

Burak Suyunu
2012400156

FINAL PROJECT – TABU SEARCH ON
TRAVELLING SALESPERSON PROBLEMS
WITH PROFITS
IE 517 - Spring17

1

Important Note: This report is a summary of my detailed work. So, please check the Jupyter

Notebook that I have created in https://github.com/suyunu/TSPs-with-Profit repository. You can

directly view the code from here: https://github.com/suyunu/TSPs-with-Profit/blob/master/ts-

tspp.ipynb . You can find the detailed process of the code with heavy commenting.

Introduction

In this project, we tried to solve Travelling Salesperson Problems with Profits (TSPs with profits) with

Tabu Search (TS). Before I start doing anything on the problem, I made a literature survey. There are

lots of papers in the literature about TSPs with profits but those papers are generally tries to solve it

with some constraints. So actually, I couldn't find a good paper to pointing out our problem which has

no constraint. But the following paper has some good ideas about the general structure of the problem

even it has a constraint on the tour length:

 Gendreau, Michel, Gilbert Laporte, and Frédéric Semet. "A tabu search heuristic for the

undirected selective travelling salesman problem." European Journal of Operational Research

106.2-3 (1998): 539-545.

Travelling Salesperson Problems with Profits

Traveling Salesperson problems with profits (TSPs with profits) are a generalization of the traveling

salesman problem (TSP), where it is not necessary to visit all vertices. A profit is associated with each

vertex. The overall goal is the simultaneous optimization of the collected profit and the travel costs.

(http://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0079?journalCode=trsc)

Solution Representation

I used a simple permutation representation. The list [1, 2, 3, 4, 5, 1] represents the route of the

salesperson. All the routes should start with "1" and end with "1" which is the depot.

https://github.com/suyunu/TSPs-with-Profit
https://github.com/suyunu/TSPs-with-Profit/blob/master/ts-tspp.ipynb
https://github.com/suyunu/TSPs-with-Profit/blob/master/ts-tspp.ipynb
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0079?journalCode=trsc

2

Tabu Search

In this part I will explain the steps of tabu search for the travelling salesperson problems with profits.

Pseudocode

1. (Initialization) Construct an initial tour by means of a construction heuristic.

2. (Insertion Partitions) Determine all insertion partitions according to proximity measure and

retain 10 of them.

3. Repeat Step 4-10 for 10.000 iterations:

4. (Insertion Candidate) Randomly choose one insertion partition and determine the best

insertion candidate from this partition

5. (Deletion Chains) Determine the deletion chains.

6. (Deletion Candidate) Determine the best deletion candidate from deletion chains

7. (Insertion or Deletion) Compare the results of the insertion and deletion then apply the best

one. If the best move is deletion, then declare all vertices of deletion tabu for θ iteration

8. (Tour Improvement) If the iteration count is multiple of 5, apply 2-opt

9. (Best Solution Update) If newly generated solution has a better objective than the incumbent

solution then apply 3-opt to the newly generated solution to improve the tour quality and

make it the incumbent solution.

10. (Shuffle to Reset) If there hasn't been an improvement in γ iteration, then assign incumbent

solution to the current solution and shuffle the route. Also, resets the tabu list.

Initialization

1. Determine a tour length 𝑉 and start building a tour

2. Until length of route T reaches V, repeat:

3. Randomly determine a spot 𝑗 in the tour T and add the city 𝑣𝑗 ∉ 𝑇 having the minimal ratio

(𝑑𝑖𝑗 + 𝑑𝑗𝑘 − 𝑑𝑖𝑘) 𝑝𝑗⁄

4. Apply 2-opt to the generated list

After lots of test initial tour length 𝑉 = 𝑁 2⁄ gave the best results. So function runs 5 time and

constructs 5 route with length 𝑁 2⁄ , then chooses the route with best objective.

