cecma

Ecma/TC39/2014/0xx

Draft

ANGArC MA -

o TR

ECMAScript Language
Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 24, April 27, 2014 Draft

Rue du Rhoéne 114 CH-1204 Geneva T. +4122 849 6000 F: +41 22 849 60

https://bugs.ecmascript.org/

ecind

Contents Page
8 Yo [T 4 T'o Yo 1S vii
1 8T o o1 1
2 {00 4§ 0 4 3 T T 1o - OO 1
3 [\ Lo Y 0 E= LY== (== =Y 1
4 OVEIVIBW ...iceiiiieiiriieriirrensres s rraserassrnsssensssrnsssensssanssrnnssennsssnnsssnsbnnnnnsnnasinnsssensssensssensssenssrenssrnnssrnnses 2
41 LA L= SIS T o2 T o T s SN 3
4.2 ECMASCHIPt OVEIVIEW ... e s s s 3
421 ODBJECES.. . R s 4
4.2.2 The Strict Variant of ECMASCIIPL..........coiiiiiiiiiicissiiennmsssssss s s ssssssssssssssssssnsnsssssbeseessnnnssssssssssennns 5
4.3 Terms and defiNitioNSciiiiiiiiiiii e s ernss s e s rna e re s rrn s ren s ranssrensssensasnnssinnssrenssrennsrnnnns 5
4.4 Organization of This SPecifiCation oot et e 9
5 [\ Lo = Y4 ToY o F= 1IN 09 0 4 1= 41 4 Lo o 1= Y 10
5.1 Syntactic and Lexical Grammars............oovviiiiiiiiiiniiiisssin e sfiennir s neenns 10
5.1.1 ConteXt-Free GrammarsS.......c...ccciiveuiiieeiiieiiieirresrrna s tassstasserenssenssrenssrenssrenssrensssenssrensseenssrnnssrnnssrnns 10
5.1.2 The Lexical and REGEXP GramMArS ciu......cccoieiieeeemnnniirsisssssbnnssssssesernnssssssssssessnnnnssssssssesesnnnssssssssnes 10
5.1.3 The Numeric String Grammarcccoiiiieceieeceeesee e e e essmssssb s s eeeessnssssssssserssnnnssssssssseennnnnnssssssnns 10
5.1.4 The SyntacticC GrammMar..............ciiiiiiiiiiee i iiee e et iirnn e es s s s e s eennssssasbne e e nnnssssssssssrrnnnnsssssssserennnnnnnnsnssnns 1
5.1.5 Grammar NOtatioNccoiiiiieiiiiiis it rrea s ramss s et Eonn s e e nnsssessnnssssbenssssrrnnssssennnsssrennsssrennnssseennnnnns 1
5.2 Algorithm COoNVENtIONScccceeeiiiiiiir i ces e e s ee e e aas e s s e s Eona s e s s e s e s nnnnssssasseseesnnnssssssssenennnnnnnnnnnnnnn 16
5.3 Static SEMANtIC RUIEScoveeiiiiec it e rts e e e semss e e e seren s s e s nn s e s e nnns s eennssssrnnnsssnennnsnns 18
6 ECMAScript Data Types and Values.........ccccoo s 19
6.1 L0311 PN ST o T o] QI T T 0 = e T I8 o L= 19
6.1.1 The UNdefined TYPEt th e 19
g R I 1= 1T I 0T o 19
6.1.3 The BOOIean Ty P i .. i iiieiiuunnaaeeeses iiiunnns s e esantennsssssssssrennnnssssssssssennnnnssssssssssennnnssssssssssnnnnnnnnsssssnns 19
g S I =N S T To T I8/ o 1= P 19
6.1.5 The SYMBOl TYPe. ... e 20
6.1.6 The NUMDEE TYPE ...t e 21
T A I 1= 0 o 1= o I8 o = 22
6.2 ECMASCcript Specification TYPeS........cccooiririiriirrrrrrrr s 33
6.2.1 The List and Record Specification Type.........ccccociiriiirriiririrrrrr s 33
6.2.2 The Completion Record Specification Type.......cccccooirriiriiririrrrrrcrr s 33
6.2.3 The Reference Specification Type.......cccccoiiirirriiirrirr s 35
6.2.4 The Property Descriptor Specification TYPeccccooiirririiiirirrirrrrr s 36
6.2.5 The Lexical Environment and Environment Record Specification Types..........cccccoeiiiriiiiiiiieeennn. 39
(207 T = = T =] Lo Lo [39
7 ADStract OPerationsccicce i e e e e e e e e n e e e e e e rnnnnnaaaaaes 40
71 Type Conversion and TeSHINGccvereereimremimmmimiiereeeeeeeeeeeeeneeennnnne e s e s e s nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 40
7750 I N oY 2 413 1 11 Y- 40
75 17”2 oY = 7o Yo] =Y T o T 42
7% 1 T I 11 [T 4« = 42
7400 R T I] 41 =T - 45
7.1.5 Tolnt32: (Signed 32 Bit INtEJEr)cccccciiiiir s 46
7.1.6 ToUint32: (Unsigned 32 Bit INt@GET)cccccooiiiiriiicr s 46
7.1.7 Tolnt16: (Signed 16 Bit INtEgEr)cccccciiiiiiir s 46
7.1.8 ToUint16: (Unsigned 16 Bit INt@gEer)ccccoooiiieiiicccr s 47

© Ecma International 2014 i

ecind

71.9
7.1.10
7111
7.1.12
7113
7.1.14
7.1.15
7.1.16
7.2
7.21
7.2.2
7.2.3
7.24
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.3
7.31
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.3.19
7.4
7.41
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.5
7.51
7.5.2
7.5.3
754

Tolnt8: (Signed 8 Bit INt@GEr)cco i 47
ToUint8: (Unsigned 8 Bit INtE@QEr)cuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeseeeseeeeseeeseeseessssssssssssssssssssssasssssnnnananas 47
ToUint8Clamp: (Unsigned 8 Bit Integer, Clamped)uuummmmmmmmmmmmmmmmmmmnnnnsaaaans 47
I 154 0T N 48
e 10 o 1= 49
LI 2 € o 1= 5 4.4 C N 49
I T T 1 N 50
CanonicalNumericString(argument)............ooooiiiiiiiiiiiiii i ————— 50
Testing and Comparison OPerations..............uueeeeeeeemmmmmmmmmmmeeeneeeees————————————————a——————.. 50
CheckObjectCoercible ... e e 50
LT 07 1] F- T o 51
R T L= 1L = GO 51
ST LN T D= o R) 51
ISCONSLIUCEON e s s 52
ISPropertyKey 52
ISEXtENSIBIE (O) ...cun 52
ISINEEGET ... 52
Abstract Relational CompariSON.............euuiiiiiiiiiiesiiunmmneeeeeeeeeeeeeeeeeeeeeaaasaaaaasansaatne s snsnsnnnnnnnnnns 53
Abstract Equality COMPAriSON.........couieeeuciiiiieesdinmnnsassseerrsnessssesbe s srsrnssssssssssssnnnnsssssasanstennnnsssssssnns 54
Strict Equality CoOmPpariSon ... i sfe s r it 54
Operations on ODBJECtSoooviiiiiiiiiiiiii e 55
7= (0 TR) 55
Put (O, P, V, TRIOW) ...ttt s s s n s 55
CreateDataProperty (O, P, V) it i cciiis s srssesss s sssss s bae s s s s s s e snnnsssss s s s s s e nnnnssssssssssesnnnnnnnen 55
CreateDataPropertyOrThrow (O, P, V). ... 55
DefinePropertyOrTRrow (O, P, deSC) ..ciiiiiiieeiiie e iine e ccse s e s essamsssbie s s s s e eeennsssssssesesnsnsssssssseneennnnnnnen 56
DeletePropertyOrThrow (O, P) ... i iieciessssessmms it e e e eeennnssssss s s s s s ennsssssssesennsnnssssssssssennnnnnnen 56
L= =T g oo I (0 TR 56
HaSProperty (O, P)......ciiiiiiiin s iereieuuaississnshesbanaasessensnnsssssssseseennnssssssssssmmnsnssssssssssennnnssssssssssesnnnnnnnnn 57
HasOWRNPIroperty (O P) ... i irssssss e s 57
LRV (=T (0 20 S I T -3 | 57
SetintegrityLevel (O, [eVel)...... oo e e e e e e e e e e neenes 57
TestintegritylieVel (O, 1eVel) .t . et h e s e s s s e s e e e s nnn e s s e e e e nnnnsnsnnnnns 58
CreateArrayFromList (elements) ..o oo 59
CreateListFromArrayLike (0D])ooooiiiiiiiiir e 59
OrdinaryHasInstance (C, O)cooooiiiiiiiiiiieeeeeeee e e e e e s e e e e e e e e e e e e e e e s e e e e e e e s eeeeeeeeeennnennnnes 59
GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)cccoovviiiiiiiiiiiinnnnnns 60
CreateFromCoNStructor (F)..i......ooooeieieeeeeeeeeeeeeeeeeeeeee nennes 60
Construct (F, argumentSLiSt) ...ic..coooeeieiiiieeeeeeeeeeeeeee e 60
(7300 o3 To T TR (o] 1 1o 5 1=) PR 61
(0] o T=1 = 1o T3] ¢ W 1 L= =T o 0 o} [=Y o2 £ PP 61
L0 3 1= o7 [=T = o] L= (o) TR 61
Getlterator (0bj, Method)..........oooeereeeiieeeeeeee e enes 61
IteratorNext (iterator, Value) 62
IteratorComplete (IErRESUIL). s 62
IteratorValue (IterReSUIL) 62
IteratorStep (TErator)..... ..o 62
CreatelterResultObject (value, dONe)...........coooreeiiieiiiie e e e e e e e e e e e e e eeenes 62
CreateListiterator (list)oovveiiiiiiiii e r e e e e e e e e e e e enenes 63
L0 = 1Y 1T o 3T =T = 1 Lo (R 63
Operations on Promise ODjJEcts............coooriiiiiiiiiiiiiic eeenes 63
PromiseNew (executor) Abstact Operation...........ccccooiiriiiiiiiiirirnrrr s 63
PromiseBuiltinCapability () Abstact Operation...........ccccoooiririiiiirrirrr 64
PromiseOf (value) Abstact Operation...........cccoooiiiriiiiiiiiiirrrrr s 64
PromiseAll (promiseList) Abstact Operationcccoooiiriiriiiiiiirirr 64

© Ecma International 2014 ii

ecind

7.5.5
7.5.6

8.1
8.1.1
8.1.2
8.2
8.21
8.3
8.3.1
8.3.2
8.3.3
8.34
8.4
8.41
8.4.2
8.5

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.2
9.21
9.2.2
9.2.3
9.24
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2

PromiseCatch (promise, rejectedAction) Abstact Operationccccoceiiiiiiiiiiiiiiiinincce e 64
PromiseThen (promise, resolvedAction, rejectedAction) Abstact Operation.................ceeveeee.. 64
Executable Code and Execution Contextscccoreeeciiiiiimmiiecciisie s s s s s s n e 64
Lexical ENVIFONMENES.........coiiiiiiiiieciiieirrrriess s s s s s s s s s s s s e s s s s s s e s s nna s s s s e s s e nnnnssssssssennnnnnnnnen 64
ENVIronmMent RECOIASciiiiiiiiiecciiiiiirrrieesss s s s s s s s s s s e s s s s s s s s e snnma s s s e s e e s s nnssssssseennnnnnnnnen 65
Lexical Environment Operations ... 78
Lo o L= 50T 11 13 79
CreateRealm () ... ————— 80
L Yo T o] 4 00T 0 1 1=« P 80
ResolveBinding(Name) ... e 82
GetThiSENVIFONMENT ... e s i e e s e ar s s s s e e e e e nn s s s s e e e e nnmnnnnen 82
ResoIVEThISBINAING ... 82
GetGlobalODbject ... e 82
Tasks and TasSk QUEUESccuuuuiiiiiiiiiieeiiisesrrrsnnssssassesrres fanasasasseennnnsssssssstasesnnnssssssssemennnnnnssssssnes 83
EnqueueTask (queueName, task, arguments) Abstract Operation............ccciuermimreeniccciiiinneccnnnnn. 84
NextTask (result) Algorithm Step.......cccoo s 84
T4 E= T 2= 1 e o e 84
Ordinary and Exotic Objects Behaviours.......... i eeserssessss s e e s e see e s s e s e e nnmnssnes 84
Ordinary Object Internal Methods and Internal SIotsccccceeiiiiiiiiieccccrrre s 84
[[GetPrototypPeOT]] (). ccccerrrrrrrrrrrrrr b s s 85
[[SetPrototypPeOf]] (V) ..cccciirrrrrirririr s s 85
ST = =TT L] 1=) () P 85
[[PreventEXteNSIONS]] () ccceerrrrrrrmnbonsassiinmeennnnssasssrrrrrnnnssssasssstinennsssssssemennnnsssssssseseennnnnsssssssseennnnnnnen 85
[[GetOWNPIrOPErtY]] (P). - cceeerrreremmsssinesennnnnnsbineeseerensnnnssssssssannnsbinssssssemennnnssssssssesesnnnnnssssssssesnnnnnnnen 86
[[DefineOWNProperty]] (P, DESC)......ceuiiiiiiieeiasaasesiiinnensnesssesessannsssinsessennsnnsssssssesennsnnssssssssssennnnnnnen 86
L 2 53 3 e o L= T (2 P 88
[[Get]] (P, RECEIVEN) ...ceeeeeeiiieieeeciceeisseebe e dinannn e s nnnssaaase s et bR nnnsssassssennnnnnsssssssssennnnssssssssnennnnnnnnnn 88
[[Set]] (P, V, RECOIVEI) ci ittt i s s 88
11 2= 1=3 0=) 89
[[ENUMEIALE]] ()--xceeeeereeremmnnnusassrnnetunnnssssssresnnnnsbonsssseessnnssssssssssennnnsssssssssssnnsnnsssssssssesnnnsnssssssssesnnnnnnnen 89
[[OWNPropertyK@YS]] ()---cceeeseessserrrrrrrrrrrararasasstensasssssessssssssssssssss s s s s s s s s s s s s s s s snsssssssesssssssssssssssssssssanas 920
ObjectCreate(proto, internalSlotsList) Abstract Operation ... 920
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList)......... 91
ECMASCcript FUNCION OBJECESo s 91
[[Construct]] (argumMENtSLISt)cccoiiiiiimciiiii e e s s e s s e e e e e s nn s s e e e e e e mnnnnan 92
[1CCT=L0 00 a1 oY oY= o AT I (o T 92
FunctionAllocate Abstract Operation..............ccoi i e e e e e e nnnnnas 93
[[Call]] (thisArgument, argumeEntsList)..........cccooriiriirriirr s 93
Functioninitialize Abstract Operation................coooiccc i e e 94
FunctionCreate Abstract Operation............c..e i e e 95
GeneratorFunctionCreate Abstract Operation..............ccoiiiiiiiieccciirrrccc e 95
AddRestrictedFunctionProperties Abstract Operation..............ccoeuuciiiiiiiiiccccrree e 95
MakeConstructor Abstract Operation............ccccoiiiiiiiiccciii e e e e e nnnnnas 96
MakeMethod (F; methodName, homeObject) Abstract Operation............ccccoeiiiiiriiiiiirinneeeeeeeeenns 96
SetFunctionName Abstract Operation............ccoiiiiicciiiiiiiricr e e nn e 96
GetSuperBinding(obj) Abstract Operation..............coooiiiiiiiii e 97
CloneMethod(function, newHome, newName) Abstract Operation.............ccccooviiiiiiiiiiieiiecceceeeees 97
Function Declaration Instantiation ... 97
Built-in FUNCLION ODjJECLS ... s 100
[[Call]] (thisArgument, argumentSList)........ccccoriirirrriiirrrrr s 100
CreateBuiltinFunction(realm, steps, internalSlotsList) Abstract Operationccccccceeveeeeeeens 101
Built-in Exotic Object Internal Methods and Data Fieldsccccooiiiiiiiiiiccccccrce s 101
Bound Function EXotic ODbJects..........ccccoririiiiiirrrrrrrrr s 101
Array EXotiC OBJECES ... 103

© Ecma International 2014 iii

ecind

9.4.3
9.4.4
9.4.5
9.4.6

9.5.1
9.5.2
9.5.3
9.54
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13
9.5.14
9.5.156

10
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2

1"
1.1
11.2
1.3
11.4
11.5
11.6
11.6.1
11.6.2
1.7
11.8
11.81
11.8.2
11.8.3
11.8.4
11.8.5
11.8.6
11.9
11.91
11.9.2

12
121
1211
12.1.2
1213
121.4
12.2

String EXOtic ODJECLSccoiiiiiiiiiiii i 105
Arguments EXOtiC ODJECLS ... 107
Integer Indexed EXotic ObjJects.......ccociiiiiiiiiiii i ———————— 112
Module Exotic ObjJEcCtS ..o ————————— 115
Proxy Object Internal Methods and Internal SIots ..., 117
[[GetPrototypeOT]] (). .cccrrrrrrrrrrrrrr i ————— 118
[[SetPrototypeOf]] (V) ...cccirrrrrriirrrr 119
[[ISEXteNSIBIE]] () -oeeerrrrrrrrrr 119
[[PreventEXteNSIONS]] () «oocorrrrrrrrrrrrir 120
[[GetOWNPIroperty]] (P). ..o e 120
[[DefineOwWnProperty]] (P, DESC).....ccciiriiirirrirrrr s s 121
[[HasSProperty]] (P)....cccccrs s s s 122
[[Get]] (P, RECEIVEN) ... e s 123
[[Set]] (P, V, RECEIVEN) ... s s s 123
LD 2= 123 0= (O PRP R 124
[[ENUMErate]] ().-.:ceererrrrrrrrrrrr s s s s 124
[[OWNPropertyKeyS]] (()-ccceerrrrrrrrrrrrrrrrrrrrrrrrnrnrn s s s s s 125
[[Call]] (thisArgument, argumentSList).........cuuciiiiiiimiimciiiierrrrrce e e e e rreaa s saeenabna e s s e e eennns 125
[[Construct]] Internal Method............. i 126
ProxyCreate(target, handler) Abstract Operationctueeniciiiiiiiirecessse e e e eeees 126
ECMAScript Language: Source COde........cuuuuuuiiirimmmnetunnesionmemmenmmnsssassssemmrnmnssssesssesersnssssssssssessnnns 126
£ o T T = I - 126
Static Semantics: UTF-16ENCOdING ciirreiiuuunniiiiiiiiiiencsiis e s s bieces s s s e essennsss s s s s e e rnnnnssssssseeessnnnnsnes 127
Static Semantics: UTF16Decode(lead, trail)................oooooiiiiiiiiin s 127
TYpPes Of SOUICE COEe.......ouiiieeiiiiiiiitetien e iasseesetiinnn s asssereesnnnssssasetaesnnnnssssssssmennnnnsssssssssennnnnnnnsnssnes 127
Strict MOde COde........oooiiiiiiiiiiiieeiieee et h e rer e e e R i n e e e e e e e e e s ar e e s eeeeeneeenneens 128
[\ oY g B8 =03V VAN ST o3 o T o3 o g e i Lo o 1= N 128
ECMAScript Language: Lexical Grammar.....c....c.coooiiiiiiiiirrrrrr s 129
Unicode Format-Control Characters........ ..o 130
Wite SPaCE... . i i ieecic sk e s e e e rreeas s assesbe s e nnn s s s s e e e s s nnsssss s sseensnnnssssssserennnnnssssssseeennnnnnnnsnnsnns 130
Line TermMinatorso i be s 131
L0 o 014 7= 41 RS 132
LI (=Y 0 L= 133
Names anNd KeYWOIAS ...cc........ooiiieeeeiiiiiiiieeiress s s s s s s e s s s s s e e s nnnss s s s e s e e nnnnsssssssserennnnnnssssssenennnnn 133
Identifier Names...... oo s 134
LT =Y V=T R4 o o L= 135
0 e T = oY 136
I =T - 1 L 136
L | =Y = 136
Boolean Literals.......ccccic o 137
NUMEIC LIteralscccoc s s 137
81 0T B =T o TR 140
Regular EXpression Literals..........cccoo i 143
Template Literal Lexical COMPONENtScooiiieecciiiiiiiiirccss e s e rrsnnssss s e s e s srnn s s s e s e s nnmnsssssssnes 145
Automatic Semicolon INSErtioNoeeeeiiiiiiiiiiiiiieeeeeee s nnnnnnan 147
Rules of Automatic Semicolon INSertion............ccooo i 147
Examples of Automatic Semicolon Insertion...........ccceeeciiiiiiiiicccc e e 149
ECMASCcript Language: EXPreSSiONSccccccciirririirirrrrrssssssssss s s s s s s s s s s s s s s ssss s 150
o 1= 0 1= 150
Static Semantics: Early ErTOrs..........oooooiiiiiiiiiiiie e ee e e s e e e e s e e e e e e e e e e e e e s e e e e e s e e e e e e e e e e e e nnnens 150
Runtime Semantics: Bindinglnitialization ... 151
Static Semantics: BOoUNANAMESoooiieeeiiiiirricccrr e s e s e s e s e e e e e nnmnnnas 151
Static Semantics: StringValueooooeiii e 152
e T 4T TV T o === Lo N 152

© Ecma International 2014 iv

ecind

0 T 1 1 F= 1 T 153
12.2.1 The this KEYWOIdccciiiiiiiiiiiiiiiiiiiiiiiieiiiiieieeir e .——————————————————sssssss.sns.sssss.....-——. 154
L (e =Y o =Yl oY =Y = Lo = 155
T - - | 1= 155
12.2.4 Array INItialiZerccovviiiiiiiiiiiiiiiiiieeieiie s naanaann 155
T O o 1= o2 G 13T (= 1= 161
12.2.6 Function Defining EXPreSSiONScuuiiieiiiimimimmmiiiimmeeeeneeeeeseeeresesssessssnssssssssssssssssssssssssssssssssssnnns 166
12.2.7 Generator COmMpPreheNSIONS.........cuuuiiiiiiiiiiiiiiiiiir s asssasssssnssssssnsssssnnns 166
12.2.8 Regular EXpression Literals.............cuuiiiiiiiiiiiiiiimiemiieieeeiieiisseeeesseesssessnssssssasssssssssssssssssssssasssssnnns 167
e T = 4 T = 10 =T - | 167
12.2.10 The Grouping OPEratorceeeeeeeermemmmmmmmmeemmmeennserensersssssssssssssssssssssinnnnssssssssssssssssssssssssssssssssnnnns 172
12.3 Left-Hand-Side EXPreSSiONScueueieimiimmimiimmmiiimnneeeneneesneesnsnsssssssiannnnsassssssssssssssssssssssssssssnnssssnnns 173
12.3.1 Static SeMaANtICS....ccceee e s e e n e e e R s e e e n e e e e e nnnananan 173
12.3.2 Property ACCESSOIS.......cuuuuuuiimmmmmmmmmrrrmmrresnnssssssssssssssssssssssssssssiansnssnsssssssannnstinssssssssssssssssssssssssssnnnns 176
12.3.3 The new OPErator...........ccuuiiiiiiimmmimmiriieeieeierireerrrrr e r——.rasseesasesssssssssssssssannnntbnsssssssssssssssssnnsssnnnns 177
B S W] o3 4 o O 1| 177
12.3.5 The super KEYWOIdcceuiiiiimiiimiimimiiiiienieiierreseeeeesdinnsnseessensesssssssssssnsssssssssssssnnnnnsbnssssssssssssssnnnns 178
12.3.6 Argument LiStSccuiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeiseeeeeesdinnsnseesenssssssssssssssssssnnnsssnsnnsssnsnsssannnabnssssssnssnnnnnn 180
12.3.7 Tagged TempPlatescccueiiiiiimiiimimiimieneieeeeeeeesionnsnseesesenneensnnnssssiobnssnsnnnsnssnnnnsnsnnsnnssssanssnssssssssnnnns 181
12.4 PoOStfiX EXPreSSIONSccciiiiiiiiiiiiiiiiiiiiiiiiisieeieeesiassssbneeesessessssesdannnsnessssnsssssssnsssssnssnnnsssssssnssssnsssnnnns 182
12.4.1 Static Semantics: Early Errors...........ceuuiiiiiiiiiiiieiimmmmsine e sdinnnmneeeeeeeesnnnsssssssssssnsssssssssssssssssssssssnns 182
12.4.2 Static Semantics: IsFunctionDefinition.............oov it 182
12.4.3 Static Semantics: IsValidSimpleAssignmentTarget........ccccoeeemmmmmmmmmimmmmmmmmeeeeeeenananenes 182
12.4.4 Postfix INncrement OpPerator....... ... i crreeeeaeissssssssbne s ssasssessnnsssssssssesessnnsssssssseeesnnnnssnen 182
12.4.5 Postfix Decrement OPeratorcimiiiiosee i ceeeeaesssesessassssbssseseesnnssssssssseeensnnsssssssssseesnnnssnes 183
12.5 UNQry OPeratorsccceeuciiiiiiiriiiesisssssstennnssssssanssssssbinnsssssseennnnsssssssisseesnsnsssssssssssnnnnnsssssssssennnnnnnnnn 183
12.5.1 Static Semantics: Early Errors..........cocieeeiiiiiiesiesmssssssiiinneenssssssssessssssssssssesssssnsssssssssssssnnnnsnes 183
12.5.2 Static Semantics: IsFunctionDefinitioncccccr e 183
12.5.3 Static Semantics: IsValidSimpleAssignmentTarget..........ccccuucciiiiiiiiieccccssi e 184
12.5.4 The delete OPeratorccciieiiiiiiiirireinsr e e e s e eeennnsssassrrrrrrnn s ssesennnnsssssssssrsennnnnsssssssereennnnnnnen 184
12.5.5 The void OPEratorcccoiiiiiiiiiiiiiirerieesssats e e eeennnsssass s s s e nnnnsssssasessennnnssssssssesmnsnnsssssssseneennnnnnnen 185
BT I 1T o =Y=Yo T 0 o 7= - 1 o) o 185
12.5.7 Prefix Increment OPerator..o iiiieeiiieeesieriecss s s s s sersnsssss e s e ernsnssssssseesessnnssssssssssesnnnnnnnen 186
12.5.8 Prefix Decrement OPeratorcocoiiiieeiiiiiine e eeereeennssss s e s s sernnssssss s s e s snnnssssssssesessnnsssssssssseennnnnnnen 186
T I W T T VAR O 1T - 1 o R 187
12.5.10 UNAry — OPEIatOr.......ccueutieemmmeemememeemeernnnenennnnennrnnnnnnnnnnnnnnnnnnnnnnnsnssssssssssnnsssssnnnnsnnnsnnnnnnnnnnnnnnnnnnsnnnnnn 187
12.5.11 BitwiSe NOT OPErator (~) ieeeeeeeeeeememmmmmmmmmmmeeeerernnnmnenenneennnnnnnnnnnnnnnnssnsssssssssssssssnssnsssssnnnnsnnssssssnnnnn 187
12.5.12'Logical NOT OPerator (!) ueeeiuceeeeeeeeemmemmmmmeeemmnennnennennnnennnnnnnnnnnnnnsnnssnssnnsssssnsssssnssnsnssnnnnnnnnssssssnnnnn 187
12.6¢° Multiplicative OPerators........ccccci i rrrre s s s e e s s s e s s s s nn s s s s e e e e s s nnnsssssssereennnnnnnen 188
12.6.1 Static Semantics: ISFUNCtioNDefinitionooeeeeemmmmmmmmmmmme e 188
12.6.2 Static Semantics: IsValidSimpleAssignmentTarget............coommmemmmmmmmmmmmmnemeeneenenennnnnnnnnnnnnnnas 188
12.6.3 Runtime Semantics: EValuation.............coooeerimiimmimmmiimmeeeeeeeeeeeeeee e 188
12.7 AdditiVe OPeratorsccoiiiiiiicciiii i s s e rr e s s s s s e e s sns s s s s s e esnnssssssssssensnnsssssssseneennnnnnnen 190
12.7.1 Static Semantics: ISFunctionDefinitioneeeeeemmmmmmmmmmmmmeeee e 190
12.7.2 Static Semantics: IsValidSimpleAssignmentTarget............coeeemmmmmmmmmmmmmmmnnnnnnnnenennnnnnnnnnnnnnnnnes 191
12.7.3 The Addition OPErator (4)...ceeeerereemermmmmmmmmmmeerereerennneeeeeeennneenennnnennrnnn s s snssssnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnnnnnn 191
12.7.4 The Subtraction OPerator (—)cceeeeeerrrrrmmermmmmmmmmmemeeneneennneennneneennnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 191
12.7.5 Applying the Additive Operators to Numbersoooo i 192
12.8 Bitwise Shift Operators ... r s s s s e e e e e s s nn e s s e e e e e nnnnnnen 192
12.8.1 Static Semantics: ISFuNctionDefinitioneeeeemmmmmmmmimimimee e 192
12.8.2 Semantics: IsValidSimpleAssignmentTarget.........cccccceeeemmmmmmmmememmmmmmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 193
12.8.3 The Left Shift Operator (K<)eeeeeeeeeeemememmmmmireeirereneeeeeeeeenneeenerneneesnnnnnnnnsnsnsnnsssnnssnnnssnsnsnnsnnnnnssnnnnn 193
12.8.4 The Signed Right Shift Operator (>>) ..ccuurrrriieeimmeeieeeeeeeeeeeeeeee s nnnnnnnnnnn 193
12.8.5 The Unsigned Right Shift Operator (>>>)..ccueereeiimimmmmmeeeeeieeeeeeeeeeeeennn s nnnnnnnn 194

© Ecma International 2014 \Y

ecind

12.9 Relational OPEratorscueeeeeeeeieierimmmmrremeeeerrrrrrrrrrrrrrrrr———n———sssnnnnn 194
12.9.1 Static Semantics: IsFunctionDefinition.............oooeiiiii s 195
12.9.2 Static Semantics: IsValidSimpleAssignmentTarget.............uuuueemmmeimmmemmmmmmmmn————. 195
12.9.3 Runtime Semantics: Evaluation.........coooeeeeiiiiiiircrir s 195
12.9.4 Runtime Semantics: InstanceofOperator(O, C)........cccccuuuemmmmmmmmmmmmmmmmmnnnnnnnnnnnsennnnns————— 196
12.10 EQUAlity OPEratorscceeueiemmmmmmmmmmmmmieeeniieieereer i —————————————.sssssssssssssssssssssssssssssssssssssssnnnss 197
12.10.1 Static Semantics: IsFunctionDefinition.............oorreciiii s 197
12.10.2 Static Semantics: IsValidSimpleAssignmentTarget............ccccuuuemmmmmmmmmmmmmmmmmmn————. 197
12.10.3 Runtime Semantics: Evaluation..........ooooeeeeiiiiiiircccri s 198
12.11 Binary Bitwise Operatorsccccueeiiiimmimiiiiiiiimiiiiiieeesesssesesssssssesdanssstassssssssssssssssssssssssssnnns 199
12.11.1 Static Semantics: IsFunctionDefinition.............ooeeiiiii s 199
12.11.2 Static Semantics: IsValidSimpleAssignmentTarget...............uuueesitimmmenmmmnnen———— 199
12.11.3 Runtime Semantics: Evaluation..........ooo oot eeebae e e e s ennn s 199
12.12 Binary Logical OpPeratorsueeeeeeeeemmemmmmmmmmmmemneesennenennsnssesionnnnsesssssssnnnssinsssssssssssssssssssssssssssnnnns 200
12.12.1 Static Semantics: IsFunctionDefinition.............oooreiiii s 200
12.12.2 Static Semantics: IsValidSimpleAssignmentTarget.....cicccciuuuuuummeeiieeemmeenneennentne s 200
12.12.3 Runtime Semantics: Evaluation..........ccoceeeiiiiiiiiiic i errsees s s s srrsssa s s s snnnnsbne e s s s e e e e nnnnnnnas 200
12.13 Conditional OPerator (2 :) .cccccccccccrrrmmmememmmeeesionnmnneeeeeeennnenesssnsssssnnssssssssssssssssannnsbnssssssnssnnnnnss 201
12.13.1 Static Semantics: IsFunctionDefinition...........c e s 201
12.13.2 Static Semantics: IsValidSimpleAssignmentTarget..............ccceieeeeeeeeemmmnmeneneeenaaaaa. 201
12.13.3 Runtime Semantics: Evaluation..........cooeeeeeiiiiiiiciisti e cfenmmsn s s s s e rs s s s e s e sn s s s s e e e e nnnnnnnas 201
12.14 ASSIgNMENt OPEIratorsScccuiiiieeiiiiiiiiiiiiiiieieeieereeeee sssstbiannnneesessssssssssnssssssnsssssnssssnsssssssnsssnnssnnnnns 202
12.14.1 Static Semantics: Early Errors..........iiieeeiiiiiiiiiice s csssssir s eeassss s s s s ssssssss s s s e s e sssnnsssssssesessnnnnsnes 202
12.14.2 Static Semantics: IsFunctionDefinitioN c.............eeeeeemmmeeiiiiiiitie s 202
12.14.3 Static Semantics: IsValidSimpleAssignmentTarget............ccccctummmmmmmmmmmmmmmmmeeeennenneannnannaes 203
12.14.4 Runtime Semantics: Evaluation........ccc......eoiiiimiiiiiine et nnnnnnas 203
12.14.5 Destructuring ASSIGNMENT it serssesmass s tiinr e e nnassssasssennnnnsssssssserennnnnsssssssensnnnnnnnnen 204
12.15 CoMmMMA OPErator (,) .cccciiiirrreeesscesssreinsssbenssssadinnnsmnnsssssansssnsssbinssseeeennnnssssssssseeennnnnsssssssssesnnnnnnnns 209
12.15.1 Static Semantics: IsFunctionDefinitioncccccoe e 209
12.15.2 Static Semantics: IsValidSimpleAssignmentTarget..........ccouciiiiiiiiiiccccise e 209
12.15.3 Runtime Semantics: Evaluation................ocoiimmmmimmeeeeeeee s 209
13 ECMAScript Language: Statements and Declarationscccoooiriiiiiiiiriiirrn s 210
13.0 Statement SeMANLICso oo il nnnn s s nnnnnnnnnnnnnnnnnnnnnnnnnnnnn 210
13.0.1 Static Semantics: VarDeclaredNames.........coce.oooeeeeeeemmmmmeiieeeeeeeeeeee e mnnnns 210
13.0.2 Static Semantics: VarScopedDeclarations.................ciiiiiiiiiiecciiiei e 210
13.0.3 Runtime Semantics: LabelledEvaluation...............ooo e 211
13.0.4 Runtime Semantics: EvalUation..............ooooorrmmimiimmimmmemeeeeeeee e 211
TR T = o o GO 211
13.11 Static Semantics: Early ErrOrS..........ooeeeeemieemmmmmmmmeeieeeeeeeeeeeeneeeeneenne e esnnns s nnn s s s s nnnnnnsnnnnnnnnnnnnnnnnnnnn 212
13.1.2 Static Semantics: LexicalDeclarations.............oeeeeeemmmmmmmmmmmmmmmmmeeeeeeeeeeeeeeeeee e nnanna 212
13.1.3 Static Semantics: LexicallyDeclaredNames...........coeeeemmmmmmmmmmmmmmmmmmmmnmnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnns 212
13.1.4 Static Semantics: TopLevelLexicallyDeclaredNames............cceeeeeemmmmmmmmmmmmmmmmmmnmnnnnnnnnnnnnnnnnnnnnnnns 213
13.1.5 Static Semantics: TopLevelLexicallyScopedDeclarationseeemmmmmmmmmmmmmmemennnnnnennnennnnnnes 213
13.1.6 Static Semantics: TopLevelVarDeclaredNames............ccevreemcciiiiiiiicenncccs e re s e neananes 213
13.1.7 Static Semantics: TopLevelVarScopedDeclarationscccccccciiiiiiiiieeeccc s 214
13.1.8 Static Semantics: VarDeclaredNamescoeeeeememmmmmmmmmmmmmmmmmmeeeeenennnnnnennnnnnnnnnnnnssssnnnsssssnnnsnnnnns 214
13.1.9 Static Semantics: VarScopedDeclarations............ceuueiiiiiiiiiiieccciiie s e 214
13.1.10 Runtime Semantics: EValuation.............ooeeeeiimiiimimmimmmeeeeeee e mmmmnnan 215
13.1.11 Runtime Semantics: BlockDeclarationInstantiation(code, env ... 215
13.2 Declarations and the Variable Statementooo e 216
13.2.1 Let and Const Declarations............ccoiiiiiiiieciiieiiirriecccs s e rrress s s s s s s nn s s s s s e s e snnnnssssssseeeennnnnsnan 216
13.2.2 Variable Statemento e e e e nn e e e e e e nnnnnnan 218
13.2.3 Destructuring Binding Patterns ...t 220
T T =1 1T o3V 1 1= 5 0 1= 3 1 228
13.3.1 Runtime Semantics: Evaluation..........ccooeeeeeiiiiiiiicccccnr et r e s e s s s s e e e e 228

© Ecma International 2014 Vi

ecind

13.4 EXPression Statement............cceeeeeeieiimimmmimmmeemeeeereeeeeeeeeeeerrrerrrrressnnsssnnnnn 228
13.4.1 Runtime Semantics: EValUatioN.........ciiieiiiiiiiiciic s s s e s re e e s e e s e nnnnennns 228
T8 T I o 1= 25 - - 1 =Y 0 1= 5 1 O 229
13.5.1 Static Semantics: VarDeclaredNamMES...........coieeiiieiiiiiiiiirrrrr e rre s rrn s ren s renans 229
13.5.2 Static Semantics: VarScopedDeclarations...............uuuueeeiemmiimiiimiimimm—. 229
13.5.3 Runtime Semantics: EvValuation........ccooieeiiiiiiiiiicicrreir e e s re e s re s e e s e e rennns 229
13.6 [0=Y o= 10T RS = 1 0= 1= 1 230
S T T 0 T 4 = T 3O 230
13.6.1 The do-while StatemENnt........ccccuiiieiiiiiiieir s rea e e s s re s shn s s rnassanssrenssrenssrensnrannns 231
13.6.2 The while StatemeENntcooceiiieiiiiiiicr s s e s rea s rrnasrenassadansnnsssenssrenssrenssrenssrensnrnnnns 231
13.6.3 The £or Statemento s e s e a s rea s e sl naaas e s nnssrnnssrnssranssrenssrensnrnnnns 232
13.6.4 The for-in and £or-of StAteMENtScccuiiiiiiiiiii e s s rr s re e s e ren s rrn s rena s rennnrennns 235
13.7 The continue StatemMENt..........cciiieiiiiiiiiiirer e e e rans s e asanas e e s s ensssennsrenssrenssrenssrnnnns 239
13.7.1 Static Semantics: Early Errors...........cuuuiiiiiiiiiiiiiiiiieiieeieeeeeeitnnneseeeeseessnssssssinssssssssssssssssssssssssssnnns 240
13.7.2 Runtime Semantics: EValUation.........ccciiieiiiiiiieiiiiirrece it e s rea s rea s rea s s ma e e sbn s e e s enanrennssennsrennns 240
13.8 The break StatemeENntccccuiiieiiiiiiiiiirr e e sdanssann e rensrrnssrenssrenssrensssanssssbassenssrenssrenssrennns 240
13.8.1 Static Semantics: Early Errors...........cccuiuiiiiiiiiiimieesdinmmmneeeeeeeeeeeeeeeeeessssssssssssssssssasssstasssssssssssssnnnns 240
13.8.2 Runtime Semantics: EValUatioN.........ccoiiieiiiiiiiesfiiiiiei s s rse s rea s rea s se s e s s senssaanssianassennsrennns 240
13.9 The return StatemMeNnt e e e s e di e ir e s e e a s en s renasrenasransseenssrenssrennns 241
13.9.1 Runtime Semantics: EValUatioN.........ccciiieiiiiiiiiiiiietie s adinnsnsn s srea s rea s rn s rrnassenasrenssrennsrensnrennns 241
13.10 The with Statemento s e sba s daneaasn s enn s ennssrnnssensssrnnssrnnsranssrenssrenssrnnnns 241
13.10.1 Static Semantics: Early Errors..........oiiieeiiiiiiiiiiceaisssssssr e esessssss s s s sssssssssssssssssssnssssssssesessnnnnsnes 241
13.10.2 Static Semantics: VarDeclaredNamES...........coiiveeeiiiiieeiiiirebiee e rree e s ressserress s srsnssssersnsssseennns 241
13.10.3 Static Semantics: VarScopedDeclarations................cccoovviimietieciiiiiisssccscs e e e rr s e eeananes 241
13.10.4 Runtime Semantics: EValUuation..........ice.iiiiii i s ceeeirrreeeseseesbu e reess s s rnas s e s enss s rsnnsssernnnsssennnns 242
13.11 The switch StatemMeENt........ooeeeiiiiiii it ireee e s e e eSS e e ans s e eesas e e s nn s e e snssssrrnnssssrnnnsssrennsssrennnns 242
13.11.1 Static Semantics: Early Errors...........cieeciieiniinnsiisse e s e s iiinsn s ssss s s esssnssssssssssssssnssssssssesessnnnnsnes 242
13.11.2 Static Semantics: LexicalDeclarationsiccuuee i e e naas 242
13.11.3 Static Semantics: LexicallyDeclaredNames............cccccoviiiiiiieecciiiir s e e e eennnnes 243
13.11.4 Static Semantics: VarDeclaredNamescccccoiiieeiiiiiecirirecr e rr e rrer e e rrn s e renns s ersnsssseennns 244
13.11.5 Static Semantics: VarScopedDeclarations.................uciiiiiiiiiiecciiiir e e 244
13.11.6 Runtime Semantics: CaseBIoCKEValuation............ccoeeuiiiiieiiiiiccrrreccr e s e e e 245
13.11.7Runtime Semantics: CaseSelectorEvaluation..............ccooveeeiiiiiiiiiiccn e e 247
13.11.8 Runtime Semantics: EValUatioN...... ...l rre s e rr e e e re e e s e e e s e e n e e e nn s s e e nnnsnseennnn 247
U e 7 P 1 Y | 1= o IR =1 =Y 1= 0] 247
13.12.1 Static Semantics: Early Errors...........ooooeeiiiiimmmmmmieeeeeeeeeeeeeeeeesene e nnmnnnnmnnnnnnn 248
13.12.2 Static Semantics: VarDeclaredNamEScoiireeiriiemecirirrirrrrserrrrennerrrensrrernssrrrsnnssseesnsssseennns 248
13.12.3 Static Semantics: VarScopedDeclarations............c.cciiiiiiiiiiecciiier i rr e 248
13.12.4Runtime Semantics: LabelledEvaluation............ccoiiieeiiiieiiicecr s e e s e s e e s e e e e e eenes 248
13.13 The throw StatemeNnt........ ..o it s e e e e s e e e e e n e e e e nn e resn s e rsnnssrrennnsnrrnnnnn 249
13.13.1Runtime Semantics: EVAlUAtION...........coui i e s rr e e s s e s e s e e e s n e e e e e n e e e e nn e eennnn 249
13.14 The try Statement ... —————— 249
13.14.1 Static Semantics: Early ErrOrs...........oooueemieemmmmmmmmmmmeeeeeeeeeeeeeeeneennnnnsnnnnnnn s s s snnsssnnnnnsnnnnnnnnnnnnnnnnnnnnnn 250
13.14.2 Static Semantics: VarDeclaredNamEeSc.ceiiieeiiiirmecirireirrrrearrrrennerrrnssrrrrnssrersnnsreennsssseennns 250
13.14.3 Static Semantics: VarScopedDeclarations............c.euuciiiiiiiiieecciiierrrrrecrc e e 250
13.14.4Runtime Semantics: BindingInitializationooo e 251
13.14.5 Runtime Semantics: CatchClauseEvaluation...............coviieeiiiiiieriiiieecrr e reeser e eea s e e en e e ennes 251
13.14.6 Runtime Semantics: EVAlUAtioN...........coui i e e s e rr e e s s e s s e na e s e s n e e e e e n s e e e e nnn e e ennnn 251
13.15 The debugger StatemMENtceeviiriimimmmimr s s s s s s s s s s s s s annsnnnnnn 252
13.15.1 Runtime Semantics: EVAlUAtioN...........oeuiiiiieiiiiicr e s s rr e s s s e s e e e e s e s n e e e e e n s e e e e nn e e ennnn 252
14 ECMAScript Language: Functions and ClasSesccceiirrririnnrrrnnsnnsssssssssssss s s sn s 252
141 LT o oY o T 1= 3 T oY T 252
14.1.1 Directive Prologues and the Use Strict Directive............ceeeeeemmemmeemememmmmmeeeeeeeeeneneennennnnnnnnnnnnnnnnnes 253
14.1.2 Static Semantics: Early ErTOrS..........ouueeiemimmiimmimmmeeieeeeeeeeeeeenneeeesssnnssnsnnnsnsssnnssssnnsnsssssnnsnssnsnnnnnnnnns 254

© Ecma International 2014 Vi

ecind

14.1.3 Static Semantics: BOUNANAMEScceeeeererrmmmmmmmmmemmememnneeenneeeenssssssssnnsssssssssssssssssssssssssssssnnsnsnnnns 254
14.1.4 Static Semantics: COoNtaAINS..........ccoiiiiiiiii s r s e e e e nm s 255
14.1.5 Static Semantics: ContaiNSEXPreSSioNcuuueieimimiiimiiimimieeiee—————————— 255
14.1.6 Static Semantics: ExpectedArgumentCount...............euueiiimiiiiiiiiimimmmmi————— 255
14.1.7 Static Semantics: HaslInitializer ... 256
14.1.8 Static Semantics: HasName............coo e 256
14.1.9 Static Semantics: IsAnonymousFunctionDefinition (production) Abstract Operation 256
14.1.10 Static Semantics: IsConstantDeclaration..........cccceeuoiiiiiiiiiiccccrrr s 257
14.1.11 Static Semantics: IsFunctionDefinition.............oooeiiii s 257
14.1.12 Static Semantics: IsSimpleParameterList ... sdini————— 257
14.1.13 Static Semantics: ISSICt........oee s errn s e 257
14.1.14 Static Semantics: LexicalDeclarations............couiiieiiiiiiiiiiiesfee e rr e ennnananes 258
14.1.15 Static Semantics: LexicallyDeclaredNames.............ceueeeemeemeneesitnmmmmmnnnninemmmnnnnnnnnnnnnssnnsnssssassssannes 258
14.1.16 Static SemantiCs: ReferencesSUPEruuuuueeeeeeeeeeeieeeninnnnnneesionnnnnenennssinsnsstassssssssssssssssssssssssssssnnns 258
14.1.17 Static Semantics: VarDeclaredNamescoouiieeiiiiiiiiimiim e serre i e e snans s s s e e e e nnnassses 259
14.1.18 Static Semantics: VarScopedDeclarations.................. it 259
14.1.19 Runtime Semantics: EvaluateBodyuuuumiimimie i sssabn e aasanaanas 259
14.1.20Runtime Semantics: IteratorBindinglnitializationeemmmmmi s 259
14.1.21 Runtime Semantics: InstantiateFunctionObject.................oemriitummmim s 260
14.1.22 Runtime Semantics: EValuation..........oooeeeeeiiiiiiiie e ere e sfinsse s s erssssa s s s e s e s n s s s s e e e e s nnnnnnas 260
14.2 Arrow Function DefinitioNscoiiiiiiiiiieciiici s irrii s sfenmmsn s s e r s s s e e s e e r s e s s e e e e nnmannnas 261
14.2.1 Static Semantics: Early Errors...........cuuiiiiiiiiiiiiiiiiesiseestiadienmeneeeeeeeeessennssssssssssssnsssssssssssssssssssssssnns 262
14.2.2 Static Semantics: BoOUNANAMESccoemiiiiiiiiiiiimiiiieine e enns s nnnnnnnn s nnnnnnnnnnnnnnnnnnnnnnnns 262
14.2.3 Static Semantics: Contains...........cciiiinneeiiiiiiiieeeeee e nnnnn 262
14.2.4 Static Semantics: ContainSEXPresSioNicuu . iiiieeeeciiiiii et e rree e e s e e e nnnnnnnes 262
14.2.5 Static Semantics: CoveredFormalsList........ ..ottt 263
14.2.6 Static Semantics: ExpectedArgumentCount.............ccciiimmiiiieeiiiiiiiiiirecese e e rr e e nnananes 263
14.2.7 Static Semantics: HaslInitializer ..o i 263
14.2.8 Static Semantics: HasNAM@...........ceeeeeriimmiiedinmmrineeeeeeeeeeeeeeeieeeeeeeeeeennnnnnsssnnnsnnnnnnnnnnnnnnnnnnnnnsssnnnnn 263
14.2.9 Static Semantics: IsSimpleParameterList.............ooeeeeiiiiiiiiccc s 264
14.2.10 Static Semantics: LexicalDeclarations..........c.....eeeeemmemmmmmmmmmimeee e 264
14.2.11 Static Semantics: LexicallyDeclaredNames...............ciiiiiiiiiieccciiii s rr e 264
14.2.12 Static Semantics: ReferenCeSSUPET ...t s s s s e e e e rnnnnanes 264
14.2.13 Static Semantics: VarDeclaredNames iiii........uvmeeeeeememmmmeeeeeeeeeeeeeeeeeeeeenneennennnee e nnnnnnnnns 264
14.2.14 Static Semantics: VarScopedDeclarations................cccooiimiiiieecciiiii s 264
14.2.15Runtime Semantics: lteratorBindinglnitializationccceemeeiriicc e, 265
14.2.16 Runtime Semantics: EvaluateBodyooer e nnnns 265
14.2.17 Runtime Semantics: Evaluation...............ooooerrmimimmiiimmmeeeeeee e 265
B T T | (=1 d g Lo I = T T o T 266
14.3:1 Static Semantics: Early Errors...........ooooeemieimmmmimmmemmeeeeeeeeeeeeeneeeeeeennennsnnnn s s s nnsssnnnnnnnnsnnnnnnnnnnnnnnnnnnnn 266
14.3.2 Static Semantics: ComputedPropertyContainsceeeeemmemmmemmmmmmmmmmmnnnnnneennnnnnnnnnnnnnnnnnnnnsnnnnns 266
14.3.3 Static Semantics: ExpectedArgumentCount..............ooommmmmimiiemmemeeeenneeeennnnnen e annnnnnnas 266
14.3.4 Static Semantics: HasComputedPropertyKeyooo o mmmmmmmmmmmmeeeeeeeneeennennennnnnnnnnn s snnnnns 267
14.3.5 Static SeMaANtiCS: PrOPINAMEeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneenennennnn e e s s s s s s s nnnnssnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 267
14.3.6 Static SemantiCS: ReferenceSSUPEruuuueeeeeeeeeeeeeeeeeeeeeeeeeeennenennnnnnnnnnnnnnnnnnnssnnnnsnnnnnnnnnnnnnnnnnnnnnnnn 267
14.3.7 Static SemantiCs: SpecialMethodeeeeeeeeeeeeeeeeeeeeeeeeeeeennnenennennnnnnnnnnnnnnnnnsnnnnsnnnssnsnsnnsnnnnnnnnnnnn 267
14.3.8 Runtime Semantics: DefineMethodooeeermmimmmmmmmeeeeee e 268
14.3.9 Runtime Semantics: PropertyDefinitionEvaluation ... 268
14.4 Generator Function Definitionsceeeeieemmmmmmmmmmmmmmeeeeeeeeeeeee s 269
14.4.1 Static Semantics: Early ErTOrS.........oooeeeeemieiimmmmimieiieeeeeeeeeeeeeneeeenneeesne e e s s nnn s s s s nnnnnnsnnnnnnnnnnnnnnnnnnnn 269
14.4.2 Static Semantics: BOUNANAMEScoeermimmmmmmmimmmmmeireeeeneeeeeeenneneennennnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 270
14.4.3 Static Semantics: ComputedPropertyContainsccccceeeemmmemmmmmmmmmmmmnmnnnnnnnnnnnnnnnnnnnnnnnnnnnsnssnnnns 270
14.4.4 Static Semantics: CONtaAINS...........coiiiiiiiii e e s e s e e e s e snn e e s e e e e e nmnnsnan 270
14.4.5 Static Semantics: HasComputedPropertyKeyoooeeemmmmmmmmmmmmmmmmmennnnnnnnnnnnnnnnsnnnnnnnsnsssnssnnnns 270
14.4.6 Static Semantics: HasName...........ccoo i rrs e s e s e s e s nn e s s e e e e e mmnnnnan 270
© Ecma International 2014 viii

ecind

14.4.7 Static Semantics: IsConstantDeclaration................eeeeeeeeeeeeemeemnmmmmmnnnmmnnnnsnnnnsssnssssssssssssssssssssssnnns 271
14.4.8 Static Semantics: IsFunctionDefinition............cooeeiiii s 271
14.4.9 Static Semantics: LexicallyDeclaredNames............ceeueeeeeemmmmmmmmmmmmmmmnnnneenennsns——————— 271
14.4.10 Static SEMANLICS: ProPINAMEuuueeeeeeeeeiiiiiiiiiiiiieeeeeeeeneeeneesesseessssssssss s sssssssssssssssssssnnsssnnnns 271
14.4.11 Static SemantiCS: ReferencesSUPEruuuuuueeeeeeeeierieiiiieninneieneeeennsseeneessssesssassaa s saaaaasaanas 271
14.4.12 Static Semantics: VarDeclaredNamesccoomiiemciiiiiiiiiiecrss s s s s e e nmannnes 272
14.4.13 Static Semantics: VarScopedDeclarations...............uuuuemememiiiiiiimieimia. 272
14.4.14 Runtime Semantics: EvaluateBody ... 272
14.4.15 Runtime Semantics: InstantiateFunctionObjectouummmimiiiiiii s 273
14.4.16 Runtime Semantics: PropertyDefinitionEvaluation ...t 273
14.4.17 Runtime Semantics: Evaluation............... it sfinse e e e e s s e e e s e e e e e e ennes 273
14.5 Class DefinitioNsooiieeiiii et rr s e e s e e e s e aan e e s s e nns s e e e n s s s e snn s e e e nnnsnsrennns 275
14.5.1 Static Semantics: Early Errors...........uuuiiiiiiiiiiiiiiiiieenieeeieeeeeeeeesdonnnssanssstnsssnsssssnsssssssssssssssssssssssnns 276
14.5.2 Static Semantics: BoUNANaAmMEScoooeeeeiiiiiiiiiricicr e sdinn s e e e rnsmsabn s e e e s s nmna s s s e e e e s nnnnnnes 276
14.5.3 Static Semantics: ConstructorMethodoooriiiii i 276
14.5.4 Static Semantics: CONtAINS..........cccoiiiiiiiiieiiiii i sde e ti e s s s e s s e s nas s sasseabaennn s sseerennnnsssen 277
14.5.5 Static Semantics: ComputedPropertyContainscoccccuueeeeeeeieieeiimenineeeeeeeeeennnstne e 277
14.5.6 Static Semantics: HasName. ...t rrrree s errs e s s e e e e s rmmmna b s e e e e nnmnnnnan 277
14.5.7 Static Semantics: IsConstantDeclaration.........c i e 278
14.5.8 Static Semantics: IsFunctionDefinition........... - 278
14.5.9 Static Semantics: ISStatiCccuuiiiiiiiiiii e e sfe e 278
14.5.10 Static Semantics: LexicallyDeclaredNames...........cccccciiimmmmeemennemmmmmmnnneennnnnnennnnnnnnnnnansssssaaaaaaaaaas 278
14.5.11 Static Semantics: PrototypeMethodDefinitionsccccmmmiimecciiii s 278
14.5.12 Static Semantics: PrototypePropertyNameList..............ccccciiummmmimmmimmmmeeeeeeeeeeeeeeense s 279
14.5.13 Static SEeMaANtiCS: PropINaMEccue it eneeeeeeneeennneemannnstan e ssnsnnnnssnsnsnsnnnnsnnnnnssnnnnnnnnnnssnnnnn 279
14.5.14 Static Semantics: StaticPropertyNameListccicunneiiiiiiiiese i 279
14.5.15 Static Semantics: StaticMethodDefinitions.............cciiii s 279
14.5.16 Static Semantics: VarDeclaredNamesceceerieeemiiiiimmeeiinneeeeeeeeeenenennnnnsnnnsnnsnssnsnsssssssnsnnnnnns 280
14.5.17 Runtime Semantics: ClassDefinitionEvaluationccooe s 280
14.5.18 Runtime Semantics: EValUAtioN.............. oo mmmmnnas 281
14.6 Tail PoSition CallS:.........ccoeiiiiiiiiiitiiieiii e teeb e eenn e e nn e e e s s s s s s s nnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnn 282
14.6.1 Static Semantics: InTailPosition(nonterminal) Abstract Operationiiinees 282
14.6.2 Static Semantics: HasProductionInTailPositionooeeimmeeeeeeee s 282
14.6.3 Runtime Semantics: PrepareForTailCallooeeeiiiiiiiieeccceererreece e 286
15 ECMAScript Language: Scripts and Modules............cccoiiiirr s 287
15T T T o] oS 287
15.1.1 Static Semantics: Early EXTOrs............ooeeemimmimmmmmmmmmieeeeeeeeeeeeeeeeeneeeeeeennnns s s s nn s s s s s s nnnnnnnnnnnnnnnnnn 287
15.1.2 Static Semantics: ISStriCt.....ciummmmimmmiiieeieieeieeeeeeeeee e nnnnn 287
15.1.3 Static Semantics: LexicallyDeclaredNames............oceeeeemmmmmmmmmmmmmmmmmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnns 287
15.1.4 Static Semantics: LexicallyScopedDeclarations............cceeeeeeememmmmmmmmmmmmenmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 287
15.1.5 Static Semantics: VarDeclaredNamesooeeeeemmmmmmmmmmmmmmmmmmeeeeeeeeeeenneennnnnnnnnnnnnnnnssnssnnnssnnnnnnnnns 288
15.1.6 Static Semantics: VarScopedDeclarations............cueuiiiiiiiiiiiecciii e 288
15.1.7 Runtime Semantics: ScriptEvaluation ... e e 288
15.1.8 Runtime Semantics: GlobalDeclarationInstantiation.................ooeeeees 288
15.1.9 Runtime Semantics: ScriptEvaluationTask (SOUICe)eeeeemeememmmmmmmmmmmmenennnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 290
07 1 o Yo (1] = 290
15.2.0 Module Static SeMaANtICS........ceerrmrmmmiimmiiiiiiieieeeeeeeeeeeeeee e nnnnnnnn 291
LIS J07200 T 11 o T o 296
00 oY o Y £ 299
15.2.3 Runtime Semantics: Loader Stateoeeeemmmmmmmmmmmmmmmmmmeeeeeeeeeeeeee e 303
15.2.4 Runtime Semantics: Module LOading..........cceeeeemmemmmmmmmmmmmmmmmmmmmennnnnnnnnnnnnnnnnnnnsnnnsssssssssssssssssnnssnnnns 305
15.2.5 Runtime Semantics: Module LinKiNg........ccceeeeeeemmmmmmmmmmmmmmmmemmeeeeeeeneennennsssnnnnnnnnnnsssssssssssssssssssssnnnns 312
15.2.6 Runtime Semantics: Module Evaluation..............coueeiiiiiiiiiieccccre s e rr s e e e e 321
16 Error Handling and Language EXteNnSIiONS ... 322

© Ecma International 2014 iX

ecind

17 ECMASCcript Standard Built-in ObjJects.........ccccoiiiiiiimmiirinerrr s 323
18 The GIobal OBJECE.........cccceiiiei i s s snr e s s e e s s amnn e e s e e s s s nnnnnns 324
18.1 Value Properties of the Global ObjJecCtueueimmimmmmmmimiiii s 324
L 700 I T 4T T2 324
L 700 I - 325
0 R T U T e 1= 13 = o 325
18.2 Function Properties of the Global Object...............ueummmmimmiiiiiii . 325
0700 B - | 325
18.2.2 iSFiNite (NUMDEK)cciviiiiiiiiiiiiiiiiiirii s s s s s s s s s e o bne s s s s sssssssssssssnnnssnnnnns 326
18.2.3 iSNaAN (NUMDEK).....cciiiiiiiiiiiiiiiiiiiriiree s s s assssssss s s s s s s sdannnananssssssssssssssssnsssnnnnnnnnnnn 326
18.2.4 parseFloat (StriNg).........ccuiiiiiiiiiiiiiiiiiiii e aanaas 326
18.2.5 parselnt (String , radiX)........ccueeeeimmmimimimmmmmimiei e dannnnantne s aaaaaaanas 327
18.2.6 URI Handling FUNCLIONcceiiiiiiiiiiiiiiiiiiiiiiieneeiisesseesesseeseseseesdannnnsssssnnnstnsssssssssssssssnnsssnssnnnnnnnnnns 328
18.3 Constructor Properties of the Global Object...............euueeiiitimineeeatae s 333
B 0 20 T V4 1 333
BT T V4 1= T =) T 333
T T = 7o o =T T o T (o 333
18.3.4 DAtaVIEW (. . .) ccccccccirerriiirisismnrrrrrssssssssssnnsereesssssiananmsensesssssssssssnnsnnsssssssssssnsnsnessssssannnabiseeesessnnsnns 333
B T T 0 T - (O 333
T 1 o N 333
T A 7= 1| = o (O N 333
18.3.8 FIOAt32AITAY (. . -) coceererriirrrassamrrrrrriasssssassnerreeesssssassssananasaas s sssnnnneessssssssssnnsnnssssssssssssnnnnnnenssssnsns 333
L 2R T e LT L i Y (O N 334
L 0 200 N VT T T (O N 334
L 20 B I 1412274 1 e N 334
L 20 8 14T L Y N 334
L 2R B 1412 7 Y N 334
L 0 200 1 = O O N 334
L 0 200 T8 0T 0T oL N 334
L 200 0 o 1= o O N 334
T e I A 2 T e T = o 334
18.3.18 ReferenCeEITOr (.. .) eeeeiiiiieebiimrieiieeieeeeeeneee e mnnsb e e e e e nnnn e e e e e e e e e e e s nnsnsnsnn 334
L 200 e TN =T 0| o T (R N 334
L 207 ST O (N 334
18.3.271 SEHNG (- - -) ceeriiiriiammre i e e 334
18.3.22 SYMDBOI (-« 2) eeiiiieeierrrr it 335
TR B 1 2= o T 335
TR R I8 < 1= o (R 335
18.3.25 UINBAITAY (. .+)uisemiueeeiiiiiiiammiiie s s s r s as s e e s s e e s an e e e e e e e e e s e annn e e e e e e e e aann 335
18.3.26 Uint8CIamPedAITAY (. . .) ceeeeeerieemmmmmmemmmerrrmmeereenennnnnnennnnnnnnnnnnnnnnennnnnsnnsnnnsnssnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 335
18.3.27 UINEIBAITAY (. . .)uuueieereriiiiiiiinniirr i da e a s e e e e e s e e an e e e e e e e e e e e annn e e e e e e e e naan 335
TR LT < 777 N4 | TR N 335
18.3.29 URIEFTOL (. . .) eeeeeendemmmrimmmmmmmmmmmmmneennnnennnnnennnnnennrnnsnnnnnsnnnnnnsnsssnnnssssssnnssssnnnnnnnnnnnsnsnnnnnnnnnnnnnnnnnnnnnnnnnnn 335
L T R L= 1 T oI (T N 335
L 2 T L= 1 Lo N 335
18.4 Other Properties of the Global OBJecCtceeeememmmmmmmmmmmmeeeeeeeeeeeeeeeee e nnnnnnnns 335
L T T L N 335
L 7 -1 N 335
L T S o) N 336
18.4.4 REFIECE ..ot 336
T BT =3 = o 336
19 Fundamental ODBjJEctSccoo o 336
B TR TR © o 1= o2 0 L = o = 336
19.1.1 The Object CONSIIUCEONceeeeiiiieeieiiieeeeeeeeeeeeeeeeeeeeeeereeeeerer s s s snsnnsssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 336

© Ecma International 2014 X

ecind

Properties of the Object CONSLIUCLONccoiiiiiiiiiiiiie s 337
Properties of the Object Prototype Object ... 342
Properties of Object INStaNcCes ..o ————————— 344
FUNction ODJEctS ... ————— 344
The FUNCLION CONSTIUCTON i r s s s s s e e s e e mn s s s e e e e nnmnnnnnnnees 344
Properties of the Function Constructor..........ccooiiiiiiiinn s 346
Properties of the Function Prototype Object ... 347
FUNCHION INSEANCES ...t e e s s s s e e e s s s s s s e e e nnmn s s s s eennnnnn 350
Boolean ODBJECtS ... ————— 351
The Boolean CONSTIUCLONciiiiiiiiiicciircrrrri s e e s s s s s s s s e nn s s n e b e s e nnn s s s e e e e nnmnsssssnsnes 351
Properties of the Boolean Constructor ... s 351
Properties of the Boolean Prototype Object ... 352
Properties of Boolean INStances ... i 353
Symbol ODBjJECtSccoviiiiiiiiiiiiiii e 353
The SYMbOol CONSLIUCLONcuviiiiiiiiiiiiiiiiiiiriieirree s ar s ssssssssssssannnsbnssssnnssssnsssssnnsnnssnnnan 353
Properties of the Symbol ConsStructor...........ccco it s 353
Properties of the Symbol Prototype Object...............ti s 355
Properties of Symbol INStaNCes..........ccooiiiiiiieeccc it rrr s e r s s senenabna s s s e e e ennnn 357
Error OBjJECtS ... 357
The Error CONSTIUCTONccciieeecciiiiiirriieces s esrnsmmasie s s s s e eesenasa e nenne s s nnnsssssnssennnnnsssssssensnnnnnnnssnnsnns 357
Properties of the Error CONStrUCtOr ..ot 358
Properties of the Error Prototype Object..........cccooiiiintin s 358
Properties of Error INStanCes.......ccuuueu i ssssmsssa e e s e s s ss s s s s e e s nnnssss s s s e s e e s e nnnssssssenennnnn 359
Native Error Types Used in This Standardcceeeeeiiiiiiiiicecccc e e s s e e 359
NativeError ObjJect STrUCIUre oottt e ereeeees s s s e e snsssaba s s s s e e s nennsss s s s e e e s nnnnnsssssseeeennmnnsnen 360
NUmMbers and Dates....... ..o s s 362
L\ L0004 =T g0] o =Y o3 N 362
The NUMDBEr CONSEIUCONcoeveiiiiieiiiiieheneefinienieeeeeeeeee s annnr e ee e eennn 362
Properties of the Number CONStrucCtor........cc...e e r s e r e s e e e nne 363
Properties of the Number Prototype Object............ccooiiii 366
Properties of NUMber INStancCes ... e s e e s e s s e e e e 371
The Math ODjJECH........... . erre e b s s e s e e e e s s s e s e s s s na s s s s e e s nnsssssssserennnnnnssnnnsnns 371
Value Properties of the Math OBJect ...t e 371
Function Properties of the Math Object......ccccu.....co i 372
[T 1 20] o 1= o1 -t 381
Overview of Date Objects and Definitions of Abstract Operations............cccoovrreeececiiirrneeennee. 381
The Date CONSIIUCTOTccoiiriieeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e s s s s s s s s s s s nnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 387
Properties of the Date CoNStrUCTOT...........cooeeeeei i s e e e e ene 389
Properties of the Date Prototype Object............ccco i 390
Properties of Date INStaNCes.............e i rr s s e e e e e e s e e e e e e nnnn 400
L= 0 S oo Xo 7 1 o 400
851 T 0] o =T o2 £ RPN 400
The String CONSEIUCKON............ooeiiiiieieeeeeeeeeeeeeeeeeee e e e e e s s s s s s s s s s nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 400
Properties of the String CoNStrucCtor..........ccco o s 401
Properties of the String Prototype ODBJect.........ccccoo i 403
Properties of String INStanCescccooo i 417
String Iterator OBJECtSooviiiieei e r e e e e e e e e enneees 418
RegExp (Regular EXpression) OBjJEcCtSccccoiriiiiiiiiiiiirrrrrcrrr s 419
= =T o TN 419
Pattern SemantiCscccooiiriii s 422
The REgEXP CONSLIUCKON.........ceviiiieieeeeeeeieiieeeeeeeeeeeeeeeeenenneneenne e e e e e s s s nnssssnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnnnnnnnnn 437
Properties of the RegEXP CONSIIUCLONcco oo 440
Properties of the RegExp Prototype Object ... 440
Properties of RegEXP INStaNCesccccciiiiiiiiiirccrrrrrr s s 449

© Ecma International 2014 Xi

ecind

22
221
2211
22.1.2
2213
2214
221.5
22.2
22.21
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7

23
231
23.1.1
23.1.2
23.1.3
23.1.4
23.1.5
23.2
23.21
23.2.2
23.2.3
23.2.4
23.2.5
23.3
23.31
23.3.2
23.3.3
23.3.4
234
23.41
23.4.2
2343
23.4.4

24
241
2411
24.1.2
241.3
2414
2415
24.2
24.21
24.2.2
24.2.3
24.2.4
24.2.5
243
24.31
243.2

[T T2 =Te I 0 oY 1= o3 1 o o 1= 449
Array ODJECTS.... 449
The Array CONSTIUCKON........cuuuiiiiiiiiiiiiiiiiririiirrrr e e asssssssssssssssssnsssssssnssnsssssssssnnnsnsnnnan 450
Properties of the Array CONStrUCTOrcccoiiiiiiiiii 452
Properties of the Array Prototype Object.........ccoooiiinni s 455
Properties of Array INStancCes ... —————————— 481
Array Iterator ODJECtS....... ..o ———————— 481
TypedArray ODjJECES..........uuiiiiiiiiiiiiiiiiiiiiiirrrrrr s s s s sss s s s s s s s s s s s s s s s s s s ssnsnnnsnnnnnnnn 483
The %TypedArray% INtrinSic ODJECt...........uuuvmiiiiiiiiiiiiiiiiee e 483
Properties of the %TypedArray% Intrinsic Object ..., 487
Properties of the %TypedArrayPrototype% Object.............cccovmmmimieiiiiniiieee e, 490
The TypedArray CONSLIUCIONSccuuiiiiiiiiimiiiiiiiiiieeinieeeeeseeeeeennneesdannnnsensssssssssssssnssssssssssssnsnnssnnnas 501
Properties of the TypedArray CoONStruCtors.........ccooiiiiiiiiiniiini st i s 502
Properties of TypedArray Prototype Objects.........cccoiiiiiiiiinitiinnnn i 503
Properties of TypedArray INStaNCeS........cccoriiiiiiiiiiiiiii i 503
Keyed ColleCtion ... s s 503
Map ODjJECLS..... . 503
The Map CONSLIUCEON........ccuiiiiiiiiiiiiiiiiiiirieeeerseeeeesdonnnneeeeeeesesessensnsssssssssssnnnnnsnnsnnnnsnssnnnnabnsssssnnsnnnnnn 503
Properties of the Map CoNStructor ... s 505
Properties of the Map Prototype Object ...t s 505
Properties of Map INStancCes ... i 508
Map Iterator ObJECtS.......cccoiii e ——————— 508
£ T 0 o =Y o2 £ 510
The Set CONStrUCLONcc.uueeiiirriii e sss s e R e s s s e e ansrr e e e e e s s s aannnns 510
Properties of the Set CoONStrUCOr.............cciii it iire e ss s ssses e e s s e e e e e s s e s s e e s e e e nnnnss s e s seeennes 511
Properties of the Set Prototype ODbject............ it ee e s e eeeene 512
Properties of Set INStanCes........cccceuciiiiiiiiicec e eeiirrnnma e st i e e e e s s s e s e e s s nnnsss s s s e s e s s nnnssssssenrennnnn 515
EST1 Q10T =1 Lo 0 o = o - s 515
WeakMap ObjJeCTES....ciiiiiiiiiieeeti e ieiiierrrennnissaaiessarennssssssssererrnnsssssssssssnsnnssssssssssmennnnsssssssesennnnnnnnsnssnns 517
The WeakMap CONSTIUCTON........ i i e e s s e s s s e e s s s s e e e s s e nn s s s e e e ennnnssssnnsnn 517
Properties of the WeakMap CONSLrUCTOrcc.ci. i rrrree s e e e s s s e e e e nnn s e e e e eenns 519
Properties of the WeakMap Prototype Object...........ccoummeiiiiiiiiiiccccr e 519
Properties of WeakMap INStANCES wuuuunn..iiiiiiieeiiiriiiiiiic e cs s e s s e s ssnsss s s s s s e e s s sn e s s e e e e s e nnnsssssssssennnns 521
LA L= T ST A0 T o =Y o PP 521
The WeakSet CONSEIUCEOYccccmmiiir i 521
Properties of the WeakSet CONStrUCtOr..............coiiiiiiiie e e s e eeene 522
Properties of the WeakSet Prototype Object...........cccoorrririiiriirirr s 523
Properties of WeakSet INStances............ooo et 524
Structured Datacoceeeiiiiii i ————————————————— 525
ArrayBuffer ODJECES. s 525
Abstract Operations For ArrayBuffer Objects.........ccccooriiiriiiiiiiir s 525
The ArrayBuffer CONSEIUCIONoooveiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e nnnnan 527
Properties of the ArrayBuffer CONStruCtor...........ccco oo 528
Properties of the ArrayBuffer Prototype ODbject..........cccoor i 528
Properties of the ArrayBuffer INStances...........ccoo i 530
[F= 1 LV A=Y A0] o (=Y o2 £ 530
Abstract Operations For DataView ObjJects...........cueuermmmmmmmmmmmmmmmmmmmennnenenennnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnas 530
The DataView CONSLrUCKONcoiiiciieeiiir i nnnes 531
Properties of the DataView CONStrUCEOr.............co it 532
Properties of the DataView Prototype Object..........ccccoorriiriiririrrrrrr s 532
Properties of DataView INStances...........ooeciiiiiiircccc et 536
The JSON ODBjJECEcciiiiceeriiri i s s s e e annr e e e e e s e nnnnns 536
JSON.parse (text [, FEVIVEI]) uuueueeeeeeeeereeeemmieeneneereenennnnnnnnsnnnnnnnnnnnnnnnnnnsnnnnnnnnnsnsnnnnnnnsnnnnnnnnnnnnnnnnen 536
JSON.stringify (value [, replacer [, SPACe]])eeeeeeeeremmmmmmmmmmmmmmmmmmmrnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnssnsnnnnas 538

© Ecma International 2014 Xii

ecind

24.3.3 JSON [@@LOSriNGTaQ J--eeeeeiiiririnmerrreriiinisssnsr s s s sssss e s s sns s s s e s s smn s e e e s e e s s e anmnn e e e e n s 543
25 Control Abstraction ObjJects ... ————— 543
251 Common lteration INterfacescoeueiiiiiiiiiicc e e 543
25.1.1 The [terable INterface........... .o rrr s s s r s s s s e s e s rnn s s s s e e e e nnmnsssssssnenennnn 543
25.1.2 The Jterator INtErfacecii i e s s s e s rn s s s s e s e s enmss s s s e s e e nnmnssssssssennnnnn 543
25.1.3 The lteratorResult INterfacecoeeeeiiiiiiiiiicrrrr e e s s e e e s nnn s s s e e ennnn 544
25.2 GeneratorFunction ObjJects..........ccoc—————————— 544
25.2.1 The GeneratorFunction CONSLIUCIONooiiieeeiiiiiiriri s e e e e e nne 545
25.2.2 Properties of the GeneratorFunction Constructor...........cccoiiiidii s 547
25.2.3 Properties of the GeneratorFunction Prototype Object...........coooriiiiiitiininnin, 548
25.2.4 GeneratorFunction INStaNCEeSccceeeeeiiiiiiiiiiiecci s r e s s e s e e rnn s s s e e e e rnnnss s s s s e e ennnn 549
25.3 Generator ODJEcCtS ... 550
25.3.1 Properties of Generator Prototype ... i s 550
25.3.2 Properties of Generator INStances..........cccociiiiiiiiiniiinn i —————— 551
25.3.3 Generator Abstract Operations...........cccoi i 551
25.4 Promise ODBJECtScccoiiiiiii e 553
25.4.1 Promise Abstract Operations...........ccooiiiinin i 553
25.4.2 PromisSe TaASKS ...cuuuciiiiiiiiiiieuiiiiiirrrinsssssssssrsrennssssianssnmennnsssssssserenmnnssssssssesssnsnnsssssssesnnnnabnsssssseesennnn 557
25.4.3 The Promise CONSErUCEONcooiiieeeiiiiiiirrecdiiinn e nensnesn s ss s e e sdnnsbn s e s s s e s e s nnnnssssssssssnnmnnnssssssnennnnnn 558
25.4.4 Properties of the Promise CoNstructor ...t s 559
25.4.5 Properties of the Promise Prototype Objectcccooii i 562
25.4.6 Properties of Promise INStaNCes ..o s 563
26 REfIECHION.....eiiiei i e 564
26.1 The Reflect ODjJECt.......cocoeeeciiiiiiiei s rss e e e et i s es s e s e e sesnns s sasssabhnnasssssssesesnnnnssssssseeesnnnnssssnssnennnnnn 564
26.1.1 Reflect.apply (target, thisArgument, argumentsList)............cccooiiiiiis 564
26.1.2 Reflect.construct (target, argumentsList)cooiiiiiiiiine i 564
26.1.3 Reflect.defineProperty (target, propertyKey, attributes) ..., 564
26.1.4 Reflect.deleteProperty (target, propertyKey) s 565
26.1.5 Reflect.enumerate (target)......cc..ccoo oo 565
26.1.6 Reflect.get (target, propertyKey [, reCeiver])cccoo i s 565
26.1.7 Reflect.getOwnPropertyDescriptor (target, propertyKey)cooeeuceiiiiiiimececccssererrcenseesseeeeeees 565
26.1.8 Reflect.getPrototypeOf (target).........ccocorrriiiiiiiiie s 565
26.1.9 Reflect.has (target; propertyKey ... i 566
26.1.10 Reflect.isExtensible (target)...........cco o 566
26.1.11 Reflect.ownKeys (target).........cccooor i s 566
26.1.12 Reflect.preventExtensions (target) ... 566
26.1.13 Reflect.set (target, propertyKey, V[, reCeiver]) ... 566
26.1.14 Reflect.setPrototypeOf (target, Proto)ccccocoriiriiiiiiirrrrrrrr s 566
b A 3= =113 00 1 o =Y o2 £ 567
26.2.1 The Reflect.Realm CONSLIUCLON..........cciiiiiiiiiiniiir i 567
26.2.2 Properties of the Reflect.Realm Constructor............oociii e e 568
26.2.3 Properties of the Reflect.Realm Prototype Object ... 569
26.2.4 Properties of Reflect.Realm INStaNCesccceeeeeeiii i e e e 571
2 N I T T 1= @ o= o3 = 572
26.3.1 The Reflect.Loader CONSLIUCEOcoiiiiiiimiimiriiirrr e 572
26.3.2 Properties of the Loader CONStructor..........cceueeeiiii it rrress s s s e e e s s enn e s s e e e enne 573
26.3.3 Properties of the Reflect.Loader Prototype Object..........ccccooiiiriiiiiriiiiccrrrrr e 573
26.3.4 Properties of Reflect.Loader INStancCes.........ceeeciiiiiiiiiieeccciie e e s s e e e e e ene 581
26.3.5 Loader Iterator OBjJECESccccceiiiriirirrrrrrrrr s 581
26.4 The System ODBjJECtccccociiiirrrr s 583
26.5 ProxXy ODjJECtSccccciiiiiiiiiiicirirrrrs s e 583
26.5.1 The Proxy Constructor FUNCLIONcccooiiiiiccrrrr s 583
26.5.2 Properties of the Proxy Constructor FUNCHiON...........cccooiiiiiiiiiccrrrrr s 584
Annex A (informative) Grammar SUMMAIYcoooeiiiiiiiiiiieieeieeeeeee e e ee e e e e s s e s s s e s s e e e s e e e e s e esesseeseesesseesseseeennee 585

© Ecma International 2014 Xiii

ecind

[0 o= 1R =0 11 .4 T | 585
o T =TT 1o L= 592
85 1= .4 1= 0 596
FUNCtioNS @Nd SCHPES.....ccuiiiiiiiiiiiiiiiiiiiiiiniiirrr sssssnsssssssssssnnsnnnnnnn 598
LW 0T o= g 0 4 Y=Y =] oY o T 599
Universal Resource ldentifier Character Classes..........ouieeiiiiiiiimiiesccsiie s rr s 600
REGUIAI EXPreSSIONS. ...ccuiiiiiiiiiiitiiiiriiirsrrrenerrerrtrrrerr i —————————————ssnnnnnnnnnn 601
Annex B (normative) Additional ECMAScript Features for Web Browsers............cccccoeviiiiiiiiiiiiiiiinnnnnnns 605
B.1 Additional SYNtaX ... 605
= 70 I T 11T 44 U= e I =Y o | 605
0 0 {4 o TN = - 605
B.1.3 HTML-like COMMENLESccoiiiiiiieiiiiiiirrrrese s s s s s s s s s s s e e s nn e s s s s s adbe s s s s e s e s nnmnsssssssennnnnnnnnnen 606
B.1.4 Regular EXpressions Patternseuuiiiiiiiiiiiiiiiieemieieeieeeeeeesdinnnnneeenssstnssassssssssssssssssssssssnssssnnns 606
B.2 Additional Built-in Properties..........cccooi i 610
B.2.1 Additional Properties of the Global ObjJectcuuueeitineimiiiim et 610
B.2.2 Additional Properties of the Object.prototype Object.c...cc...uummimmemiieeeieieiiiennnnnatae s 611
B.2.3 Additional Properties of the String.prototype Objectoummmmmmimmimmmmimte s 612
B.2.4 Additional Properties of the Date.prototype Object.............ceummmmmmmimmmmmmmimmie et 614
B.2.5 Additional Properties of the RegExp.prototype Objectcccco e 615
B.3 Other Additional Features............. i ierree e s se s e s e sdemnnss s s e s e erennnsss s s s e s e snnnnssssssssensnnnnnnnen 615
B.3.1 __ proto____ Property Names in Object Initializers.............iceeeeeeeiiiiiiieecccrrrree e 615
B.3.2 Web Legacy Compatibility for Block-Level Function Declarations...............cccvveemncciiiiinnnecnnnne. 616
B.3.3 __var statements in Catch BIOCKS....ccuiuiieeeeiiiiiiiciei b e e 617
Annex C (informative) The Strict Mode of ECMASCIIpPt..........ceuuiiiiiiimetin e erreeescs s s e s e seesnsse s e e e e ennes 619
Annex D (informative) Additions and Changes that Introduce Incompatibilities with Prior
EdifiONS.....e e e s 621
Dl 1N @ B8 EdItION....eucereerrannneceuressenssessessasnsseseesiasnssnssessesnssssatansnssessessesssssseessessssssnessenssssssessenssnnens 621
D.2 1N the 5" EditiON.......riiiressusessebineeesesressessssessaionssssessessessessssessessessssssssssessssssssssesssssssessessssnseessenssnsns 623
Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior Editions ..626
T 1 T T T s o O 626
0 1 TN T T 628

© Ecma International 2014 Xiv

§ INTERMATIONAL

© Ecma International 2014

XV

»eCma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular. expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World
Wide Web where it has become the programming language that is supported by essentially all web browsers.
Significant work was done to develop a fourth edition of ECMAScript. Although that work was not completed
and not published! as the fourth-edition of ECMAScript, it informs continuing evolution of the language. The
fifth edition of ECMAScript (published as ECMA-262 5 edition) codified de facto interpretations of the
language specification that'have become common among browser implementations and added support for
new features that had emerged since the publication of the third edition. Such features include accessor
properties, reflective creation and inspection of objects, program control of property attributes, additional array
manipulation functions, support forthe JSON object encoding format, and a strict mode that provides
enhanced error checking and program security.

The edition5.1 of the ECMAScript Standard is fully aligned with the third edition of the international standard
ISO/IEC 16262:2011.

This present sixth edition of the Standard.........

ECMAScript is. a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4’ as an Ecma International publication does not
exist.

© Ecma International 2014 XVi

secnd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on.an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2014 XVii

»eCma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret.characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not
otherwise specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript that provides an application programming interface that
supports programs that need to adapt to the linguistic and cultural conventions used by different human
languages and countries must implement the.interface defined by the most recent edition of ECMA-402
that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties,
and functions beyond those described in this specification. In particular, a conforming implementation of
ECMAScript may provide properties not described in_this specification, and values for those properties,
for objects that are describedqin this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not
described in this specification. In particular, a conforming implementation of ECMAScript may support

program syntax that makes use of the “future reserved words” listed in subclause 11.6.2.2 of this
specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

IEEE Std 754-2008: IEEE /Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic
Engineers, New York (2008)

ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

© Ecma International 2014 1

secind

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or
successor.

ECMA-402, ECMAScript Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations. and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external
data or output of computed results. Instead, it is expected that the computational environment of an
ECMAScript program will provide not only the objects and other facilities described in this specification
but also certain environment-specific objects, whose description and behaviour are beyond the scope of
this specification except to indicate that they may provide certain properties that can be accessed and
certain functions that can be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customize, and automate
the facilities of an existing system. In such systems, useful functionality.is already available through a
user interface, and the scripting language is a mechanism for_exposing that functionality to program
control. In this way, the existing system is said to provide a host environment of objects and facilities,
which completes the capabilities-of the scripting language. A scripting language is intended for use by
both professional and non-professional programmers. ECMAScript was originally designed to be used as
a scripting language, but has become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven
Web pages in browsers and to_perform server computation as part of a Web-based client-server
architecture. ECMAScript is now used both as a general propose programming language and to provide
core scripting capabilities for a variety of host environments. Therefore the core language is specified in
this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in
particular C, Java™, Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages — C.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing
Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

© Ecma International 2014 2

http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

ecind

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides a means to attach scripting
code to events such as change of focus, page and image loading, unloading, error and abort, selection,
form submission, and mouse actions. Scripting code appears within the HTML and the displayed page is
a combination of user interface elements and fixed and computed text and images. The scripting code is
reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side<computation including objects
representing requests, clients, and files; and mechanisms to lock and.share data. By using browser-side
and server-side scripting together, it is possible to distribute computation between. the client and server
while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing
the ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. In.ECMAScript, an object is a collection of
properties each with zero or more attributes that determine how each property can be used—for
example, when the Writable attribute for a property is-set to false, any attempt by executed ECMAScript
code to change the value of the property fails. Properties are containers that hold other objects, primitive
values, or functions. A primitive value is a member of one of the following built-in types: Undefined,
Null, Boolean, Number, Symbol and String; an object is a member of the remaining built-in type
Object; and a function is a callable object. A function that is associated with an object via a property is a
method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities.
These built<in objects.include the global object, the Object object, the Function object, the Array object,
the String object, the Boolean abject, the Number object, the Math object, the Date object, the RegExp
object, the JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError,
SyntaxError, TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary
operations, multiplicative operators, additive operators, bitwise shift operators, relational operators,
equality operators, binary bitwise operators, binary logical operators, assignment operators, and the
comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, a variable is not required to have its type
declared nor are types associated with properties, and defined functions are not required to have their
declarations appear textually before calls to them.

© Ecma International 2014 3

ecind

4.2.1 Objects

ECMAScript objects are not fundamentally class-based such as those in C++, Smalltalk, or Java. Instead
objects may be created in various ways including via a literal notation or via constructors which create
objects and then execute code that initializes all or part of them by assigning initial values to their
properties. Each constructor is a function that has a property named “prototype” that is used to
implement prototype-based inheritance and shared properties. Objects are created by using
constructors in new expressions; for example, new Date (2009,11) creates a new Date object. Invoking
a constructor without using new has consequences that depend on the constructor. For example, Date ()
produces a string representation of the current date and time rather than an.object.

Every object created by a constructor has an implicit reference (called.the object’s prototype) to the value
of its constructor's “prototype” property. Furthermore, a prototype may have a non-null implicit
reference to its prototype, and so on; this is called the prototype chain. When a reference is made to a
property in an object, that reference is to the property of that name in the first object in the prototype chain
that contains a property of that name. In other words, first.the object mentioned directly is.examined for
such a property; if that object contains the named property, that is the property to which the reference
refers; if that object does not contain the named property, the prototype for that object is examined next;
and so on.

4 4 .
i 1
i . . .
CF i implicit prototypelink
- i
protatype ~ CFF ______ i -
P1l
Pz CFP1 explicit prototype property
¥ 1 f 1 a
[:fi [:fz Ef3 l:f.;, == [:fg
ol gl ol ol ol
o2 - qa g2 oz

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried
by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are
carried by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. Figure 1 illustrates this:

© Ecma International 2014 4

»eCma

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf;,
cf,, cf;, cfy, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines
represent the implicit prototype relationship; so, for example, cfs’s prototype is CF,. The constructor, CF,
has two properties itself, named P1 and P2, which are not visible to CFy, cfy, cf,, cfs, cfs, or cfs. The
property named CFP1 in CFy is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties
found in CFy’s implicit prototype chain that are not named g1, g2, or CEP1. Notice that there is no implicit
prototype link between CF and CF.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning
values to them. That is, constructors are not required to name or assign values to all or any of the
constructed object’s properties. In the above diagram, one could add a.new shared property for cfy, cfy,
cf;, cf,, and cfs by assigning a new value to the property in CF,.

Although ECMAScript objects are not inherently class-based, it'is often convenient to define class-like
abstractions based upon a common pattern of constructor functions, prototype objects, and methods. The
ECMAScript built-in object themselves follow such a class-like pattern. The ECMAScript language
includes syntatic class definitions that permit programmers to concisely define objects that conform to the
same class-like abstraction pattern used by the built-in<objects.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to
restrict their usage of some features available in the language. They might do so in the interests of
security, to avoid what they consider to be ‘error-prone features, to get enhanced error checking, or for
other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the
language. The strict variant of the language excludes some specific. syntactic and semantic features of
the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant
also specifies additional error conditions that must be reported by throwing error exceptions in situations
that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and. semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit,
strict mode only imposes restrictions that have local effect within such a code unit. Strict mode does not
restrict or-modify any aspect of the ECMAScript semantics that must operate consistently across multiple
code units. A complete ECMAScript program may be composed for both strict mode and non-strict mode
ECMAScript code units. In this case, strict mode only applies when actually executing code that is defined
within a strict mode code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by
this specification. In addition, an implementation must support the combination of unrestricted and strict
mode code units into a single composite program.

4.3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
4.31

type
set of data values as defined in clause 6 of this specification

© Ecma International 2014 5

»eCma

4.3.2
primitive value
member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language
implementation.

4.3.3
object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null
value.

4.3.4

constructor

function object that creates and initializes objects

NOTE The value of a constructor's “prototype” property. is a prototype object that is used to implement
inheritance and shared properties.

4.3.5
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly. references the constructor’'s “prototype’
property for the purpose of resolving property references. The constructor’s “prototype” property can be referenced
by the program expression constructor.prototype, and properties added to an object’s prototype are shared,
through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly

specified prototype by usingthe Object. create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all
objects.

4.3.7

exotic object

object that has some alternative behaviour for one or more of the essential internal methods that must be
supported by all objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

4.3.9

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present
at the start of the execution of an ECMAScript program

© Ecma International 2014 6

»eCma

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify
and define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4.3.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an‘instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an_argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.317
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a
single 16-bit unit of UTF-16_text. However, ECMAScript does not place any restrictions or requirements on the values
except that they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19

String object
member of the Object type that is an instance of the standard built-in String constructor

© Ecma International 2014 7

»eCma

NOTE A String object is created by using the String constructor in a new expression, supplying a String value
as an argument. The resulting object has an internal slot whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (21.1.1.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.
4.3.21
Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor<in a new expression, supplying a Number
value as an argument. The resulting object has an internal slot whose value is the Number value. A Number object
can be coerced to a Number value by calling the Number constructor as a function (20.1.1.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24
NaN
number value that is an IEEE 754 “Not-a-Number” value

4.3.25
Symbol value
primitive value that represents a unique, non-String Object property key.

4.3.26
Symbol type
set.of all possible Symbol values

4.3.27
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor

4.3.28
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A function’s code may or may not be written in ECMAScript.

4.3.29
built-in function
built-in object that is a function

© Ecma International 2014 8

»eCma

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.30

property

association between a key and a value that is a part of an object. The key be either a String value or a
Symbol value.

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.31
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.32
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may
specify and provide other additional built-in methods:

4.3.33
attribute
internal value that defines some characteristic of a property

4.3.34

own property

property that is directly contained by its object
4.3.35

inherited property

property of an-object that is'not an own property but is a property (either own or inherited) of the object’s
prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language includings its syntactic encoding
and the execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard
objects that are available for use by ECMAScript programs as they execute.

© Ecma International 2014 9

»eCma

5 Notational Conventions
5.1 Syntactic and Lexical Grammars
5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified
alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along
with zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-
hand side of a production for which the nonterminal is the left-hand side:

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in _clause 11. This grammar has as its terminal symbols
characters (Unicode code points) that conform to the rules for SourceCharacter defined in clause 10.1. It
defines a set of productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that
describe how sequences of such characters are translated into a. sequence of input elements.

Input elements other than white-space and comments form the terminal symbols for the syntactic
grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not
considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon‘insertion (11.9)..Simple white space and single-line comments are discarded and do
not appear in the stream of input‘elements for the syntactic grammar. A MultiLineComment (that is, a
comment of the form “/*...* /"“regardless of whether it spans more than one line) is likewise simply
discarded if it contains no line terminator; but if a MultiLineComment contains one or more line terminators,
then it is replaced by a single line terminator, which becomes part of the stream of input elements for the
syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. 1t defines a set of productions, starting from the goal symbol
Pattern, that describe how sequences of characters are translated into regular expression patterns.
Productions of the lexical and RegExp grammars are distinguished by having two colons “::”
separating punctuation. The lexical and RegExp grammars share some productions.

as

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of
the lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter.
This grammar appears in 7.1.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

© Ecma International 2014 10

»eCma

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of
productions, starting from the goal symbol Script, that describe how sequences of tokens can form
syntactically correct independent components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream.©of input elements is then
parsed by a single application of the syntactic grammar. The script is syntactically in error if the tokens in
the stream of input elements cannot be parsed as a single instance of the‘goal nonterminal Script, with no
tokens left over.

(%}

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is actually not a complete account of
which token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences
are also accepted, namely, those that would be described by the grammar. if only semicolons were added
to the sequence in certain places (such as before line terminator characters). Furthermore, certain token
sequences that are described by the grammar are not considered acceptable if a terminator character
appears in certain “awkward” places.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalized productions that
permit token sequences that are not valid ECMAScript scripts. For example, this technique is used for
object literals and object destructuring patterns. In such cases.a more restrictive supplemental grammar is
provided that further restricts the acceptable token sequences. In certain contexts, when explicitly
specific, the input elements corresponding to such a production are parsed again using a goal symbol of
a supplemental grammar. The script is syntactically in error if the tokens in the stream of input elements
cannot be parsed as a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal
symbols of the other grammars, are shown in £fixed width font, both in the productions of the
grammars.-and throughout this specification whenever the text directly refers to such a terminal symbol.
These are to appear in a script either exactly as written. All terminal symbol characters specified in this
way are to be understood as the appropriate Unicode code points from the Basic Latin range, as opposed
to.any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in izalic type. The definition of a nonterminal (also called a “production”)
is introduced by the name of the nonterminal being defined followed by one or more colons. (The number
of colons indicates to which grammar the production belongs.) One or more alternative right-hand sides
for the nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:

© Ecma International 2014 11

secind

ArgumentList :
AssignmentExpression
ArgumentlList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed
by a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is
defined in terms of itself. The result is that an ArgumentList may contain any positive number of
arguments, separated by commas, where each argument expression is an AssignmentExpression. Such
recursive definitions of nonterminals are common.

The subscripted suffix “op”, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :
Bindingldentifier Initializerqp

is a convenient abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer

and that:

IterationStatement :
for (LexicalDeclaration Expressionep ;< Expressiones) Statement

is a convenient abbreviation for:

IterationStatement :
for (LexicalDeclaration ;- Expressiongy) Statement
for (LexicalDeclaration ; Expression; Expressions:) Statement

which in turn is an abbreviation for:

IterationStatement :
for (LexicalDeclaration ;) Statement
for (LexicalDeclaration ; Expression) Statement
for (LexicalDeclaration Expression ; ;) Statement
for (LexicalDeclaration Expression ; Expression) Statement

so, in this example; the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “parameters)”, Which may appear
as a suffix to the nonterminal symbol defined by the production. “,arameters” May be either a single name or
a comma separated list of names. A parameterized production is shorthand for a set of productions
defining all combinations of the parameter names, preceeded by an underscore, appended to the
parameterized nonterminal symbol. This means that:

© Ecma International 2014 12

oeCha

StatementListiRetum) -
ReturnStatement
ExpressionStatement

is a convenient abbreviation for:
StatementList :
ReturnStatement

ExpressionStatement

StatementList Return :

ReturnStatement
ExpressionStatement
and that:
StatementListireturn, in] -
ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList Return :
ReturnStatement
ExpressionStatement

StatementList In
ReturnStatement
ExpressionStatement

StatementList_Return_In :
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily

referenced in a complete grammar.

References to. nonterminals on the right hand side of a production can also be parameterized. For

example:

StatementList :
ReturnStatement

ExpressionStatementyn

is equivalent to saying:

StatementList :
ReturnStatement

ExpressionStatement In

© Ecma International 2014

13

oecnd

A nonterminal reference may have both a parameter list and an “," suffix. For example:

VariableDeclaration :
Bindingldentifier Initializerjnjopt

is an abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer In

Prefixing a parameter name with “” on a right hand side nonterminal reference makes that parameter

value dependent upon the occurrence of the parameter name on the reference to the current production’s

left hand side symbol. For example:

VariableDeclarationyy :
Bindingldentifier Initializer(yn)

is an abbreviation for:

VariableDeclaration :
Bindingldentifier Initializer

VariableDeclaration_In :
Bindingldentifier Initializer In

If a right hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named
parameter was used in referencing the production’s nonterminal symbol. If a right hand side alternative is
prefixed with “[~parameter]” that alternative is only available if the named parameter was not used in
referencing the production’s nonterminal symbol. This means that:

StatementListiRetum] &
[+Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ExpressionStatement

StatementList Return :

ReturnStatement
ExpressionStatement
and that
StatementListiretym) -
[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

© Ecma International 2014 14

secind

StatementList :
ReturnStatement
ExpressionStatement

StatementList Return :
ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit :.

