INF/lib/

4. Edit the log4j.xml settings file for each server that you are configuring. The files are in the following locations:

• BA Server: /tomcat/webapps/pentaho/WEB-INF/classes/
• DI Server: /tomcat/webapps/pentaho-di/WEB-INF/classes/

http://logging.apache.org/log4j/companions/extras/

 | Logging and Monitoring | 36

5. Remove all PENTAHOCONSOLE appenders from the configuration.

6. Modify the PENTAHOFILE appenders to match the log rotation conditions that you prefer.

You may need to consult the log4j documentation to learn more about configuration options. Two examples that
many Pentaho customers find useful are listed:

Daily (date-based) log rotation with compression:

<appender name="PENTAHOFILE" class="org.apache.log4j.rolling.RollingFileAppender">
 <!-- The active file to log to; this example is for BA/DI Server.-->
 <param name="File" value="../logs/pentaho.log" />
 <param name="Append" value="false" />
 <rollingPolicy class="org.apache.log4j.rolling.TimeBasedRollingPolicy">
 <!-- See javadoc for TimeBasedRollingPolicy -->
 <param name="FileNamePattern" value="../logs/pentaho.%d.log.gz" />
 </rollingPolicy>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
 </layout>
</appender>

Size-based log rotation with compression:

<appender name="PENTAHOFILE" class="org.apache.log4j.rolling.RollingFileAppender">
 <!-- The active file to log to; this example is for BA/DI Server.-->
 <param name="File" value="../logs/pentaho.log" />
 <param name="Append" value="false" />
 <rollingPolicy class="org.apache.log4j.rolling.FixedWindowRollingPolicy">
 <param name="FileNamePattern" value="../logs/pentaho.%i.log.gz" />
 <param name="maxIndex" value="10" />
 <param name="minIndex" value="1" />
 </rollingPolicy>
 <triggeringPolicy class="org.apache.log4j.rolling.SizeBasedTriggeringPolicy">
 <!-- size in bytes -->
 <param name="MaxFileSize" value="10000000" />
 </triggeringPolicy>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n" />
 </layout>
</appender>

7. Save and close the file, then start all affected servers to test the configuration.

You have an independent log rotation system in place for all modified Pentaho servers.

Monitor Job and Transformation Results
You can view remotely executed and scheduled job and transformation details, including the date and time that they
were run, and their status and results, through the Kettle Status page. To view it, navigate to the /pentaho-di/
kettle/status page on your Data Integration Server (change the host name and port to match your configuration):

http://internal-di-server:9080/pentaho-di/kettle/status

You must be logged in to ensure you are redirected to the login page.

You can get to a similar page in Spoon by using the Monitor function of a slave server.

Notice the Configuration details table at the bottom of the screen. This shows the three configurable settings for
schedule and remote execution logging. See slave-server-config.xml on page 37 for more information on what these
settings do and how you can modify them.

Note: This page clears when the server is restarted, or at the interval specified by the object_timeout_minutes
setting.

 | Logging and Monitoring | 37

slave-server-config.xml

Any action done through the Carte server embedded in the Data Integration Server is controlled through the /
pentaho/server/data-integration-server/pentaho-solutions/system/kettle/slave-server-
config.xml file. These three configurable options are explained here.

Note: To make modifications to slave-server-config.xml, you must stop the Data Integration Server.

Property Values Description

max_log_lines Any value of 0 (zero) or greater. 0
indicates that there is no limit.

Truncates the execution log when it
goes beyond this many lines.

max_log_timeout_minutes Any value of 0 (zero) or greater. 0
indicates that there is no timeout.

Removes lines from each log entry if it
is older than this many minutes.

object_timeout_minutes Any value of 0 (zero) or greater. 0
indicates that there is no timeout.

Removes entries from the list if they
are older than this many minutes.

<slave_config>
 <max_log_lines>0</max_log_lines>
 <max_log_timeout_minutes>0</max_log_timeout_minutes>
 <object_timeout_minutes>0</object_timeout_minutes>
</slave_config>

Data Integration Operations Mart
The DI Operations Mart enables you to collect and query Data Integration log data and then use BA server tools to
examine log data in reports, charts, or dashboards.

Description

The DI Operations Mart is a centralized data mart that stores job or transformation log data for easy reporting and
analysis. The data mart is a collection of tables organized as a data warehouse using a star schema. Together,
dimension tables and a fact table represent the logging data. These tables need to be created in the DI Operations Mart
database. Pentaho provides SQL scripts to create these tables for MySQL, Oracle, and PostgresSQL databases. A
Data Integration job populates the time and date dimensions.

Note: For optimal performance, be sure to clean the operations mart periodically.

Getting Started

These procedures describe how to install, set up, and configure the DI Operations Mart to collect ETL logging
information. These instructions only apply if you do not have the BA Server. If you are a Pentaho Business Analytics
customer, these tables and connections are created automatically.

Install the DI Operations Mart

These instructions are for customers who are only using the DI Server and its tools. If you purchased Pentaho Business
Analytics, the Data Integration (DI) Operations Mart installs as part of the installation process and you do not need to
follow these instructions.

