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Important Note: This report is a summary of my detailed work. So, please check the Jupyter 

Notebook that I have created in https://github.com/suyunu/TSPs-with-Profit repository. You can 

directly view the code from here: https://github.com/suyunu/TSPs-with-Profit/blob/master/ts-

tspp.ipynb . You can find the detailed process of the code with heavy commenting. 

 

Introduction 

In this project, we tried to solve Travelling Salesperson Problems with Profits (TSPs with profits) with 

Tabu Search (TS). Before I start doing anything on the problem, I made a literature survey. There are 

lots of papers in the literature about TSPs with profits but those papers are generally tries to solve it 

with some constraints. So actually, I couldn't find a good paper to pointing out our problem which has 

no constraint. But the following paper has some good ideas about the general structure of the problem 

even it has a constraint on the tour length: 

 Gendreau, Michel, Gilbert Laporte, and Frédéric Semet. "A tabu search heuristic for the 

undirected selective travelling salesman problem." European Journal of Operational Research 

106.2-3 (1998): 539-545. 

 

Travelling Salesperson Problems with Profits 

Traveling Salesperson problems with profits (TSPs with profits) are a generalization of the traveling 

salesman problem (TSP), where it is not necessary to visit all vertices. A profit is associated with each 

vertex. The overall goal is the simultaneous optimization of the collected profit and the travel costs. 

(http://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0079?journalCode=trsc) 

 

Solution Representation 

I used a simple permutation representation. The list [1, 2, 3, 4, 5, 1] represents the route of the 

salesperson. All the routes should start with "1" and end with "1" which is the depot. 

 

 

 

https://github.com/suyunu/TSPs-with-Profit
https://github.com/suyunu/TSPs-with-Profit/blob/master/ts-tspp.ipynb
https://github.com/suyunu/TSPs-with-Profit/blob/master/ts-tspp.ipynb
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0079?journalCode=trsc
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Tabu Search 

In this part I will explain the steps of tabu search for the travelling salesperson problems with profits. 

Pseudocode 

1. (Initialization) Construct an initial tour by means of a construction heuristic. 

2. (Insertion Partitions) Determine all insertion partitions according to proximity measure and 

retain 10 of them. 

3. Repeat Step 4-10 for 10.000 iterations: 

4. (Insertion Candidate) Randomly choose one insertion partition and determine the best 

insertion candidate from this partition 

5. (Deletion Chains) Determine the deletion chains. 

6. (Deletion Candidate) Determine the best deletion candidate from deletion chains 

7. (Insertion or Deletion) Compare the results of the insertion and deletion then apply the best 

one. If the best move is deletion, then declare all vertices of deletion tabu for θ iteration 

8. (Tour Improvement) If the iteration count is multiple of 5, apply 2-opt 

9. (Best Solution Update) If newly generated solution has a better objective than the incumbent 

solution then apply 3-opt to the newly generated solution to improve the tour quality and 

make it the incumbent solution. 

10. (Shuffle to Reset) If there hasn't been an improvement in γ iteration, then assign incumbent 

solution to the current solution and shuffle the route. Also, resets the tabu list. 

 

Initialization 

1. Determine a tour length 𝑉 and start building a tour 

2. Until length of route T reaches V, repeat: 

3. Randomly determine a spot 𝑗 in the tour T and add the city 𝑣𝑗 ∉  𝑇 having the minimal ratio 

(𝑑𝑖𝑗  + 𝑑𝑗𝑘  − 𝑑𝑖𝑘) 𝑝𝑗⁄  

4. Apply 2-opt to the generated list 

After lots of test initial tour length 𝑉 =  𝑁 2⁄  gave the best results. So function runs 5 time and 

constructs 5 route with length 𝑁 2⁄ , then chooses the route with best objective. 
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Insertion Partitions 

Dispersion Index 

Dispersion index of a non-empty list R, 

Γ(R) =  {

1

|𝑅|(|𝑅| − 1)
∑ 𝑑_𝑖𝑗 

𝑣𝑖,𝑣𝑗∈𝑅

, 𝑖𝑓 |𝑅| > 1

0                                           , 𝑖𝑓 |𝑅| = 1

 