3

Insertion Partitions

Dispersion Index

Dispersion index of a non-empty list R,

Γ(R) = {

1

|𝑅|(|𝑅| − 1)
∑ 𝑑_𝑖𝑗

𝑣𝑖,𝑣𝑗∈𝑅

, 𝑖𝑓 |𝑅| > 1

0 , 𝑖𝑓 |𝑅| = 1

Proximity Measure

Proximity measure between two non-empty lists R and S,

Δ(𝑅, 𝑆) =
2

|𝑅||𝑆|
(∑ 𝑑_𝑖𝑗

𝑣𝑖∈𝑅,𝑣𝑗∈𝑆

) − Γ(𝑅) − Γ(𝑆)

Note that, if 𝑅 = {𝑣𝑖} and 𝑆 = {𝑣𝑗} , then Δ(𝑅, 𝑆) = 𝑑𝑖𝑗

Procedure

Using this proximity measure, we define several partitions of 𝑉 ∖ {𝑣0} within a preprocessing step of

the algorithm. Each of these partitions contains clusters of vertices

1. (First Partition) Set 𝑟 ≔ 1 and 𝑃𝑟 ∶= {{𝑣1}, … , {𝑣𝑛}}

2. (Next Partitions) If 𝑟 = 𝑁 stop. Otherwise, define 𝑃𝑟+1 form 𝑃𝑟 by merging the two clusters

𝐶𝑟𝑖∗ and 𝐶𝑟𝑘∗ of 𝑃𝑟 yielding min
𝑖≠𝑗

{Δ(𝐶𝑟𝑖, 𝐶𝑟𝑘)} set 𝑟 ∶= 𝑟 + 1 and repeat this step.

We calculate all possible 𝑁 − 1 partitions but we only retain partitions 𝑃𝑟 corresponding to 𝑟 =

 {1, 𝑖𝑛𝑡(𝑁/2), 𝑖𝑛𝑡(2𝑁/3), 𝑖𝑛𝑡(3𝑁/4), 𝑖𝑛𝑡(4𝑁/5), 𝑖𝑛𝑡(5𝑁/6), 𝑖𝑛𝑡(6𝑁/7), 𝑖𝑛𝑡(7𝑁/8), 𝑖𝑛𝑡(8𝑁/

 9), 𝑖𝑛𝑡(9𝑁/10)} at the begining. One reason for keeping at most 10 partitions is to save memory.

Moreover, removing partitions that are very similar to one another will create a diversification effect

in the search process. This will become clearer later.

4

Insertion Candidates

The value of insertion of a cluster 𝐶𝑟𝑘
′ from the partition 𝑃_𝑟 is measured by the ratio of added profit

over added distance.

The gravity centre 𝑣𝑘̅̅ ̅ of 𝐶𝑟𝑘
′ is first computed for all clusters of 𝑃𝑟, and a preliminary move evaluation

is made according to the formula

𝑔̅(𝐶𝑠𝑘
′) =

∑ 𝑝ℎ𝑣ℎ∈𝐶𝑠𝑘
′

𝑙(𝑇 ∪ {𝑣𝑘̅̅ ̅}) − 𝑙(𝑇)

The cluster 𝐶𝑠𝑘∗
′ corresponding to 𝑚𝑎𝑥𝑘{𝑔̅(𝐶𝑠𝑘

′)} is then selected. The exact move evaluation

associated with 𝐶𝑠𝑘∗
′ is

𝑔̅(𝐶𝑠𝑘∗
′) =

∑ 𝑝ℎ𝑣ℎ∈𝐶𝑠𝑘∗
′

𝑙(𝑇 ∪ 𝐶𝑠𝑘∗
′) − 𝑙(𝑇)

Deletion Chains

The sets of vertices 𝐻𝑖𝑗 candidate for removal are defined as follows. Consider a solution 𝑇 =