1. Navigate to data-integration-server/pentaho-solutions.

2. Unzip pentaho-operatiuons-mart.zip to a temporary location.
The archive folder structure is:

• pdi-operations-mart/

 | Logging and Monitoring | 38

• DDL/

• etl/

• models/

• samples/

• dashboards/

• datamart/

• jobs_transformations/

• reports/

3. On the computer that runs the DI repository from PDI/Spoon, create a folder within the repository, such as public/
pdi_operations_mart. Import the etl/pdi-operations-mart.xml to this folder.
The import creates two database connections:

• live_logging_info: The online database that stores the logging data for the sample jobs and
transformations.

• PDI_Operations_Mart: The off-line database that contains the DI Operations Mart database objects.

Set Up Database Connections

In order to fetch logging data from the online database, you must define a database connection and populate the
Operations Mart. Installing the DI Operations Mart defines two default database connections: live_logging_info:
connects to the online database used for the sample jobs and transformations, and PDI_Operations_Mart connects
to the off-line DI Operations Mart database. The connection information needs to match your databases. This procedure
explains how to define your database connections.

1. From within Spoon, close any jobs or transformations you might have open.

2. Select Tools > Repository > Explore from the drop-down menu.
The Repository Explorer window opens.

3. Select the Connections tab.

4. Select the live_logging_info entry. Edit the entry by clicking the pencil icon in the upper-right corner.
The database connection window opens.

5. Enter the information for the connection that fetches the online logging data.

If you need to have multiple connections to fetch the online logging information, create new connections and enter
the information for each connection.

6. Repeat steps 3 and 4 for the PDI_Operations_Mart connection.

The database connections for the DI Operations Mart are defined.

Create the DI Operations Mart

1. From any program that can run scripts against the logging data database, execute the DDL script called
pentaho_mart_<database>.sql, where <database> is the database vendor, such as MySQL, Oracle,
PostgreSQL, and alike.
These tables are created:

• dim_batch

• dim_date

• dim_execution

• dim_executor

• dim_log_table

• dim_step

• dim_time

• fact_execution

• fact_jobentry_execution

• fact_perf_execution

• fact_step_execution

2. From within Spoon, run the job named Fill in DIM_DATE and DIM_TIME.
The DI Operations Mart is created.

 | Logging and Monitoring | 39

Configure Logging Data Collection

For each job or transformation, use this procedure to configure which logging data you would like to collect.

You must set the global logging variables for your database or table in advance. See Setting Global Logging Variables
for information about how to set global logging variables for transformations and jobs. If you have already set the global
logging variables, start at Step 6 to specify an input and output step for each transformation that collects external input
or output data.

1. From within Spoon, open a job or transformation.

2. Select the View tab, then right-click the job or transformation and select Settings.

3. Select the Logging tab and choose the appropriate selection from the left pane.

• For jobs, select Job.
• For transformations, select Transformation.

4. In the Log Connection field, enter or select the appropriate database connection. Using the provided samples,
select the connection named live_logging_info.

5. In the Log table name field

• For jobs, enter LOG_JOB.
• For transformations, enter LOG_TRANS.

6. In order to collect row input or output information for jobs or transformations, for instance for throughput calculations,
specify an input and output step for each transformation that collects external input or output data.

• For LINES_INPUT, specify the step collecting external input data.
• For LINES_OUPUT, specify the step collecting output data.

7. Ensure all entries under Log table fields are selected.

If the LOG_JOB or LOG_TRANS table has not been created for the specified database, click the SQL button and then
click the Execute button in the subsequent dialog box.

8. Click OK until you return to the Job/Transformation properties dialog box.

9. From the Monitoring tab, check the box labeled Enable step performance monitoring? Click OK to exit the dialog
box, then save the job or transformation.

The DI Operations Mart is configured to collect ETL logging data.

Update the Logging for the DI Operations Mart

You can monitor the latest performance of your ETL operations by updating the logging data within the DI Operations
Mart. As a prerequisite, the Operations Mart must have previously been created and configured with the logging data
you want to collect.

Your data logs need to be updated if you modified these types of data.

• Logging table
• Database connection
• Transformation step
• Job entry

You must update and then populate the executor and log dimensions table if you want to log the most current data. You
also have the option to only update or populate.

1. From within Spoon, select Tools > Repository > Explore.

2. Select pdi_operations_mart.

3. Choose the appropriate job or transformation from the table.

If you want to Choose

Update the executor and log dimension tables. Update Executor and Log Table Dimensions.ktr

Populate the Pentaho Operations Mart with the logging
information without updating executor and log dimension
tables.

Update_Logging_Datamart.kjb

 | Logging and Monitoring | 40

If you want to Choose

Update the executor and log dimension tables with the
latest logging data. Then, update the Pentaho Operations
Mart with that new data.

Update_Dimensions_then_Logging_Datamart.kjb

As a result, the job or transformation runs. The Operations Mart updates and/or populates with the latest logging data.

Load the Sample Data in the DI Operations Mart

For the sake of illustration, this procedure uses the Fill_datamart_with_sample_data.kjb job in the pdi-
operations-mart\samples\datamart folder to load sample data. This job is intended to be run from the file
system; do not import it into your EE repository.

Caution: If you have loaded your own data to the PDI_Operations_Mart, this procedure will corrupt the
data.