 

Proximity Measure 

Proximity measure between two non-empty lists R and S, 

Δ(𝑅, 𝑆) =
2

|𝑅||𝑆|
( ∑ 𝑑_𝑖𝑗 

𝑣𝑖∈𝑅,𝑣𝑗∈𝑆

) − Γ(𝑅) − Γ(𝑆) 

Note that, if 𝑅 = {𝑣𝑖} and 𝑆 = {𝑣𝑗} , then Δ(𝑅, 𝑆) = 𝑑𝑖𝑗  

 

Procedure 

Using this proximity measure, we define several partitions of 𝑉 ∖ {𝑣0} within a preprocessing step of 

the algorithm. Each of these partitions contains clusters of vertices 

1. (First Partition) Set 𝑟 ≔ 1 and 𝑃𝑟 ∶=  {{𝑣1}, … , {𝑣𝑛}} 

2. (Next Partitions) If 𝑟 =  𝑁 stop. Otherwise, define 𝑃𝑟+1  form 𝑃𝑟 by merging the two clusters 

𝐶𝑟𝑖∗  and 𝐶𝑟𝑘∗ of 𝑃𝑟 yielding min
𝑖≠𝑗

{Δ(𝐶𝑟𝑖, 𝐶𝑟𝑘)} set 𝑟 ∶= 𝑟 +  1 and repeat this step. 

We calculate all possible 𝑁 − 1 partitions but we only retain partitions 𝑃𝑟 corresponding to 𝑟 =

 {1, 𝑖𝑛𝑡(𝑁/2), 𝑖𝑛𝑡(2𝑁/3), 𝑖𝑛𝑡(3𝑁/4), 𝑖𝑛𝑡(4𝑁/5), 𝑖𝑛𝑡(5𝑁/6), 𝑖𝑛𝑡(6𝑁/7), 𝑖𝑛𝑡(7𝑁/8), 𝑖𝑛𝑡(8𝑁/

 9), 𝑖𝑛𝑡(9𝑁/10)} at the begining. One reason for keeping at most 10 partitions is to save memory. 

Moreover, removing partitions that are very similar to one another will create a diversification effect 

in the search process. This will become clearer later. 
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Insertion Candidates 

The value of insertion of a cluster 𝐶𝑟𝑘
′  from the partition 𝑃_𝑟 is measured by the ratio of added profit 

over added distance. 

The gravity centre  𝑣𝑘̅̅ ̅ of 𝐶𝑟𝑘
′  is first computed for all clusters of 𝑃𝑟, and a preliminary move evaluation 

is made according to the formula 

𝑔̅(𝐶𝑠𝑘
′ ) =

∑ 𝑝ℎ𝑣ℎ∈𝐶𝑠𝑘
′

𝑙(𝑇 ∪ {𝑣𝑘̅̅ ̅}) − 𝑙(𝑇)
 

The cluster 𝐶𝑠𝑘∗
′  corresponding to 𝑚𝑎𝑥𝑘{𝑔̅(𝐶𝑠𝑘

′ )} is then selected. The exact move evaluation 

associated with 𝐶𝑠𝑘∗
′  is 

𝑔̅(𝐶𝑠𝑘∗
′  ) =

∑ 𝑝ℎ𝑣ℎ∈𝐶𝑠𝑘∗
′  

𝑙(𝑇 ∪ 𝐶𝑠𝑘∗
′ ) − 𝑙(𝑇)

 

 

Deletion Chains 

The sets of vertices 𝐻𝑖𝑗 candidate for removal are defined as follows. Consider a solution 𝑇 =

 {𝑣0, … , 𝑣𝑗0
, 𝑣𝑖1

, … , 𝑣𝑗1
, 𝑣𝑖2

, … , 𝑣𝑗𝜆−1
 , 𝑣𝑖0

, … , 𝑣0} are the 𝜆 longest edges of the tour and 𝜆 is an input 

parameter randomly selected in the interval [2, 𝛿/2], and 𝛿 is the maximum between 4 and the 

number of vertices appearing on the initial tour. Then the sets 𝐻𝑖𝑗 are simply 𝐻𝑖1𝑗1
, … , 𝐻𝑖𝜆−1𝑗𝜆−1