 {𝑣0, … , 𝑣𝑗0
, 𝑣𝑖1

, … , 𝑣𝑗1
, 𝑣𝑖2

, … , 𝑣𝑗𝜆−1
 , 𝑣𝑖0

, … , 𝑣0} are the 𝜆 longest edges of the tour and 𝜆 is an input

parameter randomly selected in the interval [2, 𝛿/2], and 𝛿 is the maximum between 4 and the

number of vertices appearing on the initial tour. Then the sets 𝐻𝑖𝑗 are simply 𝐻𝑖1𝑗1
, … , 𝐻𝑖𝜆−1𝑗𝜆−1

Deletion Candidates

The value of a move associated with the removal of a chain 𝐻𝑖𝑗 is measured by the ratio of saved

distance over lost profit, and is computed as

𝑔̅(𝐻𝑖𝑗) =
𝑙(𝑇) − 𝑙(𝑇 ∖ 𝐻𝑖𝑗)

∑ 𝑝𝑘𝑣𝑘∈𝐻𝑖𝑗

Insertion or Deletion

Compare the results of the insertion and deletion then apply the best one. If the best move is deletion,

then declare all vertices of deletion tabu for 𝜃 iteration where 𝜃 is a random number between (5, 25)

5

Tour Improvement

If the iteration count is the multiple of 5, apply 2-opt.

2-opt

The main idea behind it is to take a route that crosses over itself and reorder it so that it does not. To

speed up the 2-opt while comparing the new route to the old one, we just compare the added and

removed edges length. Also, at each iteration of 2-opt we are searching for the best update move and

apply it.

Best Solution Update

If newly generated solution has a better objective than the incumbent solution then apply 3-opt to the

newly generated solution to improve the tour quality and make it the incumbent solution.

3-opt

3-opt analysis involves deleting 3 edges in a tour, reconnecting the tour in all other possible ways, and

then evaluating each reconnection method to find the optimum one. This process is then repeated for

all different set of 3 connections. To speed up 3-opt process, unlike our 2-opt implementation, we

don't search for the best move in all the edge pairs, but we take the first move that results in a better

tour. To make things stochastic, we select edges randomly.

Shuffle to Reset

If there hasn't been an improvement in 𝛾 iteration, then assign incumbent solution to the current

solution and shuffle the route. I chose 𝛾 as 1000. Also, it resets the tabu list. This is a magic reset step

which enables different solutions by shuffling the route. Shuffling is important because, tabu search

itself and especially 2-opt and 3-opt methods are not guaranteed to find optimal paths. For example,

the order of given nodes of a route may change the final 2-opt route result. By shuffling, we are

increasing chances to find different routes which may have better objective values.

6

Failed Extensions

We have also tried some other extensions to the tabu search to improve the results. However, some

of them just failed.

Intermediate-Term Memory

Intensification rules intended to bias the search towards promising areas of the search space. If a node

is always showing up in the solution then we made this node forbid to be in tabu list.

Long-Term Memory

Diversification rules that drive the search into new regions. If a node is always showing up in the

solution, then we made this node forbid to enter the solutions for a longer time than a normal tabu.

Shuffling

After completion of tabu search heuristic, to try to make an improvement in the route length, we

shuffle and optimize the route several times.

Extra - Visualization of 2-Opt

I have added an extra property to my 2-opt function. You can track the edge changes in the 2-opt

algorithm visually via sending the function some parameters.

7

Sample Output

Instance:

eil51-HP

Best Objective Value:

704.73

Number of Customers Visited (Depot Excluded):

49

Sequence of Customers Visited:

[1, 32, 11, 38, 5, 49, 10, 39, 33, 45, 15, 37, 17, 44, 42, 19, 41, 13,

25, 14, 18, 4, 47, 12, 46, 51, 27, 6, 48, 23, 24, 43, 7, 26, 8, 31, 28,

3, 36, 35, 20, 29, 21, 34, 30, 9, 50, 16, 2, 22, 1]

CPU Time (s):

