cecma

Ecma/TC39/2014/0xx

Draft

ANGArC MA -

o TR

ECMAScript Language
Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 24, April 27, 2014 Draft

Rue du Rhoéne 114 CH-1204 Geneva T. +4122 849 6000 F: +41 22 849 60

https://bugs.ecmascript.org/

ecind

Contents Page
8 Yo [T 4 T'o Yo 1S vii
1 8T o o1 1
2 {00 4§ 0 4 3 T T 1o - OO 1
3 [\ Lo Y 0 E= LY== (== =Y 1
4 OVEIVIBW ...iceiiiieiiriieriirrensres s rraserassrnsssensssrnsssensssanssrnnssennsssnnsssnsbnnnnnsnnasinnsssensssensssensssenssrenssrnnssrnnses 2
41 LA L= SIS T o2 T o T s SN 3
4.2 ECMASCHIPt OVEIVIEW ... e s s s 3
421 ODBJECES.. . R s 4
4.2.2 The Strict Variant of ECMASCIIPL..........coiiiiiiiiiicissiiennmsssssss s s ssssssssssssssssssnsnsssssbeseessnnnssssssssssennns 5
4.3 Terms and defiNitioNSciiiiiiiiiiii e s ernss s e s rna e re s rrn s ren s ranssrensssensasnnssinnssrenssrennsrnnnns 5
4.4 Organization of This SPecifiCation oot et e 9
5 [\ Lo = Y4 ToY o F= 1IN 09 0 4 1= 41 4 Lo o 1= Y 10
5.1 Syntactic and Lexical Grammars............oovviiiiiiiiiiniiiisssin e sfiennir s neenns 10
5.1.1 ConteXt-Free GrammarsS.......c...ccciiveuiiieeiiieiiieirresrrna s tassstasserenssenssrenssrenssrenssrensssenssrensseenssrnnssrnnssrnns 10
5.1.2 The Lexical and REGEXP GramMArS ciu......cccoieiieeeemnnniirsisssssbnnssssssesernnssssssssssessnnnnssssssssesesnnnssssssssnes 10
5.1.3 The Numeric String Grammarcccoiiiieceieeceeesee e e e essmssssb s s eeeessnssssssssserssnnnssssssssseennnnnnssssssnns 10
5.1.4 The SyntacticC GrammMar..............ciiiiiiiiiiee i iiee e et iirnn e es s s s e s eennssssasbne e e nnnssssssssssrrnnnnsssssssserennnnnnnnsnssnns 1
5.1.5 Grammar NOtatioNccoiiiiieiiiiiis it rrea s ramss s et Eonn s e e nnsssessnnssssbenssssrrnnssssennnsssrennsssrennnssseennnnnns 1
5.2 Algorithm COoNVENtIONScccceeeiiiiiiir i ces e e s ee e e aas e s s e s Eona s e s s e s e s nnnnssssasseseesnnnssssssssenennnnnnnnnnnnnnn 16
5.3 Static SEMANtIC RUIEScoveeiiiiec it e rts e e e semss e e e seren s s e s nn s e s e nnns s eennssssrnnnsssnennnsnns 18
6 ECMAScript Data Types and Values.........ccccoo s 19
6.1 L0311 PN ST o T o] QI T T 0 = e T I8 o L= 19
6.1.1 The UNdefined TYPEt th e 19
g R I 1= 1T I 0T o 19
6.1.3 The BOOIean Ty P i .. i iiieiiuunnaaeeeses iiiunnns s e esantennsssssssssrennnnssssssssssennnnnssssssssssennnnssssssssssnnnnnnnnsssssnns 19
g S I =N S T To T I8/ o 1= P 19
6.1.5 The SYMBOl TYPe. ... e 20
6.1.6 The NUMDEE TYPE ...t e 21
T A I 1= 0 o 1= o I8 o = 22
6.2 ECMASCcript Specification TYPeS........cccooiririiriirrrrrrrr s 33
6.2.1 The List and Record Specification Type.........ccccociiriiirriiririrrrrr s 33
6.2.2 The Completion Record Specification Type.......cccccooirriiriiririrrrrrcrr s 33
6.2.3 The Reference Specification Type.......cccccoiiirirriiirrirr s 35
6.2.4 The Property Descriptor Specification TYPeccccooiirririiiirirrirrrrr s 36
6.2.5 The Lexical Environment and Environment Record Specification Types..........cccccoeiiiriiiiiiiieeennn. 39
(207 T = = T =] Lo Lo [39
7 ADStract OPerationsccicce i e e e e e e e e n e e e e e e rnnnnnaaaaaes 40
71 Type Conversion and TeSHINGccvereereimremimmmimiiereeeeeeeeeeeeeneeennnnne e s e s e s nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 40
7750 I N oY 2 413 1 11 Y- 40
75 17”2 oY = 7o Yo] =Y T o T 42
7% 1 T I 11 [T 4« = 42
7400 R T I] 41 =T - 45
7.1.5 Tolnt32: (Signed 32 Bit INtEJEr)cccccciiiiir s 46
7.1.6 ToUint32: (Unsigned 32 Bit INt@GET)cccccooiiiiriiicr s 46
7.1.7 Tolnt16: (Signed 16 Bit INtEgEr)cccccciiiiiiir s 46
7.1.8 ToUint16: (Unsigned 16 Bit INt@gEer)ccccoooiiieiiicccr s 47