 

 

Deletion Candidates 

The value of a move associated with the removal of a chain 𝐻𝑖𝑗 is measured by the ratio of saved 

distance over lost profit, and is computed as 

𝑔̅(𝐻𝑖𝑗 ) =
𝑙(𝑇) − 𝑙(𝑇 ∖ 𝐻𝑖𝑗)

∑ 𝑝𝑘𝑣𝑘∈𝐻𝑖𝑗 
 

 

Insertion or Deletion 

Compare the results of the insertion and deletion then apply the best one. If the best move is deletion, 

then declare all vertices of deletion tabu for 𝜃 iteration where 𝜃 is a random number between (5, 25) 
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Tour Improvement 

If the iteration count is the multiple of 5, apply 2-opt. 

2-opt 

The main idea behind it is to take a route that crosses over itself and reorder it so that it does not. To 

speed up the 2-opt while comparing the new route to the old one, we just compare the added and 

removed edges length. Also, at each iteration of 2-opt we are searching for the best update move and 

apply it. 

 

Best Solution Update 

If newly generated solution has a better objective than the incumbent solution then apply 3-opt to the 

newly generated solution to improve the tour quality and make it the incumbent solution.  

3-opt 

3-opt analysis involves deleting 3 edges in a tour, reconnecting the tour in all other possible ways, and 

then evaluating each reconnection method to find the optimum one. This process is then repeated for 

all different set of 3 connections. To speed up 3-opt process, unlike our 2-opt implementation, we 

don't search for the best move in all the edge pairs, but we take the first move that results in a better 

tour. To make things stochastic, we select edges randomly. 

 

Shuffle to Reset 

If there hasn't been an improvement in 𝛾 iteration, then assign incumbent solution to the current 

solution and shuffle the route. I chose 𝛾 as 1000. Also, it resets the tabu list. This is a magic reset step 

which enables different solutions by shuffling the route. Shuffling is important because, tabu search 

itself and especially 2-opt and 3-opt methods are not guaranteed to find optimal paths. For example, 

the order of given nodes of a route may change the final 2-opt route result. By shuffling, we are 

increasing chances to find different routes which may have better objective values. 
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Failed Extensions 

We have also tried some other extensions to the tabu search to improve the results. However, some 

of them just failed. 

Intermediate-Term Memory 

Intensification rules intended to bias the search towards promising areas of the search space. If a node 

is always showing up in the solution then we made this node forbid to be in tabu list. 

Long-Term Memory  

Diversification rules that drive the search into new regions. If a node is always showing up in the 

solution, then we made this node forbid to enter the solutions for a longer time than a normal tabu. 

Shuffling 

After completion of tabu search heuristic, to try to make an improvement in the route length, we 

shuffle and optimize the route several times. 

 

Extra - Visualization of 2-Opt 

I have added an extra property to my 2-opt function. You can track the edge changes in the 2-opt 

algorithm visually via sending the function some parameters. 
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Sample Output 

Instance:  

eil51-HP 

 

Best Objective Value: 

704.73 

 

Number of Customers Visited (Depot Excluded): 

49 

 

Sequence of Customers Visited: 

[1, 32, 11, 38, 5, 49, 10, 39, 33, 45, 15, 37, 17, 44, 42, 19, 41, 13, 

25, 14, 18, 4, 47, 12, 46, 51, 27, 6, 48, 23, 24, 43, 7, 26, 8, 31, 28, 

3, 36, 35, 20, 29, 21, 34, 30, 9, 50, 16, 2, 22, 1] 

 

CPU Time (s): 

40.40 
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Results 

Instance Best 

Objective 

Value 

No. of 

customers 

visited 

Sequence of customers visited CPU Time 

(s) 

eil51-LP 49.98 19 [1, 32, 11, 38, 9, 16, 50, 34, 30, 10, 33, 

45, 15, 44, 17, 4, 18, 14, 6, 48, 1] 