WoJdJonUlbdWDNR

If the phrase “lempty]” appears-as the right-hand side of a production, it indicates that the production's
right-hand side contains no.terminals or nonterminals.

If the phrase “llookahead ¢ se7]” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be
written as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a
nonterminal, in which case it represents the set of all terminals to which that nonterminal could expand.
For example,.given the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6.7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

© Ecma International 2014 15

»eCma

If the phrase “Ino LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammair, it indicates that the production is a restricted production: it may not be used if a LineTerminator
occurs in the input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw
token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form “[Lexical goal LexicaiGoalSymbol]” appears on the right-hand-
side of a syntactic production then the next token must be lexically recognized using the indicated goal
symbol. In the absence of such a phrase the default lexical goal symbol.is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are-described by a descriptive phrase in sans-serif type in cases
where it would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used
to precisely specify the required semantics of ECMAScript language constructs. The algorithms are not
intended to imply the use of any specific implementation technique. In practice, there may be more
efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must
be provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this
specification, some algorithms, called abstract operations, are named and written in parameterized
functional form so that they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that
has multiple alternative definitions will typically have a distinct algorithm for each alternative. When an
algorithm is associated with a grammar production, it may reference the terminal and nonterminal

© Ecma International 2014 16

»eCma

symbols of the production alternative as if they were parameters of the algorithm. When used in this
manner, nonterminal symbols refer to the actual alternative definition that is matched when parsing the
script souce code.

When an algorithm is associated with a production alternative, the alternative is typically shown without
any ‘[I’ grammar annotations. Such annotations should only affect the syntactic recognition of the
alternative and have no effect on the associated semantics for the alternative.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that production’s left-hand side nonterminal. The implicit definition
simply reapplies the same algorithm name with the same parameters, if any, to the chain production’s
sole right-hand side nonterminal and then result. For example, assume there is a production

Block :
{ StatementList }

but there is no evaluation algorithm that is explicitly specified for that production. If in some algorithm there
is a statement of the form: “Return the result of evaluating Block” it is implicit that the algorithm has an
evaluation algorithm of the form:

Runtime Semantics: Evaluation

Block . { StatementList }

1. Return the result of evaluating StatementList.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are
indented and may themselves be further divided into'indented substeps. Outline numbering conventions
are used to identify substeps with the first level of substeps labelled with lower case alphabetic characters
and the second level of substeps labelled with lower case roman numerals. If more than three levels are
required these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep.
i. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
1. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the
substeps are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a
predicate that is the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this clause should always be understood as computing exact

© Ecma International 2014 17

»eCma

mathematical results on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point
arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a floating-point nhumber, it should be
understood as being applied to the exact mathematical value represented by that floating-point number;
such a floating-point number must be finite, and if it is +0 or —0 then the corresponding mathematical
value is simply 0.

The mathematical function abs(x) produces the absolute value of x, which is —x if x is negative (less than
zero) and otherwise is x itself.

The mathematical function sign(x) produces 1 if x is positive and —1 if x.is negative. The sign function is not
used in this standard for cases when x is zero.

The mathematical function min(xy, x,, ..., x,) produces the mathematically smallest of x; through x,.

The notation “x modulo y” (y must be finite and nonzero) computes a value k& of the same sign as y (or
zero) such that abs(k) < abs(y) and x—k = ¢ x y for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not
larger than x.

NOTE floor(x) = x—(x modulo 1).
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream
of input elements form a valid ECMAScript script that may be evaluated. In some situations additional
rules are needed that may be expressed using either ECMAScript algorithm conventions or prose
requirements. Such rules are always associated with a production of a grammar and are called the static
semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions
will typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a
definition for a static semantic rule named Contains which takes an argument named symbol whose value
is a terminal or nonterminal of the grammar that includes the associated production. The default definition
of Contains is:

1. For each terminal and nonterminal grammar symbol, sym, in the definition of this production do
a. Ifsymis thesame grammar symbol as symbol, return true.
b. If sym is anonterminal, then
i. Let contained be the result of sym Contains symbol.
1. If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions
(see clause 16) that are associated with specific grammar productions. Evaluation of most early error

© Ecma International 2014 18

ecind

rules are not explicitly invoked within the algorithms of this specification. A conforming implementation
must, prior to the first evaluation of a Script, validate all of the early error rules of the productions used to
parse that Script. If any of the early error rules are violated the Script is invalid and cannot be evaluated.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript
language types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to
the ECMAScript language and specification types defined in this clause.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an. ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null,
Boolean, String, Symbol, Number, and Object. An“ECMAScript language value is a value that is
characterized by an ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
value has the value undefined.

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having.two values, called true and false.
6.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript
program, in which case each element in the String is treated as a UTF-16 code unit value. Each element
is regarded as occupying a position within the sequence. These positions are indexed with nonnegative
integers. The first element (if any) is at index 0, the next element (if any) at index 1, and so on. The length
of a String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and
therefore contains no elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16
code unit. However, ECMAScript does not place any restrictions or requirements on the sequence of
code units in a String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences.
Operations that do not interpret String contents treat them as sequences of undifferentiated 16-bit
unsigned integers. No operations ensure that Strings are in a normalized form. Only operations that are
explicitly specified to be language or locale sensitive produce language-sensitive results

© Ecma International 2014 19

secind

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-
performing as possible. If ECMAScript source code is in Normalized Form C, string literals are guaranteed to also be
normalized, as long as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:
e A code unit in the range 0 to 0xD7FF or in the range 0xE000 to OxFFFF is interpreted as a code
point with the same value.
¢ A sequence of two code units, where the first code unit ¢/ is in the range 0xD800 to 0xDBFF and
the second code unit ¢2 is in the range 0xDCO00 to 0xDFFF, is a surrogate pair and is interpreted
as a code point with the value (c¢/ - 0xD800) x 0x400 + (c2 — 0xDC00) + 0x10000.
e A code unit that is in the range 0xD800 to 0xDFFF, but is not part of a surrogate pair, is interpreted
as a code point with the same value.

6.1.5 The Symbol Type

The Symbol type is the set of all non-String values that.may be used as the key of an Object property
(6.1.7).

Each possible Symbol values is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a
String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in. Symbol values that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of
a specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (8.1.2.5).

Within this specification a well-known symbol is referred to by using a notation of the form @@name,
where “name” is one of the values listed in Table 1.

© Ecma International 2014 20

»eCma

Table 1— Well-known Symbols

Specification Name

[[Description]]

Value and Purpose

@@create

"Symbol.create"

A method used to allocate an object. Called
from the [[Construct]] internal method.

@@haslnstance

"Symbol.hasInstance"

A method that determines if a constructor
object recognizes an object as one of the
constructor’'s instances. Called by the
semantics of the instanceof operator.

@@isConcatSpreadable

"Symbol.isConcatSpreadable"

A Boolean value that if true indicates that an
object should be flatten to its array elements
by Array.prototype.concat.

@@isRegExp

"Symbol . isRegExp"

A Boolean value that if true indicates that an
object may be used as a regular expression.

@@iterator

"Symbol.iterator"

A method that returns the default iterator for an
object. Called by the semantics of the for-of
statement.

@(@toPrimitive

"Symbol.toPrimitive"

A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

@@toStringTag

"Symbol. toStringTag"

A string value that is used in the creation of the
default string description of an object. Called
by the built-in method
Object.prototype.toString.

@(@unscopables

"Symbol.unscopables"

An Array of string values that are property
names that are excluded from the with
environment bindings of the associated
objects.

6.1.6 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2°~2°°+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 2°°-2) distinct “Not-a-Number” values of the IEEE
Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is
produced by the program expression NaN.) In some implementations, external code might be able to
detect a difference between various Not-a-Number values, but such behaviour is implementation-
dependent; to ECMAScript.code, all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these

values are also referred to for expository purposes by the symbols +w and —owo, respectively. (Note that
these two infinite Number values are produced by the program expressions +Infinity (or simply
Infinity)and -Infinity.)

The other 18437736874454810624 (that is, 2°*-2%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

© Ecma International 2014 21

»eCma

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to
for expository purposes by the symbols +0 and —0, respectively. (Note that these two different zero
Number values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2°*~2%-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2°*—27*) of them are normalized, having the form

sxmx2°

where s is +1 or —1, m is a positive integer less than 2°° but not less than2’, and ¢ is an integer ranging
from —1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°-2) values are denormalized, having the form

sxmx2°

where s is +1 or —1, m is a positive integer less than 272, and e is —1074.

Note that all the positive and negative integers whose magnitude is'no greater than 2°* are representable
in the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it'is nonzero and the integer m used to express it (in one of the
two forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as n) means a Number value
chosen in the following manner. Consider the set of all finite values of the Number type, with —0 removed
and with two additional values added to it that are not representable in the Number type, namely 2'°*
(which is +1 x 2% x 2”"')yand —2'** (which is —1 x 27 x 2°""). Choose the member of this set that is closest
in value to x. If two values of the set are equally close, then the one with an even significand is chosen;
for this purpose, the two extra values 2'%**and —2'"** are considered to have even significands. Finally, if
2'%% was chosen, replace it with 4+; if —2'%* was chosen, replace it with —o; if +0 was chosen, replace it
with —0 if and only if x is less than zero; any other chosen value is used unchanged. The result is the
Number value for x. (This procedure corresponds exactly to the behaviour of the IEEE 754 “round to
nearest” mode.)

Some ECMAScript operators deal only with integers in the range —2*' through 2°'-1, inclusive, or in the
range 0 through 2**-1, inclusive. These operators accept any value of the Number type but first convert
each such value to one of 2% integer values. See the descriptions of the ToInt32 and ToUint32 operators
in 7.1.5 and 7.1.6, respectively.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

e A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

o An accessor property associates a key value with one or two accessor functions, and a set of
Boolean attributes. The accessor functions are used to store or retrieve an ECMAScript language
value that is associated with the property.

© Ecma International 2014 22

»eCma

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
value. All String and Symbol values, including the empty string, are valid as property keys.

An integer index is String-valued property key that is a canonical numeric string (see 7.1.16) and whose
numeric value is either +0 or a positive integer. An array index is an integer index whose numeric value i
is in the range 0 <i < 2%>-1 and i #-0.

Property keys are used to access properties and their values. There are two kinds of access for
properties: get and set, corresponding to value retrieval and assignment, respectively. The properties
accessible via get and set access includes both own properties that are a direct part of an object and
inherited properties which are provided by another associated object via a property inheritance
relationship. Inherited properties may be either own or inherited properties of the associated object. Each
own properties of an object must each have a key value that is distinct from the key values of the other
own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form
of objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define.and explain the state of Object properties. A data
property associates a key value with the attributes listed in Table 2.

Table 2 — Attributes of a Data Property

Attribute Name Value Domain Description

[[Value]] Any ECMAScript | The value retrieved by a get access of the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the

property’s [[Value]] attribute using [[Set]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 13.6.3.5). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

© Ecma International 2014

23

ecind

Table 3 — Attributes of an Accessor Property

Attribute Name

Value Domain

Description

[[Get]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (Table 6) is called with an
empty arguments list to retrieve the property value each
time a get access of the property is performed.

([Set]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (Table 6) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]]

Boolean

If true, the property is to be enumerated by a for-in
enumeration (see 13.6.3.5). Otherwise, the property is said
to be non-enumerable.

[[Configurable]]

Boolean

If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the initial values of a property’s attributes are not explicitly specified by this specification, the default
value defined in Table 4 is used.

Table 4 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods.
Each object in an ECMAScript engine is associated with a set of internal methods that defines its runtime
behaviour. These internal methods are not part of the ECMAScript language. They are defined by this
specification ‘purely for< expository purposes. However, each object within an implementation of
ECMAScript must behave as specified by the internal methods associated with it. The exact manner in
which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different
algorithms when a common internal method name is invoked upon them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

© Ecma International 2014 24

»eCma

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending
upon the specific internal slot specification, such state may consist of values of any ECMAScript language
type or of specific ECMA specification type values. Unless explicitly specified otherwise, internal slots are
allocated as part of the process of creating an object and may not be dynamically added to an object.
Unless specified otherwise, the initial value of an internal slot is the value undefined. Various algorithms
within this specification create objects that have internal slots. However, the ECMAScript language
provides no direct way to associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double
square brackets [[]].

Table 5 summarizes the essential internal methods used by this specification that are applicable to all
objects created or manipulated by ECMAScript code. Every object must have algorithms for all of the
essential internal methods. However, all objects do not necessarily use the same algorithms for those
methods.

The “Signature” column of Table 5 and other similar-tables describes the invocation pattern for each
internal method. The invocation pattern always includes a parenthesized list of descriptive parameter
names. If a parameter name is the same as an ECMAScript type name then the name describes the
required type of the parameter value. If an internal method explicitly returns a value, its parameter list is
followed by the symbol “—” and the type name of the returned value. The type names used in signatures
refer to the types defined in clause 6 augmented by the following additional names. “any” means the
value may be any ECMAScript language type. An internal method implicitly returns a Completion Record
as described in 6.2.2. In addition to its parameters, an internal method always has access to the object
upon which it is invoked as a method.

© Ecma International 2014 25

oechd

Table 5 — Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototypeOf]]

()—Object or Null

Determine the object that provides inherited properties
for this object. A null value indicates that there are no
inherited properties.

[[SetPrototypeOf]]

(Object or Null)—Boolean

Associate with an object another object that provides
inherited properties. Passing null indicates that there
are no inherited properties. Returns true indicating
that the operation was completed successfully or
false indicating that'the operation was not successful.

[[IsExtensible]]

()—Boolean

Determine whether it is permitted to add additional
properties to an object.

[[PreventExtensions]]

()—Boolean

Control whether new properties may be added to an
object. Returns true indicating that the operation was
completed successfully or false indicating that the
operation was not successful.

[[GetOwnProperty]]

(propertyKey) —
Undefined or Property
Descriptor

Returns a Property. Descriptor for the own property of
this object whose key is propertyKey, or undefined if
no such property exists.

[[HasProperty]]

(propertyKey) — Boolean

Returns a Boolean value indicating whether the object
already has either an own or inherited property whose
key is propertyKey.

[[Get]]

(propertyKey, Receiver) — any

Retrieve the value of an object’s property using the
propertyKey parameter. If any ECMAScript code must
be executed. to retrieve the property value, Receiver is
used as the this value when evaluating the code.

[[Set]]

(propertyKey,value, Receiver)
= Boolean

Try to set the value of an object’s property indentified
by propertyKey to value. If any ECMAScript code
must be executed to set the property value, Receiver
is used as the this value when evaluating the code.
Returns true indicating that the property value was set
or false indicating that it could not be set.

[[Delete]]

(propertyKey) — Boolean

Removes the own property indentified by the
propertyKey parameter from the object. Return false if
the property was not deleted and is still present.
Return true if the property was deleted or was not
present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor)
Boolean

Creates or alters the named own property to have the
state described by a Property Descriptor. Returns true
indicating that the property was successfully
created/updated or false indicating that the property
could not be created or updated.

[[Enumerate]]

()—Object

Returns an iterator object over the string values of the
keys of the enumerable properties of the object.

[[OwnPropertyKeys]]

()—Array of propertyKey

Returns an Array object whose elements are all of the
own property keys for the object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be

called as functions.

© Ecma International 2014

26

»eCma

Table 6 — Additional Essential Internal Methods of Function Objects

Internal Method Signature Description
[[Call]] (any, a List of any) | Executes code associated with the object. Invoked via a
— any function call expression. The arguments to the internal

method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (a List of any) — | Creates an object. Invoked via the new operator. The
Object arguments to the internal method are the arguments passed
to the new operator. Objects that implement this internal
method are called constructors.. A Function object is not
necessarily a constructor and such non-constructor Function
objects do not have a [[Construct]] internal method.

The semantics of the essential internal method for ordinary objects and standard exotic objects are
specified in clause 9. If any specified use of an exotic object's internal methods is not supported by an
implementation, that usage must throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified
below. Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain
these invariants. ECMAScript Proxy objects maintain these invariants by means of runtime checks on the
result of traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects.
Violation of these invariants.may cause ECMAScript code to have unpredictable behavior and create
security issues. However, violation of these invariants must never compromise the memory safety of an
implementation.

Definitions:

e The farget of an internal.method is the object the internal method is called upon.

e A target.is non-extensible if it has been observed to return false from its [[IsExtensible]] internal
method, or true from its [[PreventExtensions]] internal method.

e A non-existent property is a property that does not exist as an own property on a non-extensible
target.

e All references to SameValue are according to the definition of SameValue algorithm specified in
7.2.3.

[[GetPrototypeOf]] ()

e The Type of the return value must be either Object or Null.

e |[f target is non-extensible, and [[GetPrototypeOf]] returns a value v, then any future calls to
[[GetPrototypeOf]] should return the SameValue as v.

e An object’s prototype chain must have finite length (that is, starting from any object, recursively
applying the [[GetPrototypeOf]] internal method to its result must eventually lead to the value null.

[[SetPrototypeOf]] (V)

e The Type of the return value must be Boolean.
e [f target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the
target’'s observed [[GetPrototypeOf]] value.

© Ecma International 2014 27

ecimna

[[PreventExtensions]] ()

e The Type of the return value must be Boolean.

e If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return
false and the target is now considered non-extensible.

[[GetOwnProperty]] (P)

e The Type of the return value must be either Object or Undefined.

e If the Type of the return value is Object, that object must be a complete property descriptor (see
6.2.4.6).

e If a property is described as a data property and it may return_different values over time, then
either or both of the Desc.[[Writable]] and Desc.[[Configurable]] attributes must be true even if no
mechanism to change the value is exposed via the other internal methods.

e If a property P is described as a data property with Desc.[[Value]] equal to v and Desc.[[Writable]]
and Desc.[[Configurable]] are both false, then the SameValue must be returned for the
Desc.[[Value]] attribute of the property on all future calls to [[GetOwnProperty]] (P).

e If P’s attributes other than [[Writable]] may change over time or if the property might disappear,
then P’s [[Configurable]] attribute must be true.

e If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must
be true.

e If the target is non-extensible and P is non-existent, thenall future calls to [[GetOwnProperty]] (P)
on the target must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined)

[[DefineOwnProperty]] (P, Desc)

e The Type of the return value must be Boolean.

e [[DefineOwnProperty]] must return false if P haspreviously been observed as a non-configurable
own property of the target; unless either:
1. P is a non-configurable writable own data property. A non-configurable writable data property
can be changed into a non-configurable non-writable data property.
2. All attributes in Desc are the SameValue as P’s attributes.
e [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-

existent own property. That is, a non-extensible target object cannot be extended with new
properties.

[[HasProperty]] (P)

o The Type of the return value must be Boolean.

e [f P was previously observed as a non-configurable data or accessor own property of the target,
[[HasProperty]] must return true.

[[Get]] (P, Receiver)

e [f P was previously observed as a non-configurable, non-writable own data property of the target
with value v, then [[Get]] must return the SameValue.

e If P was previously observed as a non-configurable own accessor property of the target whose
[[Get]] attribute is undefined, the [[Get]] operation must return undefined.

[[Set]] (P, V, Receiver)

e The Type of the return value must be Boolean.

e If P was previously observed as a non-configurable, non-writable own data property of the target,
then [[Set]] must return false unless V is the SameValue as P’s [[Value]] attribute.

© Ecma International 2014 28

»eCma

If P was previously observed as a non-configurable own accessor property of the target whose
[[Set]] attribute is undefined, the [[Set]] operation must return false.

[[Delete]] (P)

The Type of the return value must be Boolean.
If P was previously observed to be a non-configurable own data or accessor property of the
target, [[Delete]] must return false.

[[Enumerate]] ()

The Type of the return value must be Object.

[[OwnPropertyKeys]] ()

The Type of the return value must be Object.

The return value must be an exotic Array object.

The returned array must contain at least the string and symbol-valued names of all own properties
of the target that have previously been observedas non-configurable.

If the target is non-extensible, it may not claim to have any own properties not observed by
[[OwnPropertyNames]].

[[Construct]] ()

The Type of the return value must be Object.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in._ objects that areexplicitly referenced by the algorithms of this
specification and which usually have Realm specific identities. Unless otherwise specified each intrinsic
object actually corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the
current Realm, corresponding to the name. Determination of the current Realm and its intrinsics is
described in 8.1.2.5. The well-known intrinsics are listed in Table 7.

© Ecma International 2014 29

»eCma

Table 7 — Well-known Intrinsic Objects

Intrinsic Name Global Name ECMAScript Language Association

%ODbject% "Object" The Object constructor (19.1.1)

%ObjectPrototype% The initial value of the "prototype" data
property of the intrinsic %0Object%. (19.1.3)

%ObjProto_toString% The initial value.of the "toString" data
property of the intrinsic %ObjectPrototype%.
(19.1.3.6)

%Function% "Function" The Function constructor (19.2.1)

%FunctionPrototype% The initial value of the "prototype" data
property of the intrinsic %Function%.

%Array% "Array" The Array constructor (22.1.1)

%ArrayPrototype% The initial value of the "prototype" data
property of the intrinsic %Array%.

%ArrayProto_values% The initial value of the "values" data
property of the intrinsic %ArrayPrototype%o.
(22.1.3.29)

%ArraylteratorPrototype% The prototype object used for
Iterator objects created by the
CreateArraylterator abstract operation.

%String% "String" The sString constructor (21.1.1)

%StringPrototype% The initial value of the "prototype" data
property of the intrinsic %String%.

%StringlteratorPrototype% The prototype object used for
Iterator objects created by the
CreateStringlterator abstract operation

%Boolean% "Boolean" The initial value of the global object property
named "Boolean".

%BooleanPrototype% The initial value of the "prototype" data
property of the intrinsic %Boolean%.

%Number% "Number" The initial value of the global object property
named "Number".

%NumberPrototype% The initial value of the "prototype" data
property of the intrinsic %Number%.

%Date% "Date" The initial value of the global object property
named "Date".

%DatePrototype% The initial value of the "prototype" data
property of the intrinsic %Date%.

%RegExp% "RegExp" The initial value of the global object property
named "RegExp".

%RegExpPrototype% The initial value of the "prototype" data
property of the intrinsic %RegExp%.

%Map% "Map" The initial value of the global object property

© Ecma International 2014

30

oecnd

named "Map".

%MapPrototype%

The initial value of the "prototype" data
property of the intrinsic %Map%.

%MaplteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateMaplterator abstract operation

%W eakMap% "WeakMap" The initial value of the global object property
named "WeakMap".

%W eakMapPrototype% The initial wvalue of the "prototype" data
property-of the intrinsic %WeakMap%.

%Set% "Set" The initial value of the global object property
named "Set".

%SetPrototype% The initial value of the "prototype" data
property of the intrinsic %Set%.

%W eakSet% "WeakSet" The initial value of the global object property

named "WeakSet".

%W eakSetPrototype%

The initial value of the "prototype" data
property of the intrinsic %WeakSet%.

%SetlteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateSetlterator abstract operation

© Ecma International 2014

31

oecnd

%GeneratorFunction%

The constructor of generator functions.

%Generator%

The initial value of the prototype property
of the %GeneratorFunction intrinsic

%GeneratorPrototype%

The initial value of the prototype property
of the %Generator% intrinsic

%Error%

%EvalError%

%RangeError%

%ReferenceError%

Y%SyntaxError%

%TypeError%

%URIError%

%ErrorPrototype%

%EvalErrorPrototype%

%RangeErrorPrototype%

%ReferenceErrorPrototype%

%SyntaxErrorPrototype%

%TypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer%

%ArrayBufferPrototype%

The initial value of the "prototype" data
property of the intrinsic %ArrayBuffer%.

%TypedArray%

%TypedArrayPrototype%o

The initial value of the "prototype" data
property of the intrinsic %TypedArray%.

%Int8 Array%

%Int8 ArrayPrototype%

%DataView%

%DataViewPrototype%

%ThrowTypeError%

A function object that unconditionally throws
a new instance of % TypeError%.

%Realm%

%RealmPrototype%o

%Promise%

%PromisePrototype%o

%Loader%

%LoaderPrototype%

%LoaderlteratorPrototype%

%ReturnUndefined%

%Symbol%

© Ecma International 2014

32

»eCma

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics
of ECMAScript language constructs and ECMAScript language types. The specification types are
Reference, List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data
Block. Specification type values are specification artefacts that do not necessarily correspond to any
specific entity within an ECMAScript implementation. Specification type values may be used to describe
intermediate results of ECMAScript expression evaluation but such values cannot be stored as properties
of objects or values of ECMAScript language variables.

6.2.1 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists(see 12.3.6) in.new expressions, in
function calls, and in other algorithms where a simple ordered list of values is needed. Values of the List
type are simply ordered sequences of list elements containing the individual values. These sequences
may be of any length. The elements of a list may be randomly accessed using 0-origin. indices. For
notational convience an array-like syntax can be used to access List elements. For example,
arguments[2] is shorthand for saying the 3" element of the List arguments.

The Record type is used to describe data aggregations within<the algorithms of this specification. A
Record type value consists of one or more named fields. The value of each field is either an ECMAScript
value or an abstract value represented by a name associated with. the Record type. Field names are
always enclosed in double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that
has three fields each of which-isinitialized to a specific value. Field name order is not significant. Any
fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value.
For example, if R is.the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field
of R named [[field2]]".

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: PropertyDescriptor{[[Value]l: 42, [[Writable]]: false, [[Configurable]]: true}.

6.2.2 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such
as the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers
of control.

Values of the Completion type are Record values whole fields are defined as by Table 8.

© Ecma International 2014 33

ecind

Table 8 — Completion Record Fields

Field Name | Value Meaning
[[typel] One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript string or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.
6.2.2.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:
1. Return NormalCompletion(argument).
Is a shorthand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.
6.2.2.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

1. Return "Infinity".
Generally means the same thing as:

1. Return NormalCompletion("Infinity").

A “return” statement without a value‘in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

Similarly; any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the
Completion Record value unless the Completion Record is an abrupt completion.

6.2.2.3 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.
Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object,
[[target]]:empty}.

6.2.2.4 ReturnifAbrupt

Algorithms steps that say

© Ecma International 2014 34

secind

1. ReturnIfAbrupt(argument).
mean the same things as:

1. If argument is an abrupt completion, then return argument.
2. Else if argument is a Completion Record, then let argument be argument.[[value]].

6.2.3 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three. components, the base
value, the referenced name and the Boolean valued strict reference flag. The base value is either undefined,
an Object, a Boolean, a String, a Symbol, a Number, or an environment record (8.1.1). A base value of
undefined indicates that the Reference could not be resolved to a binding. The referenced name is a String
or Symbol value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using
the super keyword. A Super Reference has an additional thisValue component and its base value will
never be an environment record.

The following abstract operations are used'in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference flag component of the reference V.
HasPrimitiveBase(V).-.Returns. true if Type(base) is a Boolean, String, Symbol, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V)
is true; otherwise returns false.

e IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

o [sSuperReference(V). Returns true.if this reference has a thisValue component.

The following abstract operations are used in this specification to operate on references:

6.2.3.1 GetValue (V)

ReturnIfAbrupt(¥).

If Type(V) is not Reference, return V.

Let base be GetBase(V).

If IsUnresolvableReference(V), throw a ReferenceError exception.

If IsPropertyReference(V), then

a. [If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Let base be ToObject(base).

b. Return the result of calling the [[Get]] internal method of base passing GetReferencedName(V)
and GetThisValue(V) as the arguments.

6. Else base must be an environment record,

a. Return the result of calling the GetBindingValue (see 8.1.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

[I ST S

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and
the ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

© Ecma International 2014 35

secind

6.2.3.2 PutValue (V, W)

ReturnIfAbrupt(V).
ReturnIfAbrupt(#).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be GetBase(V).
If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i. Throw ReferenceError exception.
b. Let globalObj be the result of the abstract operation GetGlobalObject.
c. Return Put(globalObj,GetReferencedName(V), W, false).
6. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Set base to ToObject(base).
Let succeeded be the result of calling the [[Set]] internal method of base passing
GetReferencedName(V), W, and GetThisValue(¥) as arguments.
ReturnIfAbrupt(succeeded).
If succeeded is false and IsStrictReference(V) is true, then.throw a TypeError exception.
. Return.
Ise base must be a Reference whose base is an environment record.
Return the result of calling the SetMutableBinding (8.1.1) concrete method of base, passing
GetReferencedName(V), W, and IsStrictReference(V) as arguments.

wn bW =

=

me Ao

®

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the
ordinary object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.3.3 GetThisValue (V)

1. Assert: IsPropertyReference(V) is true.

If IsSuperReference(V), then

a. Return the value of the thisValue component of the reference V.
3. Return GetBase(V).

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property
attributes. Values of the Property Descriptor type are Records. Except for the optional [[Origin]] field, each
field’s name is an attribute name and its value is a corresponding attribute value as specified in 6.1.7.1. In
addition, any field may be present or absent. The schema name used within this specification to tag literal
descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property
Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that
includes any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that
includes any fields named either [[Get]] or [[Set]]. Any Property Descriptor may have fields named
[[Enumerable]] and [[Configurable]]. A Property Descriptor value may not be both a data Property
Descriptor and an accessor Property Descriptor; however, it may be neither. A generic Property
Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an accessor
Property Descriptor. A fully populated Property Descriptor is one that is either an accessor Property
Descriptor or a data Property Descriptor and that has all of the fields that correspond to the property
attributes defined in either Table 2 or Table 3.

© Ecma International 2014 36

secind

A Property Descriptor may be derived from an object that has properties that directly correspond to the
fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named [[Origin]]
whose value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor
values:

6.2.4.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. If Desc is undefined, then return false.
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
3. Return true.

6.2.4.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with Property Descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.

6.2.4.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. If Desc is undefined, then return false.
2. IfIsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false:

6.2.4.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc, the following
steps are taken:

If Desc is undefined, then return undefined.
If Desc has an [[Origin]] field, then return Desc.[[Origin]].
Let 0bj be ObjectCreate(%ObjectPrototype%).
Assert: obj is an extensible ordinary object with no own properties.
If Desc has a [[Value]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "value", and
PropertyDescriptor {[[Value]]: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}
6. If Desc has a [[Writable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "writable", and
PropertyDescriptor {[[Value]]: Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
7. 1If Desc has a [[Get]] field, then

[I SNUS I S

© Ecma International 2014 37

eCmd

10.

11.

a. Call OrdinaryDefineOwnProperty with arguments obj, "get", and
PropertyDescriptor {[[Value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

If Desc has a [[Set]] field, then

a. Call OrdinaryDefineOwnProperty with arguments obj, "set", and
PropertyDescriptor {[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

If Desc has an [[Enumerable]] field, then

a. Call OrdinaryDefineOwnProperty with arguments obj, "enumerable", and
PropertyDescriptor {[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

If Desc has a [[Configurable]] field, then

a. Call OrdinaryDefineOwnProperty with arguments 0b;j , "configurable", and
PropertyDescriptor {[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

Return obj.

6.2.4.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1
2.
3.
4

10.

ReturnIfAbrupt(Oby).

If Type(Obj) is not Object throw a TypeError exception.

Let desc be a new Property Descriptor that initially has no fields.
If HasProperty(Obj, "enumerable") is true, then

a. Let enum be Get(Obj, "enumerable").

b. ReturnIfAbrupt(enum).

c. Set the [[Enumerable]] field of desc to ToBoolean(enum).

If HasProperty(Obj; "configurable") is true, then

a. Let conf beGet(Obj, "configurable").

b. ReturnIfAbrupt(conf).

c. Set the [[Configurable]] field of desc to ToBoolean(conf).

If HasProperty(Obj, "value") is true, then

a. Let value be Get(Obj, "value").

b. ~ReturnlfAbrupt(value).

¢. Set the [[Value]] field of desc to value.

If HasProperty(Obj, "writable") is true, then

a. Let writable be Get(Obj, "writable").

b. ReturnlfAbrupt(writable).

c. . Set the [[Writable]] field of desc to ToBoolean(writable).

If HasProperty(Obj, "get") is true, then

a. Let getter be Get(Obj, "get").

b. ReturnlfAbrupt(getter).

c. IfIsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
d. Set the [[Get]] field of desc to getter.

If HasProperty(Obj, "set") is true, then

a. Let setter be Get(Obj, "set").

b. ReturnIfAbrupt(setter).

c. IfIsCallable(setter) is false and setfer is not undefined, then throw a TypeError exception.
d. Set the [[Set]] field of desc to setter.

If either desc.[[Get]] or desc.[[Set]] are present, then

a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.

© Ecma International 2014 38

secind

11. Set the [[Origin]] field of desc to Obj.
12. Return desc.

6.2.4.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptors Desc and
LikeDesc the following steps are taken:

Assert: LikeDesc is either a Property Descriptor or undefined.
ReturnlfAbrupt(Desc).
Assert: Desc is a Property Descriptor
If LikeDesc is undefined, then
a. Let like be Record{[[Value]]: undefined, [[Writable]]: false; [[Get]]: undefined, [[Set]]:
undefined, [[Enumerable]]: false, [[Configurable]]: false}.
5. else,
a. Let like be a new Property Descriptor that is a copy of LikeDesc.
b. Perform CompletePropertyDescriptor(/ike, undefined).
6. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, thenset Desc.[[Value]] to like.[[Value]].
b. If Desc does not have a [[Writable]] field, then set Desc.[[Writable]] to like.[[Writable]].
7. Else,
a. If Desc does not have a [[Get]] field, then set Dese.[[Get
b. If Desc does not have a [[Set]] field, then set Desc.[[Set]
8. If Desc does not have an [[Enumerable]] field, then set Desec.
9. [If Desc does not have a [[Configurable]] field, then set Desc.
like.[[Configurable]].
10. Return Desc.

AW -

] to like.[[Get]].

to like.[[Set]].

[Enumerable]] to like.[[Enumerable]].
[Configurable]] to

—— ——

6.2.5 The Lexical Environment-and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name
resolution in nested functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.6 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8
bit) numeric values. A Data Block value is created with a fixed number of bytes that each have the initial
value 0.

For notational convenience within this specification, an array-like syntax can be used to express to the
individual bytes of a Data Block value. This notation presents a Data Block value as a 0-origined integer
indexed sequence of b(}/tes. For example, if db is a 5 byte Data Block value then db[2] can be used to
express access to its 3" byte.

The following abstract operations are used in this specification to operate upon Data Block values:
6.2.6.1 CreateByteDataBlock(size)

When the abstract operation CreateByteDataBlock is called with integer argument size, the following steps
are taken:

1. Assert: size>0.
2. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data
Block, then throw a RangeError exception.

© Ecma International 2014 39

secind

3. Set all of the bytes of db to 0.
4. Return db.

6.2.6.2 CopyDataBlockBytes(toBlock, tolndex, fromBlock, fromindex, count)

When the abstract operation CopyDataBlockBytes is called the following steps are taken:

Assert: fromBlock and toBlock are distinct Data Block values.
Assert: fromlndex, tolndex, and count are positive integer values.
Let fromSize be the number of bytes in fromBlock.

Assert: fromlIndex+count < fromSize.

Let toSize be the number of bytes in toBlock.

Assert: tolndex+count < toSize.

Repeat, while count>0

a. Set toBlock[toIndex] to the value of fromBlock[fromIndex].
b. Increment tolndex and fromIndex each by 1.

c. Decrement count by 1.

8. Return NormalCompletion(empty)

Nk v =

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript.language. Other, more specialized abstract operations
are defined throughout this specification.

7.1 Type Conversion and Testing

The ECMAScript language .implicitly. performs "automatic type conversion as needed. To clarify the
semantics of certain constructs it is useful to define a set of conversion abstract operations. The
conversion abstract operations are polymorphic; they can accept a value of any ECMAScript language
type or of a Completion Record value.’ But no other specification types are used with these operations.

7.1.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract-operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 9:

© Ecma International 2014 40

ecind

Table 9 — ToPrimitive Conversions

Input Type Result

Completion Record | If input is an abrupt completion, return input. Otherwise return
ToPrimitive(input.[[value]]) also passing the optional hint PreferredType.

Undefined Return input (no conversion).

Null Return input (no conversion).

Boolean Return input (no conversion).

Number Return input (no conversion).

String Return input (no conversion).

Symbol Return input (no conversion).

Object Perform the steps following this table.

When Type(input) is Object, the following steps are taken:

If PreferredType was not passed, let hint be "default".

Else if PreferredType is hint String, let hint be "string".

Else PreferredType is hint Number, let hint be "numbexr".

Let exoticToPrim be GetMethod(input, @@toPrimitive).

ReturnIfAbrupt(exoticToPrim).

If exoticToPrim is not undefined, then

a. Let result be the result of calling the [[Call]] internal method of exoticToPrim, with input as
thisArgument and (hint) as argumentsList.

b. ReturnIfAbrupt(result).

c. Ifresultis an ECMASecript language valueand Type(result) is not Object, then return result.

d. Else, throw a TypeError exception.

7. [If hint is "default" then, let hint be "number".

8. Return OrdinaryToPrimitive(input, hint).

AN B W —

When the OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

1. Assert: Type(O) is Object
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. Af hint is "string", then
a. Let methodNames be the List ("toString", "valueOf").
4. Else,
a. Let methodNames be the List ("valueOf", "toString").
5.7 For each name in methodNames in List order, do
a. Let method be Get(O, name).
b. ReturnIfAbrupt(method).
c. IflsCallable(method) is true then,
i. Let result be the result of calling the [[Call]] internal method of method, with O as
thisArgument and an empty List as argumentsList.
ii. ReturnIfAbrupt(result).
iii. If Type(result) is not Object, then return result.
6. Throw a TypeError exception.

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,
objects may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification
only Date objects (see 20.3) and Symbol objects (see 19.4.3.4) over-ride the default ToPrimitive behaviour. Date
objects treat no hint as if the hint were String.

© Ecma International 2014 41

ecind

7.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table

10:
Table 10 — ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, <0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Symbol Return true

Object Return true

7.1.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 11:

Table 11 — ToNumber Conversions

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])

Undefined Return NaN

Null Return +0

Boolean Return 1 if argument is true. Return +0 if argument is false.

Number Return argument (no conversion).

String See grammar and conversion algorithm below.

Symbol Return NaN

Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue).

7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot
interpret the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

© Ecma International 2014

42

oecind

Syntax

StringNumericLiteral :::
StrWhiteSpaceqpt
StrWhiteSpaceqp StrNumericLiteral StrWhiteSpace oy

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpacep

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexlIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimallLiteral
- StrUnsignedDecimallLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsqp ExponentPartopt
. DecimalDigits ExponentPartqp
DecimalDigits ExponentPart oy

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6.7 8 9

ExponentPart :::
Exponentindicator SignedInteger

Exponentlndicator ::: one of
e E

SignedInteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral :::
0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b

© Ecma International 2014

d

e

f A B C D E F

43

ecimnd

NOTE Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
11.8.3):

o A SwingNumericLiteral may be preceded and/or followed by white space and/or line terminators.

o A SwringNumericLiteral that is decimal may have any number of leading 0 digits.

o A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

o A StringNumericLiteral that is empty or contains only white space is converted to +0.

e Infinity and -Infinity arerecognized as a StringNumericLiteral but notas a NumericLiteral.

7.1.3.1.1 Runtime Semantics: MV’s

The conversion of a String to a Number value is similar overall to the determination of the Number value
for a numeric literal (see 11.8.3), but some of the details are different, so the process for converting a
String numeric literal to a value of Number type is given here in full. This value is determined in two steps:
first, a mathematical value (MV) is derived from the String numeric literal; second, this. mathematical value
is rounded as described below.

The MV of StringNumericLiteral ::: [empty] iS 0.

The MV of StringNumericLiteral ::: StrWhiteSpace is 0:

The MV of StringNumericLiteral ::: StrWhiteSpace,y, StrNumericLiteral StrWhiteSpace,, is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this
MV is also 0. The rounding.rule described below handles the conversion of this signless mathematical
zero to a floating-point +0 or —0 as appropriate.)

The MV of StrUnsignedDecimalLiterali:: Infinity is 10'°" (a value so large that it will round to +o).
The MV of StrUnsignedDecimalLiteral::: DecimalDigits . is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first
DecimalDigits plus (the. MV of the second DecimalDigits times 10™"), where n is the number of
characters in the second DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times
10°, - where e is the MV. of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™)) times 10°, where # is the number of
characters in the second DecimalDigits and e is the MV of ExponentPart.

The MV. of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 107", where n is
the number of characters in DecimalDigits.

The MV of SurUnsignedDecimalLiteral:::. DecimalDigits ExponentPart is the MV of DecimalDigits times
10°™", where n is themumber of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV
of DecimalDigit.

The MV of ExponentPart ::: ExponentIndicator SignedInteger is the MV of Signedinteger.

The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits.

© Ecma International 2014 44

ecimna

o The MV of Signedinteger ::: + DecimalDigits is the MV of DecimalDigits.
o The MV of Signedinteger ::: = DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::

0 or of HexDigit :::
1 or of HexDigit :::
2 or of HexDigit :::
3 or of HexDigit :::
4 or of HexDigit :::
5 or of HexDigit :::
6 or of HexDigit :::
7 or of HexDigit :::
8 or of HexDigit :::
9 or of HexDigit :::

0is 0.
lis 1.
2is 2.
3is 3.
4is 4.
5is 5.
6 is 6.
7is 7.
8is 8.
9is 9.

e The MV of HexDigit ::: a or of HexDigit ::: Ais 10.
e The MV of HexDigit ::: b or of HexDigit ::: Bis 11.
e The MV of HexDigit ::: ¢ or of HexDigit ::: Cis 12.
e The MV of HexDigit ::: d or of HexDigit ::: D is 13.
e The MV of HexDigit ::: e or of HexDigit ::: E is 14.
e The MV of HexDigit ::: £ or of HexDigit ::: Fis 15.
o The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
o The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

o The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is-(the MV of HexIntegerLiteral times 16) plus
the MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0; then the rounded value is +0 unless the first non white space character in the
String numeric literal is ‘=’, in which case the rounded value is —0. Otherwise, the rounded value must be
the Number value for the MV (in the sense 'defined in 6.1.6), unless the literal includes a
StrUnsignedDecimalLiteral. and the literal_has_more than 20 significant digits, in which case the Number
value may be either the Number value for the MV of a literal produced by replacing each significant digit
after the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each
significant digit after.the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A
digit is significant if it is not part of an ExponentPart and

o jtis not0; or

e thereis a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract
operation functions. as follows:

Let number be ToNumber(argument).

ReturnIlfAbrupt(number).

If number is NaN, return +0.

If number is +0, —0, +oo, or —oo, return number.

Return the result of computing sign(number) x floor(abs(number)).

W=

© Ecma International 2014 45

oecnd

71.5

Tolnt32: (Signed 32 Bit Integer)

The abstract operation ToInt32 converts its argument to one of 2°% integer values in the range —2°' through
2%'-1, inclusive. This abstract operation functions as follows:

AN N W

NOTE

7.1.6

Let number be ToNumber(argument).
ReturnlfAbrupt(number).
If number is NaN, +0, —0, +oo, or —oo, return +0.

Let int be sign(number) x floor(abs(number)).
Let int32bit be int modulo 2°2.

If int32bit > 2°", return int32bit — 2*%, otherwise return int32bit.

Given the above definition of Tolnt32:

The Tolnt32 abstract operation is idempotent: if applied to a.result that it produced, the second application
leaves that value unchanged.

Tolnt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +o and
—o0 are mapped to +0.)
Tolnt32 maps —0 to +0.

ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2*% integer values in the range 0 through
2%2-1, inclusive. This abstract operation functions as follows:

AN A W=

NOTE

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, —0, 400, or —oo, return +0:
Let int be sign(number) x floor(abs(number)).
Let int32bit be int-modulo 2°%.

Return int32bit:

Given the above definition of ToUint32:

Step 6 is the only difference between ToUint32 and Tolnt32.

The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application
leaves that value unchanged.

ToUint32(Tolnt32(x)). is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +oo
and —oo are mapped to +0.)

ToUint32 maps —0 to +0.

7.1.7 Tolnt16: (Signed 16 Bit Integer)

The abstract operation Tolnt16 converts its argument to one of 2'° integer values in the range —32768
through 32767, inclusive. This abstract operation functions as follows:

AN W=

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, —0, +oo, or —co, return +0.

Let int be sign(number) x floor(abs(number)).
Let int16bit be int modulo 2'°.

If int16bit > 2'°, return int16bit — 2'°, otherwise return intI6bit.

© Ecma International 2014 46

secind

7.1.8 ToUint16: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2'° integer values in the range 0 through
2'%_1, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnlfAbrupt(number).

If number is NaN, +0, —0, +o0, or —oo, return +0.
Let int be sign(number) x floor(abs(number)).
Let int16bit be int modulo 2'°.

Return int16bit.

AN B W

NOTE Given the above definition of ToUint16:

e The substitution of 2!¢ for 2** in step 5 is the only difference between ToUint32 and ToUint16.
ToUint16 maps —0 to +0.

7.1.9 Tolnt8: (Signed 8 Bit Integer)

The abstract operation Tolnt8 converts its argument to one of 2° integer values in the range —128 through
127, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, —0, +oo, or —o0, return +0:
Let int be sign(number) x floor(abs(number)).
Let int8bit be int modulo 2°.

If int8bit > 27, return int8bit — 2%, otherwise return int8bit.

AN N A W=

7.1.10 ToUint8: (Unsigned 8 Bit Integer)

The abstract operation ToUint8 converts its argument to one of 2* integer values in the range 0 through
255, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, =0, +oo, or —oo, return +0.
Let int be sign(number) x floor(abs(number)).
Let int8bit be int modulo 2*.

Return int8bit.

AN WA~ W N

7.1.11 ToUint8Clamp: (Unsigned 8 Bit Integer, Clamped)

The abstract operation ToUint8Clamp converts its argument to one of 2° integer values in the range 0
through 255, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnlfAbrupt(number).

If number is NaN, return +0.

If number < 0, return +0.

If number > 255, return 255.

Let f'be floor(number).

If f+0.5 > number, then return f+1.
Return f.

RN R LD =

© Ecma International 2014 47

secind

NOTE

Note that unlike the other integer conversion abstract operation, ToUnit8Clamp rounds rather than

truncates non-integer values does not convert +w to 0.

7.1.12 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 12:

Table 12 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return

ToString(argument.[[value]])

Undefined "undefined"
Null "null"
Boolean If argument is true, then return "true".
If argument is false, then return"£false".
Number See 7.1.121.
String Return argument (no conversion)
Symbol Throw a TypeError exception.
Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

7.1.12.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

1.

W AW N

10.

If m is NaN, return the String "NaN".

If m is +0 or —0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).

If m is +oo, return the String "Infinity".

Otherwise, let n, k, and s be integers such that £ > 1, 105! < 5 < 10%, the Number value for s x 10"
is myand 'k is as small as possible. Note that & is the number of digits in the decimal representation
of s, that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely
determined by these criteria.

If k < n <21, return the String consisting of the & digits of the decimal representation of s (in order,
with no leading zeroes), followed by n—k occurrences of the character ‘0’.

If 0 <n <21, return the String consisting of the most significant » digits of the decimal
representation of s, followed by a decimal point ‘., followed by the remaining k—» digits of the
decimal representation of s.

If -6 <n <0, return the String consisting of the character ‘0’, followed by a decimal point *.”’,
followed by —n occurrences of the character ‘0°, followed by the £ digits of the decimal
representation of s.

Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase
character ‘e’, followed by a plus sign ‘+’ or minus sign ‘=’ according to whether n—1 is positive or
negative, followed by the decimal representation of the integer abs(n—1) (with no leading zeroes).
Return the String consisting of the most significant digit of the decimal representation of s,
followed by a decimal point ‘.’, followed by the remaining k—1 digits of the decimal representation
of s, followed by the lowercase character ‘e’, followed by a plus sign ‘4’ or minus sign ‘-’

© Ecma International 2014 48

»eCma

according to whether n—1 is positive or negative, followed by the decimal representation of the
integer abs(n—1) (with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the
normative requirements of this Standard:

e If xis any Number value other than —0, then ToNumber(ToString(x)) is exactly the same Number value as x.
e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k > 1, 10" < 5 < 10, the Number value for s x 10"™* is m, and k is as
small as possible. If there are multiple possibilities for s, choose the value of s for whichus x 10" is closest in value to
m. If there are two such possible values of s, choose the one that is even. Note that & is the number of digits in the
decimal representation of s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-
decimal conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey)./November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as

http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.13 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 13:

Table 13 — ToObject Conversions

Argument Type Result

Completion Record” | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to
the value of argument. See 19.3 for a description of Boolean objects.

Number Return a new. Number object whose [[NumberDatal]] internal slot is set to
the value of argument. See 20.1 for a description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to the
value of argument. See 21.1 for a description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to
the value of argument. See 19.4 for a description of Symbol objects.

Object Return argument (no conversion).

7.1.14 ToPropertyKey

The abstract operation ToPropertyKey converts its argument to a value that can be used as a property key
by performing the following steps:

1. ReturnIfAbrupt(argument).
2. If Type(argument) is Symbol, then

© Ecma International 2014 49

ecind

a. Return argument.
3. Return ToString(argument).

7.1.15 ToLength

The abstract operation ToLength converts its argument to an integer suitable for use as the length of an
array-like object. It performs the following steps:

1. ReturnIfAbrupt(argument).

Let len be Tolnteger(argument).
ReturnlfAbrupt(len).

If len < +0, then return +0.
Return min(len, 2°3-1).

WD AW

7.1.16 CanonicalNumericString(argument)

The abstract operation CanonicalNumericString returns its argument converted to a numeric value if it is a
String representation of a Number that would be produced by ToString.. Otherwise, it returns undefined.
This abstract operation functions as follows:

Assert: Type(argument) is String.

Let n be ToNumber(argument).

If n=—0, then return +0.

If SameValue(ToString(n), argument) is false, then return undefined.
Return .

[I S R S

A canonical numeric string is any String value for which the . CanonicalNumericString abstraction
operation does not return undefined.

7.2 Testing and Comparison Operations
7.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throwsan error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 14:

Table 14 — CheckObjectCoercible Results

Argument Type Result

Completion Record | If argument'is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return argument

Number Return argument

String Return argument

Symbol Return argument

Object Return argument

© Ecma International 2014 50

secind

7.2.2

IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language
value or a Completion Record, is a callable function Object according to Table 15:

Table 15 — IsCallable Results

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
IsCallable(argument.[[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Symbol Return false.

Object Iff ilrgument has a [[Call]] internal method, then return true, otherwise return
alse.

7.2.3 SameValue(x, y)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language
values, produces true or false. Such a comparison is performed as.follows:

AN N AW =

8.

9.

ReturnIfAbrupt(x).

ReturnIfAbrupt(y).

If Type(x) is different from Type(y), return false.

If Type(x) is Undefined, return true.

If Type(x) isNull, return true:

If Type(x) is Number, then

a. Ifxis NaN and y.is NaN, return true.

b. Ifx.is+0 and yis -0, return false.

c.< Ifx is -0 and y is +0, return false.

d. TIf x is the same Number value as y, return true.

e. Return false.

If Type(x) is String, then

a. Ifxand y are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.

If Type(x) is Boolean, then

a. Ifxand y are both true or both false, then return true; otherwise, return false.

If Type(x) is Symbol, then

a. Ifx and yare both the same Symbol value, then return true; otherwise, return false.

10. Return true if x and y are the same Object value. Otherwise, return false.

7.2.4 SameValueZero(x, y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript
language values, produces true or false. Such a comparison is performed as follows:

1.
2.

ReturnIfAbrupt(x).
ReturnlfAbrupt(y).

© Ecma International 2014 51

eCmd

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. Ifxis NaN and y is NaN, return true.
b. Ifxis+0 and y is -0, return true.
c. Ifxis-0andy is+0, return true.
d. Ifxisthe same Number value as y, return true.
e. Return false.
7. If Type(x) is String, then
a. Ifx and y are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.
8. If Type(x) is Boolean, then
a. Ifx and y are both true or both false, then return true; otherwise, return false.
9. If Type(x) is Symbol, then
a. Ifx and y are both the same Symbol value, then return true; otherwise, return false.
10. Return true if x and y are the same Object value. Otherwise, return false.

AN DN A~ W

NOTE SameValueZero differs from SameValue only in its treatment of +0.and -0.
7.2.5 IsConstructor

The abstract operation IsConstructor determines if its argument, which must be an ECMAScript language
value or a Completion Record, is a function object with a [[Construct]] internal method.

1. ReturnIfAbrupt(argument).

2. If Type(argument) is not Object, return false.

3. [If argument has a [[Construct]] internal method, return true.
4. Return false.

7.2.6 IsPropertyKey

The abstract operation IsPropertyKey determines if its argument, which must be an ECMAScript language
value or a Completion Record, is a value that may be used as a property key.

1. ReturnlfAbrupt(argument).

2. IfType(argument) is String, return true.
3. </If Type(argument). is Symbol, return true.
4. Return false.

7.2.7 IsExtensible (O)

The abstract operation IsExtensible is used to determine whether additional properties can be added to the
object that is O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Return the result of calling the [[IsExtensible]] internal method of O.
7.2.8 Isinteger

The abstract operation IsConstructor determines if its argument is a finite integer numeric value.

1. ReturnIfAbrupt(argument).
2. If Type(argument) is not Number, return false.
3. If argument is NaN, 4+, or —oo, return false.

© Ecma International 2014 52

oecnd

4.
5.

If floor(abs(argument)) # abs(argument), then return false.
Return true.

7.2.9 Abstract Relational Comparison

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that
at least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LefiFirst as
a parameter. The flag is used to control the order in which operations with potentially visible side-effects
are performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of
expressions. The default value of LefiFirst is true and indicates that the x_parameter corresponds to an
expression that occurs to the left of the y parameter’'s corresponding expression. If LefiFirst is false, the
reverse is the case and operations must be performed upon y before x. Such a comparison is performed

as follows:
1. ReturnIfAbrupt(x).
2. ReturnIfAbrupt(y).
3. [Ifthe LeftFirst flag is true, then

a. Let px be ToPrimitive(x, hint Number).

b. ReturnIfAbrupt(px).

c. Let py be ToPrimitive(y, hint Number).

d. ReturnIfAbrupt(py).

Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Let py be ToPrimitive(y, hint Number).

b. ReturnlfAbrupt(py).

c. Let px be ToPrimitive(x, hint Number).

d. ReturnIfAbrupt(px).

If both px and py are Strings, then

a. Ifpyis a prefix of px; return false. (A String value p is a prefix of String value ¢ if ¢ can be the
result of concatenating p and some other String ». Note that any String is a prefix of itself,
because r may be the empty String.)

If px is a prefix of py, return true.

Let k be.the smallest nonnegative integer such that the character at position £ within px is
different from the character at position k within py. (There must be such a k, for neither String
is a prefix of'the other.)

Let m be the integer that is the code unit value for the character at position & within px.

Let n be the integer that is the code unit value for the character at position & within py.

If m < n, return true. Otherwise, return false.

o

—_—
[72]
(¢

b}

Let nx be ToNumber(px). Because px and py are primitive values evaluation order is not
important.

Let ny be ToNumber(py).

If nx is NaN, return undefined.

If ny is NaN, return undefined.

If nx and nyare the same Number value, return false.

If nx 1s +0 and ny is -0, return false.

If nx is =0 and ny is +0, return false.

If nx is +oo, return false.

If ny is +oo, return true.

If ny is —oo, return false.

If nx is —oo, return true.

If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

®mho e

TAETITE® e aco

© Ecma International 2014 53

oecnd

NOTE 1 Step 5 differs from step 11 in the algorithm for the addition operator + (12.7.3) in using “and” instead of

or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There
is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating
order defined in the Unicode specification. Therefore String values that are canonically equal according to the
Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalized
form. Also, note that for strings containing supplementary characters, lexicographic ordering on sequences of UTF-16
code unit values differs from that on sequences of code point values.

7.2.10 Abstract Equality Comparison

The comparison x == y, where x and y are values, produces true or false. Such a comparison is
performed as follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x === y.
2. Ifxis null and y is undefined, return true.
3. Ifxis undefined and y is null, return true.
4. If Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y).
5. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) == y.
6. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
7. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
8. If Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).
9. [If Type(x) is Object and Type(y) is either String.or Number,
return the result of the.comparison ToPrimitive(x) == y.
10. Return false.

7.2.11 Strict Equality Comparison

The comparison x === y, where'x and y are values, produces true or false. Such a comparison is
performed as follows:

1. IfType(x) is different from Type(y), return false.
2. <If Type(x) is Undefined, return true.
3. If Type(x) is Null, return true.
4. 1If Type(x) is Number, then
a. Ifxis NaN, return false.
b. Ify is NaN, return false.
c.. Ifx is the same Number value as y, return true.
d. Tfxis +0 and y is -0, return true.
e. Ifxis—=0andy is +0, return true.
f. Return false.
5. [If Type(x) is String, then
a. Ifx and y are exactly the same sequence of characters (same length and same characters in
corresponding positions), return true.
b. Else, return false.
6. If Type(x) is Boolean, then
a. Ifx and y are both true or both false, return true.
b. Else, return false.
7. Ifx and y are the same Symbol value, return true.

© Ecma International 2014 54

secind

8. Ifx and y are the same Object value, return true.
9. Return false.

NOTE This algorithm differs from the SameValue Algorithm (7.2.3) in its treatment of signed zeroes and NaNs.
7.3 Operations on Objects
731 Get(O,P)

The abstract operation Get is used to retrieve the value of a specific property of an object. The operation
is called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[Get]] internal method.of O passing P and O as the arguments.

7.3.2 Put(O,P,V, Throw)

The abstract operation Put is used to set the value of a specific property of an object. The operation is
called with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value
for the property and Throw is a Boolean flag. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Assert: Type(Throw) is Boolean.

Let success be the result of calling the [[Set]] internal method. of O passing P, V, and O as the
arguments.

5. ReturnIfAbrupt(success).

6. If success is false and Throwis true, then throw a TypeError exception.

7. Return success.
3

CreateDataProperty (O, P, V)

AW N =

7.3

The abstract operation CreateDataProperty is used to create a new own property of an object. The
operation is_called.with arguments O, P, and V" where O is the object, P is the property key, and V' is the
value for.the property. This abstract operation performs the following steps:

L& Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

4. Return the result of calling the [[DefineOwnProperty]] internal method of O passing P and newDesc
as arguments.

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for
properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If
it does exist and is not configurable or O is not extensible [[DefineOwnProperty]] will return false.

7.3.4 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropertyOrThrow is used to create a new own property of an object. It
throws a TypeError exception if the requested property update cannot be performed. The operation is
called with arguments O, P, and 7 where O is the object, P is the property key, and 7 is the value for the
property. This abstract operation performs the following steps:

© Ecma International 2014 55

ecimna

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let success be CreateDataProperty(O, P, V).
4. ReturnIfAbrupt(success).
5. [If success is false, then throw a TypeError exception.
6. Return success.
NOTE This abstract operation creates a property whose attributes are set to the same defaults used for

properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If
it does exist and is not configurable or O is not extensible [[DefineOwnProperty]] will return false causing this
operation to throw a TypeError exception.

7.3.5 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperty]] internal method of
an object in a manner that will throw a TypeError exception«if the requested property update cannot be
performed. The operation is called with arguments O, P, and desc where O is the object, P is the property
key, and desc is the Property Descriptor for the property. This abstract.operation perform, the following
steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be the result of calling the [[DefineOwnProperty]] internal method of O passing P and
desc as arguments.

4. ReturnIfAbrupt(success).

5. [If success is false, then throw a TypeError exception.

6. Return success.

7.3.6 DeletePropertyOrThrow (O, P)

The abstract operation. DeletePropertyOrThrow is used to remove a specific own property of an object. It
throws an exception.if the property is not configurable. The operation is called with arguments O and P
where O is the objectand P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be the result of calling the [[Delete]] internal method of O passing P as the argument.
ReturnIfAbrupt(success).

If success is false, then throw a TypeError exception.

Return success.

AN W —

7.3.7 GetMethod (O, P)

The abstract operation GetMethod is used to get the value of a specific property of an object when the
value of the property is‘expected to be a function. The operation is called with arguments O and P where
O is the object, P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let func be the result of calling the [[Get]] internal method of O passing P and O as the arguments.
4. ReturnIfAbrupt(func).

5. [If func is undefined, then return undefined.

6. If IsCallable(func) is false, then throw a TypeError exception.

7. Return func.

© Ecma International 2014 56

secind

7.3.8 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the
specified property key. The property may be either an own or inherited. A Boolean value is returned. The
operation is called with arguments O and P where O is the object and P is the property key. This abstract
operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[HasProperty]] internal method of O with argument P.

7.3.9 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with
the specified property key. A Boolean value is returned. The operation is called with arguments O and P
where O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the
argument.

4. ReturnlIfAbrupt(desc).

5. Ifdesc is undefined, return false.

6. Return true.

7.3.10 Invoke(O,P, [args])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments O, P, and optionally args where O serves as both the lookup point for the property and the
this value of the call, P is the property key, and args is the list of arguments values passed to the method.
If args is not present, an empty List is used as its value. This abstract operation performs the following
steps:

1. Assert: Pis a valid property key.

2. [If args was not passed, then let args be a new empty List.

3. Let 0bj-be ToObject(O).

4. ReturnIfAbrupt(oby).

5. < Let func be the result of calling the [[Get]] internal method of 0bj passing P and O as the
arguments.

6. If IsCallable(func) is false, then throw a TypeError exception.

7. ReturnIfAbrupt(func).

8. "Return the result of calling the [[Call]] internal method of func passing O as thisArgument and args
as argumentsList.

7.3.11 SetintegrityLevel (O, level)

The abstract operation SetIntegritylevel is used to fix the set of own properties of an object. This abstract
operation performs the following steps:

Assert: Type(O) is Object.

Assert: level is either "sealed" or "frozen".

Let keysArray be the result of calling the [[OwnPropertyKeys]] internal method of O.
Let keys be CreateListFromArrayLike(keysArray).

ReturnIfAbrupt(keys).

DN bW N =

© Ecma International 2014 57

oeCha

9.

10.

Let pendingException be undefined.
If level is "sealed", then
a. Repeat for each element & of keys,

i. Let status be DefinePropertyOrThrow(O, k, PropertyDescriptor{ [[Configurable]]: false}).

ii. If status is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to status.
Else level is "frozen",
a. Repeat for each element & of keys,

i. Let status be the result of calling the [[GetOwnProperty]] internal method of O with £.

ii. If status is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to status.
iii. Else,
1. Let currentDesc be status.[[value]].
2. If currentDesc is not undefined, then
a. IfIsAccessorDescriptor(currentDesc) is'true, then
i. Let desc be the PropertyDescriptor {[[Configurable]]: false}.
b. Else,

i. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]:

false }.
c. Let status be DefinePropertyOrThrow(O, k,desc).
d. [If status is an abrupt completion, then
i. If pendingException is undefined, then set pendingException to status.
If pendingException is not undefined, then return pendingException.
Return the result of calling the [[PreventExtensions]] internal method of O.

7.3.12 TestIntegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are
fixed. This abstract operation performs the following steps:

$2 A el e

—
W= O

Assert: Type(O) is Object.

Assert: levelis either "sealed" or "frozen".

Let status be IsExtensible(Q).

ReturnlfAbrupt(status).

If status-is.true, then return false

NOTE If the object is extensible, none of its properties are examined.

Let keysArray be the result of calling the [[OwnPropertyKeys]] internal method of O.
Let keys be CreateListFromArrayLike(keysArray).

ReturnIfAbrupt(keys).

. Let pendingException be undefined.
. Let configurable be false.

. Let writable be false.

. Repeat for each element & of keys,

a. Let status be the result of calling the [[GetOwnProperty]] internal method of O with £.
b. If status is an abrupt completion, then

i. If pendingException is undefined, then set pendingException to status.

ii. Let configurable be true.
c. Else,

i. Let currentDesc be status.[[value]].

1i. If currentDesc is not undefined, then

1. Set configurable to configurable logically ored with currentDesc.[[Configurable]].

2. [If IsDataDescriptor(currentDesc) is true, then
a. Set writable to writable logically ored with currentDesc.[[Writable]].

© Ecma International 2014

58

eCmd

14.
15.
16.
17.

If pendingException is not undefined, then return pendingException.
If level is "£rozen" and writable is true, then return false.

If configurable is true, then return false.

Return true.

7.3.13 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are
provided by a List. This abstract operation performs the following steps:

AW N =

5.

Assert: elements is a List whose elements are all ECMAScript language values.
Let array be ArrayCreate(0) (see 9.4.2.2).

Let n be 0.

For each element e of elements

a. Let status be the result of CreateDataProperty(array, ToString(n), e).

b. Assert: status is true.

c. Increment n by 1.

Return array.

7.3.14 CreateListFromArrayLike (obj)

The abstract operation CreateListFromArrayLike is used to create a List value whose elements are
provided by the indexed properties of an array-like object. This abstract operation performs the following

steps:

A S e

9.

ReturnIfAbrupt(obyj).

If Type(obj) is not Object, then throw a TypeError exception.
Let /en be Get(obj, "length").

Let n be ToLength(/en).
ReturnIfAbrupt(n):

Let /ist be an empty List.

Let index be 0.

Repeat while index < n

a. Let indexName be ToString(index).

b. Let next be Get(obj, indexName).

c. < ReturnIfAbrupt(next).

d. Append nrextas the last element of /isz.
e. Setindex toindex + 1.

Return /ist.

7.3.15 OrdinaryHaslnstance (C, O)

The abstract operation OrdinaryHasInstance implements the default algorithm for determining if an object
O inherits from the instance object inheritance path provided by constructor C. This abstract operation
performs the following steps:

1.
2.

AN bW

If IsCallable(C) is false, return false.

If C has a [[BoundTargetFunction]] internal slot, then

a. Let BC be the value of C’s [[BoundTargetFunction]] internal slot.
b. Return InstanceofOperator(O,BC) (see 12.9.4).

If Type(O) is not Object, return false.

Let P be Get(C, "prototype").

ReturnIfAbrupt(P).

If Type(P) is not Object, throw a TypeError exception.

© Ecma International 2014 59

secind

7. Repeat
a. Set O to the result of calling the [[GetPrototypeOf]] internal method of O with no arguments.
b. ReturnlfAbrupt(O).
c. IfOisnull, return false.
d. If SameValue(P, O) is true, return true.

7.3.16 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be
used to create an object corresponding to a specific constructor. The value is retrieved from the
constructor's prototype property, if it exists. Otherwise the supplied default is used for [[Prototype]].
This abstract operation performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object.
The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value
of an object.
If IsConstructor (constructor) is false, then throw a TypeError exception.
Let proto be Get(constructor, "prototype").
ReturnlfAbrupt(proto).
If Type(proto) is not Object, then
a. If constructor has a [[Realm]] internal slot, let realm be constructor’s [[Realm]] internal slot.
b. Else,
i. Let ctx be the running execution context.
ii. Let realm be ctx’s Realm.
c. Let proto be realm’s intrinsic object named intrinsic DefaultProto.
6. Return proto.

W\ AW N

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the
Code Realm of the constructor function rather than from the running execution context. This accounts for the
possibility that a built-in @@create method from a different Code Realm might be installed on constructor.

7.3.17 CreateFromConstructor (F)

When the abstract operation CreateFromConstructor is called with Object F the following steps are taken:

1. Letcreator be GeMethod (F, @@create).

2. ReturnIfAbrupt(creator).

3. If creator is undefined, then return undefined.

4. Let obj be the result of calling the [[Call]] internal method of creator with arguments F and an
empty List.

ReturnIfAbrupt(obyj).

6. If Type(obj) is not Object, then throw a TypeError exception.

7. Return obj.

9]

NOTE This operation is equivalent to: F[Symbol.create] () followed by an error check.
7.3.18 Construct (F, argumentsList)
When the abstract operation Construct is called with Object F and List argumentsList the following steps

are taken:

1. Assert: Type(F) is Object.
2. Let obj be CreateFromConstructor(F).
3. ReturnIfAbrupt(oby).

© Ecma International 2014 60

eCmd

4. 1If obj is undefined, then
a. Let obj be OrdinaryCreateFromConstructor(F, "$ObjectPrototype%").
b. ReturnlfAbrupt(obj).
c. Assert: Type(obj) is Object.
5. Let result be the result of calling the [[Call]] internal method of F, providing obj and argumentsList
as the arguments.
6. ReturnIfAbrupt(result).
7. If Type(result) is Object then return result.
8. Return obj.

NOTE This operation is equivalent to: new F(...argumentsList)
7.3.19 GetOption (options, P)

The abstract operation GetOption is used to retrieve the value of a specific property of an object in
situation where the object may not be present. The operation is called with arguments options and P
where options is the object and P is the property key. This abstract operation performs the following steps:

Assert: IsPropertyKey(P) is true.

If options is undefined, then return undefined.

If Type(options) is not Object, then throw a TypeError exception.

Return the result of calling the [[Get]] internal method of options passing P and options as the
arguments.

AW =

7.4 Operations on Iterator Objects
See Commmon lteration Interfaces (25.1).
7.41 Checklterable (obj)

The abstract operation Checklterable with argument ob; performs the following steps:

1. If Type(obj) is not Object, then return undefined.
2. Let iteratorGetter be Get(obj, @@iterator).
3. Return.iteratorGetter.

7.4.2 Getlterator (obj, method)

The abstract operation Getlterator with argument obj and optional argument method performs the following
steps:

1. If method was not passed, then
a. Letmethod be Checklterable(oby).
b. ReturnlfAbrupt(method).

2. IfIsCallable(method) is false, then throw a TypeError exception.

3. Let iterator be the result of calling the [[Call]] internal method of method with obj as thisArgument
and an empty List as argumentsList.

4. ReturnIfAbrupt(iterator).

5. [If Type(iterator) is not Object, then throw a TypeError exception.

6. Return iterator.

© Ecma International 2014 61

secind

7.4.3 IteratorNext (iterator, value)

The abstract operation IteratorNext with argument iterator and optional argument value performs the
following steps:

1. If value was not passed, let value be undefined.
a. Let result be Invoke(iterator, "next", ()).
2. Else,
a. Let result be Invoke(iterator, "next", (value)).
3. ReturnIfAbrupt(result).
4. If Type(result) is not Object, then throw a TypeError exception.
5. Return result.

7.4.4 IteratorComplete (iterResult)

The abstract operation IteratorComplete with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Let done be Get(iterResult, "done™").
3. Return ToBoolean(done).

7.4.5 IteratorValue (iterResult)

The abstract operation IteratorValue with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return Get(iterResult, "value").

7.4.6 lteratorStep (iterator)

The abstract operation lteratorStep with argument iterator requests the next value from iterator and
returns either false indicating that the iterator has reached its end or the lteratorResult object if a next
value is available. IteratorStep performs the following steps:

Let result be IteratorNext(iterator).
ReturnlfAbrupt(result).

Let done be IteratorComplete(result).
ReturnIfAbrupt(done).

If done is true, then return false.
Return result.

AN W AW —

7.4.7 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments value and done creates an object that
supports the lteratorResult interface by performing the following steps:

Assert: Type(done) is Boolean.

Let obj be ObjectCreate(%ObjectPrototype%).
Perform CreateDataProperty(obj, "value", value).
Perform CreateDataProperty(obj, "done™", done).
Return obj.

N W=

© Ecma International 2014 62

secind

7.4.8 CreateListlterator (list)

The abstract operation CreateListlterator with argument /ist creates an Iterator (25.1.2) object whose next
method returns the successive elements of /isz. It performs the following steps:

1. Let iterator be the result of ObjectCreate(%ObjectPrototype%, ([[IteratedList]],
[[ListIteratorNextIndex]])).

Set iterator’s [[IteratedList]] internal slot to /ist.

Set iterator’s [[ListlteratorNextIndex]] internal slot to 0.

Define Listlterator next (7.4.8.1) as an own property of iterator.

Return iterator.

WD bW

7.4.8.1 Listlterator next()

The Listlterator next method is a standard built-in function object (clause 17) that performs the following
steps:

1. Let O be the this value.
2. If O does not have a [[IteratedList]] internal slot; then throw a TypeError exception.
3. Let list be the List that is value of the [[IteratedList] internal slot of O.
4. Let index be the value of the [[ListlteratorNextIndex]] internal slot of O.
5. Let /len be the number of elements of /ist.
6. Ifindex > len, then
a. Return CreatelterResultObject(undefined, true).
7. Set the value of the [[ListlteratorNextIndex]] internal slot of O to index+1.

8. Return CreatelterResultObject(/ist[index], false).
7.4.9 CreateEmptylterator ()

The abstract operation CreateEmptylterator with ' no arguments creates an lterator object whose next
method always reports that the iterator is done. It performs the following steps:

1. Let empty be a List with no elements.
2. Return CreateListlterator(empty).

7.5 Operations.on Promise Objects

Promise Objects (25.4) serve as a place holder for the eventual result of a deferred (and possibly
asynchronous) computation.

Within this specification the adjective “eventual” mean a value or a Promise object that will ultimately
resolves to the value. For example, “Returns an eventual String” is equivalent to “Returns either a String
or a Promise object that will eventually resolves to a String”. A “resolved value” is the final value of an
“eventual value”.

NOTE The Promise related abstract operations defined in this subclause are used by specification algorithms
when they perform or respond to asynchronous operations. They ensure that the actual built-in Promise operations
are used by the algorithms, even if ECMAScript code has modified the properties of %Promise%
or %PromisePrototype%.

7.5.1 PromiseNew (executor) Abstact Operation

The abstract operation PromiseNew allocates and initializes a new promise object for use by specification
algorithm. The executor argument initiates the deferred computation.

© Ecma International 2014 63

»eCma

1. Let promise be AllocatePromise(%Promise%).
2. Return InitializePromise(promise, executor).

7.5.2 PromiseBuiltinCapability () Abstact Operation

The abstract operation PromiseBuiltinCapability allocates a PromiseCapability record (25.4.1.1) for a
builtin promise object for use by specification algorithm.

1. Let promise be AllocatePromise(%Promise%).
2. Return CreatePromiseCapabilityRecord(promise, %Promise%).

NOTE This abstract operation is the same as the default built-in behavior of NewPromiseCapability abstract
operation (25.4.1.4).

7.5.3 PromiseOf (value) Abstact Operation

The abstract operation PromiseOf returns a new Promise that resolves to the argument value.

1. Let capability be PromiseBuiltinCapability().

2. ReturnIfAbrupt(capability).

3. Let resolveResult be the result of calling the [[Call]] internal‘'method of capability.[[Resolve]] with
undefined as thisArgument and (value) as argumentsList.

4. ReturnlfAbrupt(resolveResult).

5. Return capability.[[Promise]].

NOTE This abstract operation is the same as the default built-in behavior of the Promise.resolve method
(25.4.4.5).

7.5.4 PromiseAll (promiseList) Abstact Operation
7.5.5 PromiseCatch (promise, rejectedAction) Abstact Operation

7.5.6 PromiseThen (promise, resolvedAction, rejectedAction) Abstact Operation

8 Executable Code and Execution Contexts
8.1 Lexical Environments

ALexical Environment is a specification type used to define the association of Identifiers to specific
variables. and functions based upon the lexical nesting structure of ECMAScript code. A Lexical
Environment consists of an Environment Record and a possibly null reference to an outer Lexical
Environment. Usually a Lexical Environment is associated with some specific syntactic structure of
ECMAScript code such as‘a FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement and
a new Lexical Environment is created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own
outer Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner
Lexical Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then

© Ecma International 2014 64

»eCma

the Lexical Environments of each of the nested functions will have as their outer Lexical Environment the
Lexical Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global
environment’s outer environment reference is null. A global environment’s environment record may be
prepopulated with identifier bindings and includes an associated global object whose properties provide
some of the global environment’s identifier bindings. This global object is the value of a global
environment’s this binding. As ECMAScript code is executed, additional properties may be added to the
global object and the initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript
function object that establishes a new this binding. A method environment also captures the state
necessary to support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative
environment records and object environment records. Declarative environment records are used to define
the effect of ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations,
and Catch clauses that directly associate identifier bindings with ECMAScript language values. Object
environment records are used to define the effect of ECMAScript elements such as WithStatement that
associate identifier bindings with the properties of some object.. Global Environment Records and
Function Environment Records-are specializations<that are used for specifically for Script global
declarations and for top-level declarations within functions.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with three concrete subclasses,
declarative environment record, object environment record, and global environment record. Function
environment records are a subclass of declarative environment record. The abstract class includes the
abstract specification methods defined in Table 16. These abstract methods have distinct concrete
algorithms-for each of the concrete subclasses.

© Ecma International 2014 65

ecind

Table 16 — Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D)

Create a new but uninitialized mutable binding in an
environment record. The String value N is the text of the bound
name. If the optional Boolean argument D is true the binding is
may be subsequently deleted.

CreatelmmutableBinding(N)

Create a new but uninitialized immutable binding in an
environment record. The String value N is the text of the bound
name.

InitializeBinding(N,V)

Set the value of an.already existing but uninitialized binding in
an environment record. The String value N is the text of the
bound name. Vis the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S.is a Boolean flag. If S is true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environmentrecord. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and the binding does not exist throw a ReferenceError
exception.” If. the binding exists but is uninitialized a
ReferenceError is thrown, regardless of the value of S.

DeleteBinding(N)

Delete a binding from an environment record. The String value
N is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

HasThisBinding()

Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.

HasSuperBinding()

Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObject ()

If this environment record is associated with a with statement,
return the with object. Otherwise, return undefined.

8.1.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing
variable, constant, let, class, module, import, and/or function declarations. A declarative environment
record binds the set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by

the following algorithms.

© Ecma International 2014

66

secind

8.1.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply
determines if the argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. Return false.

8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for.declarative environment records
creates a new mutable binding for the name N that is uninitialized. A binding must.not already exist in this
Environment Record for N. If Boolean argument D is provided and has the value true the new binding is
marked as being subject to deletion.

1. Let envRec be the declarative environment record for.which the method was invoked.

2. Assert: envRec does not already have a binding for V.

3. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true record that
the newly created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty).

8.1.1.1.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name A that is uninitialized. A binding must not already exist in
this environment record for N.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialized.

8.1.1.1.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for declarative environment records is used to
set the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. An uninitialized binding for N must already exist.

1. Let envRec be the declarative environment record for which the method was invoked.
2. . Assert: envRec must have an uninitialized binding for N.

3. Set the bound value for N in envRec to V.

4. "Record that the binding for N in envRec has been initialized.

8.1.1.1.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records
attempts to change the bound value of the current binding of the identifier whose name is the value of the
argument N to the value of argument V. A binding for N must already exist. If the binding is an immutable
binding, a TypeError is thrown if S is true.

Let envRec be the declarative environment record for which the method was invoked.

Assert: envRec must have a binding for N.

If the binding for N in envRec has not yet been initialized throw a ReferenceError exception.
4. Else if the binding for N in envRec is a mutable binding, change its bound value to V.

W N =

© Ecma International 2014 67

»eCma

5. Else this must be an attempt to change the value of an immutable binding so if S is true throw a
TypeError exception.
6. Return NormalCompletion(empty).

8.1.1.1.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. If S is true and the
binding does not exist throw a ReferenceError exception. If the binding exists but is uninitialized a
ReferenceError is thrown, regardless of the value of S.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If envRec does not have a binding for the name that is the value of N, then
a. IfSis false, return undefined, otherwise throw a ReferenceError exception.
4. If the binding for N in envRec is an uninitialized binding, then throw a ReferenceError exception.
5. Return the value currently bound to N in envRec.

8.1.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only
delete bindings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative environment record for which the method was invoked.
If envRec does not have a binding for the name that is the value of &V, return true.

If the binding for N in envRec cannot be deleted, return false.

Remove the binding for N from envRec.

Return true.

(O I S R S

8.1.1.1.8 HasThisBinding ()

Regular Declarative Environment Records do not provide a this binding.

1. Return false.

8.1.1.1.9 ~HasSuperBinding ()

Regular Declarative Environment Records do not provide a super binding.

1. Return false.

8.1.1.1.10 WithBaseObject()

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.
8.1.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object
environment record binds the set of string identifier names that directly correspond to the property names
of its binding object. Property keys that are not strings in the form of an IdentifierName are not included in
the set of bound identifiers. Both own and inherited properties are included in the set regardless of the
setting of their [[Enumerable]] attribute. Because properties can be dynamically added and deleted from

© Ecma International 2014 68

»eCma

objects, the set of identifiers bound by an object environment record may potentially change as a side-
effect of any operation that adds or deletes properties. Any bindings that are created as a result of such a
side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding
property has the value false. Immutable bindings do not exist for object environment records.

Object environment records also have a possibly empty List of strings called unscopables. The strings in
this List are excluded from the environment records set of bound names, regardless of whether or not
they exist as property keys of its binding object.

Object environment records created for with statements (13.10) can provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironment Boolean value
that is associated with each object environment record. By default, the value of withEnvironment is false
for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

8.1.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. Let envRec be the object environment record for which the method was invoked.
2. If Nis an element of envRec’s unscopables, then return false.

3. Let bindings be the binding object for envRec.

4. Return the result of HasProperty(bindings, N).

8.1.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates
in an environment record’s associated binding object a property whose name is the String value and
initializes it to the value undefined. If Boolean argument D is provided and has the value true the new
property’s [[Configurable]] attribute’is set to true; otherwise it is set to false.

1. Let envRec be the object environment record for which the method was invoked.

2. Letbindings be the binding object for envRec.

3. Af Dis true then let configValue be true otherwise let configValue be false.

4. Return DefinePropertyOrThrow(bindings, N, PropertyDescriptor {[[Value]]:undefined, [[Writable]]:
true, [[Enumerable]]: true , [[Configurable]]: configValue}).

NOTE Normally envRec will not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may
result in an existing binding being replaced or shadowed or cause an abrupt completion to be returned.

8.1.1.2.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding is never used within this
specification in association with Object environment records.

8.1.1.2.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for object environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument 7. An uninitialized binding for N must already exist.

© Ecma International 2014 69

ecimna

Let envRec be the object environment record for which the method was invoked.

Assert: envRec must have an uninitialized binding for N.

Record that the binding for N in envRec has been initialized.

Return the result of calling the SetMutableBinding concrete method of envRec with N, V, and false
as arguments.

A WO -

8.1.1.2.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to
set the value of the environment record’s associated binding object’s property whose name is the value of
the argument N to the value of argument V. A property named N normally already exists but if it does not
or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return Put(bindings, N, V, and S).

8.1.1.2.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the
value of its associated binding object’s property whose name is the String value of the argument identifier
N. The property should already exist but if it does not the result depends upon the value of the §
argument:

Let envRec be the object environment record for which the method was invoked.

Let bindings be the binding object for envRec.

Let value be HasProperty(bindings, N).

ReturnIfAbrupt(value).

If value is false, then

a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
6. Return Get(bindings, N).

(O S R S

8.1.1.2.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that.correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

L& Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Delete]] internal method of bindings passing N as the argument.

8.1.1.2.8° HasThisBinding ()

Regular Object Environment Records do not provide a this binding.

1. Return false.
8.1.1.2.9 HasSuperBinding ()

Regular Object Environment Records do not provide a super binding.

1. Return false.

© Ecma International 2014 70

»eCma

8.1.1.2.10 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag
is true.

1. Let envRec be the object environment record for which the method was invoked.
2. [Ifthe withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

8.1.1.3 Function Environment Records

A function environment record is a declarative environment record that is used to represent the outer
most scope of a function that provides a this binding. In addition to its identifier bindings, a function
environment record contains the this value used within its scope. If such a function references super, its
function environment record also contains the state that is used to perform super method invocations
from within the function.

Function environment records store their this binding as the value of<their thisValue. If the associated
function references super, the environment record stores.in HomeObject the object that the function is
bound to as a method and in MethodName the property key used.for unqualified super invocations from
within the function. The default value for HomeObject and MethodName is undefined.

Methods environment records support all of Declarative Environment Record methods listed in Table 16
and share the same specifications for all of those methods except for HasThisBinding and
HasSuperBinding. In addition, declarative environment records support the methods listed in Table 17:

Table 17 — Additional Methods of Function Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.
GetSuperBase() Return the object that is the base for super property accesses

bound-in.this environment record. The object is derived from this
environment record’s HomeObject binding. If the value is Empty,
return undefined.

GetMethodName() Return the value of this environment record’s MethodName binding.

The behaviour of the additional concrete specification methods for Function Environment Records is
defined by the following algorithms:

8.1.1.3.1 " HasThisBinding ()

Function Environment Records always provide a this binding.

1. Return true.
8.1.1.3.2 HasSuperBinding ()

1. Ifthis environment record’s HomeObject has the value Empty, then return false. Otherwise, return
true.

© Ecma International 2014 71

secind

8.1.1.3.3 GetThisBinding ()
1. Return the value of this environment record’s thisValue.
8.1.1.34 GetSuperBase ()

Let hiome be the value of this environment record’s HomeObject.

If home has the value Empty, then return undefined.

Assert: Type(home) is Object.

Return the result of calling home’s [[GetPrototypeOf]] internal method.

A~ W ==

8.1.1.3.5 GetMethodName ()
1. Return the value of this environment record’s MethodName:
8.1.1.4 Global Environment Records

A global environment record is used to represent the outer most scope that is shared by all of the
ECMAScript Script elements that are processed in a common Realm (8.1.2.5). A global environment
provides the bindings for built-in globals (clause 18), properties of the global object, and for all
declarations that are not function code and that occur within Seript productions.

A global environment record is logically a single record but it is specified as a composite encapsulating an
object environment record and a declarative environment record. The object environment record has as
its base object the global object of the associated Realm. This global object is also the value of the global
environment record’s thisValue. The object environment record component of a global environment record
contains the bindings for all. built-in globals (clause 18) and all bindings introduced by a
FunctionDeclaration, GeneratorDeclaration, or VariableStatement contained in global code. The bindings for
all other ECMAScript declarations in global code are contained in the declarative environment record
component of the global environment record.

Properties may be created directly.on a-global object. Hence, the object environment record component
of a global environment record'may contain both bindings created explicitly by FunctionDeclaration,
GeneratorDeclaration, or VariableDeclaration declarations and binding created implicitly as properties of the
global object. In order to identify which bindings were explicitly created using declarations, a global
environment record maintains a list of the names bound using its CreateGlobalVarBindings and
CreateGlobalFunctionBindings concrete methods.

Global environment records have the additional state components listed in Table 18 and the additional
methods listed in Table 19.

© Ecma International 2014 72

ecind

Table 18 -- Components of Global Environment Records

Component

Purpose

ObjectEnvironment

An Object Environment Record whose base object is the global object.
It contains global built-in bindings as well as FunctionDeclaration,
GeneratorDeclaration, and VariableDeclaration bindings in global code
for the associated Realm.

DeclarativeEnvironment

A Declarative Environment Record that contains bindings for all
declarations in global code for the associated‘Realm code except for
FunctionDeclaration, GeneratorDeclaration, < and VariableDeclaration
bindings.

VarNames A List containing the string names bound by FunctionDeclaration,
GeneratorDeclaration, and VariableDeclaration declarations in global
code for the associated Realm.

Table 19 — Additional Methods of Global Environment Records
Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.

HasVarDeclaration (N)

Determines if the argument identifier has a binding in this
environment.. record that. was created using a
VariableDeclaration, FunctionDeclaration, or GeneratorDeclaration.

HasLexicalDeclaration (N)

Determines if the argument identifier has a binding in this
environment record that was created using a lexical declaration
such as a LexicalDeclaration or a ClassDeclaration.

CanDeclareGlobalVar (N)

Determines if a corresponding CreateGlobalVarBinding call
would succeed if called for the same argument N.

CanDeclareGlobalFunction (N)

Determines' if .a corresponding CreateGlobalFunctionBinding
call would succeed if called for the same argument N.

CreateGlobalVarBinding(N, D)

Used to create global wvar bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global
object property will have attribute values approate for a var.
The String value N is the text of the bound name. V is the initial
value of the binding If the optional Boolean argument D is true
the binding is may be subsequently deleted. This is logically
equivalent to CreateMutableBinding but it allows var
declarations to receive special treatment.

CreateGlobalFunctionBinding(N, V, D)

Used to create and initialize global function bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global
object property will have attribute values approate for a
function.The String value N is the text of the bound name. If
the optional Boolean argument D is true the binding is may be
subsequently deleted. This is logically equivalent to
CreateMutableBinding followed by a SetMutableBinding but it
allows function declarations to receive special treatment.

© Ecma International 2014

73

secind

The behaviour of the concrete specification methods for Global Environment Records is defined by the
following algorithms.

8.1.1.4.1 HasBinding(N)

The concrete environment record method HasBinding for global environment records simply determines if
the argument identifier is one of the identifiers bound by the record:

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling Dc/Rec’s HasBinding concrete method with argument N is true, return true.
Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling ObjRec’s HasBinding concrete method with argument N.

[R T R N

8.1.1.4.2 CreateMutableBinding (N, D)

The concrete environment record method CreateMutableBinding for global environment records creates a
new mutable binding for the name N that is uninitialized. The binding is created in the associated
DeclarativeEnvironment. A binding for N must not already exist in the DeclarativeEnvironment. If Boolean
argument D is provided and has the value true the new binding is marked as being subject to deletion.

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

Assert: DclRec does not already have a binding for M.

Return the result of calling the CreateMutableBinding concrete method of DclRec with arguments N
and D.

AW N —

8.1.1.4.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for global environment records
creates a new immutable binding for the name N that is uninitialized. A binding must not already exist in
this environment record for N.

1. Let envRec be the global environment record for which the method was invoked.

2. Let DclRec be envRec’s DeclarativeEnvironment.

3. Assert:DelRec does not already have a binding for N.

4. Return the result of calling the CreatelmmutableBinding concrete method of Dcl/Rec with argument
N.

8.1.1.4.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for global environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument 7. An uninitialized binding for N must already exist.

1. Let envRec bethe global environment record for which the method was invoked.
. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling Dc/Rec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling DclRec’s InitializeBinding concrete method with arguments N and
V.
4. Assert: If the binding exists it must be in the object environment record.
Let ObjRec be envRec’s ObjectEnvironment.
6. Return the result of calling ObjRec’s InitializeBinding concrete method with arguments N and V.

9]

© Ecma International 2014 74

oecnd

8.1.1.4.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for global environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N
to the value of argument V. If the binding is an immutable binding, a TypeError is thrown if S is true. A
property named N normally already exists but if it does not or is not currently writable, error handling is
determined by the value of the Boolean argument S.

1.

3.

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling Dc/Rec’s HasBinding concrete method with argument N is true, then

a. Return the result of calling the SetMutableBinding concrete method of DclRec with arguments
N, V, and S.

Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling the SetMutableBinding concrete method of ObjRec with arguments N, V,

and S.

8.1.1.4.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for<global environment records simply
returns the value of its bound identifier whose name is the value of the argument N. If the binding is an
uninitialized binding throw a ReferenceError exception. A property named N normally already exists but if
it does not or is not currently writable, error-handling is determined by the value of the Boolean argument

S.

[

Let envRec be the global environment record for which.the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling Dcl/Rec’s HasBinding concrete method with argument N is true, then

a. Return the result of calling the GetBindingValue concrete method of Dc/Rec with arguments N
and S.

Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling the'GetBindingValue concrete method of ObjRec with arguments N, and

S.

8.1.1.4.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRec be the global environment record for which the method was invoked.
Let DclRec be envRec’s DeclarativeEnvironment.
If the result of calling Dcl/Rec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the DeleteBinding concrete method of Dc/Rec with argument M.
Let ObjRec be envRec’s ObjectEnvironment.
If the result of calling ObjRec’s HasBinding concrete method with argument A is true, then
a. Let status be the result of calling the DeleteBinding concrete method of ObjRec with argument
N.
ReturnIfAbrupt(status).
c. [Ifstatus is true, then
i. Let varNames be envRec’s VarNames List.
ii. If N is an element of varNames, then remove that element from the varNames.
d. Return status.
Return true.

© Ecma International 2014 75

secind

8.1.1.4.8 HasThisBinding ()

Global Environment Records always provide a this binding whose value is the associated global object.

1. Return true.

8.1.1.4.9 HasSuperBinding ()
1. Return false.

8.1.1.4.10 WithBaseObject()

Global Environment Records always return undefined as their WithBaseObject.

1. Return undefined.
8.1.1.4.11 GetThisBinding ()

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.

Let bindings be the binding object for ObjRec.

Return bindings.

AW =

8.1.1.4.12 HasVarDeclaration (N)

The concrete environment record method HasVarDeclaration for global environment records determines
if the argument identifier has a binding in this record that was created using a VariableStatement or a
FunctionDeclaration:

1. Let envRec be the global environment record for which the method was invoked.
2. Let varDeclaredNames be envRec’s VarNames List.

3. IfvarDeclaredNames contains the value of N, return true.

4. Return false.

8.1.1.4.13 HasLexicalDeclaration (N)

The concrete environment record method HasLexicalDeclaration for global environment records
determines if the argument identifier has a binding in this record that was created using a lexical
declaration such as a LexicalDeclaration or a ClassDeclaration:

1. Let envRec be the global environment record for which the method was invoked.
2. Let.DclRec be envRec’s DeclarativeEnvironment.
3. Return the result of calling Dc/Rec’s HasBinding concrete method with argument N.

8.1.1.4.14 CanDeclareGlobalVar (N)

The concrete environment record method CanDeclareGlobalVar for global environment records
determines if a corresponding CreateGlobalVarBinding call would succeed if called for the same
argument N. Redundent var declarations and var declarations for pre-existing global object properties are
allowed.

1. Let envRec be the global environment record for which the method was invoked.
2. Let ObjRec be envRec’s ObjectEnvironment.
3. [Ifthe result of calling ObjRec’s HasBinding concrete method with argument N is true, return true.

© Ecma International 2014 76

oecnd

4. Let bindings be the binding object for ObjRec.
5. Let extensible be IsExtensible(bindings).
6. Return extensible.

8.1.1.4.15 CanDeclareGlobalFunction (N)

The concrete environment record method CanDeclareGlobalFunction for global environment records
determines if a corresponding CreateGlobalFunctionBinding call would succeed. if called for the same
argument N.

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

Let globalObject be the binding object for ObjRec.

Let extensible be IsExtensible(globalObject).

ReturnIfAbrupt(extensible).

If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then return

extensible.

7. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject
with argument N.

8. [If existingProp is undefined, then return extensible.

If existingProp.[[Configurable]] is true, then return true:

10. If IsDataDescriptor(existingProp) is true and existingProp has attribute values {[[Writable]]: true,
[[Enumerable]]: true}, then return true:

11. Return false.

[IS R S

©

8.1.1.4.16 CreateGlobalVarBinding (N, D)

The concrete Environment Record. method CreateGlobalVarBinding for global environment records
creates a mutable binding in the associated object environment record and records the bound name in
the associated VarNames List. If a binding already exists, it is reused.

1. Let envRec be'the global environment record for which the method was invoked.
2. Let ObjRec be envRec’s ObjectEnvironment.
3. [Ifthe result of calling ObjRec’s HasBinding concrete method with argument N is false, then
a. Let status be the result of calling the CreateMutableBinding concrete method of ObjRec with
arguments N and D.
b. ReturnIfAbrupt(status).
4. Let varDeclaredNames be envRec’s VarNames List.
5. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
6. Return NormalCompletion(empty).

8.1.1.4.17 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateGlobalFunctionBinding for global environment records
creates a mutable binding in the associated object environment record and records the bound name in
the associated VarNames List. If a binding already exists, it is replaced.

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

Let globalObject be the binding object for ObjRec.

Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject
with argument N.

5. [If existingProp is undefined or existingProp.[[Configurable]] is true, then

AW =

© Ecma International 2014 77

eCmd

a. Let desc be the PropertyDescriptor {[[Value]]:V, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: D}.
6. Else,
a. Let desc be the PropertyDescriptor {[[Value]]:V }.
Let status be DefinePropertyOrThrow(globalObject, N, desc).
ReturnlfAbrupt(status).
Let varDeclaredNames be envRec’s VarNames List.
0. If varDeclaredNames does not contain the value of &, then
a. Append N to varDeclaredNames.
11. Return NormalCompletion(empty).

— \O 0

NOTE Global function declarations are always represented as own properties of the global object. If possible, an
existing own property is reconfigured to have a standard set of attribute values.

8.1.2 Lexical Environment Operations
The following abstract operations are used in this specification to operate upon lexical environments:
8.1.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and
a Boolean flag strict. The value of lex may be.null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value is undefined, whose referenced name is
name, and whose strict reference flag is strict.
2. Let envRec be lex’s environment record.
3. Let exists be the result of calling the HasBindingconcrete method of envRec passing name as the
argument.
4. ReturnlfAbrupt(exists).
5. If exists is true, then
a. Return a‘value of type Reference whose base value is envRec, whose referenced name is name,
and whose strict reference flag is strict.
6. Else
a. Let outer be the value of /ex’s outer environment reference.
b.< Return GetldentifierReference(outer, name, strict).

8.1.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or
null as argument E the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new declarative environment record containing no bindings.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

N AW~

8.1.2.3 NewObjectEnvironment (O, E)
When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical
Environment E (or null) as arguments, the following steps are performed:

1. Let env be a new Lexical Environment.

© Ecma International 2014 78

eCmd

Let envRec be a new object environment record containing O as the binding object.
Set envRec’s unscopables to an empty List.

Set env’s environment record to envRec.

Set the outer lexical environment reference of env to E.

Return env.

A

8.1.2.4 NewFunctionEnvironment (F, T)

When the abstract operation NewFunctionEnvironment is called with an ECMAScript function Object F
and an ECMAScript value T as arguments, the following steps are performed:

Assert: The value of F’s [[ThisMode]] internal slot is not lexical.
Let env be a new Lexical Environment.
Let envRec be a new Function environment record containing containing no bindings.
Set envRec’s thisValue to T.
If F’s [[NeedsSuper]] internal slot is true, then
a. Let home be the value of F’s [[HomeObject]] internal slot.
b. If home is undefined, then throw a ReferenceError exception.
c. Set envRec’s HomeObject to home.
d. Set envRec’s MethodName to the value of F’s [[MethodName]] internal slot.
6. Else,
a. Set envRec’s HomeObject to Empty.
7. Set env’s environment record to be envRec.
8. Set the outer lexical environment reference of env to the value of F'’s [[Environment]] internal slot.
9. Return env.