© Ecma International 2014 i

ecind

71.9
7.1.10
7111
7.1.12
7113
7.1.14
7.1.15
7.1.16
7.2
7.21
7.2.2
7.2.3
7.24
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.3
7.31
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.3.19
7.4
7.41
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.5
7.51
7.5.2
7.5.3
754

Tolnt8: (Signed 8 Bit INt@GEr)cco i 47
ToUint8: (Unsigned 8 Bit INtE@QEr)cuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeseeeseeeeseeeseeseessssssssssssssssssssssasssssnnnananas 47
ToUint8Clamp: (Unsigned 8 Bit Integer, Clamped)uuummmmmmmmmmmmmmmmmmmnnnnsaaaans 47
I 154 0T N 48
e 10 o 1= 49
LI 2 € o 1= 5 4.4 C N 49
I T T 1 N 50
CanonicalNumericString(argument)............ooooiiiiiiiiiiiiii i ————— 50
Testing and Comparison OPerations..............uueeeeeeeemmmmmmmmmmmeeeneeeees————————————————a——————.. 50
CheckObjectCoercible ... e e 50
LT 07 1] F- T o 51
R T L= 1L = GO 51
ST LN T D= o R) 51
ISCONSLIUCEON e s s 52
ISPropertyKey 52
ISEXtENSIBIE (O) ...cun 52
ISINEEGET ... 52
Abstract Relational CompariSON.............euuiiiiiiiiiiesiiunmmneeeeeeeeeeeeeeeeeeeeeaaasaaaaasansaatne s snsnsnnnnnnnnnns 53
Abstract Equality COMPAriSON.........couieeeuciiiiieesdinmnnsassseerrsnessssesbe s srsrnssssssssssssnnnnsssssasanstennnnsssssssnns 54
Strict Equality CoOmPpariSon ... i sfe s r it 54
Operations on ODBJECtSoooviiiiiiiiiiiiii e 55
7= (0 TR) 55
Put (O, P, V, TRIOW) ...ttt s s s n s 55
CreateDataProperty (O, P, V) it i cciiis s srssesss s sssss s bae s s s s s s e snnnsssss s s s s s e nnnnssssssssssesnnnnnnnen 55
CreateDataPropertyOrThrow (O, P, V). ... 55
DefinePropertyOrTRrow (O, P, deSC) ..ciiiiiiieeiiie e iine e ccse s e s essamsssbie s s s s e eeennsssssssesesnsnsssssssseneennnnnnnen 56
DeletePropertyOrThrow (O, P) ... i iieciessssessmms it e e e eeennnssssss s s s s s ennsssssssesennsnnssssssssssennnnnnnen 56
L= =T g oo I (0 TR 56
HaSProperty (O, P)......ciiiiiiiin s iereieuuaississnshesbanaasessensnnsssssssseseennnssssssssssmmnsnssssssssssennnnssssssssssesnnnnnnnnn 57
HasOWRNPIroperty (O P) ... i irssssss e s 57
LRV (=T (0 20 S I T -3 | 57
SetintegrityLevel (O, [eVel)...... oo e e e e e e e e e e neenes 57
TestintegritylieVel (O, 1eVel) .t . et h e s e s s s e s e e e s nnn e s s e e e e nnnnsnsnnnnns 58
CreateArrayFromList (elements) ..o oo 59
CreateListFromArrayLike (0D])ooooiiiiiiiiir e 59
OrdinaryHasInstance (C, O)cooooiiiiiiiiiiieeeeeeee e e e e e s e e e e e e e e e e e e e e e s e e e e e e e s eeeeeeeeeennnennnnes 59
GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)cccoovviiiiiiiiiiiinnnnnns 60
CreateFromCoNStructor (F)..i......ooooeieieeeeeeeeeeeeeeeeeeeeee nennes 60
Construct (F, argumentSLiSt) ...ic..coooeeieiiiieeeeeeeeeeeeeee e 60
(7300 o3 To T TR (o] 1 1o 5 1=) PR 61
(0] o T=1 = 1o T3] ¢ W 1 L= =T o 0 o} [=Y o2 £ PP 61
L0 3 1= o7 [=T = o] L= (o) TR 61
Getlterator (0bj, Method)..........oooeereeeiieeeeeeee e enes 61
IteratorNext (iterator, Value) 62
IteratorComplete (IErRESUIL). s 62
IteratorValue (IterReSUIL) 62
IteratorStep (TErator)..... ..o 62
CreatelterResultObject (value, dONe)...........coooreeiiieiiiie e e e e e e e e e e e e e eeenes 62
CreateListiterator (list)oovveiiiiiiiii e r e e e e e e e e e e e enenes 63
L0 = 1Y 1T o 3T =T = 1 Lo (R 63
Operations on Promise ODjJEcts............coooriiiiiiiiiiiiiic eeenes 63
PromiseNew (executor) Abstact Operation...........ccccooiiriiiiiiiiirirnrrr s 63
PromiseBuiltinCapability () Abstact Operation...........ccccoooiririiiiirrirrr 64
PromiseOf (value) Abstact Operation...........cccoooiiiriiiiiiiiiirrrrr s 64
PromiseAll (promiseList) Abstact Operationcccoooiiriiriiiiiiirirr 64