27.34 

eil51-HP 704.73 49 [1, 32, 11, 38, 5, 49, 10, 39, 33, 45, 15, 

37, 17, 44, 42, 19, 41, 13, 25, 14, 18, 

4, 47, 12, 46, 51, 27, 6, 48, 23, 24, 43, 

7, 26, 8, 31, 28, 3, 36, 35, 20, 29, 21, 

34, 30, 9, 50, 16, 2, 22, 1] 

39.85 

eil76-LP 160.05 53 [1, 43, 42, 41, 56, 23, 49, 16, 3, 44, 32, 

9, 39, 72, 58, 10, 38, 11, 53, 14, 19, 

35, 7, 8, 46, 34, 52, 27, 13, 57, 15, 37, 

20, 70, 60, 71, 69, 36, 47, 21, 74, 30, 

68, 75, 76, 67, 26, 12, 40, 17, 51, 6, 

33, 73, 1] 

98.92 

eil76-HP 1241.40 74 [1, 33, 63, 16, 3, 44, 32, 40, 12, 17, 51, 

6, 68, 4, 75, 76, 26, 67, 34, 46, 52, 27, 

45, 29, 48, 30, 2, 74, 28, 61, 21, 47, 

36, 69, 71, 60, 70, 20, 37, 5, 15, 57, 

13, 54, 19, 8, 35, 7, 53, 14, 59, 11, 66, 

65, 38, 10, 58, 72, 39, 9, 25, 55, 50, 

18, 24, 49, 23, 56, 41, 43, 42, 64, 22, 

62, 73, 1] 

101.60 

eil101-LP 262.15 75 [1, 69, 31, 88, 62, 10, 32, 90, 63, 11, 

19, 47, 48, 82, 7, 18, 83, 60, 5, 84, 61, 

16, 86, 44, 91, 100, 85, 93, 98, 37, 92, 

59, 99, 96, 6, 94, 13, 95, 97, 87, 42, 

43, 15, 57, 41, 22, 74, 75, 56, 23, 39, 

4, 72, 73, 21, 40, 58, 53, 101, 28, 12, 

80, 68, 24, 29, 78, 34, 9, 51, 81, 33, 

79, 3, 77, 76, 50, 1] 

196.62 
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eil101-HP 1639.82 98 [1, 69, 27, 101, 53, 28, 26, 12, 80, 68, 

29, 24, 55, 25, 4, 39, 67, 23, 56, 75, 

41, 22, 74, 72, 73, 21, 40, 58, 13, 87, 

57, 15, 43, 42, 14, 44, 38, 86, 16, 61, 

85, 91, 100, 37, 98, 93, 99, 96, 59, 92, 

97, 95, 94, 6, 89, 52, 18, 83, 60, 5, 84, 

17, 45, 46, 8, 82, 7, 48, 19, 47, 36, 49, 

64, 11, 63, 90, 32, 10, 62, 88, 31, 70, 

30, 20, 66, 65, 71, 35, 34, 78, 81, 9, 

51, 33, 79, 3, 77, 76, 50, 1] 

227.62 

 

 

Evaluation of Results and Observations 

In this part I just want to make a few comments about results and the general structure of the 

algorithm. 

First, to achieve this version of the code, I have run hundreds of different combinations of parameters 

and methodologies. I’ve tried different term memories, shuffling, different tour improvement 

approaches. But in the end, this layout gave the best results in terms of both objective value and time. 

Second, I also run this version of the code several times to test different characteristics of the 

algorithm, especially I’ve tried to find the optimal iteration count. Results showed that, with the reset 

shuffling idea, a better solution can be found at any stage of the iteration. In my test, once it achieved 

the highest objective value in 100 iterations, in another test, it found a better route at the 9500th 

iteration. However, tests showed that it is unlikely to find a better solution after 10000 iterations. 