DN kAN =

8.1.2.5 NewGlobalEnvironment (G)

When the abstract operation NewGlobalEnvironment is called with an ECMAScript Object G as its
argument, the following steps are performed:

Let env be a new Lexical Environment.

Let objRec be a new object environment record containing G as the binding object.
Set objRec’s unscopables to an empty List.

Let dclRec be a new declarative environment record containing no bindings.
Let-globalRec be a new global environment record.

Set globalRec’s ObjectEnvironment to objRec.

Set globalRec’s DeclarativeEnvironment to dc/Rec.

Set globalRec’s VarNames to a new empty List..

Set env’s environment record to globalRec.

Set the outer lexical environment reference of env to null

Return env.

N ph—= =0 003 WN ~—

8.2 Code Realms

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm
consists of a set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that
is loaded within the scope of that global environment, a Loader object that can associate new
ECMAScript code with the realm, and other associated state and resources.

A Realm is specified as a Record with the fields specified in Table 20:

© Ecma International 2014 79

»eCma

Table 20 — Realm Record Fields

Field Name Value Meaning

[[intrinsics]] A record whose field names are | These are the intrinsic values used by
intrinsic keys and whose values are | code associated with this Realm
objects

[[global This]] An object The global object for this Realm

[[globalEnv]] An ECMAScript environment The global environment for this Realm

[[directEvalTranslate]]

undefined or an object that is callable
as a function.

[[nonEvalFallback]] undefined or an object that is callable
as a function.
[[indirectEval]] undefined or an object that is callable
as a function.
[[loader]] any ECMAScript identifier or empty The Loader object that can associate
ECMAScript code with this Realm
8.2.1 CreateRealm ()

When the abstract operation CreateRealm is called with no arguments, the following steps are performed:

1.
2.

AN bW

— \O 00

Let realmRec be a new Record.

Let intrinsics be a record initialized with the values listed in Table 7. Each intrinsic object is a new
object value fully and recursively populated with properties values as defined by the specification
of each object in clauses 18-26. All object property values are newly created object values. All
values that are built-in function objects are created by performing CreateBuiltinFunction(realmRec,
<steps>) where <steps> is the definition of that function provided by this specification.

Set realmRec.[[intrinsics]] be intrinsics.

Let

Let newGlobal be ObjectCreate(null).

Define the Global Object properties specified in clause 18 on newGlobal using intrinsics as the
source of the values.

SetrealmRec.[[globalThis]] be newGlobal.

Let newGlobalEny be NewGlobalEnvironment(newGlobal, intrinsics).

Set realmRec.[[globalEnv]] be newGlobalEnv.

Set each of realmRec.[[directEvalTranslate]], realmRec.[[directEvalFallback]],
realmRec.[[indirectEval]], and rea/mRec.[[Function]] to undefined.

. Return realmRec.

8.3 Execution Contexts

An execution contextis a specification device that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one execution context that is actually
executing code. This is known as the running execution context. A stack is used to track execution
contexts. The running execution context is always the top element of this stack. A new execution context
is created whenever control is transferred from the executable code associated with the currently running
execution context to executable code that is not associated with that execution context. The newly
created execution context is pushed onto the stack and becomes the running execution context.

© Ecma International 2014 80

ecind

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has at least the state components listed in Table
21.

Table 21 —State Components for All Execution Contexts

Component Purpose

code evaluation state Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

Realm The Realm from which associated code accesses ECMAScript
resources.

Evaluation of code by the running execution context may be suspended at various points defined within
this specification. Once the running execution context has been suspended a different execution context
may become the running execution context and commence evaluating its code. At some later time a
suspended execution context may again become the running execution‘context and continue evaluating
its code at the point where it had previously been suspended. Transition of the running execution context
status among execution contexts usually occurs in stack-like last-in/first-out manner. However, some
ECMAScript features require non-LIFO transitions of the running execution context.

The value of the Realm component of the running.execution context is also called the current Realm.
Execution contexts for ECMAScript code have the additional state components listed in Table 22.

Table 22 — Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always
Lexical Environments. When an execution context is created its LexicalEnvironment and
VariableEnvironment components initially have the same value. The value of the VariableEnvironment
component never changes while the value of the LexicalEnvironment component may change during
execution of code within an execution context.

Execution contexts representing the evaluation of generator objects have the additional state components
listed in Table 23.

Table 23 — Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and

© Ecma International 2014 81

secind

“VariableEnvironment” are used without qualification they are in reference to those components of the
running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular
artefact of an ECMAScript implementation. It is impossible for ECMAScript code to directly access or
observe an execution context.

8.3.1 ResolveBinding(name)

The ResolveBinding abstract operation is used to determine the binding of name passed as a string value
using the LexicalEnvironment of the running execution context. During execution of ECMAScript code,
ResolveBinding is performed using the following algorithm:

1. Let env be the running execution context’s LexicalEnvironment.

2. If the syntactic production that is being evaluated is contained in strict mode code, then let strict be
true, else let strict be false.

3. Return GetldentifierReference(env, name, strict).

The result of resolving name is always a Reference value with its referenced name component equal to
the name argument.

8.3.2 GetThisEnvironment

The abstract operation GetThisEnvironment finds the lexical environment that currently supplies the binding
of the keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.
Repeat
Let envRec be lex’s environment record.
Let exists be the result of calling the HasThisBinding concrete method of envRec.
If exists is true, then return envRec.
Let outer be the value of /ex’s outer environment reference.
Let /ex be outer.

oo ow

NOTE The loop in step 2 will‘always terminate because the list of environments always ends with the global
environment which-has a this binding.

8.3.3 ResolveThisBinding
The abstract operation ResolveThisBinding determines the binding of the keyword this using the
LexicalEnvironment of the running execution context. ResolveThisBinding performs the following steps:

1. Let eny be GetThisEnvironment().

2. Return the result of calling the GetThisBinding concrete method of env.
8.3.4 GetGlobalObject
The abstract operation GetGlobalObject returns the global object used by the currently running execution
context. GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. Let currentRealm be ctx’s Realm.
3. Return currentRealm.[[globalThis]].

© Ecma International 2014 82

ecind

8.4 Tasks and Task Queues

A Task is an abstract operation that initiates an ECAMScript computation when no other ECMAScript
computation is currently in progress. A Task abstract operation may be defined to accept an arbitrary set
of task parameters.

Execution of a Task can be initiated only when there is no running execution context and the execution
context stack is empty. A PendingTask is a request for the future execution of a Task. A PendingTask is
an internal Record whose fields are specified in Table 24.

Table 24 — PendingTask Record Fields

Field Name | Value Meaning
[[Task]] The name of a Task | This is the abstract operation that is performed when execution of
abstract operation this PendingTask is initiated. Tasks are abstract operations that

use NextTask rather than Return to indicate that they have
completed.

[[Arguments]] | A List. The List of argument values that are to be passed to [[Task]]
when it is activated.

[[Realm]] A Realm Record The Realm for the initial execution context when this Pending
Task is initiated.

A Task Queue is a FIFO queue of PendingTask records. Each Task Queue has a name and the full set of
available Task Queues are defined by an ECMAScript implementation. Every ECMAScript
implementation has at least the task queues defined in Table 25.

Table 25 — Required Task Queues

Name Purpose

ScriptTasks Tasks that validate and evaluate ECMAScript Script and Module code
units. See clauses 10 and 15.

PromiseTasks Tasks that are responses to the settlement of a Promise (see 25.4).

A request for the future execution of a Task is made by enqueueing on a Task Queue a PendingTask
record that includes a Task abstract operation name and any necessary argument values. When there is
norunning execution context and the execution context stack is empty, the ECMAScript implementation
removes. the first PendingTask from a Task Queue and uses the information contained in it to create an
execution context and starts execution of associated Task abstract operation.

The PendingTask records from a single Task Queue are always initiated in FIFO order. This specification
does not define the order in which multiple Task Queues are serviced. An ECMAScript implementation
may interweave the FIFO evaluation of the PendingTask records of a Task Queue with the evaluation of
the PendingTask records of one or more other Task Queues. An implementation must define what occurs
when there are no running execution context and all Task Queues are empty.

NOTE Typically an ECMAScript implementation will have its Task Queues are pre-initialized with at least one
PendingTask and one of those Tasks will be the first to be executed. An implementation might choose to free all
resources and terminate if the current Task completes and all Task Queues are empty. Alternatively, it might choose
to wait for a some implementation specific agent or mechanism to enqueue new PendingTask requests.

The following abstract operations are used to create and manage Tasks and Task Queues:
© Ecma International 2014 83

secind

8.4.1 EnqueueTask (queueName, task, arguments) Abstract Operation

The abstract operation requires three arguments: queueName, task, and arguments. It performs the following
steps:

1. Assert: Type(queueName) is String and its value is the name of a Task Queue recognized by this
implementation.

Assert: task is the name of a Task.

Assert: arguments is a List whose size is the same as the number of parameters used by fask.

Let callerContext be the running execution context.

Let callerReam be callerContext’s Realm.

Let pending be PendingTask{ [[Task]]: task, [[Arguments]]: arguments, [[Realm]]: callerRealm }.
Add pending at the back of the Task Queue named by queueName.

Return NormalCompletion(empty).

PN B LD

8.4.2 NextTask (result) Algorithm Step

A step such as:
1. NextTask result.

Is used in Task abstract operation in place of:

1. Return result.

Task abstract operations must not contain a Return step or a ReturnlfAbrupt step. The NextTask resuit
operation is equivalent to the following steps:

1. If result is an abrupt completion, then perform implementation defined unhandled exception
processing.

2. Suspend the running execution context.

3. Assert: The execution context stack is now empty.

4. Let nextQueue be a non-empty Task Queue chosen in an implementation defined manner. If all Task
Queues are empty, the result/is implementation defined.

5. Let nextPending be the PendingTask record at the front of nextQueue. Remove that record from
nextQueue.

6. LetmewContext be a new exeution context.

7. Set newContext’s Realm to nextPending.[[Realm]].

8. Push newContext onto the execution context stack; newContext is now the running execution
context.

9. Perform the abstract operation named by nextPending.[[Task]] using the elements of
nextPending.[[Arguments]] as its arguments.

8.5 Initialization

An ECMAScript implementation performs the following steps prior to the execution of any Tasks or the
evaluation of any ECMAScript code.

9 Ordinary and Exotic Objects Behaviours
9.1 Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or
an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are

© Ecma International 2014 84

secind

inherited (are visible as properties of the child object) for the purposes of get access, but not for set

access. Accessor properties are inherited for both get access and set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot that controls whether or not
properties may be added to the object. If the value of the [[Extensible]] internal slot is false then additional
properties may not be added to the object. In addition, if [[Extensible]] is false the value of the
[[Prototype]] internal slot of the object may not be modified. Once the value of an object’s [[Extensible]]

internal slot has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V' is any

ECMAScript language value, and Desc is a Property Descriptor record.
9.1.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of O is called the following steps are taken:
1. Return the value of the [[Prototype]] internal slot of-O.

9.1.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of O is called with argument V'’ the following steps are taken:

Assert: Either Type(V) is Object or Type(F) is Null.
Let extensible be the value of the [[Extensible]].internal slot of O.
Let current be the value of the [[Prototype]] internal slot of O.
If SameValue(V, current), then return true.
If extensible is false, then return false.
If 7 is not null, then
a. LetpbelV.
b. Repeat, while p is not null
i. If SameValue(p, O) is true, then return false.

AN N AW =

ii. Let nextp be the result of calling the [[GetPrototypeOf]] internal method of p with no

arguments.
iii. ReturnIfAbrupt(nextp).
ive—Let p be nextp.
7. Let extensible be the value of the [[Extensible]] internal slot of O.
8. < If extensible is false, then
a. Let current2 be the value of the [[Prototype]] internal slot of O.
b. If SameValue(V, current2)is true, then return true.
¢. Return false.
9. Set the value of the [[Prototype]] internal slot of O to V.
10. Return true.

9.1.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called the following steps are taken:
1. Return the value of the [[Extensible]] internal slot of O.

9.1.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called the following steps are taken:

1. Set the value of the [[Extensible]] internal slot of O to false.

© Ecma International 2014

85

secind

2. Return true.
9.1.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are
taken:

1. Return OrdinaryGetOwnProperty(O, P).
9.1.5.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P,
the following steps are taken:

Assert: IsPropertyKey(P) is true.
If O does not have an own property with key P, return undefined.
Let D be a newly created Property Descriptor with no-fields.
Let X be O’s own property whose key is P.
If X is a data property, then
a. Set D.[[Value]] to the value of X’s [[Value]] attribute.
b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X°s [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. Return D.

DN bW~

9.1.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and Property
Descriptor Desc, the following steps are taken:

1. Return OrdinaryDefineOwnProperty(O, P;-Desc).
9.1.6.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and
Property Descriptor Desc the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
2. Let extensible be the value of the [[Extensible]] internal slot of O.
3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).

9.1.6.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and
Property Descriptors Desc, and Current the following steps are taken:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).
9.1.6.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,
Boolean value extensible, and Property Descriptors Desc, and current the following steps are taken:

© Ecma International 2014 86

oeCha

This algorithm contains steps that test various fields of the Property Descriptor Desc for specific values.
The fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is
considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and no object updates are
performed.
1. Assert: If O is not undefined then P is a valid property key.
If current is undefined, then
a. Ifextensible is false, then return false.
b. Assert: extensible is true.
c. IfIsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i. If O is not undefined, then create an own data property named P of object O whose
[[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described
by Desc. If the value of an attribute field of Descis absent, the attribute of the newly
created property is set to its default value.

d. Else Desc must be an accessor Property Descriptor,

i. If O is not undefined, then create an own accessor property named P of object O whose
[[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc.
If the value of an attribute field of Desc is absent, the attribute of the newly created
property is set to its default value.

e. Return true.
3. Return true, if every field in Desc is absent.
4. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the
same value as the corresponding field in current when compared using the SameValue algorithm.
5. [Ifthe [[Configurable]] field of current is false then
a. Return false, if the [[Configurable]] field of Desc is true.
b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of
current and Desc are the Boolean negation of each other.
6. If IsGenericDescriptor(Desc) is true, then no further validation is required.
7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then

i. If O is not undefined, then convert the property named P of object O from a data property
to.an accessor property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes
to their default values.

c. Else,

i. If O is not undefined, then convert the property named P of object O from an accessor
property to a data property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes
to their default values.

8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. Ifthe [[Configurable]] field of current is false, then

i. Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is
true.

ii. If the [[Writable]] field of current is false, then
1. Return false, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],

current.[[Value]]) is false.
b. Else the [[Configurable]] field of current is true, so any change is acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,

a. Ifthe [[Configurable]] field of current is false, then

© Ecma International 2014 87

oecnd

i. Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]],
current.[[Set]]) is false.
ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]],
current.[[Get]]) is false.
10. If O is not undefined, then
a. For each field of Desc that is present, set the correspondingly attribute of the property named P
of object O to the value of the field. The [[Origin]] field, if present, is ignore.
11. Return true.

NOTE Step 8.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This even permits changing the [[Value]] of a property-whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an _equivalent sequence of calls where
[[Writable]] is first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9.1.7 [[HasProperty]](P)

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let iasOwn be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
ReturnIfAbrupt(hasOwn).

If hasOwn is not undefined, then return true.

Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.
ReturnIfAbrupt(parent).

If parent is not null, then

a. Return the result of calling the [[HasProperty]] internal method of parent with argument P.

8. Return false.

Nk LN =

9.1.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value
Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. ReturnlfAbrupt(desc).

4. Ifdesc is undefined, then

Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.
ReturnIfAbrupt(parent).

If parent is null, then return undefined.

Return the result of calling the [[Get]] internal method of parent with arguments P and
Receiver.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, [sAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

If getter is undefined, return undefined.

Return the result of calling the [[Call]] internal method of getter with Receiver as the thisArgument
and an empty List as argumentsList.

e o

e ANY

9.1.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value V, and ECMAScript language
value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

© Ecma International 2014 88

eCmd

2. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
ReturnlfAbrupt(ownDesc).
4. If ownDesc is undefined, then
a. Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.
b. ReturnIfAbrupt(parent).
c. If parent is not null, then
i. Return the result of calling the [[Set]] internal method of parent with arguments P, V, and
Receiver.
d. Else,
i. Let ownDesc be the PropertyDescriptor {[[Value]]: undefined; [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}.
5. [IfIsDataDescriptor(ownDesc) is true, then
a. IfownDesc.[[Writable]] is false, return false.
b. If Type(Receiver) is not Object, return false.
c. Let existingDescriptor be the result of calling the [[GetOwnProperty]] internal method of
Receiver with argument P.
d. ReturnIfAbrupt(existingDescriptor).
e. If existingDescriptor is not undefined, then
i. Let valueDesc be the PropertyDescriptor{[[Value]]: V}«
ii. Return the result of calling the [[DefineOwnProperty]] internal method of Receiver with
arguments P and valueDesc.
f. Else Receiver does not currently have a property P,
i. Return CreateDataProperty(Receiver, P, V).
6. If IsAccessorDescriptor(ownDesc) is true, then
a. Let setter be ownDesc.[[Set]].
b. If setter is undefined, return false.
c. Let setterResult be the result of calling the [[Call]] internal method of setter providing Receiver
as thisArgument and a new. List containing V as argumentsList.
d. ReturnIfAbrupt(setterResult).
e. Return true.

W

9.1.10 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. <Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. Ifdesc is undefined, then return true.
4. 1If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
5. Return false.

9.1.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator object (25.1.2) whose next method iterates over all the String valued keys of
enumerable property keys of O. The mechanics and order of enumerating the properties is not
specified but must conform to the rules specified below.

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during

© Ecma International 2014 89

secind

enumeration is deleted, then it will not be visited. If new properties are added to the object being
enumerated during enumeration, the newly added properties are not guaranteed to be visited in the active
enumeration. A property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is
“shadowed” because some previous object in the prototype chain has a property with the same name.
The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype
object is shadowed by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

1. Let proto be the result of calling the [[GetPrototypeOf]] internal method of O with no arguments.
ReturnlfAbrupt(proto).
3. If proto is the value null, then
a. Let propList be a new empty List.
4. Else
a. Let propList be the result of calling the [[Enumerate]] internal method of proto.
ReturnlfAbrupt(propList).
6. For each name that is the property key of an own property of O
a. If Type(name) is String, then
i. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with
argument name.
ii. If name is an element of propList, then remove name as an element of propList.
iii. If desc.[[Enumerable]] is true, then add name as an element of propList.
7. Order the elements of propList in an implementation defined order.
8. Return proplList.

(9]

9.1.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of O'is called the following steps are taken:

1. Let keys be a new empty List:
2. For each own property key P of O that is an integer index, in ascending numeric index order
a. Add P as the last element of keys.
3. Foreach own property key P of O that is a String but is not an integer index, in property creation
order
a. Add P as the last element of keys.
4. For each own property key P of O that is a Symbol, in property creation order
a. Add P as the last element of keys.
5.° Return CreateArrayEromList(keys).

9.1.13 ObjectCreate(proto, internalSlotsList) Abstract Operation

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalSlotsList is a List of the names of
additional internal slots that must be defined as part of the object. If the list is not provided, an empty List
is used. If no arguments are provided %ObjectPrototype% is used as the value of protfo. This abstract
operation performs the following steps:

1. IfinternalSlotsList was not provided, let internalSlotsList be an empty List.

2. Let obj be a newly created object with an internal slot for each name in internalSlotsList.

3. Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
4. Set the [[Prototype]] internal slot of 0bj to proto.

© Ecma International 2014 90

secind

5. Set the [[Extensible]] internal slot of 0bj to true.
6. Return obj.

9.1.14 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList)

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototypel]]
value is retrieved from a constructor's prototype property, if it exists. Otherwise the supplied default is
used for [[Prototype]]. The optional internalSlotsList is a List of the names of additional internal slots that
must be defined as part of the object. If the list is not provided, an empty List is used. This abstract
operation performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object.
The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value
of an object.

2. Let proto be GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. ReturnlfAbrupt(proto).

4. Return ObjectCreate(proto, internalSlotsList).

9.2 ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical
environment and support the dynamic evaluation of that code. An ECMAScript function object is an
ordinary object and has the same internal slots and (except as noted below) and the same internal
methods as other ordinary objects. The code of an ECMAScript function object may be either strict mode
code (10.2.1) or non-strict mode code.

ECMASCcript function objects have the additional internal slots listed in Table 26.

ECMASCcript function objects whose code is not strict mode code (10.2.1) provide an alternative definition
for the [[GetOwnProperty]] internal method. This alternative prevents the value of strict mode function
from being revealed as the value of a function object property named "caller". The alternative definition
exist solely to preclude a non-standard legacy feature of some ECMAScript implementations from
revealing information about strict:-mode callers. If -an_implementation does not provide such a feature, it
need not implement this alternative internal method for ECMAScript function objects. ECMAScript
function objects are considered to be ordinary objects even though they may use the alternative definition
of [[GetOwnProperty]].

© Ecma International 2014 91

oecna

Table 26 -- Internal Slots of ECMAScript Function Objects

Internal Slot Type Description
[[Environment]] Lexical The Lexical Environment that the function was closed over.
Environment Used as the outer environment when evaluating the code
of the function.

[[FormalParameters]] Parse Node The root parse node of the source code that defines the
function’s formal parameter list.

[[FunctionKind]] String Either "normal" or "generator':

[[Code]] Parse Node The root parse node of the source code that defines the
function’s body.

[[Realm]] Realm Record | The Code Realm in which the function was created and
which provides any .intrinsic objects that are accessed
when evaluating the function.

[[ThisMode]] (lexical, strict, Defines how this references are interpreted within the

global) formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict. means that the this value is used
exactly as provided by an invocation of the function. global
means that a this value of undefined is interpreted as a
reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false if this is not a strict
mode function.

[[NeedsSuper]] Boolean true if this function uses super.

[[HomeObject]] Object If the function uses super, this is the object whose
[[GetPrototypeOf]] provides the object where super
property lookups begin.

[[MethodName]] String or If the function uses super, this is the property key that is

Symbol used for unqualified references to super.

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that
are also constructors in addition‘have the [[Construct]] internal method. ECMAScript function objects
whose code is not strict mode‘code have the [[Get]] and [[GetOwnProperty]] internal methods defined
here.

9.2.1 < [[Construct]] (argumentsList)

The [[Construct]] internal method for an ECMAScript Function object F is called with a single parameter
argumentsList which is a possibly empty List of ECMAScript language values. The following steps are
taken:

1. Return Construct(¥, argumentsList).
9.2.2 [[GetOwnProperty]] (P)
When the [[GetOwnProperty]] internal method of non-strict ECMAScript function object F is called with

property key P, the following steps are taken:

1. Let v be the result of calling the default ordinary object [[GetOwnProperty]] internal method (9.1.5)
on F passing P as the argument.

2. ReturnIfAbrupt(v).

3. [If IsDataDescriptor(v) is true, then

© Ecma International 2014 92

oecnd

4.

a. IfPis "caller" and v.[[Value]] is a strict mode Function object, then
i. Set v.[[Value]] to null.
Return v.

If an implementation does not provide a built-in caller property for non-strict ECMAScript function
objects then it must not use this definition. Instead the ordinary object [[GetOwnProperty]] internal method

is used.

9.2.3 FunctionAllocate Abstract Operation

The abstract operation FunctionAllocate requires the two arguments functionPrototype and strict. It also
accepts one optional argument, functionKind. FunctionAllocate performs the following steps:

1.
2.
3.
4

5.

7.
8.
9

10.
11.
12.
13.
14.

Assert: Type(functionPrototype) is Object.

Assert: If functionKind is present, its value is either "normal" or "generator".

If functionKind is not present, then let functionKind be"normal".

Let F be a newly created ECMAScript function object with the internal slots listed in Table 26. All
of those internal slots are initialized to undefined.

Set F’s essential internal methods except for [[GetOwnProperty]] to the default ordinary object
definitions specified in 9.1.

If strict is true, set F’s [[GetOwnProperty]] internal method to the default ordinary object
definitions specified in 9.1.

Else, set F’s [[GetOwnProperty]] internal method to the definitions specified in 9.2.2.

Set F’s [[Call]] internal method to the definition specified in 9.2.1.

Set the [[Strict]] internal slot of F to strict.

Set the [[FunctionKind]] internal slot of F to functionKind.

Set the [[Prototype]] internal slot of F to functionPrototype.

Set the [[Extensible]] internal slot of F to true:

Set the [[Realm]] internal slot of F to the running execution context’s Realm.

Return F.

9.2.4 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for‘an ECMAScript function object F is called with parameters thisArgument
and argumentsList;a List of ECMAScript language values. The following steps are taken:

NS RORG-~ = N

10.

If F’s [[Code]] internal slot has the value undefined, then throw a TypeError exception.

Let callerContext be the running execution context.

If callerContext is not already suspended, then Suspend callerContext.

Let calleeContext be a new ECMAScript Code execution context.

Let calleeRealm be the value of F’s [[Realm]] internal slot.

Set calleeContext’s Realm to calleeRealm.

Let thisMode be the value of F’s [[ThisMode]] internal slot.

Let needsThis Wrapper be false.

If thisMode is lexical, then

a. Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the
[[Environment]] internal slot of F as the argument.

Else,

a. If thisMode is strict, then let thisValue to thisArgument.

b. Else

i. if thisArgument is null or undefined, then
1. Let thisValue be calleeRealm.[[globalThis]].
ii. Else

© Ecma International 2014 93

eCind

1. if Type(thisArgument) is not Object, then let needsThisWrapper to true.
2. Let thisValue be thisArgument.
c. Let localEnv be NewFunctionEnvironment(F, thisValue).
d. ReturnIfAbrupt(localEnv).
e. NOTE Any exception objects produced by NewFunctionEnvironment are associated with
callerReam.
11. Set the LexicalEnvironment of calleeContext to localEnv.
12. Set the VariableEnvironment of calleeContext to localEnv.
13. Push calleeContext onto the execution context stack; calleeContext is now the running execution
context.
14. If needsThis Wrapper is true then,
a. Let wrapperedThis be ToObject(thisArgument).
b. Assert: wrapperedThis is not an abrupt conpletion.
c. NOTE Wrappering deferred until calleeContext is running so that ToObject produces objects
using calleeRealm.
d. Let functionEnv be local Env’s environment record:
e. Set functionEnv’s thisValue to wrapperedThis.
15. Let status be the result of performing Function Declaration Instantiation using the function F,
argumentsList , and localEnv as described in 9.2.14.
16. If status is an abrupt completion, then
a. Remove calleeContext from the execution context stack and restore callerContext as the
running execution context.
b. Return status.
17. Let result be the result of EvaluateBody of the production that is the value of F's [[Code]] internal
slot passing F as the argument.
18. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.
19. Return result.

NOTE 1 Most ECMAScript functions use a Function Environment Record as their LexicalEnvironment.
ECMAScript functions that are arrow functions use a Declarative Environment Record as their LexicalEnvironment.

NOTE 2 When calleeContext is removed from the execution context stack it must not be destroyed because it may
have been suspended and retained by a generator object for later resumption.

9.2.5 Functionlnitialize Abstract Operation

The-abstract operation Functioninitialize requires the arguments: a function object F, kind which is one of
(Normal, Method, Arrow), a parameter list production specified by ParameterList, a body production
specified by Body, a Lexical Environment specified by Scope. Functionlnitialize performs the following
steps:

1. Let/len be the ExpectedArgumentCount of ParameterList.
. Let strict be the vale of F’s [[Strict]] internal slot.
3. Let status be DefinePropertyOrThrow(F, "length", PropertyDescriptor {[[Value]]: len,
[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true}).
4. ReturnIfAbrupt(status).
5. [Ifstrict is true, then
a. Let status be AddRestrictedFunctionProperties(F).
b. ReturnIfAbrupt(status).
6. Set the [[Environment]] internal slot of F to the value of Scope.
Set the [[FormalParameters]] internal slot of F to ParameterList .
8. Set the [[Code]] internal slot of F to Body.

~

© Ecma International 2014 94

ecimna

9. Ifkind is Arrow, then set the [[ThisMode]] internal slot of F to lexical.
10. Else if strict is true, then set the [[ThisMode]] internal slot of F to strict.
11. Else set the [[ThisMode]] internal slot of F to global.

12. Return F.

9.2.6 FunctionCreate Abstract Operation

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method,
Arrow), a parameter list production specified by ParameterList, a body production specified by Body, a
Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype.
FunctionCreate performs the following steps:

1. Ifthe functionPrototype argument was not passed, then

a. Let functionPrototype be the intrinsic object %FunctionPrototype%.
2. Let F be FunctionAllocate(functionPrototype, Strict).
3. Return Functionlnitialize(F, kind, ParameterList, Body; Scope).

9.2.7 GeneratorFunctionCreate Abstract Operation

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method, Arrow), a parameter list production specified by ParameterList, a body production specified by
Body, a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object
SfunctionPrototype. GeneratorFunctionCreate performs the following steps:

1. If the functionPrototype argument was not passed; then

a. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be FunctionAllocate(functionPrototype, Strict, "generator").
3. Return FunctionlInitialize(F, kind, ParameterList, Body, Scope).

9.2.8 AddRestrictedFunctionProperties Abstract Operation
The abstract operation AddRestrictedFunctionProperties is called with a function object F as its argument.

It performs the following steps:

1. If SameValue(F, %ThrowTypeError%) is true, then let thrower be F.

2. Elseslet thrower be the %ThrowTypeError% intrinsic function Object.

3. Let status be DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: false}).

4. ReturnlfAbrupt(status).

5. Return DefinePropertyOrThrow(F , "arguments", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: false}).

9.2.8.1 %ThrowTypeError% ()

The %ThrowTypeError% intrinsic is a anonymous built-in function object that is defined once for each
Realm. When %ThrowTypeError% is called it performs the following steps:

1. Throw a TypeError exception.

The value of the [[Extensible]] internal slot of a % ThrowTypeError% function is false.

© Ecma International 2014 95

oecnd

9.2.9 MakeConstructor Abstract Operation

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an object prototype. If prototype is provided it is assumed to already contain, if
needed, a "constructor" property whose value is F. This operation converts F into a constructor by
performing the following steps:

1.
2.
3.

7.

8.
9.

Assert: F'is an ECMAScript function object.

Let installNeeded be false.

If the prototype argument was not provided, then

a. Let installNeeded be true.

b. Let prototype be ObjectCreate(%ObjectPrototype%o).

If the writablePrototype argument was not provided, then

a. Let writablePrototype be true.

Set F”’s essential internal method [[Construct]] to the definition specified in 9.2.1.

If installNeeded, then

a. Let status be DefinePropertyOrThrow(prototype; "constructor",
PropertyDescriptor {[[Value]]: F, [[Writable]]: writablePrototype, [[Enumerable]]: false,
[[Configurable]]: writablePrototype }).

b. ReturnlfAbrupt(status).

Let status be DefinePropertyOrThrow(F, "prototype",and PropertyDescriptor {[[Value]]:

prototype, [[Writable]]: writable Prototype, [[Enumerable]]: false, [[Configurable]]: false}.

ReturnIfAbrupt(status).

Return NormalCompletion(undefined).

9.2.10 MakeMethod (F, methodName, homeObject) Abstract Operation

The abstract operation MakeMethod. with arguments F, methodName and homeObject configures F as a
method by performing the following steps:

Nk L=

Assert: Fis an ECMAScript function object.

Assert: methodName is either undefined or a property key.
Assert: Type(homeObject) is either Undefined or Object.
Set the [[NeedsSuper]] internal slot of F to true.

Set the [[HomeObject]] internal slot of F'to homeObject.
Set'the [[MethodName]] internal slot of F' to methodName.
Return NormalCompletion(undefined).

9.2.11 SetFunctionName Abstract Operation

The abstract operation SetFunctionName requires a Function argument F, a String or Symbol argument
name and optionally a String argument prefix. This operation adds a name property to F by performing the
following steps:

1.

3.

Assert: F is anextensible ECMAScript function object that does not have a name own property.
Assert: Type(name) is either Symbol or String.

If Type(name) is Symbol, then

a. Let description be the values of name’s [[Description]].

b. Ifdescription is undefined, then let name be the empty String.

c. Else, let name be the concatenation of " [", description, and "]1".

If name is not the empty string and prefix was passed, then let name be the concatenation of prefix,
Unicode code point U+0020 (Space) , and name.

© Ecma International 2014 96

eCmd

5. Call the [[DefineOwnProperty]] internal method of F with arguments "name" and
PropertyDescriptor {[[Value]]: name, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:
true}.

6. Assert: Defining the name property will always succeed.

7. Return NormalCompletion(undefined).

9.2.12 GetSuperBinding(obj) Abstract Operation

The abstract operation GetSuperBinding is called with obj as its argument. It performs the following steps:

1. If Type(obj) is not Object, then return undefined.
2. Ifthe value of 0bj’s [[NeedsSuper]] internal slot is not true, thenreturn undefined.
3. Return the value of 0bj’s [[HomeObject]] internal slot.

9.2.13 CloneMethod(function, newHome, newName) Abstract Operation

The abstract operation Clone is called with a function object function, an object newHome, and a property
key newName as its argument. It performs the following steps:

Assert: function is an ECMAScript function object or an exoti¢'Built-in function object.
Assert: Type(newHome) is Object.
Assert: Type(newName) one of Undefined, String, or Symbol.
If function is an ECMAScript functiony then
a. Let new be a new ECMAScript function object that has all of the same internal methods and
internal slots as function.
5. Else
a. Assert: function is an exotic Built-in function object.
b. Let new be a new exotic Built-in function object that has all of the same internal methods and
internal slots as function.
6. Set the value of each of new’s internal slots, except for [[Extensible]], [[HomeObject]] and
[[MethodName]] to the value of function’s corresponding internal slot.
7. Set new’s [[Extensible]] internal slot to true.
8. If'the value of function’s [[NeedsSuper]] internal slot is true, then
a. Set the value of new’s [[HomeObject]] internal slot to newHome.
b. If newName is not undefined, then
i. Set the value of new’s [[MethodName]] internal slot to newName.
¢c. Else,
i. Set the value of new’s [[MethodName]] internal slot to the value of function’s
[[MethodName]] internal slot.
9. If function is an exotic Built-in function object or if function’s [[Strict]] internal slot is true, then
a. . Let status be AddRestrictedFunctionProperties(new).
b. ReturnIfAbrupt(status).
10. Return new.

AW =

NOTE The purpose of this abstract operation is to create a new function object that is identical to the argument
object in all always except for its identity and the value of its [[HomeObject]] internal slot. However, properties of the
function object, except for the restricted function properties, are not created or copied.

9.2.14 Function Declaration Instantiation

NOTE When an execution context is established for evaluating an ECMAScript function a new Declarative
Environment Record is created and bindings for each formal parameter are instantiated in that environment record.
Each declaration in the function body is also instantiated. If the function’s formal parameters do not include any
default value initializers then the body declarations are instantiated in the same environment record as the

© Ecma International 2014 97

oeCha

parameters. If default value parameter initializers exist, a second environment record is created for the body
declarations. Formal parameters and functions are initialized as part of function declaration instantiations. All other
bindings are initialized during evaluation of the function body.

Function Declaration Instantiation is performed as follows using arguments func, argumentsList, and env.
func is the function object that for which the execution context is being established. env is the declarative
environment record in which formal parameter bindings are to be created.

WD bW =

XN

14.
15.
16.

17.

18.

19.
20.

21.

Let code be the value of the [[Code]] internal slot of func.

Let strict be the value of the [[Strict]] internal slot of func.

Let formals be the value of the [[FormalParameters]] internal slot of func.

Let parameterNames be the BoundNames of formals.

If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let
hasDuplicates be false.

Let needsParameterEnvironment be ContainsExpression of formals.

Let simpleParameterList be IsSimpleParameterList of formals.

Let varNames be the VarDeclaredNames of code.

Let varDeclarations be the VarScopedDeclarations of code.

. Let lexicalNames be the LexicallyDeclaredNames of code.
11.
12.
13.

Let functionNames be an empty List.
Let functionsTolnitialize be an empty List.
For each d in varDeclarations, in reverse list order do
a. Ifdisnota VariableDeclaration, then
i. Assert: d is either a FunctionDeclaration or a GeneratorDeclaration.
ii. Let fn be the sole element of the BoundNames of d.
iii. If fi is not an element of functionNames, then
1. Insert fn as the first element of functionNames.
2. NOTE If thererare multiple FunctionDeclarations or GeneratorDeclarations for the same
name, the last declaration is used.
3. Insertd as the first element of functionsTolnitialize.
Let needsSpecialArgumentsBinding be true.
Let argumentsObjectNeeded be true.
If the value of the [[ThisMode]] internal slot of func is lexical, then
a. NOTE Arrow functions never have an arguments objects.
b. Let needsSpecialArgumentsBinding be false.
c. Let argumentsObjectNeeded be false.
Else if "arguments" is an element of parameterNames, then
a. Let needsSpecialArgumentsBinding be false.
b. Let argumentsObjectNeeded be false.
Else
a. If "arguments' is an element of functionNames, then let argumentsObjectNeeded be false.
b. Else if "arguments" is an element of /exicalNames, then let argumentsObjectNeeded be false.
If argumentsObjectNeeded is false, then let ao be undefined.
Else,
a. Ifstrict is true or if simpleParameterList is false, then
i. Let @o be CreateUnmapped ArgumentsObject(argumentsList).
b. Else,
i. Let ao be CreateMapped ArgumentsObject(func, formals, argumentsList, env).
c. ReturnIfAbrupt(ao).
For each String paramName in parameterNames, do
a. Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing
paramName as the argument.

© Ecma International 2014 98

oeCha

22.
23.

24.

25.

26.
27.

28.

29.
30.

b. NOTE Early errors ensure that duplicate parameter names can only occur in non-strict functions
that do not have parameter default values or rest parameters.
c. IfalreadyDeclared is false, then
i. Let status be the result of calling env’s CreateMutableBinding concrete method passing
paramName as the argument.
ii. If hasDuplicates is true, then
1. Let status be the result of calling env’s InitializeBinding concrete method passing
paramName and undefined as the argument.
iii. Assert: status is never an abrupt completion for either of the above operations.
Let instantiatedVarNames be a copy of the List parameterNames.
If needSpecialArgumentsBinding is true, then
a. Ifstrict is true, then
i. Let status be the result of calling env’s CreatelmmutableBinding concrete method passing
"arguments" as the argument.
b. Else,
i. Let status be the result of calling env’s CreateMutableBinding concrete method passing
"arguments" as the argument.
c. Assert: status is never an abrupt completion
d. If argumentsObjectNeeded is true, then
i. Call env’s InitializeBinding concrete method passing "arguments" and ao as arguments.
ii. Append "arguments" to instantiatedVarNames.
If hasDuplicates is true, then
a. Let formalStatus be the result of performing IteratorBindinglnitialization for formals with
CreateListlterator(argumentsList) and undefined as arguments.
Else,
a. Let formalStatus be the result of performing IteratorBindinglInitialization for formals with
CreateListlterator(argumentsList) and env as arguments.
ReturnIfAbrupt(formalStatus).
If needsParameterEnvironment is true, then
a. NOTE A separate enviornemnt record is needed to ensure that closures created by
parameter default value expressions do not have visibility of declarations in the function body.
b. Let env be NewDeclarativeEnvironment(eny).
c. Let calleeContext be the running execution context.
d. Set the LexicalEnvironment of calleeContext to env.
e. _Set the VariableEnvironment of calleeContext to env.
For each n in varNames, do
a. Ifnis notan element of instantiatedVarNames, then
i. Append n toinstantiatedVarNames.
ii. Let status be the result of calling env’s CreateMutableBinding concrete method passing n as
the argument.
iii. Assert: status 1s never an abrupt completion.
iv.. Call env’s InitializeBinding concrete method passing n and undefined as arguments.
v. NOTE vars and functions whose names are the same as a formal parameter, use the same
binding element as the the parameter.
Let lexDeclarations be the LexicalDeclarations of code.
For each element d in lexDeclarations do

a. NOTE A lexically declared name cannot be the same as a function/generator declaration,
formal parameter, or a var name. Lexically declared names are only instantiated here but not
initialized.

b. For each element dn of the BoundNames of d do
1. IfIsConstantDeclaration of d is true, then
1. Let status be the result of calling env’s CreatelmmutableBinding concrete method
passing dn as the argument.

© Ecma International 2014 99

secind

1. Else,
1. Let status be the result of calling env’s CreateMutableBinding concrete method passing
dn and false as the arguments.
c. Assert: status is never an abrupt completion.
31. For each production f'in functionsTolnitialize, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Let fref be ResolveBinding(fn).
d. Let status be PutValue(fref, fo).
e. Assert: status is never an abrupt completion.
32. Return NormalCompletion(empty).

9.3 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ECMAScript
function objects (9.2) whose behaviour is provided using ECMAScript code or as implementation provided
exotic function objects whose behaviour is provided in some other manner. In either case, the effect of
calling such functions must conform to their specifications.

If a built-in function object is implemented as an exotic object it must have the ordinary object behaviour
specified in 9.1 except [[GetOwnProperty]] which must be as specified in 9.2.2. All such exotic function
objects also have [[Prototype]] and [[Extensible]] internal slots.

Unless otherwise specified every built-in function object initially has the %FunctionPrototype% object
(19.2.3) as the initial value of its [[Prototype]] internal slot.

The behaviour specified for each built-in function via algorithm steps or other means is the specification of
the [[Call]] behaviour for thatfunction with the [[Call]] ¢hisArgument providing the this value and the [[Call]]
argumentsList providing the named parameters for each built-in function. If the built-in function is
implemented as an ECMAScript function object then this specified behaviour must be implemented by the
ECMAScript code that is the body of the function. Built-in functions that are ECMAScript function objects
must be strict mode functions.

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal
method unless otherwise specified in the description of a particular function. When a built-in constructor is
called as part of a new expression the argumentsList parameter of the invoked [[Construct]] internal
method provides the values for the built-in constructor's named parameters.

Built-in functions that are not constructors do not have a prototype property unless otherwise specified
in the description of a particular function.

If a built-in function object.is not implemented as an ECMAScript function it must have a [[Realm]] internal
slot. It must also have a{[Call]] internal method that conforms to the following definition:

9.3.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for a built-in function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

1. Let callerContext be the running execution context.

2. [If callerContext is not already suspended, then Suspend callerContext.
3. Let calleeContext be a new execution context.

4. Let calleeRealm be the value of F’s [[Realm]] internal slot.

© Ecma International 2014 100

ecimna

5. Set calleeContext’s Realm to calleeRealm.

6. Perform any necessary implementation defined initialization of calleeContext.

7. Push calleeContext onto the execution context stack; calleeContext is now the running execution
context.

8. Let result be the Completion Record that is the result of evaluating F in an implementation defined
manner that conforms to this specification of F.

9. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.

10. Return result.

NOTE 1 When calleeContext is removed from the execution context stack it must not be destroyed because it may
have been suspended and retained by a generator object for later resumption.

9.3.2 CreateBuiltinFunction(realm, steps, internalSlotsList) Abstract Operation

The abstract operation CreateBuiltinFunction takes arguments realm and steps. The optional argument
internalSlotsList is a List of the names of additional internal slot that must be defined as part of the object.
If the list is not provided, an empty List is used. CreateBuiltinFunctionreturns a built-in function object
created by the following steps:

1. Assert: realm is a Realm Record.

2. Assert: steps is either a set of algorithm steps or other definition of a functions behaviour provided
in this specification.

3. Let func be a new built-in function object that when called performs the action described by steps.
The new function object has internal slots whose names are the the elements of internalSlotsList.
The initial value of each of those internal slots is undefined.

4. Set the [[Realm]] internal slot of func to realm.

5. Perform the AddRestrictedFunctionProperties (9.2.8) abstract operation with argument func.

6. Return func.

9.4 Built-in Exotic Object Internal Methods and Data Fields

This specification defines several kinds of built-in_exotic objects. These objects generally behave similar
to ordinary objects except for a few specific situations. The following exotic objects use the ordinary
object internal methods except where it is explicitly specified otherwise below:

9.4.1 _Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A bound function is callable (it
has a [[Call]] internal method and may have a [[Construct]] internal method). Calling a bound function

generally results in a call of its wrapped function.

Bound function objects do'not have the internal slots of ECMAScript function objects defined in Table 26.
Instead they have the internal slots defined in Table 27.

© Ecma International 2014 101

oecnd

Table 27 -- Internal Slots of Exotic Bound Function Objects

Internal Slot Type Description

[[BoundTargetFunction]] | Callable Object | The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call to the wrappered function.

Unlike ECMAScript function objects, bound function objects do not use alternative definitions of the [[Get]]
and [[GetOwnProperty]] internal methods. Bound function objects provide all of the essential internal
methods as specified in 9.1. However, they use the following definitions for the essential internal methods
of function objects.

9.41.1 [[Call]]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is called with parameters thisArgument and argumentsList, a List:of ECMAScript language values,
the following steps are taken:

1. Let boundArgs be the value of F’s [[BoundArguments]] internal slot.

2. Let boundThis be the value of F’s [[BoundThis]] internal slot.

3. Let target be the value of F'’s [[BoundTargetFunction]] internal slot.

4. Let args be a new list containing the same values as the list boundArgs in the same order followed
by the same values as the list argumentsList in the same order.

5. Return the result of calling the [[Call]] internal method of zarget providing boundThis as
thisArgument and providing args as argumentsList.

9.4.1.2 [[Construct]]

When the [[Construct]}iinternal method of an exotic bound function object, F’ that was created using the
bind function is called with a list of arguments ExtraArgs, the following steps are taken:

Let target be the value of £’s [[BoundTargetFunction]] internal slot.

Assert: target has a [[Construct]] internal method.

Let-boundArgs be the value of F’s [[BoundArguments]] internal slot.

Let args be a new list containing the same values as the list boundArgs in the same order followed
by the same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]] internal method of target providing args as the
arguments.

AW N —

9.4.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is
used to specify the creation of new Bound Function exotic objects. It performs the following steps:

1. Let proto be the intrinsic %FunctionPrototype%.
2. Let obj be a newly created object.
3. Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
4. Set the [[Call]] internal method of 0bj as described in 9.4.1.1.
5. If targetFunction has a [[Construct]] internal method, then
a. Set the [[Construct]] internal method of 0bj as described in 9.4.1.2.
6. Set the [[Prototype]] internal slot of 0bj to proto.
7. Set the [[Extensible]] internal slot of 0bj to true.

© Ecma International 2014 102

ecimna

8. Set the [[BoundTargetFunction]] internal slot of 0bj to targetFunction.
9. Set the [[BoundThis]] internal slot of 0bj to the value of boundThis.
10. Set the [[BoundArguments]] internal slot of 0bj to boundArgs.

11. Return obyj.

9.4.2 Array Exotic Objects

An Array object is an exotic object that gives special treatment to array index property keys (see 6.1.7). A
property whose property name is an array index is also called an element. Every Array object has a
length property whose value is always a nonnegative integer less than 2*%. The value of the 1length
property is numerically greater than the name of every property whose name is an array index; whenever
a property of an Array object is created or changed, other properties are adjusted as necessary to
maintain this invariant. Specifically, whenever a property is added:-whose name is an array index, the
length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the length property is changed, every property whose name is an array index whose value is
not smaller than the new length is automatically deleted. This constraint applies only to own properties of
an Array object and is unaffected by length or array index properties that may be inherited from its
prototypes.

NOTE A String property name P is an array index if and only if ToString(ToUint32(P)) is equal to P and
ToUint32(P) is not equal to 2*2-1.

Exotic Array objects have the same ‘internal. slots as ordinary objects. They also have an
[[ArraylnitializationState]] internal slot.

Exotic Array objects always have a non-configurable property named."length".

Exotic Array objects provide an alternative definition for the [[DefineOwnProperty]] internal method.
Except for that internal method, exotic Array objects provide all of the other essential internal methods as
specified in 9.1.

9.4.21 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object 4 is called with property key P,
and Property Descriptor Desc the following steps are taken:

1.« Assert: IsPropertyKey(P) is true.
2. 1If Pis "length", then
a. Return ArraySetLength(4, Desc).
3. Else if P is an array index, then
a. Let oldLenDesc be the result of calling the [[GetOwnProperty]] internal method of 4 passing
"length" as the argument. The result will never be undefined or an accessor descriptor
because Array objects are created with a length data property that cannot be deleted or
reconfigured.
Let oldLen be oldLenDesc.[[Value]].
Let index be ToUint32(P).
Assert: index will never be an abrupt completion.
If index > oldLen and oldLenDesc.[[Writable]] is false, then return false.
Let succeeded be the result of calling OrdinaryDefineOwnProperty passing 4, P, and Desc as
arguments.
ReturnIfAbrupt(succeeded).
If succeeded is false, then return false.
i. Ifindex > oldLen

© Ecma International 2014 103

me a0 o

P

oecnd

4.

i. Set oldLenDesc.[[Value]] to index + 1.
ii. Let succeeded be OrdinaryDefineOwnProperty(4, "length", oldLenDesc).
iii. ReturnIfAbrupt(succeeded).

j- Return true.

Return OrdinaryDefineOwnProperty(4, P, Desc).

9.4.2.2 ArrayCreate(length) Abstract Operation

The abstract operation ArrayCreate with argument length (a positive integer.or undefined) and optional
argument proto is used to specify the creation of new exotic Array objects. It performs the following steps:

1.
2.

98]

Noawns

9.

10.

11.

If the proto argument was not passed, then let proto be the intrinsic object %ArrayPrototype%.
Let 4 be a newly created Array exotic object.

Set A’s essential internal methods except for [[DefineOwnProperty]] to the default ordinary object
definitions specified in 9.1.

Set the [[DefineOwnProperty]] internal method of 4 asspecified in 9.4.2.1.

Set the [[Prototype]] internal slot of 4 to proto.

Set the [[Extensible]] internal slot of 4 to true.

If length is not undefined, then

a. Set the [[ArraylnitializationState]] internal slot of 4 to true.

Else

a. Set the [[ArraylnitializationState]] internal slot of A to false.

b. Let length be 0.

If length>2-1, then throw a RangeError exception.

Call OrdinaryDefineOwnProperty with arguments 4;." length" and PropertyDescriptor{[[Value]]:
length, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}.

Return 4.

9.4.2.3 ArraySetLength(A, Desc) Abstract Operation

When the abstract operation ArraySetLength is called with an exotic Array object 4, and Property
Descriptor Desc the following steps are taken:

1.

SRR > N

~

10.
11.

12.
13.

If the [[Value]] field of Desc is absent, then

a. Return OrdinaryDefineOwnProperty(4, "length", Desc).

Let newLenDesc be a copy of Desc.

Let newLen be ToUint32(Desc.[[Value]]).

If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.

Set newLenDesc.[[Value]] to newLen.

Let oldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing
"length" as the argument. The result will never be undefined or an accessor descriptor because
Array objects are created with a length data property that cannot be deleted or reconfigured.

Let oldLen be oldLenDesc.[[Value]].

If newLen >oldLén, then

a. Return OrdinaryDefineOwnProperty(4, "length", newLenDesc).

If oldLenDesc.[[Writable]] is false, then return false.

If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.

Else,

a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.

c. Set newLenDesc.[[Writable]] to true.

Let succeeded be OrdinaryDefineOwnProperty(4, "length", newLenDesc).
ReturnIfAbrupt(succeeded).

© Ecma International 2014 104

ecimna

14. If succeeded is false, return false.
15. While newLen < oldLen repeat,
a. SetoldLen to oldLen — 1.
b. Let deleteSucceeded be the result of calling the [[Delete]] internal method of 4 passing
ToString(oldLen).
c. ReturnIfAbrupt(succeeded).
d. IfdeleteSucceeded is false, then
i. Set newLenDesc.[[Value]] to oldLen+1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.
iii. Let succeeded be OrdinaryDefineOwnProperty(4, "length'y newlLenDesc).
iv. ReturnIfAbrupt(succeeded).
v. Return false.
16. If newWritable is false, then
a. Call OrdinaryDefineOwnProperty passing 4, "length', and PropertyDescriptor {[[Writable]]:
false} as arguments. This call will always return true.
17. Return true.

NOTE In steps 3 and 4, if Desc.[[Value]] is an objectthen its valueOf method is called twice. This is
legacy behaviour that was specified with this effect starting with the 2" Edition of this specification.

9.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual integer indexed
data properties corresponding to the individual code unit elements of the string value. Exotic String
objects always have a data property named "length" whose value is the number of code unit elements
in the encapsulated String value. Both the code unit data properties and the "length" property are non-
writable and non-configurable.

Exotic String objects have the same internal slots as ordinary objects. They also have a [[StringDatal]
internal slot.

Exotic String objects provide alternative definitions for the following internal methods. All of the other
exotic String object essential internal methods that are not defined below are as specified in 9.1.

9.4.31 _[[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic String object S is called with property key P the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let desc be OrdinaryGetOwnProperty(S, P).
ReturnIfAbrupt(desc).

If desc is not undefined return desc.

If Type(P) is.not String, then return undefined.
Let index be CannonicalNumericString(P).
Assert: index is not an abrupt completion.

If index is undefined, then return undefined.
Let str be the String value of the [[StringDatal]] internal slot of S, if the value of [[StringDatal]] is
undefined the empty string is used as its value.
10. Let /en be the number of elements in s¢r.

11. If index < 0 or len < index, return undefined.

XA AL —

© Ecma International 2014 105

eCmd

12.

13.

9.4.3.2

Let resultStr be a String value of length 1, containing one code unit from str, specifically the code
unit at position index, where the first (leftmost) element in st is considered to be at position 0, the
next one at position 1, and so on.

Return a PropertyDescriptor{ [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false }.

[[Enumerate]] ()

When the [[Enumerate]] internal method of an exotic String object O is called the following steps are

taken:

1.

9.4.3.3

Let keys be a new empty List.

Let str be the String value of the [[StringData]] internal slot of O, if the value of [[StringData]] is
undefined the empty string is used as its value.

Let len be the number of elements in str.

For each integer i starting with 0 such that i < /en. in ascending order.

a. Add ToString(i) as the last element of keys

Return the result of calling the default ordinary object [[Enumerate]] internal method (9.1.11) on O
but including every element of keys as included as a property keys that is returned by the resulting
iterator.

[[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a String exotic object O.is called the following steps are

taken:

1.
2.

3.

7.

8.

9.4.3.4

Let keys be a new empty List.

Let str be the String value of the [[StringData]] internal slot of O, if the value of [[StringData]] is
undefined the empty string is used as its value.

Let len be the number of elements in str.

For each integer i starting with 0 such that i < /en. in ascending order.

a. Add ToString(i) as the last element of keys

For each own property key P of O that is-an integer index and Tolnteger(P) > /en, in ascending
numeric index order

a. Add P as the last element of keys.

For each own property key P of O that is a String but is not an integer index, in property creation
order

a. Add P as the last element of keys.

For each own property key P of O that is a Symbol, in property creation order

a. Add P as the last element of keys.

Return CreateArrayFromList(keys).

StringCreate Abstract Operation

The abstract operation StringCreate with argument prototype is used to specify the creation of new exotic
String objects. It performs the following steps:

AN AW =

Let 4 be a newly created String exotic object.

Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of 4 as specified in 9.4.3.1.

Set the [[Enumerate]] internal method of 4 as specified in 9.4.3.2.

Set the [[OwnPropertyKeys]] internal method of 4 as specified in 1.

Set the [[Prototype]] internal slot of 4 to prototype.

© Ecma International 2014 106

secind

7. Set the [[Extensible]] internal slot of 4 to true.
8. Return 4.

9.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments objects available to their code. Depending upon the
characteristics of the function definition, its argument object is either an ordinary object or an arguments
exotic object. An aguments exotic object is an exotic object whose array index properties map to the
formal parameters bindings of an invocation of its associated ECMAScript function.

Arguments exotic objects have the same internal slots as ordinary objects. They also have a
[[ParameterMap]] internal slot.

Arguments exotic objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not-defined below are as specified in 9.1

NOTE 1 For non-strict mode functions the integer indexed data properties of an arguments object whose numeric
name values are less than the number of formal parameters.-of the corresponding function object initially share their
values with the corresponding argument bindings in the function’s execution context. This means that changing the
property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if
such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments object’s properties are simply a copy of the arguments passed to the function
and there is no dynamic linkage between the property values and the formal parameter values.

NOTE2 The ParameterMap object and its property values are used as a device for specifying the arguments
object correspondence to argument bindings. The ParameterMap object and the objects that are the values of its
properties are not directly observable from ECMAScript code. An ECMAScript implementation does not need to
actually create or use such objects to.implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named
"caller" and "callee" which throw a TypeError exception on access. The "callee" property has a more specific
meaning for non-strict mode functions and a "caller" property has historically been provided as an implementation-
defined extension by some ECMAScript implementations. The strict mode definition of these properties exists to
ensure that neither of them is defined.in any other manner by conforming ECMAScript implementations.

9.4.4.1 [[GetOwnProperty]] (P)

The [[GetOwnProperty]] internal method of an arguments exotic object when called with a property name
P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method for ordinary objects
(9.1.5) on the arguments object passing P as the argument.

2. Ifdesc is undefined then return desc.

3. Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

4. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as
the argument.

5. [Ifthe value of isMapped is not undefined, then
a. Set desc.[[Value]] to Get(map, P).

6. If IsDataDescriptor(desc) is true and P is "caller" and desc.[[Value]] is a strict mode Function
object, throw a TypeError exception.

7. Return desc.

© Ecma International 2014 107

oecnd

9.4.4.2

[[DefineOwnProperty]] (P, Desc)

The [[DefineOwnProperty]] internal method of an arguments exotic object when called with a property
name P and Property Descriptor Desc performs the following steps:

1.

3.

9]

7.
9.4.4.3

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.
Let isMapped be HasOwnProperty(map, P).
Let allowed be the result of calling the default [[DefineOwnProperty]] internal method for ordinary
objects (9.1.6) on the arguments object passing P and Desc as the arguments.
Assert: allowed is not an abrupt completion.
If allowed is false, then return false.
If the value of isMapped is not undefined, then
a. IfIsAccessorDescriptor(Desc) is true, then
i. Call the [[Delete]] internal method of map passing P as the argument.
b. Else
i. If Desc.[[Value]] is present, then
1. Let putStatus be Put(map, P, Desc.[[Value]], false).
2. Assert: putStatus is true because formal parameters mapped by argument objects are
always writable.
ii. If Desc.[[Writable]] is present and its value is false,then
1. Call the [[Delete]] internal method of map passing P as the argument.
Return true.

[[Get]] (P, Receiver)

The [[Get]] internal method of an arguments exotic object when called with a property name P and
ECMAScript language value Receiver performs the following steps:

DN W~

7.
8.
9.

9.44.4

Let args be the arguments object.

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

Let isMapped be HasOwnProperty(map, P).

Assert: isMapped is not an abrupt completion.

If the value of isMapped is undefined, then

a. Let v be the result of calling the default ordinary object [[Get]] internal method (9.1.8) on args
passing P and Receiver as the arguments.

Else map contains a formal parameter mapping for P,

a. Let v be Get(map, P).

ReturnIfAbrupt(v).

If Pis "caller"™ and v is a strict mode Function object, throw a TypeError exception.

Return v.

[[Set]] (P, V, Receiver)

The [[Set]] internal method of an arguments exotic object when called with with property key P, value 7,
and ECMAScript language value Receiver performs the following steps:

1.
2.

3.

Let args be the arguments object.

If SameValue(args, Receiver) is false, then

a. Let isMapped be undefined.

Else,

a. Let map be the value of the [[ParameterMap]] internal slot of the arguments object.
b. Let isMapped be HasOwnProperty(map, P).

c. Assert: isMapped is not an abrupt completion.

© Ecma International 2014 108

oecnd

4. If the value of isMapped is undefined, then
a. Return the result of calling the default ordinary object [[Set]] internal method (9.1.8) on args
passing P, V and Receiver as the arguments.
5. Else map contains a formal parameter mapping for P,
a. Return Put(map, P, V, false).

9.4.4.5 [[Delete]] (P)

The [[Delete]] internal method of an arguments exotic object when called with-a property key P performs
the following steps:

Let map be the value of the [[ParameterMap]] internal slot of the’arguments object.
Let isMapped be HasOwnProperty(map, P).
Assert: isMapped is not an abrupt completion.
Let result be the result of calling the default [[Delete]] internal method for ordinary objects (9.1.10)
on the arguments object passing P as the argument.
5. If result is true and the value of isMapped is not undefined, then
a. Call the [[Delete]] internal method of map passing P as the argument.
6. Return result.

A~ WO

NOTE 1 For non-strict mode functions with simple parameter lists, those integer indexed data properties of an
arguments object whose numeric name values are less than the number of formal parameters of the function initially
share their values with the corresponding argument bindings in the function’s execution context. This means that
changing the property changes the corresponding value of the argument binding and vice-versa. This
correspondence is broken if such a property is deleted and then redefined or if the property is changed into an
accessor property. For strict mode functions, the values of the arguments object’s properties are simply a copy of the
arguments passed to the function and there is no dynamic.linkage between the property values and the formal
parameter values.

NOTE2 The ParameterMap object and its property values are used as a device for specifying the arguments
object correspondence toargument bindings. The ParameterMap object and the objects that are the values of its
properties are not directly accessible from ECMAScript code. An ECMAScript implementation does not need to
actually create or use such objects to implement the specified semantics.

NOTE3 Arguments objects for strict mode functions define non-configurable accessor properties named
"caller" and "callee" which throw a TypeError exception on access. The "callee" property has a more specific
meaning for non-strict mode functions and a "caller" property has historically been provided as an implementation-
defined extension by some ECMAScript.implementations. The strict mode definition of these properties exists to
ensure that neither of them'is defined in any other manner by conforming ECMAScript implementations.

9.4.4.6 CreateUnmappedArgumentsObject(argumentsList) Abstract Operation

The abstract operation CreateStrictArgumentsObject called with an argument argumentsList performs the
following steps:

1. Let len be the number of elements in argumentsList.
. Let 0bj be ObjectCreate(%ObjectPrototype%).

3. Perform DefinePropertyOrThrow(obj, ""1length", PropertyDescriptor {[[Value]]: /en, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}).

4. Let index be 0.

5. Repeat while index < len,
a. Let val be the element of argumentsList at 0-origined list position index.
b. Perform CreateDataProperty(obj, ToString(index), val).
c. Let index be index + 1

© Ecma International 2014 109

oeCha

9.
10.
9.44.7

Perform DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor
{[[Value]]:%ArrayProto_values%, [[Writeable]]: true, [[Enumerable]]: false, [[Configurable]]:
true}).

Perform DefinePropertyOrThrow(obj, "caller", PropertyDescriptor {[[Get]]:
%ThrowTypeError%, [[Set]]: %ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]:
false}).

Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Get]]:
%ThrowTypeError%, [[Set]]: %ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]:
false}).

Assert: the above property definitions will not produce an abrupt completion.

Return obj

CreateMappedArgumentsObject (func, formals, argumentsList, env) Abstract Operation

The abstract operation CreateMappedArgumentsObject is called with object func, grammar production

formals,

1.

e e Nl

16.

17.
18.
19.
20.

List argumentsList, and environment record env. The following steps are performed:

Assert: formals does not contain a rest parameter, any binding patterns, or any initializers. It may
contain duplicate identifiers.

Let len be the number of elements in argumentsList.

Let obj be a newly created arguments exotic object with-a [[ParameterMap]] internal slot.

Set the [[GetOwnProperty]] internal method of ob;j as specified in 9.4.4.1.

Set the [[DefineOwnProperty]] internal method of 0bj as specified in 9.4.4.2.

Set the [[Get]] internal method of obj as specified in 9.4.4.3.

Set the [[Set]] internal method of obj as specified in 9.4.4.4.

Set the [[Delete]] internal method of 0bj as specified in9.4.4.5.

Set the remainder of 0bj’s essential internal methods to the default ordinary object definitions
specified in 9.1.

Set the [[Prototype]] internal slot of 0bj to %ObjectPrototype%o.

. Set the [[Extensible]] internal slot of 0bj to true.
. Let parameterNames be the BoundNames of formals.
. Let numberOfParameters be the number of elements in parameterNames

Let index be 0.

. Repeat while index < len 4

a. Let val be the element of argumentsList at 0-origined list position index.
b. ~Perform CreateDataProperty(obj, ToString(index), val).
¢. Letindex beindex + 1
Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor{[[Value]]: len, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}).
Let map be ObjectCreate(null).
Let mappedNames be an empty List.
Let index be numberOfParameters — 1.
Repeat while index= 0,
a. Let name bethe element of parameterNames at 0-origined list position index.
b. If name is‘not an element of mappedNames, then
i. Add name as an element of the list mappedNames.
1. Ifindex < len, then

1. Let g be MakeArgGetter(name, env).

2. Let p be MakeArgSetter(name, env).

3. Call the [[DefineOwnProperty]] internal method of map passing ToString(index) and
the PropertyDescriptor {[[Set]]: p, [[Get]]: g, [[Enumerable]]: false, [[Configurable]]:
true} as arguments.

c. Let index be index — 1

© Ecma International 2014 110

eCmd

21. Set the [[ParameterMap]] internal slot of 0bj to map.

22. Perform DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor
{[[Value]]:%ArrayProto_values%, [[Writeable]]: true, [[Enumerable]]: false, [[Configurable]]:
true}).

23. Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Value]]: func, [[Writab
le]]: true, [[Enumerable]]: false, [[Configurable]]: true}).

24. Assert: the above property definitions will not produce an abrupt completion.

25. Return obj

94471 MakeArgGetter (name, env) Abstract Operation

The abstract operation MakeArgGetter called with String name and environment record env creates a built-
in function object that when executed returns the value bound for name in env. It performs the following
steps:

Let realm be the current Realm.

Let steps be the steps of a ArgGetter function as specified below.

Let getter be CreateBuiltinFunction(realm, steps, ([[name]], [[env]])).
Set getter’s [[name]] internal slot to name.

Set getter’s [[env]] internal slot to env.

Return getter.

AN DN AW =

An ArgGetter function is an anonymous built-in function with [[name]] and [[enV]] internal slots. When an
ArgGetter function fthat expects no arguments is called it performs the following steps:

1. Let name be the value of f’s [[name]] internal slot.

2. Let env be the value of f’s [[env]] internal slot

3. Return the result of calling the GetBindingValue concrete method of env with arguments name and
false.

NOTE ArgGetter functions are never directly accessible to ECMAScript code.
9.4.4.7.2 MakeArgSetter (name, env) Abstract Operation

The abstract operation MakeArgSetter called with String name and environment record env creates a built-
in function object.that when executed sets the value bound for name in env. It performs the following steps:

Let realm be the current Realm.

Let steps be the steps of a ArgSetter function as specified below.

Let setter be CreateBuiltinFunction(realm, steps, ([[name]], [[env]])).
Set setter’s [[name]] internal slot to name.

Set setter’s [[env]] internal slot to env.

Return setter.

AN LB W N —

An ArgSetter function is<an anonymous built-in function with [[name]] and [[enV]] internal slots. When an
ArgSetter function fiscalled with argument value it performs the following steps:

1. Let name be the value of f’s [[name]] internal slot.
. Let env be the value of f’s [[env]] internal slot
3. Return the result of calling the SetMutableBinding concrete method of env with arguments name,
value, and false.

NOTE ArgSetter functions are never directly accessible to ECMAScript code.

© Ecma International 2014 111

secind

9.4.5 Integer Indexed Exotic Objects

An Integer Indexed object is an exotic object that performs special handling of integer index property
keys.

Integer Indexed exotic objects have the same internal slots as ordinary objects additionally
[[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]] internal slots.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the
other Integer Indexed exotic object essential internal methods that are not defined below are as specified
in 9.1.

9.4.51 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an Integer Indexed exotic object O is called with property
key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internalslot.
3. If Type(P) is String, then
a. Let numericIndex be CanonicalNumericString(P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Let value be IntegerIndexedElementGet (O, numericlndex).
ii. ReturnIfAbrupt(value).
iii. If value is undefined, then return undefined.
iv. Return a PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: true, [[Writable]]: true,
[[Configurable]]: false }.
4. Return OrdinaryGetOwnProperty(O, P).

9.4.5.2 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] .internal method. of an Integer Indexed exotic object O is called with
property key P, and Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
34 If Type(P) is String, then
a. Let numericIndex be CanonicalNumericString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericIndexis not undefined, then
i.. If IsInteger(numericlndex) is false then return false
ii. Let intIndex be numericlndex.
iii. IfintIndex < 0, then return false.
iv. Let length be the value of O’s [[ArrayLength]] internal slot.
v. If intIndex > length, then return false.
vi. If IsAccessorDescriptor(Desc) is true, then return false.
vii. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is true, then return false.
viii.If Desc has an [[Enumerable]] field and if Desc.[[Enumerable]] is false, then return false.
ix. If Desc has a [[Writable]] field and if Desc.[[Writable]] is false, then return false.
x. If Desc has a [[Value]] field, then
1. Let value be Desc.[[Value]].
2. Let status be IntegerIndexedElementSet (O, intIndex, value).

© Ecma International 2014 112

oecnd

3. ReturnIfAbrupt(status).
xi. Return true.
4. Return OrdinaryDefineOwnProperty(O, P, Desc).

9.4.5.3 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
If Type(P) is String and if SameValue(O, Receiver) is true, then
a. Let numericIndex be CanonicalNumericString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Return IntegerIndexedElementGet (O, numericIndex).
3. Return the result of calling the default ordinary object [[Get]] internal method (9.1.8) on O passing
P and Receiver as arguments.

9.4.5.4 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an Integer Indexed exotic object O is called with property key P, value
¥, and ECMAScript language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
If Type(P) is String and if SameValue(O, Receiver) is true, then
a. Let numericIndex be CanonicalNumericString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is.not undefined, then
i. Return ToBoolean(IntegerIndexedElementSet (O, numericlndex, V)).
3. Return the result of calling the default ordinary object [[Set]] internal method (9.1.8) on O passing
P, V, and Receiver as arguments.

9.4.5.5 [[Enumerate]] ()

When the [[Enumerate]] internal method of an Integer Indexed exotic object O is called the following steps
are taken:

1. Let keys be a new empty List.

2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayNamel]] internal slots.

3. " Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

4. If buffer is undefined, then throw a TypeError exception.

5. Let len be the value of O’s [[ArrayLength]] internal slot.

6. For each integer 7 starting with 0 such that 7 < /en. in ascending order.

a. Add ToString(i) as the last element of keys.

7. Return the result of calling the default ordinary object [[Enumerate]] internal method (9.1.11) on O
but including every element of keys as included as a property keys that is returned by the resulting
iterator.

9.4.5.6 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an Integer Indexed exotic object O is called the
following steps are taken:

© Ecma International 2014 13

oeCha

—_

Let keys be a new empty List.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and

[[TypedArrayName]] internal slots.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

If buffer is undefined, then throw a TypeError exception.

Let len be the value of O’s [[ArrayLength]] internal slot.

For each integer i starting with 0 such that i < len. in ascending order.

a. Add ToString(i) as the last element of keys.

7. For each own property key P of O that is an integer index and Tolnteger(P) = len, in ascending
numeric index order
a. Add P as the last element of keys.

8. For each own property key P of O that is a String but is not an integer index, in property creation
order
a. Add P as the last element of keys.

9. For each own property key P of O that is a Symbol, in property creation order
a. Add P as the last element of keys.

10. Return CreateArrayFromList(keys).

»

NN bW

9.4.5.7 IntegerindexedObjectCreate Abstract Operation

The abstract operation IntegerindexedObjectCreate with argument prototype is used to specify the
creation of new Integer Indexed exotic objects. It performs the following steps:

Let 4 be a newly created object.
Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of 4 as specified in 9.4.5.1.
Set the [[DefineOwnProperty]] internal method of 4 as specified in 9.4.5.2.
Set the [[Get]] internal method of A4 as specified in 9.4.5.3.
Set the [[Set]] internal method of 4 as specified in 9.4.5.4.
Set the [[Enumerate]] internal method of 4 as specified in 9.4.5.5.
Set the [[OwnPropertyKeys]] internal method of A as specified in 0.
Set the [[Prototype]] internal slot of 4 to prototype.

. Set the [[Extensible]] internal slot of 4 to.true.

Return 4.

e BN ol

—_—O

9.4.5.8 _IntegerindexedElementGet (O, index) Abstract Operation

—_—

Assert: Type(index) is Number.

Assert: O is an Object that has [[Viewed ArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and

[[TypedArrayName]] internal slots.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

If buffer is undefined, then throw a TypeError exception.

If IsInteger(index) s false then return undefined

Let length be the value of O’s [[ArrayLength]] internal slot.

If index <0 ot index > length, then return undefined.

Let offset be the value of O’s [[ByteOffset]] internal slot.

Let arrayTypeName be the string value O’s [[TypedArrayName]] internal slot.

0. Let elementSize be the Number value of the Element Size value specified in Table 44 for
arrayTypeName.

11. Let indexedPosition = (index % elementSize) + offset.

12. Let elementType be the string value of the Element Type value in Table 44 for arrayTypeName.

13. Return GetValueFromBuffer(buffer, indexedPosition, elementType).

B

SO PN LR W

© Ecma International 2014 114

oecnd

9.4.5.9 IntegerindexedElementSet (O, index, value) Abstract Operation

—_

Assert: Type(index) is Number.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

3. Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

4. If buffer is undefined, then throw a TypeError exception.

5. [If IsInteger(index) is false then return false
6

7

8

>

Let length be the value of O’s [[ArrayLength]] internal slot.
Let numValue be ToNumber(value).
. ReturnIfAbrupt(numValue).

9. Ifindex <0 or index > length, then return false.

10. Let offset be the value of O’s [[ByteOffset]] internal slot.

11. Let arrayTypeName be the string value O’s [[TypedArrayName]] internal slot.

12. Let elementSize be the Number value of the Element Size value specified in Table 44 for
arrayTypeName.

13. Let indexedPosition = (index x elementSize) + offset.

14. Let elementType be the string value of the Element Type value in_Table 44 for arrayTypeName.

15. Let status be SetValuelnBuffer(buffer, indexedPosition, elementType, numValue).

16. ReturnIfAbrupt(status).

17. Return true.

9.4.6 Module Exotic Objects

A module object is an exotic object that exposes the bindings.exported from an ECMAScript Module (See
15.1.9). There is a one-to-one correspondence between the own properties of a module exotic object and
the ExportedBindings of the Module. Each own property name is the StringValue of the corresponding
exported binding. These are_the only. properties of a module exotic object. Each such property has the
attributes {[[Configurable]]: false, [[Enumerable]]: true}. Module objects are not extensible.

Bound function objects do not have the internal slots of ECMAScript function objects defined in Table 26.
Instead they have the internal slots defined. in Table 28.

Table 28 -- Internal Slots of Module Exotic Objects

Internal Slot Type Description

[[ModuleEnvironment]] Environment The Declrative Environment Record that contains all of the
declared top-level bindings for the corresponding module.

[[Exports]] List of String A List containing the bound names exposed as own

properties of this object. The list is ordered as an Array of
the the same wvalues had been sorted using
Array.prototype.sort using SortCompare as
comparefn.

Module exotic objects provide alternative definitions for all of the internal methods.
9.4.6.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of a module exotic object O is called the following steps are
taken:

1. Return null.

© Ecma International 2014 115

»eCma

9.4.6.2 [[SetPrototypeOf]] (V)
When the [[SetPrototypeOf]] internal method of a module exotic object O is called with argument V the
following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.

2. Return false.
9.4.6.3 [[IsExtensible]] ()
When the [[IsExtensible]] internal method of a module exotic object O is<called the following steps are
taken:

1. Return false.

9.4.6.4 [[PreventExtensions]] ()
When the [[PreventExtensions]] internal method of a module exotic object O is called the following steps
are taken:

1. Return true.

9.4.6.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a module exotic object O is called with property key P,
the following steps are taken:

1. Throw a TypeError exception.
9.4.6.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of @ module exotic object O is called with property key P
and Property Descriptor Desc, the following steps are taken:

1. Return false.
9.4.6.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of a module exotic object O is called with property key P, the
following steps are taken:

1. Let exports be the value of O’s [[Exports]] internal slot.
2. If Pis an element of exports, then return true.
3. Return false.

9.4.6.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of a module exotic object O is called with property key P and
ECMASCcript language value Receiver the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let exports be the value of O’s [[Exports]] internal slot.

If P is not an element of exports, then return undefined.

Let env be the value of O’s [[ModuleEnvironment]] internal slot.

Return the result of calling the GetBindingValue concrete method of env with arguments P and
true.

© Ecma International 2014 116

I N I S

»eCma

NOTE Attempting to [[Get]] the value of a module export that has not yet been initialized will throw a
ReferenceError exception.

9.4.6.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of a module exotic object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Return false.
9.4.6.10 [[Delete]] (P)

When the [[Delete]] internal method of a module exotic object O is called with property key P the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let exports be the value of O’s [[Exports]] internal slot.
3. If Pis an element of exports, then return false.

4. Return true.

9.4.6.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of-a module exotic object O is called the following steps are
taken:

1. Let exports be the value of O’s [[Exports]] internal slot.
2. Return CreateListlterator(exports).

9.4.6.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of @ module exotic object O is called the following steps
are taken:

1. Let exports be the value of O’s [[Exports]] internal slot.
2. Return CreateArrayFromList (exports).

9.4.6.13 ModuleObjectCreate (environment, exports)

Assert: environment is a Declarative Environment Record.

Assert: exports is a List of string values.

Let M be a newly created object.

Set M’s essential internal methods to the definitions specified in 9.4.6.
Set M’s [[ModuleEnvironment]] internal slot to environment.

Set M’s [[Exports]]internal slot to exports.

Return M.

B - I TN

9.5 Proxy Object Internal Methods and Internal Slots

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal slot called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an object, called the proxy’s handler object. Methods of a handler object may
be used to augment the implementation for one or more of the proxy object’s internal methods. Every
proxy object also has an internal slot called [[ProxyTarget]] whose value is either an object or the null
value. This object is called the proxy's target object.

© Ecma International 2014 117

secind

When a handler method is called to provide the implementation of a proxy object internal method, the
handler method is passed the proxy’s target object as a parameter. A proxy’s handler object does not
necessarily have a method corresponding to every essential internal method. Invoking an internal method
on the proxy results in the invocation of the corresponding internal method on the proxy’s target object if
the handler object does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the
object is created and typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequently revoked. When a proxy is revoked, its [[ProxyHander]] and
[[ProxyTarget]] internal slots are set to null causing subsequent invocations of internal methods on that
proxy obeject to throw a TypeError exception.

Because proxy permit arbitrary ECMAScript code to be used to in the implementation of internal methods,
it is possible to define a proxy object whose handler methods violates the invariants defined in 6.1.7.3.
Some of the internal method invariants defined in 6.1.7.3 <are essential integrity invariants. These
invariants are explicitly enforced by the proxy internal methods specified in this section. An ECMAScript
implementation must be robust in the presence of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key
value, V'is any ECMAScript language value, Desc is a Property Descriptor record, and B is a Boolean flag.

9.5.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of an exotic Proxy object O.is called the following steps are
taken:

Let handler be the value of the [[ProxyHandler]].internal slot of O.

If handler is null, then throw.a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "getPrototypeOf").

ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[GetPrototypeOf]] internal method of target.

7. Let handlerProto be the result of calling the [[Call]] internal method of trap with handler as the
this value and a new List containing target.

8. ReturnlfAbrupt(handlerProto).

9. < If Type(handlerProto) is neither Object nor Null, then throw a TypeError exception.

10. Let extensibleTarget be IsExtensible(target).

11. ReturnIfAbrupt(extensibleTarget).

12. If extensibleTarget is true, then return handlerProto.

13. Let targetProto be the result of calling the [[GetPrototypeOf]] internal method of target.

14. ReturnIfAbrupt(targetProto).

15. If SameValue(handlerProto, targetProto) is false, then throw a TypeError exception.

16. Return handlerProto.

AN B W=

NOTE [[GetPrototypeOf]] for proxy objects enforces the following invariant:
e The result of [[GetPrototypeOf]] must be either an Object or null.
e If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must return the same
value as [[GetPrototypeOf] applied to the proxy object’s target object.

© Ecma International 2014 118

oecnd

9.5.2

[[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of an exotic Proxy object O is called with argument V the
following steps are taken:

Nk e =

10.
11.
12.
13.
14.
15.
16.

17.

NOTE

9.5.3

Assert: Either Type(V) is Object or Type(V) is Null.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "setPrototypeOf").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[SetPrototypeOf]] internal method of target with argument V.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target and V.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnIfAbrupt(booleanTrapResult).

Let extensibleTarget be IsExtensible(target).

ReturnlfAbrupt(extensibleTarget).

If extensibleTarget is true, then return booleanTrapResult.

Let targetProto be the result of calling the [[GetPrototypeOf]] internal method of target.
ReturnIfAbrupt(targetProto).

If booleanTrapResult is true and SameValue(V, targetProto) is false, then throw a TypeError
exception.

Return booleanTrapResult.

[[SetPrototypeOf]] for proxy objects enforces the following invariant:

If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]]
applied to target object:

[[IsExtensible]] ()

When the [[IsExtensible]] internal method of -an_exotic Proxy object O is called the following steps are

taken:

AN B W=

10.
11.
12.
13.

NOTE

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "isExtensible").

ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[IsExtensible]] internal method of target.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnlfAbrupt(booleanTrapResult).

Let targetResult be the result of calling the [[IsExtensible]] internal method of target.
ReturnIfAbrupt(targetResult).

If SameValue(booleanTrapResult, targetResult) is false, then throw a TypeError exception.
Return booleanTrapResult.

[[IsExtensible]] for proxy objects enforces the following invariant:
[[IsExtensible]] applied to the proxy object must return the same value as [[IsExtensible]] applied to the proxy
object’s target object with the same argument.

© Ecma International 2014 119

oecnd

9.5.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of an exotic Proxy object O is called the following steps
are taken:

1.

AN

\O o0

11.

NOTE

9.5.5

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "preventExtensions").
ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[PreventExtensions]] internal.method of target.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target.

Let booleanTrapResult be ToBoolean(trapResult)
ReturnIfAbrupt(booleanTrapResult).

. If booleanTrapResult is true, then

a. Let targetisExtensible be the result of calling the [[IsExtensible]] internal method of target.
b. ReturnlfAbrupt(targetisExtensible).

c. [If targetlsExtensible is true, then throw a TypeError exception.

Return booleanTrapResult.

[[PreventExtensions]] for proxy objects enforces the following invariant:
[[PreventExtensions]] applied to the proxy object only returns true if [[ISExtensible]] applied to the proxy
object’s target object is false.

[[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Proxy object O is called with property key P,
the following steps are taken:

el

10.
11.

12.
13.

14.

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "getOwnPropertyDescriptor").
ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[GetOwnProperty]] internal method of rarger with argument P.
Let trapResultObj be the result of calling the [[Call]] internal method of trap with handler as the
this value and a new List containing target and P.

ReturnIfAbrupt(¢trapResultObyj).

If Type(trapResultObj) is neither Object nor Undefined, then throw a TypeError exception.
Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of fargetr with
argument P.

ReturnlfAbrupt(targetDesc).

If trapResultObj is undefined, then

If targetDesc is undefined, then return undefined.

If targetDesc.[[Configurable]] is false, then throw a TypeError exception.

Let extensibleTarget be IsExtensible(target).

ReturnIfAbrupt(extensibleTarget).

If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.

f. Return undefined.

Let extensibleTarget be IsExtensible(target).

o0 o

© Ecma International 2014 120

eCmd

15.
16.
17.
18.
19.
20.
21.

22.

NOTE

9.5.6

ReturnlfAbrupt(extensibleTarget).
Let resultDesc be ToPropertyDescriptor(trapResultObj).
ReturnlfAbrupt(resultDesc).
Call CompletePropertyDescriptor(resultDesc, undefined).
Let valid be IsCompatiblePropertyDescriptor (extensibleTarget, resultDesc, targetDesc).
If valid is false, then throw a TypeError exception.
If resultDesc.[[Configurable]] is false, then
a. IftargetDesc is undefined or targetDesc.[[Configurable]] is true, then
i. Throw a TypeError exception.
Return resultDesc.

[[GetOwnProperty]] for proxy objects enforces the following invariants:
The result of [[GetOwnProperty]] must be either an Object or undefined.
A property cannot be reported as non-existent, if it exists as a_non-configurable own. property of the target
object.
A property cannot be reported as non-existent, if it exists-as an own property of the target object and the
target object is not extensible.
A property cannot be reported as existent, if it does not exists as an own property of the target object and
the target object is not extensible.
A property cannot be reported as non-configurable, if it does notexists as an own property of the target
object or if it exists as a configurable own property of the target object.
The result of [[GetOwnProperty]] can be applied to the target object using [[DefineOwnProperty]] and will not
throw an exception.

[[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Proxy-object O is called with property key P
and Property Descriptor Desc, the following steps are taken:

N s v =

e

10.

11.
12.
13.
14.

15.
16.
17.
18.

19.

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "defineProperty").

ReturnIfAbrupt(zrap).

If trap-issundefined, then

a: Return the result of calling the [[DefineOwnProperty]] internal method of targer with
arguments P and Desc.

Let descObj be FromPropertyDescriptor(Desc).

NOTE If Desc was originally generated from an object using ToPropertyDescriptor, then descObj will

be that original object.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this

value and a new List containing target, P, and descObj.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnlfAbrupt(booleanTrapResult).

If booleanTrapResult is false, then return false.

Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with

argument P.

ReturnIfAbrupt(targetDesc).

Let extensibleTarget be IsExtensible(target).

ReturnIfAbrupt(extensibleTarget).

If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then

a. Let settingConfigFalse be true.

Else let settingConfigFalse be false.

© Ecma International 2014 121

eCmd

20.

21.

22.

NOTE

If targetDesc is undefined, then

a. If extensibleTarget is false, then throw a TypeError exception.

b. IfsettingConfigFalse is true, then throw a TypeError exception.

Else targetDesc is not undefined,

a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc , targetDesc) is false, then throw a
TypeError exception.

b. [IfsettingConfigFalse is true and targetDesc.[[Configurable]] is true, then throw a TypeError
exception.

Return true.

[[DefineOwnProperty]] for proxy objects enforces the following invariants:
A property cannot be added, if the target object is not extensible.
A property cannot be added as or modified to be non-configurable, if it does not exists as a non-configurable
own property of the target object.
A property may not be non-configurable, if is corresponding configurable property of the target object exists.
If a property has a corresponding target object property then apply the Property Descriptor of the property to
the target object using [[DefineOwnProperty]] will not throw an exception.

9.5.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

Nk L=

10.
11.

12.

NOTE

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal slot of O:
If handler is null, then throw a TypeError exception.
Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "has").
ReturnIfAbrupt(zrap):
If trap is undefined, then
a. Return the result of calling the [[HasProperty]] internal method of target with argument P.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target and P.
Let booleanTrapResult be ToBoolean(trapResult).
ReturnlfAbrupt(booleanTrapResult).
If booleanTrapResult is false, then
a. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of zarget with
argument P.
. ReturnIfAbrupt(targetDesc).
c. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
ii. Let extensibleTarget be IsExtensible(target).
iii. . ReturnIfAbrupt(extensibleTarget).
iv. If extensibleTarget is false, then throw a TypeError exception.
Return booleanTrapResult.

[[HasProperty]] for proxy objects enforces the following invariants:
A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target
object.
A property cannot be reported as non-existent, if it exists as an own property of the target object and the
target object is not extensible.

© Ecma International 2014 122

oecnd

9.5.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of an exotic Proxy object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

Nk wN =

11.
12.

13.

NOTE

9.5.9

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "get").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Get]] internal method of targef with arguments P and Receiver.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing farget, P, and Receiver.

ReturnIfAbrupt(trapResult).

. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with

argument P.

ReturnlfAbrupt(targetDesc).

If targetDesc is not undefined, then

a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, then throw a TypeError

exception.

b. IfIsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Get]] is undefined, then
i. If trapResult is not undefined, then throw a TypeError exception.

Return trapResult.

[[Get]] for proxy.objects enforces the following invariants:
The value reported for a property must be the same as the value of the corresponding target object property
if the target object property is a non-writable, non-configurable data property.
The value reported. for a property must.be undefined if the corresponding corresponding target object
property is non-configurable ‘accessor property that-has undefined as its [[Get]] attribute.

[[Set]] (P, V; Receiver)

When the [[Set]] internal method of an exotic Proxy object O is called with property key P, value ¥, and
ECMAScript language value Receiver, the following steps are taken:

Nownkw g

8.
9.
10.
11.

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "set").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Set]] internal method of farget with arguments P, V, and
Receiver.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this

value and a new List containing target, P, V, and Receiver.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnIfAbrupt(booleanTrapResult).

If booleanTrapResult is false, then return false.

© Ecma International 2014 123

eCmd

12. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.
13. ReturnIfAbrupt(targetDesc).
14. If targetDesc is not undefined, then
a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, then throw a TypeError exception.
b. IfIsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is.false, then
i. IftargetDesc.[[Set]] is undefined, then throw a TypeError exception.
15. Return true.

NOTE [[Set]] for proxy objects enforces the following invariants:
e Cannnot change the value of a property to be different from the value of the corresponding target object
property if the corresponding target object property is a non-writable, non-configurable data property.
e Cannot set the value of a property if the corresponding corresponding target object property is a non-
configurable accessor property that has undefined as its [[Set]] attribute.

9.5.10 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Proxy object O‘is called with property name P the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "deleteProperty").

ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[Delete]] internal method of target with argument P.

8. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target and P.

9. Let booleanTrapResult be ToBoolean(trapResult).

10. ReturnIfAbrupt(booleanTrapResult).

11. If booleanTrapResult is false, then return false.

12. LettargetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.

13. ReturnIfAbrupt(targetDesc).

14. If targetDesc is undefined, then return true.

15. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.

16. Return true.

Nk L=

NOTE [[Delete]] for proxy objects enforces the following invariant:
e A property cannotbe deleted, if it exists as a non-configurable own property of the target object.

9.5.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of an exotic Proxy object O is called the following steps are
taken:

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

4. Let trap be GetMethod(handler, "enumerate").

W N =

© Ecma International 2014 124

eCmd

\O o0

NOTE

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Enumerate]] internal method of target.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target.

ReturnlfAbrupt(trapResult).

If Type(trapResult) is not Object, then throw a TypeError exception.

. Return trapResult.

[[Enumerate]] for proxy objects enforces the following invariants:
The result of [[Enumerate]] must be an Object.

9.5.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Proxy object O is called the following steps

are taken:
1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
2. If handler is null, then throw a TypeError exception.
3. Let target be the value of the [[ProxyTarget]] internal slot of O.
4. Let trap be GetMethod(handler, "ownKeys").
5. ReturnIfAbrupt(zrap).
6. Iftrap is undefined, then

\O o0

11.

NOTE

a. Return the result of calling the [[OwnPropertyKeys]] internal method of target.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing farget.

ReturnIfAbrupt(trapResult).

If Type(trapResult) is not:Object, then throw a TypeError exception.

. TODO: we may need to add a lot of additional invariant checking here according to the wiki spec.

But maybe it really isn’t necessary
Return trapResult.

[[OwnPropertyKeys]] for proxy objects enforces the following invariants:
The result of [[OwnPropertyKeys]] must be an Object.

9.5.13 [[Call]] (thisArgument, argumentsList)

The {[Call]] internal method of an exotic Proxy object O is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

AN B WN =

~

NOTE

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "apply").

ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Call]] internal method of farget with arguments thisArgument
and argumentsList.

Let argArray be CreateArrayFromList(argumentsList).

Return the result of calling the [[Call]] internal method of trap with handler as the this value and a

new List containing farget, thisArgument, and argArray.

A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal

slot is an object that has a [[Call]] internal method.
© Ecma International 2014 125

secind

9.5.14 [[Construct]] Internal Method

The [[Construct]] internal method of an exotic Proxy object O is called with a single parameter
argumentsList which is a possibly empty List of ECMAScript language values. The following steps are
taken:

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "construct").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. If target does not have a [[Construct]] internal method, then throw a TypeError exception.

b. Return the result of calling the [[Construct]] internal method of targef with argument
argumentsList.

7. Let argArray be CreateArrayFromList(argumentsList).

8. Let newObj be the result of calling trap with handler as the this value and a new List containing
target and argArray.

9. ReturnlfAbrupt(newObyj).

10. If Type(newObj) is not Object, then throw a TypeError exception.

11. Return newObj.

[N R N

NOTE 1 A Proxy exotic object only has a [[Construct]] internal method. if the initial value of its [[ProxyTarget]]
internal slot is an object that has a [[Construct]] internal method.

NOTE 2 [[Construct]]] for proxy objects enforces the following invariants:
e The result of [[Construct]] must be an Object.

9.5.15 ProxyCreate(target,chandler) Abstract Operation

The abstract operationProxyCreate with arguments target and handler is used to specify the creation of
new Proxy exotic objects. It performs the following steps:

If Type(target) is not Object, throw a TypeError Exception.
If Type(handler) is not Object, throw a TypeError Exception.
Let P be anewly created object.
Set P’s essential internal methods to the definitions specified in 9.5.
If IsCallable(farget) is true, then
a. Set the [[Call]] internal method of P as specified in 9.5.13.
b. If target has a [[Construct]] internal method, then
i. Set the [[Construct]] internal method of P as specified in 9.5.14.
6. Set the [[ProxyTarget]] internal slot of P to target.
Set the [[ProxyHandler]] internal slot of P to handler.
8. Return P.

DN AW~

~

10 ECMAScript Language: Source Code
10.1 Source Text

Syntax

SourceCharacter ::
any Unicode code point

© Ecma International 2014 126

»eCma

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of code points. All Unicode code point values from U+0000 to U+10FFFF, including surrogate
code points, may occur in source text where permitted by the ECMAScript grammars. The actual
encodings used to store and interchange ECMAScript source text is not relevant to this specification.
Regardless of the external source text encoding, a conforming ECMAScript implementation processes
the source text as if it was an equivalent sequence of SourceCharacter values. Each SourceCharacter being
a Unicode code point. Conforming ECMAScript implementations are not required to perform any
normalisation of text, or behave as though they were performing normalisation of text.

The components of a combining character sequence are treated as individual Unicode code points even
though a user might think of the whole sequence as a single character.

NOTE In string literals, regular expression literals,template literals and‘identifiers, any Unicode code point may
also be expressed using Unicode escape sequences that explicitly express a code point’s numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java
program, if the Unicode escape sequence \u000A, for example, occurs within a_single-line comment, it is interpreted
as a line terminator (Unicode character 000A is line feed) and therefore the next character is not part of the comment.
Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of \u000A to
cause a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape
sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of the
comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program always
contributes a Unicode code unit or code point (depending upon the first of the escape) to the literal and is never
interpreted as a line terminator or as a quote mark that might terminate the string literal.

10.1.1 Static Semantics: UTF-16Encoding
The UTF-16Encoding of a:-numeric code point value, ¢p, is determined as follows:

Assert: 0 < ¢p < 0x10FFFF.

If cp < 65535, then return cp.

Let cul be floor((cp— 65536) / 1024) + 55296..NOTE 55296 is 0xD800.
Let cu2 be ((cp — 65536) modulo 1024) + 56320. NOTE 56320 is 0xDC00.
Return the code unit sequence consisting of cu/ followed by cu?2.

(S T SN ST S

10.1.2 Static Semantics: UTF16Decode(lead, trail)

Two code units, lead and trail, that form a UTF-16 surrogate pair are converted to a code point by
performing.the following steps:

1. Assert: 0xD800 < /ead < 0xDBFF and 0xDCO00 < trail < 0xDFFF.
2. Let cp be (lead—55296)x1024+(trail-56320)+65536. NOTE 55296 is 0xD800 and 56320 is 0xDCO0.
3. Return the code point cp.

10.2 Types of Source Code
There are four types of ECMAScript code:
e Global code is source text that is treated as an ECMAScript Script. The global code of a

particular Script does not include any source text that is parsed as part of a FunctionBody,
GeneratorBody, ConciseBody, ClassBody, or ModuleBody.

© Ecma International 2014 127

»eCma

e FEval code is the source text supplied to the built-in eval function. More precisely, if the
parameter to the built-in eval function is a String, it is treated as an ECMAScript Script. The
eval code for a particular invocation of eval is the global code portion of that Script.

e Function code is source text that is parsed to supply the value of the [[Code]] internal slot (see
9.1.14) of function and generator objects. It includes the code that defines and initializes the
formal parameters of the function. The function code of a particular function or generator does
not include any source text that is parsed as the function code of a nested FunctionBody,
GeneratorBody, ConciseBody, or ClassBody.

e Module code is source text that is code that is provided as a ModuleBody. It is the code that is
directly evaluated when a module is initialized. The module code of a particular module does
not include any source text that is parsed as part of a nested FunctionBody, GeneratorBody,
ConciseBody, ClassBody, or ModuleBody.

NOTE Function code is generally provided as the bodies: of Function Definitions (14.1), Arrow Function
Definitions (14.2), Method Definitions (14.3) and Generator Definitions (14.4). Function code is also derived from the
last argument to the Function constructor (19.2.1.1) and the GeneratorFunction constructor (25.2.1.1).

10.2.1 Strict Mode Code

An ECMAScript Script syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the four types of ECMAScript code are referred to as
module code, strict global code, strict eval code, and strict function code. Code is interpreted as strict
mode code in the following situations:

e Global code is strict global code if it begins with' a Directive Prologue that contains a Use Strict
Directive (see 14.1.1).

¢ Module code is always strict code.
o All parts of a ClassDeclaration or'a ClassExpression are strict code.

o Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive
or if the call to eval is a direct call (see 18.2.1.1) to the eval function that is contained in strict mode
code.

e < Function code that is part of a FunctionDeclaration, FunctionExpression, GeneratorDeclaration,
GeneratorExpression, MethodDefinition, or ArrowFunction is strict function code if its
GeneratorDeclaration, GeneratorExpression, MethodDefinition, or ArrowFunction is contained in strict
mode code or if its FunctionBody begins with a Directive Prologue that contains a Use Strict Directive.

e Function code that' is supplied as the last argument to the built-in Function constructor is strict
function code if the last argument is a String that when processed as a FunctionBody begins with a
Directive Prologue that contains a Use Strict Directive.