© Ecma International 2014 ii

ecind

7.5.5
7.5.6

8.1
8.1.1
8.1.2
8.2
8.21
8.3
8.3.1
8.3.2
8.3.3
8.34
8.4
8.41
8.4.2
8.5

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.2
9.21
9.2.2
9.2.3
9.24
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2

PromiseCatch (promise, rejectedAction) Abstact Operationccccoceiiiiiiiiiiiiiiiinincce e 64
PromiseThen (promise, resolvedAction, rejectedAction) Abstact Operation.................ceeveeee.. 64
Executable Code and Execution Contextscccoreeeciiiiiimmiiecciisie s s s s s s n e 64
Lexical ENVIFONMENES.........coiiiiiiiiieciiieirrrriess s s s s s s s s s s s s e s s s s s s e s s nna s s s s e s s e nnnnssssssssennnnnnnnnen 64
ENVIronmMent RECOIASciiiiiiiiiecciiiiiirrrieesss s s s s s s s s s s e s s s s s s s s e snnma s s s e s e e s s nnssssssseennnnnnnnnen 65
Lexical Environment Operations ... 78
Lo o L= 50T 11 13 79
CreateRealm () ... ————— 80
L Yo T o] 4 00T 0 1 1=« P 80
ResolveBinding(Name) ... e 82
GetThiSENVIFONMENT ... e s i e e s e ar s s s s e e e e e nn s s s s e e e e nnmnnnnen 82
ResoIVEThISBINAING ... 82
GetGlobalODbject ... e 82
Tasks and TasSk QUEUESccuuuuiiiiiiiiiieeiiisesrrrsnnssssassesrres fanasasasseennnnsssssssstasesnnnssssssssemennnnnnssssssnes 83
EnqueueTask (queueName, task, arguments) Abstract Operation............ccciuermimreeniccciiiinneccnnnnn. 84
NextTask (result) Algorithm Step.......cccoo s 84
T4 E= T 2= 1 e o e 84
Ordinary and Exotic Objects Behaviours.......... i eeserssessss s e e s e see e s s e s e e nnmnssnes 84
Ordinary Object Internal Methods and Internal SIotsccccceeiiiiiiiiieccccrrre s 84
[[GetPrototypPeOT]] (). ccccerrrrrrrrrrrrrr b s s 85
[[SetPrototypPeOf]] (V) ..cccciirrrrrirririr s s 85
ST = =TT L] 1=) () P 85
[[PreventEXteNSIONS]] () ccceerrrrrrrmnbonsassiinmeennnnssasssrrrrrnnnssssasssstinennsssssssemennnnsssssssseseennnnnsssssssseennnnnnnen 85
[[GetOWNPIrOPErtY]] (P). - cceeerrreremmsssinesennnnnnsbineeseerensnnnssssssssannnsbinssssssemennnnssssssssesesnnnnnssssssssesnnnnnnnen 86
[[DefineOWNProperty]] (P, DESC)......ceuiiiiiiieeiasaasesiiinnensnesssesessannsssinsessennsnnsssssssesennsnnssssssssssennnnnnnen 86
L 2 53 3 e o L= T (2 P 88
[[Get]] (P, RECEIVEN) ...ceeeeeeiiieieeeciceeisseebe e dinannn e s nnnssaaase s et bR nnnsssassssennnnnnsssssssssennnnssssssssnennnnnnnnnn 88
[[Set]] (P, V, RECOIVEI) ci ittt i s s 88
11 2= 1=3 0=) 89
[[ENUMEIALE]] ()--xceeeeereeremmnnnusassrnnetunnnssssssresnnnnsbonsssseessnnssssssssssennnnsssssssssssnnsnnsssssssssesnnnsnssssssssesnnnnnnnen 89
[[OWNPropertyK@YS]] ()---cceeeseessserrrrrrrrrrrararasasstensasssssessssssssssssssss s s s s s s s s s s s s s s s snsssssssesssssssssssssssssssssanas 920
ObjectCreate(proto, internalSlotsList) Abstract Operation ... 920
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList)......... 91
ECMASCcript FUNCION OBJECESo s 91
[[Construct]] (argumMENtSLISt)cccoiiiiiimciiiii e e s s e s s e e e e e s nn s s e e e e e e mnnnnan 92
[1CCT=L0 00 a1 oY oY= o AT I (o T 92
FunctionAllocate Abstract Operation..............ccoi i e e e e e e nnnnnas 93
[[Call]] (thisArgument, argumeEntsList)..........cccooriiriirriirr s 93
Functioninitialize Abstract Operation................coooiccc i e e 94
FunctionCreate Abstract Operation............c..e i e e 95
GeneratorFunctionCreate Abstract Operation..............ccoiiiiiiiieccciirrrccc e 95
AddRestrictedFunctionProperties Abstract Operation..............ccoeuuciiiiiiiiiccccrree e 95
MakeConstructor Abstract Operation............ccccoiiiiiiiiccciii e e e e e nnnnnas 96
MakeMethod (F; methodName, homeObject) Abstract Operation............ccccoeiiiiiriiiiiirinneeeeeeeeenns 96
SetFunctionName Abstract Operation............ccoiiiiicciiiiiiiricr e e nn e 96
GetSuperBinding(obj) Abstract Operation..............coooiiiiiiiii e 97
CloneMethod(function, newHome, newName) Abstract Operation.............ccccooviiiiiiiiiiieiiecceceeeees 97
Function Declaration Instantiation ... 97
Built-in FUNCLION ODjJECLS ... s 100
[[Call]] (thisArgument, argumentSList)........ccccoriirirrriiirrrrr s 100
CreateBuiltinFunction(realm, steps, internalSlotsList) Abstract Operationccccccceeveeeeeeens 101
Built-in Exotic Object Internal Methods and Data Fieldsccccooiiiiiiiiiiccccccrce s 101
Bound Function EXotic ODbJects..........ccccoririiiiiirrrrrrrrr s 101
Array EXotiC OBJECES ... 103