My point is that, one can also use 1000 iterations rather than 10000 iterations. (In the original paper 

that I mentioned at the beginning 1000 iterations was used.) With 1000 one can still achieve very good 

results but with less confidence. However, time spent will be way more less than 10000. So obviously, 

like all the heuristics, and other methods here we have a trade off again. I chose 10000 iterations, 

because after some optimization in the code, it gave results in a tolerable time with a better confidence 

interval.  
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Code 

Importing required libraries 

iimport numpy as np 
import math 
import time 
import random 
import itertools 
import queue 
import pandas as pd 
from IPython.display import display, Markdown 
import networkx as nx 
import matplotlib.pyplot as plt 
 
 

Reading data 

# HP or LP 
dataset = "HP" 
# 51, 76 or 101 
N = 51 
 
filename = "dataset-" + dataset + ".xls" 
df = pd.read_excel(filename, sheetname = "eil"+str(N), header = None, index_col = 0) 
 
df.columns = ['x', 'y', 'prof'] 
 
display(df[0:10]) 
 
distances = [-1] 
prof = [-1] 
 
for lab, row in df.iterrows(): 
    tempDist = [-1] 
    prof.append(row['prof']) 
    for lab2, row2 in df.iterrows(): 
        dist = math.sqrt( math.pow(row['x']-row2['x'], 2) + math.pow(row['y']-row2['y'], 2) ) 
        tempDist.append(dist) 
    distances.append(tempDist) 
     
# dff holds the main data as given from the xls 
# Started the indices from 1 
dff = [[0,0,0]] 
for lab, row in df.iterrows(): 
    dff.append([row['x'],row['y'],row['prof']]) 
 
 

Tabu Search Functions 

def calculateObj(route): 
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    if len(route) == 0: 
        return -99999999 
     
    objVal = 0 
     
    for i in range(1,len(route)): 
        objVal = objVal + dff[route[i]][2] - distances[route[i-1]][route[i]] 
         
    return objVal 
 
def calculateTour(route): 
    objVal = 0 
     
    for i in range(1,len(route)): 
        objVal = objVal + distances[route[i-1]][route[i]] 
         
    return objVal 
 
 
def updateGraph(G, old_route, route, se, visualize): 
    G.remove_edge(old_route[se[0]-1], old_route[se[0]]) 
    G.remove_edge(old_route[se[1]], old_route[se[1]+1]) 
    G.add_edge(route[se[0]-1], route[se[0]]) 
    G.add_edge(route[se[1]], route[se[1]+1]) 
    if visualize: 
        nx.draw(G,pos,with_labels = True) 
        plt.show() 
        print(str(old_route[se[0]-1]) + ',' + str(old_route[se[0]]) + ' - ' + str(old_route[se[1]]) + ',' + 
str(old_route[se[1]+1])) 
    return G 
 
def twoOpt(route, G=None, visualize = False): 
    if G != None: 
        pos=nx.get_node_attributes(G,'pos') 
    if visualize and G != None: 
        nx.draw(G,pos,with_labels = True) 
        plt.show() 
    se = (0,0) 
    xx = 0 
    while(True): 
        xx = xx + 1 
        temp_route = list(route) 
        old_route = list(route) 
        route_distance = -999999999 
        for i in range(1, len(route)-2): 
            for j in range(i+1, len(route)-1): 
                new_route = route[:i] + list(reversed(route[i:j+1])) + route[j+1:] 
                diff_distance = distances[route[i-1]][route[i]] + distances[route[j]][route[j+1]]  
                diff_distance = diff_distance - distances[new_route[i-1]][new_route[i]] - 
distances[new_route[j]][new_route[j+1]]  
                if diff_distance > route_distance: 
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                    temp_route = list(new_route) 
                    route_distance = diff_distance 
                    se = (i,j) 
        if route_distance > 0.01: 
            route = list(temp_route) 
            if G != None: 
                G = updateGraph(G, old_route, route, se, visualize) 
        else: 
            break 
    return route, G 
 
def threeOptSwap(route, i, j, k): 
    bestRoute = list(route) 
    best_diff = 0 
     
    a = i 
    b = j+1 
    c = k+2 
     
    nRoute = route[:a] + list(reversed(route[a:b])) + list(reversed(route[b:c])) + route[c:] 
    diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]] 
    diff = diff - distances[route[a-1]][route[b-1]] - distances[route[a]][route[c-1]] - 
distances[route[b]][route[c]] 
    if diff > best_diff: 
        best_diff = diff 
        bestRoute = list(nRoute) 
         