10.2.2 Non-ECMAScript Functions
An ECMAScript implementation may support the evaluation of exotic function objects whose evaluative

behaviour is expressed in some implementation defined form of executable code other than via
ECMAScript code. Whether a function object is an ECMAScript code function or a non-ECMAScript

© Ecma International 2014 128

secind

function is not semantically observable from the perspective of an ECMAScript code function that calls or
is called by such a non-ECMAScript function.

11 ECMAScript Language: Lexical Grammar

The source text of an ECMAScript script is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical
grammar. The InputElementDiv goal symbol is the default goal symbol and is used in those syntactic
grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp goal symbol is used in all syntactic grammar contexts where a
RegularExpressionLiteral is permitted. The InputElementTemplateTail goal is used in syntactic grammar
contexts where a TemplateLiteral logically continues after a substitution element.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a
leading RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 11.9); in examples
such as the following:

a=>b
/hi/g.exec (c) .map(d) ;

where the first non-whitespace, non-comment character after a LineTerminator is slash (/) and the syntactic context
allows division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above example is
interpreted in the same way as:

a =b / hi / g.exec(c) .map(d);
Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
RightBracePunctuator
DivPunctuator

InputElementRegFExp ::
WhiteSpace
LineTerminator
Comment
Token
RightBracePunctuator
RegularExpressionLiteral

© Ecma International 2014 129

ecind

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
TemplateSubstitutionTail

11.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control
the formatting of a range of text in the absence of higher-level protocols for this. (such as mark-up
languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format
control characters may be used within comments, and.within string literals, template literals, and regular
expression literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are format-control
characters that are used to make necessary distinctions when forming words or phrases in certain
languages. In ECMAScript source text, <ZWNJ>and <ZWJ> may also be used in an identifier after the
first character.

U+FEFF (BYTE ORDER MARK) is a format-control character used primarily at the start of a text to mark
it as Unicode and to allow detection of the text's encoding and byte order. <BOM> characters intended for
this purpose can sometimes also appear after the start of a text, for example as a result of concatenating
files. <BOM> characters are treated as white space characters (see 0).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarized in-Table 29.

Table 29 — Format-Control Character Usage

Code Point Name Abbreviation Usage
U+200C ZERO WIDTH NON-JOINER <ZWNJ> IdentifierPart
U+200D ZERO WIDTH JOINER <ZWJ> IdentifierPart
U+FEFF BYTE ORDER MARK <BOM> Whitespace

11.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible
lexical units) from each other, but are otherwise insignificant. White space characters may occur between
any two tokens and at the start or end of input. White space characters may occur within a StringLiteral, a
RegularExpressionLiteral, a Template, or a TemplateSubstitutionTail where they are considered significant
characters forming part of a literal value. They may also occur within a Comment, but cannot appear within
any other kind of token.

The ECMASCcript white space characters are listed in Table 30.

© Ecma International 2014 130

ecind

Table 30 — Whitespace Characters

Code Point Name Abbreviation
U+0009 CHARACTER TABULATION <TAB>
U+000B LINE TABULATION <VT>
U+000C FORM FEED <FF>
U+0020 SPACE <SP>
U+00A0 NO-BREAK SPACE <NBSP>
U+FEFF BYTE ORDER MARK <BOM>
Other category “Zs” Any other Unicode “Separator, <USP>
Space” code point

ECMAScript implementations must recognize as Whitespace code points listed in the “Separator Space”
(Zs) category by Unicode 5.1. ECMAScript implementations.may also recognize as Whitespace additional
category Zs code points from subsequent editions of the Unicode Standard.

NOTE Other than for the code points listed in Table 30, ECMAScript Whitespace intentionally excludes all code
points that have the Unicode “White_Space” property but which are not classified in category “Zs”.

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<Sp>
<NBSP>
<BOM>
<usp>

11.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may_occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (11.9). A line
terminator cannot occur within any token except a StringLiteral, Template, or TemplateSubstitutionTail. Line
terminators. may only occur within a StringLiteral token as part of a LineContinuation.

A line terminator.can occur within a MultiLineComment (11.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \s class in
regular expressions.

The ECMASCript line terminator characters are listed in Table 31.

© Ecma International 2014 131

»eCma

Table 31 — Line Terminator Characters

Code Point Name Abbreviation
U+000A LINE FEED <LF>
U+000D CARRIAGE RETURN <CR>
U+2028 LINE SEPARATOR <LS>
U+2029 PARAGRAPH SEPARATOR <pPS>

Only the Unicode code points in Table 31 are treated as line terminators. Other new line or line breaking
Unicode code points are not treated as line terminators but are treated as white space if they meet the
requirements listed in Table 30. The sequence <CR><LF> is commonly used as a line terminator. It
should be considered a single SourceCharacter for the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<PS>
<CR> <LF>

11.4 Comments
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except a LineTerminator character,
and because . of the general rule that a token is always as long as possible, a single-line comment always
consists of all characters from the // marker to the end of the line. However, the LineTerminator at the
end of the line is not considered to be part of the single-line comment; it is recognized separately by the
lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point is
very important, because it implies that the presence or absence of single-line comments does not affect
the process of automatic semicolon insertion (see 11.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of
parsing by the syntactic grammar.

Syntax

Comment :.
MultiLineComment
SingleLineComment

MultiLineComment ..
/* MultiLineCommentCharsqp * /

© Ecma International 2014 132

secind

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsqpt
* PostAsteriskCommentCharsqpt

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsqpt

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment ::
/ / SingleLineCommentCharsop

SingleLineCommentChars :
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar :
SourceCharacter but not LineTerminator

11.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions
define tokens, but are not included in the Token production.

11.6 Names and Keywords

IdentifierName and ReservedWord are tokens that are interpreted according to the Default Identifier Syntax
given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWord is.an enumerated subset of IdentifierName. The syntactic grammer defines Identifier as an
IdentifierName that is not a ReservedWord (see 11.6.2). The Unicode identifier grammar is based on
character properties specified by the Unicode Standard. The Unicode code points in the specified
categories in version 5.1.0 of the Unicode standard must be treated as in those categories by all
conforming ECMAScript implementations. ECMAScript implementations may recognise identifier
characters defined in later editions of the Unicode Standard.

NOTE 1 This standard specifies specific character additions: The dollar sign (U+0024) and the underscore

(U+005£) are permitted anywhere in an IdentifierName, and the characters zero width non-joiner (U+200C) and zero
width joiner (U+200D) are permitted anywhere after the first character of an IdentifierName.

© Ecma International 2014 133

secind

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode
code point to the IdentifierName. The code point is expressed by the HexDigits of the
UnicodeEscapeSequence (see 11.8.4). The \ preceding the UnicodeEscapeSequence and the u and { }
characters, if they appear, do not contribute code points to the IdentifierName. A UnicodeEscapeSequence
cannot be used to put a code point into an IdentifierName that would otherwise be illegal. In other words, if
a \ UnicodeEscapeSequence sequence were replaced by the SourceCharacter it constributes, the result
must still be a valid IdentifierName that has the exact same sequence of SourceCharacter elements as the
original IdentifierName. All interpretations of IdentifierName within this specification are based upon their
actual code points regardless of whether or not an escape sequence was used to contribute any
particular characters.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code points (in other words, conforming
ECMAScript implementations are only required to do bitwise comparison on IdentifierName values).
Syntax

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::

UnicodelDStart
$

T UnicodeEscapeSequence
IdentifierPart ::

UnicodelDContinue
$

\ UnicodeEscapeSequence
<ZWNJ>
<ZWIJ>

UnicodelDStart ::
any Unicode code point with the Unicode property “ID_Start”

UnicodelDContinue ::
any Unicode code point with the Unicode property “ID_Continue”

The definitions of the nonterminal UnicodeEscapeSequence is given in 11.8.4.
11.6.1 Identifier Names
11.6.1.1 Static Semantics: Early Errors

IdentifierStart :: \ UnicodeEscapeSequence

e It is an Syntax Error if SV(UnicodeEscapeSequence) is neither the UTF-16Encoding (10.1.1) of a
single Unicode code point with the Unicode property “ID_Start” nor "$ " or "_".

© Ecma International 2014 134

secind

IdentifierPart :: \ UnicodeEscapeSequence

e |t is an Syntax Error if SV(UnicodeEscapeSequence) is neither the UTF-16Encoding (10.1.1) of a
single Unicode code point with the Unicode property “ID_Continue” nor "$" or "_ " nor the UTF-
16Encoding either <ZWNJ> or <ZAJ>.

11.6.1.2 Static Semantics: StringValue
See also: 11.8.4.2, 12.1.4.

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of codeunits corresponding to /dentifierName. In
determining the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the
code point represented by the UnicodeEscapeSequence and then the code points of the entire
IdentifierName are converted to code units by UTF-16Encoding (10.1.1) each code point:

11.6.2 Reserved Words
A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord .
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

The ReservedWord definitions are specified as literal sequences of specific SourceCharacter elements.
Code point in a ReservedWord can not be expressed by a \ UnicodeEscapeSequence.

11.6.2.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript
programs.

Syntax

Keyword :: one of
break do in typeof
case else instanceof var
catch export new void
class extends return while
const finally super with
continue for switch yield
debugger function this
default if throw
delete import try

© Ecma International 2014 135

»eCma

NOTE In some contexts yield is given the semantics of an Identifier. See 12.1.1. In strict mode code, let is
treated as a keyword through static semantic restrictions (see 12.1.1, 12.2.4.2.1, 13.2.1.1, 13.6.4.1, and 14.5.1)
rather than the lexical grammar.

11.6.2.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for
the possibility of future adoption of those extensions.

Syntax
FutureReservedWord ::
enum
NOTE Use of the following tokens within strict mode code (see 10.2.1) is also reserved. That usage is restricted
using static semantic restrictions (see 12.1.1) rather than the lexical grammar:
implements package protected static
interface private public

11.7 Punctuators

Syntax
Punctuator :: one of
{ () [1
; ’ < > <=
>= == 1= === l==
+ = * % ++ --
<< >> >>> & | A
! ~ && Il ?
= += -= *= %= <<=
>>= >>>= &= = A= =>
DivPunctuator :: one of
/ /=
RightBracePunctuator ::
}

11.8 Literals
11.8.1 Null Literals

Syntax

NullLiteral .
null

© Ecma International 2014 136

oeCha

11.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

11.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimallLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexlIntegerLiteral

DecimallLiteral ::
DecimallntegerLiteral . DecimalDigitsop ExponentPartop
. DecimalDigits ExponentPartqp
DecimallntegerLiteral ExponentPartp

DecimallntegerLiteral ::
0

NonZeroDigit DecimalDigits op

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2.3 4 5 6 7 8 9

ExponentPart .
ExponentIndicator SignedInteger

Exponentlndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinaryIntegerLiteral ::

0b BinaryDigits
OB BinaryDigits

© Ecma International 2014 137

oecnd

BinaryDigits ::
BinaryDigit

BinaryDigits BinaryDigit

BinaryDigit :: one of
01

OctallntegerlLiteral ::
0o OctalDigits
00 OctalDigits

OctalDigits ::
OctalDigit
OctalDigits OctalDigit

OctalDigit :: one of
0123 4 5617

HexlIntegerLiteral ::
0x HexDigits
0X HexDigits

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of

0 1 2 3 4 5 6 7.8 9 a b cd e £ A B C D E F

The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE For example:
3in

is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code (see 10.2.1), must not extend the syntax
of NumericLiteral to include LegacyQctallntegerLiteral as described in B.1.1.

11.8.3.1 Static Semantics: MV’s

A numeric literal stands for' a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV).is derived from the literal; second, this mathematical value is rounded as

described below.

The MV of NumericLiteral :
The MV of NumericLiteral ::
The MV of NumericLiteral ::
The MV of NumericLiteral ::
The MV of DecimalLiteral ::

: DecimalLiteral is the MV of DecimalLiteral.

BinaryIntegerLiteral is the MV of BinarylntegerLiteral.
OctallntegerLiteral is the MV of OctallntegerLiteral.
HexlIntegerlLiteral is the MV of HexIntegerLiteral.
DecimallntegerLiteral . is the MV of DecimallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral
plus (the MV of DecimalDigits * 10™), where n is the number of characters in DecimalDigits.

© Ecma International 2014

138

oecnd

e The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimallntegerLiteral %
10°, where e is the MV of ExponentPart.

e The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimallntegerLiteral plus (the MV of DecimalDigits x 10™)) x 10°, where n is the number of characters
in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits x 10, where n is the number of
characters in DecimalDigits.

e The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits x 10°”, where n is
the number of characters in DecimalDigits and e is the MV of ExponentPart.

o The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral x 10°,
where ¢ is the MV of ExponentPart.

e The MV of DecimallntegerLiteral :: 0 is 0.
e The MV of DecimallntegerLiteral :: NonZeroDigit is the MV.of NonZeroDigit.

e The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit x 10") plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

e The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits x 10) plus the MV
of DecimalDigit.

e The MV of ExponentPart ::

o The MV of Signedinteger ::

o The MV of Signedinteger ::

o The MV of Signedinteger ::

e The MV of DecimalDigit ::

e The MV of DecimalDigit
of BinaryDigit :: 1 is 1.

ExponentIndicator SignediInteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

0 or of HexDigit :: 0.0r of OctalDigit :: 0 or of BinaryDigit :: 0 is 0.
1 or of NonZeroDigit ::'1 or of HexDigit :: 1 or of OctalDigit :: 1 or

e The MV of DecimalDigit ::

2 or of NonZeroDigit

The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
The MV of DecimalDigit :: 5 or of NonZeroDigit ::'5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.
The MV of DecimalDigit :: 8 orof NonZeroDigit :: 8 or of HexDigit :: 8 is 8.
The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9is 9.

e The MV of HexDigit :: a or of HexDigit :: Ais 10.

e The MV of HexDigit :: b or of HexDigit :: Bis 11.

e The MV of HexDigit ::'c or of HexDigit :: Cis 12.

e The MV of HexDigit :: d or of HexDigit :: D is 13.

e The MV of HexDigit :: e or of HexDigit :: E is 14.

e The MV of HexDigit :: £ or of HexDigit :: Fis 15.

2 2 or of HexDigit ::

2 or of OctalDigit :: 2 is 2.

e The MV of BinarylntegerLiteral :: 0b BinaryDigits is the MV of BinaryDigits.
e The MV of BinarylntegerLiteral :: OB BinaryDigits is the MV of BinaryDigits.
e The MV of BinaryDigits :: BinaryDigit is the MV of BinaryDigit.
e The MV of BinaryDigits :: BinaryDigits BinaryDigit is (the MV of BinaryDigits % 2) plus the MV of

BinaryDigit.

© Ecma International 2014

139

oecnd

e The MV of OctallntegerLiteral :: 0o OctalDigits is the MV of OctalDigits.

e The MV of OctallntegerLiteral :: 00 OctalDigits is the MV of OctalDigits.

e The MV of OctalDigits :: OctalDigit is the MV of OctalDigit.

e The MV of OctalDigits :: OctalDigits OctalDigit is (the MV of OctalDigits * 8) plus the MV of OctalDigit.
o The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

o The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

e The MV of HexDigits :: HexDigit is the MV of HexDigit.

e The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits % 16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number
type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number
value for the MV (as specified in 6.1.6), unless the literal is a DecimalLiteral and the literal has more than
20 significant digits, in which case the Number value may be either the Number value for the MV of a
literal produced by replacing each significant digit after the 20th with a 0 digit or the Number value for the
MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and then
incrementing the literal at the 20th significant digit position. A digit is significant if it is not part of an
ExponentPart and

e itisnoto;or
o there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

11.8.4 String Literals

NOTE A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code
points may also be represented by an escape sequence. All characters may. appear literally in a string literal except
for the closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any
character may appear in the form of an escape sequence. String literals evaluate to ECAMScript String values.
When generating these string values Unicode code points are UTF-16 encoded as defined in 10.1.1. Code points
belonging to Basic Multilingual Plane are encoded as a single code unit element of the string. All other code points
are encoded as two code unit elements of the string.

Syntax

StringLiteral ::
" DoubleStringCharactersopt "
' SingleStringCharactersop; '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharacters oy

SingleStringCharacters ::
SingleString Character SingleStringCharacters op

DoubleStringCharacter::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter .
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

© Ecma International 2014 140

oecnd

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigif]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.2.1), must not extend the syntax
of EscapeSequence to include LegacyOctalEscapeSequence as described in B.1.1.

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £f n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u Hex4Digits
u{ HexDigits }

Hex4Digits ::
HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 11.8.3. SourceCharacter is defined in 10.1.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to
produce the empty character sequence. The correct way to cause a line terminator character to be part of the String
value of a string literal is to use an escape sequence such as \n or \u0O0O0A.

11.8.4.1 Static Semantics: Early Errors
UnicodeEscapeSequence :: u{ HexDigits }

e ltis a Syntax Error if the MV of HexDigits > 1114111.
11.8.4.2 Static Semantics: StringValue

See also: 11.6.1.2, 12.1.4.
© Ecma International 2014 141

oecnd

StringLiteral ::
" DoubleStringCharactersop "
' SingleStringCharactersep '

1. Return the String value whose elements are the SV of this StringLiteral.
11.8.4.3 Static Semantics: SV’sand CV’s

A string literal stands for a value of the String type. The String value (SV) of the literal is described in
terms of code unit values (CV) contributed by the various parts of the string literal. As part of this process,
some Unicode code points within the string literal are interpreted as having a mathematical value (MV),
as described below or in 11.8.3.

o The SV of StringLiteral :: "" is the empty code unit sequence.

e The SV of StringlLiteral :: ' ' is the empty code unit sequence.

o The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

o The SV of StringLiteral :: ' SingleStringCharacters ' is'the SV of SingleStringCharacters.

o The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that
is the CV of DoubleStringCharacter.

o The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of
one or two code units that is the CV of DoubleStringCharacter followed by all the code units in the SV
of DoubleStringCharacters in order.

o The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one or two code units that
is the CV of SingleStringCharacter.

o The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one
or two code units that is the CV of SingleStringCharacter followed by all the code units in the SV of
SingleStringCharacters in.order.

e The CV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the
UTF-16Encoding (10.1.1) of the code point value of SourceCharacter.

e The CV of DoubleStringCharacter:: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the
UTF-16Encoding (10.1.1) of the code point value of SourceCharacter .

e TheCV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

e . The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

o The CV of EscapeSequence :: 0 is the code unit value 0.

o The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

o The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

e The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is
determined by the SingleEscapeCharacter according to Table 32.

© Ecma International 2014 142

»eCma

Table 32 — String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b 0x0008 backspace <BS>
\t 0x0009 horizontal tab <HT>
\n 0x000A line feed (new line) <LF>
\v 0x000B vertical tab <VT>
\f 0x000C form feed <FF>
\r 0x000D carriage return <CR>
\" 0x0022 double quote "

\' 0x0027 single quote '

\\ 0x005C backslash \

e The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is
the UTF-16Encoding (10.1.1) of the code point value of SourceCharacter .

e The CV of HexEscapeSequence :: x HexDigit HexDigit is the code unit value that is (16 times the MV of
the first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u'Hex4Digits is the CV of Hex4Digits

e The CV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the code unit value that is (4096 times
the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus (16 times the MV of
the third HexDigit) plus the MV of the fourth HexDigit:

o The CV of UnicodeEscapeSequence :: u{ HexDigits } is the UTF-16Encoding (10.1.1) of the MV of
HexDigits.

11.8.5 Regular Expression Literals

NOTE A regular expression literal'is an input-element that is converted to a RegExp object (see 21.1.5) each
time the literal is evaluated. Two regular expression literals'in a program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also be
created at runtime by new RegExp (see 21.2.3.2) or calling the RegExp constructor as a function (21.2.3.1).

The productions below describe the syntax for a regular expression literal and are used by the input
element scanner to find the end of the regular expression literal. The source code comprising the
RegularExpressionBody and the RegularExpressionFlags are subsequently parsed using the more stringent
ECMAScript Regular Expression grammar (21.2.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 21.2.1, but it
must not extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the
productions used by these productions.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody [/ RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

© Ecma International 2014 143

oeCha

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of *or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars 1]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::

[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal,
the characters // start a single-line comment. To specify an empty regular expression, use: / (?:)/.

11.8.5.1 Static Semantics: Early Errors

RegularExpressionFlags :: RegularExpressionFlags IdentifierPart

o ltis a Syntax Error if IdentifierPart contains a Unicode escape sequence.
11.8.5.2 Static Semantics: BodyText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source code that was recognized as RegularExpressionBody.

© Ecma International 2014 144

secind

11.8.5.3 Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source code that was recognized as RegularExpressionFlags.
11.8.6 Template Literal Lexical Components

Syntax

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
* TemplateCharactersop =

TemplateHead ::
* TemplateCharactersop $ {

TemplateSubstitutionTail ::
TemplateMiddle
TemplateTail

TemplateMiddle ::
} TemplateCharactersqp: $ {

TemplateTail ::
} TemplateCharactersqpy”

TemplateCharacters ::
TemplateCharacter Template Characters oy

TemplateCharacter ::
SourceCharacter but not.one of * or \ or $ or LineTerminatorSequence
$ [lookahead #.]
\ EscapeSequence
LineContinuation
LineTerminatorSequence

NOTE TemplateSubstitutionTail is used by the InputElementTemplateTail alternative lexical goal.
11.8.6.1 Static Semantics: TV’s and TRV’s

A template literal component is interpreted as a sequence of Unicode code points. The Template Value
(TV) of a literal component is described in terms of code unit values (CV, 11.8.4) contributed by the
various parts of the template literal component. As part of this process, some Unicode code points within
the template component are interpreted as having a mathematical value (MV, 11.8.3). In determining a
TV, escape sequences are replaced by the UTF-16 code unit(s) of the Unicode code point represented by
the escape sequence. The Template Raw Value (TRV) is similar to a Template Value with the difference
that in TRVs escape sequences are interpreted literally.

e The TV and TRV of NoSubstitutionTemplate :: * " is the empty code unit sequence.

© Ecma International 2014 145

oecnd

e The TV and TRV of TemplateHead :: ~ ${ is the empty code unit sequence.

e The TV and TRV of TemplateMiddle :: }${ is the empty code unit sequence.

e The TV and TRV of TemplateTail :: } * is the empty code unit sequence.

o The TV of NoSubstitutionTemplate :: = TemplateCharacters " is the TV of TemplateCharacters.
o The TV of TemplateHead :: ~ TemplateCharacters ${ is the TV of TemplateCharacters.

o The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.

o The TV of TemplateTail :: } TemplateCharacters " is the TV of TemplateCharacters.

o The TV of TemplateCharacters :: TemplateCharacter is the TV of TemplateCharacter.

e The TV of TemplateCharacters :: TemplateCharacter TemplateCharactersis a sequence consisting of the
code units in the TV of TemplateCharacter followed by all .the code units in the TV of
TemplateCharacters in order.

e The TV of TemplateCharacter :: SourceCharacter but not one of “or \ or $ or LineTerminatorSequence
is the UTF-16Encoding (10.1.1) of the code point value of SourceCharacter.

. The TV of TemplateCharacter :: $ is the code unit value 0x0024.

o The TV of TemplateCharacter :: \ EscapeSequence is the CV of EscapeSequence.

o The TV of TemplateCharacter :: LineContinuation isthe TV of LineContinuation.

o The TV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

o The TV of LineContinuation :: \ LineTerminatorSequence is the.€mpty code unit sequence.

o The TRV of NoSubstitutionTemplate :: ~ TemplateCharacters is the TRV of TemplateCharacters.

o The TRV of TemplateHead :: ~ TemplateCharacters ${ is the TRV of TemplateCharacters.

o The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.

o The TRV of TemplateTail :: } TemplateCharacters ° is the TRV of TemplateCharacters.

e The TRV of TemplateCharacters :: TemplateCharacter'is the TRV of TemplateCharacter.

o The TRV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of
the code units in the TRV of TemplateCharacter followed by all the code units in the TRV of
TemplateCharacters, in order.

. The TRV of {TemplateCharacter :: SourceCharacter but not one of ° or \ or $ or
LineTerminatorSequence is the UTF-16Encoding (10.1.1) of the code point value of SourceCharacter.

. The TRV of TemplateCharacter iz $ is the code unit value 0x0024.

o The TRV of TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of EscapeSequence.

o The TRV of TemplateCharacter :: LineContinuation is the TRV of LineContinuation.

e _The TRV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

o The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.

o The TRV of EscapeSequence :: 0 is the code unit value 0x0030.

o The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.

o The TRV of EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.

e The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.

e The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The TRV of SingleEscapeCharacter ::oneof ' " \ b £ n r t v istheCVofthe
SourceCharacter that is that single character.

e The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.

e The TRV of UnicodeEscapeSequence :: u Hex4Digits is the sequence consisting of code unit value
0x0075 followed by TRV of Hex4Digits.

© Ecma International 2014 146

»eCma

e The TRV of UnicodeEscapeSequence :: u{ HexDigits } is the sequence consisting of code unit value
0x0075 followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value
0x007D.

e The TRV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the sequence consisting of the TRV
of the first HexDigit followed by the TRV of the second HexDigit followed by TRV of the third HexDigit
followed by the TRV of the fourth Hex4Digits.

e The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

e The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed
by TRV of HexDigit.

e The TRV of a HexDigit is the CV of the SourceCharacter that is that HexDigit.

e The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit
value 0x005C followed by the code units of TRV of LineTerminatorSequence.

e The TRV of LineTerminatorSequence :: <LF> is the code unit value 0x000A.

e The TRV of LineTerminatorSequence :: <CR> is the code unit value 0x000A.

e The TRV of LineTerminatorSequence :: <LS> is the code unit value 0x2028.

e The TRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.

e The TRV of LineTerminatorSequence :: <CR><LF>{is the sequence consisting of the code unit value
0x000A.

NOTE TV excludes the code units of LineContinuation while' TRV includes them. <CR><LF> and <CR>
LineTerminatorSequences are normalized to <LF> for-both TV and TRV. An explicit EscapeSequence is needed to include
a <CR> or <CR><LF> sequence.

11.9 Automatic Semicolon Insertion

Certain ECMAScript statements.(empty statement, let and const declarations, variable statement,
expression statement, debugger statement, continue statement, break statement, return
statement, and throw statement) must be terminated with semicolons. Such semicolons may always
appear explicitly in thesource text. For convenience, however, such semicolons may be omitted from the
source text in certain situations. These situations are described by saying that semicolons are
automatically inserted into the source code token stream in those situations.

11.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:

1. When, as the script is parsed from left to right, a token (called the offending token) is encountered
that.is not allowed by any production of the grammar, then a semicolon is automatically inserted
before the offending token if one or more of the following conditions is true:

o The offending token is separated from the previous token by at least one LineTerminator.
¢ The offending token'is }.

2. When, as the script is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript script,
then a semicolon is automatically inserted at the end of the input stream.

3. When, as the script is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be the
first token for a terminal or nonterminal immediately following the annotation “[no LineTerminator here]”
within the restricted production (and therefore such a token is called a restricted token), and the

© Ecma International 2014 147

oecnd

restricted token is separated from the previous token by at least one LineTerminator, then a
semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would
become one of the two semicolons in the header of a for statement (see 13.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpressionyyield] -
LeftHandSideExpression[?Yie|d] [no LineTerminator here] ++
LeftHandSideExpression[?Yie|d] [no LineTerminator here] ——

ContinueStatement:
continue;
continue [no LineTerminator here] NonResolvedldentifier ;

BreakStatement|yieiq) :

break ;

break [no LineTerminator here] NonResolvedldentifier ;
ReturnStatement|yieiq] -

return [no LineTerminator here] EXxpression ;

return [no LineTerminator here] EXpresSion|im, 2yicid) ;

ThrowStatementyyield) -
throw [no LineTerminator here] Expressioi’l[m, ?Yield] s

YieldExpressionyy) :
yield [no LineTerminator here] ASsignmentExpression[ain, Yield]

Modulelmport :
module [no LineTerminator here] ImportedBinding FromClause ;

The practical effect of these restricted productions is as follows:
When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is
automatically inserted before the ++ or -- token.
When. a continue, break, return, throw, or yield token is encountered and a LineTerminator is
encountered before the next token, a semicolon is automatically inserted after the continue, break, return,
throw, or yield token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or —-- operator should appear on the same line as its operand.

An Expression in a return or throw statement or an AssignmentExpression in a yield expression should
start on the same line as the return, throw, or yield token.

An IdentifierReference in a break or continue statement should be on the same line as the break or
continue token.

© Ecma International 2014 148

»eCma

11.9.2 Examples of Automatic Semicolon Insertion

The source

{121} 3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2} 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

72 ;Y 35
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one
of the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;
NOTE The expression a + b is.not treated as.a value to be returned by the return statement, because a

LineTerminator separates it from the token return.

The source
a=>b
++c
is transformed by automatic semicolon insertion into the following:
a = Db;
++c;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator

occurs between b and ++.

The source
if (a > b)
else c =d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else

token, even though no production of the grammar applies at that point, because an automatically inserted
semicolon would then be parsed as an empty statement.

© Ecma International 2014 149

»eCma

The source

a=>b+ c

(d + e) .print()
is not transformed by automatic semicolon insertion, because the parenthesized expression that begins
the second line can be interpreted as an argument list for a function call:

a=>b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for
the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely
on automatic semicolon insertion.

12 ECMAScript Language: Expressions

12.1 Identifiers

Syntax

IdentifierReferenceyieiq) -
Identifier
[~Yield] yield

Bindingldentifieripefaut, vield] *
[+Defaultf default
[~Yield] yield
Identifier

Label[dentiﬁer[Yie|d] .
Identifier
[~Yield] yield

Identifier :
IdentifierName but not ReservedWord

12.1.1 Static Semantics: Early Errors

Bindingldentifier : Identifier
e Itis a Syntax Error if this production is contained in strict code and the StringValue of Identifier is

"arguments" or "eval".

IdentifierReference : Identifier
Bindingldentifier = Identifier
Labelldentifier = Identifier

e It is a Syntax Error if this production has a [vieqy parameter and the StringValue of Identifier is
"yield".

IdentifierReference : yield
Bindingldentifier . yield
Labelldentifier . yield

e ltis a Syntax Error if this production is contained in strict code.

© Ecma International 2014 150

ecimna

It is a Syntax Error if this production is within the FunctionBody of a GeneratorMethod,
GeneratorDeclaration, or GeneratorExpression.

Identifier :: IdentifierName but not ReservedWord

NOTE

It is a Syntax Error if IdentifierName is contained in strict code and the StringValue of
IdentifierName is: "implements", "interface", "let", '"package", "private",
"protected", "public", or "static".

It is a Syntax Error if IdentifierName is contained in strict code<and the StringValue of
IdentifierName is "yield".

It is a Syntax Error if StringValue of IdentifierName is the same string value as the StringValue of
any ReservedWord except for yield.

StringValue of IdentifierName normalizes any Unicode escape sequences in [dentifierName hence such

escapes cannot be used to write an Identifier whose code point sequence is the same as a ReservedWord.

12.1.2 Runtime Semantics: Bindinglnitialization

With arguments value and environment.

See also:12.2.4.2.2,13.2.2.2,13.2.3.4, 13.14.3.

NOTE

undefined is passed for environment 10 indicate that a PutValue operation should be used to assign the

initialization value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.

Bindingldentifier : Identifier

1.
2.

Let name be StringValue of Identifier.
Return InitializeBoundName(name, value, environment).

Bindingldentifier : default

1.

Return InitializeBoundName("default", value, environment).

Bindingldentifier : yield

1.

Return InitializeBoundName("yield", value, environment).

12.1.2.1 Runtime Semantics: InitializeBoundName(name, value, environment)

1.

Assert: Type(name) is String.

If environment is not undefined, then

a. Let env be the environment record component of environment.

b. Call the InitializeBinding concrete method of env passing name and value as the arguments.
c. Return NormalCompletion(undefined).

Else

a. Let /Ahs be ResolveBinding(name).

b. Return PutValue(/hs, value).

12.1.3 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.2.1, 13.6.4.2,14.1.3, 14.2.2,14.4.2,14.5.2, 15.2.1.2, 15.2.21.

© Ecma International 2014 151

oeCha

Bindingldentifier : Identifier

1. Return a new List containing the StringValue of IdentifierName.

Bindingldentifier : yield
1. Return a new List containing "yield".

Bindingldentifier : default

1. Return a new List containing "default".
12.1.4 Static Semantics: StringValue
See also: 11.6.1.2, 11.8.4.2.

IdentifierReference : yield
Bindingldentifier : yield
Labelldentifier : yield

1. Return "yield".

Bindingldentifier : default
1. Return "default".

Identifier : IdentifierName but not ReservedWord
1. Return the StringValue of IdentifierName.

12.2 Primary Expression

Syntax

PrimaryExpression|yield -
this
IdentifierReferencepavield
Literal
Arraylnitializer|zyieiq)
ObjectLiteral[?Yie|d]
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehensionyayieid
RegularExpressionLiteral
TemplateLiteraljsviei)
CoverParenthesizedExpressionAndArrowParameterListiavield)

CoverParenthesizedExpressionAndArrowParameterListyyieiq) :
(Expressionin, 2vield])

()
(... Bindingldentifierysyie)
(Expressionpn, 7vield) » - - - Bindingldentifierayieq)

© Ecma International 2014

152

oecnd

Supplemental Syntax

When processing the production

PrimaryExpressionyyieq) - CoverParenthesizedExpressionAndArrowParameterList(yvieiq)
the interpretation of CoverParenthesizedExpressionAndArrowParameterList is refined using the following
grammar:

ParenthesizedExpression|yieiq) -
(Expressionn, 2vieldq])
12.2.0 Semantics

12.2.0.1 Static Semantics: CoveredParenthesizedExpression

CoverParenthesizedExpressionAndArrowParameterListyyiei; © (Expressionpn, vieiq))

1. Return the result of parsing the lexical token stream matched by

CoverParenthesizedExpressionAndArrowParameterListyiciq) using Parenthesized Expression|yieiq) as
the goal symbol.

12.2.0.2 Static Semantics: IsFunctionDefinition

See also: 12.2.10.2, 12.3.1.2, 124.2, 1252, 126.1, 12.7.1,12.8.1, 12.9.1, 12.10.1, 12111, 12.12.1,
12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.8, 14.5.8.

PrimaryExpression :
this
IdentifierReference
Literal
Arraylnitializer
ObjectLiteral
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : CoverParenthesizedFExpressionAndArrowParameterList
1. Let expr be CoveredParenthesizedExpression of
CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsFunctionDefinition of expr.
12.2.0.3 Static Semantics: IsldentifierRef
See also: 12.3.1.3.

PrimaryExpression :
IdentifierReference

1. Return true.

© Ecma International 2014 153

oeCha

PrimaryExpression :
this
Literal
Arraylnitializer
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral
CoverParenthesizedExpressionAndArrowParameterList

1. Return false.
12.2.0.4 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.10.3, 12.3.1.3, 124.3, 1253, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3,12.15.2.

PrimaryExpression :
this
Literal
Arraylnitializer
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : IdentifierReference

1. 1Ifthis PrimaryExpression is contained in strict code and StringValue of IdentifierReference is
"eval" or "arguments", then return false.
2. Return true.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
1. Let expr be CoveredParenthesizedExpression of
CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.
12.2.1 The this Keyword

12.2.1.1 Runtime Semantics: Evaluation

PrimaryExpression : this

1. Return ResolveThisBinding() .

© Ecma International 2014 154

oecnd

12.2.2 Identifier Reference
See 12.1 for PrimaryExpression : IdentifierReference.
12.2.2.1 Runtime Semantics: Evaluation

PrimaryExpression : IdentifierReference

1. Return ResolveBinding(StringValue(/dentifierReference)).
NOTE 1: The result of evaluating an IdentifierReference is always a value of type Reference.

NOTE 2: In non-strict code, the keyword yield may be used as an identifier. Evaluating the IdentifierReference
production resolves the binding of yield as if it was an Identifier. Early Error restriction. ensures that such an
evaluation only can occur for non-strict code. See 13.2.1 for the handling of yield in binding creation contexts.

12.2.3 Literals

Syntax

Literal :
NullLiteral
ValueLiteral

ValueLiteral :
BooleanLiteral
NumericLiteral
StringLiteral

12.2.3.1 Runtime Semantics: Evaluation

Literal : NullLiteral

1. Return null.

ValueLiteral i~BooleanLiteral
1. Return false if BooleanLiteral is the token false.
2. Return true if BooleanLiteral is the token true.
ValueLiteral : NumericLiteral

1. Return the number whose value is MV of NumericLiteral as defined in 11.8.3.

ValueLiteral : StringLiteral
1. Return the StringValue of StringLiteral as defined in 11.8.4.2.

12.2.4 Array Initializer

Syntax

Arraylnitializeryyieiq) :
ArrayLiteralppyiei)
ArrayComprehensionpyieiq)

© Ecma International 2014 155

oecnd

12.2.4.1 Array Literal

NOTE An ArrayLiteral is an expression describing the initialization of an Array object, using a list, of zero or
more expressions each of which represents an array element, enclosed in square brackets. The elements need not
be literals; they are evaluated each time the array initializer is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element
list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the
missing array element contributes to the length of the Array and increases the index of subsequent elements. Elided
array elements are not defined. If an element is elided at the end of an array, that element does not contribute to the
length of the Array.

Syntax

ArrayLiteral[Yie|d] .
[Elisiongp 1
[ElementList[7Yie|d] 1
[ElementListiryielq , Elisiongp 1

ElementListyieyq
Elisionqpy AssignmentExpressionyn, 7vield]
Elisiongy SpreadElementioyieiq)
ElementListyyyierq , Elisionggy AssignmentExpressionyn, 7vield]
ElementListizyierq , Elisionogt SpreadElementiayieid

Elision :
14

Elision ,

SpreadElementyyieq -
. AssignmentEXpressionin, 2vield]

12.2.4.1.1 Static Semantics: ElisionWidth

Elision : ,

1. Return the numeric value 1.

Elision : Elision ,
1. Let preceding be the ElisionWidth of Elision.
2. Return preceding+1.
12.2.4.1.2 Runtime Semantics: ArrayAccumulation

With parameters array and nextindex.

ElementList . Elisiongy AssignmentExpression

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnIfAbrupt(initValue).

AW =

© Ecma International 2014 156

oecind

5. Let created be the result of calling the [[DefineOwnProperty]] internal method of array with
arguments ToString(ToUint32(nextIndex+padding)) and the PropertyDescriptor{ [[Value]]:
initValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

6. Assert: created is true.

7. Return nextIndex+padding~+1.

ElementList . Elisionoy SpreadElement

1. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
2. Return the result of performing ArrayAccumulation for SpreadElement with arguments array and
nextIndex+tpadding.

ElementList . ElementList , Elisionqy AssignmentExpression

1. Let postindex be the result of performing ArrayAccumulation for ElementList with arguments
array and nextIndex.

ReturnlfAbrupt(postindex).

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnIfAbrupt(initValue).

Let created be the result of calling the [[DefineOwnProperty]] internal method of array with
arguments ToString(ToUint32(postindex+padding)) and the PropertyDescriptor{ [[Value]]:
initValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

8. Assert: created is true.

9. Return postindex+tpadding+1.

Nk

ElementList : ElementList , Elisioney SpreadElement

1. Let postindex be the result of performing ArrayAccumulation for ElementList with arguments
array and nextIndex.

2. ReturnlfAbrupt(postindex).

Let paddingbe the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.

4. Return the result of performing ArrayAccumulation for SpreadElement with arguments array and
postlndex+padding.

W

SpreadElement > . .. AssignmentExpression

Let spreadRef be the result of evaluating AssignmentExpression.

Let spreadObj be GetValue(spreadRef).

ReturnIfAbrupt(spreadOby).

If Type(spreadObj) is not Object, then throw a TypeError exception.
Let iterator be Getlterator(spreadOby).

ReturnIfAbrupt(iterator).

Repeat

Let next be IteratorStep(iterator).

ReturnIfAbrupt(next).

If next is false, then return nextindex.

Let nextValue be IteratorValue(next).

ReturnIfAbrupt(nextValue).

Let defineStatus be CreateDataPropertyOrThrow(4, ToString(ToUint32(nextIndex)),
nextValue).

ReturnIfAbrupt(defineStatus).

Let nextIndex be nextindex + 1.

RO 2 TN

me a0 oW

P

© Ecma International 2014 157

oeCha

NOTE

[[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the

standard built-in Array prototype object has been modified in a manner that would preclude the creation of new own
properties using [[Set]].

12.2.4.1.3 Runtime Semantics: Evaluation

ArrayLiteral . [Elisiongy 1

1

2.
3.
4.

Let array be ArrayCreate(0).

Let pad be the ElisionWidth of Elision; if Elision is not present, use the-numeric value zero.
Perform Put(array, "length", pad, false).

Return array.

ArrayLiteral : [ElementList]

1.

[T SNV I S

Let array be ArrayCreate(0).

Let len be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
ReturnIfAbrupt(/en).

Perform Put(array, "length", len, false).

Return array.

ArrayLiteral @ [ElementList , Elisiongp]

AN N AW =

Let array be ArrayCreate(0).

Let /en be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
ReturnIfAbrupt(/en).

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Perform Put(array, "length", ToUint32(padding+tien), false).

Return array.

12.2.4.2 Array Comprehension

Syntax

ArrayComprehension|yieiq) *

[Comprehensionpyieq) 1

Comprehensionyielq) :

ComprehensionForpyielsy ComprehensionTailiyieiq)

ComprehensionTailjyieq) :

AssignmentExpression|in, 2Yield]
ComprehensionForpyvieiq) ComprehensionTailpyieq
Comprehensionlfivieqy ComprehensionTailjrvielq

ComprehensionForiyield] *

for (ForBindingpvieq of AssignmentExpressionyn, 7vieid])

Comprehensionlfiyieiq :

if (AssignmentExpressionyn »vield))

ForBinding[Yiem] B

Bindingldentifierjrvieiq)
BindingPatternjsyieiq)

© Ecma International 2014 158

oecnd

12.2.4.2.1 Static Semantics: Early Errors

ComprehensionFor : for (ForBinding of AssignmentExpression)

e ltis a Syntax Error if the BoundNames of ForBinding contains "let".

e |tis a Syntax Error if the BoundNames of ForBinding contains any duplicate entries.
12.2.4.2.2 Runtime Semantics: Bindinglnitialization

With arguments value and environment.

See also: 12.1.2,13.2.2.2, 13.2.3.4, 13.14.3.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialization value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.

ForBinding : BindingPattern

1. If Type(value) is not Object, then throw a TypeError exception.
2. Return the result of performing Bindinglnitialization for BindingPattern passing value and
environment as the arguments.

12.2.4.2.3 Runtime Semantics: ComprehensionEvaluation

With argument accumulator.

NOTE undefined is passed for-accumulator to indicate that a comprehension component is being evaluated as
part of a generator comprehension. Otherwise, the value of accumulator is the array object into which the elements of
an array comprehension are to be accumulated.

Comprehension : ComprehensionFor ComprehensionTail
1. Return the result of performing ComprehensionComponentEvaluation for ComprehensionFor with
arguments ComprehensionTail and accumulator.
ComprehensionTail: ComprehensionFor ComprehensionTail
1. Return the result of performing ComprehensionComponentEvaluation for ComprehensionFor with
arguments ComprehensionTail and accumulator.
ComprehensionTail : Comprehensionlf ComprehensionTail

1. Return the result of‘performing ComprehensionComponentEvaluation for Comprehensionlf with
arguments ComprehensionTail and accumulator.

ComprehensionTail :* AssignmentExpression

1. Let valueRef be the result of evaluating AssignmentExpression.

Let value be GetValue(valueRef).

ReturnIfAbrupt(value).

If accumulator is not undefined, then

a. Assert: this is part of an array comprehension.

b. Assert: accumulator is an exotic array object so access to its length property should never
fail.

© Ecma International 2014 159

halh el

oeCha

Let len be Get(accumulator, "length").

If len>2*?-1, then throw a RangeError exception.

Let putStatus be Put(accumulator, ToString(len), value, true).
ReturnlfAbrupt(putStatus).

Increase /len by 1.

Let putStatus be Put(accumulator, "length", len, true).
ReturnlfAbrupt(putStatus).

j. Return NormalCompletion(undefined).

Assert: accumulator is undefined, so this is part of a generator comprehension.
Let yieldStatus be GeneratorYield(CreatelterResultObject(value, false)).
ReturnlfAbrupt(yieldStatus).

Return NormalCompletion(undefined).

@ e Ao

o3 N

12.2.4.2.4 Runtime Semantics: ComprehensionComponentEvaluation
With arguments tail and accumulator.

NOTE undefined is passed for accumulator to indicate that a comprehension component is being evaluated as
part of a generator comprehension. Otherwise, the value of accumulator is the array object into which the elements of
an array comprehension are to be accumulated.

ComprehensionFor . for (ForBinding of AssignmentExpression)

Let exprRef be the result of evaluating AssignmentExpression.

Let exprValue be GetValue(exprRef).

Let obj be ToObject(exprValue).

ReturnIfAbrupt(obyj).

Let keys be Getlterator(obyj):

ReturnIfAbrupt(keys).

Let oldEnv be thetunning execution context’s LexicalEnvironment.

Repeat

Let nextResult be IteratorStep(keys).

ReturnIfAbrupt(nextResult).

If nextResult is false; then return NormalCompletion(undefined).

Let nextValue be IteratorValue(nextResult);

ReturnIfAbrupt(nextValue).

Let forEny be NewDeclarativeEnvironment(o/dEnv).

For each element name of the BoundNames of ForBinding do

i. Call forEny’s CreateMutableBinding concrete method with argument name.

ii. Assert: The above call to CreateMutableBinding will never return an abrupt completion.

h. Let status be the result of performing Bindinglnitialization for ForBinding passing nextValue
and forEnv as the arguments.

i. ReturnIfAbrupt(status).

Set the running execution context’s LexicalEnvironment to forEnv.

Let continue be the result of performing ComprehensionEvaluation for tail with argument

accumulator.

1. Set the running execution context’s LexicalEnvironment to oldEnv.

m. ReturnIfAbrupt(continue).

ANl e

QMoo e o

~

Comprehensionlf : 1£ (AssignmentExpression)

1. Let valueRef be the result of evaluating AssignmentExpression.
2. Let value be GetValue(valueRef).

© Ecma International 2014 160

oeCha

Let boolValue be ToBoolean(value).
ReturnlfAbrupt(boolValue).
5. [If boolValue is true, then
a. Return the result of performing ComprehensionEvaluation for tail with argument accumulator.
6. Else,
a. Return NormalCompletion(undefined).

B

12.2.4.2.5 Runtime Semantics: Evaluation

ArrayComprehension : [Comprehension]

1. Let array be ArrayCreate(0).

2. Let status be the result of performing ComprehensionEvaluation for Comprehension with argument
array.

3. ReturnIfAbrupt(status).

4. Return array.

Comprehension : ComprehensionFor ComprehensionTail

1. Return the result of performing ComprehensionEvaluation for this Comprehension with argument
undefined.

NOTE This action is only invoked for a Comprehension that is part of a GeneratorComprehension.

12.2.5 Object Initializer

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in a form resembling
a literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The
values need not be literals; they are evaluated each time the object initializer is evaluated.

Syntax
ObjectLiteral[Yiem .
{1}

{ PropertyDefinitionListjyielq) '}
{ PropertyDefinitionListizyielq) , }

PropertyDefinitionListvielq) =
PropertyDefinitionpyield
PropertyDefinitionListisyieny , PropertyDefinitionfavieiq)

PropertyDefinitionyieiq)
IdentifierReferencepvieiq)
CoverlnitializedNamepyieiq)
PropertyNameyovig) = AssignmentExpression(in, »vield]
MethodDeﬁnition[?Yie|d]

PropertyName[Yield,GeneratorParameter] .
Literal PropertyName
[+GeneratorParameter] ComputedPropertyName
[~GeneratorParameter] ComputedPropertyName[svieiq)

© Ecma International 2014 161

oecnd

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyNameyieiq)
[AssignmentExpressiongn, 2vield) 1

CoverlnitializedNamevieiq)
IdentifierReferencepavieiq) Initializeryn, 7vielq)

Initializeryn, vielq) :
= AssignmentExpressionpin, 2Yield]

NOTE 2 MethodDefinition is defined in 14.3.

NOTE 3 In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary grammar.
The CoverlnitializedName production is necessary to fully cover these secondary grammars. However, use of this
production results in an early Syntax Error in normal contexts where an actual ObjectLiteral is expected.

12.2.5.1 Static Semantics: Early Errors

In addition to describing an actual object initializer.the ObjectLiteral productions are also used as a cover
grammar for ObjectAssignmentPattern (12.14.5). "and may be recognized as part of a
CoverParenthesizedExpressionAndArrowParameterList. \When ObjectLiteral appears in a context where
ObjectAssignmentPattern is required the following Early Error rules are not applied. In addition, they are not
applied when initially parsing a CoverParenthesizedExpressionAndArrowParameterList.

ObjectLiteral : { PropertyDefinitionList }
and
ObjectLiteral = { PropertyDefinitionList , }
e It is a Syntax Error if PropertyNameList of PropertyDefinitionList contains any duplicate entries,
unless one of the following conditions are true for each duplicate entry:

1. The source code corresponding to PropertyDefinitionList is not strict code and all
occurrences in the list of the duplicated entry were obtained from productions of the form
PropertyDefinition : PropertyName : AssignmentExpression.

2. The duplicated entry occurs exactly twice in the list and one occurrence was obtained
from a get accessor MethodDefinition and the other occurrence was obtained from a set
accessor MethodDefinition.

PropertyDefinition : CoverlnitializedName

e Always throw.a Syntax Error if this production is present

NOTE This production exists so that ObjectLiteral can serve as a cover grammar for ObjectAssignmentPattern
(12.14.5). It cannot occur in an actual object initializer.

12.2.5.2 Static Semantics: ComputedPropertyContains

With parameter symbol.

© Ecma International 2014 162

oecnd

See also: 14.3.2, 14.4.3, 14.5.5.
PropertyName : Literal PropertyName

1. Return false.

PropertyName : ComputedPropertyName

1. Return result of Contains for ComputedPropertyName with argument symbol.
12.2.5.3 Static Semantics: Contains

With parameter symbol.
See also: 5.3, 12.3.1.1,14.14,14.2.3,144.3,14.54

PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.

LiteralPropertyName : IdentifierName
1. Ifsymbol is a ReservedWord, return false.
2. If symbol is an Identifier and StringValue of symbo! is the same value as the StringValue of
IdentifierName, return true;
3. Return false.
12.2.5.4 Static Semantics: HasComputedPropertyKey
See also: 14.3.4,14.4.5

PropertyDefinitionList : PropertyDefinitionList ., PropertyDefinition

1. If HasComputedPropertyKey of PropertyDefinitionList is true, then return true.
2. Return-HasComputedPropertyKey of PropertyDefinition.

PropertyDefinition : IdentifierReference

1. Return false.

PropertyDefinition . PropertyName : AssignmentExpression

1. Return IsComputedPropertyKey of PropertyName.
12.2.5.5 Static Semantics: IsComputedPropertyKey

PropertyName : Literal PropertyName

1. Return false.

PropertyName . ComputedPropertyName

1. Return true.

© Ecma International 2014 163

oeCha

12.2.5.6 Static Semantics: PropName
See also: 14.3.5, 14.4.10, 14.5.13

PropertyDefinition : IdentifierReference
1. Return StringValue of IdentifierReference.

PropertyDefinition : PropertyName : AssignmentExpression

1. Return PropName of PropertyName.

LiteralPropertyName : StringLiteral

1. Return a String value whose characters are the SV of the StringLiteral.

LiteralPropertyName : NumericLiteral
1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. Return empty.
12.2.5.7 Static Semantics: PropertyNameList

PropertyDefinitionList : PropertyDefinition

1. If PropName of PropertyDefinition is empty, return a new empty List.
2. Return a new List containing PropName of PropertyDefinition.

PropertyDefinitionList . <PropertyDefinitionList , PropertyDefinition

Let /ist be PropertyNameList of PropertyDefinitionList.

If PropName of PropertyDefinition is empty, return /ist.
Append PropName of PropertyDefinition to the end of list.
Return /list.

AW N~

12.2.5.8 Runtime Semantics: Evaluation

ObjectLiteral : { }
1. Return ObjectCreate(%ObjectPrototype%).

ObjectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

1. Let obj be the result of the abstract operation ObjectCreate with the intrinsic object
%ObjectPrototype% as its argument.

2. Let status be the result of performing PropertyDefinitionEvaluation of PropertyDefinitionList with
argument obj.

3. ReturnIfAbrupt(status).

4. Return obyj.

© Ecma International 2014 164

oecind

PropertyDefinition : IdentifierReference
1. Return StringValue of IdentifierReference.

PropertyDefinition : PropertyName : AssignmentExpression

1. Return the result of evaluating PropertyName.

LiteralPropertyName : IdentifierName
1. Return StringValue of IdentifierName.

LiteralPropertyName : StringLiteral

1. Return a String value whose characters are the SV of the StringLiteral.

LiteralPropertyName : NumericLiteral

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. Let exprValue be the result of evaluating AssignmentExpression.
2. Let propName be GetValue(exprValue):

3. ReturnlfAbrupt(propName).

4. Return ToPropertyKey(propName).

12.2.5.9 Runtime Semantics: PropertyDefinitionEvaluation
With parameter object.

See also: 14.3.9, 14.4.16, B.3.1

PropertyDefinitionList " PropertyDefinitionList , PropertyDefinition

1. Let status be the result of performing PropertyDefinitionEvaluation of PropertyDefinitionList with
argument object.

2. ReturnIfAbrupt(status).

34 Return the result of performing PropertyDefinitionEvaluation of PropertyDefinition with argument
object.

PropertyDefinition : IdentifierReference

Let propName be StringValue of IdentifierReference.

Let exprValue be the result of evaluating IdentifierReference.

ReturnIfAbrupt(exprValue).

Let propValue be GetValue(exprValue).

ReturnlfAbrupt(propValue).

Let desc be the Property Descriptor {[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

7. Return DefinePropertyOrThrow(object, propName, desc).

AN AW~

PropertyDefinition . PropertyName : AssignmentExpression

1. Let propKey be the result of evaluating PropertyName.

© Ecma International 2014 165

oeCha

ReturnlfAbrupt(propKey).
Let exprValue be the result of evaluating AssignmentExpression.
Let propValue be GetValue(exprValue).
ReturnlfAbrupt(propValue).
If IsFunctionDefinition of AssignmentExpression is true, then
Assert: propValue is an ECMAScript function object.
Let referencesSuper be the value of propValue’s [[NeedsSuper]] internal slot.
Let thisMode be the value of propValue’s [[ThisMode]] internal slot.
If thisMode is not lexical and referencesSuper is true, then
i. If propValue’s [[HomeObject]] internal slot is undefined, then
1. Assert: AssignmentExpression is not a class definition whose constructor references
super.
2. Set propValue’s [[HomeObject]] internal slot to object.
3. Set propValue’s [[MethodName]] internal slot.to propKey.
e. If IsAnonymousFunctionDefinition(A4ssignmentExpression) is true, then
i. SetFunctionName(propValue, propKey).
7. Let desc be the Property Descriptor {[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}
8. Return DefinePropertyOrThrow(object, propKey, desc).

A

e op

NOTE An alternative semantics for this production is given in B.3.1.
12.2.6 Function Defining Expressions

See 14.1 for PrimaryExpression : FunctionExpression.

See 14.4 for PrimaryExpression : GeneratorExpression.

See 14.5 for PrimaryExpression : ClassExpression.

12.2.7 Generator Comprehensions

Syntax
GeneratorComprehension|yieiq] -

(< Comprehensionrvieiq))

NOTE The keyword yield may be used in IdentifierReference contexts within a GeneratorComprehension
contained in non-strict code. The following early error rule ensures that a GeneratorComprehension never contains a
YieldExpression.

12.2.7.1 Static Semantics: Early Errors

GeneratorComprehension : (Comprehension)

o ltis a Syntax Error if Comprehension Contains YieldExpression is true.
12.2.7.2 Runtime Semantics: Evaluation

GeneratorComprehension : (Comprehension)

1. If GeneratorComprehension is contained in strict mode code, then let strict be true; otherwise let
strict be false.
2. Let scope be the LexicalEnvironment of the running execution context.

© Ecma International 2014 166

eCmd

Let parameters be the production: FormalParameters : [empty].

Using Comprehension from the production that is being evaluated, let body be the supplemental
syntactic grammar production: GeneratorBody : Comprehension.

Let closure be GeneratorFunctionCreate(Arrow, parameters, body, scope, strict).

Let prototype be ObjectCreate(%GeneratorPrototype%).

Perform MakeConstructor(closure, true, and prototype).

Let iterator be the result of calling the [[Call]] internal method of closure with undefined as
thisArgument and an empty List as argumentsList.

9. Return iterator.

B

o3 N

NOTE The GeneratorFunction object created in step 5 is not observable from ECMAScript code so an
implementation may choose to avoid its allocation and initialization. In that case use other semantically equivalent
means must be used to allocate and initialize the iterator object in step 8. In‘either case, the prototype object created
in step 6 must be created because it is potentially observable as the value of the iterator object’s [[Prototype]] internal
slot.

12.2.8 Regular Expression Literals

Syntax
See 11.8.4.

12.2.8.1 Static Semantics: Early Errors

PrimaryExpression : RegularExpressionLiteral

e It is a Syntax Error if BodyText of RegularExpressionLiteral cannot be recognized using the goal
symbol Pattern of the ECMAScript RegExp grammar specified in 21.2.1.

e It is a Syntax Error if FlagText of RegularExpressionLiteral contains any character other than "g",
it 'm", "u", or y", or if it contains the same character more than once.

12.2.8.2 Runtime Semantics: Evaluation

PrimaryExpression : RegularExpressionLiteral

1. Let pattern be the string value consisting of the UTF-16Encoding of each code point of BodyText
of RegularExpressionLiteral.

2. <Let flags be the string value consisting of the UTF-16Encoding of each code point of FlagText of
RegularExpressionLiteral.

3. Return RegExpCreate(pattern, flags).

12.2.9 Template Literals

Syntax

TemplateLiteraliyieyq :
NoSubstitutionTemplate
TemplateHead Expressionn, 2vielq) [Lexical goal InputElementTemplateTail] TemplateSpansisvieiq)

TemplateSpansiyie

TemplateTail
TemplateMiddleListiyielq) [Lexical goal InputElementTemplateTail] TemplateTail

© Ecma International 2014 167

oecind

TemplateMiddleListiyieq) :

TemplateMiddle Expressionpn, 2vield]
TemplateMiddleListi7vielq) [Lexical goal InputElementTemplateTail] TemplateMiddle Expressionyn, »vieiq

12.2.9.1 Static Semantics

12.2.9.1.1 Static Semantics: TemplateStrings

With parameter raw.

TemplateLiteral : NoSubstitutionTemplate

1.

2.

3.

If raw is false, then

a. Let string be the TV of NoSubstitutionTemplate.
Else,

a. Let string be the TRV of NoSubstitutionTemplate.
Return a List containing the single element, string.

TemplateLiteral : TemplateHead Expression TemplateSpans

1.

If raw is false, then

a. Let head be the TV of TemplateHead.

Else,

a. Let head be the TRV of TemplateHead.:

Let tail be TemplateStrings of TemplateSpans with argument raw.
Return a List containing head followed by the element, in order of zail.

TemplateSpans : TemplateTail

1.

2.

3.

If raw is false, then

a. Let tail be the TV of TemplateTail.

Else,

a. Let tail be the TRV of TemplateTail.
Return a List containing the single element; tail.

TemplateSpans-»~TemplateMiddleList TemplateTail

1.
24

3.

4.

Let middle be TemplateStrings of TemplateMiddleList with argument raw.

If raw is false, then

a. Let tail be the TV of TemplateTail.
Else,

a. . Let tail be the TRV of TemplateTail.

Return a List containing the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1.

2.

3.

If raw is false, then

a. Let string be the TV of TemplateMiddle.

Else,

a. Let string be the TRV of TemplateMiddle.
Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1.

Let front be TemplateStrings of TemplateMiddleList with argument raw.

© Ecma International 2014

168

oeCha

4.
5.

If raw is false, then

a. Let last be the TV of TemplateMiddle.

Else,

a. Let last be the TRV of TemplateMiddle.
Append last as the last element of the List front.
Return front.

12.2.9.2 Runtime Semantics

12.2.9.2.1 Runtime Semantics: ArgumentListEvaluation

See also: 12.3.6.1

TemplateLiteral : NoSubstitutionTemplate

1.

2.

Let siteObj be the result of the abstract operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.
Return a List containing the one element which issiteObj.

TemplateLiteral : TemplateHead Expression TemplateSpans

1.

Nk L

Let siteObj be the result of the abstract operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.

Let firstSub be the result of evaluating Expression.

ReturnIfAbrupt(firstSub).

Let restSub be SubstitutionEvaluation of TemplateSpans.

ReturnIfAbrupt(restSub).

Assert: restSub is a List:

Return a List whose first element is siteObj, whose second elements is firstSub, and whose
subsequent elements are the elements of restSub, in order. restSub may contain no elements.

12.2.9.2.2 Runtime Semantics: GetTemplateCallSite

The abstract operation GetTemplateCallSite is called with a grammar production, templateLiteral, as an
argument. It performs the following steps:

1.

S Ay -

If a call site object for the source code corresponding to fremplateLiteral has already been created by

a previous call to this abstract operation, then

a. Return that call site object.

Let cookedStrings be TemplateStrings of templateLiteral with argument false.

Let rawStrings be TemplateStrings of templateLiteral with argument true.

Let count be the number of elements in the List cookedStrings.

Let siteObj be ArrayCreate(count).

Let rawObj be ArrayCreate(count).

Let index be 0:

Repeat while index < count

a. Let prop be ToString(index).

b. Let cookedValue be the string value at 0-based position index of the List cookedStrings.

c. Call the [[DefineOwnProperty]] internal method of siteObj with arguments prop and
PropertyDescriptor {[[Value]]: cookedValue, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false}.

d. Let rawValue be the string value at 0-based position index of the List rawStrings.

© Ecma International 2014 169

oeCha

e. Call the [[DefineOwnProperty]] internal method of rawObj with arguments prop and
PropertyDescriptor {[[Value]]: rawValue, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false}.

f. Let index be index+1.

. Perform SetIntegrityLevel(rawObj, "£rozen").

10. Call the [[DefineOwnProperty]] internal method of siteObj with arguments "raw" and
PropertyDescriptor {[[Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:
false}.

11. Perform SetIntegrityLevel(siteObj, "£rozen").

12. Remember an association between the source code corresponding to templateLiteral and siteObj
such that siteObj can be retrieve in subsequent calls to this abstractoperation.

13. Return siteObj.

NOTE 1 The creation of a call site object cannot result in an abrupt completion.

NOTE 2 Each TemplateLiteral in the program code is associated with a unique Template call site object that is
used in the evaluation of tagged Templates (12.2.9.2.4). The same call site object is used each time a specific tagged
Template is evaluated. Whether call site objects are created lazily upon first'evaluation of the TemplateLiteral or
eagerly prior to first evaluation is an implementation choice that is not observable to ECMAScript code.

NOTE 3 Future editions of this specification may define additional non-enumerable properties of call site objects.
12.2.9.2.3 Runtime Semantics: SubstitutionEvaluation

TemplateSpans : TemplateTail
1. Return an empty List.

TemplateSpans : TemplateMiddleList TemplateTail

1. Return the resultof SubstitutionEvaluation of TemplateMiddleList.
TemplateMiddleList : TemplateMiddle Expression

1. Let sub be the result of evaluating Expression.

2. ReturnIfAbrupt(sub).

3. Return a List containing only sub.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1. Let preceeding be the result of SubstitutionEvaluation of TemplateMiddleList .
2. " ReturnIfAbrupt(preceeding).

3. Let next be the result of evaluating Expression.

4. ReturnIfAbrupt(next).

5. Append next as.the last element of the List preceeding.

6. Return preceeding.

12.2.9.2.4 Runtime Semantics: Evaluation

TemplateLiteral : NoSubstitutionTemplate

1. Return the string value whose elements are the TV of NoSubstitutionTemplate as defined in 11.8.6.

© Ecma International 2014 170

oecind

TemplateLiteral : TemplateHead Expression TemplateSpans
1. Let head be the TV of TemplateHead as defined in 11.8.6.

2. Let sub be the result of evaluating Expression.
3. Let middle be ToString(sub).
4. ReturnIfAbrupt(middle).
5. Let tail be the result of evaluating TemplateSpans .
6. ReturnIfAbrupt(tail).
7. Return the string value whose elements are the code units of #ead followed by the code units of
tail.
NOTE The string conversion semantics applied to the Expression value are like String.prototype.concat

rather than the + operator.

TemplateSpans : TemplateTail

1. Let tail be the TV of TemplateTail as defined in 11.8.6.
2. Return the string whose elements are the code units-of fail.

TemplateSpans : TemplateMiddleList TemplateTail

1. Let head be the result of evaluating TemplateMiddleList.

2. ReturnIfAbrupt(head).

3. Let tail be the TV of TemplateTail as defined in 11.8.6.

4. Return the string whose elements are the elements of sead followed by the elements of tail.

TemplateMiddleList : TemplateMiddle Expression

Let head be the TV of TemplateMiddle as defined in 11.8.6.

Let sub be the result of evaluating Expression.

Let middle be ToString(sub).

ReturnIfAbrupt(middle).

Return the sequence of characters consisting of the code units of head followed by the elements of
middle.

DN W~

NOTE The string conversion‘semantics applied to the Expression value are like String.prototype.concat
rather than the + operator.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

Let rest be the result of evaluating TemplateMiddleList .

ReturnIfAbrupt(rest).

Let middle be the TV of TemplateMiddle as defined in 11.8.6.

Let sub be the result of evaluating Expression.

Let /ast be ToString(sub).

ReturnIfAbrupt(last).

Return the sequence of characters consisting of the elements of rest followed by the code units of
middle followed by the elements of /ast.

Now kL

NOTE The string conversion semantics applied to the Expression value are like String.prototype.concat
rather than the + operator.

© Ecma International 2014 171

secind

12.2.10 The Grouping Operator
12.2.10.1 Static Semantics: Early Errors

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

e |tis a Syntax Error if the lexical token sequence matched by
CoverParenthesizedExpressionAndArrowParameterList cannot be parsed with no tokens left over
using ParenthesizedExpression as the goal symbol.

o All Early Errors rules for ParenthesizedExpression and its derived productions also apply to the
CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.

12.2.10.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.3.1.2, 12.4.2, 12.5.2, 12.6.1, 12.71, 12.81, 12.9.1, 12101, 12.11.1, 12.121,
12.13.1,12.14.2,12.15.1,14.1.11, 14.4.8, 14.5.8.

ParenthesizedExpression : (Expression)

1. Return IsFunctionDefinition of Expression.
12.2.10.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.3.1.3, 12.4.3, 12.53, 12.6.2, 12.7.2, 12.82, 12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3, 12.15.2.

ParenthesizedExpression : (Expression)

1. Return IsValidSimpleAssignmentTarget of Expression.
12.2.10.4 Runtime Semantics: Evaluation

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of
CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesizedExpression % (Expression)

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for
this is so that operators such as delete and typeof may be applied to parenthesized expressions.

© Ecma International 2014 172

oeCha

12.3 Left-Hand-Side Expressions

Syntax

MemberExpressionyyieiq) :
[Lexical goal InputElementRegExp] Primary Expression|ayieiq)
MemberExpressionjayieia) [Expressionn, 7vieiq) 1
MemberExpressionvieq) - IdentifierName
MemberExpressionyielq) TemplateLiteraliyieiq)
super [Expressionn, 2vield]
super . IdentifierName
new super Argumentspyield]
new MemberExpressionpyvieqy Argumentsiyieiq)

NewExpressionyielq) :
MemberExpressionpvieiq
new NewExpressionpyield
new super

CallExpressionyyieiq -
MemberExpressionvielq) Argumentspvieiq)
super Argumentspyield)
CallExpressionpyvieiqy Argumentspayiei)
CallExpressionpyvieiq) [Expressionyn, 2vieid 1
CallExpressionpyielq) - IdentifierName
CallExpressionpyvielqy TemplateLiteralyyieiq

Argumentsyieiq) -
()
(ArgumentListiryieiq))

ArgumentListyyieiq) :
AssignmentExpression[in 2yield]
. AssignmentEXpresSionn, 7vield]
ArgumentListizvieia) , AssignmentExpressionyn, 7Yield)
ArgumentListizvield) , - - - AssignmentExpressionyn, »Yield)

LeftHandSideExpression|yieiq :
NewExpressionpavieid
CallExpressionpsyield)
12.3.1 Static Semantics
12.3.1.1 Static Semantics: Contains
With parameter symbol.
See also:5.3,12.2.5.2,14.1.4,14.2.3,14.4.3,14.54

MemberExpression . MemberExpression . IdentifierName
1. If MemberExpression Contains symbol is true, return true.

© Ecma International 2014 173

oeCha

2. If symbol is a ReservedWord, return false.

3. Ifsymbol is an Identifier and StringValue of symbol is the same value as the StringValue of
IdentifierName, return true;

4. Return false.

MemberExpression : super . IdentifierName

1. If symbol is the ReservedWord super, return true.
. Ifsymbol is a ReservedWord, return false.
3. Ifsymbol is an Identifier and StringValue of symbol is the same value as the StringValue of
IdentifierName, return true;
4. Return false.

CallExpression : CallExpression . IdentifierName

[y

If CallExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. Ifsymbol is an Identifier and StringValue of symbol is the same value as the StringValue of
IdentifierName, return true;

4. Return false.

MemberExpression : new super

1. If symbol is the ReservedWord super, return true.
2. If symbol is the ReservedWord new, return true:
3. Return false.

MemberExpression : new super Arguments

1. If symbol is the ReservedWord super, return true.
2. If symbol is the ReservedWord new, return true.
3. Return the result of Arguments Contains symbol.

12.3.1.2 Static Semantics: IsFunctionDefinition

See also: 12:2.0:2, 12.2.10.2, 12.4.2, 12.5.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12111, 12.12.1,

12.13.1,12.14.2,12.15.1, 14.1.11,14.4.8, 14.5.8.

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
super [Expression]
super . IdentifierName
new super Argumentsqp
new MemberExpression Arguments

NewExpression .
new NewExpression

© Ecma International 2014

174

oeCha

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . IdentifierName
CallExpression TemplateLiteral

1. Return false.
12.3.1.3 Static Semantics: IsldentifierRef
See also: 12.2.0.3.

LeftHandSideExpression :
CallExpression

MemberExpression :
MemberExpression [Expression]
MemberExpression . IldentifierName
MemberExpression TemplateLiteral
super [Expression]
super . IldentifierName
new super Argumentsqpt
new MemberExpression Arguments

NewExpression .
new NewExpression

1. Return false.
12.3.1.4 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12:4.3, 12.5.3, 12:6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3, 12.15.2.

CallExpression :
CallExpression [Expression]
CallExpression . IdentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
super [Expression]
super . [dentifierName

1. Return true.

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression TemplateLiteral

© Ecma International 2014 175

oeCha

NewExpression : new NewExpression

MemberExpression :
MemberExpression TemplateLiteral
new super Argumentsqp
new MemberExpression Arguments

1. Return false.
12.3.2 Property Accessors
NOTE Properties are accessed by name, using either the dot notation:
MemberExpression . IdentifierName
CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression 1
CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:
MemberExpression . IdentifierName
is identical in its behaviour to
MemberExpression [<identifier-name-string>]
and similarly
CallExpression . IdentifierName
is identical in its behaviour to
CallExpression [<identifier-name-string> 1

where <identifier-name-string> is a string literal containing the same sequence of characters after processing of
Unicode escape sequences as the IdentifierName.

12.3.2.1 Runtime Semantics: Evaluation

MemberExpression : MemberExpression.[Expression]

Let baseReference be the result of evaluating MemberExpression.

Let baseValue be GetValue(baseReference).

ReturnlfAbrupt(baseValue).

Let propertyNameReference be the result of evaluating Expression.

Let propertyNameValue be GetValue(propertyNameReference).

ReturnlfAbrupt(propertyNameValue).

Let bv be CheckObjectCoercible(base Value).

ReturnIfAbrupt(bv).

Let propertyNameString be ToString(propertyNameValue).

0. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.

11. Return a value of type Reference whose base value is bv and whose referenced name is

propertyNameString, and whose strict reference flag is strict.

SO0 N LR WO

© Ecma International 2014 176

oeCha

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression 1 except
that the contained CallExpression is evaluated in step 1.

12.3.3 The new Operator

12.3.3.1 Runtime Semantics: Evaluation

NewEXxpression : new NewExpression

DN A W —

Let ref be the result of evaluating NewExpression.

Let constructor be GetValue(ref).

ReturnlfAbrupt(constructor).

If IsConstructor(constructor) is false, throw a TypeError.exception.

Return the result of calling the [[Construct]] internal method on constructor with an empty List as
the argument.

MemberExpression : new MemberExpression Arguments

SRR L=

11.

12.

0.

Let ref be the result of evaluating MemberExpression.

Let constructor be GetValue(ref).

ReturnIfAbrupt(constructor).

Let arglList be the result of evaluating Arguments, producing a List of argument values (12.3.6).
ReturnIfAbrupt(argList).

If IsConstructor (constructor) is false, throw a TypeError exception:

Let thisCall be this MemberExpression.

Let tailCall be InTailPosition(thisCall). (See 14.6.1)

If tailCall is true, then perform the PrepareForTailCall abstract operation.

Let result be the result of calling the [[Construct]] internal method on constructor, passing argList
as the argument.

Assert: If tailCall is true, the above call of [[Construct]] will not return here, but instead evaluation
will continue as if the following return has already occurred.

Return result.

12.3.4 Function Calls

12.3.4.1 Runtime Semantics: Evaluation

CallExpression : MemberExpression Arguments

1.

3.
4.
5.

Let ref be the result of evaluating MemberExpression.

If MemberExpression consists solely of the I/dentifierName eval, then
a. check if direct'eval

b. Return EvaluateCall(ref, Arguments, false).

Let thisCall be this CallExpression.

Let tailCall be InTailPosition(thisCall). (See 14.6.1)

Return EvaluateCall(ref, Arguments, tailCall).

CallExpression : CallExpression Arguments

1.
2.
3.

Let ref be the result of evaluating CallExpression.
Let thisCall be this CallExpression
Let tailCall be InTailPosition(thisCall). (See 14.6.1)

© Ecma International 2014 177

oecnd

4. Return EvaluateCall(ref, Arguments, tailCall).
12.3.4.2 Runtime Semantics: EvaluateCall

The abstract operation EvaluateCall takes as arguments a value ref, and a syntactic grammar production
arguments, and a Boolean argument tailPosition. 1t performs the following steps:

Let func be GetValue(ref).
ReturnIfAbrupt(func).
Let argList be ArgumentListEvaluation(arguments).
ReturnlfAbrupt(arglList).
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then
i. Let thisValue be GetThisValue(ref).
b. Else, the base of ref'is an Environment Record
i. Let thisValue be the result of calling the WithBaseObject concrete method of GetBase(ref).
8. Else Type(ref) is not Reference,
a. Let thisValue be undefined.
9. [If tailPosition is true, then perform the PrepareForTailCall-abstract operation.
10. Let result be the result of calling the [[Call]] internal method on func, passing thisValue as the
thisArgument and arglist as the argumentsList.
11. Assert: If tailPosition is true, the above call will not return here, but instead evaluation will
continue as if the following return has already occurred.
12. Assert: If result is not an abrupt completion then Type(result) is an ECMAScript language type
13. Return result.

Nk v =

12.3.5 The super Keyword
12.3.5.1 Static Semantics: Early Errors

MemberExpression :
super [Expression]
super. . IdentifierName
new super Arguments

NewExpression : new super
CallExpression : super Arguments

e It is a Syntax Error if the source code parsed with this production is global code that is not eval
code.

e It is a Syntax Error if the source code parsed with this production is eval code and the source
code is not being processed by a direct call to eval that is contained in function code.

12.3.5.2 Runtime Semantics: Evaluation

MemberExpression . super [Expression]

1. Let propertyNameReference be the result of evaluating Expression.
2. Let propertyNameValue be GetValue(propertyNameReference).
3. Let propertyKey be ToPropertyKey(propertyNameValue).

© Ecma International 2014 178

oecind

4.

5.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.
Return MakeSuperReference(propertyKey, strict).

MemberExpression : super . IdentifierName

1.
2.

3.

Let propertyKey be StringValue of IdentifierName.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.

Return MakeSuperReference(propertyKey, strict).

MemberExpression : new super Arguments

1.

—_— = 0 00 O\ L A~ WD

—_
N

13.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.

Let ref be MakeSuperReference(undefined, strict).

Let constructor be GetValue(ref).

ReturnIfAbrupt(constructor).

Let argList be the result of evaluating Arguments, producing a List of argument values (12.3.6).
ReturnlfAbrupt(argList).

If IsConstructor (constructor) is false, throw a TypeError exception.

Let thisCall be this MemberExpression.

Let tailCall be InTailPosition(thisCall). (See 14.6.1)

If tailCall is true, then perform the PrepareForTailCall abstract operation.

Let result be the result of calling the [[Construct]].internal method on constructor, passing argList
as the argument.

. Assert: If tailCall is true, the above call of [[Construct]] will-not return here, but instead evaluation

will continue as if the following return has already occurred.
Return result.

NewExpression : new super

1.

— = 0 00 1 O\ L A WIN

—
\S)

13.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.

Let ref be MakeSuperReference(undefined, strict).

Let constructor be GetValue(ref).

ReturnIfAbrupt(constructor).

Let argList bea new empty List.

ReturnlfAbrupt(argList).

If IsConstructor (constructor) is false, throw a TypeError exception.

Let thisCall be this NewExpression.

Let tailCall be InTailPosition(thisCall). (See 14.6.1)

If tailCall is true, then perform the PrepareForTailCall abstract operation.

Let result be the result of calling the [[Construct]] internal method on constructor, passing argList
as the argument.

. Assert: If tailCall is true, the above call of [[Construct]] will not return here, but instead evaluation

will continue as if the following return has already occurred.
Return result.

CallExpression : super Arguments

1.

2.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.
Let ref be MakeSuperReference(undefined, strict).

© Ecma International 2014 179

oeCha

ReturnIfAbrupt(ref).

Let thisCall be this CallExpression.

Let tailCall be InTailPosition(thisCall). (See 14.6.1)
Return EvaluateCall(ref, Arguments, tailCall).

AN DN A~ W

12.3.5.3 Runtime Semantics: MakeSuperReference(propertyKey, strict)

—_

Let env be GetThisEnvironment().

If the result of calling the HasSuperBinding concrete method of env is false, then throw a
ReferenceError exception.

Let actualThis be the result of calling the GetThisBinding concretemethod of env.

Let baseValue be the result of calling the GetSuperBase concrete'method of env.

Let bv be CheckObjectCoercible(baseValue).

ReturnIfAbrupt(bv).

If propertyKey is undefined, then

a. Let propertyKey be the result of calling the GetMethodName concrete method of env.
b. If propertyKey is undefined, then then throw a‘ReferenceError exception.

8. Return a value of type Reference that is a Super Reference whose base value is bv, whose
referenced name is propertyKey, whose thisValue is actualThis; and whose strict reference flag is
strict.

N

Nowkw

12.3.6 Argument Lists
NOTE The evaluation of an argument list produces a List of values (see 6.2.1).
12.3.6.1 Runtime Semantics: ArgumentListEvaluation

See also: 12.2.9.2.1

Arguments @ ()

1. Return an empty List.

ArgumentList : AssignmentExpression

1. Letref be the result of evaluating AssignmentExpression.
2. et arg be GetValue(ref).

3¢ ReturnIfAbrupt(arg).

4. Return a List whose sole item is arg.

ArgumentList : . . . AssignmentExpression

Let /list. be an empty List.

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadObj be GetValue(spreadRef).
ReturnlfAbrupt(spreadOby).

If Type(spreadObj) is not Object, then throw a TypeError exception.
Let iterator be Getlterator(spreadOby).
ReturnIfAbrupt(iterator).

Repeat

a. Let next be IteratorStep(iterator).

b. ReturnIfAbrupt(next).

c. If next is false, then return /list.

d. Let nextArg be IteratorValue(next).

© Ecma International 2014 180

A Sl e

oecind

e. ReturnIfAbrupt(nextArg).
f. Append nextArg as the last element of /ist.

ArgumentlList © ArgumentList , AssignmentExpression

NN AW~

Let precedingArgs be the result of evaluating ArgumentList.

ReturnlfAbrupt(precedingArgs).

Let ref be the result of evaluating AssignmentExpression.

Let arg be GetValue(ref).

ReturnIfAbrupt(arg).

Return a List whose length is one greater than the length of precedingArgs and whose items are the
items of precedingArgs, in order, followed at the end by arg which is the last item of the new list.

ArgumentList : ArgumentList , ... AssignmentExpression

XN R LD~

Let precedingArgs be the result of evaluating ArgumentList.

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadObj be GetValue(spreadRef).
ReturnlfAbrupt(spreadOby).

If Type(spreadObj) is not Object, then throw a TypeError exception.
Let iterator be Getlterator(spreadOby).
ReturnIfAbrupt(iterator).

Repeat

Let next be IteratorStep(iterator).

ReturnIfAbrupt(next).

If next is false, then return precedingArgs.

Let nextArg be IteratorValue(next).
ReturnIfAbrupt(nextArg).

Append nextArg as the last element of precedingArgs.

mo o o

12.3.7 Tagged Templates

12.3.7.1 Runtime Semantics: Evaluation

MemberExpression : MemberExpression TemplateLiteral

1

2.
3.
4.

Let tagRef be the result of evaluating MemberExpression.
Let thisCall be this MemberExpression.

Let tailCall be InTailPosition(thisCall). (See 14.6.1)
Return EvaluateCall(tagRef, TemplateLiteral, tailCall).

CallExpression : CallExpression TemplateLiteral

AW N =

Let tagRef be the result of evaluating CallExpression.
Let thisCall be this CallExpression.

Let tailCall be InTailPosition(thisCall). (See 14.6.1)
Return EvaluateCall(tagRef, TemplateLiteral, tailCall).

© Ecma International 2014 181

secind

12.4 Postfix Expressions

Syntax

PostfixExpressionyyiey) :
LeftHandSideExpressionvielq)
LeftHandSideExpressionyieiq) [no LineTerminator here] ++
LeftHandSideExpressionyvieiq) [no LineTerminator here] —-

12.4.1 Static Semantics: Early Errors

PostfixExpression :
LeftHandSideExpression — ++
LeftHandSideExpression =~ —-

e ltis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.
12.4.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 12.5.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12121,
12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.8, 14.5.8

PostfixExpression :
LeftHandSideExpression ++
LeftHandSideExpression —-

1. Return false.
12.4.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12:2.10.3, 12.3.1.3, 12.5.3, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3, 1245.2.

PostfixExpression :
LeftHandSideExpression ++
LeftHandSideExpression ==

1. Return false.
12.4.4 Postfix Increment Operator
12.4.4.1 Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression ++

1. Let /hs be the result of evaluating LeftHandSide Expression.

2. Let oldValue be ToNumber(GetValue(/hs)).

3. ReturnlfAbrupt(oldValue).

4. Let newValue be the result of adding the value 1 to ol/dValue, using the same rules as for the +
operator (see 12.7.5).

Let status be PutValue(lhs, newValue).

ReturnlfAbrupt(status).

7. Return oldValue.

A\ D

© Ecma International 2014 182

oecnd

12.4.5 Postfix Decrement Operator
12.4.5.1 Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression —-

1. Let /hs be the result of evaluating LeftHandSideExpression.

2. Let oldValue be ToNumber(GetValue(lhs)).

3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the
- operator (12.7.5).

4. Let status be PutValue(lhs, newValue).

5. ReturnIfAbrupt(status).

6. Return oldValue.

12.5 Unary Operators

Syntax

UnaryExpressionpyieiq -
PostfixExpressionpayieiq)
delete UnaryExpressionpyield
void UnaryExpressionpyieid
typeof UnaryExpressionpayieiq
++ UnaryExpressionjavieiq
-= UnaryExpressionpsyield]

+ UnaryExpressionpzyield
- UnaryExpressionyvield)
~ UnaryExpression|vielq)
v UnaryExpressionpayield

12.5.1 Static Semantics: Early Errors
UnaryExpression :

++ UnaryExpression
-— UnaryExpression

e ~ ltis an early Reference Error if IsValidSimpleAssignmentTarget of UnaryExpression is false.
12.5.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 12.4.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,
12.13.1,1214.2, 12.15.1, 14.1.11, 14.4.8, 14.5.8.

© Ecma International 2014 183

secind

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-= UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
' UnaryExpression

1. Return false.
12.5.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 12.6.2, 12.7:2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3,12.15.2.

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
—-— UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

1. Return false.

12.5.4 The delete Operator
12.5.4.1 Static Semantics: Early Errors

UnaryExpression . delete UnaryExpression

e ltis a Syntax Error if the UnaryExpression is contained in strict code and the derived
UnaryExpression is PrimaryExpression : IdentifierReference.
e ltis a Syntax Error if the derived UnaryExpression is
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
and derives a production that, if used in place of UnaryExpression, would produce a Syntax Error

according to these rules. This rule is recursively applied.
NOTE The last rule means that expressions such as
delete (((foo0)))
produce early errors because of recursive application of the first rule.

12.5.4.2 Runtime Semantics: Evaluation

UnaryExpression . delete UnaryExpression

© Ecma International 2014 184

eCmd

A WO -

NOTE

Let ref be the result of evaluating UnaryExpression.

ReturnIfAbrupt(ref).

If Type(ref) is not Reference, return true.

If IsUnresolvableReference(ref) is true, then,

a. Assert: IsStrictReference(ref) is false.

b. Return true.

If IsPropertyReference(ref) is true, then

a. If IsSuperReference(ref), then throw a ReferenceError exception.

b. Let deleteStatus be the result of calling the [[Delete]] internal method on

ToObject(GetBase(ref)), providing GetReferencedName(ref) as the argument.

ReturnlfAbrupt(deleteStatus).

If deleteStatus is false and IsStrictReference(ref) is true, then throw a TypeError exception.

. Return deleteStatus.

Else ref'is a Reference to an Environment Record binding,

a. Let bindings be GetBase(ref).

b. Return the result of calling the DeleteBinding concrete method of bindings, providing
GetReferencedName(ref) as the argument.

o oo

When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its

UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete
operator occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a
TypeError exception is thrown.

12.5.5 The void Operator

12.5.5.1 Runtime Semantics: Evaluation

UnaryExpression : void UnaryExpression

1.

2.
3.
4

NOTE

Let expr be the result of evaluating UnaryExpression.
Let status be GetValue(expr).
ReturnIfAbrupt(status).

Return undefined.

GetValue must be called even though its value is not used because it may have observable side-effects.

12.5.6 The typeof Operator

12.5.6.1 Runtime Semantics: Evaluation

UnaryExpression . typeof UnaryExpression

1.
2.

W

Let val be the result of evaluating UnaryExpression.

If Type(val) is Reference, then

a. If IsUnresolvableReference(val) is true, return "undefined".
b. Let val'be GetValue(val).

ReturnlfAbrupt(val).

Return a String according to Table 33.

© Ecma International 2014 185

secind

Table 33 — typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Symbol "symbol"

Object (ordinary and does | "object"
not implement [[Call]])

Object (standard exotic and | "object"
does not implement [[Call]])

Object (implements [[Call]]) | "function”

Object (non-standard exotic | Implementation-defined. Must not

and does not implement be "undefined", "boolean",
[[Calll) "number", "symbol", or
"string".
NOTE Implementations are discouraged from defining new typeof result values for non-standard exotic

objects. If possible "object"should be used for such objects.

12.5.7 Prefix Increment Operator

12.5.7.1 Runtime Semantics: Evaluation

UnaryExpression : ++ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToNumber(GetValue(expr)).

3. ReturnlfAbrupt(oldValue).
4

LetnewValue be the result of adding the value 1 to oldValue, using the same rules as for the +

operator (see 12.7.5).

AN D

7. Return newValue.

Let status be PutValue(expr, newValue).
ReturnIfAbrupt(status).

12.5.8 Prefix Decrement Operator

12.5.8.1 Runtime Semantics: Evaluation

UnaryExpression : == UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToNumber(GetValue(expr)).

3. ReturnlfAbrupt(oldValue).

4. Let newValue be the result of subtracting the value 1 from o/dValue, using the same rules as for the

- operator (see 12.7.5).

5. Let status be PutValue(expr, newValue).

© Ecma International 2014

186

oecnd

6. ReturnIfAbrupt(status).
7. Return newValue.

12.5.9 Unary + Operator
NOTE The unary + operator converts its operand to Number type.
12.5.9.1 Runtime Semantics: Evaluation

UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).

12.5.10 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0,
and negating —0 produces +0.

12.5.10.1 Runtime Semantics: Evaluation

UnaryExpression : = UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)).

ReturnIfAbrupt(oldValue).

If oldValue is NaN, return NaN.

Return the result of negating o/dValue; that is, compute a Number with the same magnitude but
opposite sign.

O I S R S

12.5.11 Bitwise NOT Operator (~)
12.5.11.1 Runtime Semantics: Evaluation

UnaryExpression.. ~ UnaryExpression

1. _Let expr be the result of evaluating UnaryExpression.

2+ Let oldValue be Tolnt32(GetValue(expr)).

3. ReturnIfAbrupt(oldValue).

4. Return the result of applying bitwise complement to o/dValue. The result is a signed 32-bit integer.

12.5.12 Logical NOT Operator (!)
12.5.12.1 Runtime Semantics: Evaluation

UnaryExpression . V' UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(GetValue(expr)).
ReturnIfAbrupt(oldValue).

If oldValue is true, return false.

Return true.

W bW

© Ecma International 2014 187

oecnd

12.6 Multiplicative Operators

Syntax

MultiplicativeExpression|yieyq) :
UnaryExpressionavield]
MultiplicativeExpressionpyvieqy * UnaryExpressionpyieiq
MultiplicativeExpressionpvieq) / UnaryExpressionpyieiq
MultiplicativeExpressionpyvieq % UnaryExpressionpyieiq

12.6.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 12.4.2, 12.5.2, 12.7.1, 12.841, 12.9.1,1210.1, 12.11.1, 12.121,
12.13.1,12.14.2,12.15.1,14.1.11, 14.4.8, 14.5.8.

MultiplicativeExpression :
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

1. Return false.
12.6.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 12.5.3, 12.7.2, 12.8.2,12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3, 12.15.2.

MultiplicativeExpression :
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression $ UnaryExpression

1. Return false.
12.6.3 Runtime Semantics: Evaluation

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for
one.of the operators in the above definitions, is evaluated as follows:

Let /eft be the result of evaluating MultiplicativeExpression.
Let /eftValue be GetValue(/ef?).

ReturnIfAbrupt(/eftValue).

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValue(right).

Let Inum be ToNumber(/eftValue).

ReturnIfAbrupt(/num).

Let rnum be ToNumber(rightValue).

ReturnIfAbrupt(rnum).

0. Return the result of applying the specified operation (*, /, or %) to /num and rnum. See the Notes
below 12.6.3.1, 12.6.3.2, 12.6.3.3.

S0P NO LR W e

© Ecma International 2014 188

ecind

12.6.3.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision

arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity by an infinity results in an<infinity. The sign is determined by
the rule already stated above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign
is determined by the rule already stated above.

In the remaining cases, where neither an infinity nor NaN is involved, the product is
computed and rounded to the nearest representable value using IEEE 754 round-to-
nearest mode. If the magnitude is too large to represent, the result is then an infinity of
appropriate sign. If the magnitude is too small to represent, the result is then a zero of
appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

12.6.3.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend
and the right operand is the divisor. ECMAScript does not perform integer division. The operands and
result of all division operations are double-precision floating-point numbers. The result of division is
determined by the specification of IEEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result.is positive if both operands have the same sign, negative if the
operands have different signs.

Division of an infinity by an infinity results in NaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.

Division of an infinity by a nonzero finite value results in a signed infinity. The sign is
determined by the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

Division of a zero by a zero results in NaN; division of zero by any other finite value
results in zero, with the sign determined by the rule already stated above.

Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
quotient is computed and rounded to the nearest representable value using IEEE 754
round-to-nearest mode. If the magnitude is too large to represent, the operation
overflows; the result is then an infinity of appropriate sign. If the magnitude is too small
to represent, the operation underflows and the result is a zero of the appropriate sign.
The ECMAScript language requires support of gradual underflow as defined by IEEE
754.

© Ecma International 2014 189

secind

12.6.3.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts
floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
“remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour<is not analogous to that of the
usual integer remainder operator. Instead the ECMAScript language defines % on floating-point
operations to behave in a manner analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

o |If either operand is NaN, the result is NaN.

e The sign of the result equals the sign of the dividend.

o |[f the dividend is an infinity, or the divisor is a zero, or both, the resultis NaN.

e |[f the dividend is finite and the divisor is an infinity, the result equals the dividend.

o If the dividend is a zero and the divisor is nonzero and finite, the result is the same as
the dividend.

¢ In the remaining cases, where neither an infinity,.nor a zero, nor NaN is involved, the
floating-point remainder r from' a dividend n and a divisor d is defined by the
mathematical relation r= n — (d x q) where q is an integer that is negative only if n/d is
negative and positive only if n/d is positive, and whose magnitude is as large as possible
without exceeding the magnitude of the true mathematical quotient of n and d. r is
computed.and rounded to the nearest representable value using IEEE 754 round-to-
nearest mode.

12.7 Additive Operators

Syntax

AdditiveExpressionyyielq +
MultiplicativeExpressionayieiq)
AdditiveExpressionpavieqy + MultiplicativeExpressionyayielq)
AdditiveExpressionpavieqy = MultiplicativeExpressionyavieiq)

12.7.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 12.4.2, 12.5.2, 12.6.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,
12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.8, 14.5.8.

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression — MultiplicativeExpression

1. Return false.

© Ecma International 2014 190

oecnd

12.7.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 12.5.3, 12.6.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3,12.15.2.

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

1. Return false.
12.7.3 The Addition operator (+)
NOTE The addition operator either performs string concatenation or numeric addition.
12.7.3.1 Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

Let /ref be the result of evaluating AdditiveExpression.

Let /val be GetValue(/ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating MultiplicativeExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let Iprim be ToPrimitive(/val).

ReturnIfAbrupt(/prim).

Let rprim be ToPrimitive(rval).

ReturnIfAbrupt(rprim).

If Type(lprim) is String or Type(rprim) is String, then

a. Return the String that is the result of concatenating ToString(/prim) followed by
ToString(rprim)

12. Return the result of applying the addition operation to ToNumber(/prim) and ToNumber(rprim). See

the Note below 12.7.5.

NOTE 1 No-hint.is provided in the calls to ToPrimitive in steps 7 and 9. All standard objects except Date objects
handle the:absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the hint
String were given. Exotic objects may handle the absence of a hint in some other manner.

SISO AN =

_—

NOTE 2 Step 11 differs from step 5 of the Abstract Relational Comparison algorithm (7.2.8), by using the logical-
or operation instead of the logical-and operation.

12.7.4 The Subtraction Operator (-)
12.7.4.1 Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression — MultiplicativeExpression

Let /ref be the result of evaluating AdditiveExpression.

Let /val be GetValue(/ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

AN AW

© Ecma International 2014 191

ecimna

Let Inum be ToNumber(/val).

ReturnlfAbrupt(lnum).

. Let rnum be ToNumber(rval).

0. ReturnIfAbrupt(rnum).

1. Return the result of applying the subtraction operation to /num and rnum. See the note below 12.7.5.

— = \O 00

12.7.5 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of
the operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:
o |If either operand is NaN, the result is NaN.
e The sum of two infinities of opposite sign is NaN.
e The sum of two infinities of the same sign‘is the infinity of that sign.
e The sum of an infinity and a finite value is equal to the infinite operand.
e The sum of two negative zeroes is —0. The sum of two positive zeroes, or of two zeroes
of opposite sign, is +0.
e The sum of a zero and a nonzero finite value is equal to the nonzero operand.
e The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

¢ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and
the operands have the same sign or have different-magnitudes, the sum is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode.
If the magnitude-is too large to represent, the operation overflows and the result is then
an infinity of appropriate sign. The ECMAScript language requires support of gradual
underflow as defined by IEEE 754.

NOTE The - operator performs subtraction. when applied to two operands of numeric type, producing the
difference of its operands; the left operand is the minuend.and the right operand is the subtrahend. Given numeric
operands « and b, it is always the case that a—b produces the same result as a + (-b).

12.8 Bitwise Shift Operators

Syntax

ShiftExpressionyield) :
AdditiveExpressionayield)
ShiftExpressionpvieq) << AdditiveExpressionpyieiq
ShiftExpressionpyiei) >> AdditiveExpressionsyieiq)
ShiftExpressionpyielq) >>> AdditiveExpressionayield)

12.8.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 12.4.2, 12.5.2, 12.6.1, 12.7.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,
12.13.1,12.14.2,12.15.1,14.1.11, 14.4.8, 14.5.8.

© Ecma International 2014 192

oecnd

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return false.
12.8.2 Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 12.5.3, 12.6.2, 12.7.2, 12.9.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3,12.15.2.

ShiftExpression :
ShifiExpression << AdditiveExpression
ShifiExpression >> AdditiveExpression
ShifiExpression >>> AdditiveExpression

1. Return false.
12.8.3 The Left Shift Operator (<<)
NOTE Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.
12.8.3.1 Runtime Semantics: Evaluation

ShiftExpression : ShiftExpression << AdditiveExpression

Let /ref be the result of evaluating ShiftExpression.

Let /val be GetValue({ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let /num be Tolnt32(/val):

ReturnIfAbrupt(/num).

Let7num be ToUint32(rval).

ReturnIfAbrupt(rnum).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is,
compute rnum & Ox1F.

.Return the result of left shifting /num by shiftCount bits. The result is a signed 32-bit integer.