Transformations use the PDI_Operations_Mart database connection. The connection information has been left out.
Use this procedure to configure the connection so that all transformations can use it.

1. Open the transformation and edit the PDI_Operations_Mart, adding the correct database information.

2. From the transformations View pane to the left, right-click the database connection you just edited to bring up its
context menu. Then click Share and close the transformation. Close the job to ensure the change is saved.
Only the Fill_datamart_with_sample_data.kjb job should be open now within Spoon.

3. From within Spoon, execute the Fill_datamart_with_sample_data.kjb job.

The sample data is loaded into the DI Operations Mart.

Loading the Sample Reports, Charts, and Dashboards

This procedure explains how to load and view sample reports, charts, and dashboards, which were created using the
Data Integration Operations Mart under the BA Server.

1. From within the User Console, create a folder under the BA Server at biserver-ee\pentaho-solutions\. The
internal location under the BA Server is biserver-ee\pentahosolutions\. In the Solution pane, name the
folder PDI Operations Mart Sample Reports.

2. Copy the contents of the /pdi-operations-mart/samples/reports directory into the PDI Operations
Mart Sample Reports folder.

3. Open the Browse view, then select Tools > Refresh > Repository cache. Then select Tools > Refresh >
Reporting Metadata.

Sample reports appear in the Files area of the Browse view.

Repeat this procedure for loading sample charts or dashboards by substituting either for the word reports in step 2.

Set Up and Distributethe Data Models

This procedure describes how to set up and distribute the data models for the DI Operations Mart under the BA Server:

1. Place the models/[MyBusinessModel].xmi and the models/
PDI_Operations_Mart_<dbname>.mondrian.xml, where <dbname> is the name of the database
containing the DI Operations Mart, under the BA Server directory at the following location: bi-server/
pentaho_solutions/PDI Operations Mart Sample Reports.

You may also put the [MyBusinessModel] into bi-server/pentaho_solutions/admin/resources/
metadata or to another solutions directory so it is available independent of the sample solution. In
case you already have an existing [MyBusinessModel] in this location, you need to rename the file to
PDI_Operations_Mart.xmi. The same applies accordingly to the Mondrian schema.

2. Rename the PDI_Operations_Mart_<dbname>.mondrian.xml file to
PDI_Operations_Mart.mondrian.xml.

3. Create a new database connection. Name it PDI_Operations_Mart. Then set the connection information to the
Data Integration Operations Mart database location. You can copy the needed URL from the database connecting
within Spoon when editing the connection information and pressing the Feature List button.

4. Add a category entry to the datasources.xml file, which can be found here: bi-server/
pentaho_solutions/system/olap/.

 | Logging and Monitoring | 41

If you named your data source PDI_Operations_Mart and used the solution folder PDI Operations Mart
Sample Reports, then the addition to the XML file looks like this.

<Catalog name="PDI_Operations_Mart">
 <DataSourceInfo>Provider=mondrian;DataSource=PDI_Operations_Mart</DataSourceInfo>
 <Definition>
 solution:PDI Operations Mart Sample Reports/PDI_Operations_Mart.mondrian.xml
 </Definition>
</Catalog>

5. Save the file.

6. Restart the BA Server.

7. From the User Console, refresh all caches and settings.

The DI Operations Mart data models are available for Analyzer and Interactive reporting using the
PDI_Operations_Mart data source.

Give Users Access to the DI Operations Mart

You must have previously mapped user roles, as described in Mondrian Role Mapping in the BA Server.

By default, only users who have the Admin role can access the Pentaho Operations Mart. The Admin role has access
to all capabilities within all Pentaho products, including the Pentaho Operations Mart. If you want to allow users to view
and run the Pentaho Operations Mart only, you can assign them the Pentaho Operations role. For example, a user
who has been assigned the Pentaho Operations user role is able to open and view a report within the DI Operations
mart, but does not have the ability to delete it.

To give users access to view the DI Operations Mart, assign the Pentaho Operations role to those users.

1. From within the Pentaho User Console, select the Administration tab.

2. From the left panel, select Security > Users/Roles.

3. Select the Roles tab.

4. Add the new role called Pentaho Operations by following the instructions in Adding Roles.

5. Assign the appropriate users to the new role, as described in Adding Users to Roles.

6. Advise these users to log in to the Pentaho User Console, create a Pentaho Analyzer or Pentaho Interactive Report,
and ensure that they can view the Pentaho Operations Mart in the Select a Data Source dialog.

Create Charts, Reports, and Dashboards Using PDI Operations Mart Data

Once you have created and populated your Data Integration Operations Mart with log data, the features of the User
Console enable you to examine this data and create reports, charts, and dashboards. We provide many samples,
reports, charts, and dashboards that you can modify to include your own log data.

For More Information

For more information about creating or modifying reports, charts, or dashboards, see Create Analysis, Interactive
Reports, and Dashboards.

Create ETL Logging Reports

1. Open a new report in Report Designer.

2. Create two parameters named Start Date and End Date, both with a Value Type of Date and a Prompt
Display Type of Date Picker.

3. Create a parameter named Number of Rows with a Value Type of Integer and a default value of 50.

4. Create a table data set named PeriodSelection with an ID column of type Integer and a Value column of type
String. Enter these ID/Value pairs into the table.