    nRoute = route[:a] + route[b:c] + route[a:b] + route[c:] 
    diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]] 
    diff = diff - distances[route[a-1]][route[b]] - distances[route[c-1]][route[a]] - distances[route[b-
1]][route[c]] 
    if diff > best_diff: 
        best_diff = diff 
        bestRoute = list(nRoute) 
         
    nRoute = route[:a] + route[b:c] + list(reversed(route[a:b])) + route[c:] 
    diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]] 
    diff = diff - distances[route[a-1]][route[b]] - distances[route[c-1]][route[b-1]] - 
distances[route[a]][route[c]] 
    if diff > best_diff: 
        best_diff = diff 
        bestRoute = list(nRoute) 
         
    nRoute = route[:a] + list(reversed(route[b:c])) + route[a:b] + route[c:] 
    diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]] 
    diff = diff - distances[route[a-1]][route[c-1]] - distances[route[b]][route[a]] - distances[route[b-
1]][route[c]] 
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    if diff > best_diff: 
        best_diff = diff 
        bestRoute = list(nRoute) 
         
    return bestRoute, best_diff 
 
 
def threeOpt(route): 
    xx = 0 
    while(True): 
        xx += 1 
        temp_route = list(route) 
        old_route = list(route) 
        best_diff = 0.01 
        brk = False 
        li = list(range(1, len(route)-2)) 
        random.shuffle(li) 
        for i in li: 
            lj = list(range(i, len(route)-2)) 
            random.shuffle(lj) 
            for j in lj: 
                lk = list(range(j, len(route)-2)) 
                random.shuffle(lk) 
                for k in lk: 
                    new_route, new_diff = threeOptSwap(route, i, j, k) 
                    if new_diff > best_diff: 
                        temp_route = list(new_route) 
                        best_diff = new_diff 
                        brk = True 
                        break 
                if brk: 
                    break 
            if brk: 
                break 
        if not brk: 
            break 
        if best_diff > 0.01: 
            route = list(temp_route) 
        else: 
            break 
    return route 
 
def initialization(): 
    ''' Construction Heuristic ''' 
    best_objs = [] 
    best_routes = [] 
    for i in [int(N/2)]: 
        local_obj = -99999999 
        local_route = [] 
        for t in range(5): 
            route = [1,1] 
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            for j in range(i): 
                min_obj = 99999999 
                k = random.randint(0, len(route)-2) 
                temp_route = list(route) 
                for lab in range(1,N+1): 
                    if lab not in route: 
                        new_route = route[:k+1] + [lab] + route[k+1:] 
                        diff_obj = (distances[route[k]][lab] + distances[lab][route[k+1]] - 
distances[route[k]][route[k+1]]) / prof[lab] 
                        if diff_obj < min_obj: 
                            temp_route = list(new_route) 
                            min_obj = diff_obj 
                route = list(temp_route) 
            temp_route = twoOpt(route)[0] 
            temp_obj = calculateObj(temp_route) 
            if temp_obj > local_obj: 
                local_obj = temp_obj 
                local_route = list(temp_route) 
         
        best_routes.append(local_route) 
        best_objs.append(local_obj) 
         
    route = list(best_routes[0]) 
    rat = 0 
    for i in range(len(best_routes)): 
        if best_objs[i]/len(best_routes[i]) > rat: 
            rat = best_objs[i]/len(best_routes[i]) 
            route = list(best_routes[i]) 
     
    return route 
 
def dispersionIndex(cluster): 
    if len(cluster) == 1: 
        return 0 
    else: 
        sm = 0 
        for c1 in cluster: 
            for c2 in cluster: 
                sm = sm + distances[c1][c2] 
        return sm / (len(cluster)*(len(cluster)-1)) 
     
def proximityMeasure(cluster1, cluster2): 
    sm = 0 
    for c1 in cluster1: 
        for c2 in cluster2: 
            sm = sm + distances[c1][c2] 
             
    return (2/(len(cluster1)*len(cluster2)))*sm - dispersionIndex(cluster1) - dispersionIndex(cluster2) 
     
 
def insertionCandidates(): 
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    candidates = [] 
    rList = [1, int(N/2), int(2*N/3), int(3*N/4), int(4*N/5), int(5*N/6), int(6*N/7), int(7*N/8), int(8*N/9), 
int(9*N/10)] 
     