— = 0 00 1O\ L b WN —

—_
\S)

12.8.4 The Signed Right Shift Operator (>>)

NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

12.8.4.1 Runtime Semantics: Evaluation

ShifiExpression : ShiftExpression >> AdditiveExpression

1. Let /ref be the result of evaluating ShiftExpression.

2. Let lval be GetValue(/ref).

3. ReturnlfAbrupt(/val).

4. Let rref be the result of evaluating AdditiveExpression.

© Ecma International 2014 193

oeCha

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let Inum be Tolnt32(/val).

ReturnlfAbrupt(lnum).

Let rnum be ToUint32(rval).

ReturnlfAbrupt(rnum).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is,
compute rnum & Ox1F.

12. Return the result of performing a sign-extending right shift of /num by shiftCount bits. The most
significant bit is propagated. The result is a signed 32-bit integer.

— = O 0 3 O\ W

_—0

12.8.5 The Unsigned Right Shift Operator (>>>)

NOTE Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

12.8.5.1 Runtime Semantics: Evaluation

ShiftExpression : ShiftExpression >>> AdditiveExpression

Let /ref be the result of evaluating ShiftExpression.

Let /val be GetValue(/ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let Inum be ToUint32(lval).

ReturnIfAbrupt(/num).

Let rnum be ToUint32(rval).

ReturnIfAbrupt(rnum).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is,

compute rnum & Ox1F.

. Return the result of performing a zero-filling right shift of /num by shiftCount bits. Vacated bits are
filled with zero. The result is an unsigned 32-bit integer.

—_— = 0 00 IO LN WK —

—
[\

12.9 Relational Operators

NOTE The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

Syntax

RelationalExpressionyn, vield) :
ShiftExpressionsyieidi
RelationalExpressionpn, 7vielq) < ShiftExpressionsyieiq)
RelationalExpressionpn, 7vielq) > ShiftExpressionsyieiq)
RelationalExpressionpn, 2vield) <= ShiftExpressions yield)
RelationalExpressionpn, 7vielq) >= ShiftExpressionjayield)
RelationalExpressionpn, 7vielq) instanceof ShiftExpression|ayield)
[+In] RelationalExpressionyn, 7vielq) in ShiftExpression|ayieid)

NOTE The [in] grammar parameter is needed to avoid confusing the in operator in a relational expression with
the in operatorin a for statement.

© Ecma International 2014 194

oecnd

12.9.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 12.4.2, 125.2, 12.6.1, 12.7.1, 12.8.1, 12.10.1, 12.11.1, 12.121,
12.13.1,12.14.2,12.15.1,14.1.11, 14.4.8, 14.5.8.

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

1. Return false.
12.9.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 12.5.3,12.6.2, 12.7.2, 12.8.2, 12.10.2, 12.11.2, 12.12.2,
12.13.2,12.14.3,12.15.2.

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

1. Return false.
12.9.3 Runtime Semantics: Evaluation

RelationalExpression : Relational Expression < ShiftExpression

Let [ref be the result of evaluating RelationalExpression.

Let lval be GetValue(/ref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let be the result of performing Abstract Relational Comparison /val < rval. (see 7.2.8)
ReturnIfAbrupt(r).

If 7 is undefined, return false. Otherwise, return 7.

0~ SEEgES U N =

RelationalExpression . RelationalExpression > ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(/ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let be the result of performing Abstract Relational Comparison rval < lval with LeftFirst equal to
false.

7. ReturnIfAbrupt(r).

AN AW~

© Ecma International 2014 195

oeCha

8. Ifris undefined, return false. Otherwise, return r.

RelationalExpression : Relational Expression <= ShiftExpression

Let Iref be the result of evaluating Relational Expression.

Let Ival be GetValue(/ref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing Abstract Relational Comparison rval < Ival with LeftFirst equal to
false.

ReturnIfAbrupt(r).

8. Ifris true or undefined, return false. Otherwise, return true.

NN AW~

~

RelationalExpression @ RelationalExpression >= ShiftExpression

Let /ref be the result of evaluating RelationalExpression.

Let lval be GetValue(lref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing Abstract Relational Comparison /val < rval.
ReturnIfAbrupt(r).

If 7 is true or undefined, return false. Otherwise, return true.

XNk LD~

RelationalExpression : RelationalExpression instanceof ShiftExpression

Let /ref be the result of evaluating RelationalExpression.
Let /val be GetValue(/ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Return InstanceofOperator(/val, rval).

Nk L=

RelationalExpression.: RelationalExpression in ShiftExpression

Let /ref be the result of evaluating RelationalExpression.
Let /val be GetValue(/ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

If Type(rval) is not Object, throw a TypeError exception.
Return HasProperty(rval, ToPropertyKey(/val)).

SRR 2 N

12.9.4 Runtime Semantics: InstanceofOperator(O, C)

The abstract operation InstanceofOperator(O, C) implements the generic algorithm for determining if an
object O inherits from the inheritance path defined by constructor C. This abstract operation performs the
following steps:

1. If Type(C) is not Object, throw a TypeError exception.
2. Let instOfHandler be GetMethod(C,@@hasInstance).
3. ReturnlfAbrupt(instOfHandler).

© Ecma International 2014 196

eCmd

4. IfinstOfHandler is not undefined, then
a. Let result be the result of calling the [[Call]] internal method of instOfHandler passing C as
thisArgument and a new List containing O as argumentsList.
b. Return ToBoolean(result).
5. IfIsCallable(C) is false, then throw a TypeError exception.
6. Return OrdinaryHasInstance(C, O).

NOTE Steps 5 and 6 provide compatibility with previous editions of ECMAScript that did not use a
@@haslnstance method to define the instanceo£f operator semantics. If a function object does not define or inherit
@@haslnstance it uses the default instanceof semantics.

12.10 Equality Operators

NOTE The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.
Syntax

EqualityExpressionyn, vieiq :
RelationalExpressionain, 7vieiq)

EqualityExpressionpn, avieqy == RelationalExpressionpin, 2vield)
EqualityExpressionpn, wvielq) '= RelationalExpressionpin, »vield]
EqualityExpressionn, avielqy === RelationalExpressionjain, »vield]
EqualityExpressionpn, wvieqy '== RelationalExpressionian, »vieiq)

12.10.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2,12.3:1.2, 12.4.2, 1252, 12.6.1, 1271, 12.8.1, 12.9.1, 12.11.1, 12.12.1,
12.13.1,12.14.2,12.15.1, 14.1.11,14.4.8, 14.5.8.

EqualityExpression :
EqualityExpression. == RelationalExpression
EqualityExpression '= RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression '== RelationalExpression

1. <Return false.
12.10.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 1253, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.11.2, 12.12.2,
12.13.2,12.14.3, 12.15.2.

EqualityExpression :
EqualityExpression == RelationalExpression
EqualityExpression '= RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression '== RelationalExpression

1. Return false.

197

© Ecma International 2014

oeCha

12.10.3 Runtime Semantics: Evaluation

EqualityExpression . EqualityExpression == RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let Ival be GetValue(/ref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating Relational Expression.
Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Nk v =

EqualityExpression : EqualityExpression = Relational Expression

1. Let Iref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(/ref).
3. ReturnIfAbrupt(/val).
4. Let rref be the result of evaluating Relational Expression.
5. Let rval be GetValue(rref).
6. ReturnlfAbrupt(rval).
7. Let r be the result of performing Abstract Equality Comparison rval == [val.
8. Ifris true, return false. Otherwise, return true.
EqualityExpression : EqualityExpression === RelationalExpression
1. Let Iref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(/ref).
3. ReturnIfAbrupt(/val)
4. Let rref be the result of evaluating Relational Expression.
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. Return the result of performing Strict Equality Comparison rval ===

EqualityExpression : EqualityExpression == Relational Expression

Let lref be the result of evaluating EqualityExpression.
Let lval be GetValue(/ref).

ReturnIfAbrupt(/val).

Let rref be the result of evaluating Relational Expression.
Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

o N SRS D =

If 7 is true, return false. Otherwise, return true.

NOTE 1 Given the above definition of equality:

e String comparison can be forced by: "" + a == "" + b.
e Numeric comparison can be forced by: +a == +b.
e Boolean comparison can be forced by: 'a == 'b.

NOTE 2 The equality operators maintain the following invariants:
e A !=Bis equivalentto ! (A==B).

e A ==Bis equivalent to B == A, except in the order of evaluation of A and B.

© Ecma International 2014

Return the result of performing Abstract Equality Comparison rval == lval.

Let.r be the result of performing Strict Equality Comparison rval ===

198

secind

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same String value; each String object would be considered equal to the String value by the ==
operator, but the two String objects would not be equal to each other. For Example:

e new String("a") =="a" and "a" == new String("a")are both true.

e new String("a") ==new String("a") is false.

NOTE4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt
to use the more complex, semantically oriented definitions of character or string equality and collating order defined in
the Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in-normalized form.

12.11Binary Bitwise Operators

Syntax

BitwiseANDEXxpressionyn, vield] -
EqualityExpressionyn, 7viel)
BitwiseANDEXpressionn, »viel) & EqualityExpressionyg, 2ield]

BitwiseXORExpressionyn, vield] -
BitwiseANDEXpressionian, 2vield]
BitwiseXOREXpressionpin, 2vielq) ~ BitwiseANDEXpressionin, 2Yield]

BitwiseORExpressionyn, vield) -
BitwiseXOREXpressionpin, Yield]
BitwiseORExpressionpin, 7vield] | BitwiseXOREXpressionsin, 2Yield]

12.11.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.210.2, 12.3.1.2, 124.2, 125.2, 12.6.1, 1271, 12.8.1, 12.9.1, 12.10.1, 12.12.1,
12.13.1,12.14.2,12.151,14.1.11, 14.4.8, 14.5.8.

BitwiseANDExpression * BitwiseANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression * BitwiseANDExpression
BitwiseORExpression_: BitwiseORExpression | BitwiseXORExpression

1. Return false.
12:11.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 1253, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.12.2,
12.13.2,12.14.3, 12.15.2.

BitwiseANDExpression : BitwiseANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression *~ BitwiseANDExpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return false.
12.11.3 Runtime Semantics: Evaluation

The production 4 : A @ B, where @ is one of the bitwise operators in the productions above, is evaluated
as follows:

© Ecma International 2014 199

eCmd

Let /ref be the result of evaluating 4.
Let Ival be GetValue(/ref).
ReturnlfAbrupt(lval).

Let rref be the result of evaluating B.
Let rval be GetValue(rref).
ReturnIfAbrupt(rval).

Let Inum be Tolnt32(/val).
ReturnlfAbrupt(lnum).

Let rnum be Tolnt32(rval).
ReturnlfAbrupt(rnum).

Return the result of applying the bitwise operator @ to /num and rnum. The result is a signed 32 bit
integer.

e il

—_—O

12.12Binary Logical Operators

Syntax

Logical ANDExpressionyn, vieiq :
BitwiseORExpressionyan, ?vield]
Logical ANDExpressionpn, 7vielq) && BitwiseORExpressionain, 2vield]

Logical ORExpressionyn, vield] -
Logical ANDExpressionpin, 7vield]
Logical ORExpressionpin, 7vielq) | | LogicalANDEXpressionpin, 7vieiq]

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will
always be the value of one of the two operand expressions.

12.12.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 124.2, 1252, 12.6.1, 1271, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.13.1,12.14.2,12115.1, 14.1.11, 14.4.8, 14.5.8.

Logical ANDExpression : LogicalANDEXxpression && BitwiseORExpression
Logical ORExpression.: LogicalORExpression | | Logical ANDExpression

1. <Return false.
12.12.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 124.3, 1253, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2,
12.13.2,12.14.3, 12.15.2.

Logical ANDExpression .dLogical ANDExpression && BitwiseORExpression
Logical ORExpression : Logical ORExpression | | LogicalANDExpression

1. Return false.
12.12.3 Runtime Semantics: Evaluation

Logical ANDExpression . LogicalANDExpression && BitwiseORExpression

1. Let /ref be the result of evaluating Logical ANDExpression.
2. Let lval be GetValue(/ref).

© Ecma International 2014 200

eCmd

Let lbool be ToBoolean(/val).

ReturnlfAbrupt(/bool).

If Ibool is false, return lval.

Let rref be the result of evaluating BitwiseORExpression.
Return GetValue(rref).

Nownkw

Logical ORExpression : Logical ORExpression | | LogicalANDExpression

Let Iref be the result of evaluating Logical ORExpression.
Let Ival be GetValue(/ref).

Let lbool be ToBoolean(/val).

ReturnlfAbrupt(/bool).

If lbool is true, return /val.

Let rref be the result of evaluating Logical ANDExpression.
Return GetValue(rref).

Nk v =

12.13Conditional Operator (? :)

Syntax

Conditional Expressionyn, vield) :
Logical ORExpressionpin, 7vield]
Logical ORExpressionpin avielq) ? AssignmentExpressionyn, »vieq) ¢ AssignmentExpressionpan, 2vield]

NOTE The grammar for a ConditionalExpression.in ECMAScript is slightly different from that in C and Java, which
each allow the second subexpression to be an Expression ~but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment expression to be
governed by either arm of a conditional and to eliminate the confusing and fairly useless case of a comma expression
as the centre expression.

12.13.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.31.2, 12.4.2, 1252, 12.6.1, 1271, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.14.2,12.15:1, 14.1.11, 14.4.8, 14.5.8.

ConditionalExpression.: LogicalORExpression ? AssignmentExpression : AssignmentExpression

1. <Return false.
12.13.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 124.3, 1253, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2,
12.12.2,12.14.3, 12.15.2.

Conditional Expression . Logical ORExpression ? AssignmentExpression : AssignmentExpression

1. Return false.
12.13.3 Runtime Semantics: Evaluation

ConditionalExpression . Logical ORExpression ? AssignmentExpression : AssignmentExpression

1. Let /ref be the result of evaluating Logical ORExpression.
2. Let lval be ToBoolean(GetValue(/ref)).
3. ReturnlfAbrupt(/val).

© Ecma International 2014 201

oecnd

4.

5.

If Ival is true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.

b. Return GetValue(trueRef).

Else

a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return GetValue(falseRef).

12.14 Assignment Operators

Syntax

AssignmentExpressionyn, yield] -

Conditional Expressionpin, 7vieiq]

[+Yield] YieldExpressionyn

ArrowFunctionpain, wield]

LeftHandSideExpressionpsyielq) = AssignmentExpressionyn, 2¥ield)

LeftHandSide Expression|syieiq) AssignmentOperator AssignmentExpressionin, 2vield]

AssignmentOperator : one of

*= /= %= += - <<L= >S>= >S>>= &= A= =

12.14.1 Static Semantics: Early Errors

AssignmentExpression @ LeftHandSideExpression = AssignmentExpression

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and the
lexical token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left
over using AssignmentPattern as the goal symbol:

If LeftHandSideExpression iS either an ObjectLiteral or an ArrayLiteral and if the lexical token
sequence matched by LeftHandSideExpression can be parsed with no tokens left over using
AssignmentPattern as the goal symbol then the following rules are not applied. Instead, the Early
Error rules fordssignmentPattern are used.

It is a Syntax Error if LeftHandSideExpression \is an IdentifierReference that can be statically
determined to always resolve to a declarative environment record binding and the resolved
binding is an immutable binding.

It is—an early Reference Error if LeftHandSideExpression is neither an ObjectLiteral nor an
ArrayLiteral and IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

AssignmentExpression : LeftHandSide Expression AssignmentOperator AssignmentExpression

It is a Syntax Error if the LeftHandSideExpression is an IdentifierReference that can be statically
determined to always resolve to a declarative environment record binding and the resolved
binding is an immutable binding.

It is an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

12.14.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 124.2, 125.2, 12.6.1, 1271, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.1,12.156.1,14.1.11, 14.4.8, 14.5.8.

AssignmentExpression : ArrowFunction

1.

Return true.

© Ecma International 2014 202

oeCha

AssignmentExpression :
YieldExpression
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.
12.14.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3, 12.2.10.3, 12.3.1.3, 12.4.3, 1253, 12.6.2, 12.7.2, 12.8:2, 12.9.2, 12.10.2, 12.11.2,
12.12.2,12.13.2,12.15.2.

AssignmentExpression
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.
12.14.4 Runtime Semantics: Evaluation

AssignmentExpressionyn, vieq) : LeftHandSideExpressionyyieiq) = AssignmentExpressionain, »vield]

1. 1If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral then
Let /ref be the result of evaluating LeftHandSideExpression.
ReturnIfAbrupt(/ref).
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
If IsAnonymousFunctionDefinition(4ssignment Expression) and IsldentifierRef of
LeftHandSideExpression are both true, then
i. Let hasNameProperty be HasOwnProperty(rval, "name").
ii. ReturnIfAbrupt(hasNameProperty).
iii. If hasNameProperty is false, then
1. SetFunctionName(rval, GetReferenceName(/ref)).
f. _Let status be PutValue(lref, rval).
g. ReturnIfAbrupt(status).
h. Return rval.
2. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression
using AssignmentPatternsvieiq) as the goal symbol.
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
ReturnIfAbrupt(rval).
If Type(rval) is not Object, then throw a TypeError exception.
Let status be the result of performing DestructuringAssignmentEvaluation of AssignmentPattern
using rval as the argument.
ReturnIfAbrupt(status).
9. Return rval.

o a0 o

Nowv k4

oo

AssignmentExpression . LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let /ref be the result of evaluating LeftHandSideExpression.
2. Let lval be GetValue(/ref).
3. ReturnlfAbrupt(/val).

© Ecma International 2014 203

oeCha

Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let operator be the @ where AssignmentOperator is @=
Let r be the result of applying operator @ to Ival and rval.
9. Let status be PutValue(lref, r).

10. ReturnIfAbrupt(status).

11. Return r.

NNk

NOTE When an assignment occurs within strict mode code, it is an runtime error if /ref in step 1.f.of the first
algorithm or step 9 of the second algorithm it is an unresolvable reference. If itiis, a ReferenceError exception is
thrown. The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]:false}, to
an accessor property with the attribute value {[[Set]]:undefined}, nor to a non-existent property of an object for which

the IsExtensible predicate returns the value false. In these cases a TypeError exception is thrown.

12.14.5 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression =
AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

AssignmentPatternyieyq -
ObjectAssignmentPatternpryieiq)
ArrayAssignmentPatternpyyielq)

ObjectAssignmentPatternyieq) :
{1}
{ AssignmentPropertyListiavield) }
{ AssignmentPropertyListiovielq) '+ }

ArrayAssignmentPatternyielq :
[Elisionep AssignmentRestElement(syieldjopt]
[AssignmentElementList(2Vielq)]
[AssignmentElementListiavielqy , Elisioneps AssignmentRestElementisyieidiopt

AssignmentPropertyListiyield) -
AssignmentPropertypavield
AssignmentPropertyListiayield) , AssignmentPropertyavield

AssignmentElementListivielq :
AssignmentElisionElement;syieiq)
AssignmentElementLiStiavielq) , AssignmentElisionElement|syieiq)

AssignmentElisionElementyyieiq) :
Elisionopt AssignmentElement|ayieiq)

AssignmentPropertyyieiq) -

IdentzﬁerReference[7Yie|d] [nitializernn,?Yiem]opt
PropertyName : AssignmentElement]syieiq)

© Ecma International 2014

204

oecnd

AssignmentElementiyieq :
DestructuringAssignmentTarget[yvieq) Initializeryn 2vieijopt

AssignmentRestElementyyieiq) -
. . . DestructuringAssignmentTarget[rvielq)

DestructuringAssignmentTargetiyieiq -
LeftHandSideExpressionpvieiq)

12.14.5.1 Static Semantics: Early Errors

AssignmentProperty . IdentifierReference Initializerqp

e ltis a Syntax Error if IsValidSimpleAssignment of IdentifierReference is false.
o ltis a Syntax Error if IdentifierReference statically resolves to a immutable binding.

AssignmentRestElement : . . . DestructuringAssignmentTarget

e ltis a Syntax Error if IsValidSimpleAssignmentTarget of DestructuringAssignmentTarget is false.

DestructuringAssignmentTarget : LeftHandSideExpression

o ltis a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the
lexical token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left
over using AssignmentPattern as the goal symbol.

o It is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
IsValidSimpleAssignmentTarget(LeftHandSideExpression) is false.

e It is a Syntax Error if LeftHandSideExpression is an IdentifierReference that can be statically
determined to.always resolve to a declarative environment record binding and the resolved
binding is aniimmutable binding.

o ltis a Syntax Error if LeftHandSideExpression is
CoverParenthesizedExpressionAndArrowParameterList : (Expression)
and Expression derives a production that would produce a Syntax Error according to these rules if
that production is substituted for LeftHandSideExpression. This rule is recursively applied.

NOTE The last rule means that the other rules are applied even if multiple levels of nested parentheses surround
Expression.

12.14.5.2 Runtime Semantics: DestructuringAssignmentEvaluation
with parameter obj

ObjectAssignmentPattern : { }

1. Return NormalCompletion(empty).

ArrayAssignmentPattern @ [1]

1. Let iterator be Getlterator(oby).
2. ReturnIfAbrupt(iterator).
3. Return NormalCompletion(empty).

© Ecma International 2014 205

oecind

ArrayAssignmentPattern : [Elision]

1. Let iterator be Getlterator(obyj).

2. ReturnlfAbrupt(iterator).

3. Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iterator
as the argument.

ArrayAssignmentPattern @ [Elisionqgy AssignmentRestElement]

1. Let iterator be Getlterator(obyj).

2. ReturnlfAbrupt(iterator).

3. [If Elision is present, then
a. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision

with iterator as the argument.

b. ReturnlfAbrupt(status).

4. Return the result of performing IteratorDestructuringAssignmentEvaluation of
AssignmentRestElement with iterator as the argument.

ArrayAssignmentPattern . [AssignmentElementList]

1. Let iterator be Getlterator(oby).

2. ReturnIfAbrupt(iterator).

3. Return the result of performing IteratorDestructuringAssignmentEvaluation of
AssignmentElementList using iterator asthe argument.

ArrayAssignmentPattern © [AssignmentElementList. , Elisionqp-AssignmentRestElement,,,]

1. Let iterator be Getlterator(oby).

2. ReturnIfAbrupt(iterator):

3. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of
AssignmentElementList using iterator as the argument.

4. ReturnlIfAbrupt(status).

5. If Elision is present, then
a. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision

with iterator as the argument.
b. ReturnIfAbrupt(status).

6. IfAssignmentRestElement is present, then return the result of performing
IteratorDestructuringAssignmentEvaluation of AssignmentRestElement with iterator as the
argument.

7. Return lastindex.

AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty

1. Let status be the result of performing DestructuringAssignmentEvaluation for
AssignmentPropertyList using obj as the argument.

2. ReturnIfAbrupt(status).

3. Return the result of performing DestructuringAssignmentEvaluation for AssignmentProperty using
obj as the argument.

AssignmentProperty : IdentifierReference Initializerqp

1. Let P be StringValue of IdentifierReference.
2. Let v be Get(obj, P).
3. ReturnIfAbrupt(v).

© Ecma International 2014 206

oecind

4. If Initializeryy is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initializer.
b. ReturnIfAbrupt(v).

Let Iref be ResolveBinding(P).

6. Return PutValue(lref,v).

W

AssignmentProperty : PropertyName : AssignmentElement

1. Let name be the result of evaluating PropertyName.

2. ReturnlfAbrupt(name).

3. Return the result of performing KeyedDestructuringAssignmentEvaluation of AssignmentElement
with obj and name as the arguments.

12.14.5.3 Runtime Semantics: IteratorDestructuringAssignmentEvaluation
with parameters iterator

AssignmentElementList : AssignmentElisionElement

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of
AssignmentElisionElementList using iterator as the argument.

AssignmentElementList : AssignmentElementList ;. AssignmentElisionElement

1. Let status be the result of performing IteratorDestructuring AssignmentEvaluation of
AssignmentElementList using iterator as the argument.

2. ReturnIfAbrupt(status).

3. Return the result of performing IteratorDestructuringAssignmentEvaluation of
AssignmentElisionElementList. using iterator.as the argument.

AssignmentElisionElement: AssignmentElement
1. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElement
with iterator as the argument.

AssignmentElisionElement : Elision AssignmentElement

1. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision with
iterator as the argument.

2. ReturnIfAbrupt(status).

3. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElement
with iterator as the argument.

Elision : ,

1. Return IteratorStep(iterator).

Elision : Elision ,

1. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision with
iterator as the argument.

2. ReturnIfAbrupt(status).

3. Return IteratorStep(iterator).

© Ecma International 2014 207

oeCha

AssignmentElementyieq) : DestructuringAssignmentTarget Initializerqp

1.

8.

NOTE

W\ bW

If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral then

a. Let [ref be the result of evaluating DestructuringAssignmentTarget.

b. ReturnlfAbrupt(lref).

Let next be IteratorStep(iterator).

ReturnlfAbrupt(next).

If next is false, then let v be undefined

Else

a. Let v be IteratorValue(next).

b. ReturnIfAbrupt(v).

If Initializer is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initializer.

b. Let v be GetValue(defaultValue)

c. ReturnIfAbrupt(v).

If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral then

a. Let nestedAssignmentPattern be the parse of the.source code corresponding to
DestructuringAssignmentTarget using either AssignmentPattern or AssignmentPattern yiciq) as
the goal symbol depending upon whether this AssignmentElement has the yieq parameter.
If Type(v) is not Object, then throw a TypeError exception.

c. Return the result of performing DestructuringAssignmentEvaluation of
nestedAssignmentPattern with v as the argument.

Return PutValue(/ref,v).

Left to right evaluation order is maintained by evaluating a DestructuringAssignmentTarget that is not a

destruturing pattern prior to accessing the iterator or evaluating the Initializer.

AssignmentRestElement : . . . DestructuringAssignmentTarget
1. Let Iref be the result of evaluating DestructuringAssignmentTarget.
2. ReturnIfAbrupt(/ref).
3. Let 4 be ArrayCreate(0).
4. Let n=0;
5. Repeat

a. Let next be IteratorStep(iterator).

b. _ReturnlfAbrupt(next).

¢. Ifnextis false, then

i. Return PutValue(/ref, 4).

Let nextValue be IteratorValue(next).

ReturnlfAbrupt(nextValue).

Let defineStatus be CreateDataPropertyOrThrow(4, ToString(ToUint32(n)), nextValue).
ReturnIfAbrupt(defineStatus).

Increment n by 1.

508 o oo

12.14.5.4Runtime Semantics: KeyedDestructuringAssignmentEvaluation

with parameters obj and propertyName

AssignmentElement ryieiqy : DestructuringAssignmentTarget Initializerop

1.
2.
3.

Let v be Get(obj, name).

ReturnIfAbrupt(v).

If Initializer is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initializer.

© Ecma International 2014 208

oecnd

b. Let v be GetValue(defaultValue)
c. ReturnIfAbrupt(v).
4. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral then
a. Let AssignmentPattern be the parse of the source code corresponding to
DestructuringAssignmentTarget using either AssignmentPattern or AssignmentPattern|yieiq) as
the goal symbol depending upon whether this AssignmentElement has the yieig parameter.
If Type(v) is not Object, then throw a TypeError exception.
c. Return the result of performing DestructuringAssignmentEvaluation of AssignmentPattern with
v as the argument.
5. Let [ref be the result of evaluating DestructuringAssignmentTarget.
6. Return PutValue(lref,v).

12.15Comma Operator (,)

Syntax
Expressionn, vielq) -
AssignmentExpressionyan, 2vield]
Expressionpain, avield) , AssignmentExpressionyain, 2vield]

12.15.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 124.2,12.5.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.1,12.14.2,14.1.11, 14.4.8, 14.5.8.

Expression : Expression , AssignmentExpression

1. Return false.
12.15.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.3,142.2.10.3, 12.3.1.3, 124.3, 1253, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2,
12.12.2,12.13.2, 12.14.3.

Expression : Expression , AssignmentExpression

1. Return false.
12.15.3 Runtime Semantics: Evaluation

Expression : Expression , AssignmentExpression

1. Let Iref be the result of evaluating Expression.
2. ReturnIfAbrupt(GetValue(/ref))
3. Let rrefbe the result of evaluating AssignmentExpression.
4. Return GetValue(rref).
NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

© Ecma International 2014 209

secind

13 ECMAScript Language: Statements and Declarations

Syntax

Statement|yield, Return] *
BlockStatementyavieid, 2Return]
VariableStatementvieiq
EmptyStatement
ExpressionStatementjsyield]
IfStatement;svieid, "Return]
BreakableStatement{svieid, "Return]
ContinueStatementiavield)
BreakStatement;ayieiq)

[+Return] ReturnStatementavieiq)
WithStatemenl‘['_;Yiem, 2Return]
LabelledStatement{vieid, :Return]
ThrowStatement{vieiq)
TryStatementiavield, "Return]
DebuggerStatement

Declaration[Yiew, Default] -
FunctionDeclarationpyvieid, »Defaul]
GeneratorDeclaration[7Yie|d, ?Default]
ClassDeclarationpyvieid 2Default]
LexicalDeclarationyn, 7vielq]

BreakableStatement|yieid, Return] -
IterationStatement(avielq, 'Retum]
SwitchStatement|avield, sReturn]

13.0 Statement Semantics
13.0.1 Static Semantics: VarDeclaredNames

See also: 13:1:8,.13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 0, 14.1.16,
14.4.12, 14.5.16, 15.1.5, 15.2.0.13.

Statement
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return a new empty List.

13.0.2 Static Semantics: VarScopedDeclarations

See also: 13.1.9, 13.2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
13.14.3,14.1.18, 14.2.14, 14.4.13, 15.1.6, 15.2.0.14.

© Ecma International 2014 210

oeCha

Statement

1.

EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

Return a new empty List.

13.0.3 Runtime Semantics: LabelledEvaluation

With argument labelSet.

See also: 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.6, 13.12.3.

BreakableStatement : IterationStatement

1.

2.

3.

Let stmtResult be the result of performing LabelledEvaluation of lterationStatement with argument
labelSet.

If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then

a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).

b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])

Return stmtResult.

BreakableStatement : SwitchStatement

1.
2.

3.

NOTE

Let stmtResult be the result-of evaluating SwitchStatement.

If stmtResult.[[type]]'is break and stmtResult.[[target]] is empty, then

a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).
b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])

Return stmtResult.

A BreakableStatement is.one that can be exited via an unlabelled BreakStatement.

13.0.4 Runtime Semantics: Evaluation

BreakableStatement

1.
2.

13.1

IterationStatement
SwitchStatement

Let newLabelSet be a new empty List.
Return the result of performing LabelledEvaluation of this BreakableStatement with argument
newLabelSet.

Block

Syntax

BlockStatement[Yiem, Return]

Blockpvield, :Return]

Blockyyield, Return] -

{ StatementList[yvieid, "Returnjopt }

© Ecma International 2014 211

oecnd

StatementListyield, Retur] -
StatementListltemvield, :Return]
StatementListiavield, 1Return] StatementListltemayield, "Return]

StatementListltemyyield, Return] -
Statementizvield, "Return]
Declarationpayieiq)

13.1.1 Static Semantics: Early Errors

Block : { StatementList }

e |tis a Syntax Error if the LexicallyDeclaredNames of StatementList contains.any duplicate entries.
e It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in
the VarDeclaredNames of StatementList.

13.1.2 Static Semantics: LexicalDeclarations

See also: 13.11.2, 15.2.0.11.

StatementlList : StatementList StatementListItem

1. Let declarations be LexicalDeclarations of StatementList.
2. Append to declarations the elements of the LexicalDeclarations of StatementListitem.
3. Return declarations.

StatementListltem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. Return a new List containing Declaration.
13.1.3 Static Semantics: LexicallyDeclaredNames
See also: 13.11.3, 14.1.14, 14.2.10, 14.4.8, 14.5.10, 15.1.3, 15.2.0.10.

Block: { '}

1. . Return a new empty List.

StatementList.: StatementList StatementListltem

1. Let names be LexicallyDeclaredNames of StatementList.
2. Append tonames the elements of the LexicallyDeclaredNames of StatementListitem.
3. Return names:

StatementListltem . Statement

1. Return a new empty List.

StatementListltem . Declaration

1. Return the BoundNames of Declaration.

© Ecma International 2014 212

oeCha

13.1.4 Static Semantics: TopLevellLexicallyDeclaredNames

StatementlList : StatementList StatementListltem

1. Let names be TopLevelLexicallyDeclaredNames of StatementList.
2. Append to names the elements of the TopLevelLexicallyDeclaredNames of StatementListitem.
3. Return names.

StatementListltem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new empty List.
2. 1If Declaration is Declaration : GeneratorDeclaration, then return a new empty List.
3. Return the BoundNames of Declaration.

NOTE At the top level of a function, or script, function declarations are treated like var declarations rather than
like lexical declarations.

13.1.5 Static Semantics: TopLevellLexicallyScopedDeclarations

StatementlList : StatementList StatementListltem

1. Let declarations be TopLevelLexicallyScopedDeclarations of StatementList.

2. Append to declarations the elements of the TopLevelLexicallyScopedDeclarations of
StatementListitem.

3. Return declarations.

StatementListltem : Statement

1. Return a new empty List.

StatementListltem . Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new empty List.
2. 1If Declaration is Declaration : GeneratorDeclaration, then return a new empty List.
3. Return a new List containing Declaration.

13.1.6 Static Semantics: TopLevelVarDeclaredNames

StatementList : StatementList StatementListltem

1. Let names be TopLevelVarDeclaredNames of StatementList.
2. Appendto names the elements of the TopLevelVarDeclaredNames of StatementListltem.
3. Return names.

StatementListltem . Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return the LexicallyDeclaredNames of
Declaration.

2. 1If Declaration is Declaration : GeneratorDeclaration, then return the LexicallyDeclaredNames of
Declaration.

3. Return a new empty List.

© Ecma International 2014 213

oecnd

StatementListltem : Statement

1. Return VarDeclaredNames of Statement.

NOTE At the top level of a function or script, inner function declarations are treated like var declarations.
13.1.7 Static Semantics: TopLevelVarScopedDeclarations

StatementList : StatementList StatementListltem

1. Let declarations be TopLevelVarScopedDeclarations of StatementList:
2. Append to declarations the elements of the TopLevelVarScopedDeclarations of StatementListitem.
3. Return declarations.

StatementListltem : Statement

1. Return VarScopedDeclarations of Statement.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration,then return a new List containing
FunctionDeclaration.

2. 1If Declaration is Declaration : GeneratorDeclaration, then return a new List containing
GeneratorDeclaration.

3. Return a new empty List.

13.1.8 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1,13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 0, 14.1.16,
14.4.12,14.5.16, 15.1.5, 15.2.0.13.
Block: { }

1. Return a new empty List.

StatementList : StatementList StatementListltem

1. Letnames be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListitem.
3.< Return names.

StatementListltem : Declaration

1. Return a new empty List.
13.1.9 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
13.14.3,14.1.18, 14.2.14, 14.4.13, 15.1.6, 15.2.0.14.
StatementList : StatementList StatementListltem

1. Let declarations be VarScopedDeclarations of StatementList.
2. Append to declarations the elements of the VarScopedDeclarations of StatementListItem.
3. Return declarations.

© Ecma International 2014 214

oecnd

StatementListltem : Statement

1. Return VarScopedDeclarations of Statement.

StatementListltem : Declaration

1. Return a new empty List.
13.1.10 Runtime Semantics: Evaluation

Block : { }

1. Return NormalCompletion(undefined).

Block : { StatementList }

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be NewDeclarativeEnvironment(oldEnv).

Perform BlockDeclarationInstantiation(StatementList, blockEnv).

Set the running execution context’s LexicalEnvironment to blockEnv.

Let blockValue be the result of evaluating StatementList.

Set the running execution context’s LexicalEnvironment to oldEnv.

If blockValue.[[type]] is normal and blockValue.[[value]] is empty, then
a. Return NormalCompletion(undefined).

8. Return blockValue.

NonAwN =

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.

StatementList : StatementList StatementListltem

1. Let s/ be the result of evaluating StatementList.
2. ReturnIfAbrupt(si).
3. Let s be the result of evaluating StatementListltem.
4. Ifs.[[type]] is throw, return s.
5. Ifs.[[value]] 1s empty, let ¥/ = sl.[[value]]; otherwise let V = s.[[value]].
6. Return Completion{[[type]]: s.[[type]], [[value]]: V, [[target]]: s.[[target]]}.
NOTE Steps 5 and 6 of the above algorithm ensure that the value of a StatementList is the value of the last value

producing Statement in the StatementList.. For example, the following calls to the eval function all return the value 1:

eval ("1;{}")
eval ("1l;var a;")

13.1.11 Runtime Semantics: BlockDeclarationinstantiation(code, env)

NOTE When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and
bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the
environment record.

BlockDeclarationInstantiation is performed as follows using arguments code and env. code is the grammar
production corresponding to the body of the block. env is the declarative environment record in which
bindings are to be created.

1. Let declarations be the LexicalDeclarations of code.
2. Let functionsTolnitialize be an empty List.

© Ecma International 2014 215

oecnd

3. For each element d in declarations do
a. For each element dn of the BoundNames of d do
1. IfIsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
1. Else,
1. Let status be the result of calling env’s CreateMutableBinding concrete method passing
dn and false as the arguments.
2. Assert: status is never an abrupt completion.
b. Ifdis a GeneratorDeclaration production or a FunctionDeclaration production, then
i. Append d to functionsTolnitialize.
4. For each production f'in functionsTolnitialize, in list order do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s InitializeBinding concrete method passing fn, and fo as the arguments.

13.2 Declarations and the Variable Statement

13.2.1 Let and Const Declarations

NOTE A let and const declarations define variables that are scoped to the running execution context’s
LexicalEnvironment. The variables are created when their containing Lexical Environment is instantiated but may not
be accessed in any way until the variable’s LexicalBinding is evaluated. A variable defined by a LexicalBinding with an
Initializer is assigned the value of its Initializer’s AssignmentExpression when the LexicalBinding is evaluated, not when
the variable is created. If a LexicalBinding in a 1et declaration does not have an Iuitializer the variable is assigned the
value undefined when the LexicalBinding is evaluated.

Syntax

LexicalDeclarationyn, vieiq -
LetOrConst BindingListyin, 2vield]

LetOrConst :
let
const

BindingList“n, Yield] -
LexicalBindingin, 2Yield]
BindingList(ain, 2vield] LexicalBinding[?m, ?Yield]

LexicalBinding|n, vielq) *
Bindingldentifierioviewq) Initializer(ain, 2vielgiopt
BindingPatternpvielq) Initializerpain, 7vielq)

13.2.1.1 Static Semantics: Early Errors

LexicalDeclaration : LetOrConst BindingList ;

e ltis a Syntax Error if the BoundNames of BindingList contains "let".
e ltis a Syntax Error if the BoundNames of BindingList contains any duplicate entries.

© Ecma International 2014 216

oecnd

LexicalBinding : Bindingldentifier Initializerop

e ltis a Syntax Error if Initializer is not present and IsConstantDeclaration of the LexicalDeclaration
containing this production is true.

13.2.1.2 Static Semantics: BoundNames

See also:, 12.1.2,13.6.4.2,14.1.3,14.2.2,14.4.2,14.5.2,15.2.1.2,15.2.21.

LexicalDeclaration : LetOrConst BindingList ;
1. Return the BoundNames of BindingList.

BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.
2. Append to names the elements of the BoundNames of LexicalBinding.
3. Return names.

LexicalBinding : Bindingldentifier Initializerqp
1. Return the BoundNames of Bindingldentifier.

LexicalBinding : BindingPattern Initializer
1. Return the BoundNames of BindingPattern.

13.2.1.3 Static Semantics: IsConstantDeclaration

See also: 14.1.8,14.4.5, 14.5.5.

LexicalDeclaration : LetOrConst BindingList ;

1. Return IsConstantDeclaration of LetOrConst.

LetOrConst : let

1. Return false.

LetOrConst : const

1. Return true.
13.2.1.4 Runtime Semantics: Evaluation

LexicalDeclaration : LetOrConst BindinglList ;

1. Let next be the result of evaluating BindingList.
2. ReturnIfAbrupt(next).
3. Return NormalCompletion(empty).

BindinglList : BindingList , LexicalBinding

1. Let next be the result of evaluating BindingList.
2. ReturnIfAbrupt(next).
3. Return the result of evaluating LexicalBinding.

© Ecma International 2014 217

oeCha

LexicalBinding : Bindingldentifier

1. Let env be the running execution context’s LexicalEnvironment.
2. Return the result of performing BindinglInitialization for Bindingldentifier passing undefined and
env as the arguments.

NOTE A static semantics rule ensures that this form of LexicalBinding never occurs in a const declaration.

LexicalBinding : Bindingldentifier Initializer

1. Let rhs be the result of evaluating Initializer.
2. Let value be GetValue(rhs).
3. ReturnIfAbrupt(value).
4. If IsAnonymousFunctionDefinition(/nitializer) is true, then
a. Let hasNameProperty be HasOwnProperty(value, "name™").
b. ReturnlfAbrupt(hasNameProperty).
c. If hasNameProperty is false, then
i. SetFunctionName(value, StringValue(Bindingldentifier)).
Let env be the running execution context’s LexicalEnvironment.
6. Return the result of performing Bindinglnitialization for Bindingldentifier passing value and env as
the arguments.

(9]

LexicalBinding : BindingPattern Initializer

Let rhs be the result of evaluating Initializer.

Let value be GetValue(rhs).

ReturnIfAbrupt(value).

If Type(value) is not Object, then throw'a TypeError exception:

Let env be the running.execution context’s LexicalEnvironment.

Return the result of performing Bindinglnitialization for BindingPattern using value and env as the
arguments.

AN N AW —

13.2.2 Variable Statement

NOTE A var statement declaresvariables that are scoped to the running execution context’s VariableEnvironment.
Var variables.are created when their containing Lexical Environment is instantiated and are initialized to undefined
when created. Within the scope of any VariableEnvironemnt a common Identifier may appear in more than one
VariableDeclaration but those declarations collective define only one variable. A variable defined by a
VariableDeclaration with an Initializer “is assigned the value of its [Initializer’s AssignmentExpression when the
VariableDeclaration is executed, not when the variable is created.

Syntax

VariableStatement yieq :
var VariableDeclarationList|n, 7vield) ;

VariableDeclarationListjn, vieiq :
VariableDeclarationjsin, 7vield]
VariableDeclarationListpn, 2vield) , VariableDeclarationpin, 7vielq)

VariableDeclarationyn, vieiq :

Binding[denti]‘ier[7Yie|d] [nitializer[wm ?Yield]opt
BindingPatternlYiem]]nitializer[wm ?Yield]

© Ecma International 2014 218

oecnd

13.2.2.1 Static Semantics: BoundNames
See also: 13.2.1.2,12.1.2,13.6.4.2,14.1.3,14.22,14.42,145.2,15.2.1.2,15.2.21.

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

VariableDeclaration : Bindingldentifier Initializerp

1. Return the BoundNames of Bindingldentifier.

VariableDeclaration : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.
13.2.2.2 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9, 13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.44, 13.10.3, 13.11.5, 13.12.3, 13.14.3,
14.1.18,14.2.14,14.4.13, 15.1.6, 15.2.0.14.

VariableDeclarationList : VariableDeclaration

1. Return a new List containing VariableDeclaration.

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

2. Let declarations be VarScopedDeclarations of Variable DeclarationList.
3. Append VariableDeclaration to declarations.
4. Return declarations.

13.2.2.3 Runtime Semantics: Bindinglnitialization
With arguments value and environment.

See als0:12.2.4.2.2,12.1.2, 13.2.3.4, 13.14.3.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialization value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.
VariableDeclaration : Bindingldentifier
1. Return the result‘of performing Bindinglnitialization for Bindingldentifier passing value and
undefined as the arguments.
VariableDeclaration : Bindingldentifier Initializer

1. Return the result of performing BindinglInitialization for Bindingldentifier passing value and
undefined as the arguments.

© Ecma International 2014 219

oeCha

VariableDeclaration : BindingPattern Initializer

1. Return the result of performing Bindinglnitialization for BindingPattern passing value and
undefined as the arguments.

13.2.2.4 Runtime Semantics: Evaluation

VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(next).
3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(next).
3. Return the result of evaluating VariableDeclaration:

VariableDeclaration : Bindingldentifier
1. Return NormalCompletion(empty).

VariableDeclaration : Bindingldentifier Initializéer

1. Let rhs be the result of evaluating Initializer.
2. Let value be GetValue(rhs).
3. ReturnIfAbrupt(value).
4. If IsAnonymousFunctionDefinition(/nitializer) is true, then
a. Let hasNameProperty be HasOwnProperty(value, "name™).
b. ReturnIfAbrupt(hasNameProperty).
c. If hasNameProperty is false, then
i. Perform SetFunctionName(value, StringValue(Bindingldentifier)).
5. Return the result of performing Bindinglnitialization for Bindingldentifier passing value and
undefined as the arguments.

NOTE If @ VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the
same as_a property name of the binding object of the with statement’s object environment record, then step 3 will
assign value to the property instead of to the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initializer

Let s be the result of evaluating Initializer.

Let rval be GetValue(rhs).

ReturnIfAbrupt(rval).

If Type(rval) is not Object, then throw a TypeError exception.

Return the result of performing Bindinglnitialization for BindingPattern passing rval and
undefined as arguments.

& I S S

13.2.3 Destructuring Binding Patterns

Syntax

Bindingpattern[Yield,GcncratorParamctcr] .
Ob]eCtBlndlngpattern[?Yield,?GcncratorParamctcr]
ArrayBlndlngpattern[?Yield,?GcncratorParamctcr]

© Ecma International 2014 220

oecna

ObjeCtBindingPallern[Yield,GeneratorParameter] .
{1}
{ BindingPFOPerlJ}LiSt[?Yield,?GeneratorParameter] }
{ Bindingpi’OperlJ}LiSt[?YieId,?GeneratorParameter] ;)

ArrayBindingPallern[Yield,GeneratorParameter] :
[EliSionopt BindingReStElement[?YieId, ?GeneratorParameter]opt]
[BindingElementLiSI[?Yield, ?GeneratorParameter] 1
[BindingElementListiovieid, 2GeneratorParameter] » ElisSiongpt BindingRestElementyavied, 2GeneratorParameterjopt]

BindingPrOperl)/LiSl[Yield ,GeneratorParameter] :
BindingPi’Opei’ly[?Yield, ?GeneratorParameter]
BindingPropertyListizvield, 2Generatorarameter] + BindingPropertypyieid, 2GeneratorParameter]

BindingElementLiSt[Yield ,GeneratorParameter]
BindingEliSionElement[?YieId, ?GeneratorParameter]
BindingElementListzvield, 2GeneratorParameter] » BindingElisionElementisyieid, 2GeneratorParameter]

BindingEliSionElement[Yield ,GeneratorParameter]
EllSlOnopt Bmdnglemen t[’?YieId, ?GeneratorParameter]

Bindingproperty[Yield,Generator[’arameter] .
Smgl@NameBmdmg [?Yield, ?GeneratorParameter]
PVOPWtyName[?Yield, ?GeneratorParameter] : BlndlngElement[?Yield, ?GeneratorParameter]

BindingElement[Yield ,GeneratorParameter] .
S lng l@N ameB lndlng [?Yield, ?GeneratorParameter]
[+GeneratorParameter] BindingPattern|vieid,GeneratorParameter] 11itializernjopt
[~GeneratorParameter] BindingPattern[7Yie|d] [nitializemn, ?Yield]opt

SingleNameBinding[Yield,GeneratorParameter] .
[+GeneratorParameter] Bindingldentifieryyigiaydnitializennopt

[~GeneratorParameter] Binding]dentiﬁer[?\(iem] Initializerpn, ?Yield]opt

B lndlngRes tElement, [Yield, GeneratorParameter] .
[+GeneratorParameter]. . . Bindingldentifieriyieiq)
[~GeneratorParameter] . . . Bindingldentifier|svieiq)

13.2.3.1. Static Semantics: BoundNames
See also0:13.2.1.2,13.2.2.1,13.6.4.2,14.1.3, 14.2.2,14.4.2,14.5.2, 15.2.1.2, 15.2.2 1.

ObjectBindingPattern : { <}

1. Return an empty List.

ArrayBindingPattern : [Elisiongp]

1. Return an empty List.

ArrayBindingPattern : [Elisiongy BindingRestElement]

1. Return the BoundNames of BindingRestElement.

© Ecma International 2014 221

oecind

ArrayBindingPattern : [BindingElementList , Elisionqp]
1. Return the BoundNames of BindingElementList.

ArrayBindingPattern : [BindingElementList , Elisionoy BindingRestElement]

1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingRestElement.

3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let names be BoundNames of BindingPropertyList.
2. Append to names the elements of BoundNames of BindingPropeérty.
3. Return names.

BindingElementList : BindingElementList , BindingElisionElement

1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingElement.
3. Return names.

BindingElisionElement : Elisionqy BindingElement

1. Return BoundNames of BindingElement:

BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.

SingleNameBinding : Bindingldentifier Initializerqp
1. Return the BoundNames of Bindingldentifier.

BindingElement : BindingPattern Initializerop

1. Return the BoundNames of BindingPattern.
13.2.3.2 Static Semantics: ContainsExpression
See also: 14.1.5, 14.2.4.

ObjectBindingPattern : { }

1. Return false.

ArrayBindingPattern : [Elisionqp]

1. Return false.

ArrayBindingPattern : [Elisiongy BindingRestElement]

1. Return false.

ArrayBindingPattern : [BindingElementList , Elisiongp]

1. Return ContainsExpression of BindingElementList.

© Ecma International 2014

222

oecind

ArrayBindingPattern : [BindingElementList , Elisionoy BindingRestElement]

1. Return ContainsExpression of BindingElementList.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let has be ContainsExpression of BindingPropertyList.
2. If has is true, return true.
3. Return ContainsExpression of BindingProperty.

BindingElementList : BindingElementList , BindingElisionElement

1. Let has be ContainsExpression of BindingElementList.
2. If has is true, return true.
3. Return ContainsExpression of BindingElisionElement.

BindingElisionElement : Elisiono BindingElement

1. Return ContainsExpression of BindingElement.

BindingProperty : PropertyName : BindingElement

1. Let has be IsComputedPropertyKey of PropertyName.
2. If has is true, return true.
3. Return the ContainsExpression of BindingElement.

BindingElement : BindingPattern Initializer

1. Return true.

SingleNameBinding : Bindingldentifier

1. Return false.

SingleNameBinding :<Bindingldentifier Initializer

1. Return true.
13.2.3.3 Static Semantics: Haslnitializer

See also: 13.2.3.3, 14.1.7, 14.2.7.

BindingElement : BindingPattern

1. "Return false.

BindingElement : BindingPattern Initializer

1. Return true.

SingleNameBinding : Bindingldentifier

1. Return false.

SingleNameBinding : Bindingldentifier Initializer

1. Return true.

© Ecma International 2014

223

oeCha

13.2.3.4 Static Semantics: IsSimpleParameterList
See also: 14.1.11, 14.2.8.

BindingElement . BindingPattern

1. Return false.

BindingElement : BindingPattern Initializer

1. Return false.

SingleNameBinding : Bindingldentifier

1. Return true.

SingleNameBinding : Bindingldentifier Initializer

1. Return false.

13.2.3.5 Runtime Semantics: Bindinglnitialization
With parameters value and environment.

See als0:12.2.4.2.2,12.1.2,13.2.2.2, 13.14 3.

NOTE When undefined is passed for environment it indicates that-a PutValue operation should be used to assign
the initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal
parameter bindings are preinitialized. in order to deal with the possibility of multiple parameters with the same name.

BindingPattern : ObjectBindingPattern

1. Assert: Type(value) is Object
2. Return the result of performing Bindinglnitialization for ObjectBindingPattern using value and
environment as arguments.

BindingPattern-:ArrayBindingPattern

1. Assert: Type(value) is Object

2: Let iterator be Getlterator(obj):

3. ReturnIfAbrupt(iterator).

4. Return the result of performing IteratorBindinglnitialization for ArrayBindingPattern using iterator,
and environment as arguments.

ObjectBindingPattern : { }

1. Return NormalCompletion(empty).

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let status be the result of performing Bindinglnitialization for BindingPropertyList using value
and environment as arguments.

2. ReturnIfAbrupt(status).

3. Return the result of performing Bindinglnitialization for BindingProperty using value and
environment as arguments.

© Ecma International 2014 224

oeCha

BindingProperty : SingleNameBinding
1. Let name be the string that is the only element of BoundNames of SingleNameBinding.
2. Return the result of performing KeyedBindinglInitialization for SingleNameBinding using value,
environment, and name as the arguments.
BindingProperty : PropertyName : BindingElement

1. Let P be the result of evaluating PropertyName

2. ReturnIfAbrupt(P).

3. Return the result of performing KeyedBindinglInitialization for BindingElement using value,
environment, and P as arguments.

13.2.3.6 Runtime Semantics: IteratorBindinglnitialization
With parameters iterator, and environment.
See also: 14.1.20, .

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign
the initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal
parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrayBindingPattern @ []

1. Return NormalCompletion(empty).

ArrayBindingPattern : [Elision]

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iterator
as the argument.

ArrayBindingPattern i [Elisiong BindingRestElement]

1. If Elision is present, then
a. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision
with iferator as the argument.
b. ReturnIfAbrupt(status).
2 Return the result of performing IteratorBindinglnitialization for BindingRestElement using iterator
and environment as arguments.

ArrayBindingPattern : [BindingElementList]
1. Return the result of performing IteratorBindinglnitialization for BindingElementList using iterator
and environment as arguments.
ArrayBindingPattern : [BindingElementList ,]
1. Return the result of performing IteratorBindinglnitialization for BindingElementList using iterator
and environment as arguments.
ArrayBindingPattern : [BindingElementList , Elision]

1. Let status be the result of performing IteratorBindinglInitialization for BindingElementList using
iterator and environment as arguments.
2. ReturnIfAbrupt(status).

© Ecma International 2014 225

oecind

3.

Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iterator
as the argument.

ArrayBindingPattern : [BindingElementList , Elisionqy BindingRestElement]

1.

2.
3.

Let status be the result of performing IteratorBindinglnitialization for BindingElementList using

iterator and environment as arguments.

ReturnIfAbrupt(status).

If Elision is present, then

a. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision
with iterator as the argument.

b. ReturnlfAbrupt(status).

Return the result of performing IteratorBindinglInitialization for ' BindingRestElement using iterator

and environment as arguments.

BindingElementList . BindingElisionElement

1.

Return the result of performing IteratorBindinglnitialization for BindingElisionElement using
iterator and environment as arguments.

BindingElementList : BindingElementList , BindingElisionElement

1.

2.
3.

Let status be the result of performing IteratorBindingInitialization for BindingFElementList iterator
and environment as arguments.

ReturnIfAbrupt(status).

Return the result of performing IteratorBindinglnitialization for BindingElement using iterator and
environment as arguments.

BindingElisionElement : BindingElement

1.

Return the result of performing IteratorBindinglInitialization of BindingElement with iterator as the
argument.

BindingElisionElement Elision BindingElement

1.

2.
3.

Let status be the result of performing [teratorDestructuringAssignmentEvaluation of Elision with
iterator as-the argument.

ReturnIfAbrupt(status).

Return the result of performing IteratorBindinglInitialization of BindingElement with iterator as the
argument.

BindingElement : SingleNameBinding

1.

Return the result of performing IteratorBindinglnitialization for SingleNameBinding using iterator
and environment as the arguments.

SingleNameBinding : Bindingldentifier Initializerqp

O R

Let next be IteratorStep(iterator).

ReturnIfAbrupt(next).

If next is false, then let v be undefined

Else

a. Let v be IteratorValue(next).

b. ReturnIfAbrupt(v).

If Initializer is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initializer.

© Ecma International 2014 226

oeCha

Let v be GetValue(defaultValue).
ReturnIfAbrupt(v).
d. If IsAnonymousFunctionDefinition(/nitializer) is true, then
i. Let hasNameProperty be HasOwnProperty(v, "name").
ii. ReturnIfAbrupt(hasNameProperty).
iii. If hasNameProperty is false, then
1. SetFunctionName(v, StringValue(Bindingldentifier)).
6. Return the result of performing Bindinglnitialization for Bindingldentifier passing v and
environment as arguments.

° o

BindingElement : BindingPattern Initializer oy

1. Let next be IteratorStep(iterator).
2. ReturnIfAbrupt(next).
3. If next is false, then let v be undefined
4. Else
a. Let v be IteratorValue(next).
b. ReturnlfAbrupt(v).
5. If Initializer is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initializer.
b. Let v be GetValue(defaultValue)
c. ReturnIfAbrupt(v).
6. If Type(v) is not Object, then throw a TypeError exception.
7. Return the result of performing Bindinglnitialization of BindingPattern with v as the argument.

BindingRestElement : . . . Bindingldentifier
1. Let 4 be ArrayCreate(0).
. Let n=0.
3. Repeat,

a. Let next be IteratorStep(iterator).

b. ReturnIfAbrupt(next).

c. If next is false, then

i. Return the result of performing Bindinglnitialization for Bindingldentifier using 4 and
environment as arguments.

Let nextValue be Iterator Value(next).

ReturnIfAbrupt(nextValue).

Let defineStatus be CreateDataPropertyOrThrow(4, ToString(ToUint32(n)), nextValue).

ReturnIfAbrupt(defineStatus).

Increment n by 1.

50 e o

13.2.3.7 Runtime Semantics: KeyedBindinglnitialization
With parameters obj; environment, and propertyName.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign
the initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal
parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingElement : BindingPattern Initializer oy

1. Let v be Get(obj, propertyName).
2. ReturnIfAbrupt(v).
3. [If Initializer is present and v is undefined, then

© Ecma International 2014 227

oecnd

a. Let defaultValue be the result of evaluating Initializer.
b. Let v be GetValue(defaultValue).
c. ReturnIfAbrupt(v).
4. If Type(v) is not Object, then throw a TypeError exception.
5. Return the result of performing Bindinglnitialization for BindingPattern passing v and environment
as arguments.

SingleNameBinding . Bindingldentifier Initializerqp

1. Let v be Get(obj, propertyName).
2. ReturnIfAbrupt(v).
3. [If Initializer is present and v is undefined, then
Let defaultValue be the result of evaluating Initializer.
Let v be GetValue(defaultValue).
ReturnIfAbrupt(v).
If [IsAnonymousFunctionDefinition(/nitializer) is true, then
i. Let hasNameProperty be HasOwnProperty(v; "name").
ii. ReturnIfAbrupt(hasNameProperty).
iii. If hasNameProperty is false, then
1. SetFunctionName(v, StringValue(Bindingldentifier)).
4. Return the result of performing Bindinglnitialization for Bindingldentifier passing v and
environment as arguments.

o o

13.3 Empty Statement

Syntax
EmptyStatement :

’

13.3.1 Runtime Semantics: Evaluation

EmptyStatement : ;

1. Return NormalCompletion(empty).
13.4 Expression Statement

Syntax

ExpressionStatementlYiem] .
[lookahead ¢ {{, function, class, let [}]Expression|n, 2vield) ;

NOTE An ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous
with a Block. Also, an ExpressionStatement cannot start with the function or class keywords because that would
make it ambiguous with' @ FunctionDeclaration, a GeneratorDeclaration, or a ClassDeclaration. An ExpressionStatement
cannot start with the two token sequence let [because that would make it ambiguous with a let
LexicalDeclaration whose first LexicalBinding was an ArrayBindingPattern.

13.4.1 Runtime Semantics: Evaluation

ExpressionStatement . Expression ;

1. Let exprRef be the result of evaluating Expression.
2. Let value be GetValue(exprRef).

© Ecma International 2014 228

oecnd

3. ReturnIfAbrupt(value).
4. Return NormalCompletion(value).

13.5 The if Statement

Syntax

IfStatement{yieiq, Return] *
if (Expressionpn, 2vielq]) Statement|zyield, :Return) ©1lse Statementizyield, sReturn]

if (Expressionpn, 2vield)) Statement{syield, ?Return]

Each else for which the choice of associated if is ambiguous shall be associated with the nearest
possible if that would otherwise have no corresponding else.

13.5.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 0, 14.1.16,
14.412,14.5.16, 15.1.5, 15.2.0.13.
IfStatement : 1€ (Expression) Statement else Statement

1. Let names be VarDeclaredNames of the first Statement.
2. Append to names the elements of the' VarDeclaredNames of the second Statement.
3. Return names.

IfStatement : 1€ (Expression) Statement

1. Return the VarDeclaredNames of Statement.
13.5.2 Static Semantics:<VarScopedDeclarations

See also: 13.0.2, 13.1.9, 13.2.2.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
13.14.3,14.1.18,14.2.14, 14.4.13, 16.1.6,,15.2.0.14.

IfStatement : 1€ (Expression) Statement else Statement

1. Let declarations be VarScopedDeclarations of the first Statement.
2. Append to declarations the elements of the VarScopedDeclarations of the second Statement.
3. Return declarations.

IfStatement : 1£ (Expression) Statement

1. Return the VarDeclaredNames of Statement.
13.5.3 Runtime Semantics: Evaluation

IfStatement : 1€ (Expression) Statement else Statement

Let exprRef be the result of evaluating Expression.

Let exprValue be ToBoolean(GetValue(exprRef)).
ReturnIfAbrupt(exprValue).

If exprValue is true, then

a. Let stmtValue be the result of evaluating the first Statement.

5. Else,

a. Let stmtValue be the result of evaluating the second Statement.

© Ecma International 2014 229

AW =

oeCha

6.

7.

If stmtValue.[[type]] is normal and stmtValue.[[value]] is empty, then

a. Return NormalCompletion(undefined).
Return stmtValue.

IfStatement : 1 £ (Expression) Statement

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ToBoolean(GetValue(exprRef)).
3. ReturnIfAbrupt(exprValue).
4. If exprValue is false, then
a. Return NormalCompletion(undefined).
5. Else,
a. Let stmtValue be the result of evaluating Statement.
6. If stmtValue.[[type]] is normal and stmtValue.[[value]] is empty, then
a. Return NormalCompletion(undefined).
7. Return stmtValue.
13.6 Iteration Statements
Syntax

IterationStatement|yield, Return] -

do Statementiayield, "Retum] While (Expressionn, avield)) 7 opt
while (Expression“n, ?Yield]) Statement[y\(iem, 9Return]

for ([lookahead ¢ {let [}] Expressionpyieldjopt ; EXPression|in 2vieldjopt 7 EXPression|in, »Yieldjopt)

Statement(vield, "Return]

for (var VariableDeclarationListyvieq); EXpressiongin, avieldjopt 7 EXPressionyn, »vieldjopt) Statement{syieiq,

?Return]

for (LexicalDeclarationpavield) Expressionyn, 2vieldjopt ; EXpressionyn, avieldjopt) Statementayield, sReturn]

for ([lookahead ¢ {let [}] LeftHandSideExpressionyvieq) in Expressionyn, avielq)) Statementisvieiq, 7Return]

for (var ForBinding[?Yie|d] in Expression[m, ?Yield]) Statement[?ymd, 9Return]
for (ForDeclaration[?Yie|d] in Expression[m, ?Yield]) Statement [?Yield, 7Return]

for ([lookahead ¢ {let [}] LeftHandSideExpression;vieiq) Of AssignmentExpressionyn, 2vield))

Statement(vield, Retufn]

for (wvar ForBindingpyied of AssignmentExpressionyn, avieldq]) Statementiavyield, sReturn]
for (ForDeclarationviedy O AssignmentExpressionyn, 2vielq]) Statementayield, sReturn]

ForDeclarationyyiey) :

LetOrConst ForBindingpayield)

NOTE 1 ForBinding is defined in 12.2.4.2.

NOTE 2 A semicolon is not required after a do-while statement.

13.6.0 Semantics

13.6.0.1 Runtime Semantics: LoopContinues(completion, labelSet)

The abstract operation LoopContinues with arguments completion and labelSet is defined by the following

step:

1.
2.

If completion.[[type]] is normal, then return true.
If completion.[[type]] is not continue, then return false.

© Ecma International 2014

230

secind

3. If completion.[[target]] is empty, then return true.
4. If completion.[[target]] is an element of labelSet, then return true.
5. Return false.

NOTE Within the Statement part of an IterationStatement a ContinueStatement may be used to begin a new iteration.
13.6.1 The do-while Statement
13.6.1.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2; 13.11.4, 13.12.2, 0, 14.1.16,
14.4.12,14.5.16, 15.1.5, 15.2.0.13.

IterationStatement . do Statement while (Expression) ;opt

1. Return the VarDeclaredNames of Statement.
13.6.1.2 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9, 13.2.2.2, 13.5.2, 13.6.2.2, 13.6.3.2, 13.6.44, 13.10.3, 13.11.5, 13.12.3, 13.14.3,
14.1.18,14.2.14,14.4.13, 15.1.6, 15.2.0.14.

IterationStatement : do Statement while (Expression) ;opt

1. Return the VarScopedDeclarations of Statement.
13.6.1.3 Runtime Semantics: LabelledEvaluation
With argument labelSet.

See also: 13.0.2, 13.6.2.2, 13.6.3.2, 13.6.4.6, 13.12:3.

IterationStatement : do Statement while (Expression) ;opt

1. Let V= undefined.

Repeat
Let stmt be the result of evaluating Statement.
If stmt.[[value]] is not empty, let V' = stmt.[[value]].
If LoopContinues (stmt,labelSet) is false, return stmt.
Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
If exprValue is false, Return NormalCompletion(V).
Else if exprValue is not true, then
1. Assert: exprValue is an abrupt completion.
ii. If LoopContinues (exprValue,labelSet) is false, return exprValue.

e oo o

13.6.2 The while Statement

13.6.2.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 0, 14.1.16,
14.4.12,14.5.16, 15.1.5, 15.2.0.13.

© Ecma International 2014 231

oecnd

IterationStatement : while (Expression) Statement

1. Return the VarDeclaredNames of Statement.
13.6.2.2 Static Semantics: VarScopedDeclarations

See also: 13.0.2,13.1.9,13.2.2.2,13.5.2, 13.6.1.2, 13.6.2.2, 15.1.6, 15.2.0.14.

IterationStatement : while (Expression) Statement

1. Return the VarScopedDeclarations of Statement.
13.6.2.3 Runtime Semantics: LabelledEvaluation
With argument labelSet.

See also: 13.0.2,13.6.1.2, 13.6.3.2, 13.6.4.6, 13.12.3.

IterationStatement : while (Expression) Statement

1. Let V= undefined.
2. Repeat
a. Let exprRef be the result of evaluating Expression.
b. Let exprValue be ToBoolean(GetValue(exprRef)).
c. IfexprValue is false, return NormalCompletion(V).
d. [If exprValue is not true, then
i. Assert: exprValue is an abrupt completion.
ii. If LoopContinues (exprValue,labelSet) is false, return exprValue.
Let stmt be the result of evaluating Statement.
f. If stmt.[[value]]'is not empty, let V' = stmt.[[value]].
g. If LoopContinues (stmt,labelSet) is false, return stmt.

@

13.6.3 The for Statement
13.6.3.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 0, 14.1.16,
14.4.12,14.5.16, 15.1.5, 16.2.0.13.

IterationStatement : for ([lookahead ¢ {let [}] Expressionqgy ; Expressionqeg ; Expressionqg) Statement

1. " Return the VarDeclaredNames of Statement.

IterationStatement.: for (‘wvar VariableDeclarationList ; Expressioneg ; Expressionqg) Statement

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement : for (LexicalDeclaration Expressionqy ; Expressiongy) Statement

1. Return the VarDeclaredNames of Statement.

© Ecma International 2014 232

oeCha

13.6.3.2 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9, 13.2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3, 13.14.3,
14.1.18,14.2.14, 14.4.13, 15.1.6, 15.2.0.14.

IterationStatement : £or ([lookahead ¢ {let [}] Expressiongy ; Expressioneg ; Expressiong) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement . for (var VariableDeclarationList ; Expressioney ; Expressionqy) Statement

1. Let declarations be VarScopedDeclarations of VariableDeclarationList.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.
3. Return declarations.

IterationStatement : for (LexicalDeclaration Expressionqy ; Expressionep) Statement

1. Return the VarScopedDeclarations of Statement.
13.6.3.3 Runtime Semantics: LabelledEvaluation
With argument labelSet.

See also: 13.0.2, 13.6.1.2, 13.6.2.2, 13.6.4:6, 13:12.3.

IterationStatement : £or (Expressionep ; Expressionep ; Expressiong) Statement

1. If the first Expression is present, then
a. Let exprRef be the result of evaluating the first Expression.
b. Let exprValue be GetValue(exprRef).
c. If LoopContinues(exprValue,labelSet) 1s false, return exprValue.

2. Return the result of performing ForBodyEvaluation with the first Expression as the testExpr
argument, the second Expression as the incrementExpr argument, Statement as the stmt argument, ()
as the periterationBindings,and with labelSet.

IterationStatement : for (war VariableDeclarationList ; Expressioneg ; Expressionqgy) Statement

1. Let varDcl be the result of evaluating VariableDeclarationList.
. If LoopContinues(varDcl,labelSet) is false, return varDcl.
3. Return the result of performing ForBodyEvaluation with the first Expression as the testExpr
argument, the second Expression as the incrementExpr argument, Statement as the stmt argument, ()
as.the perlterationBindings, and with labelSet.

IterationStatement : for (LexicalDeclaration ; Expressionqy ; Expressionqg) Statement

Let oldEnv be the running execution context’s LexicalEnvironment.
Let loopEnv be NewDeclarativeEnvironment(o/dEnv).
Let isConst be the result of performing IsConstantDeclaration of LexicalDeclaration.
Let boundNames be the BoundNames of LexicalDeclaration.
For each element dn of boundNames do
a. IfisConst is true, then
i. Call loopEnv’s CreatelmmutableBinding concrete method passing dn as the argument.
b. Else,
i. Call loopEnv’s CreateMutableBinding concrete method passing drn and false as the
arguments.

Nk W~

© Ecma International 2014 233

oeCha

ii. Assert: The above call to CreateMutableBinding will never return an abrupt completion.
6. Set the running execution context’s LexicalEnvironment to /oopEnv.
7. Let forDcl be the result of evaluating LexicalDeclaration.
8. If LoopContinues(forDcl,labelSet) is false, then
a. Set the running execution context’s LexicalEnvironment to oldEnv.
b. Return forDcl.
9. IfisConst is false, let periterationLets be boundNames otherwise let perinterationLets be ().
10. Let bodyResult be the result of performing ForBodyEvaluation with the first. Expression as the
testExpr argument, the second Expression as the incrementExpr argument, Statement as the stmt
argument, perilterationLets as the perlterationBindings, and with labelSet.
11. Set the running execution context’s LexicalEnvironment to oldEnv.
12. Return bodyResult.

13.6.3.4 Runtime Semantics: ForBodyEvaluation

The abstract operation ForBodyEvaluation with arguments testExpr, incrementExpr, stmt,
perlterationBindings, and labelSet is performed as follows:

Let V' = undefined.

Let status be CreatePerlterationEnvironment(perlterationBindings).
ReturnIfAbrupt(status).

Repeat

a. If testExpr is not [empty], then

i. Let testExprRef be the result of evaluating testExpr.

ii. Let testExprValue be ToBoolean(GetValue(testExprRef))

iii. If testExprValue is false, return NormalCompletion (V).

iv. Else if LoopContinues (testExprValue,labelSet) is false, return testExprValue.
Let result be the result-of evaluating stmz.

If result.[[value]] is not empty, let V' = result.[[value]].

If LoopContinues (result,labelSet) is false, return result.

Let status be CreatePerlterationEnvironment(periterationBindings).
ReturnIfAbrupt(status).

If incrementExpr is not{empty], then

i. Let incExprRef be the result of evaluating incrementExpr.

ii.Let incExprValue be GetValue(incExprRef).

iii. If LoopContinues(incExprValue,labelSet) is false, return incExprValue.

AW =

oo oo

13.6:3.5 Runtime Semantics: CreatePerlterationEnvironment

The abstract operation CreatePerlterationEnvironment with argument perlterationBindings, is performed as
follows:

1. If perlterationBindings has any elements, then

Let lastlterationEnv be the running execution context’s LexicalEnvironment.

Let outer be lastiterationEnv’s outer lexical environment.

Assert: outer is not null.

Let thislterationEnv be NewDeclarativeEnvironment(outer).

For each element bn of perlterationBindings do,

i. Let status be the result of calling thislterationEnv’s CreateMutableBinding concrete
method passing bn and false as the arguments.

ii. Assert: status is never an abrupt completion.

iii. Let lastValue be the result of calling lastlterationEnv’s GetBindingValue concrete method
passing bn and true as the arguments.

iv. ReturnlfAbrupt(lastValue).

© Ecma International 2014 234

oo Te

oecnd

2.

v. Call the InitializeBinding concrete method of thislterationEnv passing bn and lastValue as
the arguments.
f. Set the running execution context’s LexicalEnvironment to thislterationEnv.
Return undefined

13.6.4 The for-in and for-of Statements

13.6.4.1 Static Semantics: Early Errors

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the
lexical token sequence matched by LeftHandSideExpression-cannot be parsed with no tokens left
over using AssignmentPattern as the goal symbol.

If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical token
sequence matched by LeftHandSideExpression<can be parsed- with no tokens left over using
AssignmentPattern as the goal symbol then the following rules-are not applied. Instead, the Early
Error rules for AssignmentPattern are used.

It is a Syntax Error if LeftHandSideExpression is @ IdentifierReference that can be statically
determined to always resolve to a.declarative environment record binding and the resolved
binding is an immutable binding.

It is a Syntax Error if LeftHandSideExpression is.neither an ObjectLiteral nor an ArrayLiteral and
IsValidSimpleAssignmentTarget of LeftHandSideEExpression is false.

It is a Syntax Error if the LeftHandSideExpression is
CoverParenthesizedExpressionAndArrowParameterList : (Expression)

and Expression derives a production that would produce a Syntax Error according to these rules if
that production is substituted for LeftHandSideExpression. This rule is recursively applied.

NOTE The last rule means that the other rules are applied even if multiple levels of nested parenthesizes

surround Expression.

IterationStatement :
for (. ForDeclaration in Expression) Statement
for (ForDeclaration of AssignmentExpression) Statement

It is a Syntax Error if the BoundNames of ForDeclaration contains "let".

It is a Syntax Error if any element of the BoundNames of ForDeclaration also occurs in the
VarDeclaredNames of Statement.

13.6.4.2 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.2.1, 12.1.2,14.1.3,14.2.2,14.4.2,145.2,15.21.2,15.2.21.

ForDeclaration : LetOrConst ForBinding

1.

Return the BoundNames of ForBinding.

13.6.4.3 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.10.2, 13.11.4, 13.12.2, 0, 14.1.16,
14.4.12,14.5.16, 15.1.5, 15.2.0.13.

© Ecma International 2014 235

oeCha

IterationStatement : £or (LefiHandSideExpression in Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : £for (var ForBinding in Expression) Statement

1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement : £oxr (ForDeclaration in Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : £for (LefiHandSideExpression of AssignmentExpression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var ForBinding of AssignmentExpression) Statement

1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement : £or (ForDeclaration of AssignmentExpression) Statement

1. Return the VarDeclaredNames of Statement.

13.6.4.4 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9, 13.2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.10.3, 13.11.5, 13.12.3, 13.14.3,

14.1.18,14.2.14,14.4.13,15.1.6, 15.2.0.14.

IterationStatement : £oxr (LefiHandSideExpression in Expression) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement - for (var ForBinding in Expression) Statement

1. <Let declarations be the VarScopedDeclarations of ForBinding.

2. Append to declarations the elements of the VarScopedDeclarations of Statement.

3. Return declarations.

IterationStatement : for (ForDeclaration in Expression) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement : £oxr' (LefiHandSideExpression of AssignmentExpression) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement . for (var ForBinding of AssignmentExpression ') Statement

1. Let declarations be the BoundNames of VarScopedDeclarations.

2. Append to declarations the elements of the VarScopedDeclarations of Statement.

3. Return declarations.

© Ecma International 2014

236

oeCha

IterationStatement : £or (ForDeclaration of AssignmentExpression) Statement

1. Return the VarScopedDeclarations of Statement.
13.6.4.5 Runtime Semantics: Bindinginstantiation
With arguments value and environment.
See also: 13.0.2,13.6.1.2, 13.6.2.2, 13.6.3.2, 13.12.3.

ForDeclaration : LetOrConst ForBinding

1. For each element name of the BoundNames of ForBinding do
a. IfIsConstantDeclaration of LetOrConst is true, then
i. Call environment’s CreatelmmutableBinding concrete method with argument name.
b. Else,
i. Call environment’s CreateMutableBinding concrete method with argument name.
ii. Assert: The above call to CreateMutableBinding will never return an abrupt completion.
2. Return the result of performing Bindinglnitialization for ForBinding passing value and environment
as the arguments.

13.6.4.6 Runtime Semantics: LabelledEvaluation
With argument labelSet.

See also: 13.0.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.12.3.

IterationStatement : for (LefiHandSideExpression in Expression) Statement

1. Let keyResult be Forln/OfExpressionEvaluation((), Expression, enumerate, labelSet).
. ReturnIfAbrupt(keyResult).
3. Return the result of performing ForIn/OfBodyEvaluation with LeftHandSideExpression, Statement,
keyResult, assignment, anddabelSet.

IterationStatement . for (wvardorBinding in Expression) Statement

1. Let keyResult be Forln/OfExpressionEvaluation((), Expression, enumerate, labelSet).
. “ReturnIfAbrupt(keyResult).
3. Return the result of performing ForIn/OfBodyEvaluation with ForBinding, Statement, keyResult,
varBinding, and /abelSet.

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be the result of performing ForIn/OfExpressionEvaluation(BoundNames of
ForDeclaration, Expression, enumerate, labelSet).

2. ReturnIfAbrupt(keyResult).

3. Return the result of performing ForIn/OfBodyEvaluation with ForDeclaration, Statement,
keyResult, lexicalBinding, and labelSet.

IterationStatement . for (LefiHandSideExpression of AssignmentExpression) Statement

1. Let keyResult be the result of performing ForIn/OfExpressionEvaluation((),
AssignmentExpression, iterate, labelSet).
2. ReturnIfAbrupt(keyResult).

© Ecma International 2014 237

eCind

3.

Return the result of performing Forln/OfBodyEvaluation with LeftHandSideExpression, Statement,
keyResult, assignment, and labelSet.

IterationStatement : £or (var ForBinding of AssignmentExpression) Statement

1.

2.
3.

Let keyResult be the result of performing Forln/OfExpressionEvaluation((),
AssignmentExpression, iterate, labelSet).

ReturnlfAbrupt(keyResult).

Return the result of performing ForIn/OfBodyEvaluation with ForBinding; Statement, keyResult,
varBinding, and labelSet.

IterationStatement : £oxr (ForDeclaration of AssignmentExpression) Statement

1.

2.
3.

Let keyResult be the result of performing ForIn/OfExpressionEvaluation(BoundNames of
ForDeclaration, AssignmentExpression, iterate, labelSet).

ReturnlfAbrupt(keyResult).

Return the result of performing Forln/OfBodyEvaluation with ForDeclaration, Statement,
keyResult, lexicalBinding, and /abelSet.

13.6.4.7 Runtime Semantics: Forln/OfExpressionEvaluation Abstract Operation

The abstract operation Forln/OfExpressionEvaluation is “called with arguments TDZnames, expr,
iterationKind, and labelSet. The value of iterationKind is either enumerate or iterate.

1.
2.

NN bW

10.

11.

12.

Let oldEnv be the running execution context’s LexicalEnvironment.
If TDZnames is not an empty List, then
a. Assert: TDZnames has no duplicate entries.
b. Let TDZ be NewDeclarativeEnvironment(o/dEny).
c. For each string name in TDZnames, do
i. Let status be the result of calling T7DZ’s CreateMutableBinding concrete method passing
name and false as the arguments.
ii. Assert: status is never an abrupt completion.
d. Set the running execution context’s LexicalEnvironment to 7DZ.
Let exprRef be the result of evaluating the production that is expr.
Set the running execution context’s LexicalEnvironment to oldEnv.
Let exprValue be GetValue(exprRef).
If exprValue is an abrupt completion,
a. If LoopContinues(exprValue,labelSet) is false, then return exprValue.
b. Else, return Completion{[[type]]: break, [[value]]: empty, [[target]]: empty}.
If exprValue.[[value]] is null or undefined, then
a.. Return Completion{[[type]]: break, [[value]]: empty, [[target]]: empty}.
Let 0bj be ToObject(exprValue).
If iterationKind is enumerate, then
a. Let keys be the result of calling the [[Enumerate]] internal method of obj with no arguments.
Else,
a. Assert: iterationKind is iterate.
b. Let keys be Getlterator(obyj).
If keys is an abrupt completion, then
a. If LoopContinues(keys,labelSet) is false, then return keys.
b. Assert: keys.[[type]] is continue
c. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
Return keys.

© Ecma International 2014 238

oeCha

13.6.4.8 Runtime Semantics: Forln/OfBodyEvaluation

The abstract operation Forln/OfBodyEvaluation is called with arguments [lhs, stmt, keys, [hsKind, and
labelSet. The value of /hsKind is either assignment, varBinding or lexicalBinding.

1. Let oldEnv be the running execution context’s LexicalEnvironment.
2. Let V= undefined .
3. Repeat
Let nextResult be IteratorStep(keys).
ReturnlfAbrupt(nextResult).
If nextResult is false, then return NormalCompletion(V).
Let nextValue be IteratorValue(nextResult).
ReturnlfAbrupt(nextValue).
If [hsKind is assignment, then
i. Assert: lhs is a LeftHandSideExpression.
ii. If lhs is neither an ObjectLiteral nor an ArrayLiteral then
1. Let lhsRef be the result of evaluating /As(it may be evaluated repeatedly):
2. Let status be PutValue(lhsRef, nextValue).
iii. Else
1. Let assignmentPattern be the parse of the source code corresponding to /is using
AssignmentPattern as the goal symbol.
2. If Type(nextValue) is not Object, then throw a TypeError exception.
3. Let status be the result of performing DestructuringAssignmentEvaluation of
AssignmentPattern using nextValue as the argument.
g. Else if [hsKind is varBinding, then
i. Assert: lhs is a ForBinding.
ii. Let status be the result of performing BindingInitialization for /As passing nextValue and
undefined as the-arguments.
h. Else,
i. Assert: [hsKind is lexicalBinding.
ii. Assertilhs is a ForDeclaration.
iii. Let iterationEnv be NewDeclarativeEnvironment(o/dEnv).
iv. Perform Bindinglnstantiation for.//s passing nextValue and iterationEnv as arguments.
v. Let status be NormalCompletion(empty)
vi._Set the running execution context’s LexicalEnvironment to iterationEnv.
i.« If status.[[type]] is normal, then
1. Let status be the result of evaluating stmz.
ii. If status.[[type]] is normal and status.[[value]] is not empty, then
1. Let V'= status.[[value]].
Set the running execution context’s LexicalEnvironment to oldEnv.
If status is an abrupt completion and LoopContinues(status,labelSet) is false, then return
status.

moe o o

4

13.7 The continue Statement

Syntax

ContinueStatement|yieiq)
continue ;
continue [no LineTerminator here] Labelldentifierpyieq)

© Ecma International 2014 239

secind

13.7.1 Static Semantics: Early Errors

ContinueStatement : continue ;

e |tis a Syntax Error if this production is not nested, directly or indirectly (but not crossing function
boundaries), within an IterationStatement.

ContinueStatement : continue Labelldentifier ;

e |t is a Syntax Error if StringValue(Labelldentifier) does not appear in‘the CurrentLabelSet of an
enclosing (but not crossing function boundaries) lterationStatement.

13.7.2 Runtime Semantics: Evaluation
ContinueStatement : continue ;
1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: empty}.

ContinueStatement : continue Labelldentifier;
1. Let label be the StringValue of Labelldentifier.
2. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: label }.

13.8 The break Statement

Syntax

BreakStatementyyieiq)
break ;

break [no LineTerminator here] Labelldentifierjsyieiq)
13.8.1 Static Semantics: Early Errors

BreakStatement : break ;

e ltis a Syntax Error if this production is not nested, directly or indirectly (but not crossing function
boundaries), within an lterationStatement or a SwitchStatement.

BreakStatement : break Labelldentifier;

e It is a Syntax Error if StringValue(Labelldentifier)does not appear in the CurrentLabelSet of an
enclosing (but not crossing function boundaries) Statement.

13.8.2 Runtime Semantics: Evaluation

BreakStatement : break ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.

BreakStatement : break Labelldentifier ;

1. Let label be the StringValue of Labelldentifier.
2. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: label }.

© Ecma International 2014 240

secind

13.9 The return Statement

Syntax

ReturnStatementyyieiq -
return ;

return [no LineTerminator here] Expressionyn, 2vielq) ;

NOTE A return statement causes a function to cease execution and return a valueto the caller. If Expression is
omitted, the return value is undefined. Otherwise, the return value is the value of Expression.

13.9.1 Runtime Semantics: Evaluation

ReturnStatement : return ;

1. Return Completion{[[type]]: return, [[value]]: undefined, [[target]]: empty}.

ReturnStatement : return Expression ;

Let exprRef be the result of evaluating Expression.

Let exprValue be GetValue(exprRef).

ReturnIfAbrupt(exprValue).

Return Completion{[[type]]: return, [[value]]: exprValue, [[target]]: empty}.

AW =

13.10The with Statement

Syntax

WithStatement[Yiem, Return] +
with (Expressionn avield)) Statementisvield, "Return]

NOTE The with statement adds an object environment record for a computed object to the lexical environment of
the running execution’ context. It then executes a statement using this augmented lexical environment. Finally, it
restores the original lexical environment.

13.10.1 Static Semantics: Early Errors

WithStatement : with (Expression) Statement

e Itis a Syntax Error if the code that matches this production is contained in strict code.
13.10.2 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8,/13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.11.4, 13.12.2, 0, 14.1.16,
14.4.12,14.5.16, 15.1.5,15.2.0.13.

WithStatement : with (Expression) Statement

1. Return the VarDeclaredNames of Statement.
13.10.3 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9,13.2.2.2,13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4, 13.11.5, 13.12.3, 13.14 .3,
14.1.18,14.2.14, 14.4.13, 15.1.6, 15.2.0.14.

© Ecma International 2014 241

oecnd

WithStatement : with (Expression) Statement

1. Return the VarScopedDeclarations of Statement.
13.10.4 Runtime Semantics: Evaluation

WithStatement : with (Expression) Statement

1. Let val be the result of evaluating Expression.

2. Let obj be ToObject(GetValue(val)).

3. ReturnIfAbrupt(oby).

4. Let oldEnv be the running execution context’s LexicalEnvironment:

5. Let newEnv be NewObjectEnvironment(obj, oldEnv).

6. Set the withEnvironment flag of newEnv’s environment record to true.
7. Set the running execution context’s LexicalEnvironment to-newEnv.

8. Let C be the result of evaluating Statement.

9. Set the running execution context’s Lexical Environment to oldEnv.
10. Return C.

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion or exception, the LexicalEnvironment is always restored to.its former state.

13.11The switch Statement

Syntax

SwitchStatement[Yiem, Return] -
switch (Expressionyn, 2vieq)) CaseBlockpyield, sReturfl

CaseBlockyyieid, Return
{ CaseClausesvield;2Returnjopt }

{ CaseClausespayield, "Returnjopt DefaultClausevieid, Retun) CaseClauses|rvieid, :Returnjopt }

CaseClauses|yield, Return] +
CaseClauseryield, :Return]
CaseClausesyieid, "Return) CaseClausepavield, sReturn]

CaseClause[Yiem, Return] =
case Expressionyn, avielq : StatementListiryielq, *Returnjopt

DeﬁzultC]ause[Yiem, Return] =
default : StatementListjvield, "Returnjopt

13.11.1 Static Semantics: Early Errors

CaseBlock : { CaseClauses }

e ltis a Syntax Error if the LexicallyDeclaredNames of CaseClauses contains any duplicate entries.
e Itis a Syntax Error if any element of the LexicallyDeclaredNames of CaseClauses also occurs in
the VarDeclaredNames of CaseClauses.

13.11.2 Static Semantics: LexicalDeclarations

See also: 13.1.2, 15.2.0.11.

© Ecma International 2014 242

oecind

CaseBlock : { }

1.

Return a new empty List.

CaseBlock : { CaseClausesopt DefaultClause CaseClausesqp }

1.

W\ bW

If the first CaseClauses is present, let declarations be the LexicalDeclarations of the first
CaseClauses.

Else let declarations be a new empty List.

Append to declarations the elements of the LexicalDeclarations of the DefaultClause.

If the second CaseClauses is not present, return declarations.

Else return the result of appending to declarations the elements of the LexicalDeclarations of the
second CaseClauses.

CaseClauses . CaseClauses CaseClause

1.
2.
3.

Let declarations be LexicalDeclarations of CaseClauses.
Append to declarations the elements of the LexicalDeclarations of CaseClause.
Return declarations.

CaseClause : case Expression : StatementListop

1.
2.

If the StatementList is present, return the LexicalDeclarations of StatementList.
Else return a new empty List.

DefaultClause : default : StatementListyy

1.
2.

If the StatementList is present, return the LexicalDeclarations of StatementList.
Else return a new empty List.

13.11.3 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 14.1.14, 14.2.10, 14.4.8, 14.5.10, 15.1.3, 15.2.0.10.

CaseBlock : { }

1.

Return a new empty List.

CaseBlock : { CaseClausesqp: DefaultClause CaseClausesqp }

1.

W W N

If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first
CaseClauses.

Else let names be a new empty List.

Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

Else return the result of appending to names the elements of the LexicallyDeclaredNames of the
second CaseClauses.

CaseClauses : CaseClauses CaseClause

1.
2.
3.

Let names be LexicallyDeclaredNames of CaseClauses.
Append to names the elements of the LexicallyDeclaredNames of CaseClause.
Return names.

CaseClause : case Expression : StatementListop

1.

© Ecma International 2014

If the StatementList is present, return the LexicallyDeclaredNames of StatementList.

243

oeCha

2. Else return a new empty List.

DefaultClause : default : StatementListqp

1. [If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Else return a new empty List.

13.11.4 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.51, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.12.2, 0, 14.1.16,
14.412,14.5.16,15.1.5, 15.2.0.13.
SwitchStatement : switch (Expression) CaseBlock

1. Return the VarDeclaredNames of CaseBlock.

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesqpt DefaultClause CaseClausesqp }

If the first CaseClauses is present, let names be the VarDeclaredNames of the first CaseClauses.
Else let names be a new empty List.

Append to names the elements of the VarDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

Else return the result of appending to names the elements of the VarDeclaredNames of the second
CaseClauses.

DA W -

CaseClauses . CaseClauses CaseClause

1. Let names be VarDeclaredNames of CaseClauses.
2. Append to names the elements of the VarDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression.: StatementListqp

1. If the StatementList 1s present, return the VarDeclaredNames of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementListqp

1. If the StatementList is present, return the VarDeclaredNames of StatementList.
2. Elsereturn a new empty List.

13.11.5 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9,13.2.2.2,13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.12.3, 13.14.3,
14.1.18, 14.2.14, 14413, 15.1.6, 15.2.0.14.

SwitchStatement : switch (Expression) CaseBlock

1. Return the VarScopedDeclarations of CaseBlock.

CaseBlock : { }

1. Return a new empty List.
© Ecma International 2014 244

oeCha

CaseBlock : { CaseClausesopt DefaultClause CaseClausesqp }

1. Ifthe first CaseClauses is present, let declarations be the VarScopedDeclarations of the first
CaseClauses.

Else let declarations be a new empty List.

Append to declarations the elements of the VarScopedDeclarations of the DefaultClause.

If the second CaseClauses is not present, return declarations.

Else return the result of appending to declarations the elements of the VarScopedDeclarations of
the second CaseClauses.

W AW

CaseClauses : CaseClauses CaseClause

1. Let declarations be VarScopedDeclarations of CaseClauses.
2. Append to declarations the elements of the VarScopedDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementListop

1. If the StatementList is present, return the VarScopedDeclarations of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementListqp

1. If the StatementList is present, return.the VarScopedDeclarations of StatementList.
2. Else return a new empty List.

13.11.6 Runtime Semantics: CaseBlockEvaluation
With argument input.

CaseBlock : { CaseClausesqpt }

1. Let V= undefined.
2. Let A4 be thedist of CaseClause items in source text order.
3. Let searching be true.
4. Repeat, while searching s true
a. Let:C be the next CaseClause in A. If there is no such CaseClause, return
NormalCompletion(V).
b. Let clauseSelector be the result of CaseSelectorEvaluation of C.
¢. ReturnIfAbrupt(c/auseSelector).
d. Let matched be the result of performing Strict Equality Comparison input === clauseSelector.
e. If matched is true, then
i. Set searching to false.
ii.. If C has a StatementList, then
1. Let Vbe the result of evaluating C’s StatementList.
2. ReturnIfAbrupt(V).
5. Repeat
a. Let C bethe next CaseClause in A. If there is no such CaseClause, return

NormalCompletion(V).
b. If C has a StatementList, then
i. Let R be the result of evaluating C’s StatementList.
ii. If R.[[value]] is not empty, then let V= R.[[value]].
iii. If R is an abrupt completion, then return Completion{[[type]]: R.[[type]], [[value]]: V,
[[target]]: R.[[target]]}.

© Ecma International 2014 245

oeCha

CaseBlock : { CaseClausesopt DefaultClause CaseClausesqp }

AW~

= o2 S

11.

12.

13.

Let V' = undefined.
Let 4 be the list of CaseClause items in the first CaseClauses, in source text order.
Let found be false.
Repeat letting C be in order each CaseClause in A
a. If found is false, then
i. Let clauseSelector be the result of CaseSelectorEvaluation of C.
ii. If clauseSelector is an abrupt completion, then
1. If clauseSelector.[[value]] is empty, then return Completion{[[type]]:
clauseSelector.[[type]], [[value]]: undefined, [[target]]:" clauseSelector.[[target]]}.
2. Else, return clauseSelector.
iii. Let found be the result of performing Strict Equality Comparison input === clauseSelector.
b. If found is true, then
i. Let R be the result of evaluating CaseClause C.
ii. If R.[[value]] is not empty, then let V' = R.[[value]].
iii. If R is an abrupt completion, then return Completion {[[type]]: R.[[type]], [[value]]: V,
[[target]]: R.[[target]]}.
Let foundInB be false.
If found is false, then
a. Let B be a new List containing the CaseClause items in the second CaseClauses, in source text
order.
b. Repeat, letting C be in order each CaseClause in B
i. If foundInB is false, then
1. Let clauseSelector be the result of CaseSelectorEvaluation of C.
2. If clauseSelector is an abrupt completion, then
a. If clauseSelector.[[value]] is empty, then return Completion {[[type]]:
clauseSelector.[[type]], [[value]]: undefined, [[target]]: clauseSelector.[[target]]}.
b. Else, return clauseSelector.
3. Let foundInB be the result of performing Strict Equality Comparison input ===
clauseSelector.
ii. If foundInB is true, then
1. Let R be the result of evaluating CaseClause C.
2. If R.[[value]] is not empty, then let /' = R.[[value]].
3. If R is an abrupt completion, then return Completion {[[type]]: R.[[type]], [[value]]: V,
[[target]]: R.[[target]]}.
If foundinB is true, then return NormalCompletion(V).
Let R be the result of evaluating DefaultClause.
If R.[[value]] is not empty, then let V' = R.[[value]].

. If R is an abrupt completion, then return Completion{[[type]]: R.[[type]], [[value]]: V, [[target]]:

R.[[target]]}.
Let B be a new List containing the CaseClause items in the second CaseClauses, in source text

order.

Repeat, letting € be in order each CaseClause in B (NOTE this is another complete iteration of the

second CaseClauses)

a. Let R be the result of evaluating CaseClause C.

b. If R.[[value]] is not empty, then let V' = R.[[value]].

c. If R is an abrupt completion, then return Completion {[[type]]: R.[[type]], [[value]]: V,
[[target]]: R.[[target]]}.

Return NormalCompletion(V).

© Ecma International 2014 246

oecnd

13.11.7 Runtime Semantics: CaseSelectorEvaluation

CaseClause : case Expression : StatementListop

1. Let exprRef be the result of evaluating Expression.
2. Return GetValue(exprRef).

NOTE CaseSelectorEvaluation does not execute the associated StatementList. It simply evaluates the Expression
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

13.11.8 Runtime Semantics: Evaluation

SwitchStatement : switch (Expression) CaseBlock

Let exprRef be the result of evaluating Expression.

Let switchValue be GetValue(exprRef).

ReturnIfAbrupt(switchValue).

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be NewDeclarativeEnvironment(oldEnv).

Perform BlockDeclarationInstantiation(CaseBlock, blockEnv).

Let R be the result of performing CaseBlockEvaluation of CaseBlock with argument switchValue.
Set the running execution context’s LexicalEnvironment to oldEnv.

Return R.

VXN b W=

NOTE No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to its former
state.

CaseClause : case Expression :

1. Return NormalCompletion(empty).

CaseClause : case Expression : StatementList

1. Return the result of evaluating StatementList.

DefaultClause : default

1. Return NormalCompletion(empty).

DefaultClause : default : StatementList

1. Return the result of evaluating StatementList.

13.12Labelled Statements

Syntax

LabelledStatement|yield, Return]
Labelldentifierjavieq) : Statement[yvield, 2Return]

NOTE A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled
break and continue statements. ECMAScript has no goto statement. A Statement can be part of a
LabelledStatement, which itself can be part of a LabelledStatement, and so on. The labels introduced this way are
collectively referred to as the “current label set” when describing the semantics of individual statements. A
LabelledStatement has no semantic meaning other than the introduction of a label to a /abel set. The label set of an

© Ecma International 2014 247

secind

IterationStatement or a SwitchStatement initially contains the single element empty. The label set of any other statement
is initially empty.

13.12.1 Static Semantics: Early Errors

LabelledStatement : Labelldentifier : Statement

e |t is a Syntax Error if a LabelledStatement is directly or indirectly enclosed by a LabelledStatement
and the StringValue of this Labelldentifier is the same as the StringValue of the Labelldentifier of
the enclosing LabelledStatement. This does not apply to a LabelledStatement appearing within a
FunctionBody and a LabelledStatement that indirectly encloses the FunctionBody .

13.12.2 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1; 13.6.4.3, 13.10.2, 13.11.4, 0, 14.1.16,
14.4.12,14.5.16, 15.1.5, 15.2.0.13.