• 1, "24 Hours"

• 7, "7 Days"

• 30, "30 Days"

5. Create a parameter named Period Selection with the these settings.

• Value Type = Integer

 | Logging and Monitoring | 42

• Prompt Display Type = Single Selection Button

• Query = PeriodSelection

• Prompt Value = ID

• Prompt Display Name = Value

Check the Validate Values and Use first value if default value formula results in NA boxes.

6. Create a new metadata data set. In the Metadata Data Source editor under XMI file, point to the metadata file in the
solutions folder under the BA Server at biserver-ee/pentaho-solutions/PDI Operations Mart Sample
Reports/[MyBusinessModel.xmi].

7. Create a query against the metadata data set named Status and add the following field to the Selected Columns
list: Dim execution > Execution status.

8. Add a parameter named Status Selection with the these settings.

• Value Type = String

• Default Value = [start,end]

• Prompt Display Type = Multivalue List

• Query = Status

• Prompt Value = Execution Status

• Prompt Display Name = Execution Status

Check the Validate Values and Use first value if default value formula results in NA boxes.

9. Create a query against the metadata data set named TypeSelection, add the Dim executor > Executor type
field to the Selected Columns list.
Add the following condition: Dim executor > Executor type is not null.

10.Add a parameter named Kettle Type with these settings.

• Value Type = String

• Default Value = [job,transformation]

• Prompt Display Type = Multi Selection Button

• Query = TypeSelection

• Prompt Value = Executor type

• Prompt Display Name = Executor type

Check the Validate Values and Use first value if default value formula results in NA boxes.

11.Create a query against the Metadata data set named LastRun and add these fields to the Selected Columns list.

• Dim executor > Executor name

• Fact execution > Executor timestamp

• Dim execution > Execution status

• Fact execution > Duration

• Dim executor > Executor type

12.Add these conditions to the query.

• Dim execution > Execution status in {Status Selection}, with default value "start|
end"

• Dim executor > Executor type in {Kettle Type}, with default value "transformation"

• Fact execution > Execution Timestamp >= {Start Date}

• Fact execution > Execution Timestamp <= {End Date}

13.Add the following order to the query: Fact execution > Execution timestamp (Descending - DESC).

14.Click OK twice to exit the Query Editor and the Metadata Data Source Editor.

15.Drag a Message field from the panel on the left onto the report under Report Header, enter Last Run Jobs and
Transformations and format as necessary.

16.Drag 5 Message fields onto the Group Header band and fill them with the this text.

• Date/Time of Execution

• Name of Job or Transformation

• Type

• Execution Status

• Duration (sec)

 | Logging and Monitoring | 43

Format as necessary.

17.Drag the these fields onto the Details band and fill them with the corresponding values.

• Date field: Execution Timestamp
• String field: Executor Name
• String field: Executor Type
• String field: Execution Status
• Number field: Duration

Align the field widths to the Group Header message field widths, in order to align the headers with the values.

18.Review the report, selecting various parameter values to verify the report is working correctly.

Create ETL Logging Charts

1. Open a new report from within Pentaho Report Designer.

2. Create two parameters: Start Date and End Date, both with a Value Type of Date and a Prompt Display Type
of Date Picker.

a) From within Pentaho Report Designer, Go to Data > Add Parameter.
This brings up the Add Parameter dialog box.

b) For the Name field, enter Start Date.
c) Set the Value Type to Date.
d) Set the Display Type to Date Picker.
e) Repeat steps 2a. through 2d, but name this second parameter End Date.

3. Create a new metadata data set. In the Metadata Data Source editor, under XMI file, point to the metadata file in the
solutions folder under the BA Server at biserver-ee/pentaho-solutions/PDI Operations Mart Sample
Reports/metadata.xmi.

a) Go to Data > Add Datasource > Metadata.
This brings up the Metadata Data Source editor dialog box.

4. Set the Domain Id / BI-Server Solution Name: to PDI Operations Mart Sample Reports/metadata.xmi

5. Create a new query named Top 10 Slowest Transformations, then open the Metadata Query Editor.

6. Add these fields to the Selected Columns list.

• Dim executor > Executor name

• Fact execution > Minimum Throughput

7. Add these conditions to the query:.

• Dim executor > Executor type = 'transformation'

• Fact execution > Minimum Throughput > 0

• Fact execution > Execution Timestamp >= {Start Date}

• Fact execution > Execution Timestamp <= {End Date}

8. Add the following order to the query: Fact execution > Minimum Throughput (Ascending - ASC)

9. Click OK twice to exit the Query Editor and the Metadata Data Source Editor.

10.Create a new Open Formula. Name it rc and set the value to: &
(ROWCOUNT([LC_Dim_executor_executor_name])+1) & ": " &
[LC_Dim_executor_executor_name].

11.Create a new chart by dragging the chart icon on the left to the Report Header section of the report. Set the size.

12.Double-click the chart to bring up the Edit Chart dialog box. Select XY Line Chart as the chart type.

13.Select CategorySet Collector as the collector type under Primary Datasource.

14.Set the category-column value to the rc function, and the value-columns value to the Minimum Throughput field.

15.Under Bar Chart properties, set these options.