    Pr = [] 
    Pr = [[x] for x in range(2,N+1)] 
    candidates.append(list(Pr)) 
     
    for r in range(2,N): 
        minProx = 99999999 
        minProxInd = [] 
        for i in range(len(Pr)): 
            for j in range(i+1, len(Pr)): 
                pM = proximityMeasure(Pr[i], Pr[j]) 
                if pM < minProx: 
                    minProx = pM 
                    minProxInd = [i, j] 
        Pr.append(Pr[minProxInd[0]]+Pr[minProxInd[1]]) 
        del(Pr[minProxInd[1]]) 
        del(Pr[minProxInd[0]]) 
         
        if r in rList: 
            candidates.append(list(Pr)) 
             
    return candidates 
 
def deletionCandidates(route): 
    candidates = [] 
    edges = [] 
     
    K = random.randint(2,int(max(4,len(route))/2)) 
     
    for i in range(len(route)-1): 
        edges.append([distances[route[i]][route[i+1]], i, i+1]) 
     
    edges = list(reversed(sorted(edges)))[:K] 
    edges.sort(key=lambda x: x[1]) 
     
    for i in range(K-1): 
        tempList = [] 
        for j in range(edges[i][2], edges[i+1][1]+1): 
            tempList.append(route[j]) 
         
        candidates.append(tempList) 
         
    return candidates 
 
 
def findBestInsertionCandidate(route, tabuList, insCandidates): 
    bestInsCandidate = [] 
    bestInsObj = -99999999 
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    for iC in insCandidates: 
        profitSum = 0 
        gCenter = [0,0] 
        for c in iC: 
           if c not in route and c not in tabuList: 
                gCenter[0] = gCenter[0] + dff[c][0]/len(iC) 
                gCenter[1] = gCenter[1] + dff[c][1]/len(iC) 
                profitSum = profitSum + dff[c][2] 
 
        minDist = 99999999 
        for j in range(len(route)-1): 
            distAdd1 = calculateDist(dff[route[j]][0],dff[route[j]][1],gCenter[0],gCenter[1]) 
            distAdd2 = calculateDist(gCenter[0],gCenter[1],dff[route[j+1]][0],dff[route[j+1]][1]) 
            distRem = calculateDist(dff[route[j]][0],dff[route[j]][1],dff[route[j+1]][0],dff[route[j+1]][1]) 
 
            dist = distAdd1 + distAdd2 - distRem 
            if dist < minDist: 
                minDist = dist 
 
        if profitSum/minDist > bestInsObj: 
            bestInsObj = profitSum/minDist 
            bestInsCandidate = list(iC) 
             
    return bestInsCandidate 
 
def calculateDist(x1,y1,x2,y2): 
    return math.sqrt( math.pow(x1-x2, 2) + math.pow(y1-y2, 2) ) 
 
 

Main Solver 

# Iteration Count 
ITER = 10000 
 
# Start the timer 
t1 = time.clock() 
 
# Create the initial route 
route = initialization() 
     
# Determine all possible insertion partitions 
insCandidatesAll = insertionCandidates() 
tabuList = {} 
solutionIndex = [0] 
 
bestRoute = list(route) 
bestObj = calculateObj(bestRoute) 
 
# Start tabu search 
for i in range(ITER): 
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    # Choose one insertion partition ramdompy 
    insCandidates = list(insCandidatesAll[random.randint(0,len(insCandidatesAll)-1)]) 
     
    # Determine deletion candidates 
    if len(route) < 3: 
        delCandidates = [] 
    else: 
        delCandidates = deletionCandidates(route) 
     
    candidateRoute = [] 
    tabuAddition = [] 
     
    # Find best insertion candidate from the selected partition 
    bestInsCandidate = findBestInsertionCandidate(route, tabuList, insCandidates) 
         