LabelledStatement : Labelldentifier : Statement

1. Return the VarDeclaredNames of Statement.
13.12.3 Static Semantics: VarScopedDeclarations

See also: 13.0.2,13.1.9, 13.2.2.2, 13.5.2, 13.6.1.2,13.6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.14.3,
14.1.18,14.2.14, 14.4.13, 15.1.6, 15.2.0.14.
LabelledStatement : Labelldentifier : Statement

1. Return the VarScopedDeclarations of Statement.
13.12.4Runtime Semantics: LabelledEvaluation
With argument /abelSet.
See also: 13.0.2,13.6.1.2,13.6:2.2, 13.6.3.2, 13.6.4.6.

LabelledStatement = Labelldentifier : Statement

1. Let label be the StringValue of Labelldentifier.
2. . Return LabelledStatementEvaluation(label, Statement, labelSet).

13.12.4.1 Runtime Semantics: LabelledStatementEvaluation(label, stmt, labelSet)

The abstract operation LabelledStatementEvaluation with arguments label, stmt, and labelSet is performed
as follows:

1. Let newLabelSet be a new List containing /abel and the elements of /abelSet.
If stmt is either LabelledStatement or BreakableStatement, then
a. Let stmtResult be the result of performing LabelledEvaluation of stm¢ with argument
newLabelSet.
3. Else,
a. Let stmtResult be the result of evaluating stmt.
4. If stmtResult.[[type]] is break and SameValue(stmtResult.[[target]], label), then
a. Let result be NormalCompletion(stmtResult.[[value]]).

© Ecma International 2014 248

oecnd

5. Else,
a. Let result be stmtResult.
6. Return result.

13.12.4.2 Runtime Semantics: Evaluation

LabelledStatement : Labelldentifier : Statement

1. Let newLabelSet be a new empty List.
2. Return the result of performing LabelledEvaluation of this LabelledStatement with argument
newLabelSet.

13.13The throw Statement

Syntax

ThrowStatement{yieiq) -
throw [no LineTerminator here] Expressionyn, »vield] 7

13.13.1Runtime Semantics: Evaluation

ThrowStatement : throw Expression ;

1. Let exprRef be the result of evaluating Expression.

2. Let exprValue be GetValue(exprRef).

3. ReturnlfAbrupt(exprValue).

4. Return Completion {[[type]]: throw, [[value]]: exprValue, [[target]]: empty}.

13.14The try Statement

Syntax

TryStatement[Yiem, Retufn] =
try Blockpavield, “Return) Catchiavield, Return]
try Blockiavield, sReturn] Finallypvield, sReturn)
try Blockpayield, sReturn) Catchpavield, :Return) Finallypavield, 2Return]

Catchyyield, Return] *
catch (CatchParameterpyie)) Blockpvield, "Retum]

Finallypyiels, Returny :
finally Blockpavield, Retum)

CatchParameteriyieq -
Bindingldentifieriavield
BindingPatternpyielq)

NOTE The try statement encloses a block of code in which an exceptional condition can occur, such as a

runtime error or a throw statement. The catch clause provides the exception-handling code. When a catch clause
catches an exception, its CatchParameter is bound to that exception.

© Ecma International 2014 249

oecnd

13.14.1 Static Semantics: Early Errors

Catch : catch (CatchParameter) Block

e It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
LexicallyDeclaredNames of Block.

e It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
VarDeclaredNames of Block.

NOTE An alternative static semantics for this production is given in B.3.3.
13.14.2 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 14.1.16,
14.4.12,14.5.16, 15.1.5, 15.2.0.13.

TryStatement : try Block Catch

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Return names.

TryStatement : try Block Finally

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Finally.
3. Return names.

TryStatement : try Block Catch-Finally

Let names be VarDeclaredNames of Block.

Append to names the elements of the VarDeclaredNames of Catch.
Append to names the elements of the VarDeclaredNames of Finally.
Return names.

AW N =

Catch : catch (CatchParameter) Block
1. Return the VarDeclaredNames of Block.

13.14.3 Static Semantics: VarScopedDeclarations

See also:13.0.2, 13.1.9, 13:2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
14.1.18,14.2.14,14.4.13, 15.1.6, 15.2.0.14.

TryStatement : txry Block Catch

1. Let declarations be VarScopedDeclarations of Block.
2. Append to declarations the elements of the VarScopedDeclarations of Catch.
3. Return declarations.

TryStatement : try Block Finally

1. Let declarations be VarScopedDeclarations of Block.
2. Append to declarations the elements of the VarScopedDeclarations of Finally.
3. Return declarations.

© Ecma International 2014 250

oecnd

TryStatement : try Block Catch Finally

Let declarations be VarScopedDeclarations of Block.

Append to declarations the elements of the VarScopedDeclarations of Catch.
Append to declarations the elements of the VarScopedDeclarations of Finally.
Return declarations.

AW~

Catch : catch (CatchParameter) Block

1. Return the VarScopedDeclarations of Block.
13.14.4Runtime Semantics: Bindinglnitialization
With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialization value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.

See als0:12.2.4.2.2,12.1.2,13.2.2.2,13.2.3 4.

CatchParameter : BindingPattern

1. If Type(value) is not Object, then throw a TypeError exception.
2. Return the result of performing BindingInitialization for BindingPattern passing value and
environment as the arguments.

13.14.5 Runtime Semantics: CatchClauseEvaluation
with parameter thrownValue

Catch : catch (CatchParameter) Block

1. Let oldEnv be the running execution context’s LexicalEnvironment.
Let catchEnv be NewDeclarativeEnvironment(o/dEnv).
3. For each element argName of the BoundNames of CatchParameter, do
a.« Call the CreateMutableBinding concrete method of catchEnv passing argName as the argument.
b. Assert: The above call to CreateMutableBinding will never return an abrupt completion.
4. Let status be the result of performing BindinglInitialization for CatchParameter passing
thrownValue and catchEnv as arguments.
ReturnIfAbrupt(status).
Set the running execution context’s LexicalEnvironment to catchEnv.
Let B be the result of evaluating Block.
Set the running execution context’s LexicalEnvironment to oldEnv.
Return B.

NESINRY

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
13.14.6 Runtime Semantics: Evaluation

TryStatement : txry Block Catch

1. Let B be the result of evaluating Block.
2. If B.[[type]] is not throw, return B.
3. Return the result of performing CatchClauseEvaluation of Catch with parameter B.[[value]].
© Ecma International 2014 251

oecnd

TryStatement : try Block Finally

Let B be the result of evaluating Block.
Let F be the result of evaluating Finally.
If F.[[type]] is normal, return B.

Return F.

N O R S

TryStatement : try Block Catch Finally

Let B be the result of evaluating Block.
If B.[[type]] is throw, then
a. Let C be the result of performing CatchClauseEvaluation of Catch with parameter B.value.
3. Else B.[[type]] is not throw,
a. Let CbeB.
4. Let F be the result of evaluating Finally.
5. [If F.[[type]] is normal, return C.
6. Return F.

13.15The debugger statement

Syntax

DebuggerStatement :
debugger ;

13.15.1 Runtime Semantics: Evaluation

NOTE Evaluating the DebuggerStatement production may allow an implementation to cause a breakpoint when run
under a debugger. If a debugger is not present or active this statement has no observable effect.
DebuggerStatement : debugger ;

1. Ifan implementation defined debugging facility is available and enabled, then
a. Perform an implementation defined . debugging action.
b. Let result be an implementation defined Completion value.

2. Else
a.< Let result be NormalCompletion(empty).

3. <Return result.

14 ECMAScript Language: Functions and Classes

NOTE Various ECMAScript language elements cause the creation of ECMAScript function objects (9.1.14).
Evaluation of such functions starts with the execution of their [[Call]] internal method (9.2.1).

14.1 Function Definitions

Syntax

FunctionDeclarationyyied, pefaul]
function Bindingldentifier(vieid, 20efauty) (FormalParameters) { FunctionBody }

FunctionExpression :
function Bindingldentifiero (FormalParameters ') { FunctionBody }

© Ecma International 2014 252

oecnd

StriCtFormalParameterS[Yield, GeneratorParameter] -
FOVmalParameters[?Yield, ?GeneratorParameter]

FOrmalParamelerS[Yield,GeneratorParameter] .
[empty]
FormalParameterLlSl[?Yield, ?GeneratorParameter]

FO”malParamete”LiSl[Yield,GeneratorParameter] .
FunctionRestParameterjsyield]
FOVmalSLiSl[?Yield, ?GeneratorParameter]
FOVmalSLiSt[?Yield, ?GeneratorParameter] 7 FunCtiOnREStPa’”amae’”[?Yield]

FO”malSLiSt[Yield,GeneratorParameter] .
FormalParameterpsyieiq)

FOVmalSLiSt[?Yield, ?GeneratorParameter] 7 FOVmalParameter[?Yield,'?GeneratorParameter]

FunctionRestParameteryielq) -
BindingRestElement{yieiq

FOVmalPaVameter[Yield,GeneratorParameter] .
Bmdnglement[?Yield, ?GeneratorParameter]

FunctionBody|yielq :
FunctionStatementListayield]

FunctionStatementListivielq) -
StatementListiavield, Returnjopt

14.1.1 Directive Prologues and the Use Strict Directive

A Directive Prologue is the longest sequence of ExpressionStatement productions occurring as the initial
StatementListltem productions of a FunctionBody or a ScriptBody and where each ExpressionStatement in the
sequence consists entirely. of a StringLiteral token followed by a semicolon. The semicolon may appear
explicitly or may be inserted by automatic semicolon insertion. A Directive Prologue may be an empty
sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either the
exact character sequences "use strict" or 'use strict'. A Use Strict Directive may not contain
an EscapeSequence or LineContinuation.

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may
issue a warning if this occurs.

NOTE The ExpressionStatement productions of a Directive Prologue are evaluated normally during evaluation of
the containing production. Implementations may define implementation specific meanings for ExpressionStatement
productions which are not a Use Strict Directive and which occur in a Directive Prologue. If an appropriate
notification mechanism exists, an implementation should issue a warning if it encounters in a Directive Prologue an
ExpressionStatement that is not a Use Strict Directive and which does not have a meaning defined by the
implementation.

© Ecma International 2014 253

oecnd

14.1.2 Static Semantics: Early Errors

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody '}
and
FunctionExpression . function Bindingldentifierey (FormalParameters) { FunctionBody }

o |f the source code matching this production is strict code, the Early Error rules for
StrictFormalParameters : FormalParameters are applied.

o It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

NOTE The LexicallyDeclaredNames of a FunctionBody does not include identifiers bound using var or function
declarations. Simple parameter lists bind identifiers as VarDeclaredNames. Parameter lists that contain destructuring
patterns, default value initializers, or a rest parameter bind identifiers as LexicallyDeclaredNames.

StrictFormalParameters : FormalParameters

e |tis a Syntax Error if BoundNames of FormalParameters contains any duplicate elements.

FormalParameters : FormalParameterList

e |tis a Syntax Error if IsSimpleParameterList of FormalParameterList is false and BoundNames of
FormalParameterList contains any duplicate elements.

NOTE Multiple occurrences of the same Identifier in @ FormalParamterList is only allowed for non-strict functions
and generator functions that have simple parameter lists.

FunctionStatementList : StatementList

e |tis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e |tis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in
the VarDeclaredNames of StatementList.

14.1.3 Static Semantics: BoundNames

See also: 13.2.1.2, 13.2.2.1, 12.1.2, 13.6.4.2, 14.2.2,14.4.2,14.5.2, 15.2.1.2, 15.2.21.

FunctionDeclaration * £unction Bindingldentifier (FormalParameters) { FunctionBody }

1. Return the BoundNames of Bindingldentifier.

FormalParameters : [empty]

1. Return an empty List.

FormalParameterList : FormalsList , FunctionRestParameter

1. Let names be BoundNames of FormalsList.
2. Append to names the BoundNames of FunctionRestParameter.
3. Return names.

FormalsList : FormalsList , FormalParameter

1. Let names be BoundNames of FormalsList.
2. Append to names the elements of BoundNames of FormalParameter.
3. Return names.

© Ecma International 2014 254

oecnd

14.1.4 Static Semantics: Contains
With parameter symbol.
See also: 5.3, 12.2.5.2,12.3.1.1,14.2.3,14.4.3,14.5.4

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return false.

FunctionExpression . function Bindingldentifierqp (FormalParameters') { FunctionBody }

1. Return false.

NOTE Static semantic rules that depend upon substructure generally. do not look into function definitions.
14.1.5 Static Semantics: ContainsExpression

See also: 13.2.3.2, 14.2 4.

FormalParameters : [empty]

1. Return false.

FormalParameterList . FunctionRestParameter

1. Return false.

FormalParameterList : FormalsList , FunctionRestParameter

1. Return ContainsExpression of FormalsList.

FormalsList : FormalsList , FormalParameter

1. If ContainsExpression of FormalsList.is true, then return true.
2. Return ContainsExpression of FormalParameter.

14.1.6 Static Semantics: ExpectedArgumentCount

See also: 14.2.6, 14.3.2.

FormalParameters : [empty]

1. "Return 0.

FormalParameterList : FunctionRestParameter

1. Return O.

FormalParameterList : FormalsList , FunctionRestParameter

1. Return the ExpectedArgumentCount of FormalsList.

NOTE The ExpectedArgumentCount of a FormalParameterList is the number of FormalParameters to the left of
either the rest parameter or the first FormalParameter with an Initializer. A FormalParameter without an initializer is
allowed after the first parameter with an initializer but such parameters are considered to be optional with undefined
as their default value.

© Ecma International 2014 255

oecnd

FormalsList : FormalParameter

1. If Haslnitializer of FormalParameter is true return 0
2. Return 1.

FormalsList : FormalsList, FormalParameter

1. Let count be the ExpectedArgumentCount of FormalsList.
If HaslInitializer of FormalsList is true or Haslnitializer of FormalParameter is true, then return
count.

3. Return count+1.

14.1.7 Static Semantics: Haslnitializer

See also: 13.2.3.3, 14.2.7.

FormalParameters : [empty]

1. Return false.

FormalParameterList . FunctionRestParameter

1. Return false.

FormalParameterList . FormalsList , FunctionRestParameter

1. If HaslInitializer of FormalsList is true, then return true.
2. Return false.

FormalsList : FormalsList , FormalParameter

1. If HaslInitializer of FormalsList is true, then return true.
2. Return Haslnitializer of FormalParameter.

14.1.8 Static Semantics: HasName

See also: 14.2.8,14.4.6, 14.5.6.

FunctionExpression : function (FormalParameters) { FunctionBody }

1. Return false.

FunctionExpression . function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return true.
14.1.9 Static Semantics: IsAnonymousFunctionDefinition (production) Abstract Operation

The abstract operation IsAnonymousFunctionDefinition determines if its argument is a function definition
that does not bind a name. The argument production is the result of parsing an AssignmentExpression. The
following steps are taken:

If IsFunctionDefinition(production) is false, then return false.
Let hasName be the result of HasName of production.

If hasName is true, then return false.

Return true.

AW =

© Ecma International 2014 256

secind

14.1.10 Static Semantics: IsConstantDeclaration
See also: 13.2.1.3,14.4.5, 14.5.5.

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return false.
14.1.11 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 124.2, 1252, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.111,
12.12.1,12.13.1,12.14.2,12.15.1, 14.4.8, 14.5.8.

FunctionExpression : function (FormalParameters) { FunctionBody }

1. Return true.

FunctionExpression : function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return true.
14.1.12 Static Semantics: IsSimpleParameterList

See also: 13.2.3.4,14.2.8

FormalParameters = [empty]

1. Return true.

FormalParameterList : FunctionRestParameter

1. Return false.

FormalParameterList: FormalsList , FunctionRestParameter

1. Return false.

FormalsList = FormalsList , FormalParameter

1.« If IsSimpleParameterList of FormalsList is false, return false.
2. Return IsSimpleParameterList of FormalParameter.

FormalParameter : BindingElement

1. Return IsSimpleParameterList of BindingElement.
14.1.13 Static Semantics: IsStrict
See also: 15.1.2, 15.2.0.7.

FunctionStatementList : StatementListqp

1. Ifthis FunctionStatementList is contained in strict code or if StatementList is strict code, then
return true. Otherwise, return false.

© Ecma International 2014 257

oeCha

14.1.14 Static Semantics: LexicalDeclarations
See also: 13.11.2, 15.2.0.11.

FunctionStatementList . [empty]

1. Return an empty List.

FunctionStatementList : StatementList

1. Return the TopLevelLexicallyScopedDeclarations of StatementList.
14.1.15 Static Semantics: LexicallyDeclaredNames
See also: 13.1.3, 13.11.3, 14.2.10, 14.4.8, 14.5.10, 15.1.3, 15.2.0:10.

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return the BoundNames of Bindingldentifier.

FunctionStatementList : [empty]

1. Return an empty List.

FunctionStatementList ;. StatementList

1. Return TopLevelLexicallyDeclaredNames of StatementList.
14.1.16 Static Semantics: ReferencesSuper

See also: 14.2.12, 14.3.6, 14.4.11.

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. If FormalParameters Contains super-is true, then return true.
2. Return FunctionBody Contains super.

FunctionExpression : function Bindingldentifierqy (FormalParameters) { FunctionBody }

L.« If FormalParameters Contains super is true, then return true.
2. Return FunctionBody Contains super.

FormalParameters : [empty]

1. Return false.

FormalParameters i FormalParametersList

1. Return FormalParametersList Contains super.

FunctionBody . FunctionStatementList

1. Return FunctionStatementList Contains super.

© Ecma International 2014 258

oecnd

14.1.17 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.51, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 0,
14.412,14.5.16, 15.1.5, 15.2.0.13.
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return an empty List.

FunctionStatementList : [empty]

1. Return an empty List.

FunctionStatementList : StatementList

1. Return TopLevelVarDeclaredNames of StatementList.
14.1.18 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9,13.2.2.2,13.5.2, 13.6.1.2, 13:6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
13.14.3,14.2.14,14.4.13, 15.1.6, 15.2.0.14.
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return an empty List.

FunctionStatementList : [empty]

1. Return an empty List.

FunctionStatementList : StatementList

1. Return the TopLevelVarScopedDeclarations of StatementList.
14.1.19 Runtime Semantics: EvaluateBody
With parameter functionObject.

See also: 14.2.16, 14.4.13.

FunctionBody : FunctionStatementList

1. The code of this FunctionBody is strict mode code if it is contained in strict mode code or if the
Directive Prologue (14.1.1) of its FunctionStatementList contains a Use Strict Directive or if any of
the conditions in 10:2.1 apply. If the code of this FunctionBody is strict mode code,
FunctionStatementList is evaluated in the following steps as strict mode code. Otherwise,
StatementList is evaluated in the following steps as non-strict mode code.

Let result be the result of evaluating FunctionStatementList.

If result.[[type]] is return then return NormalCompletion(result.[[value]])

ReturnIfAbrupt(result).

Return NormalCompletion(undefined).

W WN

14.1.20Runtime Semantics: IteratorBindinglnitialization

With parameters iterator and environment.

© Ecma International 2014 259

oeCha

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign
the initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal
parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

See also: 13.2.3.6, .

FormalParameters : [empty]

1. Return NormalCompletion(empty).

FormalParameterList : FormalsList , FunctionRestParameter

1. Let restindex be the result of performing IteratorBindinglInitialization for FormalsList using
iterator, and environment as the arguments.

2. ReturnIfAbrupt(restindex).

3. Return the result of performing IteratorBindinglnitialization for FunctionRestParameter using
iterator and environment as the arguments.

FormalsList : FormalsList , FormalParameter

1. Let status be the result of performing IteratorBindinglnitialization for FormalsList using iterator
and environment as the arguments.

2. ReturnIfAbrupt(status).

3. Return the result of performing IteratorBindingInitialization for. FormalParameter using iterator
and environment as the arguments.

14.1.21 Runtime Semantics: InstantiateFunctionObject
With parameter scope.

See also: 14.4.15.

FunctionDeclaration * £anction Bindingldentifier (FormalParameters) { FunctionBody }

1. If the FunctionDeclaration is contained in strict code or if its FunctionBody is strict code, then let
strict be true. Otherwise let strict be false.

2. Let name be StringValue of Bindingldentifier.

3. <Let F be FunctionCreate(Normal, FormalParameters, FunctionBody, scope, strict).

4. If ReferencesSuper of FunctionDeclaration is true, then
a. Perform MakeMethod(F, name, undefined).

5. Perform MakeConstructor(F).

6. SetFunctionName(F, name).

7. Return F.

14.1.22 Runtime Semantics: Evaluation

FunctionDeclaration * function Bindingldentifier (FormalParameters) { FunctionBody }

1. Return NormalCompletion(empty)

FunctionExpression : function (FormalParameters) { FunctionBody }

1. Ifthe FunctionExpression is contained in strict code or if its FunctionBody is strict code, then let
strict be true. Otherwise let strict be false.
2. Let scope be the LexicalEnvironment of the running execution context.

© Ecma International 2014 260

oeCha

Let closure be FunctionCreate(Normal, FormalParameters, FunctionBody, scope, strict).
If ReferencesSuper of FunctionExpression is true, then

a. Perform MakeMethod(closure, undefined, undefined).

Perform MakeConstructor(closure).

Return closure.

FunctionExpression : function Bindingldentifier (FormalParameters) { FunctionBody }

1.

NN R

9.

10.
11.
12.

NOTE 1

If the FunctionExpression is contained in strict code or if its FunctionBody is strict code, then let
strict be true. Otherwise let strict be false.

Let runningContext be running execution context’s Lexical Environment.

Let funcEnv be NewDeclarativeEnvironment(runningContext).

Let envRec be funcEnv’s environment record.

Let name be StringValue of Bindingldentifier.

Call the CreatelmmutableBinding concrete method of envRec passing name as the argument.

Let closure be FunctionCreate(Normal, FormalParameters, FunctionBody, funcEnv; strict).

If ReferencesSuper of FunctionExpression is true, then

a. Perform MakeMethod(closure, name, undefined).

Perform MakeConstructor(closure).

SetFunctionName(closure, name).

Call the InitializeBinding concrete method of envRec passing name and closure as the arguments.
Return NormalCompletion(closure).

The Bindingldentifier in a FunctionExpression-can be referenced from inside the FunctionExpression's
FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the
Bindingldentifier in a FunctionExpression cannot be referenced from and does not affect the scope enclosing the

FunctionExpression.

NOTE 2

A prototype property is automatically created for every function defined using a FunctionDeclaration or

FunctionExpression, to allow for the possibility that the function will be used as a constructor.

FunctionStatementList < [empty]

1.

Return NormalCompletion(undefined).

14.2 Arrow Function Definitions

Syntax

AI’I‘OWFuIlCtiOIl[mY Yield] *
ArrowParameterspvieiq) [n0 LineTerminator here] => ConciseBodyjsin]

ArrowParametersyyielq) -
BindingIdentiﬁermield]
CoverParenthesizedExpressionAndArrowParameterListiavield)

ConciseBodyyn :
[lookahead ¢ { { }] AssignmentExpressionn
{ FunctionBody }

Supplemental Syntax

When processing the production
ArrowParametersyyieq) : CoverParenthesizedExpressionAndArrowParameterListiovield)
the following grammar is used to refine the interpretation of:

© Ecma International 2014

261

oecnd

CoverParenthesizedExpressionAndArrowParameterList:

ArrowFormalParametersiyieyq) :
(StrictFormalParameterspvieiq;)

14.2.1 Static Semantics: Early Errors

ArrowFunction : ArrowParameters => ConciseBody

e It is a Syntax Error if any element of the BoundNames of ArrowParameters also occurs in the
LexicallyDeclaredNames of ConciseBody.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

e |tis a Syntax Error if the lexical token sequence matched by
CoverParenthesizedExpressionAndArrowParameterList cannot be parsed with no tokens left over
using ArrowFormalParameters as the goal symbol.

e It is a Syntax Error if any early errors¢ are present for CoveredFormalsList of
CoverParenthesizedExpressionAndArrowParameterList.

14.2.2 Static Semantics: BoundNames
See also: 13.2.1.2,13.2.2.1,12.1.2,13.6.4.2, 14.1.3, 14.4.2, 14.5.2, 15.2.1.2, 15.2.2 1.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the BoundNames of formals.

14.2.3 Static Semantics: Contains
With parameter symbol.

See also: 5.3,12.2.5.2,12.3.1.1, 14.1.4,14.4.3, 14.5.4

ArrowFunction : ArrowParameters => ConciseBody

1. If symbol is neither super nor this, then return false.
2. If ArrowParameters Contains symbol is true, return true;
3. Return ConciseBody Contains symbol .

NOTE Normally, Contains does not look inside most function forms However, Contains is used to detect this
and super usage within an ArrowFunction.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return formals Contains symbol.

14.2.4 Static Semantics: ContainsExpression

See also: 13.2.3.2, 14.1.5.

ArrowParameters : Bindingldentifier

1. Return false.
© Ecma International 2014 262

oeCha

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the ContainsExpression of formals.

14.2.5 Static Semantics: CoveredFormalsList

ArrowParameters : Bindingldentifier
1. Return Bindingldentifier.

CoverParenthesizedExpressionAndArrowParameterList :
(Expression)

()
(... IdentifierName)
(Expression , ... IdentifierName)

1. Return the result of parsing the lexical token stream-matched by
CoverParenthesizedExpressionAndArrowParameterList using ArrowFormalParameters as the goal
symbol.

14.2.6 Static Semantics: ExpectedArgumentCount
See also: 14.1.5, 14.3.2.

ArrowParameters : Bindingldentifier

1. Return 1.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the Expected ArgumentCount of formals.

14.2.7 Static Semantics: Haslnitializer

See also: 13.2.3.3, 14.1.7.

ArrowParameters : Bindingldentifier

1. Return false.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the Haslnitializer of formals.

14.2.8 Static Semantics: HasName
See also: 14.1.8,14.4.6, 14.5.6.
ArrowFunction : ArrowParameters => ConciseBody

1. Return false.

© Ecma International 2014 263

secind

14.2.9 Static Semantics: IsSimpleParameterList

See also: 13.2.3.4, 14.1.11.
ArrowParameters : Bindingldentifier

1. Return true.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the IsSimpleParameterList of formals.

14.2.10 Static Semantics: LexicalDeclarations

See also: 13.11.2, 15.2.0.11.

ConciseBody : AssignmentExpression

1. Return an empty List.
14.2.11 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 13.11.3, 14.1.14, 14.4.8, 14.5.10, 15.1.3, 15.2.0.10.

ConciseBody : AssignmentExpression

1. Return an empty List.
14.2.12 Static Semantics: ReferencesSuper

See also: 14.1.16, 14.3.6,14.4.11.

ArrowFunction : ArrowParameters => ConciseBody

1. Return false.

NOTE ReferencesSuper is used to determine whether a function requires its own super bindings. This is never
the case for Arrow Functions.

14.2:13 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, O,
14.4.12,14.5.16, 15.1.5, 15.2.0.13.

ConciseBody ' AssignmentExpression

1. Return an empty List.
14.2.14 Static Semantics: VarScopedDeclarations

See also: 13.0.2, 13.1.9, 13.2.2.2,13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
13.14.3, 14.1.18,14.4.13, 15.1.6, 15.2.0.14.
ConciseBody . AssignmentExpression

1. Return an empty List.
© Ecma International 2014 264

oecnd

14.2.15Runtime Semantics: IteratorBindinglnitialization
With parameters iterator and environment.
See als0:12.2.4.2.2,12.1.2,13.2.2.2,13.2.3.4,13.14.3, 14.1.20.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign
the initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal
parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrowParameters : Bindingldentifier

1. Let next be IteratorStep(iterator).

2. ReturnIfAbrupt(next).

3. If next is false, then let v be undefined

4. Else
a. Let v be IteratorValue(next).
b. ReturnlfAbrupt(v).

5. Return the result of performing BindinglInitialization for Bindingldentifier using v and environment
as the arguments.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of performing IteratorBindinglnitialization of formals with arguments value and
environment.

14.2.16 Runtime Semantics: EvaluateBody
With parameter functionObject.

See also: 14.1.18, 14.4.13.

ConciseBody : AssignmentExpression

1. The code of this ConciseBody is strict mode code if it is contained in strict mode code or if any of
the conditions in 10.2.1 apply. If the code of this ConciseBody is strict mode code,
AssignmentExpression is evaluated in the following steps as strict mode code. Otherwise,
AssignmentExpression is evaluated in the following steps as non-strict mode code.

2. Let exprRef be the result of evaluating AssignmentExpression.
3. Let exprValue be GetValue(exprRef).
4. “If exprValue.[[type]] is return then return NormalCompletion(exprValue.[[value]]).
5. ReturnIfAbrupt(exprValue).
6. Return NormalCompletion(exprValue).
NOTE In the absence of extensions to this specification, the test is step 4 will never be true.

14.2.17 Runtime Semantics: Evaluation

ArrowFunction . ArrowParameters => ConciseBody

1. If the code of this ArrowFunction is contained in strict mode code or if any of the conditions in
10.2.1 apply, then let strict be true. Otherwise let strict be false.
2. Let scope be the LexicalEnvironment of the running execution context.

© Ecma International 2014 265

oecnd

3. Let parameters be CoveredFormalsList of ArrowParameters.
4. Let closure be FunctionCreate(Arrow, parameters, ConciseBody, scope, strict).
5. Return closure.

NOTE Any reference to arguments, super, or this within an ArrowFunction are resoved to their bindings in
the lexically enclosing function. Even though an ArrowFunction may contain references to super, the function object
created in step 4 is not made into a method by performing MakeMethod. An ArrowFunction that references super is
always contained within a non-ArrowFunction and the necessary state to implement super.is accessible via the scope
that is captured by the function object of the ArrowFunction.

14.3 Method Definitions

Syntax

MethodDeﬁnition[Yie|d] s
PropertyNamepvieqy (StrictFormalParameters) { FunctionBody }
GeneratorMethod[avielq)

get PropertyNamepyieiq () { FunctionBody }
set PropertyNamepyieqy (PropertySetParameterList \) { FunctionBody }

PropertySetParameterList :
FormalParameter

14.3.1 Static Semantics: Early Errors

MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

e ltis a Syntax Error if any element of the BoundNames of StrictFormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

MethodDefinition : set PropertyName (| PropertySetParameterList) { FunctionBody }

e ltis a Syntax Error if BoundNames of PropertySetParameterList contains any duplicate elements.
e Itis a Syntax Error.if any.element of the BoundNames of PropertySetParameterList also occurs in
the LexicallyDeclaredNames of FunctionBody.

14.3.2 Static Semantics: ComputedPropertyContains
With parameter symbol.

See als0:12.2.5.2, 14.4.3, 14.5.5.

MethodDefinition :
PropertyName (StrictFormalParameters) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.
14.3.3 Static Semantics: ExpectedArgumentCount

See also: 14.1.5,14.2.6.

PropertySetParameterList . FormalParameter

© Ecma International 2014 266

oecnd

1. If Haslnitializer of FormalParameter is true return 0
2. Return 1.

14.3.4 Static Semantics: HasComputedPropertyKey
See also: 12.2.54,14.4.5

MethodDefinition
PropertyName (StrictFormalParameters) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return HasComputedPropertyKey of PropertyName.
14.3.5 Static Semantics: PropName
See also: 12.2.5.6, 14.4.10, 14.5.13

MethodDefinition :
PropertyName (StrictFormalParameters) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return PropName of PropertyName.
14.3.6 Static Semantics: ReferencesSuper
See also: 14.1.16, 14.2.12, 14.4:11.

MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

1. If StrictFormalParameters Contains super is true, then return true.
2. Return FunctionBody Contains supexr.

MethodDefinition : get PropertyName () { FunctionBody }

1. Return FunctionBody Contains super.

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

1. If PropertySetParameterList Contains super is true, then return true.
2. Return FunctionBody Contains super.

14.3.7 Static Semantics: SpecialMethod

MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody '}
1. Return false.
MethodDefinition :
GeneratorMethod

get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return true.

© Ecma International 2014 267

eCind

14.3.8 Runtime Semantics: DefineMethod
With parameters object and optional parameter functionPrototype.

MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody '}

Let propKey be the result of evaluating PropertyName.
ReturnlfAbrupt(propKey).
Let strict be IsStrict of FunctionBody.
Let scope be the running execution context’s LexicalEnvironment.
Let closure be FunctionCreate(Method, StrictFormalParameters, FunctionBody, scope, strict). If
functionPrototype was passed as a parameter then pass its value as the functionPrototype optional
argument of FunctionCreate.
6. If ReferencesSuper of MethodDefinition is true, then
a. Perform MakeMethod(closure, propKey, object).
7. Return the Record{[[key]]: propKey, [[closure]]: closure}.

DN AW~

14.3.9 Runtime Semantics: PropertyDefinitionEvaluation
With parameter object.
See also: 12.2.5.9, 14.4.16, B.3.1

MethodDefinition : PropertyName (StrictFormalParameters.) { FunctionBody }

Let methodDef be the result of DefineMethod of this MethodDefinition with argument object.
ReturnIfAbrupt(methodDef).

SetFunctionName(methodDef.[[closure]], methodDef.[[key]]).

Let desc be the Property Descriptor {[[Value]]: methodDef.[[closure]], [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}.

5. Return DefinePropertyOrThrow(object, methodDef.[[key]], desc).

AW N —

MethodDefinition : GeneratorMethod
See 14.4.

MethodDefinition : get PropertyName () { FunctionBody '}

Let propKey be the result of evaluating PropertyName.

ReturnlfAbrupt(propKey).

Let strict be IsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

Let formalParameterList be the production FormalParameters : [empty]

Let closure be FunctionCreate(Method, formalParameterList, FunctionBody, scope, strict).
If ReferencesSuper of MethodDefinition is true, then

a. Perform MakeMethod(closure, propKey, object).

8. SetFunctionName(closure, propKey, "get").

9. Let desc be the PropertyDescriptor {[[Get]]: closure, [[Enumerable]]: true, [[Configurable]]: true}
10. Return DefinePropertyOrThrow(object, propKey, desc).

R [

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).

© Ecma International 2014 268

oeCha

3. Let strict be IsStrict of FunctionBody.
4. Let scope be the running execution context’s LexicalEnvironment.
5. Let closure be FunctionCreate(Method, PropertySetParameterList, FunctionBody, scope, strict).
6. If ReferencesSuper of MethodDefinition is true, then
a. Perform MakeMethod(closure, propKey, object).
7. SetFunctionName(closure, propKey, "set").
8. Let desc be the PropertyDescriptor {[[Set]]: closure, [[Enumerable]]: true, [[Configurable]]: true}

9. Return DefinePropertyOrThrow(object, propKey, desc).
14.4 Generator Function Definitions

Syntax

GeneratorMethodiyierq)
* PropertyNamepyvieq) (StrictFormalParametersiyieid,GeneratorParameter]) { FunctionBodyyyieiq) }

GeneratorDeclarationlYiem, Default] =
function * Bindingldentifienyvieid, petauty (FormalParametersiyieisGeneratorParameter]) {
FunctionBody|vieiq) }

GeneratorExpression :
function * Bindingldentifieriyiegiopt (FormalParametersiyieid,GeneratorParameter]) { FunctionBodyyieiq) }

YieldExpressionyy
yield
yield [no LineTerminator here] [Lexical goal InputElementRegExp] AssignmentExpressionyain, yield]
yield [no LineTerminator here] * [Lexical goal InputElementRegExp] ASSignmentExpression|in, vield]

NOTE YieldExpression cannot be used within the FormalParameters of a generator function because any
expressions that are part of FormalParameters are evaluate before the resulting generator object is in a resumable
state.

Supplemental Syntax

The following productions are used as an aid in specifying the semantics of certain ECMAScript language
features. They are not used when parsing ECMAScript source code.

GeneratorBody :
FunctionBody
Comprehension

NOTE: Abstract operations relating to generator objects are defined in 25.3.3.
14.4.1 Static Semantics: Early Errors

GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody}

e Itis a Syntax Error if any element of the BoundNames of StrictFormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody '}
and
GeneratorExpression : function * Bindingldentifiero, (FormalParameters) { FunctionBody }

© Ecma International 2014 269

ecimna

o |f the source code matching this production is strict code, the Early Error rules for
StrictFormalParameters : FormalParameters are applied.
e It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.
14.4.2 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.21,12.1.2,13.6.4.2, 14.1.3,14.2.2,14.5.2,15.2.1.2,15.2.2 1.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) {<FunctionBody }

1. Return the BoundNames of Bindingldentifier.
14.4.3 Static Semantics: ComputedPropertyContains
With parameter symbol.

See also: 12.2.5.2, 14.3.2, 14 .5.5.
GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.
14.4.4 Static Semantics: Contains
With parameter symbol.

See also:5.3,12.2.5.2,12.3.1.1,14.1.4, 14.2.3, 1454

GeneratorDeclaration : funetion * Bindingldentifier (FormalParameters) { FunctionBody }

1. Return false.

GeneratorExpression : function * Bindingldentifiero, (FormalParameters) { FunctionBody }

1. Return false.
NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.
14.4.5 Static Semantics: HasComputedPropertyKey

See also:12.2.5.4,14.3.4

GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody }

1. Return IsComputedPropertyKey of PropertyName.
14.4.6 Static Semantics: HasName

See also: 14.1.8,14.2.8, 14.5.6.

GeneratorExpression : function * (FormalParameters) { FunctionBody }

1. Return false.

© Ecma International 2014 270

secind

GeneratorExpression : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. Return true.
14.4.7 Static Semantics: IsConstantDeclaration

See also: 13.2.1.3, 14.1.8, 14.5.5.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. Return false.
14.4.8 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 124.2, 12.5.2, 1261, 12.7.1, 12.81, 12.9.1, 12.10.1, 12.111,
12.12.1,12.13.1,12.14.2,12.15.1, 14.1.11, 14.5.8.

GeneratorExpression : function * (FormalParameters) { FunctionBody }

1. Return true.

GeneratorExpression : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. Return true.
14.4.9 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 13.11.3, 14.1.14, 14.2.10, 14.5.10, 15.1:3, 15.2.0.10.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. Return the BoundNames of Bindingldentifier.
14.4.10 Static Semantics: PropName

See also: 12.2.5.6, 14.3.5, 14.5.13

GeneratorMethod : * PropertyName. (StrictFormalParameters) { FunctionBody }

1. Return PropName of PropertyName.
14.4.11 Static Semantics: ReferencesSuper

See also0:14.1.16,14.2.12 14.3.6.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. If FormalParameters Contains super is true, then return true.
2. Return FunctionBody Contains super.

GeneratorExpression : function * Bindingldentifieroy (FormalParameters) { FunctionBody }

1. If FormalParameters Contains super is true, then return true.
2. Return FunctionBody Contains super.

© Ecma International 2014 271

oecnd

GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody }

1. If StrictFormalParameters Contains super is true, then return true.
2. Return FunctionBody Contains super.

14.4.12 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 0,
14.1.16, 14.5.16, 15.1.5, 15.2.0.13.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. Return an empty List.
14.4.13 Static Semantics: VarScopedDeclarations

See also: 13.0.2,13.1.9, 13.2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2;13.6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
13.14.3,14.1.18, 14.2.14, 15.1.6, 15.2.0.14.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters') { FunctionBody }

1. Return an empty List.
14.4.14 Runtime Semantics: EvaluateBody
With parameter functionObject.

See also: 14.1.18, 14.2.16.

GeneratorBody : FunctionBody

1. Assert: A Function Environment Record containing a this binding has already been activated.

2. Let env be GetThisEnvironment().

3. Let G be the result of calling the GetThisBinding concrete method of env.

4. 1If Type(G) is not Object.or if Type(G) is Object and G does not have a [[GeneratorState]] internal
slot or if Type(G) is Object and G has a [[GeneratorState]] internal slot and the value of G’s
[[GeneratorState]] internal slot is not undefined, then
a. Let newG be OrdinaryCreateFromConstructor(functionObject, "%$GeneratorPrototype%",

([[GeneratorState]], [[GeneratorContext]])).
b. ReturnlfAbrupt(newG).
c. Let G be newG.
5. "Return GeneratorStart(G, FunctionBody).

GeneratorBody : Comprehension

Let G be ObjectCreate(% GeneratorPrototype%, ([[GeneratorState]], [[GeneratorContext]])).
ReturnIfAbrupt(G).

Assert: the value of G’s [[GeneratorState]] internal slot is undefined.

Let startStatus be GeneratorStart(G, Comprehension).

ReturnIfAbrupt(startStatus).

Return G.

AN W=

© Ecma International 2014 272

oeCha

14.4.15 Runtime Semantics: InstantiateFunctionObject

With parameter scope.

See also: 14.1.21.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }

1.

(9]

VXD

If the GeneratorDeclaration is contained in strict code or if its FunctionBodyis strict code, then let
strict be true. Otherwise let strict be false.

Let name be StringValue of Bindingldentifier.

Using FunctionBody from the production that is being evaluated, let body be the supplemental
syntactic grammar production: GeneratorBody : FunctionBody:

Let F be GeneratorFunctionCreate(Normal, FormalParameters, body, scope, strict).

If ReferencesSuper of GeneratorDeclaration is true, then

a. Perform MakeMethod(F, name, undefined).

Let prototype be ObjectCreate(%GeneratorPrototype%).

Perform MakeConstructor(F, true, prototype).

SetFunctionName(F, name).

Return F.

14.4.16 Runtime Semantics: PropertyDefinitionEvaluation

With parameter object.

See also: 12.2.5.9, 14.3.9, B.3.1

GeneratorMethod : * PropertyName (- StrictFormalParameters) { FunctionBody }

DN kW~

N

8.
9.
10.
11.

12.

Let propKey be the result of evaluating PropertyName.

ReturnIfAbrupt(propKey).

Let strict bedsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

Using FunctionBody from the production that is being evaluated, let hody be the supplemental
syntactic grammar production: GeneratorBody : FunctionBody.

Let closure be GeneratorFunctionCreate(Method, StrictFormalParameters, body, scope, strict).
If ReferencesSuper of GeneratorMethod is true, then

a. Perform MakeMethod(closure, propKey, homeObject).

Let prototype be ObjectCreate(%GeneratorPrototype%).

Perform MakeConstructor(closure, true, prototype).

SetFunctionName(closure, propKey).

Let desc be the Property Descriptor {[[Value]]: closure, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

Return DefinePropertyOrThrow(object, propKey, desc).

14.4.17 Runtime Semantics: Evaluation

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }

1.

Return NormalCompletion(empty)

GeneratorExpression : function * (FormalParameters) { FunctionBody }

© Ecma International 2014 273

oecind

1. If the GeneratorExpression is contained in strict code or if its FunctionBody is strict code, then let
strict be true. Otherwise let strict be false.

2. Using FunctionBody from the production that is being evaluated, let body be the supplemental

syntactic grammar production: GeneratorBody : FunctionBody.

Let scope be the LexicalEnvironment of the running execution context.

Let closure be GeneratorFunctionCreate(Normal, FormalParameters, body, scope, strict).

5. If ReferencesSuper of GeneratorExpression is true, then

a. Perform MakeMethod(closure, undefined, undefined).

Let prototype be ObjectCreate(%GeneratorPrototype%).

Perform MakeConstructor(closure, true, prototype).

8. Return closure.

B

-

GeneratorExpression : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. Ifthe GeneratorExpression is contained in strict code or if its FunctionBody 1s strict code, then let
strict be true. Otherwise let strict be false.

2. Using FunctionBody from the production that is being evaluated, let body be the supplemental
syntactic grammar production: GeneratorBody : FunctionBody.

3. Let runningContext be running execution context’s Lexical Environment.

4. Let funcEnv be NewDeclarativeEnvironment(runningContext):

5. Let envRec be funcEnv’s environment record.

6. Let name be StringValue of Bindingldentifier.

7. Call the CreatelmmutableBinding concrete method of envRec passing name as the argument.

8. Let closure be GeneratorFunctionCreate(Normal, FormalParameters, body, funcEnv, strict).

9. [If ReferencesSuper of GeneratorExpression is true;then
a. Perform MakeMethod(closure, name, undefined).

10. Let prototype be ObjectCreate(%GeneratorPrototype%).

11. Perform MakeConstructor (closure, true, prototype).

12. SetFunctionName(closure, name).

13. Call the InitializeBinding concrete method of envRec passing name and closure as the arguments.

14. Return closure:

NOTE 1 The Bindingldentifier in a_.GeneratorExpression can be referenced from inside the GeneratorExpression's
FunctionBody to allow the ‘generator code to call itself recursively. However, unlike in a GeneratorDeclaration, the
Bindingldentifier in a GeneratorExpression cannot be referenced from and does not affect the scope enclosing the
GeneratorExpression.

YieldExpression : yield
1. . Return GeneratorYield(CreatelterResultObject(undefined, false)).

YieldExpression : yield AssignmentExpression

1. Let exprRef be thetresult of evaluating AssignmentExpression.
2. Let value be GetValue(exprRef).

3. ReturnlfAbrupt(value).

4. Return GeneratorYield(CreatelterResultObject(value, false)).

YieldExpression : yield * AssignmentExpression

1. Let exprRef be the result of evaluating AssignmentExpression.
2. Let value be GetValue(exprRef).

3. ReturnIfAbrupt(value).

4. Let iterator be Getlterator(value).

© Ecma International 2014 274

oecind

W

ReturnIfAbrupt(iterator).
Let received be NormalCompletion(undefined).
7. Repeat
a. If received.[[type]] is normal, then
i. Let innerResult be IteratorNext(iterator, received.[[value]]).
ii. ReturnIfAbrupt(innerResult).
b. Else
i. Assert: received.[[type]] is throw.
ii. If HasProperty(iterator, "throw") is true, then
1. Let innerResult be Invoke(iterator, "throw", (received.[[value]])).
2. ReturnlfAbrupt(innerResult).
3. If Type(innerResult) is not Object, then throw a TypeError exception.
iii. Else, return received.
Let done be IteratorComplete(innerResult).
ReturnIfAbrupt(done).
e. Ifdone is true, then
i. Return IteratorValue (innerResult).
f. Let received be GeneratorYield(innerResult).

e

e o

14.5 Class Definitions

Syntax

ClassDeclarationyyieiy, pefauly -
class Binding]dentiﬁer[?wem, ?Default] ClassTailWYiem]

ClaSSExpressmn[Yield,GeneratorParameter] .
class Bindingldentlﬁer[?Yield]opt ClaSSTall[?YieId,?GeneratorParameter]

ClassTailiyield GeneratorParameter] *
[~GeneratorParameter] ClassHeritage[?Yiew]opt { ClaSSBOdy[?Yiem]opt }

[+GeneratorParameter] ClassHeritageos { ClassBodyop: }

ClassHeritageyieq) -
extends LefiHandSideExpressionjsyieiq)

ClaSSBOdy[Yie|d] .
ClassElementListipyield]

ClassElementListyieiq)
ClassElement[mem]
ClassElementListpyielq) ClassElementjoyieid)

ClassElement|yieiq) +
MethodDeﬁnition[?Yie|d]
static MethodDeﬁnition[7Yie|d]

’

NOTE A ClassBody is always strict code.

© Ecma International 2014 275

oecnd

14.5.1 Static Semantics: Early Errors
ClassDeclaration : class Bindingldentifier ClassTail
ClassExpression: class Bindingldentifier ClassTail
e |tis a Syntax Error if the StringValue of Bindingldentifier is "1let".

ClassBody : ClassElementList

e |tis a Syntax Error if PrototypePropertyNameList of ClassElementList contains any duplicate entries,
unless the following condition is true for each duplicate entry: The duplicated entry occurs exactly
twice in the list and one occurrence was obtained from a get accessor MethodDefinition and the
other occurrence was obtained from a set accessor MethodDefinition.

e ltis a Syntax Error if StaticPropertyNameList of ClassElementList contains any duplicate entries, unless
the following condition is true for each duplicate entry: The duplicated entry occurs exactly twice in
the list and one occurrence was obtained from a get accessor MethodDefinition and the other
occurrence was obtained from a set accessor MethodDefinition.

ClassElement : MethodDefinition

e It is a Syntax Error if PropName of MethodDefinition is “constructor” and SpecialMethod of
MethodDefinition is true.

ClassElement : static MethodDefinition

e ltis a Syntax Error if PropName of MethodDefinition is-"prototype".
14.5.2 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.2.1, 12.1.2,13.6.4.2, 14.1.3, 14.2.2,14.4.2, 15.2.1.2, 15.2.21.

ClassDeclaration : class Bindingldentifier ClassTail
1. Return the BoundNames of Bindingldentificr.

14.5.3 Static Semantics: ConstructorMethod

ClassElementList : ClassElement

1. If ClassElement is the production ClassElement : ; then, return empty.
2. If IsStatic of ClassElement is true, return empty.

3.° If PropName of ClassElement is not "constructor”, return empty.
4. Return ClassElement.

ClassElementList i ClassElementList ClassElement

1. Let head be ConstructorMethod of ClassElementList.
2. If head is not empty, return fead.
3. [If ClassElement is the production ClassElement : ; then, return empty.
4. [If IsStatic of ClassElement is true, return empty.
5. If PropName of ClassElement is not "constructor”, return empty.
6. Return ClassElement.
NOTE Early Error rules ensure that there is only one method definition named “constructor” and that it is not

an accessor property or generator definition.

© Ecma International 2014 276

oecnd

14.5.4 Static Semantics: Contains
With parameter symbol.
See also: 5.3, 12.2.5.2,12.3.1.1,14.1.4,14.2.3,14.4.3

ClassTail : ClassHeritageos { ClassBody }

1. If symbol is ClassBody, return true.
If symbol is ClassHeritage, then
a. If ClassHeritage is present, return true otherwise return false.
3. Let inHeritage be the result of Contains for ClassHeritage with argument.symbol.
4. IfinHeritage is true, then return true.
5. Return the result of ComputedPropertyContains for ClassBody with argument symbol.

NOTE Static semantic rules that depend upon substructure generally do not look into class bodies except for
PropertyName productions.

14.5.5 Static Semantics: ComputedPropertyContains
With parameter symbol.

See also: 12.2.5.2, 14.3.2, 14.4.3.
ClassElementList : ClassElementList ClassElement

1. Let inList be the result of ComputedPropertyContains for ClassElementList with argument symbol.
2. IfinList is true, then return true.
3. Return the result of ComputedPropertyContains for ClassElement with argument symbol.

ClassElement : MethodDefinition
1. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

ClassElement : static MethodDefinition

1. Return-the result of ComputedPropertyContains for MethodDefinition with argument symbol.

ClassElement : ;

1. Return false.
14.5.6 Static Semantics: HasName

See also: 14.1.8, 14.2.8,14.4.6.

ClassExpression . class ClassTail

1. Return false.

ClassExpression . class Bindingldentifier ClassTail

1. Return true.

© Ecma International 2014 277

secind

14.5.7 Static Semantics: IsConstantDeclaration
See also: 13.2.1.3, 14.1.8, 14.4.5.

ClassDeclaration : class Bindingldentifier ClassTail

1. Return false.
14.5.8 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.10.2, 12.3.1.2, 124.2, 1252, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.111,
12.12.1,12.13.1,12.14.2,12.15.1, 14.1.11, 14 4.8.

ClassExpression : class ClassTail

1. Return true.

ClassExpression : class Bindingldentifier ClassTail

1. Return true.
14.5.9 Static Semantics: IsStatic

ClassElement : MethodDefinition

1. Return false.

ClassElement : static MethodDefinition

1. Return true.

ClassElement : ;

1. Return false:
14.5.10 Static Semantics: LexicallyDeclaredNames

See als0:13.1.3, 13.11.3, 14.1.14, 14.2.10, 14.4.8, 15.1.3, 15.2.0.10.

ClassDeclaration : class Bindingldentifier ClassTail

1. Return the BoundNames of Bindingldentifier.
14.5.11 Static Semantics: PrototypeMethodDefinitions

ClassElementList i ClassElement

If ClassElement is the production ClassElement : ; then, return a new empty List.
If IsStatic of ClassElement is true, return a new empty List.

If PropName of ClassElement is ""constructor”, return a new empty List.
Return a List containing ClassElement.

AW =

ClassElementList : ClassElementList ClassElement

1. Let list be PrototypeMethodDefinitions of ClassElementList.
2. If ClassElement is the production ClassElement : ; then, return /ist.

© Ecma International 2014 278

eCmd

If IsStatic of ClassElement is true, return [ist.

If PropName of ClassElement is "constructor”, return /ist.
Append ClassElement to the end of list.

Return /ist.

NN bW

14.5.12 Static Semantics: PrototypePropertyNameList

ClassElementList : ClassElement

1. If PropName of ClassElement is empty, return a new empty List.
2. [IfIsStatic of ClassElement is true, return a new empty List.
3. Return a List containing PropName of ClassElement.

ClassElementList : ClassElementList ClassElement

Let /ist be PrototypePropertyNameList of ClassElementList.
If PropName of ClassElement is empty, return /ist.

If IsStatic of ClassElement is true, return list.

Append PropName of ClassElement to the end of list.
Return /ist.

DN bW~

14.5.13 Static Semantics: PropName

See also: 12.2.5.6,14.3.5, 14.4.10

ClassElement : ;

1. Return empty.
14.5.14 Static Semantics: StaticPropertyNamelList

ClassElementList : ClassElement

1. If PropName of ClassElement is empty, return a new empty List.
2. [IfIsStatic of ClassElement is false, return a new empty List.
3. Return a List containing PropName of ClassElement.

ClassElementList . ClassElementList ClassElement

Let list be StaticPropertyNameList of ClassElementList.
If PropName of ClassElement is empty, return list.

If IsStatic of ClassElement is false, return list.

Append PropName of ClassElement to the end of list.
Return /ist.

[I NS I S

14.5.15 Static Semantics: StaticMethodDefinitions

ClassElementList : ClassElement

1. 1If ClassElement is the production ClassElement : ; then, return a new empty List.
2. [IfIsStatic of ClassElement is false, return a new empty List.
3. Return a List containing ClassElement.

ClassElementList : ClassElementList ClassElement
1. Let list be StaticMethodDefinitions of ClassElementList.

© Ecma International 2014 279

eCmd

If ClassElement is the production ClassElement : ; then, return list.
If IsStatic of ClassElement is false, return [ist.

Append ClassElement to the end of list.

Return /ist.

W\ AW

14.5.16 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10:2, 13.11.4, 13.12.2, 0,
14.1.16,14.4.12,15.1.5, 15.2.0.13.

ClassDeclaration: class Bindingldentifier ClassTail

1. Return an empty List.
14.5.17 Runtime Semantics: ClassDefinitionEvaluation
With parameter className.

ClassTail . ClassHeritageop { ClassBody }

1. If ClassHeritage,, is not present, then
a. Let protoParent be the intrinsic object %ObjectPrototype%o.
b. Let constructorParent be the intrinsic object %FunctionPrototype%.
2. Else
a. Let superclass be the result of evaluating ClassHeritage.
b. ReturnlfAbrupt(superclass).
c. Ifsuperclass is null, then
i. Let protoParent be null.
ii. Let constructorParent be the intrinsic object %FunctionPrototype%.
d. Else if IsConstructor(superclass) is false, then throw a TypeError exception.
e. Else
i. Let protoParent be Get(superclass, "prototype").
ii. ReturnIfAbrupt(protoParent):
iii. If Type(protoParent) is neither Object nor Null, throw a TypeError exception.
iv. Let constructorParent be superclass.
Let proto be ObjectCreate(protoParent).
Let /ex be the LexicalEnvironment of the running execution context.
5¢ If className is not undefined, then
a. Let scope be NewDeclarativeEnvironment(/ex).
b. Let envRec be scope’s environment record.
c. - Call the CreatelmmutableBinding concrete method of envRec passing className as the
argument.
d. “Set the running execution context’s LexicalEnvironment to scope.
6. Let constructor be ConstructorMethod of ClassBody.
7. 1f constructordis empty, then
a. If ClassHeritage, is present, then

B w

i. Let constructor be the result of parsing the String "constructor (... args) {
super (...args) ;}" using the syntactic grammar with the goal symbol
MethodDefinition.

b. Else,

i. Let constructor be the result of parsing the String "constructor() { }" using the
syntactic grammar with the goal symbol MethodDefinition.
8. Let strict be true.

© Ecma International 2014 280

oeCha

9.

10.
11.

12.

13.

14.
15.

16.
17.

18.
19.

20.

Let constructorinfo be the result of performing DefineMethod for constructor with arguments proto

and constructorParent as the optional functionPrototype argument.

Let F be constructorInfo.[[closure]]

Perform the abstract operation MakeConstructor with argument F and false as the optional

writable Prototype argument and proto as the optional prototype argument.

Let desc be the PropertyDescriptor {[[Enumerable]]: false, [[Writable]]: true, [[Configurable]]:

true}.

Call the [[DefineOwnProperty]] internal method of profo with arguments "constructor" and

desc

Let protoMethods be PrototypeMethodDefinitions of ClassBody.

For each MethodDefinition m in order from protoMethods

a. Let status be the result of performing PropertyDefinitionEvaluation for m with argument proto.

b. ReturnlfAbrupt(status).

Let staticMethods be StaticMethodDefinitions of ClassBody.

For each MethodDefinition s in order from staticMethods

a. Let status be the result of performing PropertyDefinitionEvaluation for s with argument F.

b. ReturnlfAbrupt(status).

Set the running execution context’s LexicalEnvironment to lex.

If className is not undefined, then

a. Call the InitializeBinding concrete method of envRec passing className and F as the
arguments.

Return F.

14.5.18 Runtime Semantics: Evaluation

ClassDeclaration : class Bindingldentifier ClassTail

AN B WN =

~

8.

9.
10.

Let className be StringValue(Bindingldentifier).

Let value be the result of ClassDefinitionEvaluation of ClassTail with argument className
ReturnIfAbrupt(value).

Let hasNameProperty be HasOwnProperty(value, "name™").
ReturnIfAbrupt(hasNameProperty).

If hasNameProperty is false, then

a. Perform SetFunctionName(value, className).

Let env-be the running execution context’s LexicalEnvironment.

Let status be the result of performing Bindinglnitialization for Bindingldentifier passing value and
env as the arguments.

ReturnIfAbrupt(status).

Return NormalCompletion(empty).

ClassExpression . class Bindingldentifierq, ClassTail

N AW~

If Bindingldentifierqp is not present, then let className be undefined.
Else, let className be StringValue(Bindingldentifier).
Let value be the result of ClassDefinitionEvaluation of ClassTail with argument className.
ReturnlfAbrupt(value).
If className is not undefined, then
a. Let hasNameProperty be HasOwnProperty(value, "name™").
b. ReturnlfAbrupt(hasNameProperty).
c. If hasNameProperty is false, then
i. Perform SetFunctionName(value, className).
Return NormalCompletion(value).

© Ecma International 2014 281

oecnd

14.6 Tail Position Calls
14.6.1 Static Semantics: InTailPosition(nonterminal) Abstract Operation

Assert: nonterminal is a parsed grammar production.

If the source code matching nonterminal is not strict code, then return false.

If nonterminal is not contained within a FunctionBody or ConciseBody, then return false.
Let body be the FunctionBody or ConciseBody that most closely contains nonterminal.
If body is the FunctionBody of a GeneratorMethod, GeneratorDeclaration, or a
GeneratorExpression, then return false.

6. Return the result of HasProductionInTailPosition of body with argument nonterminal.

[I T R S

NOTE Tail Position calls are only defined in strict mode code because of a common. non-standard language
extension (see 9.2.8) that enables observation of the chain of caller contexts.

14.6.2 Static Semantics: HasProductionInTailPosition
With parameter nonterminal.

14.6.2.1 Statement Rules

ConciseBody : AssignmentExpression

1. Return HasProductionInTailPosition of 4ssignmentExpression with argument nonterminal.

StatementList : StatementList StatementListltem

1. Let has be HasProductionlnTailPosition of StatementList with argument nonterminal.
2. If has is true, then return true.
3. Return HasProductionInTailPosition of StatementListltem with argument nonterminal.

StatementListltem : Declaration
Statement :
VariableStatement
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ThrowStatement
DebuggerStatement
ReturnStatement : return ;
CaseBlock : {}

1. Return false.

IfStatement : 1€ (Expression) Statement else Statement

1. Let has be HasProductionInTailPosition of the first Statement with argument nonterminal.
2. If has is true, then return true.
3. Return HasProductionInTailPosition of the second Statement with argument nonterminal.

© Ecma International 2014 282

oecind

IfStatement : 1€ (Expression) Statement
IterationStatement :
do Statement while (Expression) ;opt
while (Expression) Statement
for (Expression ; Expression ; Expression) Statement
for (var VariableDeclarationList ; Expression ; Expression) Statement
for (LexicalDeclaration Expression ; Expression) Statement
for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement
WithStatement : with (Expression) Statement
LabelledStatement :
IdentifierReference : Statement
yield : Statement

1. Return HasProductionInTailPosition of Statement with argument nonterminal.

ReturnStatement : return Expression ;

1. Return HasProductionInTailPosition of Expression with argument nonterminal.

SwitchStatement : switch (Expression) CaseBlock

1. Return HasProductionInTailPosition of CaseBlock with argument nonterminal.

CaseBlock : { CaseClausesqpDefaultClause CaseClausesopt }

[

Let has be false:

If the first CaseClauses is present, let has be HasProductionInTailPosition of the first CaseClauses
with argument nonterminal.

If has is true, then return true.

Let has be HasProductionInTailPosition of the DefaultClause with argument nonterminal.

If has is true, then return true.

If the second CaseClauses is present, let has be HasProductionInTailPosition of the second
CaseClauses with argument nonterminal.

7. Return has.

»

NN bW

CaseClauses : CaseClauses CaseClause

1. Let has be HasProductionInTailPosition of CaseClauses with argument nonterminal.
2. If has is true, then return true.
3. Return HasProductionInTailPosition of CaseClause with argument nonterminal.

CaseClause : case Expression : StatementListopt
DefaultClause : default : StatementListop

1. If StatementList is present, return HasProductionInTailPosition of StatementList with argument
nonterminal.
2. Return false.
TryStatement : txry Block Catch

© Ecma International 2014 283

oecind

1. Return HasProductionInTailPosition of Catch with argument nonterminal.

TryStatement : try Block Finally
TryStatement : try Block Catch Finally

1. Return HasProductionInTailPosition of Finally with argument nonterminal.

Catch : catch (CatchParameter) Block

1. Return HasProductionInTailPosition of Finally with argument nonterminal.

14.6.2.2 Expression Rules

NOTE A potential tail position call that is immediately followed by return GetValue of the call result is also a
possible tail position call. Functional calls can not return reference values, so such a GetValue operation will always
returns the same value as the actual function call result.

AssignmentExpression:
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

BitwiseANDEXxpression : BitwiseANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression ® BitwiseANDExpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

EqualityExpression :
EqualityExpression == RelationalExpression
EqualityExpression =< RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression V== RelationalExpression
RelationalExpression :

RelationalExpression < ShifiExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShifiExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShifiExpression
RelationalExpression in ShiftExpression

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression — MultiplicativeExpression

MultiplicativeExpression :
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression $ UnaryExpression

© Ecma International 2014 284

oecind

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
—-= UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
' UnaryExpression

PostfixExpression :
LeftHandSideExpression — ++
LeftHandSideExpression — —-

CallExpression :
CallExpression [Expression]
CallExpression . IdentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
super [Expression]
super . IldentifierName

PrimaryExpression :
this
IdentifierReference
Literal
Arraylnitializer
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral

1. Return false.
Expression :

AssignmentExpression
Expression , AssignmentExpression

1. Return HasProductionInTailPosition of AssignmentExpression with argument nonterminal.

ConditionalExpression : Logical ORExpression ? AssignmentExpression : AssignmentExpression

1. Let has be HasProductionInTailPosition of the first AssignmentExpression with argument
nonterminal.

2. If has is true, then return true.

3. Return HasProductionInTailPosition of the second AssignmentExpression with argument
nonterminal.

Logical ANDExpression . LogicalANDExpression && BitwiseORExpression

© Ecma International 2014

285

oecnd

1. Return HasProductionInTailPosition of BitwiseORExpression with argument nonterminal.

Logical ORExpression : LogicalORExpression | | LogicalANDExpression

1. Return HasProductionInTailPosition of LogicalANDExpression with argument nonterminal.

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression TemplateLiteral

1. Ifthis CallExpression is nonterminal, then return true.
2. Return false.

MemberExpression :
MemberExpression TemplateLiteral
new super Arguments;
new MemberExpression Arguments

1. Ifthis MemberExpression is nonTerminal, then return true.
2. Return false.

NewExpression .
new NewExpression
new super

1. If this NewExpression is nonterminal, then return true.
2. Return false.
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of
CoverParenthesizedExpressionAndArrowParameterList.
2. Return HasProductionInTailPosition of expr with argument nonterminal.

ParenthesizedExpression :
(Expression)

1. Return HasProductionInTailPosition of Expression with argument nonterminal.
14.6.3 Runtime Semantics: PrepareForTailCall

The abstract operation PrepareForTailCall performs the following steps:

1. Let leafContext be the running execution context.
Suspend leafContext.

3. Pop leafContext from the execution context context stack. The execution context now on the top of
the stack becomes the running execution context, however it remains in its suspended state.

4. Assert: leafContext has no further use. It will never be activated as the running execution context.

A tail position call must either release any transient internal resources associated with the currently

executing function execution context before invoking the target function or reuse those resources in
support of the target function.

© Ecma International 2014 286

secind

NOTE 1 For example, a tail position call should only grow an implementation’s activation record stack by the
amount that the size of the target function’s activation record exceeds the size of the calling function’s activation
record. If the target function’s activation record is smaller, then the total size of the stack should decrease.

15 ECMAScript Language: Scripts and Modules

15.1 Scripts

Syntax

Script :
ScriptBody opt

ScriptBody :
StatementList

15.1.1 Static Semantics: Early Errors

ScriptBody : StatementList

e |tis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.

e ltis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.

e |tis a Syntax Error if StatementList Contains super.

NOTE Additional error conditions relating to conflicting or duplicate declarations are checked during module
linking prior to evaluation of a Script. If any such errors are detected the Script is not evaluated.

15.1.2 Static Semantics: IsStrict
See also: 14.1.13, 15.2.0.7.

ScriptBody : StatementList

1. If this ScriptBody is contained in strict code or if StatementList is strict code, then return true.
Otherwise; return false.

15.1.3 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 13.11.3, 14.1.14, 14.2.10, 14.4.8, 14.5.10, 15.2.0.10.

ScriptBody : StatementList
1. Return TopLevelLexicallyDeclaredNames of StatementList.

NOTE At the top level of a Script, function declarations are treated like var declarations rather than like lexical
declarations.

15.1.4 Static Semantics: LexicallyScopedDeclarations

ScriptBody : StatementList

1. Return TopLevelLexicallyScopedDeclarations of StatementList.

© Ecma International 2014 287

oecnd

15.1.5 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, O,
14.1.16, 14.4.12, 14.5.16, 15.2.0.13.

ScriptBody : StatementList

1. Return TopLevelVarDeclaredNames of StatementList.
15.1.6 Static Semantics: VarScopedDeclarations

See also: 13.0.2,13.1.9, 13.2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.4,13.10.3, 13.11.5, 13.12.3,
13.14.3,14.1.18, 14.2.14, 14.4.13, 15.2.0.14.

ScriptBody : StatementList

1. Return TopLevelVarScopedDeclarations of StatementList.
15.1.7 Runtime Semantics: ScriptEvaluation
With argument realm and deletableBindings:

Script : ScriptBody opt

1. The code of this Script is strict mode code if the Directive Prologue (14.1.1) of its ScriptBody
contains a Use Strict Directive or if any of the conditions of 10.2.1 apply. If the code of this Script
is strict mode code, ScriptBody is evaluated in-the following steps as strict mode code. Otherwise
ScriptBody is evaluated in the following steps as non-strict mode code.

If ScriptBody is not present, return NormalCompletion(empty).

Let globalEnv.be realm.[[globalEnv]].

Let status be GlobalDeclarationInstantiation(SeriptBody, globalEnv, and deletableBindings).

ReturnIfAbrupt(status).

Let progCxt be a new ECMAScript code execution context.

Set the progCxt’s Realm to realm.

Set the progCxt’s VariableEnvironment to globalEnv.

. Set the progCxt’s LexicalEnvironment to globalEnv.

10. If there is a currently running execution context, suspend it.

11. Push progCxt on to the execution context stack; progCxt is now the running execution context.

12. Let result be the result of evaluating ScriptBody.

13. Suspend progCxt and remove it from the execution context stack.

14. If'the execution context stack is not empty, resume the context that is now on the top of the
execution context.stack as the running execution context. Otherwise, the execution context stack is
now empty and there is no running execution context.

15. Return result.

00N YR W

NOTE The processes for initiating the evaluation of a Script and for dealing with the result of such an evaluation
are defined by an ECMAScript implementation and not by this specification.

15.1.8 Runtime Semantics: GlobalDeclarationlnstantiation

NOTE When an execution context is established for evaluating scripts, declarations are instantiated in the current
global environment. Each global binding declared in the code is instantiated.

© Ecma International 2014 288

oeCha

GlobalDeclarationInstantiation is performed as follows using arguments script, env, and deletableBindings.
script is the ScriptBody that for which the execution context is being established. env is the global
environment record in which bindings are to be created. deletableBindings is true if the bindings that are
created should be deletable.

1.

2.
3.
4

VXD

10.
11.

12.
13.

14.

15.

Let strict be IsStrict of script.
Let lexNames be the LexicallyDeclaredNames of script.
Let varNames be the VarDeclaredNames of script.
For each name in lexNames, do
a. If the result of calling env’s HasVarDeclaration concrete method passing name as the argument
is true, throw a SyntaxError exception.
b. Ifthe result of calling env’s HasLexicalDeclaration concrete method passing name as the
argument is true, throw a SyntaxError exception.
For each name in varNames, do
a. Ifthe result of calling env’s HasLexicalDeclaration concrete method passing name as the
argument is true, throw a SyntaxError exception.
Let varDeclarations be the VarScopedDeclarations of script.
Let functionsTolnitialize be an empty List.
Let declaredFunctionNames be an empty List.
For each d in varDeclarations, in reverse list order do
a. Ifdnota VariableDeclaration, then
i. Assert: d is either a FunctionDeclaration or a GeneratorDeclaration.
ii. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration is
used.
iii. Let fn be the sole element of'the BoundNames of d.
iv. If fn is not an element of declaredFunctionNames, then
1. Let fuDefinable be the result of calling env’s CanDeclareGlobalFunction concrete
method passing fin as the argument.
2. If fuDefinable is false, throw TypeError exception.
3. Append fn to declaredFunctionNames.
4. [Insert d as the first element of functionsTolnitialize.
Let declaredVarNames be an empty List.
For each d in varDeclarations, do
a. Ifdis a VariableDeclaration then
i. For each String vn in the BoundNames of d, do
1. If vn is not an element of declaredFunctionNames, then
a. Let vuDefinable be the result of calling env’s CanDeclareGlobalVar concrete
method passing vn as the argument.
b. IfvnDefinable is false, throw TypeError exception.
c. Ifvmis not an element of declaredVarNames, then
i. Append vn to declaredVarNames.
NOTE: No abnormal terminations occur after this algorithm step.
For each FunctionDeclaration f in functionsTolnitialize, do
a. Let fn be thesole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Let status be the result of calling env’s CreateGlobalFunctionBinding concrete method passing
fn, fo, and deletableBindings as the arguments.
d. ReturnIfAbrupt(status).
For each String vn in declaredVarNames, in list order do
a. Let status be the result of calling env’s CreateGlobalVarBinding concrete method passing vn
and deletableBindings as the argument.
b. ReturnlfAbrupt(status).
Let lexDeclarations be the LexicallyScopedDeclarations of script.

© Ecma International 2014 289

oeCha

16. For each element d in lexDeclarations do
a. NOTE Except for generator function declarations, lexically declarated names are only
instantiated here but not initialized.
b. For each element dn of the BoundNames of d do

1.

ii.

iii.

If IsConstantDeclaration of d is true, then

1. Let status be the result of calling env’s CreatelmmutableBinding concrete method
passing dn as the argument.

Else,

1. Let status be the result of calling env’s CreateMutableBinding concrete method passing
dn and false as the arguments.

Assert: status is never an abrupt completion for lexically declared names.

c. Ifdisa GeneratorDeclaration production, then

1.
ii.
iii.

iv.

Let fn be the sole element of the BoundNames of d.

Let fo be the result of performing InstantiateFunctionObject for d with argument env.

Let status be the result of calling env’s SetMutableBinding concrete method passing fu, fo,
and false as the arguments.

ReturnIfAbrupt(status).

17. Return NormalCompletion(empty)

NOTE Early errors specified in 15.1.1 prevent name conflicts between function/var declarations and
let/const/class declarations as well as redeclaration of let/const/class bindings for declaration contained within a
single Script. However, such conflicts and redeclarations that span more than one Script are detected as runtime
errors during GlobalDeclarationInstantiation. If any such errors are detected, no bindings are instantiated for the script.

Unlike explicit var or function declarations, properties that are directly. created on the global object result in global
bindings that may be shadowed by let/const/class declarations.

15.1.9 Runtime Semantics: ScriptEvaluationTask (source)

The task ScriptEvaluationTask with 'parameters source parses, validates, and evaluates the Script
represented by source.

1. Assert: source is a SourceCharacter sequence (see 10).

2. Let status be NormalCompletion(undefined).

3. Letscript be the result of parsing source using Script as the goal symbol. script will be either the
resulting parse tree or an indication of a parsing error.

4. If script is an error, then report or log the error in an implementation dependent manner.

5. Else,

a. Analysize script for any Early Error conditions.

b.. If any Early Errors were found, then report or log the errors in an implementation dependent
manner.

c. Else,

1.
ii.

Let realm be the running execution context’s Realm.
Let status be the result of ScriptEvaluation of script with arguments realm and false.

6. NextTask status.

15.2 Modules

Module

ModuleBodypt

ModuleBody :

ModuleltemList
© Ecma International 2014 290

oecnd

ModuleltemList :
Moduleltem
ModuleltemList Moduleltem

Moduleltem :
ImportDeclaration
ExportDeclaration
StatementListltem

15.2.0 Module Static Semantics
15.2.0.1 Static Semantics: Early Errors

ModuleBody : ModuleltemList

e |t is a Syntax Error if the LexicallyDeclaredNames of ModuleltemList contains any duplicate
entries.

e |tis a Syntax Error if the ExportedBindings of ModuleltemList contains any duplicate entries.

e ltis a Syntax Error if any element of the LexicallyDeclaredNames of ModuleltemList also occurs in
the VarDeclaredNames of ModuleltemList.

e |tis a Syntax Error if ModuleltemList Contains super.

NOTE Additional error conditions relating-to conflicting or duplicate declarations are checked during module
linking prior to evaluation of a Module. If any such errors are detected the Module.is not evaluated.

15.2.0.2 Static Semantics: DeclaredNames

Module : [empty]

1. Return a new empty List.

Module : ModuleBody

1. Let names be LexicallyDeclaredNames of ModuleBody.
2. Append to names the elements of the VarDeclaratedNames of ModuleBody.
3. Return.names.

15.2.0.3 Static Semantics: ExportedBindings
See als0:15.2.2.2.

ModuleltemList : [empty]

1. Return a new empty List.

ModuleltemList : ModuleltemList Moduleltem

1. Let names be ExportedBindings of ModuleltemList.
2. Append to names the elements of the ExportedBindings of Moduleltem.
3. Return names.

Moduleltem
ImportDeclaration
StatementListltem

© Ecma International 2014 291

oeCha

1. Return a new empty List.
15.2.0.4 Static Semantics: ExportEntries
See als0:15.2.2.3.

ModuleltemlList : [empty]

1. Return a new empty List.

ModuleltemList : ModuleltemList Moduleltem

1. Let entries be ExportEntries of ModuleltemList.
2. Append to entries the elements of the ExportEntries of Moduleltem.
3. Return entries.

Moduleltem :
ImportDeclaration
StatementListltem

1. Return a new empty List.
15.2.0.5 Static Semantics: ImportedBindings

ModuleltemList : [empty]

1. Return a new empty List.

ModuleltemList : ModuleltemList Moduleltem
1. Let names be ImportedBindings of ModuleltemList.

2. Append to names the elements of the ImportedBindings of Moduleltem.

3. Return names.

Moduleltem: ImportDeclaration

1. Return the BoundNames of ImportDeclaration.

Moduleltem
ExportDeclaration
StatementListltem

1. Return a new empty List.
15.2.0.6 Static Semantics: ImportEntries
See als0:15.2.1.3.

ModuleltemList : [empty]

1. Return a new empty List.

ModuleltemList : ModuleltemList Moduleltem

1. Let entries be ImportEntries of ModuleltemList.
2. Append to entries the elements of the ImportEntries of Moduleltem.
3. Return entries.

© Ecma International 2014

292

oecnd

Moduleltem :
ExportDeclaration
StatementListltem

1. Return a new empty List.
15.2.0.7 Static Semantics: IsStrict
See also: 14.1.13, 15.1.2.

ModuleBody : ModuleltemlList

1. Return true.

15.2.0.8 Static Semantics: KnownExportEntries

ModuleBody : ModuleltemList
1. Let allExports be ExportEntries of ModuleltemList.

2. Return a new List containing all the entries of allEntries whose [[ImportName]] field is not all.

15.2.0.9 Static Semantics: ModuleRequests
See also: 15.2.1.5, 15.2.2.5.

ModuleltemList : [empty]

1. Return a new empty List.

ModuleltemList : Moduleltem
1. Return ModuleRequests of Moduleltem.

ModuleltemList : ModuleltemList Moduleltem

1. Let moduleNames be ModuleRequests of ModuleltemList.

2. Let additionalNames be ModuleRequests of Moduleltem.

3. Append to moduleNames each element of additionalNames that is not already an element of
moduleNames.

4. Return moduleNames.

Moduleltem : StatementListltem

1. Return a new empty List.
15.2.0.10 Static Semantics: LexicallyDeclaredNames
See also: 13.1.3,13.11.3, 14.1.14, 14.2.10, 14.4.8, 14.5.10, 15.1.3.

ModuleltemList : [empty]

1. Return a new empty List.

ModuleltemList : ModuleltemList Moduleltem

1. Let names be LexicallyDeclaredNames of ModuleltemList.
2. Append to names the elements of the LexicallyDeclaredNames of Moduleltem.

© Ecma International 2014

293

oecind

3. Return names.

Moduleltem: ImportDeclaration

1. Return the BoundNames of ImportDeclaration.

Moduleltem : ExportDeclaration

1. If ExportDeclaration is expoxrt VariableStatement ; then return a new empty List.
2. Return the BoundNames of ExportDeclaration.

Moduleltem : StatementListltem

1. Return LexicallyDeclaredNames of StatementListltem.

NOTE At the top level of a Module, function declarations are treated like lexical declarations rather than like var
declarations.

15.2.0.11 Static Semantics: LexicalDeclarations
See also: 13.1.2, 13.11.2.

ModuleltemList : [empty]

1. Return a new empty List.

ModuleltemList : ModuleltemList Moduleltem

1. Let declarations be LexicalDeclarations of ModuleltemList.
2. Append to declarations the elements of the LexicalDeclarations of Moduleltem.
3. Return declarations.

Moduleltem: ImportDeclaration

1. If the BoundNames of /mportDeclarations is empty, then return an empty List.
2. Return a new List containing ImportDeclaration.

Moduleltem : ExportDeclaration

1. Af ExportDeclaration is export Declaration ; then return a new List containing Declaration.
2. Return a new empty List.

15.2.0.12 Static Semantics: UnknownExportEntries

ModuleBody : ModuleltemList

1. Let allExports be ExportEntries of ModuleltemList.
2. Return a new List containing all the entries of a/lEntries whose [[ImportName]] field is all.

15.2.0.13 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, O,
14.1.16, 14.4.12, 14.5.16, 15.1.5.

ModuleltemList : ModuleltemList Moduleltem
1. Let names be VarDeclaredNames of ModuleltemList.

© Ecma International 2014 294

oecnd

2. Append to names the elements of the VarDeclaredNames of Moduleltem.
3. Return names.

Moduleltem: ImportDeclaration

1. Return an empty List.

Moduleltem : ExportDeclaration

1. If ExportDeclaration is export VariableStatement ; then return BoundNames of
ExportDeclaration.
2. Return a new empty List.

15.2.0.14 Static Semantics: VarScopedDeclarations

See also: 13.0.2,13.1.9, 13.2.2.2, 13.5.2, 13.6.1.2, 13.6.2.2, 13:6.3.2, 13.6.4.4, 13.10.3, 13.11.5, 13.12.3,
13.14.3,14.1.18,14.2.14, 14.4.13, 15.1.6.

ModuleltemList : [empty]

1. Return a new empty List.

ModuleltemList : ModuleltemList Moduleltem

1. Let declarations be VarScopedDeclarations of ModuleitemlList.

2. Append to declarations the elements of the VarScopedDeclarations of Moduleltem.
3. Return declarations.

Moduleltem: ImportDeclaration

1. Return a new empty List.

Moduleltem : ExportDeclaration

1. If ExportDeclaration is.export VariableStatement ; then return VarScopedDeclarations of
VariableStatement.
2. Return a new empty List.

15.2.0.15 Runtime Semantics: ModuleDeclarationlnstantiation

TO DO

Let declarations be the LexicalDeclarations of code.
Let functionsTolnitialize be an empty List.
3. For each element d in declarations do
a. For each element dn of the BoundNames of d do
1. IfIsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Let status be the result of calling env’s CreateMutableBinding concrete method passing
dn and false as the arguments.
2. Assert: status is never an abrupt completion.
b. Ifdis a GeneratorDeclaration production or a FunctionDeclaration production, then

[N

© Ecma International 2014 295

oeCha

i. Append d to functionsTolnitialize.
4. For each production fin functionsTolnitialize, in list order do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s InitializeBinding concrete method passing fn, and fo as the arguments.

15.2.1 Imports

ImportDeclaration :
Modulelmport
import ImportClause FromClause ;
import ModuleSpecifier ;

Modulelmport :
module [no LineTerminator here] ImportedBinding FromClause ;

FromClause :
from ModuleSpecifier

ImportClause :
ImportedBinding
ImportedBinding , Namedlmports
NamedImports

NamedImports :

{ 1}
{ ImportsList }

{ ImportsList , }
ImportsList :

ImportSpecifier

ImportsList , ImportSpecifier
ImportSpecifier :

ImportedBinding

ldentifierName as ImportedBinding

ModuleSpecifier :
StringLiteral

ImportedBinding :
Bindingldentifier

15.2.1.1 Static Semantics: Early Errors
Moduleltem : ImportDeclaration

e ltis a Syntax Error if the BoundNames of ImportDeclaration contains any duplicate entries.
15.2.1.2 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.2.1, 12.1.2,13.6.4.2, 14.1.3,14.2.2,14.4.2, 1452, 15.2.21.

© Ecma International 2014 296

oeCha

ImportDeclaration : import ImportClause FromClause ;

1. Return the BoundNames of ImportClause.

ImportDeclaration : import ModuleSpecifier ;

1. Return a new empty List.

Modulelmport : module ImportedBinding FromClause ;
1. Return the BoundNames of ImportedBinding.

ImportClause : ImportedBinding , Namedlmports

1. Let names be the BoundNames of ImportedBinding.
2. Append to names the elements of the BoundNames of NamedImports.
3. Return names.

ImportsList : ImportsList , ImportSpecifier

1. Let names be the BoundNames of ImportsList.
2. Append to names the elements of the BoundNames of ImportSpecifier.
3. Return names.

ImportSpecifier : IdentifierName as ImportedBinding
1. Return the BoundNames of ImportedBinding.

15.2.1.3 Static Semantics: ImportEntries

See als0:15.2.0.6.

ImportDeclaration : impoxt ImportClause FromClause ;

1. Let module be the sole element of ModuleRequests of FromClause.
2. Return ImportEntriesForModule of ImportClause with argument module.

ImportDeclaration ::import ModuleSpecifier ;

1. <Return a new empty List.

Modulelmport : module ImportedBinding FromClause ;

1. Let module be ModuleRequests of FromClause.
. Let localName be the StringValue of ImportedBinding.
3. Let entry be the Record {[[ModuleRequest]]: module, [[ImportName]]: "default",
[[LocalName]]: localName }.
4. Return a new List containing entry.

15.2.1.4 Static Semantics: ImportEntriesForModule
With parameter module.
ImportClause : ImportedBinding , NamedImports

1. Let localName be the StringValue of ImportedBinding.

© Ecma International 2014 297

oeCha

2. Let defaultEntry be the Record {[[ModuleRequest]]: module, [[ImportName]]: "default",
[[LocalName]]: localName }.
3. Let entries be a new List containing defaultEntry.
4. Append to entries the elements of the ImportEntriesForModule of NamedImports with argument
module.
5. Return entries.
NamedImports : { }

1. Return a new empty List.

ImportsList : ImportsList , ImportSpecifier

1. Let specs be the ImportEntriesForModule of ImportsList withaargument module.
Append to specs the elements of the ImportEntitiesForModule of ImportSpecifier with argument
module.

3. Return specs.

ImportSpecifier . ImportedBinding

1. Let localName be the StringValue of ImportedBinding.

2. Let entry be the Record {[[ModuleRequest]]: module, [[ImportName]]: localName , [[LocalName]]:
localName }.

3. Return a new List containing entry.

ImportSpecifier : IdentifierName as ImportedBinding

1. Let importName be the StringValue of IdentifierName.
. Let localName be the StringValue of ImportedBinding.
3. Let entry be the Record {[[ModuleRequest]]: module, [[ImportName]]: importName,
[[LocalName]]: localName }.
4. Return a new List containing entry.
15.2.1.5 Static Semantics: ModuleRequests
See also: 15.2.0.9, 15.2.2.5.

ImportDeclaration : impoxrt ImportClause FromClause ;

1. Return ModuleRequests of FromClause.

Modulelmport : module ImportedBinding FromClause ;

1. Return ModuleRequests of FromClause.

ModuleSpecifier & StringLiteral
1. Return a List containing the StringValue of StringLiteral.

15.2.1.6 Runtime Semantics: Module Objects
Modulelmport : module ImportedBinding FromClause ;

An Modulelmport imports a module and introduces a single binding within the containing module
environment. The value of such a binding as a Module object.

© Ecma International 2014 298

»eCma

A Module object is an exotic object whose own properties corresponding corresponding to the
ExportedBindings of the module identifed by the Modulelmport FromClause. Each property name is the
StringValue of the corresponding exported binding. These are the only properties of an Module object.
Each one is a read-only property with attributes {[[Configurable]]: false, [[Enumerable]]: true}. Module
objects are not extensible.

TO DO

Needs to decide whether a module object is an ordinary or an exotic object. Whether properties are
accessor or defined via [[Get]], etc.

15.2.2 Exports

ExportDeclaration :
export * FromClause ;
export ExportClauseoretrencey FromClause ;
export ExportClause ;
export VariableStatement
export Declarationpefauy
export default AssignmentExpressionpn ;

ExportClause[NoReference] .
{ 1}

{ EXPOVtSLiSt[?NoReference] }
{ EXPOVtSLiSt[?NoReference] ,}

EXPOFISLiSt[NoReference] .

ExportSpecifier]?NoReference]
ExportsListianorefereice] 1 EXportSpecifieryonoreference]

ExportSpecifierinoreference] &
[~NoReference] IdentifierReference

[~NoReference] IdentifierReference as IdentifierName
[+NoReference] IdentifierName
[+NoReference] IdentifierName as._IdentifierName

NOTE ExportSpecifier is used to export bindings from the enclosing module Module. ExportSpecifierioreerence] 1S

used to export bindings from a referenced Module. In that case IdentifierReference restrictions are not applied to the
naming of the items too be exported because they are not used to create local bindings.

15.2.2.1 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.2.1, 12.1.2,13.6.4.2, 14.1.3, 14.2.2, 14.4.2, 1452, 15.2.1.2.

ExportDeclaration :
export * FromClause ;
export ExportClause FromClause ;
export ExportClause ;

1. Return a new empty List.

ExportDeclaration : export VariableStatement ;
© Ecma International 2014 299

oeCha

1. Return the BoundNames of VariableStatement.
ExportDeclaration : export Declaration ;
1. Return the BoundNames of Declaration.
ExportDeclaration : export default AssignmentExpression ;
1. Return a List containing "default".
15.2.2.2 Static Semantics: ExportedBindings
See als0:15.2.0.2.
ExportDeclaration : export * FromClause ;
1. Return a new empty List.
ExportDeclaration :
export ExportClause FromClause ;
export ExportClause ;
1. Return the ExportedBindings of this ExportClause.
ExportDeclaration :
export VariableStatement
export Declarationpeaur
1. Return the BoundNames of this ExportDeclaration.
ExportDeclaration : export default AssignmentExpression ;
1. Return a List containing "default".
ExportClause: { }
L+ Return a new empty List.
ExportsList : ExportsList, ExportSpecifier
1. Let names be the ExportedBindings of ExportsList.
2. Append.to names the elements of the ExportedBindings of ExportSpecifier.
3. Return names.
ExportDeclaration . export ExportClause FromClauseqp ;
1. Return the ExportedBindings of ExportClause.

ExportSpecifier . IdentifierReference

1. Return a List containing the StringValue of IdentifierReference.

© Ecma International 2014 300

oecind

ExportSpecifier . IdentifierReference as IdentifierName

1. Return a List containing the StringValue of IdentifierName.
ExportSpecifier . IdentifierName

1. Return a List containing the StringValue of IdentifierName.
ExportSpecifier . IdentifierName as IdentifierName

1. Return a List containing the StringValue of the second IdentifierName.
15.2.2.3 Static Semantics: ExportEntries
See als0:15.2.0.4.
ExportDeclaration : export * FromClause ;

1. Let module be the sole element of ModuleRequests of FromClause.

2. Let entry be the Record {[[ModuleRequest]]: module, [[ImportName]]: all, [[LocalName]]: null,

[[ExportName]]: null }.
3. Return a new List containing entry.

ExportDeclaration : export ExportClause FromClause ;

1. Let module be the sole element of ModuleRequests of FromClause.
2. Return ExportEntriesForModule of ExportClause with argument module.

ExportDeclaration : export ExportClause ;

1. Let module be the sole element of ModuleRequests of FromClause.
2. Return ExportEntriesForModule of ExportClause with argument null.

ExportDeclaration : export VariableStatement ;

1. Let entries be a new empty List.
Let names be the BoundNames of VariableStatement.
3. Repeat for each name in names,
a. Append to entries the Record {[[ModuleRequest]]: null, [[ImportName]]: null, [[LocalName]]:
name, [[ExportName]]: name }.
4. Return entries.

ExportDeclaration . export Declaration ;

1. Let entries be a new empty List.
Let names be the BoundNames of Declaration.
3. Repeat for each name in names,
a. Append to entries the Record {[[ModuleRequest]]: null, [[ImportName]]: null, [[LocalName]]:
name, [[ExportName]]: name }.
4. Return entries.

ExportDeclaration : export default AssignmentExpression ;

© Ecma International 2014 301

oeCha

1. Let entry be the Record {[[ModuleRequest]]: null, [[ImportName]]: null, [[LocalName]]:
"default", [[ExportName]]: "default"}.
2. Return a new List containing entry.
15.2.2.4 Static Semantics: ExportEntriesForModule
With parameter module.
ExportClause : { }
1. Return a new empty List.
ExportsList : ExportsList , ExportSpecifier
1. Let specs be the ExportEntriesForModule of ExportsList-with argument module.
2. Append to specs the elements of the ExportEntriesForModule of ExportSpecifier with argument
module.
3. Return specs.
ExportSpecifier . IdentifierReference
1. Let localName be the StringValue of IdentifierReference.
2. Return a new List containing the Record {[[ModuleRequest]]: module, [[ImportName]]: null,
[[LocalName]]: localName, [[ExportNamel]]: localName }.
ExportSpecifier : IdentifierReference as IdentifierName
1. Let localName be the StringValue of IdentifierReference.
2. Let exportName bethe StringValue of IdentifierName.
3. Return a new List containing the Record {[[ModuleRequest]]: module, [[ImportName]]: null,
{[[LocalName]]: localName, [[ExportName]]: exportName }.
ExportSpecifier : IdentifierName
1. Let sourceName be the StringValue of IdentifierName.
2. Return a new List containing the Record {[[ModuleRequest]]: module, [[ImportName]]:
sourceName, [[LocalName]]: null, [[ExportName]]: sourceName }.
ExportSpecifier : IdentifierReference as IdentifierName
1. LetsourceName be the StringValue of the first /dentifierName.
. Let exportName be the StringValue of the second IdentifierName.
3. Return a new Listcontaining the Record {[[ModuleRequest]]: module, [[ImportName]]:
sourceName, [[LocalName]]: null, [[ExportName]]: exportName }.
15.2.2.5 Static Semantics: ModuleRequests
See also: 15.2.0.9, 15.2.1.5.

ExportDeclaration : export ExportClause FromClause ;

1. Return the ModuleRequests of FromClause.

© Ecma International 2014 302

»eCma

ExportDeclaration :
export ExportClause ;
export VariableStatement
export Declaration
export default AssignmentExpression ;

1. Return a new empty List.

15.2.3 Runtime Semantics: Loader State

15.2.3.1 Loader Records and Loader Objects

Loader Records contain the state of a of distinct module loading context. Each Loader Record has the
fields defined in Table 34. Loader objects (26.3) are ECMAScript objects that permit ECMAScript code to
define and manage module loading contexts.

Table 34 — Loader Record Fields

Field Name Value Type Meaning
[[Realm]] Realm Record The Realm associated with the loader. All scripts and
modules evaluated by this loader run in the scope of
the global object associated with this Realm.
[[Modules]] List of Normalized names. bound to fully linked Module
Record {[[Name]], [[Module]]} | récords. The list can contain modules whose code has
where [[Name]] is a String and | Not yet been evaluated. However, except for the case
[[Module]] is a Module Record of ecyclic imports, such modules are not exposed to
user code.
[[Loads]] List of Load Record Outstanding asynchronous module load requests
that have been made to this loader.
[[LoaderObyj] Object or Undefined The Loader object (26.3) that reflects this Loader

Record.

15.2.3.1.1 _CreateLoaderRecord(realm, object) Abstract Operation

The abstract operation CreateLoaderRecord creates and returns a new Loader Record. The argument
realm is the Realm record that will be associated with Loader. The argument object is the either
undefined or the Loader object that will reflect this Loader record.

The following steps are taken:

AN W=

Let loader be a new Loader Record.
Set loader.[[Realm]] to realm.

Set loader.[[Modules]] to a new empty List.
Set loader.[[Loads]] to a new empty List.
Set loader.[[LoaderObj]] to object.
Return loader.

15.2.3.2 Load Records and LoadRequest Objects

The Load Record represents an attempt to locate, fetch, translate, and parse a single module.

© Ecma International 2014

303

»eCma

Each Load Record has the fields defined in Table 35:

Table 35 — Load Record Fields

Field Name Value Type Meaning

[[Status]] One of: | The current state of this Load request.
"loading",

"loaded",
"linked",
"failed".

[[Name]] String | undefined The normalized name of the module being loaded, or

undefined if loading an anonymous module.

[[LinkSets]] List of LinkSet | A List of all LinkSets: that require this. Load request to
Record succeed. There is a’ many-to-many relation between Load

records and LinkSets. A single import () call can have a
large dependency tree, involving many Load records. Many
import () calls, if they depend on the same module, can be
waiting for a single Load to.complete.

[[Metadata]] Object An object passed to each loader hook which hooks may use

for any purpose.

[[Address]] Object | undefined | The result of the locate hook.

[[Source]] String | undefined The result of the translate hook.

[[Kind]] One of: undefined, | Once the Load reaches the "loaded" state, either declarative
dynamic, or dynamic. If-the instantiate hook returned undefined, the
declarative module ‘is declarative, and load.[[Body]] contains a Module

parse. Otherwise, the instantiate hook returned a
ModuleFactory object and [[Execute]] contains the .execute
callable object.

[[Body]] undefined or a | If [[Kind]] is declarative, the parse of a Module production.
parse result Otherwise undefined.

[[Execute]] If [[Kind]] is dynamic, the value of factory.execute.

Otherwise undefined.

[[Dependencies]] | Undefined or List | If [Status]] is not "loading", a List of pairs. Each pair consists

of Records of two strings: a module name as it appears in a module, import,
or export from declaration in load.[[Body]], and the corresponding
normalized module name.

[[Exception]] If [[Status]] is "failed", the exception value that was thrown,

causing the load to fail. Otherwise, null.

[[Module]] The Module object produced by this load, or undefined.

A LoadRequest object is an ordinary Object, inheriting from Object.prototype with own data
properties whose values corresponding certain fields of a corresonding Load Record. A LoadRequest
object is created when the value of those fields need to be passed to an ECMAScript function. Every
LoadRequest object has name, and metadata properties corresponding to the [[Name]] and [[Metadata]]
fields of a Load Record. A LoadRequest object may also have address and source properties
corresponding to the [[Address]] and [[Source]] fields of a Load record.

© Ecma International 2014

304

secind

15.2.3.2.1 CreateLoad(name) Abstract Operation

The abstract operation CreateLoad creates and returns a new Load Record. The argument name is either
undefined, indicating an anonymous module, or a normalized module name.

The following steps are taken:

1.

Nk wn

Let load be a new Load Record.

Set load.[[Status]] to "loading".

Set load.[[Name]] to name.

Set load.[[LinkSets]] to a new empty List.

Set load.[[Metadata]] to metadata ObjectCreate(%ObjectPrototype%).
Set all other fields of load to undefined.

Return load.

15.2.3.2.2 CreateLoadRequestObject(name, metadata, address, source) Abstract Operation

The abstract operation CreatelLoadRequestObject performed with arguments name, metadata, and optional
arguments address and source returns a new LoadRequest Object. It performs the following steps:

Nk wbh—

Let obj be ObjectCreate(%ObjectPrototype%, ()).

Assert: The following operations will never result in abrupt completions.

Perform CreateDataProperty (obj, "name", name).

Perform CreateDataProperty (0bj, "metadata", metadata).

If address was passed, then perform CreateDataProperty (obj, "address", address).
If source was passed, then perform CreateDataProperty (obj; "'source", source).
Return obj.

15.2.4 Runtime Semantics: Module Loading

15.2.4.1 LoadModule(loader, name, options) Abstract Operation

The following steps are taken:

O 0 N iR D =

Assert:-loader is a Loader record.