40.40

8

Results

Instance Best

Objective

Value

No. of

customers

visited

Sequence of customers visited CPU Time

(s)

eil51-LP 49.98 19 [1, 32, 11, 38, 9, 16, 50, 34, 30, 10, 33,

45, 15, 44, 17, 4, 18, 14, 6, 48, 1]

27.34

eil51-HP 704.73 49 [1, 32, 11, 38, 5, 49, 10, 39, 33, 45, 15,

37, 17, 44, 42, 19, 41, 13, 25, 14, 18,

4, 47, 12, 46, 51, 27, 6, 48, 23, 24, 43,

7, 26, 8, 31, 28, 3, 36, 35, 20, 29, 21,

34, 30, 9, 50, 16, 2, 22, 1]

39.85

eil76-LP 160.05 53 [1, 43, 42, 41, 56, 23, 49, 16, 3, 44, 32,

9, 39, 72, 58, 10, 38, 11, 53, 14, 19,

35, 7, 8, 46, 34, 52, 27, 13, 57, 15, 37,

20, 70, 60, 71, 69, 36, 47, 21, 74, 30,

68, 75, 76, 67, 26, 12, 40, 17, 51, 6,

33, 73, 1]

98.92

eil76-HP 1241.40 74 [1, 33, 63, 16, 3, 44, 32, 40, 12, 17, 51,

6, 68, 4, 75, 76, 26, 67, 34, 46, 52, 27,

45, 29, 48, 30, 2, 74, 28, 61, 21, 47,

36, 69, 71, 60, 70, 20, 37, 5, 15, 57,

13, 54, 19, 8, 35, 7, 53, 14, 59, 11, 66,

65, 38, 10, 58, 72, 39, 9, 25, 55, 50,

18, 24, 49, 23, 56, 41, 43, 42, 64, 22,

62, 73, 1]

101.60

eil101-LP 262.15 75 [1, 69, 31, 88, 62, 10, 32, 90, 63, 11,

19, 47, 48, 82, 7, 18, 83, 60, 5, 84, 61,

16, 86, 44, 91, 100, 85, 93, 98, 37, 92,

59, 99, 96, 6, 94, 13, 95, 97, 87, 42,

43, 15, 57, 41, 22, 74, 75, 56, 23, 39,

4, 72, 73, 21, 40, 58, 53, 101, 28, 12,

80, 68, 24, 29, 78, 34, 9, 51, 81, 33,

79, 3, 77, 76, 50, 1]

196.62

9

eil101-HP 1639.82 98 [1, 69, 27, 101, 53, 28, 26, 12, 80, 68,

29, 24, 55, 25, 4, 39, 67, 23, 56, 75,

41, 22, 74, 72, 73, 21, 40, 58, 13, 87,

57, 15, 43, 42, 14, 44, 38, 86, 16, 61,

85, 91, 100, 37, 98, 93, 99, 96, 59, 92,

97, 95, 94, 6, 89, 52, 18, 83, 60, 5, 84,

17, 45, 46, 8, 82, 7, 48, 19, 47, 36, 49,

64, 11, 63, 90, 32, 10, 62, 88, 31, 70,

30, 20, 66, 65, 71, 35, 34, 78, 81, 9,

51, 33, 79, 3, 77, 76, 50, 1]

227.62

Evaluation of Results and Observations

In this part I just want to make a few comments about results and the general structure of the

algorithm.

First, to achieve this version of the code, I have run hundreds of different combinations of parameters

and methodologies. I’ve tried different term memories, shuffling, different tour improvement

approaches. But in the end, this layout gave the best results in terms of both objective value and time.

Second, I also run this version of the code several times to test different characteristics of the

algorithm, especially I’ve tried to find the optimal iteration count. Results showed that, with the reset

shuffling idea, a better solution can be found at any stage of the iteration. In my test, once it achieved

the highest objective value in 100 iterations, in another test, it found a better route at the 9500th

iteration. However, tests showed that it is unlikely to find a better solution after 10000 iterations.