    # Calculate the gain of inserting the insertion candidate to the route 
    insertedRoute = list(route) 
    profitSum = 0 
    distSum = 0 
    random.shuffle(bestInsCandidate) 
    for c in bestInsCandidate: 
        if c not in insertedRoute and c not in tabuList: 
            profitSum = profitSum + dff[c][2] 
            minDist = 99999999 
            temp_route = list(insertedRoute) 
            for j in range(len(insertedRoute)-1): 
                new_route = insertedRoute[:j+1] + [c] + insertedRoute[j+1:] 
                diffDist = distances[insertedRoute[j]][c] + distances[c][insertedRoute[j+1]] - 
distances[insertedRoute[j]][insertedRoute[j+1]] 
                if diffDist < minDist: 
                    temp_route = list(new_route) 
                    minDist = diffDist 
            insertedRoute = list(temp_route) 
            distSum = distSum + minDist 
    if distSum == 0: 
        distSum = 99999999 
    insertedObj = profitSum / distSum 
     
     
    # Choose the best deletion candidate from the selected ones, then calculate its gain 
    deletedRoute = list(route) 
    maxDeletedObj = -99999999 
    for dC in delCandidates: 
        tempRoute = list(route) 
        profitSum = 0 
        distSum = 0 
        for c in dC: 
            if c in tempRoute: 
                cPrev = tempRoute[tempRoute.index(c)-1] 
                cNext = tempRoute[tempRoute.index(c)+1] 
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                profitSum = profitSum + dff[c][2] 
                distSum = distances[cPrev][c] + distances[c][cNext] - distances[cPrev][cNext] 
                tempRoute.remove(c) 
        if profitSum != 0 and distSum/profitSum > maxDeletedObj: 
            maxDeletedObj = distSum/profitSum 
            deletedRoute = list(tempRoute) 
            tabuAddition = list(dC) 
    deletedObj = maxDeletedObj 
            
     
    # Compare the insertion and deletion gains, and apply the better one 
    if insertedObj > deletedObj: 
        candidateRoute = list(insertedRoute) 
        chosen = ['I', len(insertedRoute)-len(route)] 
    else: 
        candidateRoute = list(deletedRoute) 
        chosen = ['D', len(route)-len(deletedRoute)] 
     
    # Update the tabu list 
    for key, value in list(tabuList.items()): 
        tabuList[key] = tabuList[key] - 1 
        if tabuList[key] == 0: 
            del(tabuList[key]) 
     
    # If deletion action is performed then add the chosen deletion candidates to the tabu list. 
    if chosen[0] == 'D': 
        for tA in tabuAddition: 
            if tA in route: 
                tabuList[tA] = random.randint(5,25) 
         
    route = list(candidateRoute) 
     
    # Improve the route 
    if i % 5 == 0: 
        route = twoOpt(route)[0] 
 
    # Best solution update 
    if calculateObj(route) > bestObj: 
        solutionIndex.append(i) 
        route = threeOpt(route) 
        bestRoute = list(route) 
        bestObj = calculateObj(route) 
 
    # Shuffle to Reset 
    if i - solutionIndex[-1] >= 1000: 
        tabuList.clear() 
        tempRoute = bestRoute[1:-1] 
        random.shuffle(tempRoute) 
        tempRoute = [1] + tempRoute + [1] 
        route = list(tempRoute) 
        solutionIndex.append(i) 
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# Stop  the timer 
t2 = time.clock() 
 
 

Results 

print("Instance: ") 
print("eil" + str(N) + "-" + str(dataset)) 
print() 
 
print("Best Objective Value:") 
print("%.2f" %calculateObj(bestRoute)) 
print() 
 
print("Number of Customers Visited (Depot Excluded):") 
print(len(bestRoute)-2) 
print() 
 
print("Sequence of Customers Visited:") 
print(bestRoute) 
print() 
 
print("CPU Time (s):") 
timePassed = (t2-t1) 
print("%.2f" %timePassed) 
 
%config InlineBackend.figure_format = 'retina' 
plt.figure(figsize=(9,9)) 
 
G=nx.Graph() 
 
for lab, row in df.iterrows(): 
    G.add_node(lab, pos = (row['x'], row['y'])) 
 
for i in range(1,len(bestRoute)): 
    G.add_edge(bestRoute[i-1], bestRoute[i]) 
     
pos=nx.get_node_attributes(G,'pos') 
nx.draw(G,pos,with_labels = True) 
 
plt.show() 