• x-axis-label-rotation to 45
• show-legend to False
• tooltip-formula to =["chart::category-key"]

16.Preview the report, selecting various parameter values to verify the chart is being displayed correctly.

 | Logging and Monitoring | 44

Create ETL Logging Dashboards

This procedure shows how to create a dashboard using the sample log data and report created in the Loading Sample
Reports, Charts, and Dashboards procedure.

Dashboards and the elements within them are highly configurable and can be modified to fit a variety of complex
analytical needs. See Use Dashboard Designer for more information about creating and customizing dashboards.

1. From with User Console, click on New Dashboard icon.

2. Select the 2 and 1 template.

3. From the Files pane on the left, drag these items from the list to the dashboard canvas.

• Top 10 Failed Jobs and Transformations
• Top 10 Slowest Transformations
• Transformation Throughput Overview

4. For each content pane do the following:

a) Give the content pane an appropriate title.
b) From the Objects pane, select Prompts.
c) Select Add to add the first of two new prompts.
d) Name the first prompt Start Date and make it a Date Picker. Click OK.
e) Name the next prompt Period and make it a button. Set the Data Type to Static List. Click OK.

5. Save the dashboard.

6. Select the Pencil icon on the toolbar to place the dashboard in edit mode.

You have a dashboard that displays log data created using the Data Integration Operations Mart.

Logging Tables Status for the Data Integration Operations Mart

Transformation Log Tables

The transformation tables have a status column, these are descriptions of the values that can be found in that column.

Status Display Description

start Indicates the transformation was started and remains in this status until the transformation
ends when no logging interval is set.

end Transformation ended successfully.

stop Indicates the user stopped the transformation.

error Indicates an error occurred when attempting to run the transformation.

running A transformation is only in this status directly after starting and does not appear without a
logging interval.

paused Indicates the transformation was paused by the user and does not appear without a logging
interval.

Jobs Log Tables

The job log tables have a status column, these are descriptions of the values that can be found in that column.

Status Display Description

start Indicates the job was started and keeps in this status until the job ends, and when no logging
interval is set.

end Job ended successfully.

stop Indicates the user stopped the job.

error Indicates an error occurred when attempting to run the job.

running A job is only in this status directly after starting and does not appear without a logging interval.

 | Logging and Monitoring | 45

Status Display Description

paused Indicates the job was paused by the user, and does not appear without a logging interval.

Logging Dimensions and Metrics for the Data Integration Operation Mart

These tables are references that identify the various dimensions and metrics that can be used to create new ETL log
charts and reports.

Fact Table

(fact_execution)

Field Name Description

execution_date_tk A technical key (TK) linking the fact to the date when the transformation/job
was executed.

execution_time_tk A technical key (TK) linking the fact to the time-of-day when the
transformation/job was executed.

batch_tk A technical key (TK) linking the fact to batch information for the
transformation/job.

execution_tk A technical key (TK) linking the fact to execution information about the
transformation/job.

executor_tk A technical key (TK) linking the fact to information about the executor
(transformation or job).

parent_executor_tk A technical key (TK) linking the fact to information about the parent
transformation/job).

root_executor_tk A technical key (TK) linking the fact to information about the root
transformation/job.

execution_timestamp The date and time when the transformation/job was executed.

duration The length of time (in seconds) between when the transformation was logged
(LOGDATE) and the maximum dependency date (DEPDATE)

rows_input The number of lines read from disk or the network by the specified step. Can
be input from files, databases, etc.

rows_output The number of rows output during the execution of the transformation/job.

rows_read The number of rows read in from the input stream of the the specified step.

rows_written The number of rows written during the execution of the transformation/job.

rows_rejected The number of rows rejected during the execution of the transformation/job.

errors The number of errors that occurred during the execution of the transformation/
job.

Batch Dimension
(dim_batch)

Field Name Description

batch_tk A technical key (TK) for linking facts to batch information.

batch_id The ID number for the batch.

logchannel_id A string representing the identifier for the logging channel used by the batch.

parent_logchannel_id A string representing the identifier for the parent logging channel used by the
batch.

 | Logging and Monitoring | 46

Date Dimension

(dim_date)

Field Name Description

date_tk A technical key (TK) for linking facts to date information.

date_field A Date object representing a particular day (year, month, day).

ymd A string representing the date value in year-month-day format.

ym A string representing the date value in year-month format.

year An integer representing the year value.

quarter An integer representing the number of the quarter (1-4) to which this date
belongs.

quarter_code A 2-character string representing the quarter (Q1-Q4) to which this date
belongs.

month An integer representing the number of the month (1-12) to which this date
belongs.

month_desc A string representing the month (“January”..”December”) to which this date
belongs.

month_code A string representing the shortened month code (“JAN”..”DEC”) to which this
date belongs.

day An integer representing the day of the month (1-31) to which this date
belongs.

day_of_year An integer representing the day of the year (1-366) to which this date belongs.

day_of_week An integer representing the day of the week (1-7) to which this date belongs.

day_of_week_desc A string representing the day of the week (“Sunday”..”Saturday”) to which this
date belongs.

day_of_week_code A string representing the shortened day-of-week code (“SUN”..”SAT”) to which
this date belongs.

week An integer representing the week of the year (1-53) to which this date
belongs.