© Ecma International 2014 iii

ecind

9.4.3
9.4.4
9.4.5
9.4.6

9.5.1
9.5.2
9.5.3
9.54
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13
9.5.14
9.5.156

10
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2

1"
1.1
11.2
1.3
11.4
11.5
11.6
11.6.1
11.6.2
1.7
11.8
11.81
11.8.2
11.8.3
11.8.4
11.8.5
11.8.6
11.9
11.91
11.9.2

12
121
1211
12.1.2
1213
121.4
12.2

String EXOtic ODJECLSccoiiiiiiiiiiii i 105
Arguments EXOtiC ODJECLS ... 107
Integer Indexed EXotic ObjJects.......ccociiiiiiiiiiii i ———————— 112
Module Exotic ObjJEcCtS ..o ————————— 115
Proxy Object Internal Methods and Internal SIots ..., 117
[[GetPrototypeOT]] (). .cccrrrrrrrrrrrrrr i ————— 118
[[SetPrototypeOf]] (V) ...cccirrrrrriirrrr 119
[[ISEXteNSIBIE]] () -oeeerrrrrrrrrr 119
[[PreventEXteNSIONS]] () «oocorrrrrrrrrrrrir 120
[[GetOWNPIroperty]] (P). ..o e 120
[[DefineOwWnProperty]] (P, DESC).....ccciiriiirirrirrrr s s 121
[[HasSProperty]] (P)....cccccrs s s s 122
[[Get]] (P, RECEIVEN) ... e s 123
[[Set]] (P, V, RECEIVEN) ... s s s 123
LD 2= 123 0= (O PRP R 124
[[ENUMErate]] ().-.:ceererrrrrrrrrrrr s s s s 124
[[OWNPropertyKeyS]] (()-ccceerrrrrrrrrrrrrrrrrrrrrrrrnrnrn s s s s s 125
[[Call]] (thisArgument, argumentSList).........cuuciiiiiiimiimciiiierrrrrce e e e e rreaa s saeenabna e s s e e eennns 125
[[Construct]] Internal Method............. i 126
ProxyCreate(target, handler) Abstract Operationctueeniciiiiiiiirecessse e e e eeees 126
ECMAScript Language: Source COde........cuuuuuuiiirimmmnetunnesionmemmenmmnsssassssemmrnmnssssesssesersnssssssssssessnnns 126
£ o T T = I - 126
Static Semantics: UTF-16ENCOdING ciirreiiuuunniiiiiiiiiiencsiis e s s bieces s s s e essennsss s s s s e e rnnnnssssssseeessnnnnsnes 127
Static Semantics: UTF16Decode(lead, trail)................oooooiiiiiiiiin s 127
TYpPes Of SOUICE COEe.......ouiiieeiiiiiiiitetien e iasseesetiinnn s asssereesnnnssssasetaesnnnnssssssssmennnnnsssssssssennnnnnnnsnssnes 127
Strict MOde COde........oooiiiiiiiiiiiieeiieee et h e rer e e e R i n e e e e e e e e e s ar e e s eeeeeneeenneens 128
[\ oY g B8 =03V VAN ST o3 o T o3 o g e i Lo o 1= N 128
ECMAScript Language: Lexical Grammar.....c....c.coooiiiiiiiiirrrrrr s 129
Unicode Format-Control Characters........ ..o 130
Wite SPaCE... . i i ieecic sk e s e e e rreeas s assesbe s e nnn s s s s e e e s s nnsssss s sseensnnnssssssserennnnnssssssseeennnnnnnnsnnsnns 130
Line TermMinatorso i be s 131
L0 o 014 7= 41 RS 132
LI (=Y 0 L= 133
Names anNd KeYWOIAS ...cc........ooiiieeeeiiiiiiiieeiress s s s s s s e s s s s s e e s nnnss s s s e s e e nnnnsssssssserennnnnnssssssenennnnn 133
Identifier Names...... oo s 134
LT =Y V=T R4 o o L= 135
0 e T = oY 136
I =T - 1 L 136
L | =Y = 136
Boolean Literals.......ccccic o 137
NUMEIC LIteralscccoc s s 137
81 0T B =T o TR 140
Regular EXpression Literals..........cccoo i 143
Template Literal Lexical COMPONENtScooiiieecciiiiiiiiirccss e s e rrsnnssss s e s e s srnn s s s e s e s nnmnsssssssnes 145
Automatic Semicolon INSErtioNoeeeeiiiiiiiiiiiiiieeeeeee s nnnnnnan 147
Rules of Automatic Semicolon INSertion............ccooo i 147
Examples of Automatic Semicolon Insertion...........ccceeeciiiiiiiiicccc e e 149
ECMASCcript Language: EXPreSSiONSccccccciirririirirrrrrssssssssss s s s s s s s s s s s s s s ssss s 150
o 1= 0 1= 150
Static Semantics: Early ErTOrs..........oooooiiiiiiiiiiiie e ee e e s e e e e s e e e e e e e e e e e e e s e e e e e s e e e e e e e e e e e e nnnens 150
Runtime Semantics: Bindinglnitialization ... 151
Static Semantics: BOoUNANAMESoooiieeeiiiiirricccrr e s e s e s e s e e e e e nnmnnnas 151
Static Semantics: StringValueooooeiii e 152
e T 4T TV T o === Lo N 152