My point is that, one can also use 1000 iterations rather than 10000 iterations. (In the original paper

that I mentioned at the beginning 1000 iterations was used.) With 1000 one can still achieve very good

results but with less confidence. However, time spent will be way more less than 10000. So obviously,

like all the heuristics, and other methods here we have a trade off again. I chose 10000 iterations,

because after some optimization in the code, it gave results in a tolerable time with a better confidence

interval.

10

Code

Importing required libraries

iimport numpy as np
import math
import time
import random
import itertools
import queue
import pandas as pd
from IPython.display import display, Markdown
import networkx as nx
import matplotlib.pyplot as plt

Reading data

HP or LP
dataset = "HP"
51, 76 or 101
N = 51

filename = "dataset-" + dataset + ".xls"
df = pd.read_excel(filename, sheetname = "eil"+str(N), header = None, index_col = 0)

df.columns = ['x', 'y', 'prof']

display(df[0:10])

distances = [-1]
prof = [-1]

for lab, row in df.iterrows():
 tempDist = [-1]
 prof.append(row['prof'])
 for lab2, row2 in df.iterrows():
 dist = math.sqrt(math.pow(row['x']-row2['x'], 2) + math.pow(row['y']-row2['y'], 2))
 tempDist.append(dist)
 distances.append(tempDist)

dff holds the main data as given from the xls
Started the indices from 1
dff = [[0,0,0]]
for lab, row in df.iterrows():
 dff.append([row['x'],row['y'],row['prof']])

Tabu Search Functions

def calculateObj(route):

11

 if len(route) == 0:
 return -99999999

 objVal = 0

 for i in range(1,len(route)):
 objVal = objVal + dff[route[i]][2] - distances[route[i-1]][route[i]]

 return objVal

def calculateTour(route):
 objVal = 0

 for i in range(1,len(route)):
 objVal = objVal + distances[route[i-1]][route[i]]

 return objVal

def updateGraph(G, old_route, route, se, visualize):
 G.remove_edge(old_route[se[0]-1], old_route[se[0]])
 G.remove_edge(old_route[se[1]], old_route[se[1]+1])
 G.add_edge(route[se[0]-1], route[se[0]])
 G.add_edge(route[se[1]], route[se[1]+1])
 if visualize:
 nx.draw(G,pos,with_labels = True)
 plt.show()
 print(str(old_route[se[0]-1]) + ',' + str(old_route[se[0]]) + ' - ' + str(old_route[se[1]]) + ',' +
str(old_route[se[1]+1]))
 return G

def twoOpt(route, G=None, visualize = False):
 if G != None:
 pos=nx.get_node_attributes(G,'pos')
 if visualize and G != None:
 nx.draw(G,pos,with_labels = True)
 plt.show()
 se = (0,0)
 xx = 0
 while(True):
 xx = xx + 1
 temp_route = list(route)
 old_route = list(route)
 route_distance = -999999999
 for i in range(1, len(route)-2):
 for j in range(i+1, len(route)-1):
 new_route = route[:i] + list(reversed(route[i:j+1])) + route[j+1:]
 diff_distance = distances[route[i-1]][route[i]] + distances[route[j]][route[j+1]]
 diff_distance = diff_distance - distances[new_route[i-1]][new_route[i]] -
distances[new_route[j]][new_route[j+1]]
 if diff_distance > route_distance:

12

 temp_route = list(new_route)
 route_distance = diff_distance
 se = (i,j)
 if route_distance > 0.01:
 route = list(temp_route)
 if G != None:
 G = updateGraph(G, old_route, route, se, visualize)
 else:
 break
 return route, G

def threeOptSwap(route, i, j, k):
 bestRoute = list(route)
 best_diff = 0

 a = i
 b = j+1
 c = k+2

 nRoute = route[:a] + list(reversed(route[a:b])) + list(reversed(route[b:c])) + route[c:]
 diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]]
 diff = diff - distances[route[a-1]][route[b-1]] - distances[route[a]][route[c-1]] -
distances[route[b]][route[c]]
 if diff > best_diff:
 best_diff = diff
 bestRoute = list(nRoute)

 nRoute = route[:a] + route[b:c] + route[a:b] + route[c:]
 diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]]
 diff = diff - distances[route[a-1]][route[b]] - distances[route[c-1]][route[a]] - distances[route[b-
1]][route[c]]
 if diff > best_diff:
 best_diff = diff
 bestRoute = list(nRoute)

 nRoute = route[:a] + route[b:c] + list(reversed(route[a:b])) + route[c:]
 diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]]
 diff = diff - distances[route[a-1]][route[b]] - distances[route[c-1]][route[b-1]] -
distances[route[a]][route[c]]
 if diff > best_diff:
 best_diff = diff
 bestRoute = list(nRoute)

 nRoute = route[:a] + list(reversed(route[b:c])) + route[a:b] + route[c:]
 diff = distances[route[a-1]][route[a]] + distances[route[b-1]][route[b]] + distances[route[c-
1]][route[c]]
 diff = diff - distances[route[a-1]][route[c-1]] - distances[route[b]][route[a]] - distances[route[b-
1]][route[c]]

13

 if diff > best_diff:
 best_diff = diff
 bestRoute = list(nRoute)

 return bestRoute, best_diff

def threeOpt(route):
 xx = 0
 while(True):
 xx += 1
 temp_route = list(route)
 old_route = list(route)
 best_diff = 0.01
 brk = False
 li = list(range(1, len(route)-2))
 random.shuffle(li)
 for i in li:
 lj = list(range(i, len(route)-2))
 random.shuffle(lj)
 for j in lj:
 lk = list(range(j, len(route)-2))
 random.shuffle(lk)
 for k in lk:
 new_route, new_diff = threeOptSwap(route, i, j, k)
 if new_diff > best_diff:
 temp_route = list(new_route)
 best_diff = new_diff
 brk = True
 break
 if brk:
 break
 if brk:
 break
 if not brk:
 break
 if best_diff > 0.01:
 route = list(temp_route)
 else:
 break
 return route

def initialization():
 ''' Construction Heuristic '''
 best_objs = []
 best_routes = []
 for i in [int(N/2)]:
 local_obj = -99999999
 local_route = []
 for t in range(5):
 route = [1,1]

14

 for j in range(i):
 min_obj = 99999999
 k = random.randint(0, len(route)-2)
 temp_route = list(route)
 for lab in range(1,N+1):
 if lab not in route:
 new_route = route[:k+1] + [lab] + route[k+1:]
 diff_obj = (distances[route[k]][lab] + distances[lab][route[k+1]] -
distances[route[k]][route[k+1]]) / prof[lab]
 if diff_obj < min_obj:
 temp_route = list(new_route)
 min_obj = diff_obj
 route = list(temp_route)
 temp_route = twoOpt(route)[0]
 temp_obj = calculateObj(temp_route)
 if temp_obj > local_obj:
 local_obj = temp_obj
 local_route = list(temp_route)

 best_routes.append(local_route)
 best_objs.append(local_obj)

 route = list(best_routes[0])
 rat = 0
 for i in range(len(best_routes)):
 if best_objs[i]/len(best_routes[i]) > rat:
 rat = best_objs[i]/len(best_routes[i])
 route = list(best_routes[i])

 return route

def dispersionIndex(cluster):
 if len(cluster) == 1:
 return 0
 else:
 sm = 0
 for c1 in cluster:
 for c2 in cluster:
 sm = sm + distances[c1][c2]
 return sm / (len(cluster)*(len(cluster)-1))

def proximityMeasure(cluster1, cluster2):
 sm = 0
 for c1 in cluster1:
 for c2 in cluster2:
 sm = sm + distances[c1][c2]

 return (2/(len(cluster1)*len(cluster2)))*sm - dispersionIndex(cluster1) - dispersionIndex(cluster2)

def insertionCandidates():