Execution Dimension

(dim_execution)

Field Name Description

execution_tk A technical key (TK) for linking facts to execution information.

execution_id A unique string identifier for the execution.

server_name The name of the server associated with the execution.

server_host The name of the server associated with the execution.

executing_user The name of the user who initiated the execution.

execution_status The status of the execution (start, stop, end, error).

Executor Dimesion

This table contains information about an executor that is a job or transformation (dim_executor).

 | Logging and Monitoring | 47

Field Name Description

executor_tk A technical key (TK) for linking facts to executor information

version An integer corresponding to the version of the executor

date_from A date representing the minimum date for which the executor is valid

date_to A date representing the maximum date for which the executor is valid

executor_id A string identifier for the executor

executor_source The source location (either file- or repository-relative) for the executor

* executor_environment File server, repository name, related to the executor_source. *Reserved for
future use.

executor_type The executor type (“job” or “transformation”)

executor_name The name of the executor (transformation name, e.g.)

executor_desc A string description of the executor (job description, e.g.)

executor_revision A string representing the revision of the executor (“1.3”, e.g.)

executor_version_label A string representing a description of the revision (i.e. change comments)

exec_enabled_table_logging Whether table logging is enabled for this executor. Values are “Y” if enabled,
“N” otherwise.

exec_enabled_detailed_logging Whether detailed (step or job entry) logging is enabled for this executor.
Values are “Y” if enabled, “N” otherwise.

exec_enabled_perf_logging Whether performance logging is enabled for this executor. Values are “Y” if
enabled, “N” otherwise.

exec_enabled_history_logging Whether historical logging is enabled for this executor. Values are “Y” if
enabled, “N” otherwise.

last_updated_date The date the executor was last updated

last_updated_user The name of the user who last updated the executor

Log Table Dimension

This is a “junk dimension” containing log table information (dim_log_table).

Field Name Description

log_table_tk A technical key (TK) for linking.

object_type The type of PDI object being logged (“job”, “transformation”, “step”, e.g.)

table_connection_name The name of the database connection corresponding to the location of the
transformation/job logging table

table_name The name of the table containing the transformation/job logging information

schema_name The name of the database schema corresponding to the location of the
transformation/job logging table

step_entry_table_conn_name The name of the database connection corresponding to the location of the
step/entry logging table

step_entry_table_name The name of the table containing the step/entry logging information

step_entry_schema_name The name of the database schema corresponding to the location of the step/
entry logging table

perf_table_conn_name The name of the database connection corresponding to the location of the
performance logging table

 | Logging and Monitoring | 48

Field Name Description

perf_table_name The name of the table containing the performance logging information

perf_schema_name The name of the database schema corresponding to the location of the
performance logging table

Time-Of-Day-Dimension

This dimension contains entries for every second of a day from midnight to midnight (dim_time).

Field Name Description

time_tk A technical key (TK) for linking facts to time-of-day information

hms A string representing the time of day as hours-minutes-seconds ("00:01:35",
e.g.)

hm A string representing the time of day as hours-minutes ("23:59", e.g.)

ampm A string representing whether the time-of-day isAM or PM. Values are “am” or
“pm”.

hour The integer number corresponding to the hour of the day (0-23)

hour12 The integer number corresponding to the hour of the day with respect toAM/
PM (0-11)

minute The integer number corresponding to the minute of the hour (0-59)

second The integer number corresponding to the second of the minute (0-59)

Step Fact Table

This fact table contains facts about individual step executions (fact_step_execution).

Field Name Description

execution_date_tk A technical key (TK) linking the fact to the date when the step was executed.

execution_time_tk A technical key (TK) linking the fact to the time-of-day when the step was
executed.

batch_tk A technical key (TK) linking the fact to batch information for the step.

executor_tk A technical key (TK) linking the fact to information about the executor
(transformation).

parent_executor_tk A technical key (TK) linking the fact to information about the parent
transformation.

root_executor_tk A technical key (TK) linking the fact to information about the root
transformation/job.

execution_timestamp The date and time when the step was executed.

step_tk A technical key (TK) linking the fact to information about the step.

step_copy The step copy number. This is zero if there is only one copy of the step, or (0
to N-1) if N copies of the step are executed.

rows_input The number of lines read from disk or the network by the step. Can be input
from files, databases, etc.

rows_output The number of lines written to disk or the network by the step. Can be output
to files, databases, etc.

rows_read The number of rows read in from the input stream of the step.

rows_written The number of rows written to the output stream of the step.

 | Logging and Monitoring | 49

Field Name Description

rows_rejected The number of rows rejected during the execution of the step.

errors The number of errors that occurred during the execution of the step.

Step Dimension

This dimension contains information about individual steps and job entries (dim_step) .

Field Name Description

step_tk A technical key (TK) for linking facts to step/entry information

step_id The string name of the step/entry

* original_step_name The name of the step/entry template used to create this step/entry (“Table
Input”, e.g.). *Reserved for future use.

Job Entry Fact Table

This fact table contains facts about individual job entry executions (fact_jobentry_execution).