Let name be ToString(name).

ReturnIfAbrupt(name).

Let address be GetOption(options, "address").

ReturnIfAbrupt(address).

If address is undefined, let step be "locate".

Else, let step be "fetech".

Let metadata be ObjectCreate(%ObjectPrototype%).

Return PromiseOfStartLoadPartwayThrough(step, loader, name, metadata, source, address).

15.2.4.2 RequestLoad(loader, request, refererName, refererAddress) Abstract Operation

The RequestlLoad abstract operation normalizes the given module name, request, and returns a Promise
object that resolves to the value of a Load object for the given module.

The loader argument is a Loader record.

© Ecma International 2014 305

secind

request is the (non-normalized) name of the module to be imported, as it appears in the import-declaration
or as the argument to 1loader.load() or loader.import ().

refererName and refererAddress provide information about the context of the import () call or import-
declaration. This information is passed to all the loader hooks.

If the requested module is already in the loader's module registry, RequestLoad returns a Promise object
for a Load with the [[Status]] field set to "1inked". If the requested module is loading or loaded but not
yet linked, RequestLoad returns a Promise object for an existing Load object from loader.[[Loads]].
Otherwise, RequestLoad starts loading the module and returns a Promise object for a new Load Record.

The following steps are taken:

Let ' be a new anonymous function as defined by CallNormalize.
Set F”’s [[Loader]] internal slot to loader.

Set F’s [[Request]] internal slot to request.

Set F’s [[RefererName]] internal slot to refererName.

Set F’s [[RefererAddress]] internal slot to refererAddress.

Let p be PromiseNew(F).

Let G be a new built-in function as defined by GetOrCreateLoad.
Set G’s [[Loader]] internal slot to /oader.

Return PromiseThen(p, G).

A SR el e

15.2.4.2.1 CallNormalize(resolve, reject) Functions
A CallNormalize function is an anonymous built-in function that calls a loader's normalize hook.

Each CallNormalize function has. internal "slots [[Loader]], [[Request]], [[RefererName]], and
[[RefererAddress]].

When a CallNormalize function F is called with arguments resolve and reject, the following steps are taken:

1. Let loader be the value of F’s [[Loader]] internal slot.

2. Let request be F’s [[Request]] internal slot.

3. Let refererName be the value of F’s [[RefererName]] internal slot.

4. Let refererAddress be the value of F’s [[RefererAddress]] internal slot.

5. <Let loaderObj be loader.[[LoaderObj]].

6. Let normalizeHook be Get(loaderObj, "normalize").

7. Let name be the result of calling the [[Call]] internal method of normalizeHook passing loaderObj
and (request, refererName, refererAddress) as arguments.

8. " ReturnlfAbrupt(name).

9. Return the result of calling the [[Call]] internal method of resolve passing undefined and (name) as
arguments.

15.2.4.2.2 GetOrCreateLoad(name) Functions

A GetOrCreatelLoad function is an anonymous function that gets or creates a Load Record for a given
module name.

Each GetOrCreateload function has a [[Loader]] internal slot.

When a GetOrCreatelLoad function F is called with argument name, the following steps are taken:

© Ecma International 2014 306

eCmd

Let loader be F’s [[Loader]] internal slot.
Let name be ToString(name).
ReturnIfAbrupt(name).
Let modules be the value of of loaderRecord.[[Modules]],
Repeat for each Record {[[key]], [[value]]} p that is an element of loader.[[Modules], do
a. If SameValue(p.[[key]], name) is true, then
i. Let existingModule be the [[value]] field of that Record.
ii. Let load be CreateLoad(name).
iii. Set load.[[Status]] to "linked".
iv. Set load.[[Module]] to existingModule.
v. Return load.
6. Repeat for each Record /oad that is an element of loader.[[Loads]], do
a. If SameValue(load.[[Name]], name) is true, then
i. Assert: load.status is either "loading" or "loaded".
ii. Return load.
Let load be CreateLoad(name).
Append load to the the end of the List loader.[[Loads]].
. Call ProceedToLocate(loader, load).
0. Return load.

[T R N

— \O 00

15.2.4.3 ProceedTolLocate(loader, load, p) Abstract Operation

The ProceedTolocate abstract operation‘continues the asynchronous loading process at the locate
hook.

ProceedTolLocate performs the following steps:

Let p be PromiseOf(undefined).

Let F be a new built-in function object as defined in CallLocate.
Set F”’s [[Loader]] internal slot to /oader.

Set F”’s [[Load]] internal slot to load.

Let p be PromiseThen(p, F).

Return ProceedToFetch(/oader, load, p).

AN N AW —

15.2.4.3.1 CallLocate Functions

A CallLocate function is.an anonymous built-in function that calls the locate loader hook. Each
CallLocate function has [[Loader]] and [[Load]] internal slots.

When a CallLocate function Fis called, the following steps are taken:

Let loader be the value of F’s [[Loader]] internal slot.

Let load be the value of F”’s [[Load]] internal slot.

Let loaderObj be loader.[[LoaderObj]].

Let hook be Get(loaderObj, "locate").

ReturnIfAbrupt(/ook).

If IsCallable(hook) is false, throw a TypeError exception.

Let obj be CreateLoadRequestObject(load.[[Name]], load.[[Metadata]]).

Return the result of calling the [[Call]] internal method of hook with loader and (obj) as arguments.

RN BN =

© Ecma International 2014 307

eCmd

15.2.4.4 ProceedToFetch(loader, load, p) Abstract Operation

The ProceedToFetch abstract operation continues the asynchronous loading process at the fetch hook
by performing the following steps:

1. Let F be a new built-in function object as defined in CallFetch.
Set F’s [[Loader]] internal slot to loader.

Set F’s [[Load]] internal slot to load.

Set F’s [[AddressPromise]] internal slot to p.

Let p be PromiseThen(p, F).

Return ProceedToTranslate(loader, load, p).

AN

15.2.4.4.1 CallFetch(address) Functions

A CallFetch function is an anonymous built-in function that calls'the fetch loader hook. Each CallFetch
function has [[Loader]] and [[Load]] internal slots.

When a CallFetch function F'is called with argument address, the following steps are taken:

1. Let loader be the value of F’s [[Loader]] internal slot.

2. Let load be the value of F’s [[Load]] internal slot.

3. [Ifload.[[LinkSets]] is an empty List, return undefined.

4. Set load.[[Address]] to address.

5. Let loaderObj be loader.[[LoaderObj]].

6. Let hook be Get(loaderObj, "fetch").

7. ReturnlfAbrupt(hook).

8. [If IsCallable(fook) is false, throw a TypeError exception.

9. Let 0bj be CreateLoadRequestObject(load.[[Name]], /oad.[[Metadata]], address).

10. Return the result of calling the [[Call]] internal method of ook with loader and (0bj) as arguments.

15.2.4.5 ProceedToTranslate(loader, load, p) Abstract Operation

The ProceedToTranslate abstract operation. continues the asynchronous loading process at the
translate hook hook by performing performs the following steps:

Let £ be anew function object as defined in CallTranslate.
Set F’s [[Loader]] internal slot to loader.

Set F’s [[Load]] internal slot to load.

Let p be PromiseThen(p, F).

Let F be a new function object as defined in Calllnstantiate.
Set F’s [[Loader]] internal slot to loader.

Set £’s [[Load]] to internal slot /oad.

Let p be PromiseThen(p, F).

Let F'be a new function object as defined in InstantiateSucceeded.
10. Set F’s [[Loader]] to internal slot /oader.

11. Set F’s [[Load]] to internal slot load.

12. Let p be PromiseThen(p, F).

13. Let F be a new function object as defined in LoadFailed.

14. Set F’s [[Load]] internal slot to load.

15. Return PromiseCatch(p, F).

O 00 N g N =

© Ecma International 2014 308

ecimna

15.2.4.5.1 CallTranslate Functions

A CallTranslate function is an anonymous built-in function that calls the translate loader hook. Each
CallTranslate function has [[Loader]] and [[Load]] internal slots.

When a CallTranslate function F'is called with argument source, the following steps are taken:

1. Let loader be the value of F’s [[Loader]] internal slot.

Let load be the value of F’s [[Load]] internal slot.

If load.[[LinkSets]] is an empty List, return undefined.

Let hook be Get(loader, "translate").

ReturnIlfAbrupt(fook).

If IsCallable(hook) is false, throw a TypeError exception.

Let obj be CreateLoadRequestObject(load.[[Name, load.[[Metadata]], ", load.[[Address]], source).
Return the result of calling the [[Call]] internal method of hook with loader and (0bj) as arguments.

XA BAE D

15.2.4.5.2 Calllnstantiate Functions

A Calllnstantiate function is an anonymous built-in function that calls the instantiate loader hook. Each
Calllnstantiate function has [[Loader]] and [[Load]] internal slots.

When a Callinstantiate function F'is called with argument source, the following steps are taken:

1. Let loader be the value of F’s [[Loader]] internal slot.

2. Let load be the value of F’s [[Load]] internal slot.

3. [Ifload.[[LinkSets]] is an empty List, return undefined.

4. Set load.[[Source]] to source.

5. Let loaderObj be loader.[[LoaderObj]].

6. Let hook be Get(loaderObj, "instantiate").

7. ReturnIfAbrupt(#ook).

8. [IfIsCallable(/ook) is false, throw a TypeError exception.

9. Let 0bj be CreateLoadRequestObject(load.[[Name]], /oad.[[Metadata]], load.[[Address]], source).
10. Return the result of calling the [[Call]] internal method of ook with loader and (0bj) as arguments.

15.2.4.5.3 InstantiateSucceeded(instantiateResult) Functions

An InstantiateSucceeded function'is an anonymous function that handles the result of the instantiate
hook.

Each InstantiateSucceeded function has [[Loader]] and [[Load]] internal slots.

When an InstantiateSucceeded function F is called with argument instantiateResult, the following steps are
taken:

Let loader be the value of F’s [[Loader]] internal slot.

Let load be the value of F’s [[Load]] internal slot.

If load.[[LinkSets]] is an empty List, return undefined.

If instantiateResult is undefined, then

a. Let body be the result of parsing load.[[Source]], interpreted as UTF-16 encoded Unicode text
as described in clause 10.1.1, using Module as the goal symbol. Throw a SyntaxError
exception if the parse fails or if any static semantics errors are detected.

b. Set load.[[Body]] to body.

c. Setload.[[Kind]] to declarative.

© Ecma International 2014 309

AW N =

oecnd

d. Let depsList be the ModuleRequests of body.
5. Else if Type(instantiateResult) is Object, then

a. Let deps be Get(instantiateResult, "deps").

b. ReturnlfAbrupt(deps).

c. Ifdeps is undefined, then let depsList be a new empty List.
d. Else,

i. Let depsList be IterableToArray(deps).
ii. ReturnIfAbrupt(depsList).
e. Let execute be Get(instantiateResult, "execute").
f. ReturnIfAbrupt(execute).
g. Set load.[[Execute]] to execute.
h. Set load.[[Kind]] to dynamic.
6. Else,
a. Throw a TypeError exception.
7. Return ProcessLoadDependencies(/oad, loader, depsList).

15.2.4.5.4 LoadFailed Functions

A LoadFailed function is an anonymous function that marks.a Load Record as having failed. All LinkSets
that depend on the Load also fail.

Each LoadFailed function has a [[Load]] internal slot.
When a LoadFailed function F is called with argument exc, the following steps are taken:

Let load be the value of F’s [[Load]] internal slot.

Assert: load.[[Status]] is "loading".

Set load.[[Status]] to"failed".

Set load.[[Exception]] to exc.

Let /inkSets be a copy of the List load.[[LinkSets]].

For each linkSet in linkSets, in'the order in which the LinkSet Records were created,
a. Call LinkSetFailed(/inkSet, exc):.

7. Assert: load.[[LinkSets]].is empty.

AN W=

15.2.4.6 ProcessLoadDependencies(load, loader, depsList) Abstract Operation

The ProcessLoadDependencies abstract operation is called after one module has nearly finished loading.
It starts new loads as needed to load the module's dependencies.

ProcessLoadDependencies also arranges for LoadSucceeded to be called.

The following steps are taken:

Let refererName be load.[[Name]].

Set load. [[Dependencies]] to a new empty List.

Let loadPromises be a new empty List.

For each request in depsList, do

Let p be RequestLoad(loader, request, refererName, load.[[Address]]).
Let F be a new built-in function as defined by AddDependencyLoad.
Set the [[Load]] internal slot of F to load.

Set the [[Request]] internal slot of F to request.

Let p be PromiseThen(p, F).

Append p as the last element of /oadPromises.

© Ecma International 2014 310

AW =

mo Ao o

ecimna

Let p be PromiseAll(loadPromises).

Let F be a new built-in function as defined by LoadSucceeded.
Set the [[Load]] internal slot of F to load.

Return PromiseThen(p, F).

o3 N D

15.2.4.6.1 AddDependencylLoad(depLoad) Functions

An AddDependencyload function is an anonymous function that adds a Load Record for a dependency
to any LinkSets associated with the parent Load.

Each AddDependencyl oad function has [[ParentLoad]] and [[Request]] internal slots.

When an AddDependencyl oad function F'is called with argument depLoad, the following steps are taken:

1. Let parentLoad be the value of F’s [[ParentLoad]] internal slot.
2. Let request be the value of F’s [[Request]] internal slot:
3. Assert: There is no Record in the List parentLoad.[[Dependencies]] whose [[key]] field is equal to
request.
4. Append the Record {[[key]]: request, [[value]]:‘depLoad.[[Name]]} to the end of the List
parentLoad.[[Dependencies]].
5. [IfdepLoad.[[Status]] is not "linked", then
a. Let /inkSets be a copy of the List parentLoad.[[LinkSets]].
b. For each linkSet in linkSets, do
i. Call AddLoadToLinkSet(/inkSet, depLoad).

15.2.4.6.2 LoadSucceeded Functions

A LoadSucceeded function is.an anonymous function'that transitions a Load Record from "loading" to
"loaded" and notifies all associated LinkSet Records of the change. This function concludes the loader
pipeline. It is called after-all a newly loaded module's dependencies are successfully processed.

Each LoadSucceeded function has a[[Load]] internal slot.

When a LoadSucceeded function F'is called, the following steps are taken:

1. Let load be the value of F’s [[Load]] internal slot.
Assert: load.[[Status]] is "loading".

Set load.[[Status]] to "loaded".

Let linkSets be a copy of load.[[LinkSets]].

For each [inkSet in linkSets in List order, do

a. Call UpdateLinkSetOnLoad(l/inkSet, load).

wn B W N

15.2.4.7 PromiseOfStartLoadPartwayThrough (step, loader, name, metadata, source, address)

1. Let F be a new anonymous function object as defined in AsyncStartLoadPartwayThrough.
Let state be the Record { [[Step]]: "translate", [[Loader]]: loader, [[ModuleName]]: name,
[[ModuleMetadata]]: metadata, [[ModuleSource]]: source, [[ModuleAddress]]: address}.

3. Set F’s [[StepState]]]] internal slot to state.

4. Return PromiseNew(F).

© Ecma International 2014 311

secind

15.2.4.7.1 AsyncStartLoadPartwayThrough Functions

An AsyncStartLoadPartwayThrough function is an anonymous function that is used as a Promise
executor. When called it creates a new Load Record and populates it with some information provided by
the caller, so that loading can proceed from either the 1ocate hook, the fetch hook, or the translate
hook. This functionality is used to implement builtin methods like Loader.prototype.load, which
permits the user to specify both the normalized module rname and the address.

Each AsyncStartLoadPartwayThrough function has internal slots [[StepState]].

When an AsyncStartLoadPartwayThrough function F is called with arguments resolve and reject, the
following steps are taken:

AN N B W=

10.
11.
12.
13.

14.

15.

Let state be the value of F’s [[StepState]] internal slot.

Let loader be state.[[Loader]].

Let name be state.[[ModuleName]].

Let step be state.[[Step]].

Let source be state.[[ModuleSource]].

Repeat for each Record {[[key]], [[value]]} p that is an element.of loader.[[Modules], do
a. If SameValue(p.[[key]], name) is true, then throw a TypeError exception.
Repeat for element of /oad or loader.[[Modules], do

a. If SameValue(loads.[[Name]], name) is true, then throw a TypeError exception.
Let load be CreateLoad(name).

Set load.[[Metadata]] to state.[[ModuleMetadata]].

Let linkSet be CreateLinkSet(loader, load).

Append load to the end of loader.[[Loads]].

Call the [[Call]] internal method of resolve with arguments undefined and (/inkSet.[[Done]]).

If step is "locate",

a. Call ProceedToLocate(loader, load).

Else if step is "fetch",

a. Let addressPromise be PromiseOf(state.[[ModuleAddress]]).
b. Call ProceedT oFetch(loader, load, addressPromise).

Else,

a. Assert: step is "translate".

Set load.[[Address]] to state.[[ModuleAddress]].

Let sourcePromise be PromiseOf(state.[[ModuleSource]]).
Call ProceedToTranslate(loader, load, sourcePromise).

S8

15.2.5 Runtime Semantics: Module Linking

15.2.5.1 ModuleLinkage Record

A ModuleLinkage Record contains the state needed to link a specific module.

Each LinkSet Record has the fields defined in Table 36.

© Ecma International 2014

312

secind

Table 36 — ModuleLinkage Record Fields

Field Name Value Type Meaning

[Body]]

a parse result The parse of a Module production

BoundNames]|

KnownExportEntries]|

KnownExportEntries]|

[
[
[
[

ExportDefinitions]]

[Exports]]

[Dependenies]]

[UnlinkedDependencies]]

[ImportedEntries]]

[ImportedDefinitions]]

[LinkErrors]]

[l Hesn] sl Hassl Bl el Rasll Bl Bl Rl Bl B

[Environment]]

15.2.5.1.1 CreateModuleLinkageRecord (loader, body) Abstract Operation

The abstract operation CreateModuleLinkageRecord. with arguments loader and body performs the
following steps:

ARl e

9

10.
11.
12:
13.
14.
15.
16.
17.
18.

Assert: body is a Modulebody parse.

Let M be a new object with [[Prototype]] null.

Set M.[[Body]] to body:

Set M.[[BoundNames]] to DeclaredNames of body.

Set M.[[KnownExportEntries]] to KnownExportEntries of body.
Set M.[[UnknewnExportEntries]] to UnknownExportEntries of body.
Set M.[[ExportDefinitions]] to undefined.

Set M.[[Exports]] to undefined.

Set M.[[Dependencies]]-to undefined.

Set M:[[UnlinkedDependencies]] to undefined.

Set M.[[ImportEntries]] to ImportEntries of body.

Set M.[[ImportDefinitions]] to.undefined.

Set M.[[LinkErrors]] to a new empty List.

Let realm be loader.[[Realm]].

Let globalEnv be realm.[[globalEnv]].

Let env be NewModuleEnvironment(globalEnv).

Set M.[[Environment]] to env.

Return M.

15.2.5.1.2 LookupExport (M, exportName)

The abstract operation LookupExport with arguments M and exportName performs the following:

1.

2.
3.

If M.[[Exports]] does not contain a record export such that export.[[ExportName]] is equal to
exportName, then return undefined.

Let export be the record in M.[[Exports]] such that export.[[ExportName]] is equal to exportName.
Return export.[[Binding]].

© Ecma International 2014 313

oecnd

15.2.5.1.3 LookupModuleDependency (M, requestName)

The abstract operation LookupModuleDependency with arguments M and requestName performs the
following steps:

Assert: M is a ModuleLinkage Record.

If requestName is null then return M.

Let pair be the record in M.[[Dependencies]] such that pair.[[Key]] is equal to requestName.
Return pair.[[Module]].

AW -

15.2.5.2 LinkSet Records
A LinkSet Record represents a call to loader.define(), .load (), .module (), or .import ().
Each LinkSet Record has the fields defined in Table 37.

Table 37 — LinkSet Record Fields

Field Name Value Type Meaning

[[Loader]] Loader Record The Loader record that created this LinkSet.

[[Loads]] List of Load Record A List of the Load Records that must finish loading
before the modules can be linked and evaluated.

[[Done]] Promise Object The Promise that becomes fulfiled when all
dependencies are loaded and linked together.

[[Resolve]] Function Object Function used.to resolve [[Done]].

[[Reject]] Function Object Function used to reject [[Donel].

15.2.5.2.1 CreateLinkSet(loader, startingLoad) Abstract Operation

The CreatelLinkSet abstract operation creates a new LinkSet record by performing the following steps:

1. Assert: loader is a Loader Record.
If loader does not have all of the internal properties of a Loader Instance, throw a TypeError
exception.

3. Let promiseCapability be PromiseBuiltinCapability().

4. ReturnlfAbrupt(promiseCapability).

5. Let linkSet be LinkSet {[[Loader]]: /oader, [[Loads]]: (), [[Done]]: promiseCapability.[[Promise]],
[[Resolve]]: promiseCapability.[[Resolve]], [[Reject]]: promiseCapability.[[Reject]] }.

6. Perform AddLoadToLinkSet(/inkSet, startingLoad).

7. Return linkSet.

15.2.5.2.2 AddLoadToLinkSet(linkSet, load) Abstract Operation

The AddLoadToLinkSet abstract operation associates a LinkSet Record with a Load Record and each of
its currently known dependencies, indicating that the LinkSet cannot be linked until those Loads have
finished successfully.

The following steps are taken:

1. Assert: load.[[Status]] is either "loading" or "loaded".
2. Let loader be linkSet.[[Loader]].
3. Ifload is not already an element of the List /inkSet.[[Loads]],
© Ecma International 2014 314

oecnd

a. Append /oad to the end of the List /inkSet.[[Loads]].
. Append linkSet to the end of the List load.[[LinkSets]].
c. Ifload.[[Status]] is "loaded", then
i. Repeat for each r that is a Record {[[Name]], [[NormalizedName]]} in
load.[[Dependencies]],
1. Ifthere is no element of /oader.[[Modules]] whose [[key]] field is equal to name,
a. Ifthere is an element of loader.[[Loads]] whose [[Name]] field is equal to name,
i. Let depLoad be that Load Record.
ii. Perform AddLoadToLinkSet(/inkSet, depLoad).

15.2.5.2.3 UpdateLinkSetOnLoad(linkSet, load) Abstract Operation

The UpdateLinkSetOnLoad abstract operation is called immediately after a Load successfully finishes,
after starting Loads for any dependencies that were not already loading, loaded, or in the module registry.

This operation determines whether /inkSet is ready to link, and if so, calls Link.

The following steps are taken:

1.
2.

w

Now s

o]

Assert: load is an element of linkSet.[[Loads]].

Assert: load.[[Status]] is either "loaded" or "linked":
Repeat for each element in linkSet.[[Loads]],

a. If element.[[Status]] is "loading", then return.

Assert: All Loads in /inkSet.[[Loads]] have finished loading.

Let startingLoad be the first element of the List /inkSez.[[Loads]].
Let status be Link(/inkSet.[[Loads]], linkSet.[[Loader]]).

If status is an abrupt completion, then

a. Return LinkSetFailed(/inkSet, status.[[value]]).

Assert: linkSet.[[Loads]] is an empty List.

Call the [[Call]] internal method of /inkSet.[[Resolve]] passing undefined and (startingLoad) as
arguments.

10. Assert: The call performed by step 9 completed normally.

15.2.5.2.4 LinkSetFailed(linkSet, exc) Abstract Operation

The LinkSetFailed abstract operation is called when a LinkSet fails. It detaches the given LinkSet Record
from all Load Records and rejects the linkSet.[[Done]] Promise.

The following steps are taken:

1.

3.

Let loader be linkSet.[[Loader]].
Let loads be a copy of the List /inkSet.[[Loads]].
For each /oad in loads,
a. Assert: /inkSet is an element of the List /oad.[[LinkSets]].
b. Remove linkSet from the List /oad.[[LinkSets]].
c. Ifload.[[LinkSets]] is empty and load is an element of /oader.[[Loads]], then
i. Remove load from the List loader.[[Loads]].
Return the result of calling [[Call]] internal method of /inkSet.[[Reject]] passing undefined and
(exc) as arguments.
Assert: The call performed by step 4 completed normally.

© Ecma International 2014 315

secind

15.2.5.2.5 FinishLoad(loader, load) Abstract Operation

The FinishLoad Abstract Operation removes a completed Load Record from all LinkSets and commits the
newly loaded Module to the registry. It performs the following steps:

1. Let name be load.[[Name]].
2. If name is not undefined, then
a. Assert: There is no Record {[[key]], [[value]]} p that is an element of /oader.[[Modules]], such
that SameValue(p.[[key]], load.[[Name]]) is true.
b. Append the Record {[[key]]: load.[[Name]], [[value]]: load.[[Module]]} as the last element of
loader.[[Modules]].
3. Ifload is an element of the List /oader.[[Loads]], then
a. Remove load from the List loader.[[Loads]].
4. For each linkSet in load.[[LinkSets]],
a. Remove load from [linkSet.[[Loads]].
5. Remove all elements from the List /oad.[[LinkSets]].

15.2.5.3 Module Linking Groups

A load record load, has a linkage dependency on a load record load, if load, is contained in
load,.[[UnlinkedDependencies]] or there exists a load record load in‘load,.[[UnlinkedDependencies]] such that
load has a linkage dependency on load,.

The linkage graph of a List, /ist, of load records is the set of load records /load such that some load record
in /ist has a linkage dependency on /load.

A dependency chain from load, to load, is a List of load records demonstrating the transitive linkage
dependency from load, to load,:

A dependency cycle is a dependency chain whose first and last elements’ [[Name]] fields have the same
value.

A dependency chain is cyclic if it contains a subsequence that is a dependency cycle. A dependency
chain is acyclic if it is not cyclic:

A dependency chain is. mixed if there are two elements with distinct values for their [[Kind]] fields. A
dependency group transition of kind kind is a two-element subsequence load,, load, of a dependency
chain such that /oad,.[[Kind]] is not equal to kind and load,.[[Kind]] is equal to kind.

The dependency group count of a dependency chain with first element load; is the number of distinct
dependency group transitions of kind /oad,.[[Kind]].

15.2.5.3.1 LinkageGroups (start)

The abstract operation LinkageGroups with argument start performs the following steps:

Assert: start is a List of LinkSet Records.

Let G be the linkage graph of start.

If there are any mixed dependency cycles in G, throw a new Syntax Error.

For each load in G, do

a. Let n be the largest dependency group count of all acyclic dependency chains in G starting from
load.

b. Set load.[[Grouplndex]] to n.

AW N =

© Ecma International 2014 316

oeCha

5. Let declarativeGroupCount be the largest [[GroupIndex]] of any load in G such that load.[[Kind]]
is declarative.
6. Let declarativeGroups be a new List of length declarativeGroupCount where each element is a new

empty List.

7. Let dynamicGroupCount be the largest [[Grouplndex]] of any /oad in G such that load.[[Kind]] is
dynamic.

8. Let dynamicGroups be a new List of length dynamicGroupCount where each element is a new
empty List.

9. Let visited be a new empty List.
10. For each load in start, do
a. Perform BuildLinkageGroups(load, declarativeGroups, dynamicGroups, and visited).
11. If any load in the first element of declarativeGroups has a dependency on a load record of [[Kind]]
dynamic, then
a. Let groups be a List constructed by interleaving the elements of dynamicGroups and
declarativeGroups, starting with the former.
12. Else,
a. let groups be a List constructed by interleavingthe elements of declarativeGroups and
dynamicGroups, starting with the former.
13. Return groups.

15.2.5.3.2 BuildLinkageGroups (load, declarativeGroups, dynamicGroups, visited)

The abstract operation BuildLinkageGroups with-arguments load, declarativeGroups, and dynamicGroups
performs the following steps:

1. If visited contains an element whose [[Name]] is equal toload.[[Name]], then return.

2. Add load to visited.

3. For each dep of load.[[UnlinkedDependencies]], do
a. Call the BuildLinkageGroups abstract operation passing dep, declarativeGroups,

dynamicGroups, and visited as arguments.

4. Leti be load.[[GroupIndex]].

5. Ifload.[[Kind]] is declarative let groups be declarativeGroups; otherwise let groups be
dynamicGroups.

6. Let group be the ith element of groups.

7. Add load to group.

15.2.5.4 Link (start, loader)

The abstract operation Link with argument stzart performs the following steps:

1.- Let groups be LinkageGroups(start).
2. For each group in groups:
a. Ifthe [[Kind]] of each element of group is declarative, then perfrom
LinkDeclarativeModules(group, loader).
b. Else, perfrom LinkDynamicModules(group, loader).

15.2.5.5 LinkDeclarativeModules (loads, loader)

The abstract operation LinkDeclarativeModules with arguments loads and loader performs the following
steps:

1. Let unlinked be a new empty List.
2. For each load in loads, do

© Ecma International 2014 317

oeCha

3.

a. Ifload.[[Status]] is not linked, then
i. Let module be CreateModuleLinkageRecord (loader, load.[[Body]]).
ii. Let pair be the record {[[Module]]: module, [[Load]]: load}.
iii. Add pair to unlinked.
For each pair in unlinked, do
a. Let resolvedDeps be a new empty List.
b. Let unlinkedDeps be a new empty List.
c. For each element dep in pair.[[Load]].[[Dependencies]], do
i. Let requestName be dep.[[Key]].
ii. Let normalizedName be dep.[[Value]].
iii. If loads contains a record load such that SameValue(/oad.[[Name]], normalizedName) is
true, then
1. Ifload.[[Status]] is linked, then
a. Let resolvedDep be the record {[[Key]]: requestName, [[Value]]:
load.[[Module]]}.
b. Add resolvedDep to resolvedDeps.
2. Else,
a. Let otherPair be the record in unlinked such that
SameValue(otherPair.[[Load]].[[Name]], normalizedName) is true.
b. Add the record {[[Key]]: requestName, [[Value]]: otherPair.[[Module]]} to
resolvedDeps.
c. Add otherPair.[[Load]] to unlinkedDeps.
iv. Else,
1. Let module be LoaderRegistryLookup(loader, normalizedName).
2. If module is null then
a. Let error be a new ReferenceError exception.
b. Add error to pair.[[Module]].[[LinkErrors]].
3. Else, add the record {[[Key]]: requestName, [[Value]]: module} to resolvedDeps.
d. Set pair.[[Module]].[[Dependencies]] to resolvedDeps.
e. Set pair.[[Module]].[[UnlinkedDependencies]] to unlinkedDeps.
For each pair.in unlinked, do
a. Perform ResolveExportEntries(pair.[[Module]], a new empty List.
b. Perform ResolveExports(pair.[[Module]]).
For each pair in unlinked, do
a. _Perform ResolvelmportEntries(pair.[[Module]]).
b. Perform LinkImports(pair.[[Module]]).
If there exists a pair in unlinked such that pair.[[Module]].[[LinkErrors]] is not empty, choose one
of the link errors and throw it.
For each pair in unlinked, do
Set pair.[[Load]].[[Module]] to pair.[[Module]].
b. Set pair.[[Load]].[[Status]] to linked.
c. - Let r beFinishLoad(loader, pair.[[Load]]).
d. ReturnIfAbrupt(z).

&

15.2.5.5.1 Linklmports (M)

The abstract operation Linklmports with argument M performs the following steps:

1.
2.
3.

Let envRec be M.[[Environment]].

Let defs be M.[[ImportDefinitions]].

For each defin defs, do

a. Ifdef.[[ImportName]] is module, then the following steps are taken:

© Ecma International 2014 318

oeCha

i. Call the CreatelmmutableBinding concrete method of envRec passing def.[[LocalName]] as
the argument.

ii. Call the InitializelmmutableBinding concrete method of envRec passing def.[[LocalName]]
and def.[[Module]] as the arguments.

Otherwise, the following steps are taken:

i. Let binding be ResolveExport(def.[[Module]], def.[[ImportName]]).

ii. If binding is undefined, then the following steps are taken:
1. Let error be a new Reference Error.
2. Add error to M.[[LinkErrors]].

iii. Otherwise, call the CreateImportBinding concrete method of envRec passing
def.[[LocalName]] and binding as the arguments.

15.2.5.6 LinkDynamicModules (loads, loader)

The abstract operation LinkDynamicModules with arguments loads and loader performs the following

steps:
1.

For

o o

50 rh o

each load in loads, do

Let factory be load.[[Factory]].

Let module be the result of calling factory with no arguments.

ReturnIfAbrupt(module).

If module does not have all the internal data properties of a Module Instance Object, then throw
a TypeError exception.

Set load.[[Module]] to module.

Set load.[[Status]] to linked.

Let r be FinishLoad(loader, load).

ReturnIfAbrupt(r).

15.2.5.7 ResolveExportEntries (M, visited)

The abstract operation‘ResolveExportEntries with arguments M and visited performs the following steps:

1
2.
3.
4

If M.[[ExportDefinitions]] is'not undefined, then return M.[[ExportDefinitions]].
Let defs be a new empty List.
Let boundNames be M.[[BoundNames]].

For
a.
b.
C.

For

each entry in M.[[KnownExportEntries]], do

Let modReq be entry.[[ModuleRequest]].

Let otherMod be LookupModuleDependency(M, modReq).

If entry.[[Module]] is null and entry.[[LocalName]] is not null and boundNames does not
contain entry.[[LocalName]], then the following steps are taken:

i. Let error be a new Reference Error.

ii. Add error to M.[[LinkErrors]].

Add the record {[[Module]]: otherMod, [[ImportName]]: entry.[[ImportName]], [[LocalName]]:
entry.[[LocalName]], [[ExportName]]: entry.[[ExportName]], [[Explicit]]: true} to defs.
each modReq in M.[[UnknownExportEntries]], do

Let otherMod be LookupModuleDependency(M, modReq).

If otherMod is in visited, then the following steps are taken:

i. Let error be a new Syntax Error.

ii. Add error to M.[[LinkErrors]].

Otherwise the following steps are taken:

i. Add otherMod to visited.

ii. Let otherDefs be ResolveExportEntries(otherMod, visited).

iii. For each def of otherDefs, do

© Ecma International 2014 319

oeCha

6.
7.

1. Add the record {[[Module]]: otherMod, [[ImportName]]: def.[[ExportName]],
[[LocalName]]: null, [[ExportName]]: def.[[ExportName]], [[Explicit]]: false} to defs.
Set M.[[ExportDefinitions]] to defs.
Return defs.

15.2.5.8 ResolveExports (M)

The abstract operation ResolveExports with argument M performs the following steps:

1.

For each def in M.[[ExportDefinitions]], do
a. Call the ResolveExport abstract operation with arguments M, def.[[ExportName]], and a new
empty List.

15.2.5.9 ResolveExport (M, exportName, visited)

The abstract operation ResolveExport with arguments M, exportName, and importName performs the
following steps:

1.
2.

3.
4.

10.

11.
12.
13.

Let exports be M.[[Exports]].

If exports has a record export such that export.[[ExportName]] is equal to exportName, return
export.[[Binding]].

Let ref be {[[Module]]: M, [[ExportName]]: exportName}.

If visited contains a record equal to ref then the following steps.are taken:

a. Let error be a new Syntax Error.,

b. Add error to M.[[LinkErrors]].

c. Return error.

Let defs be M.[[ExportDefinitions]].

Let overlappingDefs be-the List of records defin defs such that def.[[ExportName]] is equal to
exportName.

If overlappingDefs is empty, then the following steps are taken:

a. Let error be a new Reference Error.

b. Add error to M.[[LinkErrors]].

c. Return error.

If overlappingDefs has more than one record def such that def.[[Explicit]] is true, or if it has length
greater-than 1 but contains no records def such that def.[[Explicit]] is true, then the following steps
are taken:

a. Let error be anew Syntax Error.

b. Add error to M.[[LinkErrors]].

c. Return error.

Let def be the unique record in overlappingDefs such that def.[[Explicit]] is true, or if there is no
such record let def be the unique record in overlappingDefs.

If def.[[LocalName]] is not null, then the following steps are taken:

a. Let binding be'the record {[[Module]]: M, [[LocalName]]: def.[[LocalName]]}.

b. Let export be the record {[[ExportName]]: exportName, [[Binding]]: binding}.

c. Add export to exports.

d. Return binding.

Add ref to visited.

Let binding be ResolveExport(def.[[Module]], def.[[ImportName]]).

Return binding.

15.2.5.10 ResolvelmportEntries (M)

The abstract operation ResolvelmportEntries is called with argument M performs the following steps:

© Ecma International 2014 320

ecind

Let entries be M.[[ImportEntries]].
Let defs be a new empty List.
3. For each entry in entries, do
a. Let modReq be entry.[[ModuleRequest]].
b. Let otherMod be LookupModuleDependency(M, modReq).
c. Add the record {[[Module]]: otherMod, [[ImportName]]: entry.[[ImportName]], [[LocalName]]:
entry.[[LocalName]]} to defs.
4. Return defs.

N —

15.2.6 Runtime Semantics: Module Evaluation

Module bodies are evaluated on demand, as late as possible.” The loader uses the function
EnsureEvaluated, defined below, to run scripts. The loader always calls EnsureEvaluated before
returning a Module object to user code.

There is one way a module can be exposed to script before'its body has been evaluated. In the case of
an import cycle, whichever module is evaluated first can‘observe the others before they are evaluated.
Simply put, we have to start somewhere: one of the modules in the cycle' must run before the others.

15.2.6.1 EvaluateLoadedModule(load) Functions

An EvaluateLoadedModule function is..an anonymous built-in function that is used by
Loader.prototype.module and Loadeér.prototype.import to ensure that a module has been
evaluated before it is passed to script code.

Each EvaluateLoadedModule function has a [[Loader]] internal slot.

When a EvaluateLoadedModule function F is called with argument /oad, the following steps are taken:

1. Let loader be F.[[Loader]].

Assert: load.[[Status]] is "1linked".

Let module be load.[[Module]].

Let result be EnsureEvaluated(module, (), loader).
ReturnlfAbrupt(result).

Return module.

AN

15.2.6.2 EnsureEvaluated(mod, seen, loader) Abstract Operation

The abstract operation EnsureEvaluated walks the dependency graph of the module mod, evaluating any
module bodies that have not already been evaluated (including, finally, mod itself). Modules are evaluated
in depth-first; left-to-right, post order, stopping at cycles.

mod and its dependencies must already be linked.
The List seen is used to detect cycles. mod must not already be in the List seen.
On success, mod and all its dependencies, transitively, will have started to evaluate exactly once.

EnsureEvaluated performs the following steps:

1. If mod.[[Evaluated]] is true, return undefined.
2. Append mod as the last element of seen.
3. Create the module environment for mod

© Ecma International 2014 321

ecimna

4. Let deps be mod.[[Dependencies]].

5. For each pair in deps, in List order,

a. Let dep be pair.[[value]].

b. Ifdep is not an element of seen, then
i. Call EnsureEvaluated with the arguments dep, seen, and loader.

If mod.[[Evaluated]] is true, return undefined.

Set mod.[[Evaluated]] to true.

If mod.[[Body]] is undefined, then return undefined.

9. Let status be ModuleDeclarationInstantiation(mod.[[Body]], mod.[[Environment]]).

10. Let initContext be a new ECMAScript code execution context.

11. Set initContext's Realm to loader.[[Realm]].

12. Set initContext's VariableEnvironment to mod.[[Environment]].

13. Set initContext's LexicalEnvironment to mod.[[Environment]].

14. If there is a currently running execution context, suspend it.

15. Push initContext on to the execution context stack; initContext is now the running execution
context.

16. Let r be the result of evaluating mod.[[Body]].

17. Suspend initContext and remove it from the execution context stack.

18. Resume the context, if any, that is now on the top of the execution context stack as the running
execution context.

19. Return r.

N

16 Error Handling and Language Extensions

An implementation must report most errors at the time the relevant ECMAScript language construct is
evaluated. An early error is an error that can be detected and reported prior to the evaluation of any
construct in the Script containing.the error. An implementation must report early errors in a Script prior to
the first evaluation of that Script. Early errors in eval code are reported at the time eval is called but prior
to evaluation of any construct within the eval code. All errors that are not early errors are runtime errors.

An implementation must treat as an early error any instance of an early error that is specified in a static

An implementation shall not treat other kinds of errors as early errors even if the compiler can prove that
a construct cannot execute without error under any circumstances. An implementation may issue an early
warning in'such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

e An implementation may extend script syntax and regular expression pattern or flag syntax.
To permit this, all operations (such as calling eval, using a regular expression literal, or
using the Function or RegExp constructor) that are allowed to throw SyntaxError are
permitted to exhibit implementation-defined behaviour instead of throwing SyntaxError
when they encounter an implementation-defined extension to the script syntax or regular
expression pattern or flag syntax.

e An implementation may provide additional types, values, objects, properties, and functions
beyond those described in this specification. This may cause constructs (such as looking
up a variable in the global scope) to have implementation-defined behaviour instead of
throwing an error (such as ReferenceError).

An implementation may define behaviour other than throwing RangeError for toFixed,
toExponential, and toPrecision when the fractionDigits or precision argument is outside the
specified range.

© Ecma International 2014 322

»eCma

17 ECMAScript Standard Built-in Objects

There are certain built-in objects available whenever an ECMAScript Script begins execution. One, the
global object, is part of the lexical environment of the executing program. Others are accessible as initial
properties of the global object or indirectly as properties of accessible built-in objects.

Unless specified otherwise, a built-in object that is callable as a function is a Built-in Function object with
the characteristics described in 9.3. Unless specified otherwise, the [[Extensible]] internal slot of a built-in
object initially has the value true. Every built-in object has a [[Realm]] internal slot whose value is the
code Realm for which the object was initially created.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For
each built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned by a new expression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a built-in function or constructor is
given fewer arguments than the function is specified to require, the function or constructor shall behave
exactly as if it had been given sufficient additional arguments, each such argument being the undefined
value. Such missing arguments are considered. to be “not present” and may be identified in that manner
by specification algorithms.

Unless otherwise specified in the description of a particular function, if'a built-in function or constructor
described is given more arguments than the function is specified to allow, the extra arguments are
evaluated by the call and then-ignored by the function. However, an implementation may define
implementation specific behaviour relating to such arguments as long as the behaviour is not the throwing
of a TypeError exceptionthat is predicated simply on the presence of an extra argument.

NOTE Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Unless otherwise specified every built-in function and every built-in constructor has the Function
prototype object, which is the initial value of the expression Function.prototype (19.2.3), as the value
of its [[Prototype]] internal slot.

Unless otherwise specified every built-in' prototype object has the Object prototype object, which is the
initial value of the expression Object.prototype (19.1.3), as the value of its [[Prototype]] internal slot,
except the Object prototype object itself.

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal
method unless otherwise specified in the description of a particular function.

Unless otherwise specified, every built-in function defined in clauses 18 through 26 are created as if by
calling the CreateBuiltinFunction abstract operation (9.3.1).

Every built-in Function object, including constructors, has a 1length property whose value is an integer.

Unless otherwise specified, this value is equal to the largest number of named arguments shown in the
subclause headings for the function description, including optional parameters.

© Ecma International 2014 323

»eCma

NOTE For example, the Function object that is the initial value of the s1ice property of the String prototype
object is described under the subclause heading “String.prototype.slice (start, end)” which shows the two named
arguments start and end; therefore the value of the 1ength property of that Function object is 2.

Unless otherwise specified, the length property of a built-in Function object has the attributes
{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Every built-in Function object, including constructors, that is not identified as an anonymous function has
a name property whose value is a String. Unless otherwise specified, this value is the name that is given
to the function in this specification. For functions that are specified as properties of objects, the name
value is the property name string used to access the function. Functions<that are specified as get or set
accessor functions of built-in properties have "get " or "set " prepended to the property name string.
The value of the name property is explicitly specified for each built<in functions whose property key is a
symbol value.

Unless otherwise specified, the name property of a built-in Function object has the attributes { [[Writable]]:
false, [[Enumerable]]: false, [[Configurable]]: true }.

Every other data property described in clauses 18 through 26 has the attributes { [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true } unless otherwise specified.

Every accessor property described in clauses. 18 through 26 has the attributes {[[Enumerable]]: false,
[[Configurable]]: true } unless otherwise specified. If only a get accessor function is described, the set

accessor function is the default value, undefined. If only.a set accessor.is function is described the get
accessor is the default value, undefined.

18 The Global Object
The unique global object s created before control enters any execution context.

The global object does not have a [[Construct]] internal method; it is not possible to use the global object
as a constructor with the new operator.

The global object does not have a [[Call]] internal method; it is not possible to invoke the global object as
a function.

The'value of the [[Prototype]] internal slot of the global object is implementation-dependent.
In addition to the properties defined in this specification the global object may have additional host

defined properties. This may include a property whose value is the global object itself; for example, in the
HTML document object model the window property of the global object is the global object itself.

18.1 Value Properties of the Global Object
18.1.1 Infinity

The value of Infinity is +o (see 6.1.6). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2014 324

oecnd

18.1.2 NaN

The value of NaN is NaN (see 6.1.6). This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

18.1.3 undefined

The value of undefined is undefined (see 6.1.1). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

18.2 Function Properties of the Global Object

18.2.1 eval (x)

When the eval function is called with one argument x, the following steps are taken:

1.
2.

NN AW

o]

10.

11.

12.

13.

14.

15.

16.
17.

If Type(x) is not String, return x.

Let script be the ECMAScript code that is the result of parsing x, interpreted as UTF-16 encoded

Unicode text as described in 10.1.1, for the goal symbol Script.Af the parse fails or any early errors

are detected, throw a SyntaxError exception (but see also clause 16).

If script Contains ScriptBody is false, return undefined.

Let strictScript be IsStrict of script.

If this is a direct call to eval (18.2.1.1), let direct be true, otherwise let direct be false.

If direct is true and the code that made the direct.call to eval is strict code, then let strictCaller be

true. Otherwise, let strictCaller be false.

Let ctx be the running execution context. If direct is true ctx will be the execution context that

performed the direct eval. If direct is false ctx will be the execution context for the invocation of

the eval function.

Let evalRealm be ctx’s Realm.

If direct is false “and strictScript is false, then

a. Return the result of ScriptEvaluation for script with arguments evalRealm and true.

If direct is true, strictScript is false, strictCaller is false, and ctx’s LexicalEnvironment is the same

as evalRealm.[[globalEnv]], then

a. Return the result of ScriptEvaluation for script with arguments evalRealm and true.

If direct is true, then

a. Ifthe code that made the direct call to eval is function code and ValidInFunction of script is
false, then throw a SyntaxError exception.

b. Ifthe code that made the direct call to eval is module code and ValidinModule of script is
false, then throw a SyntaxError exception.

If direct is true, then

a. Let /exEnv be ctx’s LexicalEnvironment.

b. " Let varEnv be ctx’s VariableEnvironment.

Else,

a. Let/exEnvbe evalRealm.[[globalEnv]].

b. Let varEnv be evalRealm.[[globalEnv]].

If strictScriptis true or if direct is true and strictCaller is true , then

a. Let strictVarEnv be NewDeclarativeEnvironment(/exEnv).

b. Let lexEnv be strictVarEnv.

c. LetvarEnv be strictVarEnv.

Let status be the result of performing Eval Declaration Instantiation as described in 18.2.1.2 with

script, varEnv, and lexEnv.

ReturnIfAbrupt(status).

Let evalCxt be a new ECMAScript code execution context.

© Ecma International 2014 325

ecimna

18. Set the evalCxt’s Realm to evalRealm.

19. Set the evalCxt’s VariableEnvironment to varEnv.

20. Set the evalCxt’s LexicalEnvironment to lexEnv.

21. If there is a currently running execution context, suspend it.

22. Push evalCxt on to the execution context stack; evalCxt is now the running execution context.

23. Let result be the result of evaluating script.

24. Suspend evalCxt and remove it from the execution context stack.

25. Resume the context that is now on the top of the execution context stack as.the running execution
context.

26. Return result.

NOTE The eval code cannot instantiate variable or function bindings in the variable environment of the calling
context that invoked the eval if either the code of the calling context or the eval code is strict code. Instead such
bindings are instantiated in a new VariableEnvironment that is only accessible to the eval code.

18.2.1.1 Direct Call to Eval
A direct call to the eval function is one that is expressed as a CallExpression that meets all of the following

conditions:

e The Reference that is the result of evaluating the MemberExpression in the CallExpression will
always have an environment record as its base value and its referenced name is "eval".

e The result of calling the abstract operation. GetValue with that Reference as the argument is the
standard built-in function defined in 18.2.1.

18.2.1.2 Eval Declaration Instantiation
18.2.2 isFinite (number)

Returns false if the argument coerces to NaN, +w«, or -0, and otherwise returns true.

1. Let num be ToNumber(number).

2. ReturnIfAbrupt(num).

3. If num is NaN, +o0, or —o0, return false.
4. Otherwise, return true.

18.2.3 iisNaN (number)

Returns true if the argument coerces to NaN, and otherwise returns false.

1.° Let num be ToNumber(number).
2. ReturnIfAbrupt(num).
3. If num is NaN, return true.
4. Otherwise; return false.
NOTE A reliable way for ECMAScript code to test if a value X is a NaN is an expression of the form X == X.

The result will be true if and only if X is a NaN.
18.2.4 parseFloat (string)
The parseFloat function produces a Number value dictated by interpretation of the contents of the

string argument as a decimal literal.

© Ecma International 2014 326

oecnd

When the parseFloat function is called, the following steps are taken:

1.

3.

5.
6.

NOTE

Let inputString be ToString(string).

ReturnlfAbrupt(inputString).

Let trimmedString be a substring of inputString consisting of the leftmost character that is not a
StrWhiteSpaceChar and all characters to the right of that character. (In other words, remove leading
white space.) If inputString does not contain any such characters, let trimmedString be the empty
string.

If neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecimallLiteral
(see 7.1.3.1), return NaN.

Let numberString be the longest prefix of trimmedString, which might be trimmedString itself, that
satisfies the syntax of a StrDecimalLiteral.

Return the Number value for the MV of numberString.

parseFloat may interpret only a leading portion of string.as a Number value; it ignores any characters

that cannot be interpreted as part of the notation of an decimal literal, and no indication is given that any such
characters were ignored.

18.2.5 parselnt (string , radix)

The parselInt function produces an integer value dictated by interpretation of the contents of the string
argument according to the specified radix. Leading white space in string is ignored. If radix is undefined
or 0, it is assumed to be 10 except when the number begins with the character pairs 0x or 0X, in which

case a radix of 16 is assumed. If radix is 16, the number may also optionally begin with the character pairs
0x or 0X.

When the parseInt function is called, the following steps are taken:

1.

3.

AN D

=0 %N

11.

12.

13.

14.
15.

Let inputString be ToString(string).

ReturnIfAbrupt(string).

Let S be a newly created substring of inputString consisting of the first character that is not a

StrWhiteSpaceChar and all characters following that character. (In other words, remove leading

white space.) If inputString does not.contain any such characters, let S be the empty string.

Let sign be 1.

If S is not empty and the first character of S'is a minus sign -, let sign be —1.

If §'is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first

character from S.

Let R = Tolnt32(radix).

ReturnIfAbrupt(R).

Let stripPrefix be true.

If R # 0, then

a. IfR <2orR>36,then return NaN.

b. TIf R =# 16, let stripPrefix be false.

Else R=0,

a. Let R=10.

If stripPrefix is true, then

a. Ifthe length of S is at least 2 and the first two characters of S are either “0x” or “0X”, then
remove the first two characters from S and let R = 16.

If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of

all characters before the first such character; otherwise, let Z be S.

If Z is empty, return NaN.

Let mathint be the mathematical integer value that is represented by Z in radix-R notation, using the

letters A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more

© Ecma International 2014 327

secind

than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the
option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then mathint may be an
implementation-dependent approximation to the mathematical integer value that is represented by Z
in radix-R notation.)

16. Let number be the Number value for mathint.

17. Return sign x number.

NOTE parseInt may interpret only a leading portion of string as an integer value; it ignores any characters that
cannot be interpreted as part of the notation of an integer, and no indication is given that any such characters were
ignored.

18.2.6 URI Handling Function

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport
protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not
provide any support for using URIs except for functions that encode and decode URIs as described in 18.2.6.2,
18.2.6.3, 18.2.6.4 and 18.2.6.4.

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web
pages; these functions are beyond the scope of this standard.

18.2.6.1 URI Syntax and Semantics

A URI is composed of a sequence of components separated by component separators. The general form
is:

Scheme : First / Second ; Third ? Fourth

where the italicized names represent components and “:”, “/”, “;” and “?” are reserved characters used
as separators. The encodeURI and decodeURI functions are intended to work with complete URIs; they
assume that any reserved characters in the URI are intended to have special meaning and so are not
encoded. The encodeURIComponent and decodeURIComponent functions are intended to work with
the individual component parts of ‘a URI; they assume-that any reserved characters represent text and so
must be encoded so that they are not interpreted as reserved characters when the component is part of a
complete URI.

The following lexical grammar specifies the form of encoded URIs.

Syntax

uri i
uriCharactersopt

uriCharacters :::
uriCharacter uriCharactersp

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of
;0 / ? : @ & = + §

© Ecma International 2014 328

oecnd

uriUnescaped :::
uridlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uridlpha ::: one of
a b c d e £f gh i j k 1 m n o p g r s t uyv w x y
z
A B C D EF GHI J KL MNUOUPOQ R S T UV W X Y
Z

uriMark ::: one of
- Db~k ()

NOTE The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent
RFC 3986.

Runtime Semantics

When a character to be included in a URI is:not listed above or is not intended to have the special
meaning sometimes given to the reserved characters, that character must be encoded. The character is
transformed into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the
corresponding code point value. (Note that for code units in the range [0,127] this results in a single octet
with the same value.) The resulting sequence of octets<is then transformed into a String with each octet
represented by an escape sequence of the form “%xx”.

18.2.6.1.1 Runtime Semantics: Encode Abstract Operation

The encoding and escaping process is described by the abstract operation Encode taking two String
arguments string and unescapedSet:

1. Let strLen be the number of characters in string.
2. Let R be the empty String.

3. ALet kbeO.

4. Repeat

a. Ifkequals strLen; return R.
b. Let C be the character at position k within string.
c. . If Cis in unescapedSet, then
i, Let S be a String containing only the character C.
ii. ~Let R be anew String value computed by concatenating the previous value of R and S.
d. Else C.is not'in unescapedSet,
i. Ifthecode unit value of C is not less than 0xDCO00 and not greater than OxDFFF, throw a
URIError exception.
ii. If the code unit value of C is less than 0xD800 or greater than 0xDBFF, then
1. Let V' be the code unit value of C.
iii. Else,
1. Increase k by 1.
2. If k equals strLen, throw a URIError exception.
3. Let kChar be the code unit value of the character at position k within string.
4. If kChar is less than 0xDCOO0 or greater than OxDFFF, throw a URIError exception.

© Ecma International 2014 329

oeCha

c.

5. Let Vbe (((the code unit value of C) — 0xD800) x 0x400 + (kChar — 0xDC00) +
0x10000).
iv. Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and
let L be the array size.
v. LetjbeO.
vi. Repeat, while j <L
1. LetjOctet be the value at position j within Octets.
2. Let S be a String containing three characters “% XY where XY are two uppercase
hexadecimal digits encoding the value of jOctet.
3. Let R be a new String value computed by concatenating the previous value of R and S.
4. Increasej by 1.
Increase k by 1.

18.2.6.1.2 Runtime Semantics: Decode Abstract Operation

The unescaping and decoding process is described by the abstract operation Decode taking two String
arguments string and reservedSet.

1. Let strLen be the number of characters in string.
2. Let R be the empty String.
3. LetkbeO.
4. Repeat
a. If k equals strLen, return R.
b. Let C be the character at position k within string.
c. IfCisnot “%’, then
i. Let S be the String containing only the character C.
d.

Else Cis ‘%,
i. Let start be k:
ii. Ifk+ 2 is greater than or equal to strLen, throw a URIError exception.
iii. If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal
digits; throw a URIErroer exception.
iv. Let B be the 8-bit value represented by the two hexadecimal digits at position (kK + 1) and (k
+2).
v. Increment k by 2.
vi. Ifthe most significant bit in B is 0, then
1. Let C be the character with code unit value B.
2. If Cisnot in reservedSet, then
a. Let S be the String containing only the character C.
3. Else C'is in reservedSet,
a. Let'S be the substring of string from position start to position k included.
vii. Else the most significant bit in B is 1,
Let n be the smallest nonnegative integer such that (B << n) & 0x80 is equal to 0.
If n equals 1 or n is greater than 4, throw a URIError exception.
Let Octets be an array of 8-bit integers of size n.
Put B into Octets at position 0.
If k£ + (3 x (n — 1)) is greater than or equal to strLen, throw a URIError exception.
Letj be I.
Repeat, while j <n
a. Increment k by 1.
b. If the character at position &k within s¢ring is not "% ", throw a URIError
exception.

ARG .

© Ecma International 2014 330

oecnd

c. Ifthe characters at position (k +1) and (k + 2) within string do not represent
hexadecimal digits, throw a URIError exception.

d. Let B be the 8-bit value represented by the two hexadecimal digits at position (k +

1) and (k + 2).

If the two most significant bits in B are not 10, throw a URIError exception.

Increment & by 2.

Put B into Octets at position j.

. Incrementj by 1.

8. Let V be the value obtained by applying the UTF-8 transformation to Octets, that is,
from an array of octets into a 21-bit value. If Octets does not contain a valid UTF-8
encoding of a Unicode code point throw a URIError exception.

9. If V< 0x10000, then
a. Let C be the character with code unit value V.

b. If Cis not in reservedSet, then
i. Let S be the String containing only the character C.
c. Else Cis in reservedSet,
i. Let S be the substring of string from position start to position k included.

10. Else V> 0x10000,

a. Let L be (V- 0x10000) & 0x3FF) + 0xDCO00):

b. Let H be ((V - 0x10000) >> 10) & 0x3FF)+ 0xD800).

c. Let S be the String containing the two characters with code unit values H and L.
e. Let R be a new String value computed by concatenating the previous value of R and S.
f. Increase k by 1.

5 0

NOTE This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more
recent RFC 3986 which replaces RFC 2396. A formal description and implementation of UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one has the
higher-order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets,
n>1, the initial octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet
contain bits from the value of the character to be encoded. The following octets all have the higher-order bit set to 1
and the following bit set to.0, leaving 6_bits in each to contain bits from the character to be encoded. The possible
UTF-8 encodings of ECMAScript characters are specified.in Table 38.

Table 38 — UTF-8 Encodings

Code Unit Value Representation 1% Octet 2" Octet 37 Octet 4" Octet
0x0000 - 0xO007F 00000000 0zzzzzzz Ozzzzzzz
0x0080 - Ox07FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY YYZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110vv VVWWWWXX
followed by followed by 11110uuu 10uuwwww 10xxyyyy | 10zzzzzz
0xDCO0 - OxDFFF 110111yy yyzzzzzz
0xD800 - OxDBFF
not followed by causes URIError
0xDCO0 - OxDFFF
0xDCO0 - OxDFFF causes URIError
0xXE000 - OxFFFF XXXXYYYY YYZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz
Where

uuuuu =vvvv +1
to account for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

© Ecma International 2014 331

secind

The range of code unit values 0xD800-OxDFFF is used to encode surrogate pairs; the above transformation
combines a UTF-16 surrogate pair into a UTF-32 representation and encodes the resulting 21-bit value in UTF-8.
Decoding reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence CO 80 must
not decode into the character U+0000. Implementations of the Decode algorithm are required to throw a URIError
when encountering such invalid sequences.

18.2.6.2 decodeURI (encodedURI)

The decodeURI function computes a new version of a URI in which each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURI function is replaced with the character
that it represents. Escape sequences that could not have been<introduced by encodeURI are not
replaced.

When the decodeURI function is called with one argument encodedURI, the following steps are taken:

1. Let uriString be ToString(encodedURI).

2. ReturnIfAbrupt(uriString).

3. Let reservedURISet be a String containing one instance of each character valid in uriReserved plus
‘6#79.

4. Return the result of calling Decode(uriString, reserved URISet)

NOTE The character “#” is not decoded from escape sequences even though it is not a reserved URI character.
18.2.6.3 decodeURIComponent (encodedURIComponent)

The decodeURIComponent function.computes a new version of a URI in which each escape sequence
and UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is
replaced with the character that it represents.

When the decodeURIComponent function. is called with one argument encodedURIComponent, the
following steps are taken:

1. Let componentString be ToString(encodedURIComponent).

2. ReturnIfAbrupt(componentString).

3.+ Let reservedURIComponentSet be the empty String.

4. Return the result of calling Decode(componentString, reserved URIComponentSet)

18.2.6.4 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters
is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the
character.

When the encodeURT function is called with one argument uri, the following steps are taken:

1. Let uriString be ToString(uri).

2. ReturnIfAbrupt(uriString).

3. Let unescapedURISet be a String containing one instance of each character valid in uriReserved and
uriUnescaped plus "#".

4. Return the result of calling Encode(uriString, unescapedURISet)

© Ecma International 2014 332

»eCma

NOTE The character "#" is not encoded to an escape sequence even though it is not a reserved or unescaped
URI character.

18.2.6.5 encodeURIComponent (uriComponent)
The encodeURIComponent function computes a new version of a URI in which each instance of certain
characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of

the character.

When the encodeURIComponent function is called with one argument uriComponent, the following steps
are taken:

1. Let componentString be ToString(uriComponent).

2. ReturnIfAbrupt(componentString).

3. Let unescapedURIComponentSet be a String containing one instance of each character valid in
uriUnescaped.

4. Return the result of calling Encode(componentString, unescaped URIComponentSet)

18.3 Constructor Properties of the Global Object
18.3.1 Array (...)

See 22.1.1.

18.3.2 ArrayBuffer (...)
See 24.1.2.

18.3.3 Boolean (...)

See 19.3.1.

18.3.4 DataView (...)
See 24.2.2.

18.3.5 Date (...)

See 20.3.2.

18.3.6 Error(...)

See 19.5.1.

18.3.7 EvalError (...)
See 19.5.5.1.

18.3.8 Float32Array (...)

See 22.2.4.

© Ecma International 2014 333

ecind

18.3.9 Float64Array (...)
See 22.2.4.

18.3.10 Function (...)
See 19.2.1.

18.3.11 Int8Array (.. .)
See 22.2.4.

18.3.12 Int16Array (. ..)
See 22.2.4.

18.3.13 Int32Array (.. .)
See 22.2.4.

18.3.14Map (.. .)

See 23.1.1.

18.3.15 Number (.. .)
See 20.1.1.

18.3.16 Object (.. .)

See 19.1.1.

18.3.17 RangeError (. ..)
See 19.5.5.2.

18.3:18 ReferenceError (...)
See 19.5.5.3.

18.3.19 RegExp (.. .)
See 21.2.4.

18.3.20 Set (.. .)

See 23.2.1.

18.3.21 String (.. .)

See 21.1.1.

© Ecma International 2014 334

ecind

18.3.22 Symbol (.. .)
See 19.4.1.

18.3.23 SyntaxError (. ..)
See 19.5.54.

18.3.24 TypeError (...)
See 19.5.5.5.

18.3.25 Uint8Array (. ..)

See 22.2.4.

18.3.26 Uint8ClampedArray (. . .

See 22.2.4.

18.3.27 Uint16Array (. ..)
See 22.2.4.

18.3.28 Uint32Array (. ..)
See 22.2.4.

18.3.29 URIError (.. .)
See 19.5.5.6.

18.3.30 WeakMap (.. .)
See 23.3.1.

18.3:31 WeakSet (.. .)

See 23.4.

18.4 Other Properties of the Global Object

18.4.1 JSON

See 24.3.

18.4.2 Math

See 20.2.

© Ecma International 2014

335

»eCma

18.4.3 Proxy (...)
See 26.5.1.

18.4.4 Reflect
See 26.1.

18.4.5 System

See 26 4.

19 Fundamental Objects

19.1 Object Objects
19.1.1 The Object Constructor

The Object constructor is the %Object% intrinsic object and the initial value of the Object property of
the global object. When Object is called as a function rather than as a constructor, it performs a type
conversion.

The Object constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration.

NOTE Subclass constructors that inherit from the Object constructor typically should not include a super call to
Object as it performs no initialization action on its this value and does not return its this value as its value.

19.1.1.1 Object ([value])

When Object function is called with‘optional argument value, the following steps are taken:

1. Ifvalue is null, undefined or not supplied, return the result of the abstract operation ObjectCreate
with_the.intrinsic object %ObjectPrototype% as its argument.
2. Return ToObject(value).

19.1:1.2 new Object (...argumentsList)

When Object is called as part of a new expression , it creates a new object:

1. Let Fbe the Object function object on which the new operator was applied.
Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return the result of calling the [[Call]] internal method of F, providing undefined and
argumentsList as the arguments.

The above steps defined the [[Construct]] internal method of the Object constructor. Object may not be

implemented as an ECMAScript function object because this definition differs from the definition of
[[Construct]] used by ECMAScript function objects.

© Ecma International 2014 336

oecnd

19.1.2 Properties of the Object Constructor

The value of the [[Prototype]] internal slot of the Object constructor is the standard built-in Function
prototype object.

Besides the 1ength property (whose value is 1), the Object constructor has the following properties:
19.1.2.1 Object.assign (target, ...source)

The assign function is used to copy the values of all of the enumerable own properties from one or more
source objects to a target object. When the assign function is called, the following steps are taken:

1. Let to be ToObject(target).

2. ReturnIfAbrupt(zo).
3. If fewer than two arguments were passed,then return zo.
4. Let sourcelList be the List of argument vales starting with the second argument.
5. For each element nextSource of source, in ascendingindex order,
a. Let from be ToObject(nextSource).
b. ReturnlfAbrupt(from).
c. Let keysArray be the result of calling the [[OwnPropertyKeys]] internal method of nextSource.
d. ReturnIfAbrupt(keys).
e. Let lenValue be Get(keysArray, "length™").
f. Let /en be ToLength(lenValue),
g. ReturnIfAbrupt(/en).
h. Let nextindex be 0.
i. Let gotdlINames be false.
j- Let pendingException be undefined.
k. Repeat while nextIndex < len,
i. Let nextKey be Get(keysArray, ToString(nextIndex)).
ii. ReturnIfAbrupt(nextKey).
iii. Let desc be the result of calling the [[GetOwnProperty]] internal method of from with
argument nextKey.
iv. If desc is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to desc.
v.—Else if desc is not undefined and desc.[[Enumerable]] is true, then
1. Let propValue be Get(from, nextKey).
2. 1If propValue is an abrupt completion, then
a. If pendingException is undefined, then set pendingException to propValue.
3. else
a. Let status be Put(to, nextKey, propValue, true);
b. If status is an abrupt completion, then
i. /If pendingException is undefined, then set pendingException to status.
vi. Increment nextindex by 1.
1. If pendingException is not undefined, then return pendingException.
6. Return to.

19.1.2.2 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create function is called,
the following steps are taken:

1. If Type(O) is not Object or Null throw a TypeError exception.
2. Let obj be the result of the abstract operation ObjectCreate with argument O.

© Ecma International 2014 337

secind

3. If the argument Properties is present and not undefined, then
a. Return the result of the abstract operation ObjectDefineProperties(obj, Properties).
4. Return obj.

19.1.2.3 Object.defineProperties (O, Properties)

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties function is called, the following steps are taken:

1. Return the result of the abstract operation ObjectDefineProperties with. arguments O and Properties.
19.1.2.3.1 Runtime Semantics: ObjectDefineProperties Abstract Operation

The abstract operation ObjectDefineProperties with arguments O and Properties performs the following
steps:

If Type(O) is not Object throw a TypeError exception.
Let props be ToObject(Properties).
Let names be a List containing the keys of each_enumerable own property of props.
Let descriptors be an empty List.
For each element P of names in list order,
a. Let descObj be the result of Get(props, P).
b. ReturnlfAbrupt(descObyj).
c. Let desc be the result of calling ToPropertyDescriptor with descObj as the argument.
d. ReturnIfAbrupt(desc).
e. Append the pair (a two element List) consisting of 2 and desc to the end of descriptors.
6. Let pendingException be undefined.
7. For each pair from descriptors in list order,

a. Let P be the first.element of pair.

b. Let desc be the'second element of pair.

c. Let status be the result of DefinePropertyOrThrow(O,P, desc).

d. If status is an abrupt completion then,

i. If pendingException is undefined, then set pendingException to status.

8. ReturnlfAbrupt(pendingException).
9. Return O.

(O I T R S

If an implementation defines a specific order of enumeration for the for-in statement, that same
enumeration order must be used to order the list elements in step 3 of this algorithm.

NOTE An exception in defining an individual property in step 7 does not terminate the process of defining other
properties. All valid property definitions are processed.

19.1.2.4 Object.defineProperty (O, P, Attributes)

The defineProperty function is used to add an own property and/or update the attributes of an existing
own property of an object. When the defineProperty function is called, the following steps are taken:

Let success be the result of DefinePropertyOrThrow(O, key, desc).
ReturnIfAbrupt(success).

1. If Type(O) is not Object throw a TypeError exception.

2. Let key be ToPropertyKey(P).

3. ReturnIfAbrupt(key).

4. Let desc be the result of calling ToPropertyDescriptor(Attributes).
5. ReturnIfAbrupt(desc).

6.

7.

© Ecma International 2014 338

secind

8. Return O.
19.1.2.5 Object.freeze (O)

When the freeze function is called, the following steps are taken:

If Type(O) is not Object, return O.

Let status be the result of SetintegrityLevel(O, "frozen").
ReturnlfAbrupt(status).

If status is false, throw a TypeError exception.

Return O.

DN AWK =

19.1.2.6 Object.getOwnPropertyDescriptor (O, P)

When the getOwnPropertyDescriptor function is called, the following steps are taken:

Let obj be ToObject(O).

ReturnlfAbrupt(oby).

Let key be ToPropertyKey(P).

ReturnIfAbrupt(key).

Let desc be the result of calling the [[GetOwnProperty]] internal method of 0bj with argument key.
ReturnIfAbrupt(desc).

Return the result of calling FromPropertyDescriptor(desc).

Nk LN =

19.1.2.7 Object.getOwnPropertyNames (O)

When the getOwnPropertyNames function is called, the following steps are taken:

1. Return GetOwnPropertyKeys(O, String).
19.1.2.8 Object.getOwnPropertySymbols (O)

When the getOwnPropertySymbols function is called with argument O, the following steps are taken:

1. Return GetOwnPropertyKeys(O, Symbol).
19.1.2.8.1- GetOwnPropertyKeys (O, Type) Abstract Operation

The abstract operation GetOwnPropertyKeys is called with arguments O and Type where O is an Object
and Type is one of the ECMAScript specification types String or Symbol. The following steps are taken:

1.- Let 0bj be ToObject(O).

2. ReturnIfAbrupt(oby).

3. Let keysArray be the result of calling the [[OwnPropertyKeys]] internal method of 0bj.
4. ReturnIfAbrupt(keysArray).

5. Let lenValue be Get(keysArray, "length").

6. Let len be ToLength(/enValue).

7. ReturnIfAbrupt(/en).

8. Let nextlndex be 0.

9. Let namelList be a new empty List.

10. Repeat while nextIndex < len,

a. Let nextKey be Get(keysArray, ToString(nextIndex)).
b. ReturnIfAbrupt(nextKey).

c. If Type(nextKey) is Type, then

© Ecma International 2014 339

secind

i. Append nextKey as the last element of namelList.
d. Increment next/ndex by 1.

11. Return CreateArrayFromList(namelList).

19.1.2.9 Object.getPrototypeOf (O)

When the getPrototypeOf£ function is called with argument O, the following steps are taken:

1.
2.
3.

Let obj be ToObject(O).
ReturnlfAbrupt(oby).
Return the result of calling the [[GetPrototypeOf]] internal method of 0bj.

19.1.2.10 Object.is (value1, value2)

When the is function is called with arguments valuel and value2 the following steps are taken:

1.

Return SameValue(valuel, value?).

19.1.2.11 Object.isExtensible (O)

When the isExtensible function is called with argument O, the following steps are taken:

1.
2. Return the result of IsExtensible(O):

If Type(O) is not Object, return false.

19.1.2.12 Object.isFrozen (O)

When the isFrozen function is called with argument O, the following steps are taken:

l.
2. Return TestIntegrityLevel(O, "£rozen").

If Type(O) is not Object, return true.

19.1.2.13 Object.isSealed (O)

When the isSealed function is called with argument O, the following steps are taken:

1.
2. Return TestlntegrityLevel(O, "sealed").

If Type(O) is.not Object, return true.

19:1.2.14 Object.keys (O)

When the keys function is called with argument O, the following steps are taken:

1
2
3
4.
5.
6
7
8
9
1

0.

Let 0bj. be ToObject(O).
ReturnIfAbrupt(obyj).

Let keysArray be the result of calling the [[OwnPropertyKeys]] internal method of 0bj.

ReturnlfAbrupt(keysArray).

Let lenValue be Get(keysArray, "length").

Let len be ToLength(lenValue).

ReturnIfAbrupt(/en).

Let nextIndex be 0.

Let namelList be a new empty List.

Repeat while nextlndex < len,

a. Let nextKey be Get(keysArray, ToString(nextlndex)).
b. ReturnIfAbrupt(nextKey).

© Ecma International 2014

340

secind

c. If Type(nextKey) is String, then
i. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with
argument nextKey.
ii. ReturnIfAbrupt(desc).
iii. If desc is not undefined and desc.[[Enumerable]] is true, then
1. Append nextKey as the last element of namelList.
d. Increment next/ndex by 1.
11. Return CreateArrayFromList(namelList).

If an implementation defines a specific order of enumeration for the for-in statement, the same order must
be used for the elements of the array returned in step 11.

19.1.2.15 Object.preventExtensions (O)

When the preventExtensions function is called, the following steps are taken:

If Type(O) is not Object, return O.

Let status be the result of calling the [[PreventExtensions]] internal method of O.
ReturnIfAbrupt(status).

If status is false, throw a TypeError exception.

Return O.

[I T R S

19.1.2.16 Object.prototype

The initial value of Object.prototype is the standard built-in Object prototype object (19.1.3).
This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.1.2.17 Object.seal (O)

When the seal function is called, the following steps are taken:

1. If Type(O) is not Object, return O:

Let status be the result of SetIntegrityLevel(O, "sealed").
ReturnIfAbrupt(status).

If status is false, throw a TypeError exception.

Return O.

W W N

19:1.2.18 Object.setPrototypeOf (O, proto)

When the setPrototypeOf£ function is called with arguments O and proto, the following steps are taken:

Let O be CheckObjectCoercible(O).

ReturnIfAbrupt(O).

If Type(proto) s neither Object nor Null, then throw a TypeError exception.

If Type(O) is not Object, then return O.

Let status be the result of calling the [[SetPrototypeOf]] internal method of O with argument proto.
ReturnIfAbrupt(status).

If status is false, then throw a TypeError exception.

Return O.

A S il e

© Ecma International 2014 341

»eCma

19.1.3 Properties of the Object Prototype Object
The Object prototype object is an ordinary object.

The value of the [[Prototype]] internal slot of the Object prototype object is null and the initial value of the
[[Extensible]] internal slot is true.

19.1.3.1 Object.prototype.constructor
The initial value of Object.prototype.constructor is the standard built-in Object constructor.
19.1.3.2 Object.prototype.hasOwnProperty (V)

When the hasOwnProperty method is called with argument 7, the following steps are taken:

1. Let P be ToPropertyKey(V).
2. ReturnIfAbrupt(P).
3. Let O be the result of calling ToObject passing the this value as the argument.
4. ReturnIfAbrupt(O).
5. Return the result of HasOwnProperty(O, P).
NOTE The ordering of steps 1 and 3 is chosen to ensure that any exception that would have been thrown by

step 1 in previous editions of this specification will continue to be thrown even if the this value is undefined or null.
19.1.3.3 Object.prototype.isPrototypeOf (V)

When the isPrototypeOf method is called with argument 7, the following steps are taken:

If V is not an object, return false.

Let O be the result of calling ToObject passing the this value as the argument.
ReturnIfAbrupt(O).

Repeat

a. Let V' be the result of calling the [[GetPrototypeOf]] internal method of V" with no arguments.
b. if Vis null, return false

c. If SameValue(O, V) is true, then return true.

AW N —

NOTE The ordering of steps 1 and 2 preserves the behaviour specified by previous editions of this specification
for the case where V is not an object and the this value is undefined or null.

19.1.3.4 Object.prototype.propertylsEnumerable (V)

When the propertyIsEnumerable method is called with argument 7, the following steps are taken:

1. Let P be ToPropoertyKey(/V).

2. ReturnIfAbrupt(P).

3. Let O be the result of calling ToObject passing the this value as the argument.

4. ReturnIfAbrupt(O).

5. Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the
argument.

6. Ifdesc is undefined, return false.

7. Return the value of desc.[[Enumerable]].

NOTE 1 This method does not consider objects in the prototype chain.

© Ecma International 2014 342

secind

NOTE 2 The ordering of steps 1 and 3 is chosen to ensure that any exception that would have been thrown by
step 1 in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

19.1.3.5 Object.prototype.toLocaleString ()

When the toLocaleString method is called, the following steps are taken:

1. Let O be the this value.
2. Return the result of Invoke(O, "toString").

NOTE 1 This function is provided to give all Objects a generic toLocaleString interface, even though not all
may use it. Currently, Array, Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE2 The first parameter to this function is likely to be used in“a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

19.1.3.6 Object.prototype.toString ()

When the toString method is called, the following steps are taken:

If the this value is undefined, return " [object Undefined]".

If the this value is null, return " [object Null]".

Let O be the result of calling ToObject passing the this value as the argument.

If O is an exotic Array object, then let builtinTag be "Array".

Else, if O is an exotic String object, then let builtinTag be "String".

Else, if O is an exotic Proxy object, then let builtinTag be "Proxy".

Else, if O is an exotic arguments object, then let builtinTag be "Arguments".
Else, if O is an ECMAScript function object, a built-in function object, or a bound function exotic
object, then let builtinTag be "Function".

9. Else, if O has an [[ErrorData]] internal slot, then let builtinTag be "Error".

10. Else, if O has a[[BooleanDatal]] internal slot, then let builtinTag be "Boolean".
11. Else, if O has a [[NumberData]] internal slot, then let builtinTag be "Number".
12. Else, if O has a [[DateValue]] internal slot, then let builtinTag be "Date".

13. Else, if O has a [[RegExpMatcher]] internal slot, then let builtinTag be "RegExp".
14. Else,let builtinTag be "Object".

15. Let hasTag be the result of HasProperty(O, @@toStringTag).

16: ReturnIfAbrupt(hasTag).

17. 1f hasTag is false, then let rag be builtinTag.

XN B =

18. Else,
a. Let tag be the result of Get(O, @@toStringTag).
b. Iftag is an abrupt completion, let fag be NormalCompletion("???").
c. Let tag be tag.[[value]].
d. If Type(tag) is not String, let tag be "???".
e. Iftagisany of "Arguments", "Array", "Boolean", "Date", "Error",

"Function", "Number", "RegExp", or "String" and SameValue(tag, builtinTag) is
false, then let tag be the string value "~" concatenated with the current value of tag.
19. Return the String value that is the result of concatenating the three Strings "[object ", tag, and "]".

NOTE Historically, this function was occasionally used to access the string value of the [[Class]] internal slot that
was used in previous editions of this specification as a nominal type tag for various built-in objects. The above
definition of toString preserves the ability to use it as a reliable test for those specific kinds of built-in objects but it
does not provide a reliable type testing mechanism for other kinds of built-in or program defined objects.

© Ecma International 2014 343

secind

19.1.3.7 Object.prototype.valueOf ()

When the valueOf method is called, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. Return O.

19.1.4 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.
19.2 Function Objects

19.2.1 The Function Constructor

The Function constructor is the %Function% intrinsic object and the initial value of the Function
property of the global object. When Function is called as a function rather than as a constructor, it
creates and initializes a new Function object. Thus the function call Function (..) is equivalent to the
object creation expression new Function(..) with the same arguments. However, if the this value
passed in the call is an Object with a [[Code]] internal slot whose value is undefined, it initializes the this
value using the argument values. This permits Function to be used both as factory method and to
perform constructor instance initialization.

Function may be subclassed and subclass constructors may perform a super invocation of the
Function constructor to initialize subclass instances. However, all syntactic forms for defining function
objects create instances of Function. There is no syntactic means to create instances of Function
subclasses except for the built-in-Generator Function subclass.

19.2.1.1 Function (p1, p2, ..., pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify
formal parameters.

When the Function function is called with some arguments p1, p2, ... , pn, body (where n might be 0, that

is, there are no “p” arguments, and where body might also not be provided), the following steps are taken:

Let argCount be the total number of arguments passed to this function invocation.

Let P be the empty String.

If argCount = 0, let bodyText be the empty String.

Else if argCount = 1, let bodyText be that argument.

Else argCount > 1,

Let.firstArg be the first argument.

Let P be ToString(firstArg).

ReturnlfAbrupt(P).

Let k be 2.

Repeat, while k < argCount

i. Let nextArg be the k’th argument.

ii. Let nextArgString be ToString(nextArg).

iii. ReturnIfAbrupt(nextArgString).

iv. Let P be the result of concatenating the previous value of P, the String ", " (a comma), and
nextArgString.

v. Increase k by 1.

N AN -

a0 Te

© Ecma International 2014 344

oeCha

~

10.

11.

12.
13.
14.
15.

16.
17.

18.
19.
20.
21.

22.

23.
24.
25.
26.
27.
28.

f. Let bodyText be the k’th argument.

Let bodyText be ToString(bodyText).

ReturnlfAbrupt(body Text).

Let parameters be the result of parsing P, interpreted as UTF-16 encoded Unicode text as described
in clause 10.1.1, using FormalParameters as the goal symbol. Throw a SyntaxError exception if
the parse fails.

Let body be the result of parsing bodyText, interpreted as UTF-16 encoded Unicode text as
described in clause 10.1.1, using FunctionBody as the goal symbol. Throw a SyntaxError
exception if the parse fails or if any static semantics errors are detected.

If IsSimpleParameterList of parameters is false and any element of the BoundNames of parameters
also occurs in the VarDeclaredNames of hody, then throw a SyntaxErrer exception.

If any element of the BoundNames of parameters also occurs in the LexicallyDeclaredNames of
body, then throw a SyntaxError exception.

If bodyText is strict mode code (see 10.2.1) then let strict be true, else let strict be false.

Let scope be the Global Environment.

Let F be the this value.

If Type(F) is not Object or if F does not have a [[Code]] internal slot or if the value of [[Code]] is
not undefined, then

a. Let C be the function that is currently being evaluated.

b. Let proto be the result of GetPrototypeFromConstructor(C, "$FunctionPrototype%").

c. ReturnIfAbrupt(proto).

d. Let F be the result of calling FunctionAllocate with arguments C and strict.

Else, set F'’s [[Strict]] internal slot to strict.

If the value of F’s [[FunctionKind]] internal slot.is not "normal", then throw a TypeError
exception.

Let isExtensible be IsExtensible(F).

ReturnIfAbrupt(isExtensible).

If isExtensible is false; then throw a TypeError exception.

Perform the Functionlnitialize abstract operation with arguments F, Normal, parameters, body, and
scope.

If ReferencesSuper of body is true or ReferencesSuper of parameters is true, then

a. Perform MakeMethod(F, undefined, undefined).

Let status be the result of MakeConstructor with argument F.

ReturnlfAbrupt(status).

Let hasName be HasOwnProperty(F, "name").

ReturnIfAbrupt(hasName).

If hasName is false, then perform SetFunctionName(F, "anonymous").

Return F.

A prototype property is automatically created for every function created using the Function
constructor, to provide for the possibility that the function will be used as a constructor.

NOTE

It is permissible but not necessary to have one argument for each formal parameter to be specified. For

example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")
new Function("a, b, ¢", "return a+b+c")

new Function("a,b", "c¢", "return a+b+c")

© Ecma International 2014 345

»eCma

19.2.1.2 new Function (...argumentsList)

When Function is called as part of a new expression, it initializes the newly created object.

1. Let F be the Function function object on which the new operator was applied.
Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return the result of Construct (F, argumentsList).

If Function is implemented as an ECMAScript function object, its [[Construct]] internal method will
perform the above steps.

19.2.2 Properties of the Function Constructor

The Function constructor is itself a built-in Function object. The value of the [[Prototype]] internal slot of
the Function constructor is %FunctionPrototype%, the intrinsic Function prototype object (19.2.3).

The value of the [[Extensible]] internal slot of the Function constructor is true.
The Function constructor has the following properties:
19.2.2.1 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true }.

19.2.2.2 Function.prototype

The value of Function.prototype is %FunctionPrototype%, the intrinsic Function prototype object
(19.2.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.2.2.3 Function][@@create] ()

The @@create method of an object F performs the following steps:

1. Let F be the this value.

2. . Let proto be the result of GetPrototypeFromConstructor(F, "$FunctionPrototype%").
3. ReturnIfAbrupt(proto).

4. Let obj be the result of calling FunctionAllocate with arguments proto and false.

5. Return obj.

The value of the name property of this function is " [Symbol.create]".

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE The Function @R@create function passes false as the strict parameter to FunctionAllocate. This causes
the allocated ECMAScript function object to have the internal methods of a non-strict function. The Function
constructor may reset the functions [[Strict]] internal slot to true. It is up to the implementation whether this also
changes the internal methods.

© Ecma International 2014 346

secind

19.2.3 Properties of the Function Prototype Object

The Function prototype object is itself a Built-in Function object. When invoked, it accepts any arguments
and returns undefined.

NOTE The Function prototype object is specified to be a function object to ensure compatibility with ECMAScript
code that was created prior to the 6™ Edition of this specification.

The value of the [[Prototype]] internal slot of the Function prototype object is the intrinsic object
%ObjectPrototype% (19.1.3). The initial value of the [[Extensible]] internal slot of the Function prototype
objectis true.

The Function prototype object does not have a prototype property:

The value of The 1ength property of the Function prototype object is 0.

The value of the name property of the Function prototype object is the empty String.
19.2.3.1 Function.prototype.apply (thisArg, argArray)

When the apply method is called on an object func with arguments thisArg and argdrray, the following
steps are taken:

1. IfIsCallable(func) is false, then throw a TypeError exception.

2. If argArray is null or undefined, then

a. Return the result of calling the [[Call]] internal method of func, providing thisArg as
thisArgument and an empty List of arguments as argumentsList.

Let argList be the result of CreateListFromArraylLike(argAdrray).

ReturnIfAbrupt(argList).

Perform the PrepareForTailCall abstract operation.

Return the result of calling the [[Call]] internal method of func, providing thisArg as thisArgument

and arglList as argumentsList:

NN AW

The length property of the apply method is 2.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where
an undefined or null thisArg. is replaced with the global object and ToObject is applied to all other values and that
result is passed as the this value. Even though the thisArg is passed without modification, non-strict mode functions
still perform these transfromations upon entry to the function.

19.2.3.2 Function.prototype.bind (thisArg [, arg1[, arg2, ...]])

The bind method takes one or more arguments, thisdrg and (optionally) argl, arg2, etc, and returns a new
function object by performing the following steps:

1. Let Target be the this value.
. IfIsCallable(Target) is false, throw a TypeError exception.

3. Let 4 be a new (possibly empty) List consisting of all of the argument values provided after thisArg
(argl, arg?2 etc), in order.

4. Let F be the result of the abstract operation BoundFunctionCreate with arguments Target, thisArg,
and 4.

5. 1If Target has a [[BoundTargetFunction]] internal slot, then
a. Let targetLen be the result of Get(7arget, "1length").

© Ecma International 2014 347

ecimna

b. ReturnlfAbrupt(targetLen).
c. Let L be the larger of 0 and the result of targetLen minus the number of elements of 4.

6. Elselet L be 0.

7. Call the [[DefineOwnProperty]] internal method of F with arguments "length" and
PropertyDescriptor {[[Value]]: L, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:
true}.

8. Perform the AddRestrictedFunctionProperties abstract operation with argument F.

9. Return F.

The length property of the bind method is 1.

NOTE Function objects created using Function.prototype .bind are exotic objects. They also do not have
a prototype property.

19.2.3.3 Function.prototype.call (thisArg [, arg1[, arg2, ..:1])

When the call method is called on an object func with-argument thisdrg and optional arguments argl,
arg? etc, the following steps are taken:

1. IfIsCallable(func) is false, then throw a TypeError exception.

2. Let argList be an empty List.

3. If this method was called with more than one argument then in left to right order starting with argl
append each argument as the last element of argList

4. Perform the PrepareForTailCall abstract operation.

5. Return the result of calling the [[Call]] internal method of func, providing thisArg as thisArgument
and arglList as argumentsList.

The length property of the call method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where
an undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that
result is passed as the this value. Even though the thisArg is passed without modification, non-strict mode functions
still perform these transfromations upon entry to the function.

19.2.3.4 Function.prototype.constructor
The initial value of Function.prototype.constructor is the intrinsic object %Function%.
19.2.3.5 Function.prototype.toMethod (newHome [, methodName])

When the toMethod method is called on an object func with argument superBinding and optional
argument methodName the following steps are taken:

1. If funcis an ECMAScript function object or an exotic Built-in function object, then
a. If Type(newHome) is not Object, then throw a TypeError exception.
b. If methodName is not undefined, then
i. Let methodName be ToPropertyKey(methodName).
ii. ReturnIfAbrupt(methodName).
c. Return CloneMethod(func, newHome, methodName).
2. If func is a Bound Function exotic object, then throw a TypeError exception.
3. [If func is any other exotic function object that supports the equivalent of the CloneMethod abstract
operation, then return an appropriately cloned object.
4. Throw a TypeError exception.

© Ecma International 2014 348

»eCma

The length property of the toMethod method is 1.
19.2.3.6 Function.prototype.toString ()

An implementation-dependent String source code representation of the this object is returned. This
representation has the syntax of a FunctionDeclaration FunctionExpression, GeneratorDeclaration,
GeneratorExpession, ClassDeclaration, ClassExpression, ArrowFunction, MethodDefinition, or GeneratorMethod
depending upon the actual characteristics of the object. In particular that the use and placement of white
space, line terminators, and semicolons within the representation String is implementation-dependent.

If the object was defined using ECMAScript code and the returned string.representation is in the form of a
FunctionDeclaration ~ FunctionExpression, GeneratorDeclaration, — GeneratorExpession, ClassDeclaration,
ClassExpression, or ArrowFunction then the representation must becsuch that if the string is evaluated,
using eval in a lexical context that is equivalent to the Iexical context used to create the original object, it
will result in a new functionally equivalent object. The returned source code must not mention freely any
variables that were not mentioned freely by the original function’s source code, even if these “extra”
names were originally in scope. If the source code string. does meet these criteria then it must be a string
for which eval will throw a SyntaxError exception.

The toString function is not generic; it throws a TypeError exception if its this value does not have a
[[Call]] internal method. Therefore, it cannot be transferred to other kinds of objects for use as a method.

19.2.3.7 Function.prototype[@@create] ()

The @@create method of an object F performs the following steps:

1. Return the result of calling OrdinaryCreateEromConstructor(F, "$ObjectPrototype%").
The value of the name property of this function is " [Symbol.create]".

This property has theattributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE This is the default @@create method that is inherited by all ordinary constructor functions that do not
explicitly over-ride it.

19.2.3.8 Function.prototype[@@hasInstance] (V)

When the @@hasInstance method of an object F is called with value V, the following steps are taken:

1. Let F be the this value.
2. “Return the result of OrdinaryHasInstance(F, V).

The value of the name property of this function is " [Symbol.hasInstance]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE This is the default implementation of @RhasInstance that most functions inherit. @@hasInstance is
called by the instanceof operator to deterimine whether a value is an instance of a specific constructor. An
expression such as

v instanceof F
evaluates as

F[QRhasInstance] (v)

© Ecma International 2014 349

»eCma

A constructor function can control which objects are recognized as its instances by instanceof by exposing a
different @@hasInstance method on the function.

This property is non-writable and non-configurable to prevent tampering that could be used to globally expose the
target function of a bound function.

19.2.4 Function Instances
Every function instance is an ECMAScript function object and has the internal slots listed in Table 26.

Function instances that correspond to strict mode functions and function instances created using the
Function.prototype.bind method (19.2.3.2) have properties named caller and arguments that throw a
TypeError exception. An ECMAScript implementation must not associate any implementation specific
behaviour with accesses of these properties from strict mode function code.

The Function instances have the following properties:
19.2.4.1 length

The value of the 1ength property is an integer that indicates the typical number of arguments expected
by the function. However, the language permits the function to be invoked with some other number of
arguments. The behaviour of a function when invoked on a number of arguments other than the number
specified by its length property depends on the function. This property has the attributes { [[Writable]]:
false, [[Enumerable]]: false, [[Configurable]]: true }.

19.2.4.2 name

The value of the name property is an String that is descriptive of the function. The name has no semantic
significance but is typically a variable or property name that is used to refer to the function at its point of
definition in ECMAScript code. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true}.

Anonymous functions objects that do not have a-contextual name associated with them by this
specification do not have a name own property but inherit the name property of %FunctionPrototype%.

Functionobjects created using Function.prototype.bind do not have a name property.

19:2.4.3 prototype

Function instances that can be used as a constructor have a prototype property. Whenever such a
function instance is created another ordinary object is also created and is the initial value of the function’s
prototype property. Unless otherwise specified, the value of the prototype property is used to initialize
the [[Prototype]] internal slot of a newly created ordinary object before the Function object is invoked as a
constructor for that newly created object.

This property has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Function objects created using Function.prototype.bind, or by evaluating a MethodDefinition (that
is not a GeneratorMethod) or an ArrowFunction grammar production do not have a prototype property.

© Ecma International 2014 350

»eCma

19.3 Boolean Objects
19.3.1 The Boolean Constructor

The Boolean constructor is the %Boolean% intrinsic object and the initial value of the Boolean property
of the global object. When Boolean is called as a function rather than as a constructor, it performs a type
conversion. However, if the this value passed in the call is an Object with an uninitialized [[BooleanDatal]]
internal slot, it initializes the this value using the argument value. This permits. Boolean to be used
both to perform type conversion and to perform constructor instance initialization.

The Boolean constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified Boolean
behaviour must include a super call to the Boolean constructor to initialize the [[BooleanData]] state of
subclass instances.

19.3.1.1 Boolean (value)

When Boolean is called with argument value, the following steps are taken:

1. Let O be the this value.

2. Let b be ToBoolean(value).

3. If Type(O) is Object and O has a [[BoeoleanData]] internal slot.and the value of [[BooleanData]] is
undefined, then
a. Set the value of O’s [[BooleanData]] internal slot to b.
b. Return O.

4. Return b.

19.3.1.2 new Boolean (...argumentsList)

When Boolean is called as part of a new expression , it initializes a newly created object:

1. Let F be the Boolean function object on which the new operator was applied.
Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return the result of Construct (F, argumentsList).

If Boolean is implemented as an ECMAScript function object, its [[Construct]] internal method will
perform the above steps.

19.3.2 Properties of the Boolean Constructor

The value of the [[Prototype]] internal slot of the Boolean constructor is the Function prototype object
(19.2.3).

Besides the 1length property (whose value is 1), the Boolean constructor has the following properties:

19.3.2.1 Boolean.prototype
The initial value of Boolean.prototype is the Boolean prototype object (19.3.3).

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2014 351

»eCma

19.3.2.2 Boolean[@@create] ()

The @@create method of an object F performs the following steps:

1. Let F be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$BooleanPrototype%", (
[[BooleanData]])).

3. Return obj.

The value of the name property of this function is " [Symbol.create]".
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[BooleanData]] is initially assigned the value undefined as a flag to indicate that the instance has not yet
been initialized by the Boolean constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

19.3.3 Properties of the Boolean Prototype Object

The Boolean prototype object is an ordinary object. It is not a Boolean instance and does not have a
[[BooleanData]] internal slot.

The value of the [[Prototype]] internal slot of the Boolean prototype object is the standard built-in Object
prototype object (19.1.3).
The abstract operation thisBooleanValue(value) performs the following steps:

1. If Type(value) is Boolean, return value.

2. If Type(value) is Object and value has a [[BooleanData]] internal slot, then
a. Let b be the value of value’s [[BooleanData]] internal slot.
b. If b is not undefined, then return b.

3. Throw a TypeError exception.

19.3.3.1 Boolean.prototype.constructor
The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.
19.3.3.2 Boolean.prototype.toString ()

The following steps are taken:
1. Let b be thisBooleanValue(this value).
2. ReturnlfAbrupt(b).
3. Ifbis true, then return "true"; else return "false".

19.3.3.3 Boolean.prototype.valueOf ()

The following steps are taken:

1. Return thisBooleanValue(this value).

© Ecma International 2014 352

»eCma

19.3.4 Properties of Boolean Instances

Boolean instances are ordinary objects that inherit properties from the Boolean prototype object. Boolean
instances have a [[BooleanData]] internal slot. The [[BooleanData]] internal slot is the Boolean value
represented by this Boolean object.

19.4 Symbol Objects
19.4.1 The Symbol Constructor

The Symbol constructor is the %Symbol% intrinsic object and the initial value of the Ssymbol property of
the global object. When symbol is called as a function rather than-as a constructor, it returns a new
Symbol value.

The symbol constructor is not intended to be used with the new operator or to be subclassed. It may be
used as the value of an extends clause of a class declaration but a super call to the Symbol
constructor will not initialize the state of subclass instances.

19.4.1.1 Symbol ([description])

When symbol is called with optional argument description, the following steps are taken:

If description is undefined, then let descString be undefined.

Else, let descString be ToString(description).
ReturnIfAbrupt(descString).

Return a new unique Symbol value whose [[Description]] is descString.

AW N —

19.4.1.2 new Symbol (...argumentsList)

When symbol is calledas part of a new expression, it initializes a newly created object:

1. Let F be the'Symbol function object on which the new operator was applied.
Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return theresult of Construct (F, argumentsList).

If symbol is implemented as an ECMAScript function object, its [[Construct]] internal method will perform
the‘above steps.

NOTE Symbol has ordinary [[Construct]] behaviour but the definition of its @@create method causes new
Symbol to throw a TypeError exception.

19.4.2 Properties of the Symbol Constructor

The value of the [[Prototype]] internal slot of the Symbol constructor is the Function prototype object
(19.2.3).

Besides the 1length property (whose value is 1), the Symbol constructor has the following properties:
19.4.2.1 Symbol.create

The initial value of Symbol . create is the well known symbol @@create (Table 1).