15

 candidates = []
 rList = [1, int(N/2), int(2*N/3), int(3*N/4), int(4*N/5), int(5*N/6), int(6*N/7), int(7*N/8), int(8*N/9),
int(9*N/10)]

 Pr = []
 Pr = [[x] for x in range(2,N+1)]
 candidates.append(list(Pr))

 for r in range(2,N):
 minProx = 99999999
 minProxInd = []
 for i in range(len(Pr)):
 for j in range(i+1, len(Pr)):
 pM = proximityMeasure(Pr[i], Pr[j])
 if pM < minProx:
 minProx = pM
 minProxInd = [i, j]
 Pr.append(Pr[minProxInd[0]]+Pr[minProxInd[1]])
 del(Pr[minProxInd[1]])
 del(Pr[minProxInd[0]])

 if r in rList:
 candidates.append(list(Pr))

 return candidates

def deletionCandidates(route):
 candidates = []
 edges = []

 K = random.randint(2,int(max(4,len(route))/2))

 for i in range(len(route)-1):
 edges.append([distances[route[i]][route[i+1]], i, i+1])

 edges = list(reversed(sorted(edges)))[:K]
 edges.sort(key=lambda x: x[1])

 for i in range(K-1):
 tempList = []
 for j in range(edges[i][2], edges[i+1][1]+1):
 tempList.append(route[j])

 candidates.append(tempList)

 return candidates

def findBestInsertionCandidate(route, tabuList, insCandidates):
 bestInsCandidate = []
 bestInsObj = -99999999

16

 for iC in insCandidates:
 profitSum = 0
 gCenter = [0,0]
 for c in iC:
 if c not in route and c not in tabuList:
 gCenter[0] = gCenter[0] + dff[c][0]/len(iC)
 gCenter[1] = gCenter[1] + dff[c][1]/len(iC)
 profitSum = profitSum + dff[c][2]

 minDist = 99999999
 for j in range(len(route)-1):
 distAdd1 = calculateDist(dff[route[j]][0],dff[route[j]][1],gCenter[0],gCenter[1])
 distAdd2 = calculateDist(gCenter[0],gCenter[1],dff[route[j+1]][0],dff[route[j+1]][1])
 distRem = calculateDist(dff[route[j]][0],dff[route[j]][1],dff[route[j+1]][0],dff[route[j+1]][1])

 dist = distAdd1 + distAdd2 - distRem
 if dist < minDist:
 minDist = dist

 if profitSum/minDist > bestInsObj:
 bestInsObj = profitSum/minDist
 bestInsCandidate = list(iC)

 return bestInsCandidate

def calculateDist(x1,y1,x2,y2):
 return math.sqrt(math.pow(x1-x2, 2) + math.pow(y1-y2, 2))

Main Solver

Iteration Count
ITER = 10000

Start the timer
t1 = time.clock()

Create the initial route
route = initialization()

Determine all possible insertion partitions
insCandidatesAll = insertionCandidates()
tabuList = {}
solutionIndex = [0]

bestRoute = list(route)
bestObj = calculateObj(bestRoute)

Start tabu search
for i in range(ITER):

17

 # Choose one insertion partition ramdompy
 insCandidates = list(insCandidatesAll[random.randint(0,len(insCandidatesAll)-1)])

 # Determine deletion candidates
 if len(route) < 3:
 delCandidates = []
 else:
 delCandidates = deletionCandidates(route)

 candidateRoute = []
 tabuAddition = []

 # Find best insertion candidate from the selected partition
 bestInsCandidate = findBestInsertionCandidate(route, tabuList, insCandidates)