© Ecma International 2014 iv

ecind

0 T 1 1 F= 1 T 153
12.2.1 The this KEYWOIdccciiiiiiiiiiiiiiiiiiiiiiiieiiiiieieeir e .——————————————————sssssss.sns.sssss.....-——. 154
L (e =Y o =Yl oY =Y = Lo = 155
T - - | 1= 155
12.2.4 Array INItialiZerccovviiiiiiiiiiiiiiiiiieeieiie s naanaann 155
T O o 1= o2 G 13T (= 1= 161
12.2.6 Function Defining EXPreSSiONScuuiiieiiiimimimmmiiiimmeeeeneeeeeseeeresesssessssnssssssssssssssssssssssssssssssssssnnns 166
12.2.7 Generator COmMpPreheNSIONS.........cuuuiiiiiiiiiiiiiiiiiir s asssasssssnssssssnsssssnnns 166
12.2.8 Regular EXpression Literals.............cuuiiiiiiiiiiiiiiimiemiieieeeiieiisseeeesseesssessnssssssasssssssssssssssssssssasssssnnns 167
e T = 4 T = 10 =T - | 167
12.2.10 The Grouping OPEratorceeeeeeeermemmmmmmmmeemmmeennserensersssssssssssssssssssssinnnnssssssssssssssssssssssssssssssssnnnns 172
12.3 Left-Hand-Side EXPreSSiONScueueieimiimmimiimmmiiimnneeeneneesneesnsnsssssssiannnnsassssssssssssssssssssssssssssnnssssnnns 173
12.3.1 Static SeMaANtICS....ccceee e s e e n e e e R s e e e n e e e e e nnnananan 173
12.3.2 Property ACCESSOIS.......cuuuuuuiimmmmmmmmmrrrmmrresnnssssssssssssssssssssssssssssiansnssnsssssssannnstinssssssssssssssssssssssssssnnnns 176
12.3.3 The new OPErator...........ccuuiiiiiiimmmimmiriieeieeierireerrrrr e r——.rasseesasesssssssssssssssannnntbnsssssssssssssssssnnsssnnnns 177
B S W] o3 4 o O 1| 177
12.3.5 The super KEYWOIdcceuiiiiimiiimiimimiiiiienieiierreseeeeesdinnsnseessensesssssssssssnsssssssssssssnnnnnsbnssssssssssssssnnnns 178
12.3.6 Argument LiStSccuiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeiseeeeeesdinnsnseesenssssssssssssssssssnnnsssnsnnsssnsnsssannnabnssssssnssnnnnnn 180
12.3.7 Tagged TempPlatescccueiiiiiimiiimimiimieneieeeeeeeesionnsnseesesenneensnnnssssiobnssnsnnnsnssnnnnsnsnnsnnssssanssnssssssssnnnns 181
12.4 PoOStfiX EXPreSSIONSccciiiiiiiiiiiiiiiiiiiiiiiiisieeieeesiassssbneeesessessssesdannnsnessssnsssssssnsssssnssnnnsssssssnssssnsssnnnns 182
12.4.1 Static Semantics: Early Errors...........ceuuiiiiiiiiiiiieiimmmmsine e sdinnnmneeeeeeeesnnnsssssssssssnsssssssssssssssssssssssnns 182
12.4.2 Static Semantics: IsFunctionDefinition.............oov it 182
12.4.3 Static Semantics: IsValidSimpleAssignmentTarget........ccccoeeemmmmmmmmmimmmmmmmmeeeeeeenananenes 182
12.4.4 Postfix INncrement OpPerator....... ... i crreeeeaeissssssssbne s ssasssessnnsssssssssesessnnsssssssseeesnnnnssnen 182
12.4.5 Postfix Decrement OPeratorcimiiiiosee i ceeeeaesssesessassssbssseseesnnssssssssseeensnnsssssssssseesnnnssnes 183
12.5 UNQry OPeratorsccceeuciiiiiiiriiiesisssssstennnssssssanssssssbinnsssssseennnnsssssssisseesnsnsssssssssssnnnnnsssssssssennnnnnnnnn 183
12.5.1 Static Semantics: Early Errors..........cocieeeiiiiiiesiesmssssssiiinneenssssssssessssssssssssesssssnsssssssssssssnnnnsnes 183
12.5.2 Static Semantics: IsFunctionDefinitioncccccr e 183