Field Name Description

execution_date_tk A technical key (TK) linking the fact to the date when the job entry was
executed.

execution_time_tk A technical key (TK) linking the fact to the time-of-day when the job entry was
executed.

batch_tk A technical key (TK) linking the fact to batch information for the job entry.

executor_tk A technical key (TK) linking the fact to information about the executor
(transformation or job).

parent_executor_tk A technical key (TK) linking the fact to information about the parent
transformation/job.

root_executor_tk A technical key (TK) linking the fact to information about the root
transformation/job.

step_tk A technical key (TK) linking the fact to information about the job entry.

execution_timestamp The date and time when the job entry was executed.

rows_input The number of lines read from disk or the network by the job entry. Can be
input from files, databases, etc.

rows_output The number of lines written to disk or the network by the job entry. Can be
output to files, databases, etc.

rows_read The number of rows read in from the input stream of the job entry.

rows_written The number of rows written to the output stream of the job entry.

rows_rejected The number of rows rejected during the execution of the job entry.

errors The number of errors that occurred during the execution of the job entry.

result Whether the job entry finished successfully or not. Values are “Y” (successful)
or “N” (otherwise).

nr_result_rows The number of result rows after execution.

nr_result_files The number of result files after execution.

Execution Performance Fact Table

This fact table contains facts about the performance of steps in transformation executions (fact_perf_execution).

 | Logging and Monitoring | 50

Field Name Description

execution_date_tk A technical key (TK) linking the fact to the date when the transformation was
executed.

execution_time_tk A technical key (TK) linking the fact to the time-of-day when the
transformation was executed.

batch_tk A technical key (TK) linking the fact to batch information for the
transformation.

executor_tk A technical key (TK) linking the fact to information about the executor
(transformation).

parent_executor_tk A technical key (TK) linking the fact to information about the parent
transformation/job.

root_executor_tk A technical key (TK) linking the fact to information about the root
transformation/job.

step_tk A technical key (TK) linking the fact to information about the transformation/
job.

seq_nr The sequence number. This is an identifier differentiating performance
snapshots for a single execution.

step_copy The step copy number. This is zero if there is only one copy of the step, or (0
to N-1) if N copies of the step are executed.

execution_timestamp The date and time when the transformation was executed.

rows_input The number of rows read from input (file, database, network, ...) during the
interval

rows_output The number of rows written to output (file, database, network, ...) during the
interval

rows_read The number of rows read from previous steps during the interval.

rows_written The number of rows written to following steps during the interval.

rows_rejected The number of rows rejected by the steps error handling during the interval.

errors The number of errors that occurred during the execution of the transformation/
job.

input_buffer_rows The size of the step’s input buffer in rows at the time of the snapshot.

output_buffer_rows The size of the output buffer in rows at the time of the snapshot.

Clean Up Operations Mart Tables

Cleaning up the PDI Operation Mart consists of running a job or transformation that deletes data older than the
specified maximum age. The transformation and job for cleaning up the PDI Operations Mart can be found in the "etl"
folder.

1. From within PDI/Spoon, open either Clean_up_PDI_Operations_Mart.kjb for jobs or the
Clean_up_PDI_Operations_Mart_fact_table.ktr for transformations.

2. Set these parameters.

• max.age (required)—the maximum age in days of the data. Job and transformation data older than the maximum
age will be deleted from the datamart.

• schema.prefix (optional)—for PostgreSQL databases, enter the schema name followed by a period (.), this will
be applied to the SQL statements. For other databases, leave the value blank.

Data that was not within the specified date range is now deleted.

To schedule regular clean up of the PDI Operations Mart, see Create DI Solutions.

 | Contents of the .kettle Directory | 51

Contents of the .kettle Directory

File Purpose

kettle.properties Main PDI properties file; contains global variables for low-
level PDI settings

shared.xml Shared objects file

db.cache The database cache for metadata

repositories.xml Connection details for PDI database or solution
repositories

.spoonrc User interface settings, including the last opened
transformation/job

.languageChoice Default language for the PDI client tool

Change the PDI Home Directory Location (.kettle folder)
The default location for the Pentaho Data Integration home directory is the .kettle directory in your system user's home
directory.

• Windows: C:\Documents and Settings\example_user\.kettle
• Linux: ~/.kettle)

There will be a different .kettle directory, and therefore a different set of configuration files, for each system user that
runs PDI.

Standalone PDI client tool deployments

You can specify a single, universal .kettle directory for all users by declaring a KETTLE_HOME environment variable
in your operating system. When declaring the variable, leave out the .kettle portion of it; this is automatically added by
PDI.

export KETTLE_HOME=/home/pentaho/examplepath/pdi

BA Server deployments that run PDI content

If you followed a manual deployment or archive package installation path, you can set a system environment variable
as explained above, but it must be declared before the BA Server service starts. You can alternatively change the
CATALINA_OPTS system variable to include the -D flag for KETTLE_HOME, or you can edit the script that runs the BA
Server and set the flag inline, as in this example from the start-pentaho.sh script:

export CATALINA_OPTS="--Xms2048m -Xmx2048m -XX:MaxPermSize=256m -
Dsun.rmi.dgc.client.gcInterval=3600000 -Dsun.rmi.dgc.server.gcInterval=3600000" -
DKETTLE_HOME=/home/pentaho/examplepath/pdi

Windows service modification

If you used the graphical utility to install the DI Server, then you must modify the Java options flag that runs the
BA Server Tomcat service. Here is an example command that will change the value of KETTLE_HOME to C:
\<examplepath>\pdi\.kettle:

tomcat6.exe //US//pentahobiserver ++JvmOptions -DKETTLE_HOME=C:\examplepath\pdi

Modify the DI Server in the same way, changing the service name:

tomcat6.exe //US//pentahoDataIntegrationServer ++JvmOptions -DKETTLE_HOME=C:
\<examplepath>\pdi

 | Back Up the DI Repository | 52

Back Up the DI Repository

Follow the instructions below to create a backup of the DI Repository.