© Ecma International 2014 353

ecimna

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.2 Symbol.for (key)

When symbol. for is called with argument key it performs the following steps:

1. Let stringKey be ToString(key).

2. ReturnIfAbrupt(stringKey).

For each element e of the GlobalSymbolRegistry List,

a. If SameValue(e.[[key]], stringKey) is true, then return e.[[symbol]].

Assert: GlobalSymbolRegistry does not current contain an entry for stringKey.

Let newSymbol be a new unique Symbol value whose [[Description]] is stringKey.

Append the record { [[key]]: stringKey, [[symbol]]: newSymbol) to the GlobalSymbolRegistry List.
Return newSumbol.

98]

Nowns

The GlobalSymbolRegistry is a List that is globally available. At is shared by all Code Realms. Prior to the
evaluation of any ECMAScript code it is initialized as an empty List. Elements of the
GlobalSymbolRegistry are Records with the structure defined in Table 39.

Table 39 — GlobalSymbolRegistry Record Fields

Field Name | Value Usage

[[key]] A String A string. key used to globally identify a
Symbol.

[[symbol]] A Symbol A.symbol that can be retrieved from any
Realm.

19.4.2.3 Symbol.hasIinstance

The initial value of Symbol . hasInstance is the well known symbol @@hasinstance (Table 1).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.4 Symbol.isConcatSpreadable

Theinitial value of Symbol.isConcatSpreadable is the well known symbol @@isConcatSpreadable
(Table 1).

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.5 Symbol.isRegExp

The initial value of Symbol . isRegExp is the well known symbol @@isRegExp (Table 1).

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.6 Symbol.iterator

The initial value of Symbol . iterator is the well known symbol @@iterator (Table 1).

© Ecma International 2014 354

»eCma

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.7 Symbol.keyFor (sym)

When Symbol . keyFor is called with argument sym it performs the following steps:

1. If Type(sym) is not Symbol, then throw a TypeError exception.
For each element e of the GlobalSymbolRegistry List (see 19.4.2.2),
a. If SameValue(e.[[symbol]], sym) is true, then return e.[[key]].
3. Assert: GlobalSymbolRegistry does not current contain an entry for sym.
4. Return undefined.
19.4.2.8 Symbol.prototype
The initial value of Symbol.prototype is the Symbol prototype object (19.4.3).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.9 Symbol.toPrimitive
The initial value of Symbol. toPrimitive is the well known symbol @@toPrimitive (Table 1).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.10 Symbol.toStringTag
The initial value of Symbol . toStringTag is the well known symbol @@toStringTag (Table 1).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.11 Symbol.unscopables
The initial value of Symbol .unscopables is the well known symbol @@unscopables (Table 1).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.12 Symbol[@@create] ()

The @@create method of a Symbol object F performs the following steps:

1. Throw a TypeError exception.
The value of the name property of this function is " [Symbol.create]".
This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: true }.
19.4.3 Properties of the Symbol Prototype Object

The Symbol prototype object is an ordinary object. It is not a Symbol instance and does not have a
[[SymbolData]] internal slot.

© Ecma International 2014 355

»eCma

The value of the [[Prototype]] internal slot of the Symbol prototype object is the standard built-in Object
prototype object (19.1.3).

19.4.3.1 Symbol.prototype.constructor
The initial value of Symbol.prototype.constructor is the built-in Symbol constructor.
19.4.3.2 Symbol.prototype.toString ()

The following steps are taken:
1. Let s be the this value.

2. If Type(s) is Symbol, then let sym be s.

3. Else,
a. Ifs does not have a [[SymbolData]] internal slot, then throw a TypeError exception.
b. Let sym be the value of s’s [[SymbolData]] internal slot.

4. Let desc be the value of sym’s [[Description]] attribute.

5. [Ifdesc is undefined, then let desc be the empty string.

6. Assert: Type(desc) is String.

7. Let result be the result of concatenating the strings "Symbol{(", desc, and ") ".

8. Return result.

19.4.3.3 Symbol.prototype.valueOf ()

The following steps are taken:

1. Let s be the this value.

2. If Type(s) is Symbol, then return s.

3. [Ifs does not have a [[SymbolData]] internal slot, then throw a TypeError exception.

4. Return the value of s’s [[SymbolData]] internal slot.
19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)
This function is called by ECMAScript language operators to convert an object to a primitive value. The
allowed values for fint are "default", "number", and "string". Implicit conversion of Symbol objects
to primitive values is not allowed.

When the @@toPrimitive method is called with argument Aint, the following steps are taken:

1. Throw a TypeError exception.
The value of the name property of this function is " [Symbol. toPrimitive]".
This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: true }.
19.4.3.5 Symbol.prototype [@@toStringTag]
The initial value of the @@toStringTag property is the string value "Symbol".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

© Ecma International 2014 356

secind

19.4.4 Properties of Symbol Instances

Symbol instances are ordinary objects that inherit properties from the Symbol prototype object. Symbol
instances have a [[SymbolData]] internal slot. The [[SymbolData]] internal slot is the Symbol value
represented by this Symbol object.

19.5 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may
also serve as base objects for user-defined exception classes.

19.5.1 The Error Constructor

The Error constructor is the %Error% intrinsic object and the initial value of the Exrror property of the
global object. When Error is called as a function rather than.as a constructor, it creates and initializes a
new Error object. Thus the function call Error(..) is equivalent to the object creation expression new
Error (..) with the same arguments. However, if the this value passed in the call is an Object with an
uninitialized [[ErrorDatal]] internal slot, it initializes the this value using the argument value rather than
creating a new object. This permits Error to be used both as factory method and to perform
constructor instance initialization.

The Error constructor is designed to be‘subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified Error
behaviour should include a super call to the Exrror constructor to initialize subclass instances.

19.5.1.1 Error (message)

When the Error function is called with argument message the following steps are taken:

1. Let func be this Error function object.
. Let O be the this value.

3. If Type(O) is not Object or. Type(O) is Object and O does not have an [[ErrorData]] internal slot or
Type(O) is Object and O has an [[ErrorData]] internal slot and the value of [[ErrorData]] is not
undefined, then
a<" Let O be the result of calling OrdinaryCreateFromConstructor(func, "$ErrorPrototype%",

([[ErrorData]]).).
b. ReturnlfAbrupt(O).

4. Assert: Type(O) is Object.

Set the value of O’s [[ErrorData]] internal slot to any value other than undefined.

6. If message is not undefined, then
a. Let msg be ToString(message).

b. ReturnIfAbrupt(msg).
c. LetmsgDesc be the PropertyDescriptor {[[Value]]: msg, [[Writable]]: true, [[Enumerable]]:
false, [[Configurable]]: true}.
d. Let status be the result of DefinePropertyOrThrow(O, "message", msgDesc).
e. ReturnIfAbrupt(status).
7. Return O.

9]

19.5.1.2 new Error (...argumentsList)

When Error called as part of a new expression with argument list argumentsList it performs the following
steps:

© Ecma International 2014 357

ecind

1. Let F be the Error function object on which the new operator was applied.
Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return the result of Construct (F, argumentsList).

If Error is implemented as an ECMAScript function object, its [[Construct]] internal method will perform
the above steps.

19.5.2 Properties of the Error Constructor

The value of the [[Prototype]] internal slot of the Error constructor is the Function prototype object
(19.2.3).

Besides the 1ength property (whose value is 1), the Error constructor has the following properties:
19.5.2.1 Error.prototype

The initial value of Exrror .prototype is the Error prototype object (19.5.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.5.2.2 Error[@@create] ()

The @@create method of an object F performs the following steps:
1. Let F be the this value.
2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$ErrorPrototype%", (
[[ErrorDatal])).
3. Return obj.
The value of the name property of this function is " [Symbol.create] ".
This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[ErrorData]].is initially assigned the value undefined as a flag to indicate that the instance has not yet
been initialized by the Error constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

19.5.3 Properties of the Error Prototype Object

The Error prototype object is an ordinary object. It is not an Error instance and does not have an
[[ErrorData] internal slot.

The value of the [[Prototype]] internal slot of the Error prototype object is the standard built-in Object
prototype object (19.1.3).

19.5.3.1 Error.prototype.constructor

The initial value of Error.prototype.constructor is the built-in Error constructor.

© Ecma International 2014 358

»eCma

19.5.3.2 Error.prototype.message

The initial value of Error.prototype .message is the empty String.
19.5.3.3 Error.prototype.name

The initial value of Error.prototype.name is "Error".

19.5.3.4 Error.prototype.toString ()

The following steps are taken:

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

Let name be the result of Get(O, "name").

ReturnIfAbrupt(name).

If name is undefined, then let name be "Erroxr"; else let name be ToString(name).
Let msg be the result of Get(O, "message").

ReturnlfAbrupt(msg).

If msg is undefined, then let msg be the empty String; else let msg be ToString(msg).
. If name is the empty String, return msg.

0. If msg is the empty String, return name..

1. Return the result of concatenating name, " =", a single space character, and msg.

e A Sl e

19.5.4 Properties of Error Instances

Error instances are ordinary objects that inherit properties from the Error prototype object and have an
[[ErrorDatal] internal slot whose initial value is undefined. The only specified uses of [[ErrorData]] is to flag
whether or not an Error instance has been initialized by the Error constructor and to identify them as Error
objects within Object .prototype.toString.

19.5.5 Native Error Types Used in This Standard

A new instance of one of the NativeError objects below is thrown when a runtime error is detected. All of
these objects share the same structure, as described in 19.5.6.

19.5.5.1 EvalError

This exception is not currently used within this specification. This object remains for compatibility with
previous editions of this specification.

19.5.5.2 RangeError

Indicates a value that is not in the set or range of allowable values. See 15.4.2.2, 154.5.1, 15.7.4.2,
15.7.4.5,15.7.4.6, 15.7.4.7, and 15.9.5.43.

19.5.5.3 ReferenceError

Indicate that an invalid reference value has been detected. See 8.9.1, 8.9.2, 10.2.1, 10.2.1.1.4,
10.2.1.2.4, and 11.13.1.

© Ecma International 2014 359

»eCma

19.5.5.4 SyntaxError

Indicates that a parsing error has occurred. See 11.1.5, 11.3.1, 11.3.2, 11.4.1, 11.4.4, 1145, 11131,
11.13.2, 12.2.1, 12.10.1, 12.14.1, 13.1, 15.1.2.1, 15.3.2.1, 15.10.2.2, 15.10.2.5, 15.10.2.9, 15.10.2.15,
15.10.2.19, 15.10.4.1, and 15.12.2.

19.5.5.5 TypeError

Indicates the actual type of an operand is different than the expected type: See 8.6.2, 8.9.2, 8.10.5,
8.12.5, 8.12.7, 8.12.8, 8.12.9, 9.9, 9.10, 10.2.1, 10.2.1.1.3, 10.6, 11.2.2, 11.2.3, 11.4.1, 11.8.6, 11.8.7,
11.3.1, 13.2, 13.2.3, 15, 15.2.3.2, 15.2.3.3, 15.2.3.4, 15.2.3.5, 15.2.3.6, 15.2.3.7, 15.2.3.8, 15.2.3.9,
15.2.3.10, 15.2.3.11, 15.2.3.12, 15.2.3.13, 15.2.3.14, 15.2.4.3, 15.3:3.2, 15.3.3.3, 15.3.3.4, 15.3.3.5,
15.3.3.5.2, 15.3.3.5.3, 15.3.4, 15.3.4.3, 15.3.4.4, 154.3.3, 15.4.3411, 154.3.16, 15.4.3.17, 15.4.3.18,
15.4.3.19, 15.4.3.20, 15.4.3.21, 154.3.22, 154.5.1, 1554.2, 155.4.3, 15.6.4.2, 15.6.4.3, 15.7.4,
15.7.4.2,15.7.4.4,15.95, 15.9.5.44,15.10.4.1, 15.10.6, 15.11.4.4 and 15.12.3.

19.5.5.6 URIError

Indicates that one of the global URI handling functions was used in‘a way that is incompatible with its
definition. See 15.1.3.

19.5.6 NativeError Object Structure

When an ECMAScript implementation detects a runtime_error, it throws a new instance of one of the
NativeError objects defined in 19.5.5. Each of these objects has the structure described below, differing
only in the name used as the constructor name instead of NativeError, in the name property of the
prototype object, and in the implementation-defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate
error object name from19.5.5.

19.5.6.1 NativeError Constructors

When a NativeError constructor is called as a function rather than as a constructor, it creates and
initializes a new object. A call of the object as a function is equivalent to calling it as a constructor with
the same arguments. However, if the this value passed in the call is an Object with an uninitialized
[[ErrorData]] internal slot, it initializes the this value using the argument value. This permits a
NativeError to be used both as factory method and to perform constructor instance initialization.

The NativeError constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified NativeError
behaviour should include a super call to the NativeError constructor to initialize subclass instances.

19.5.6.1.1 NativeError (message)

When a NativeError function is called with argument message the following steps are taken:

1. Let func be this NativeError function object.

2. Let O be the this value.

3. If Type(O) is not Object or Type(O) is Object and O does not have an [[ErrorData]] internal slot or
Type(O) is Object and O has an [[ErrorData]] internal slot and the value of [[ErrorDatal]] is not
undefined, then

© Ecma International 2014 360

ecimna

a. Let O be the result of calling OrdinaryCreateFromConstructor(func,
"$NativeErrorPrototype%", ([[ErrorData]])).
b. ReturnlfAbrupt(O).
4. Assert: Type(O) is Object.
Set the value of O’s [[ErrorData]] internal slot to any value other than undefined.
6. If message is not undefined, then
a. Let msg be ToString(message).
b. Let msgDesc be the PropertyDescriptor {[[Value]]: msg, [[Writable]]: true, [[Enumerable]]:
false, [[Configurable]]: true}.
c. Let status be the result of DefinePropertyOrThrow(O, "message", msgDesc).
d. ReturnIfAbrupt(status).
7. Return O.

9]

The actual value of the string passed in step 3.a is® either "%$EvalErrorPrototype3%",
"$RangeErrorPrototype%", "%$ReferenceErrorPrototype%", "$SyntaxErrorPrototype%",
"$TypeErrorPrototype%", or "$URIErrorPrototype%" comresponding to which. NativeError
constructor is being defined.

19.5.6.1.2 new NativeError (...argumentsList)
When a NativeError constructor is called as part of a new expression with argument list argumentsList it

performs the following steps:

1. Let F be this NativeError function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return the result of Construct (F, argumentsList).

If a NativeError constructor is implemented as an ECMAScript function object, its [[Construct]] internal
method will perform the above steps.

19.5.6.2 Properties of the NativeError Constructors

The value of the [[Prototypel] internal slot of a NativeError constructor is the Error constructor object
(19.5.1).

Besides the length property (whose value is 1), each NativeError constructor has the following
properties:

19.5.6.2.1 NativeError.prototype

The initial "value of NativeError.prototype is a NativeError prototype object (19.5.6.3). Each
NativeError constructor has a separate prototype object.

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.
19.5.6.2.2 NativeError [@@create] ()

The @@create method of an object F performs the following steps:

1. Let F be the this value.
2. Let obj be OrdinaryCreateFromConstructor (F, NativeErrorPrototype, ([[ErrorData]])).
3. Return obj.

© Ecma International 2014 361

ecind

The actual value passed as NativeErrorPrototype in step 2 is either "$EvalErrorPrototype3%",
"$RangeErrorPrototype%", "%ReferenceErrorPrototype%", "$%$SyntaxErrorPrototype%",
"$TypeErrorPrototype%", or "$URIErrorPrototype%" corresponding to which NativeError
constructor is being defined.

The value of the name property of this function is " [Symbol.create]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[ErrorData]] is initially assigned the value undefined as a flag to indicate that the instance has not yet
been initialized by the NativeError constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

19.5.6.3 Properties of the NativeError Prototype Objects

Each NativeError prototype object is an ordinary object. It is‘not an Error instance and does not have an
[[ErrorData] internal slot.

The value of the [[Prototype]] internal slot of each NativeError prototype object is the standard built-in
Error prototype object (19.5.3).

19.5.6.3.1 NativeError.prototype.constructor

The initial value of the constructor property of the prototype for a given NativeError constructor is the
NativeError constructor function itself (19.5.6.1).

19.5.6.3.2 NativeError.prototype.message

The initial value of the message property of the prototype for a given NativeError constructor is the
empty String.

19.5.6.3.3 NativeError.prototype.name

The initial value of the name property of the prototype for a given NativeError constructor is a string
consistingof the name of the constructor (the name used instead of NativeError).

19.5.6.4 Properties of NativeError Instances
NativeError instances are ordinary objects that inherit properties from their NativeError prototype object
and have an [[ErrorData]] internal slot whose initial value is undefined. The only specified use of

[[ErrorData]] is to flag whether or not an Error or NativeError instance has been initialized by its
constructor.

20 Numbers and Dates
20.1 Number Objects
20.1.1 The Number Constructor

The Number constructor is the %Number% intrinsic object and the initial value of the Number property of
the global object. When Number is called as a function rather than as a constructor, it performs a type

© Ecma International 2014 362

»eCma

conversion. However, if the this value passed in the call is an Object with an uninitialized [[NumberDatal]]
internal slot, it initializes the this value using the argument value. This permits Number to be used both
to perform type conversion and to perform constructor instance initialization.

The Number constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified Number
behaviour must include a super call to the Number constructor to initialize the [[NumberData]] state of
subclass instances.

20.1.1.1 Number ([value])

When Number is called with argument number, the following steps are taken:

Let O be the this value.

If no arguments were passed to this function invocation, then let n be +0.

Else, let n be ToNumber(value).

ReturnIfAbrupt(n).

If Type(O) is Object and O has a [[NumberData]] internal slot and‘the value of [[NumberData]] is
undefined, then

a. Set the value of O’s [[NumberData]] internal slot to .

b. Return O.

6. Return n.

[O R S

20.1.1.2 new Number (...argumentsList)

When Number is called as part of a new expression with argument list argumentsListit performs the
following steps:

1. Let F be the Number function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return Construct (F, argumentsList).

If Number is implemented as an. ECMAScript function-object, its [[Construct]] internal method will perform
the above steps.

20.1.2 Properties of the Number Constructor

The value of the [[Prototype]] internal slot of the Number constructor is the Function prototype object
(19.2.3).

Besides the length property (whose value is 1), the Number constructor has the following properties:
20.1.2.1 Number.EPSILON

The value of Number.EPSILON is the difference between 1 and the smallest value greater than 1 that is
repqgsentable as a Number value, which is approximately 2.2204460492503130808472633361816 x
107"

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2014 363

»eCma

20.1.2.2 Number.isFinite (number)

When the Number . isFinite is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, +o, or —oo, return false.
3. Otherwise, return true.

20.1.2.3 Number.isinteger (number)

When the Number . isInteger is called with one argument number, the following steps are taken:

If Type(number) is not Number, return false.
If number is NaN, 40, or —oo, return false.
Let integer be Tolnteger(number).

If integer is not equal to number, return false.
Otherwise, return true.

DN A W —

20.1.2.4 Number.isNaN (number)

When the Number . isNaN is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, return true.
3. Otherwise, return false.

NOTE This function differs from the global isNaN function(18.2.3) is.that it does not convert its argument to a
Number before determining whether it is NaN.

20.1.2.5 Number.isSafelnteger (number)

When the Number . isSafeInteger is called with one argument number, the following steps are taken:

If Type(number) is.not Number, return false.
If number is NaN, +oo, or —o, return false.
Let integer be Tolnteger(number).

Ifinteger is not equal to number, return false.
If abs(integer) < 27°—1, then return true.
Otherwise, return false.

S\ LN AW —

20.1.2.6 Number.MAX_SAFE_INTEGER

The value of Number.MAX_SAFE_INTEGER is 9007199254740991 (2°°-1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.7 Number.MAX_VALUE

The value of Number.MAX VALUE is the largest positive finite value of the Number type, which is
approximately 1.7976931348623157 x 10°%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2014 364

ecind

20.1.2.8 Number.NaN

The value of Number .NaN is NaN.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.9 Number.NEGATIVE_INFINITY

The value of Number.NEGATIVE_INFINITY is —oo.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false; [[Configurable]]: false }.
20.1.2.10 Number.MIN_SAFE_INTEGER

The value of Number.MIN_SAFE_INTEGER is ~9007199254740991 (—(2°°-1)).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.11 Number.MIN_VALUE

The value of Number.MIN VALUE is the smallest positive value of the Number type, which is
approximately 5 x 107,

In the IEEE-764 double precision binary representation, the smallest possible value is a denormalized
number. If an implementation does not support denormalized values, the value of Number .MIN VALUE
must be the smallest non-zero positive value that can actually be represented by the implementation.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.12Number.parseFloat (string)

The value of the Number.parseFloat data property is the same built-in function object that is the value
of the parseFloat property of the global object defined in 18.2.4.

20.1.2.13 Number.parselnt (string, radix)

The value of the Number.parseInt data property is the same built-in function object that is the value of
the parseInt property of the global object defined in 18.2.5.

20.1.2.14Number.POSITIVE_INFINITY

The value of Number.POSITIVE_INFINITY is +oo.

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.15 Number.prototype

The initial value of Number . prototype is the Number prototype object (20.1.3).

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2014 365

»eCma

20.1.2.16 Number[@@create] ()

The @@create method of an object F performs the following steps:

1. Let F be the this value.
2. Let obj be OrdinaryCreateFromConstructor(F, "$NumberPrototype%", ([[NumberData]])).
3. Return obj.

The value of the name property of this function is " [Symbol.create]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[NumberDatal]] is initially assigned the value undefined as a flagto indicate that the instance has not yet
been initialized by the Number constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

20.1.3 Properties of the Number Prototype Object

The Number prototype object is an ordinary object. It is not a Number instance and does not have a
[[NumberData]] internal slot.

The value of the [[Prototype]] internal slot of the Number prototype object is the standard built-in Object
prototype object (19.1.3).

Unless explicitly stated otherwise, the methods of the Number prototype. object defined below are not
generic and the this value passed to them must be either a Number value or an object that has a
[[NumberData]] internal slot that has been initialized to aNumber value.

The abstract operation thisNumberValue(va/ue) performs the following steps:

1. If Type(value) is Number, return value.

2. If Type(value) is Object and value has a [[NumberData]] internal slot, then
a. Let n be the value of value’s [[NumberData]] internal slot.
b. Ifn is not undefined, then return n.

3. Throw a TypeError exception.

The phrase “this Number value” within the specification of a method refers to the result returned by
calling the abstract operation thisNumberValue with the this value of the method invocation passed as the
argument.

20.1.3.1 Number.prototype.constructor
The initial value of Number.prototype.constructor is the built-in Number constructor.
20.1.3.2 Number.prototype.toExponential (fractionDigits)

Return a String containing this Number value represented in decimal exponential notation with one digit
before the significand's decimal point and fractionDigits digits after the significand's decimal point. If
fractionDigits is undefined, include as many significand digits as necessary to uniquely specify the
Number (just like in ToString except that in this case the Number is always output in exponential
notation). Specifically, perform the following steps:

1. Let x be thisNumberValue(this value).
2. ReturnIfAbrupt(x).

© Ecma International 2014 366

oeCha

XN B W

10.
11.

12.

13.

14.

15.

16.
17.

Let f'be Tolnteger(fractionDigits).

Assert: fis 0, when fractionDigits is undefined.
ReturnIfAbrupt(f).

If x is NaN, return the String "NaN".

Let s be the empty String.

If x <0, then

a. Letsbe"-".

b. Letx=—x.

If x = +o0, then

a. Return the concatenation of the Strings s and "Infinity".
If f< 0 or f> 20, throw a RangeError exception.

If x = 0, then

a. Let m be the String consisting of f+1 occurrences of the code unit 0x0030.
b. Lete=0.

Else x # 0,

a. If fractionDigits is not undefined, then

i. Let e and n be integers such that 10/ < n <10”™" and for which the exact mathematical value
of n x 10°7 — x is as close to zero as possible. If there are'two such sets of e and n, pick the
e and n for which n x 10°7 is larger.

b. Else fractionDigits is undefined,

i. Let e, n, and f'be integers such that /> 0, 10/ <n < 10", the number value for n x 107 is x,
and f'is as small as possible.Note that the decimal representation of » has f+1 digits, n is
not divisible by 10, and the least significant digit of » is not necessarily uniquely
determined by these criteria.

c. Let m be the String consisting of the digits of the decimal representation of » (in order, with no
leading zeroes).

If f# 0, then

a. Let a be the first'element of m, and let b be the remaining f elements of m.

b. Let m be the concatenation of the three Strings a, " . ", and b.
If e = 0, then
a. Letc="+".
b. Letd="0".
Else
a. Ife>0,thenletc="+".
b. Elsee <0,
i. Letc="=-".

ii. Lete=—e.

c. Let d be the String consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).

Let m be the concatenation of the four Strings m, "e", ¢, and d.

Return the concatenation of the Strings s and m.

The length property of the toExponential method is 1.

If the toExponential method is called with more than one argument, then the behaviour is undefined
(see clause 17).

An implementation is permitted to extend the behaviour of toExponential for values of fractionDigits
less than O or greater than 20. In this case toExponential would not necessarily throw RangeError for
such values.

© Ecma International 2014 367

secind

NOTE For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 12.b.i be used as a guideline:

i Let e, n, and f be integers such that £> 0, 10/ < n < 10", the number value for n x 107 is x, and f is as
small as possible. If there are multiple possibilities for n, choose the value of n for which n x 107 is
closest in value to x. If there are two such possible values of n, choose the one that is even.

20.1.3.3 Number.prototype.toFixed (fractionDigits)

Note toFixed returns a String containing this Number value represented in decimal fixed-point notation with
fractionDigits digits after the decimal point. If fractionDigits is undefined, 0 is assumed.

The following steps are performed:

Let x be thisNumberValue(this value).
ReturnIfAbrupt(x).
Let f be Tolnteger(fractionDigits). (If fractionDigits is‘undefined, this step produces the value 0).
ReturnIfAbrupt(f).
If /<0 orf> 20, throw a RangeError exception:
If x is NaN, return the String "NaN".
Let s be the empty String.
If x <0, then
a. Letsbe"-".
b. Letx=—x.
9. Ifx 210", then
a. Let m = ToString(x).
10. Else x < 107,
a. Let n be an integer for which the exact mathématical value of n + 10" — x is as close to zero as
possible. If there are two such n, pick thelarger n.
b. Ifn =0, let m be the String "0". Otherwise, let m be the String consisting of the digits of the
decimal representation of n (in order, with no leading zeroes).
c. Iff=0, then
i. Let k be the number-of elements in m.
ii. Ifk<f, then
1. Let z be the String consisting of f+1—k occurrences of the code unit 0x0030.
2. Let m be the concatenation of Strings z and m.
3. Letk=f+1.
iii. Let a be the first k—f elements of m, and let b be the remaining f elements of m.
iv. Let m be the concatenation of the three Strings @, " . ", and b.
11. Return the concatenation of the Strings s and m.

XN N R L=

The length property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see
clause 17).

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than 0
or greater than 20. In this case toFixed would not necessarily throw RangeError for such values.

NOTE The output of toFixed may be more precise than toString for some values because toString only
prints enough significant digits to distinguish the number from adjacent number values. For example,
(1000000000000000128) . toString() returns "1000000000000000100",

while (1000000000000000128) . toFixed (0) returns "1000000000000000128".

© Ecma International 2014 368

secind

20.1.3.4 Number.prototype.toLocaleString([reserved1 [, reserved2]])

An ECMAScript implementation that includes the ECMA-402 International APl must implement the
Number .prototype. toLocaleString method as specified in the ECMA-402 specification. If an
ECMAScript implementation does not include the ECMA-402 API the following specification of the
toLocaleString method is used.

Produces a String value that represents this Number value formatted according to the conventions of the
host environment’s current locale. This function is implementation-dependent, and it is permissible, but
not encouraged, for it to return the same thing as toString.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification;
implementations that do not include ECMA-402 support must not use those parameter position for
anything else.

The 1length property of the toLocaleString method is 0:
20.1.3.5 Number.prototype.toPrecision (precision/)

Return a String containing this Number value represented either in decimal exponential notation with one
digit before the significand's decimal point and precision—1 digits after the significand's decimal point or in
decimal fixed notation with precision significant digits. If precision is undefined, call ToString (7.1.9)
instead. Specifically, perform the following steps:

Let x be thisNumberValue(this value).
ReturnIfAbrupt(x).
If precision is undefined, return ToString(x).
Let p be Tolnteger(precision).
ReturnIfAbrupt(p).
If x is NaN, return the String "NaN".
Let s be the empty String.
If x < 0, then
a. Letsbe"-".
b. Letx=—x.
9. If x= +oo, then
a. Return the concatenation of the Strings s and "Infinity".
10. If p < 1 or p > 21, throw a RangeError exception.
11. If x = 0, then
a. Let m be the String consisting of p occurrences of the code unit 0x0030 (the Unicode character

Al

‘0%).
b. Lete=0.
12. Elsex #0,

a. Let e and n be integers such that 10°"' < n < 10” and for which the exact mathematical value of
n x 107 — x is as close to zero as possible. If there are two such sets of e and n, pick the e and
n for which n x 10°7*! is larger.

b. Let m be the String consisting of the digits of the decimal representation of # (in order, with no
leading zeroes).

c. Ife<—6ore2p,then
i. Assert:e=0
ii. Let a be the first element of m, and let b be the remaining p—1 elements of m.
iii. Let m be the concatenation of the three Strings a, " . ", and b.
iv. Ife >0, then

© Ecma International 2014 369

eCmd

1. Letc="4+".
v. Elsee <0,

1. Letc="-".

2. Lete=—e.

vi. Let d be the String consisting of the digits of the decimal representation of e (in order, with
no leading zeroes).
vii. Return the concatenation of the five Strings s, m, "e", ¢, and d.
13. If e = p—1, then return the concatenation of the Strings s and m.
14. If e > 0, then
a. Let m be the concatenation of the first e+1 elements of m, the code unit 0x002E (Unicode
character °.”), and the remaining p— (e+1) elements of m.
15. Else e <0,
a. Let m be the concatenation of the String "0.", —(e+1) occurrences of code unit 0x0030 (the
Unicode character ‘0’), and the String m.
16. Return the concatenation of the Strings s and m.

The length property of the toPrecision method is 1.

If the toPrecision method is called with more than one argument, then the behaviour is undefined (see
clause 17).

An implementation is permitted to extend the behaviour of toPrecision for values of precision less than
1 or greater than 21. In this case toPrecision would not necessarily throw RangeError for such
values.

20.1.3.6 Number.prototype.toString ([radix])

NOTE The optional radix_should be an integer value in the inclusive range 2 to 36. If radix not present or is
undefined the Number 10 is.used as the value of radix.

The following steps are performed:

Let x be thisNumber Value(this value).

ReturnIfAbrupt(x).

If radix-is not present, then let radixNumber be 10.

Else if radix is undefined, then let radixNumber be 10.

Else let radixNumber beTolnteger(radix).

ReturnIfAbrupt(radixNumber).

If radixNumber < 2 or radixNumber > 36, then throw a RangeError exception.

If radixNumber = 10, then ToString(x).

Return the String representation of this Number value using the radix specified by radixNumber.
Letters a-z are used for digits with values 10 through 35. The precise algorithm is implementation -
dependent, however the algorithm should be a generalisation of that specified in 7.1.12.1.

O R 1 B) N =

The toString function is not generic; it throws a TypeError exception if its this value is not a Number
or a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

20.1.3.7 Number.prototype.valueOf ()
1. Let x be thisNumberValue(this value).

2. Return x.

© Ecma International 2014 370

»eCma

20.1.4 Properties of Number Instances

Number instances are ordinary objects that inherit properties from the Number prototype object. Number
instances also have a [[NumberData]] internal slot. The [[NumberData]] internal slot is the Number value
represented by this Number object.

20.2 The Math Object

The Math object is a single ordinary object.

The value of the [[Prototype]] internal slot of the Math object is the standard built-in Object prototype
object (19.1.3).

The Math is not a function object. It does not have a [[Construct]]internal method; it is not possible to use
the Math object as a constructor with the new operator. The/Math object also does not have a [[Call]]
internal method; it is not possible to invoke the Math object as a function.

NOTE In this specification, the phrase “the Number value for x” has a technical meaning defined in 6.1.6.

20.2.1 Value Properties of the Math Object

20.2.1.1 Math.E

The Number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.2.1.2 Math.LN10

The Number value for the natural logarithm of 10, which is approximately 2.302585092994046.
This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.2.1.3 Math.LOG10E

TheNumber value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518.

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE The value of Math.LOG10E is approximately the reciprocal of the value of Math.LN10.
20.2.1.4 Math.LN2

The Number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2014 371

»eCma

20.2.1.5 Math.LOG2E

The Number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE The value of Math.LOG2E is approximately the reciprocal of the value of Math. LN2.
20.2.1.6 Math.PI

The Number value for «, the ratio of the circumference of a circle to its diameter, which is approximately
3.1415926535897932.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.2.1.7 Math.SQRT1_2

The Number value for the square root of %4, which is approximately 0.7071067811865476.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE The value of Math.SQRT1_2 is approximately. the reciprocal of the value of Math. SQRT2.

20.2.1.8 Math.SQRT2

The Number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.2.1.9 Math [@@toStringTag]

The initial value of the @@toStringTag property is the string value "Math".

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: true }.

20.2:2 Function Properties of the Math Object

Each of the following Math object functions applies the ToNumber abstract operation to each of its
arguments (in left-to-right order if there is more than one). If ToNumber returns an abrupt completion, that
Completion Record is immediately returned. Otherwise, the function performs a computation on the

resulting Number value(s). The value returned by each function is a Number.

In the function descriptions below, the symbols NaN, -0, +0, —«o and +« refer to the Number values
described in 6.1.6.

NOTE The behaviour of the functions acos, acosh, asin, asinh, atan, atanh, atan2, cbrt, cos, cosh,
exp, hypot, log,loglp, log2, logl0, pow, sin, sinh, sqrt, tan, and tanh is not precisely specified here
except to require specific results for certain argument values that represent boundary cases of interest. For other
argument values, these functions are intended to compute approximations to the results of familiar mathematical
functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that an

© Ecma International 2014 372

secind

implementer should be able to use the same mathematical library for ECMAScript on a given hardware platform that
is available to C programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard)
that implementations use the approximation algorithms for IEEE 754 arithmetic contained in £dlibm, the freely
distributable mathematical library from Sun Microsystems (http://www.netlib.org/fdlibm) .

20.2.2.1 Math.abs (x)

Returns the absolute value of x; the result has the same magnitude as x but has positive sign.

e Ifxis NaN, the result is NaN.
e Ifxis—O0, the resultis +0.
e Ifx is —oo, the result is +oo.

20.2.2.2 Math.acos (x)

Returns an implementation-dependent approximation to the arc cosine-of x. The result is expressed in
radians and ranges from +0 to +r.

If x is NaN, the result is NaN.

If x is greater than 1, the result is NaN.
If x is less than —1, the result is NaN.
If x is exactly 1, the result is +0.

20.2.2.3 Math.acosh(x)

Returns an implementation-dependent approximation.to the inverse hyperbolic cosine of x.

e If xis NaN, the result is NaN.

e If xis less than 1, the result is NaN.
e If xis 1, the resultis +0.

e If xis +oo, the result is +oo.

20.2.2.4 Math.asin (x)

Returns’ an implementation-dependent approximation to the arc sine of x. The result is expressed in
radians and ranges from —m/2 to +1/2.

If x 1s NaN, the result is NaN.

If x is greater than 1, the result is NaN.
If x is less than —1, the result is NaN.
If x is +0, the result is +0.

If x is =0, the result is —0.

20.2.2.5 Math.asinh(x)

Returns an implementation-dependent approximation to the inverse hyperbolic sine of x.

If x is NaN, the result is NaN.
If xis +0, the result is +0.
If xis -0, the result is —0.
If x is +o0, the result is +oo.

© Ecma International 2014 373

secind

If xis —oo, the result is —co.

20.2.2.6 Math.atan (x)

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in
radians and ranges from —n/2 to +n/2.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is —0, the result is —0.

If x is +oo, the result is an implementation-dependent approximation.to +7m/2.
If x is —oo, the result is an implementation-dependent approximation to —7m/2.

20.2.2.7 Math.atanh(x)

Returns an implementation-dependent approximation to the inverse hyperbolic tangent of x.

If x is NaN, the result is NaN.

If x is less than —1, the result is NaN.
If x is greater than 1, the result is NaN.
If x is —1, the result is —oo.

If xis +1, the result is +oo.

If x is +0, the result is +0.

If x is -0, the result is -0.

20.2.2.8 Math.atan2 (y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the
arguments y and x, where the signs of y and x are used to determine the quadrant of the result. Note that
it is intentional and traditional for the two-argument arc tangent function that the argument named y be
first and the argument named x be second. The result is expressed in radians and ranges from —x to +x.

If either x or y is NaN, the result is NaN:

If y>0 and x is 40, the result is an implementation-dependent approximation to +m/2.

If y>0rand x is —0, the result is an implementation-dependent approximation to +7m/2.

Ify is +0 and x>0, the result is +0.

If y is +0 and x is +0, the result is +0.

If y is +0 and x is -0, the result is an implementation-dependent approximation to +.

If y is +0 and x<0, the result is an implementation-dependent approximation to +.

If y is —0 and x>0, the result is —0.

If y is —0 and x is +0, the result is —0.

Ifyis —0 and x is —0, the result is an implementation-dependent approximation to —m.

If'y is ~0 andx<0, the result is an implementation-dependent approximation to —.

If y<0 andx is +0, the result is an implementation-dependent approximation to —m/2.

If y<0 and x 1s -0, the result is an implementation-dependent approximation to —/2.

Ify>0 and y is finite and x is +oo, the result is +0.

Ify>0 and y is finite and x is —oo, the result if an implementation-dependent approximation to +.
If y<0 and y is finite and x is +oo, the result is 0.

If y<0 and y is finite and x is —oo, the result is an implementation-dependent approximation to —.
Ify is +oo and x is finite, the result is an implementation-dependent approximation to +m/2.

If y is —oo and x is finite, the result is an implementation-dependent approximation to —m/2.

Ify is +oo and x is +oo, the result is an implementation-dependent approximation to +m/4.

© Ecma International 2014 374

secind

e Ifyis+ooand x is —oo, the result is an implementation-dependent approximation to +3m/4.
e Ifyis—ooand x is +oo, the result is an implementation-dependent approximation to —m/4.
e Ifyis—ooand x is —oo, the result is an implementation-dependent approximation to —37/4.

20.2.2.9 Math.cbrt (x)

Returns an implementation-dependent approximation to the cube root of x.

If x is NaN, the result is NaN.
If xis +0, the result is +0.

If xis -0, the result is —0.

If x is +o0, the result is +oo.

If x is —o0, the result is —oo.

20.2.2.10 Math.ceil (x)

Returns the smallest (closest to —) Number value that is' not less than x and is equal to'a mathematical
integer. If x is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is —0, the result is —0.

If x is +oo, the result is +oo.

If x is —oo, the result is —co.

If x is less than O but greater than -1, the result is —0.

The value of Math.ceil (x) is the same as the value of -Math. floor (-x).
20.2.2.11 Math.clz32 (x)

When Math.clz32.is called with one argument x, the following steps are taken:

1. Let n be ToUint32(x).

2. ReturnIfAbrupt(n).

3. Let p-bethe number of leading zero bits in the 32-bit binary representation of 7.
4. Return p.

NOTE If nis 0, p will be 32." If the most significant bit of the 32-bit binary encoding of n is 1, p will be 0.
20.2.2.12Math.cos (x)

Returns an implementation-dependent approximation to the cosine of x. The argument is expressed in
radians.

e Ifx isNaN, the result is NaN.
e Ifxis+0, the resultis 1.

e Ifxis—0,theresultis 1.

o Ifx is+oo, the result is NaN.
e Ifxis—oo, the result is NaN.

20.2.2.13 Math.cosh (x)

Returns an implementation-dependent approximation to the hyperbolic cosine of x.
© Ecma International 2014 375

secind

If x is NaN, the result is NaN.
If xis +0, the result is 1.

If xis -0, the result is 1.

If X is +o0, the result is +oo.

If x is —0, the result is +oo.

NOTE The value of cosh(x) is the same as (exp(x) + exp(-x))/2.
20.2.2.14Math.exp (x)

Returns an implementation-dependent approximation to the exponential function of x (e raised to the
power of x, where ¢ is the base of the natural logarithms).

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If x is =0, the result is 1.

If x is +oo, the result is +oo.

If x is —oo, the result is +0.

20.2.2.15Math.expm1 (x)

Returns an implementation-dependent approximation to subtracting 1 from the exponential function of x
(e raised to the power of x, where e is the base of the natural logarithms). The result is computed in a
way that is accurate even when the value of x is close 0.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result’is —0.
If x is +o0, the result is +oo.
If x is —oo, the result is —1.

20.2.2.16 Math.floor (x)

Returns the greatest (closest to +w) Number value that is not greater than x and is equal to a
mathematical integer. If x is already an integer, the result is x.

If x is NaN, the result is NalN.

If x 1s +0, the result is +0.

If x is -0, the result is —0.

If x is +oo, the result is +oo.

If x is —oo, the result is —co.

If x is greater than 0 but less than 1, the result is +0.

NOTE The value of Math. floor (x) is the same as the value of -Math.ceil (-x).
20.2.2.17 Math.fround (x)

When Math. fround is called with argument x the following steps are taken:

1. Ifxis NaN, return NaN.

2. Ifxis one of +0, —0, +oo, —c0, then return x.

3. Let x32 be the result of converting x to a value in IEEE-754-2008 binary32 format using
roundTiesToEven.

© Ecma International 2014 376

secind

4. Let x64 be the result of converting x32 to a value in IEEE-754-2008 binary64 format.
5. Return the ECMAScript Number value corresponding to x64.

20.2.2.18 Math.hypot (value1, value2 [, ...values])

Math.hypot returns an implementation-dependent approximation of the square root of the sum of
squares of its arguments.

If no arguments are passed, the result is +0.

If any argument is +oo, the result is +oo.

If any argument is —, the result is +o.

If no argument is +o or —e0, and any argument is NaN, the result is NaN.
If all arguments are either +0 or -0, the result is +0.

The length property of the hypot function is 2.

NOTE Implementations should take care to avoid the loss of precision from overflows and underflows that are
prone to occur in naive implementations when this function is called with more than two arguments.

20.2.2.19 Math.imul (x, y)

When the Math. imul is called with arguments x and y the following steps are taken:

Let product be (a x b) modulo 2*.
If product > 2°', return product ~ 2**, otherwise return product.

1. Let a be ToUint32(x).
2. ReturnIfAbrupt(a).

3. Let b be ToUint32(y).
4. ReturnIfAbrupt(b).

5.

6.

20.2.2.20 Math.log (x)

Returns an implementation-dependent approximation to the natural logarithm of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x is +0 or —0, the result is —co.

If x is 1, the result is +O0.

If x is +oo, the result is +oo.

20.2.2.21 Math.log1p (x)

Returns an implementation-dependent approximation to the natural logarithm of 1 + x. The result is
computed in a way thatis accurate even when the value of x is close to zero.

e If xis NaN, the result is NaN.

If x is less than -1, the result is NaN.
If xis -1, the result is -oo.

If xis +0, the result is +0.

If x is -0, the result is —0.

If x is +o0, the result is +oo.

© Ecma International 2014 377

secind

20.2.2.22 Math.log10 (x)

Returns an implementation-dependent approximation to the base 10 logarithm of x.

If x is NaN, the result is NaN.

If x is less than O, the result is NaN.
If xis +0, the result is —oo.

If xis -0, the result is —oo.

If xis 1, the result is +0.

If x is +o0, the result is +oo.

20.2.2.23 Math.log2 (x)

Returns an implementation-dependent approximation to the base 2 logarithm of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x is +0, the result is —oo.

If x is -0, the result is —oo.

If xis 1, the resultis +0.

If x is +o0, the result is +oo.

20.2.2.24 Math.max (value1, value2 [, ...values])

Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of the
resulting values.

e Ifno arguments are given, the result is —co.

e Ifany valueis NaN, the result is NaN.

e The comparison of values to determine the largest value is done using the Abstract Relational
Comparison algorithm (7.2.8) except that+0 is considered to be larger than —0.

The length property of the max method is 2.
20.2.2:25 Math.min (' value1, value2 [, ...values])

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of the
resulting values.

e Ifno arguments are given, the result is +oo.

e Ifany value is NaN, the result is NaN.

e The comparison of values to determine the smallest value is done using the Abstract Relational
Comparison algorithm (7.2.8) except that +0 is considered to be larger than —0.

The length property of the min method is 2.
20.2.2.26 Math.pow (x,y)

Returns an implementation-dependent approximation to the result of raising x to the power y.

e Ifyis NaN, the result is NaN.

© Ecma International 2014 378

secind

If y is +0, the result is 1, even if x is NaN.

If y is -0, the result is 1, even if x is NaN.

If x is NaN and y is nonzero, the result is NaN.

If abs(x)>1 and y is +oo, the result is +oo.

If abs(x)>1 and y is —oo, the result is +0.

If abs(x) is 1 and y is +oo, the result is NaN.

If abs(x) is 1 and y is —oo, the result is NaN.

If abs(x)<1 and y is +oo, the result is +0.

If abs(x)<1 and y is —oo, the result is +oo.

If x is +oo and y>0, the result is +oo.

If x is +oo and y<O0, the result is +0.

If x is —o0 and y>0 and y is an odd integer, the result is —oo.
If x is —o0 and y>0 and y is not an odd integer, the result is +co.
If x is —o0 and y<0 and y is an odd integer, the result is —0.

If x is —o0 and y<0 and y is not an odd integer, the result is +0.
If x is +0 and y>0, the result is +0.

If x is +0 and y<0, the result is +oo.

If x is —0 and y>0 and y is an odd integer, the result is —0.

If x is —0 and y>0 and y is not an odd integer, the result is +0:
If x is =0 and y<0 and y is an odd integer, the result is —co.

If x is —0 and y<0 and y is not an odd-integer, the result is +oo.
If x<0 and x is finite and y is finite and y isnot an integer, the result is NaN.

20.2.2.27 Math.random ()

Returns a Number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or
pseudo randomly with approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments.

Each Math.random function created for distinct code Realms must produce a distinct sequence of values
from successive calls.

20.2.2.28 Math.round (x)

Returns the Number value that is closest to x and is equal to a mathematical integer. If two integer
Number values are equally close to x, then the result is the Number value that is closer to +ew. If x is
already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is —0, the result is —0.

If x is +oo, the result is +oo.

If x 15 —o0, the result is —oo.

If x is greater than 0 but less than 0.5, the result is +0.

If x is less than O but greater than or equal to -0.5, the result is —0.

NOTE 1 Math.round (3.5) returns 4, but Math.round (-3.5) returns -3.

NOTE 2 The value of Math.round (x) is the same as the value of Math. floor (x+0.5), except when x is -0
or is less than 0 but greater than or equal to -0.5; for these cases Math.round(x) returns -0, but
Math.floor (x+0.5) returns +0.

© Ecma International 2014 379

secind

20.2.2.29 Math.sign(x)

Returns the sign of the x, indicating whether x is positive, negative or zero.

If x is NaN, the result is NaN.

If xis -0, the result is —0.

If x is +0, the result is +0.

If x is negative and not -0, the result is —1.
If x is positive and not +0, the result is +1.

20.2.2.30 Math.sin (x)

Returns an implementation-dependent approximation to the sine of x. The argument is expressed in
radians.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is —0, the result is —0.

If x is +o0 or —oo, the result is NaN.

20.2.2.31 Math.sinh(x)

Returns an implementation-dependent approximation to the hyperbolic sine of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is -0.

If x is +o0, the result-is-+co.

If xis —co, the result is —oo.

NOTE The value of sinh(x) is the same as (exp(x) - exp(-x))/2.
20.2.2.32 Math.sqrt (x)

Returns an implementation-dependent approximation to the square root of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is —0.

If x is +oo, the result is +oo.

20.2.2.33 Math.tan (x)

Returns an implementation-dependent approximation to the tangent of x. The argument is expressed in
radians.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is -0, the result is —0.

If x is +oo or —oo, the result is NaN.

© Ecma International 2014 380

ecind

20.2.2.34 Math.tanh (x)

Returns an implementation-dependent approximation to the hyperbolic tangent of x.

If x is NaN, the result is NaN.
If xis +0, the result is +0.
If xis -0, the result is —0.
If x is +o0, the result is +1.
If x is —oo, the result is -1.

NOTE The value of tanh(x) is the same as (exp(x) - exp(-x))/(exp(x) + exp(-x))-
20.2.2.35Math.trunc (x)

Returns the integral part of the number x, removing any fractional digits. If x is already an integer, the
result is x.

If x is NaN, the result is NaN.

If x is -0, the result is —0.

If x is +0, the result is +0.

If x is +oo, the result is +oo.

If x is —o0, the result is —oo.

If x is greater than O but less than 1, the result is +0.
If x is less than O but greater than —1, the result.is —0.

20.3 Date Objects
20.3.1 Overview of Date Objects and Definitions of Abstract Operations

The following functions.are abstract operations that operate on time values (defined in 20.3.1.1). Note
that, in every case, if any argument to,one of these functions is NaN, the result will be NaN.

20.3.1.1 Time Values and Time Range

A Date object contains a Number indicating a particular instant in time to within a millisecond. Such a
Number.is called a fime value. A time value may also be NaN, indicating that the Date object does not
represent a specific instant of time.

Time is. measured in ECMAScript in milliseconds since 01 January, 1970 UTC. In time values leap
seconds are ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript
Number values can represent all integers from —9,007,199,254,740,992 to 9,007,199,254,740,992; this
range suffices to measure times to millisecond precision for any instant that is within approximately
285,616 years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly —
100,000,000 days to 100,000,000 days measured relative to midnight at the beginning of 01 January,
1970 UTC. This gives a range of 8,640,000,000,000,000 milliseconds to either side of 01 January, 1970
UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value +0.

© Ecma International 2014 381

secind

20.3.1.2 Day Number and Time within Day

A given time value t belongs to day number

Day(¢) = floor(¢ / msPerDay)
where the number of milliseconds per day is

msPerDay = 86400000

The remainder is called the time within the day:

TimeWithinDay(#) = t modulo msPerDay
20.3.1.3 Year Number

ECMAScript uses an extrapolated Gregorian system to map.a day number to a year number and to
determine the month and date within that year. In this system, leap years are precisely those which are
(divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of days in year number y is
therefore defined by

DaysInYear(y) =365 if (y modulo 4)=0
=366 if (y modulo 4) =0 and (y modulo 100). 0
=365 if (y modulo 100) = 0 and (y modulo 400) = 0
=366 if (y modulo 400) =0

All non-leap years have 365 days with the usual number of days per month and leap years have an extra
day in February. The day number of the first day of year y is given. by:
DayFromYear(y) = 365 x (y—1970) + floor((y—1969)/4) < floor((y—1901)/100) + floor((y—1601)/400)

The time value of the startof a year is:

TimeFromYear(y) =msPerDay x DayFromY ear(y)

A time value determines a year by:

YearFromTime(?) = the largest integer y (closest to positive infinity) such that TimeFromYear(y) < ¢

The leap-year function is 1 for a time within a leap year and otherwise is zero:

InLeapYear(f) = 0 if DaysInYear(YearFromTime(?)) = 365
=1 if DaysInYear(YearFromTime(?)) = 366

20.3.1.4 Month Number

Months are identified by.an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t) from a
time value t to a month number is defined by:

MonthFromTime(f)=0 if 0 < DayWithinYear(s) <31
=1 if 31<DayWithinYear (f) < 59+InLeapYear(?)
=2 if 59+InLeapYear(r) < DayWithinYear (¢) < 90+InLeapYear(¢)
=3 if 90+InLeapYear(?) < DayWithinYear (¢¥) < 120+InLeapYear(?)
=4 if 120+InLeapYear(s) < DayWithinYear (f) < 151+InLeapYear(¢)
=5 if [151+InLeapYear(¢) < DayWithinYear () < 181+InLeapYear(?)
=6 if 181+InLeapYear(¢) < DayWithinYear (¢) <212+InLeapYear(r)

© Ecma International 2014 382

=7 if 212+InLeapYear(f) < DayWithinYear (f) < 243+InLeapYear(¢)
=8 if 243+InLeapYear(f) < DayWithinYear (f) < 273+InLeapYear(¢)
=9 if 273+InLeapYear(f) < DayWithinYear (f) < 304+InLeapYear(¢)
=10 if 304+InLeapYear(f) < DayWithinYear (f) < 334+InLeapYear(?)
if 334+InLeapYear(f) < DayWithinYear (f) < 365+InLeapYear(¢)

where

DayWithinYear(¢)= Day(f)-DayFromYear(YearFromTime(z))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies
May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10
specifies November; and 11 specifies December. Note that MonthFromTime(0) = 0, corresponding to
Thursday, 01 January, 1970.

20.3.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive.” The mapping
DateFromTime(t) from a time value t to a month number is defined by:

DateFromTime(f) = DayWithinYear(¢)+1 if MonthFromTime(#)=0
= DayWithinYear(z)-30 if MonthFromTime(£)=1
= DayWithinYear(z)-58—InLeapYear(f) if MonthFromTime(#)=2
= DayWithinYear()—89—InLeapYear(f) if MonthFromTime(f)=3
= DayWithinYear(z)-119—-InLeapYear(z) if MonthFromTime(f)=4
= DayWithinYear(z)-150—InLeapYear(¢). if MonthFromTime(¢)=5
= DayWithinYear(z)—-180-InLeapYear(#) if MonthFromTime(7)=6
= DayWithinYear(z)-211-InLeapYear(z) if MonthFromTime(#)=7
= DayWithinYear(z)—242—InLeapYear(f) if MonthFromTime(#)=8
= DayWithinYear(s)-272—-InLeapYear() if MonthFromTime(#)=9
= DayWithinYear(z)-303—-InLeapYear() if MonthFromTime(¢)=10
= DayWithinYear(s)-333—-InLeapYear(z) if MonthFromTime(#)=11

20.3.1.6 Week Day

The weekday for a particular time value ¢ is defined as

WeekDay(f) = (Day(?) + 4) modulo 7
A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesday;
4 specifies. Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) = 4,
corresponding to Thursday, 01 January, 1970.
20.3.1.7 Local Time Zone Adjustment
An implementation of ECMAScript is expected to determine the local time zone adjustment. The local
time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC

represents the local standard time. Daylight saving time is not reflected by LocalTZA.

NOTE It is recommended that implementations use the time zone information of the IANA Time Zone Database.

© Ecma International 2014 383

secind

20.3.1.8 Daylight Saving Time Adjustment

An implementation dependent algorithm using best available information on time zones to determine the
local daylight saving time adjustment DaylightSavingTA(f), measured in milliseconds. An implementation
of ECMAScript is expected to make its best effort to determine the local daylight saving time adjustment.

20.3.1.9 Local Time

Conversion from UTC to local time is defined by
LocalTime(¢) = ¢t + Local TZA + DaylightSavingTA(t)

Conversion from local time to UTC is defined by

UTC(¢) = ¢ — LocalTZA — DaylightSavingTA(z — LocalTZA)
NOTE UTC(LocalTime(?)) is not necessarily always equal to t.

20.3.1.10 Hours, Minutes, Second, and Milliseconds

The following functions are useful in decomposing time values:
HourFromTime(¢)= floor(z / msPerHour) modulo HoursPerDay
MinFromTime(¢)= floor(¢ / msPerMinute) modulo MinutesPerHour
SecFromTime(¢)= floor(¢ / msPerSecond) modulo SecondsPerMinute

msFromTime(¢)= t modulo msPerSecond
where

HoursPerDay =24

MinutesPerHour = 60

SecondsPerMinute= 60

msPerSecond = 1000

msPerMinute = 60000 = msPerSecond x SecondsPerMinute
msPerHour = 3600000 = msPerMinute x MinutesPerHour

20.3.1.11 MakeTime (hour, min, sec, ms)

The_operator MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMAScript Number values. This operator functions as follows:

1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.

2. Let h be Tolnteger(hour).

3. Let m be Tolnteger(min).

4. Let s be Tolnteger(sec).

5. Let milli be Tolnteger(ms).

6. Let¢be s * msPerHour + m * msPerMinute + s * msPerSecond + milli, performing the arithmetic
according to IEEE 754 rules (that is, as if using the ECMAScript operators * and +).

7. Return .

20.3.1.12MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be ECMAScript
Number values. This operator functions as follows:

© Ecma International 2014 384

ecimna

If year is not finite or month is not finite or date is not finite, return NaN.

Let y be Tolnteger(year).

Let m be Tolnteger(month).

Let dt be Tolnteger(date).

Let ym be y + floor(m /12).

Let mn be m modulo 12.

Find a value ¢ such that YearFromTime(¢) is ym and MonthFromTime(¢) is mn and DateFromTime(?)
is 1; but if this is not possible (because some argument is out of range), return NaN.

8. Return Day(¢) + dr — 1.

Nk wN =

20.3.1.13 MakeDate (day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript Number values. This operator functions as follows:

1. Ifday is not finite or time is not finite, return NaN.
2. Return day x msPerDay + time.

20.3.1.14 TimeClip (time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an
ECMAScript Number value. This operator functions as follows:

1. If time is not finite, return NaN.
2. Ifabs(time) > 8.64 x 10", return NaN.
3. Return Tolnteger(time) + (+0). (Adding a positive zero converts —0 to +0.)

NOTE The point of step 3 is_that an implementation is permitted a choice of internal representations of time
values, for example as a 64-bit-signed integer or as a 64-bit floating-point value. Depending on the implementation,
this internal representation may or may not distinguish —0 and +0.

20.3.1.15Date Time String Format

ECMAScript defines a string interchange format for date-times based upon a simplification of the ISO
8601 Extended Format. The format is as follows: YYYY-MM-DDTHH :mm: ss.sssZ

Where the fields are as follows:

YYYY is the decimal digits of the year 0000 to 9999 in the Gregorian calendar.

- “~" (hyphen) appears literally twice in the string.

MM is the month of the year from 01 (January) to 12 (December).

DD is the day of the month from 01 to 31.

T “T" appears literally in the string, to indicate the beginning of the time element.

HH is the number of complete hours that have passed since midnight as two decimal digits
from 00 to 24.

:” (colon) appears literally twice in the string.

mm is the number of complete minutes since the start of the hour as two decimal digits from
00 to 59.

ss is the number of complete seconds since the start of the minute as two decimal digits
from 00 to 59.

“ n

.” (dot) appears literally in the string.

© Ecma International 2014 385

secind

sss is the number of complete milliseconds since the start of the second as three decimal
digits.

Z is the time zone offset specified as “z2” (for UTC) or either “+” or “~” followed by a time
expression HH : mm

This format includes date-only forms:

YYYY
YYYY-MM
YYYY-MM-DD

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by
one of the following time forms with an optional time zone offset appended:

THH :mm
THH:mm:ss
THH:mm:ss.sss

All numbers must be base 10. If the MM or DD fields are absent “01” is used as the value. If the HH, mm, or
ss fields are absent “00” is used as the value and the value of an-absent sss field is “000”. If the time
zone offset is absent, the date-time is interpreted as a local time.

lllegal values (out-of-bounds as well as syntax errors) in a format string means that the format string is not
a valid instance of this format.

NOTE 1 As every day both starts and ends with midnight, the two notations 00: 00 and 24:00 are available to
distinguish the two midnights that can be associated with one date. This means that the following two notations refer
to exactly the same point in time: 1995-02-04T24:00 and1995-02-05T00:00

NOTE 2 There exists no.international standard that specifies abbreviations for civil time zones like CET, EST, etc.
and sometimes the same @abbreviation is even used for two very different time zones. For this reason, ISO 8601 and
this format specifies numeric representations of date and time.

20.3.1.15.1 Extended years

ECMAScript requires.the ability to specify 6 digit years (extended years); approximately 285,426 years,
either forward or backward, from 01 January, 1970 UTC. To represent years before 0 or after 9999, ISO
8601 permits the expansion of the year representation, but only by prior agreement between the sender
and the receiver. In the simplified ECMAScript format such an expanded year representation shall have 2
extra year digits and is always prefixed with a + or — sign. The year 0 is considered positive and hence
prefixed with a + sign.

NOTE Examples of extended years:
-283457-03-21T15:00:59.0082 283458 B.C.
-000001-01-01T00:00:00Z2 2B.C.
+000000-01-01T00:00:00Z2 1B.C.
+000001-01-01T00:00:00Z 1A.D.
+001970-01-01T00:00:00Z 1970 A.D.
+002009-12-15T00:00:00Z 2009 A.D.

+287396-10-12T708:59:00.992Z 287396 A.D.

© Ecma International 2014 386

secind

20.3.2 The Date Constructor

The Date constructor is the %Date% intrinsic object and the initial value of the Date property of the
global object. When Date is called as a function rather than as a constructor, it returns a String
representing the current time (UTC). However, if the this value passed in the call is an Object with an
uninitialized [[DateValue]] internal slot, Date initializes the this object using the argument value. This
permits Date to be used both as a function for creating data strings and to perform constructor instance
initialization.

The Date constructor is designed to be subclassable. It may be used as the value of an extends clause
of a class declaration. Subclass constructors that intended to inherit the'specified Date behaviour must
include a super call to the Date constructor to initialize the [[DateValue]] state of subclass instances.
20.3.2.1 Date (year, month [, date [, hours [, minutes [, seconds [, ms]]1]1]1)

This description applies only if the Date constructor is called with at least two arguments.

When the Date function is called the following steps are taken:

1. Let numberOfArgs be the number of arguments passed to. this constructor call.
2. Assert: numberOfArgs > 2.
3. Let O be the this value.
4. If Type(O) is Object and O has a [[DateValue]] internal slot and the value of [[DateValue]] is
undefined, then
a. Let y be ToNumber(year).
b. ReturnlfAbrupt(year).
c. Let m be ToNumber(month).
d. ReturnIfAbrupt(month).
e. Ifdate is supplied then let df be ToNumber(date); else let dt be 1.
f. ReturnIfAbrupt(dt).
g. If hours is supplied then let 4 be ToNumber(kours); else let i be 0.
h. ReturnIfAbrupt(k).
i. If minutes 1s supplied-then let min be ToNumber(minutes); else let min be 0.
j- ReturnIfAbrupt(min).
k. <1If seconds is supplied then let s be ToNumber(seconds); else let s be 0.
1. ReturnIfAbrupt(s).
m. If ms is supplied then let milli be ToNumber(ms); else let milli be 0.
n. ReturnlfAbrupt(milli).
o. Ifyisnot NaN and O < Tolnteger(y) < 99, then let yr be 1900+Tolnteger(y); otherwise, let yr be
V.
p- Let finalDate be MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli)).
q. Setthe [[DateValue]] internal slot of O to TimeClip(UTC(finalDate)).
r. Return O.
5. Else,
a. Let now be the Number that is the time value (UTC) identifying the current time.

b. Return ToDateString (now).
20.3.2.2 Date (value)
This description applies only if the Date constructor is called with exactly one argument.

When the Date function is called the following steps are taken:

© Ecma International 2014 387

eCmd

1. Let numberOfArgs be the number of arguments passed to this constructor call.
2. Assert: numberOfArgs = 1.
3. Let O be the this value.
4. If Type(O) is Object and O has a [[DateValue]] internal slot and the value of [[DateValue]] is
undefined, then
a. If Type(value) is Object and value has a [[DateValue]] internal slot, then
i. Let tv be thisTimeValue(value).
b. Else,
i. Let v be ToPrimitive(value).
ii. If Type(v) is String, then
1. Let ¢v be the result of parsing v as a date, in exactly the'same manner as for the parse
method (20.3.3.2). If the parse resulted in an abrupt.completion, ¢v is the Completion
Record.
iii. Else,
1. Let tv be ToNumber(v).
c. ReturnIfAbrupt(sv).
d. Set the [[DateValue]] internal slot of O to TimeClip(zv).
e. Return O.
5. Else,
a. Let now be the Number that is the time value (UTC) identifying the current time.

b. Return ToDateString (now).
20.3.2.3 Date ()
This description applies only if the Date constructor is called with no arguments.

When the Date function is called the following steps are taken:

Let numberOfArgs be the number of arguments passed to this constructor call.

Assert: numberOfArgs = 0.

Let O be the this value.

If Type(O) is Object and O has a [[DateValue]] internal slot and the value of [[DateValue]] is
undefined, then

a. Set the [[DateValue]] internal slot of O to the time value (UTC) identifying the current time.
b. Return O.

5. Else,

a. Let now be the Number that is the time value (UTC) identifying the current time.

b. Return ToDateString (now).

AW N —

20.3.2.4 new Date (...argumentsList)

When Date is called as part of a new expression with argument list argumentsList it performs the following
steps:

1. Let F be the Date function object on which the new operator was applied.
Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return Construct (F, argumentsList).

If Date is implemented as an ECMAScript function object, its [[Construct]] internal method will perform
the above steps.

© Ecma International 2014 388

»eCma

20.3.3 Properties of the Date Constructor

The value of the [[Prototype]] internal slot of the Date constructor is the Function prototype object
(19.2.3).

Besides the 1ength property (whose value is 7), the Date constructor has the following properties:
20.3.3.1 Date.now ()

The now function return a Number value that is the time value designating the UTC date and time of the
occurrence of the call to now.

20.3.3.2 Date.parse (string)

The parse function applies the ToString operator to its argument. If ToString results in an abrupt
completion the Completion Record is immediately returned. Otherwise, parse interprets the resulting
String as a date and time; it returns a Number, the UTC time value corresponding to the date and time.
The String may be interpreted as a local time, a UTC time, or a time in'some other time zone, depending
on the contents of the String. The function first attempts to parse the format of the String according to the
rules (including extended years) called out in Date Time String Format (20.3.1.15). If the String does not
conform to that format the function may fall back to any implementation-specific heuristics or
implementation-specific date formats. Unrecognizable Strings or dates containing illegal element values
in the format String shall cause Date.parse toreturn NaN.

If x is any Date object whose milliseconds amount is zero. within ‘a particular implementation of
ECMAScript, then all of the following expressions should produce.the same numeric value in that
implementation, if all the properties referenced have their initial values:

x.valueOf ()

Date.parse (x. toString())
Date.parse(x.toUTCString())
Date.parse (x.toISOString())

However, the expression
Date.parse (x.toLocaleString())

is not required to produce the same Number value as the preceding three expressions and, in general,
the value produced by Date .parse is implementation-dependent when given any String value that does
not.conform to the Date Time String Format (20.3.1.15) and that could not be produced in that
implementation by the toString or toUTCString method.

20.3.3.3 Date.prototype

The initial value of Date .prototype is the built-in Date prototype object (20.3.4).

This property has the attributes { [[Writable]): false, [[Enumerable]]: false, [[Configurable]]: false }.
20.3.3.4 Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]]1]1)

When the UTC function is called with fewer than two arguments, the behaviour is implementation-
dependent. When the UTC function is called with two to seven arguments, it computes the date from year,
month and (optionally) date, hours, minutes, seconds and ms. The following steps are taken:

1. Let y be ToNumber(year).
© Ecma International 2014 389

ecimna

ReturnlfAbrupt(y).

Let m be ToNumber(month).

ReturnIfAbrupt(m).

If date is supplied then let df be ToNumber(date); else let dt be 1.
ReturnIfAbrupt(dt).

If hours is supplied then let 4 be ToNumber(fours); else let 4 be 0.
ReturnIfAbrupt(#).

9. If minutes is supplied then let min be ToNumber(minutes); else let min be 0.
10. ReturnIfAbrupt(min).

11. If seconds is supplied then let s be ToNumber(seconds); else let s be 0«

12. ReturnIfAbrupt(s).

13. If ms is supplied then let milli be ToNumber(ms); else let milli be 0.

14. ReturnIfAbrupt(milli).

15. If y is not NaN and 0 < Tolnteger(y) < 99, then let yr be 1900+Tolnteger(y); otherwise, let yr be y.
16. Return TimeClip(MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli))).

PRI RE LD

The length property of the UTC function is 7.

NOTE The UTC function differs from the Date constructor in two ways: it returns a time value as a Number,
rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

20.3.3.5 Date[@@create] ()

The @@create method of an object F performs the following steps:
1. Let obj be OrdinaryCreateFromConstructor(F, "$DatePrototype%", ([[DateValue]])).
2. Return obj.

The value of the name property of this function is " [Symbol.create] ".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[DateValue]] is initially assigned the value undefined as a flag to indicate that the instance has not yet
been initialized by the Date constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations-may choose to encode the flag in some other manner.

20.3.4 Properties of the Date Prototype Object

The Date prototype object is itself an ordinary object. It is not a Date instance and does not have a
[[DateValue]] internal slot.

The value of the [[Prototype]] internal slot of the Date prototype object is the standard built-in Object
prototype object (20.3.4).

Unless explicitly defined otherwise, the methods of the Date prototype object defined below are not
generic and the this value passed to them must be an object that has a [[DateValue]] internal slot that
has been initialized to a time value.

The abstract operation thisTimeValue(value) performs the following steps:

1. If Type(value) is Object and value has a [[DateValue]] internal slot, then
a. Let n be the Number that is the value of value’s [[DateValue]] internal slot.
b. Ifn is not undefined, then return »n.

© Ecma International 2014 390

»eCma

2. Throw a TypeError exception.

In following descriptions of functions that are properties of the Date prototype object, the phrase “this
Date object” refers to the object that is the this value for the invocation of the function. The phrase “this
time value” within the specification of a method refers to the result returned by calling the abstract
operation thisTimeValue with the this value of the method invocation passed as the argument.

20.3.4.1 Date.prototype.constructor

The initial value of Date.prototype.constructor is the built-in Date constructor.
20.3.4.2 Date.prototype.getDate ()

Let ¢ be this time value.

ReturnIfAbrupt(¢).

If ¢ is NaN, return NaN.
Return DateFromTime(LocalTime(%)).

B W =

20.3.4.3 Date.prototype.getDay ()

Let ¢ be this time value.
ReturnIfAbrupt(?).

If ¢ is NaN, return NaN.

Return WeekDay(LocalTime(?)).

AW N =

20.3.4.4 Date.prototype.getFullYear ()

Let ¢ be this time value.
ReturnIfAbrupt(?).

If ¢ is NaN, return NaN.

Return YearFromTime(Local Time(%)).

AW N —

20.3.4.5 Date.prototype.getHours ()

Let # be this time value.
ReturnIfAbrupt(z).

If ¢ is NaN, return NaN.

Return HourFromTime(LocalTime(?)).

B W N =

20.3.4.6 Date.prototype.getMilliseconds ()

1. Let ¢ be this time value.

2. ReturnIfAbrupt(¢).

3. [Ift¢is NaN, return NaN.

4. Return msFromTime(LocalTime(?)).

20.3.4.7 Date.prototype.getMinutes ()

Let ¢ be this time value.
ReturnIfAbrupt(¢).

If ¢ is NaN, return NaN.

Return MinFromTime(LocalTime(%)).

AWK —

© Ecma International 2014 391

secind

20.3.4.8 Date.prototype.getMonth ()

Let ¢ be this time value.
ReturnlfAbrupt(z).

If ¢ is NaN, return NaN.

Return MonthFromTime(LocalTime(?)).

A WO -

20.3.4.9 Date.prototype.getSeconds ()
1. Let ¢ be this time value.
2. ReturnIfAbrupt(¢).
3. Iftis NaN, return NaN.
4. Return SecFromTime(LocalTime(%)).
20.3.4.10 Date.prototype.getTime ()

1. Return this time value.

20.3.4.11 Date.prototype.getTimezoneOffset ()

Returns the difference between local time and UTC time in minutes.

1. Let ¢ be this time value.

2. ReturnIfAbrupt(?).

3. Iftis NaN, return NaN.

4. Return (¢ — LocalTime(?)) / msPerMinute.

20.3.4.12 Date.prototype.getUTCDate ()

Let ¢ be this timevalue.
ReturnIfAbrupt(?).

If ¢ is NaN, return NaN.
Return DateFromTime(?).

AW N —

20.3.4.13 Date:prototype.getUTCDay ()

Let ¢ be this time value.
ReturnIfAbrupt(?).

If ¢ is NaN, return NaN.
Return WeekDay(7).

AW N -

20.3.4.14 Date.prototype.getUTCFullYear ()

1. Let ¢ be this time value.
2. ReturnIfAbrupt(?).

3. Iftis NaN, return NaN.
4. Return YearFromTime(?).

20.3.4.15 Date.prototype.getUTCHours ()

1. Let ¢ be this time value.
2. ReturnIfAbrupt(?).
3. [Ift¢is NaN, return NaN.

© Ecma International 2014

392

ecimna

4.

Return HourFromTime(?).

20.3.4.16 Date.prototype.getUTCMilliseconds ()

AW~

Let ¢ be this time value.
ReturnlfAbrupt(z).

If ¢ is NaN, return NaN.
Return msFromTime(z).

20.3.4.17 Date.prototype.getUTCMinutes ()

AW -

Let ¢ be this time value.
ReturnlfAbrupt(z).

If ¢ is NaN, return NaN.
Return MinFromTime(z).

20.3.4.18 Date.prototype.getUTCMonth ()

AW =

Let ¢ be this time value.
ReturnIfAbrupt(¢).

If ¢ is NaN, return NaN.
Return MonthFromTime(z).

20.3.4.19 Date.prototype.getUTCSeconds ()

AW N —

Let ¢ be this time value.

ReturnIfAbrupt(?).

If ¢ is NaN, return NaN.
Return SecFromTime(z).

20.3.4.20 Date.prototype.setDate (date)

1.

9]

Let ¢ be the result of LocalTime(this time value).

Let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(YearFromTime(?), MonthFromTime(?), df),
TimeWithinDay(?)).

Let u be TimeClip(UTC(newDate)).

Set the [[DateValue]] internal slot of this Date object to u.

Return u.

20.3.4.21 Date.prototype.setFullYear (year [, month [, date]])

AN e

Let ¢ be the result'of LocalTime(this time value); but if this time value is NaN, let ¢ be +0.

Let y be ToNumber(year).

If month is not specified, then let m be MonthFromTime(¢); otherwise, let m be ToNumber(month).
If date is not specified, then let dt be DateFromTime(); otherwise, let df be ToNumber(date).

Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(¢)).

Let # be TimeClip(UTC(newDate)).

Set the [[DateValue]] internal slot of this Date object to u.

Return u.

The length property of the setFullYear method is 3.

© Ecma International 2014 393

oecnd

NOTE If month is not specified, this method behaves as if month were specified with the value getMonth () . If
date is not specified, it behaves as if date were specified with the value getDate ().

20.3.4.22 Date.prototype.setHours (hour[, min[,sec[, ms]]])

Let ¢ be the result of LocalTime(this time value).

Let # be ToNumber(hour).

If min is not specified, then let m be MinFromTime(¢); otherwise, let m be ToNumber(min).
If sec is not specified, then let s be SecFromTime(¢); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(?); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(¢), MakeTime(%, m, s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[DateValue]] internal slot of this Date object to u.

Return u.

VRN B DN =

The length property of the setHours method is 4.

NOTE If min is not specified, this method behaves as if min were specified with the value getMinutes () . If sec
is not specified, it behaves as if sec were specified with the value getSeconds () . If ms is not specified, it behaves as
if ms were specified with the value getMilliseconds ().

20.3.4.23 Date.prototype.setMilliseconds (.ms)

Let ¢ be the result of Local Time(this time value).

Let time be MakeTime(HourFromTime(?), MinFromTime(¢), SecFromTime(z), ToNumber(ms)).
Let u be TimeClip(UTC(MakeDate(Day(?), time))):

Set the [[DateValue]] internal slot of this Date object to u.

Return u.

N AW =

20.3.4.24 Date.prototype.setMinutes (min [, sec[, ms]])

Let ¢ be the result of Local Time(this.time value).

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(?); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(?); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(z), MakeTime(HourFromTime(?), m, s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[DateValue]] internal slot of this Date object to u.

Return u.

CORINO™ 1 B L D =

The length property of the setMinutes method is 3.

NOTE If sec is not specified, this method behaves as if sec were specified with the value getSeconds (). If ms is
not specified, this behaves as if ms were specified with the value getMilliseconds ().

20.3.4.25 Date.prototype.setMonth (month [, date])

Let ¢ be the result of LocalTime(this time value).

Let m be ToNumber(month).

If date is not specified, then let df be DateFromTime(¢); otherwise, let df be ToNumber(date).
Let newDate be MakeDate(MakeDay(YearFromTime(¢), m, dt), TimeWithinDay(¢)).

Let u be TimeClip(UTC(newDate)).

N AW~

© Ecma International 2014 394

oecnd

6. Set the [[DateValue]] internal slot of this Date object to u.
7. Return u.

The length property of the setMonth method is 2.
NOTE If date is not specified, this method behaves as if date were specified with the value getDate ().
20.3.4.26 Date.prototype.setSeconds (sec[, ms])

Let ¢ be the result of LocalTime(this time value).

Let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(?); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(?), MakeTime(HourFromTime(¢), MinFromTime(?), s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[DateValue]] internal slot of this Date object to.u.

Return u.

NowunsLN =

The 1length property of the setSeconds method is 2.
NOTE If ms is not specified, this method behaves as if ms were specified with the value getMilliseconds ().
20.3.4.27 Date.prototype.setTime (time)

1. Let v be TimeClip(ToNumber(zime)).

2. ReturnIfAbrupt(v).

3. Set the [[DateValue]] internal slot of this Date object to v.
4. Return v.

20.3.4.28 Date.prototype:setUTCDate (date)

Let ¢ be this time value.

ReturnIfAbrupt(?):

Let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(YearFromTime(?), MonthFromTime(?), df),
TimeWithinDay(?)).

Let v be TimeClip(rewDate):

Set the [[DateValue]] internal slot of this Date object to v.

7. Return v.

A WN —

N D

20.3.4.29 Date.prototype.setUTCFullYear (year [, month [, date]])

Let ¢ be this time value; but if this time value is NaN, let ¢ be +0.

ReturnIfAbrupt(¢).

Let y be ToNumber(year).

If month is not specified, then let m be MonthFromTime(¢); otherwise, let m be ToNumber(month).
If date is not specified, then let dt be DateFromTime(); otherwise, let df be ToNumber(date).

Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(¢)).

Let v be TimeClip(newDate).

Set the [[DateValue]] internal slot of this Date object to v.

Return v.

ORI N RN =

The length property of the setUTCFullYear method is 3.

© Ecma International 2014 395

secind

NOTE If month is not specified, this method behaves as if month were specified with the value getUTCMonth ().
If date is not specified, it behaves as if date were specified with the value getUTCDate ().

20.3.4.30 Date.prototype.setUTCHours (hour [, min[,sec[, ms]]])

1. Let ¢ be this time value.

2. ReturnIfAbrupt(¢).

3. Let & be ToNumber(hour).

4. If min is not specified, then let m be MinFromTime(?); otherwise, let m be ToNumber(min).
5. Ifsec is not specified, then let s be SecFromTime(?); otherwise, let s be ToNumber(sec).

6. If ms is not specified, then let milli be msFromTime(); otherwise, let milli be ToNumber(ms).
7. Let newDate be MakeDate(Day(¢), MakeTime(h, m, s, milli)).

8. Let v be TimeClip(newDate).

9. Set the [[DateValue]] internal slot of this Date object to v.

10. Return v.

The length property of the setUTCHours method is 4.

NOTE If min is not specified, this method behaves as if min were specified with the value getUTCMinutes (). If
sec is not specified, it behaves as if sec were specified with the value getUTCSeconds (). If ms is not specified, it
behaves as if ms were specified with the value getUTCMilliseconds ().

20.3.4.31 Date.prototype.setUTCMilliseconds (\ms)

Let ¢ be this time value.

ReturnIfAbrupt(?).

Let time be MakeTime(HourFromTime(?), MinFromTime(#), SecFromTime(z), ToNumber(ms)).
Let v be TimeClip(MakeDate(Day(z), time)).

Set the [[DateValue]] internal slot of this Date object to v.

Return v.

AN W=

20.3.4.32 Date.prototype.setUTCMinutes (min [, sec [, ms]])

Let ¢ be this time value.

ReturnIfAbrupt(?).

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(?); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(?); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(¢?), MakeTime(HourFromTime(?), m, s, milli)).

Let v be TimeClip(date).

Set the [[DateValue]] internal slot of this Date object to v.

Return v.

O 00 2gSRERpE L N =

The length property of the setUTCMinutes method is 3.

NOTE If sec is not specified, this method behaves as if sec were specified with the value getUTCSeconds (). If
ms is not specified, it function behaves as if ms were specified with the value return by getUTCMilliseconds ().

20.3.4.33 Date.prototype.setUTCMonth (month [, date])

1. Let ¢ be this time value.
2. ReturnIfAbrupt(?).

© Ecma International 2014 396

ecimna

Let m be ToNumber(month).

If date is not specified, then let dt be DateFromTime(¢); otherwise, let df be ToNumber(date).
Let newDate be MakeDate(MakeDay(YearFromTime(¢), m, dt), TimeWithinDay(¢)).

Let v be TimeClip(newDate).

Set the [[DateValue]] internal slot of this Date object to v.

Return v.

PN AW

The length property of the setUTCMonth method is 2.
NOTE If date is not specified, this method behaves as if date were specified with.the value getUTCDate ().
20.3.4.34 Date.prototype.setUTCSeconds (sec [, ms])

Let ¢ be this time value.

ReturnIfAbrupt(¢).

Let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(#); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(¢), MakeTime(HourEromTime(z), MinFromTime(?), s, milli)).

Let v be TimeClip(date).

Set the [[DateValue]] internal slot of this Date object to v.

Return v.

XNk LD~

The length property of the setUTCSeconds method is 2.

NOTE If ms is not specified, this methold behaves ~as if ms were specified with the value
getUTCMilliseconds ().

20.3.4.35 Date.prototype.toDateString ()

This function returns a_String value. The contents of the String are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-
readable form.

20.3.4.36 Date.prototype.tolSOString ()

This function returns a String value representing the instance in time corresponding to this time value.
The format of the String is the Date Time string format defined in 20.3.1.15. All fields are present in the
String. The time zone is always UTC, denoted by the suffix Z. If this time value is not a finite Number or if
the year is not a value that can be represented in that format (if necessary using extended year format), a
RangeError exception is thrown.

20.3.4.37 Date.prototype.toJSON (key)
This function provides a String representation of a Date object for use by JSON. stringify (24.3.2).

When the toJSON method is called with argument ey, the following steps are taken:

Let O be the result of calling ToObject, giving it the this value as its argument.
Let tv be ToPrimitive(O, hint Number).

If tv is a Number and is not finite, return null.

Let t0ISO be the result of Get(O, "toISOString").

ReturnIfAbrupt(¢01SO).

If IsCallable(#01SO) is false, throw a TypeError exception.

© Ecma International 2014 397

AN AW

»eCma

7. Return the result of calling the [[Call]] internal method of 70ISO with O as thisArgument and an
empty List as argumentsList.

NOTE 1 The argument is ignored.

NOTE2 The toJSON function is intentionally generic; it does not require that its this value be a Date object.
Therefore, it can be transferred to other kinds of objects for use as a method. However, it does require that any such
object have a toISOString method. An object is free to use the argument key to filter its stringification.

20.3.4.38 Date.prototype.toLocaleDateString ([reserved1 [, reserved2]])

An ECMAScript implementation that includes the ECMA-402 International APl must implement the
Date.prototype. toLocaleDateString method as specified in the ECMA-402 specification. If an
ECMAScript implementation does not include the ECMA-402 API the following specification of the
toLocaleDateString method is used.

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment’s current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification;
implementations that do not include ECMA-402 support must not use those parameter position for
anything else.

The length property of the toLocaleDateString method is 0.
20.3.4.39 Date.prototype.toLocaleString ([reserved1 [, reserved21]])

An ECMAScript implementation that includes the ECMA-402 International APl must implement the
Date.prototype.toLocaleString method as specified in the ECMA-402 specification. If an
ECMAScript implementation does not include the ECMA-402 API the following specification of the
toLocaleString method is used.

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the Date in the current time zone in a convenient, human-readable form that
corresponds to the conventions of the host environment’s current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification;
implementations that do not include ECMA-402 support must not use those parameter position for
anything else.

The length property of the toLocaleString method is 0.

20.3.4.40 Date.prototype.toLocaleTimeString ([reserved1 [, reserved2]])

An ECMAScript implementation that includes the ECMA-402 International APl must implement the
Date.prototype. toLocaleTimeString method as specified in the ECMA-402 specification. If an

ECMAScript implementation does not include the ECMA-402 API the following specification of the
toLocaleString method is used.

© Ecma International 2014 398

»eCma

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment’s current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification;
implementations that do not include ECMA-402 support must not use those parameter position for
anything else.

The length property of the toLocaleTimeString method is 0.

20.3.4.41 Date.prototype.toString ()

The following steps are performed:

1. Let tv be this time value.
2. Return ToDateString(¢v).

NOTE For any Date object d whose milliseconds amount is zero, the result of Date.parse (d.toString())
is equal to d.valueOf (). See 20.3.3.2.

20.3.4.41.1Runtime Semantics: ToDateString(tv) Abstract Operation

1. Assert: Type(zv) is Number.
If tv is NaN, then return "Invalid Date".

3. Return an implementation-dependent String value that represents v as a date and time in the current
time zone using a convenient, human-readable form.

20.3.4.42 Date.prototype.toTimeString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent'the “time” portion of the Date in the current time zone in a convenient, human-
readable form.

20.3.4.43 Date.prototype.toUTCString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent this time value in a convenient, human-readable form in UTC.

NOTE The intent is to produce a String representation of a date that is more readable than the format specified
in 20.3.1.15. It is not essential that the chosen format be unambiguous or easily machine parsable. If an
implementation does not have a preferred human-readable format it is recommended to use the format defined in
20.3.1.15 but with a space rather than a “T” used to separate the date and time elements.

20.3.4.44 Date.prototype.valueOf ()

The valueOf function returns a Number, which is this time value.

20.3.4.45 Date.prototype [@@toPrimitive] (hint)

This function is called by ECMAScript language operators to convert an object to a primitive value. The

allowed values for hint are "default”, "number", and "string". Date objects, are unique among built-

© Ecma International 2014 399

»eCma

in ECMAScript object in that they treat "default" as being equivalent to "string", All other built-in
ECMAScript objects treat "default" as being equivalent to "number".

When the @@toPrimitive method is called with argument kinz, the following steps are taken:

1. Let O be the this value.
If Type(O) is not Object, then throw a TypeError exception.

3. If hint is the string value "string" or the string value "default", then
a. Let tryFirst be "string".

4. Else if hint is the string value "number", then
a. Let tryFirst be "number".

5. Else, throw a TypeError exception.

6. Return the result of OrdinaryToPrimitive(O,tryFirst).

The value of the name property of this function is " [Symbol . toPrimitive]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
20.3.5 Properties of Date Instances

Date instances are ordinary objects that inherit properties from the Date prototype object. Date instances
also have a [[DateValue]] internal slot. The [[DateValue]] internal slot is the time value represented by this
Date object.

21 Text Processing

21.1 String Objects
21.1.1 The String Constructor

The String constructor is the %String% intrinsic object and the initial value of the String property of the
global object. When String is called as a function rather than as a constructor, it performs a type
conversion. However, if the this<value passed in the call is an Object with an uninitialized [[StringData]]
internal slot, it initializes the this value using the argument value. This permits String to be used both
to perform type conversion and to perform constructor instance initialization.

The. String constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified String
behaviour must include a super call to the String constructor to initialize the [[StringData]] state of
subclass instances.

21.1.1.1 String (value)

When String is called with argument value, the following steps are taken:

Let O be the this value.

If no arguments were passed to this function invocation, then let s be " ".

Else, let s be ToString(value).

ReturnIfAbrupt(s).

If Type(O) is Object and O has a [[StringData]] internal slot and the value of [[StringData]] is
undefined, then

a. Let /ength be the number of code unit elements in s.

DN W N =

© Ecma International 2014 400

secind

b. Let status be the result of DefinePropertyOrThrow(O, "length",
PropertyDescriptor {[[Value]]: length, [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }).

c. ReturnIfAbrupt(status).

d. Set the value of O’s [[StringData]] internal slot to s.

e. Return O.

6. Return s.

The length property of the String function is 1.
21.1.1.2 new String (...argumentsList)

When String is called as part of a new expression , it initializes a newly created exotic String object:

1. Let F be the String function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was
invoked by the new operator.

3. Return the result of Construct (F, argumentsList).

If string is implemented as an ECMAScript function object; its [[Construct]] internal method will perform
the above steps.

21.1.2 Properties of the String Constructor

The value of the [[Prototype]] internal slot of the String constructor is the standard built-in Function
prototype object (19.2.3).

Besides the 1ength property (whose value is 1), the String constructor has the following properties:
21.1.2.1 String.fromCharCode (...codeUnits)

The String. fromCharCode function may be called with a variable number of arguments which form
the rest parameter codeUnits. The following steps are taken:

1. Assert: codeUnits is a well-formed rest parameter object.

Let length be the result of Get(codeUnits, "length").

Let elements be anew List.

Let nextIndex be 0.

Repeat while nextIndex < length

a. Let next be the result of Get(codeUnits, ToString(nextIndex)).

b. Let nextCU be ToUintl6(next).

c.. ReturnIfAbrupt(nex:CU).

d. "Append nextCU to the end of elements.

e. Let nextindex be nextindex + 1.

6. Return the String value whose elements are, in order, the elements in the List elements. If length is
0, the empty string is returned.

W B W

The length property of the £romCharCode function is 1.
21.1.2.2 String.fromCodePoint (...codePoints)

The String. fromCodePoint function may be called with a variable number of arguments which form
the rest parameter codePoints. The following steps are taken:

© Ecma International 2014 401

oeCha

DA W =

Assert: codePoints is a well-formed rest parameter object.
Let length be the result of Get(codePoints, "length").
Let elements be a new List.

Let nextIndex be 0.

Repeat while nextindex < length

a. Let next be the result of Get(codePoints, ToString(nextindex)).

b. Let nextCP be ToNumber(next).

c. ReturnIfAbrupt(nextCP).

d. If SameValue(nextCP, Tolnteger(nextCP)) is false, then throw a RangeError exception.
e. If nextCP <0 or nextCP > 0x10FFFF, then throw a RangeError exception.

f. Append the elements of the UTF-16Encoding (10.1.1) of nextCP to the end of elements.
g. Let nextindex be nextindex + 1.

Return the String value whose elements are, in order, the elements in the List elements. If length is

0, the empty string is returned.

The length property of the fromCodePoint function is 1.

21.1.2.3 String.prototype

The initial value of String.prototype is the standard built-in. String prototype object (21.1.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

21.1.2.4 String.raw (callSite [, ...substitutions])

The String.raw function may be called with a variable number of arguments. The first argument is
calilSite and the remainder of the-arguments form the rest parameter substitutions. The following steps are

taken:

00 NV AW~

—
W= O

Assert: substitutions 1s a well-formed rest parameter object.
Let cooked beToObject(callSite).

ReturnIfAbrupt(cooked).

Let rawValue be the result'of Get(cooked, "raw").

Let raw be ToObject(rawValue).

ReturnIfAbrupt(raw).

Let /en be the result of Get(raw, "length").

Let literalSegments be ToLength(/en).
ReturnIfAbrupt(/iteralSegments).

Af literalSegments < 0, then return the empty string.
. Let stringElements be a new List.

. Let nextIndex be 0.

. Repeat

Let nextKey be ToString(nextlndex).

Let next be the result of Get(raw, nextKey).

Let nextSeg be ToString(next).

ReturnIfAbrupt(nextSeg).

Append in order the code unit elements of nextSeg to the end of stringElements.

If nextIndex + 1 = literalSegments, then

i. Return the string value whose elements are, in order, the elements in the List
stringElements. If length is 0, the empty string is returned.

g. Let next be the result of Get(substitutions, nextKey).

h. Let nextSub be ToString(next).

i. ReturnIfAbrupt(nextSub).

mo a0 o

© Ecma International 2014

402

secind

j- Append in order the code unit elements of nextSub to the end of stringElements.
k. Let nextindex be nextindex + 1.

The length property of the raw function is 1.

NOTE String.raw is intended for use as a tag function of a Tagged Template String (12.3.7). When called as
such the first argument will be a well formed template call site object and the rest parameter will contain the
substitution values.

21.1.2.5 String[@@create] ()

The @@create method of an object F performs the following steps:

1. Let F be the this value.

2. Let proto be the result of GetPrototypeFromConstructor(£; "$StringPrototype%").
3. ReturnlfAbrupt(proto).

4. Let obj be the result of calling StringCreate (proto).

5. Return obj.

The value of the name property of this function is " [Symbol .create]".
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[StringData]] is initially assigned the value undefined as a flag to indicate that the instance has not yet
been initialized by the String constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in'some other manner:

21.1.3 Properties of the String Prototype Object

The String prototype object is itself an ordinary object. It is not a String instance and does not have a
[[StringData]] internal slot.

The value of the [[Prototype]] internal slot of the String prototype object is the standard built-in Object
prototype object (19.1.3).

Unless explicitly stated otherwise, the methods of the String prototype object defined below are not
generic' and the this value passed to them must be either a String value or an object that has a
[[StringData]] internal slot that has been.initialized to a String value.

The abstract operation thisStringValue(value) performs the following steps:

1. 1If Type(value) is String, return value.
If Type(value) is Object and value has a [[StringData]] internal slot, then
a. Let s be the value of value’s [[StringData]] internal slot.
b. Ifsis not-undefined, then return s.

3. Throw a TypeError exception.

The phrase “this String value” within the specification of a method refers to the result returned by calling

the abstract operation thisStringValue with the this value of the method invocation passed as the
argument.

© Ecma International 2014 403

secind

21.1.3.1 String.prototype.charAt (pos)

NOTE Returns a single element String containing the code unit at element position pos in the String value
resulting from converting this object to a String. If there is no element at that position, the result is the empty String.
The result is a String value, not a String object.

If pos is a value of Number type that is an integer, then the result of x.charAt (pos) is equal to the result of
x.substring (pos, pos+1).

When the charAt method is called with one argument pos, the following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnIfAbrupt(S).

Let position be Tolnteger(pos).

ReturnIfAbrupt(position).

Let size be the number of elements in S.

If position < 0 or position > size, return the empty.String.

Return a String of length 1, containing one code unit from S, namely the code unit at position
position, where the first (leftmost) code unit in S is consideredto be at position 0, the next one at
position 1, and so on.

NN R L=

NOTE The charAt function is intentionally-generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a methaod.

21.1.3.2 String.prototype.charCodeAt (pos)

NOTE Returns a Number (a nonnegative integer less than 2'°) that is the code unit value of the string element at
position pos in the String resulting from converting this object to a String. If there is no element at that position, the
result is NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(0):

ReturnlfAbrupt(S).

Let position be Tolnteger(pos).

ReturnIfAbrupt(position).

Let size be the number of elements in S.

If position < 0 or position > size, return NaN.

Return a value of Number type, whose value is the code unit value of the element at position
position in the String S, where the first (leftmost) element in S is considered to be at position 0, the
next one at position /1, and so on.

LIS 1 B L D =

NOTE The charCodeAt function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

21.1.3.3 String.prototype.codePointAt (pos)

NOTE Returns a nonnegative integer Number less than 1114112 (0x110000) that is the UTF-16 encoded code
point value starting at the string element at position pos in the String resulting from converting this object to a String. If
there is no element at that position, the result is undefined. If a valid UTF-16 surrogate pair does not begin at pos, the
result is the code unit at pos.

© Ecma International 2014 404

secind

When the codePointAt method is called with one argument pos, the following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnIfAbrupt(S).

Let position be Tolnteger(pos).

ReturnlfAbrupt(position).

Let size be the number of elements in S.

If position < 0 or position > size, return undefined.

Let first be the code unit value of the element at index position in the String S.
9. [If first < 0xD800 or first > 0xDBFF or position+1 = size, then return first.

10. Let second be the code unit value of the element at index position+1 in the String S.
11. If second < 0xDCOO0 or second > 0xDFFF, then return first.

12. Return ((first — 0xD800) x 1024) + (second — 0xDC00) + 0x10000.

PN R LD =

NOTE The codePointAt function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for.use as a method.

21.1.3.4 String.prototype.concat (...args)

NOTE When the concat method is called it returns a String consisting of the string elements of this object

(converted to a String) followed by the string elements of each of the arguments converted to a String. The result is a
String value, not a String object.

When the concat method is called with zero or more arguments the following steps are taken:

Assert: args is a well-formed rest parameter object.

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnIfAbrupt(S).

Let args be a List that is a copy of the argument list passed to this function.

Let R be S.

Repeat, while args is not empty

a. Remove the first element from args and.let next be the value of that element.

b. Let nextString be ToString(next)

c. _ReturnlfAbrupt(nextString).

d: Let R be the String value consisting of the string elements in the previous value of R followed
by the string elements of nextString.

8. Return R.

Nk L=

The length property of the concat method is 1.

NOTE The concat function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

21.1.3.5 String.prototype.constructor
The initial value of String.prototype.constructor is the built-in String constructor.
21.1.3.6 String.prototype.contains (searchString [, position])

The contains method takes two arguments, searchString and position, and performs the following steps:
1. Let O be CheckObjectCoercible(this value).

© Ecma International 2014 405

eCmd

2. Let S be ToString(O).

ReturnIfAbrupt(S).

If Type(searchString) is Object, then

a. Let isRegExp be HasProperty(searchString, @@isRegExp).

b. IfisRegExp is true, then throw a TypeError exception.

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchStr).

Let pos be Tolnteger(position). (If position is undefined, this step produces.the value 0).

ReturnlfAbrupt(pos).

9. Let /len be the number of elements in S.

10. Let start be min(max(pos, 0), len).

11. Let searchLen be the number of elements in searchStr.

12. If there exists any integer k not smaller than start such that k +'searchLen is not greater than len,
and for all nonnegative integers j less than searchLen, the character at position k+; of S is the same
as the character at position j of searchStr, return true; but if there is no such integer £, return false.

B

o3 N

The length property of the contains method is 1.

NOTE 1 If searchString appears as a substring of the result of converting this object to a String, at one or more
positions that are greater than or equal to position, then return true; otherwise, returns fals