12.5.3 Static Semantics: IsValidSimpleAssignmentTarget..........ccccuucciiiiiiiiieccccssi e 184
12.5.4 The delete OPeratorccciieiiiiiiiirireinsr e e e s e eeennnsssassrrrrrrnn s ssesennnnsssssssssrsennnnnsssssssereennnnnnnen 184
12.5.5 The void OPEratorcccoiiiiiiiiiiiiiirerieesssats e e eeennnsssass s s s e nnnnsssssasessennnnssssssssesmnsnnsssssssseneennnnnnnen 185
BT I 1T o =Y=Yo T 0 o 7= - 1 o) o 185
12.5.7 Prefix Increment OPerator..o iiiieeiiieeesieriecss s s s s sersnsssss e s e ernsnssssssseesessnnssssssssssesnnnnnnnen 186
12.5.8 Prefix Decrement OPeratorcocoiiiieeiiiiiine e eeereeennssss s e s s sernnssssss s s e s snnnssssssssesessnnsssssssssseennnnnnnen 186
T I W T T VAR O 1T - 1 o R 187
12.5.10 UNAry — OPEIatOr.......ccueutieemmmeemememeemeernnnenennnnennrnnnnnnnnnnnnnnnnnnnnnnnsnssssssssssnnsssssnnnnsnnnsnnnnnnnnnnnnnnnnnnsnnnnnn 187
12.5.11 BitwiSe NOT OPErator (~) ieeeeeeeeeeememmmmmmmmmmmeeeerernnnmnenenneennnnnnnnnnnnnnnnssnsssssssssssssssnssnsssssnnnnsnnssssssnnnnn 187
12.5.12'Logical NOT OPerator (!) ueeeiuceeeeeeeeemmemmmmmeeemmnennnennennnnennnnnnnnnnnnnnsnnssnssnnsssssnsssssnssnsnssnnnnnnnnssssssnnnnn 187
12.6¢° Multiplicative OPerators........ccccci i rrrre s s s e e s s s e s s s s nn s s s s e e e e s s nnnsssssssereennnnnnnen 188
12.6.1 Static Semantics: ISFUNCtioNDefinitionooeeeeemmmmmmmmmmmme e 188
12.6.2 Static Semantics: IsValidSimpleAssignmentTarget............coommmemmmmmmmmmmmmnemeeneenenennnnnnnnnnnnnnnas 188
12.6.3 Runtime Semantics: EValuation.............coooeerimiimmimmmiimmeeeeeeeeeeeeeee e 188
12.7 AdditiVe OPeratorsccoiiiiiiicciiii i s s e rr e s s s s s e e s sns s s s s s e esnnssssssssssensnnsssssssseneennnnnnnen 190
12.7.1 Static Semantics: ISFunctionDefinitioneeeeeemmmmmmmmmmmmmeeee e 190
12.7.2 Static Semantics: IsValidSimpleAssignmentTarget............coeeemmmmmmmmmmmmmmmnnnnnnnnenennnnnnnnnnnnnnnnnes 191
12.7.3 The Addition OPErator (4)...ceeeerereemermmmmmmmmmmeerereerennneeeeeeennneenennnnennrnnn s s snssssnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnnnnnn 191
12.7.4 The Subtraction OPerator (—)cceeeeeerrrrrmmermmmmmmmmmemeeneneennneennneneennnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 191
12.7.5 Applying the Additive Operators to Numbersoooo i 192
12.8 Bitwise Shift Operators ... r s s s s e e e e e s s nn e s s e e e e e nnnnnnen 192
12.8.1 Static Semantics: ISFuNctionDefinitioneeeeemmmmmmmmimimimee e 192
12.8.2 Semantics: IsValidSimpleAssignmentTarget.........cccccceeeemmmmmmmmememmmmmmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 193
12.8.3 The Left Shift Operator (K<)eeeeeeeeeeemememmmmmireeirereneeeeeeeeenneeenerneneesnnnnnnnnsnsnsnnsssnnssnnnssnsnsnnsnnnnnssnnnnn 193
12.8.4 The Signed Right Shift Operator (>>) ..ccuurrrriieeimmeeieeeeeeeeeeeeeeee s nnnnnnnnnnn 193
12.8.5 The Unsigned Right Shift Operator (>>>)..ccueereeiimimmmmmeeeeeieeeeeeeeeeeeennn s nnnnnnnn 194