 # Calculate the gain of inserting the insertion candidate to the route
 insertedRoute = list(route)
 profitSum = 0
 distSum = 0
 random.shuffle(bestInsCandidate)
 for c in bestInsCandidate:
 if c not in insertedRoute and c not in tabuList:
 profitSum = profitSum + dff[c][2]
 minDist = 99999999
 temp_route = list(insertedRoute)
 for j in range(len(insertedRoute)-1):
 new_route = insertedRoute[:j+1] + [c] + insertedRoute[j+1:]
 diffDist = distances[insertedRoute[j]][c] + distances[c][insertedRoute[j+1]] -
distances[insertedRoute[j]][insertedRoute[j+1]]
 if diffDist < minDist:
 temp_route = list(new_route)
 minDist = diffDist
 insertedRoute = list(temp_route)
 distSum = distSum + minDist
 if distSum == 0:
 distSum = 99999999
 insertedObj = profitSum / distSum

 # Choose the best deletion candidate from the selected ones, then calculate its gain
 deletedRoute = list(route)
 maxDeletedObj = -99999999
 for dC in delCandidates:
 tempRoute = list(route)
 profitSum = 0
 distSum = 0
 for c in dC:
 if c in tempRoute:
 cPrev = tempRoute[tempRoute.index(c)-1]
 cNext = tempRoute[tempRoute.index(c)+1]

18

 profitSum = profitSum + dff[c][2]
 distSum = distances[cPrev][c] + distances[c][cNext] - distances[cPrev][cNext]
 tempRoute.remove(c)
 if profitSum != 0 and distSum/profitSum > maxDeletedObj:
 maxDeletedObj = distSum/profitSum
 deletedRoute = list(tempRoute)
 tabuAddition = list(dC)
 deletedObj = maxDeletedObj

 # Compare the insertion and deletion gains, and apply the better one
 if insertedObj > deletedObj:
 candidateRoute = list(insertedRoute)
 chosen = ['I', len(insertedRoute)-len(route)]
 else:
 candidateRoute = list(deletedRoute)
 chosen = ['D', len(route)-len(deletedRoute)]

 # Update the tabu list
 for key, value in list(tabuList.items()):
 tabuList[key] = tabuList[key] - 1
 if tabuList[key] == 0:
 del(tabuList[key])

 # If deletion action is performed then add the chosen deletion candidates to the tabu list.
 if chosen[0] == 'D':
 for tA in tabuAddition:
 if tA in route:
 tabuList[tA] = random.randint(5,25)

 route = list(candidateRoute)

 # Improve the route
 if i % 5 == 0:
 route = twoOpt(route)[0]

 # Best solution update
 if calculateObj(route) > bestObj:
 solutionIndex.append(i)
 route = threeOpt(route)
 bestRoute = list(route)
 bestObj = calculateObj(route)

 # Shuffle to Reset
 if i - solutionIndex[-1] >= 1000:
 tabuList.clear()
 tempRoute = bestRoute[1:-1]
 random.shuffle(tempRoute)
 tempRoute = [1] + tempRoute + [1]
 route = list(tempRoute)
 solutionIndex.append(i)

19

Stop the timer
t2 = time.clock()

Results

print("Instance: ")
print("eil" + str(N) + "-" + str(dataset))
print()

print("Best Objective Value:")
print("%.2f" %calculateObj(bestRoute))
print()

print("Number of Customers Visited (Depot Excluded):")
print(len(bestRoute)-2)
print()

print("Sequence of Customers Visited:")
print(bestRoute)
print()

print("CPU Time (s):")
timePassed = (t2-t1)
print("%.2f" %timePassed)

%config InlineBackend.figure_format = 'retina'
plt.figure(figsize=(9,9))

G=nx.Graph()

for lab, row in df.iterrows():
 G.add_node(lab, pos = (row['x'], row['y']))

for i in range(1,len(bestRoute)):
 G.add_edge(bestRoute[i-1], bestRoute[i])

pos=nx.get_node_attributes(G,'pos')
nx.draw(G,pos,with_labels = True)

plt.show()