Note: If you've made any changes to the DI Server Web application configuration, such as changing the port
number or base URL, you will have to modify this procedure to include the entire /pentaho/server/ directory.

1. Stop the DI Server.

/pentaho/server/data-integration-server/stop-pentaho.sh

2. Create a backup archive or package of the /pentaho/server/data-integration-server/pentaho-
solutions/ directory.

tar -cf pdi_backup.tar /pentaho/server/data-integration-server/pentaho-solutions/

3. Copy the backup archive to removable media or an online backup server.

4. Start the DI Server.

/pentaho/server/data-integration-server/start-pentaho.sh

Your DI Server's stored content, settings, schedules, and user/role information is now backed up.

To restore from this backup, simply unpack it to the same location, overwriting all files that already exist there.

 | Troubleshooting | 53

Troubleshooting

This section contains known problems and solutions relating to the procedures earlier.

Jobs scheduled on the Data Integration Server cannot execute a transformation on
a remote Carte server

You may see an error like this one when trying to schedule a job to run on a remote Carte server:

ERROR 11-05 09:33:06,031 - !
UserRoleListDelegate.ERROR_0001_UNABLE_TO_INITIALIZE_USER_ROLE_LIST_WEBSVC!
 com.sun.xml.ws.client.ClientTransportException: The server sent HTTP
 status code 401: Unauthorized

To fix this, follow the instructions in Executing Scheduled Jobs on a Remote Carte Server.

Sqoop Import into Hive Fails
If executing a Sqoop import into Hive fails to execute on a remote installation, the local Hive installation configuration
does not match the Hadoop cluster connection information used to perform the Sqoop job.

Verify the Hadoop connection information used by the local Hive installation is configured the same as the Sqoop job
entry.

	Contents
	Introduction
	Specify Data Connections for the DI Server
	JDBC Database Connections
	Define Native (JDBC) Database Connections
	Add Drivers
	Specify Native (JDBC) Connection Information
	Add Database-Specific Options
	Advanced Configuration of Database Connections
	Define Connection Pooling
	Connect to Clusters
	Modify Connections

	Define JNDI Connections for the DI Server
	Define OCI Connections for the DI Server
	Add Drivers
	Create OCI Connections
	Add Database-Specific Options
	Advanced Configuration of Database Connections
	Define Connection Pooling
	Connect to Clusters
	Modify Connections

	Create a Connection to the DI Repository
	Implement Advanced Security for the DI Server
	Configure LDAP for the DI Server
	LDAP Properties

	Manual JDBC Connection Configuration
	Create LDAP/JDBC Hybrid Configuration for the DI Server
	Configure Microsoft Active Directory for the DI Server

	Import and Export PDI Content
	Import Content Into a Repository
	Use the Import Script From the Command Line

	Export Content From the Repository

	Create Clusters
	Configure Carte to Be a Static Slave Instance
	Configure a Dynamic Cluster
	Configure Carte as a Master (Load Balancer)
	Configure Carte to Be a Dynamic Slave Instance

	Create a Cluster Schema in Spoon
	Execute Transformations in a Cluster
	Initialize Slave Servers in Spoon
	Execute Scheduled Jobs on a Remote Carte Server

	Install License Keys Using the Command Line Interface
	Assign Permissions to Use or Manage Database Connections
	List of Server Ports Used by PDI
	Change Service Port Numbers

	Change the DI Server URL
	Logging and Monitoring
	Enable Logging
	Log Rotation

	Monitor Job and Transformation Results
	slave-server-config.xml

	Data Integration Operations Mart
	Install the DI Operations Mart
	Set Up Database Connections
	Create the DI Operations Mart
	Configure Logging Data Collection
	Update the Logging for the DI Operations Mart
	Load the Sample Data in the DI Operations Mart
	Loading the Sample Reports, Charts, and Dashboards

	Set Up and Distributethe Data Models
	Give Users Access to the DI Operations Mart
	Create Charts, Reports, and Dashboards Using PDI Operations Mart Data
	Create ETL Logging Reports
	Create ETL Logging Charts
	Create ETL Logging Dashboards

	Logging Tables Status for the Data Integration Operations Mart
	Logging Dimensions and Metrics for the Data Integration Operation Mart
	Clean Up Operations Mart Tables

	Contents of the .kettle Directory
	Change the PDI Home Directory Location (.kettle folder)

	Back Up the DI Repository
	Troubleshooting
	Jobs scheduled on the Data Integration Server cannot execute a transformation on a remote Carte server
	Sqoop Import into Hive Fails