© Ecma International 2014 \Y

ecind

12.9 Relational OPEratorscueeeeeeeeieierimmmmrremeeeerrrrrrrrrrrrrrrrr———n———sssnnnnn 194
12.9.1 Static Semantics: IsFunctionDefinition.............oooeiiiii s 195
12.9.2 Static Semantics: IsValidSimpleAssignmentTarget.............uuuueemmmeimmmemmmmmmmmn————. 195
12.9.3 Runtime Semantics: Evaluation.........coooeeeeiiiiiiircrir s 195
12.9.4 Runtime Semantics: InstanceofOperator(O, C)........cccccuuuemmmmmmmmmmmmmmmmmnnnnnnnnnnnsennnnns————— 196
12.10 EQUAlity OPEratorscceeueiemmmmmmmmmmmmmieeeniieieereer i —————————————.sssssssssssssssssssssssssssssssssssssssnnnss 197
12.10.1 Static Semantics: IsFunctionDefinition.............oorreciiii s 197
12.10.2 Static Semantics: IsValidSimpleAssignmentTarget............ccccuuuemmmmmmmmmmmmmmmmmmn————. 197
12.10.3 Runtime Semantics: Evaluation..........ooooeeeeiiiiiiircccri s 198
12.11 Binary Bitwise Operatorsccccueeiiiimmimiiiiiiiimiiiiiieeesesssesesssssssesdanssstassssssssssssssssssssssssssnnns 199
12.11.1 Static Semantics: IsFunctionDefinition.............ooeeiiiii s 199
12.11.2 Static Semantics: IsValidSimpleAssignmentTarget...............uuueesitimmmenmmmnnen———— 199
12.11.3 Runtime Semantics: Evaluation..........ooo oot eeebae e e e s ennn s 199
12.12 Binary Logical OpPeratorsueeeeeeeeemmemmmmmmmmmmemneesennenennsnssesionnnnsesssssssnnnssinsssssssssssssssssssssssssssnnnns 200
12.12.1 Static Semantics: IsFunctionDefinition.............oooreiiii s 200
12.12.2 Static Semantics: IsValidSimpleAssignmentTarget.....cicccciuuuuuummeeiieeemmeenneennentne s 200
12.12.3 Runtime Semantics: Evaluation..........ccoceeeiiiiiiiiiic i errsees s s s srrsssa s s s snnnnsbne e s s s e e e e nnnnnnnas 200
12.13 Conditional OPerator (2 :) .cccccccccccrrrmmmememmmeeesionnmnneeeeeeennnenesssnsssssnnssssssssssssssssannnsbnssssssnssnnnnnss 201
12.13.1 Static Semantics: IsFunctionDefinition...........c e s 201
12.13.2 Static Semantics: IsValidSimpleAssignmentTarget..............ccceieeeeeeeeemmmnmeneneeenaaaaa. 201
12.13.3 Runtime Semantics: Evaluation..........cooeeeeeiiiiiiiciisti e cfenmmsn s s s s e rs s s s e s e sn s s s s e e e e nnnnnnnas 201
12.14 ASSIgNMENt OPEIratorsScccuiiiieeiiiiiiiiiiiiiiieieeieereeeee sssstbiannnneesessssssssssnssssssnsssssnssssnsssssssnsssnnssnnnnns 202
12.14.1 Static Semantics: Early Errors..........iiieeeiiiiiiiiiice s csssssir s eeassss s s s s ssssssss s s s e s e sssnnsssssssesessnnnnsnes 202
12.14.2 Static Semantics: IsFunctionDefinitioN c.............eeeeeemmmeeiiiiiiitie s 202
12.14.3 Static Semantics: IsValidSimpleAssignmentTarget............ccccctummmmmmmmmmmmmmmmmeeeennenneannnannaes 203
12.14.4 Runtime Semantics: Evaluation........ccc......eoiiiimiiiiiine et nnnnnnas 203
12.14.5 Destructuring ASSIGNMENT it serssesmass s tiinr e e nnassssasssennnnnsssssssserennnnnsssssssensnnnnnnnnen 204
12.15 CoMmMMA OPErator (,) .cccciiiirrreeesscesssreinsssbenssssadinnnsmnnsssssansssnsssbinssseeeennnnssssssssseeennnnnsssssssssesnnnnnnnns 209
12.15.1 Static Semantics: IsFunctionDefinitioncccccoe e 209
12.15.2 Static Semantics: IsValidSimpleAssignmentTarget..........ccouciiiiiiiiiiccccise e 209
12.15.3 Runtime Semantics: Evaluation................ocoiimmmmimmeeeeeeee s 209
13 ECMAScript Language: Statements and Declarationscccoooiriiiiiiiiriiirrn s 210
13.0 Statement SeMANLICso oo il nnnn s s nnnnnnnnnnnnnnnnnnnnnnnnnnnnn 210
13.0.1 Static Semantics: VarDeclaredNames.........coce.oooeeeeeeemmmmmeiieeeeeeeeeeee e mnnnns 210
13.0.2 Static Semantics: VarScopedDeclarations.................ciiiiiiiiiiecciiiei e 210
13.0.3 Runtime Semantics: LabelledEvaluation...............ooo e 211
13.0.4 Runtime Semantics: EvalUation..............ooooorrmmimiimmimmmemeeeeeeee e 211
TR T = o o GO 211
13.11 Static Semantics: Early ErrOrS..........ooeeeeemieemmmmmmmmeeieeeeeeeeeeeeneeeeneenne e esnnns s nnn s s s s nnnnnnsnnnnnnnnnnnnnnnnnnnn 212
13.1.2 Static Semantics: LexicalDeclarations.............oeeeeeemmmmmmmmmmmmmmmmmeeeeeeeeeeeeeeeeee e nnanna 212
13.1.3 Static Semantics: LexicallyDeclaredNames...........coeeeemmmmmmmmmmmmmmmmmmmmnmnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnns 212
13.1.4 Static Semantics: TopLevelLexicallyDeclaredNames............cceeeeeemmmmmmmmmmmmmmmmmmnmnnnnnnnnnnnnnnnnnnnnnnns 213
13.1.5 Static Semantics: TopLevelLexicallyScopedDeclarationseeemmmmmmmmmmmmmmemennnnnnennnennnnnnes 213
13.1.6 Static Semantics: TopLevelVarDeclaredNames............ccevreemcciiiiiiiicenncccs e re s e neananes 213
13.1.7 Static Semantics: TopLevelVarScopedDeclarationscccccccciiiiiiiiieeeccc s 214
13.1.8 Static Semantics: VarDeclaredNamescoeeeeememmmmmmmmmmmmmmmmmmeeeeenennnnnnennnnnnnnnnnnnssssnnnsssssnnnsnnnnns 214
13.1.9 Static Semantics: VarScopedDeclarations............ceuueiiiiiiiiiiieccciiie s e 214
13.1.10 Runtime Semantics: EValuation.............ooeeeeiimiiimimmimmmeeeeeee e mmmmnnan 215
13.1.11 Runtime Semantics: BlockDeclarationInstantiation(code, env ... 215
13.2 Declarations and the Variable Statementooo e 216
13.2.1 Let and Const Declarations............ccoiiiiiiiieciiieiiirriecccs s e rrress s s s s s s nn s s s s s e s e snnnnssssssseeeennnnnsnan 216
13.2.2 Variable Statemento e e e e nn e e e e e e nnnnnnan 218
13.2.3 Destructuring Binding Patterns ...t 220
T T =1 1T o3V 1 1= 5 0 1= 3 1 228
13.3.1 Runtime Semantics: Evaluation..........ccooeeeeeiiiiiiiicccccnr et r e s e s s s s e e e e 228

© Ecma International 2014 Vi

ecind

13.4 EXPression Statement............cceeeeeeieiimimmmimmmeemeeeereeeeeeeeeeeerrrerrrrressnnsssnnnnn 228
13.4.1 Runtime Semantics: EValUatioN.........ciiieiiiiiiiiciic s s s e s re e e s e e s e nnnnennns 228
T8 T I o 1= 25 - - 1 =Y 0 1= 5 1 O 229
13.5.1 Static Semantics: VarDeclaredNamMES...........coieeiiieiiiiiiiiirrrrr e rre s rrn s ren s renans 229
13.5.2 Static Semantics: VarScopedDeclarations...............uuuueeeiemmiimiiimiimimm—. 229
13.5.3 Runtime Semantics: EvValuation........ccooieeiiiiiiiiiicicrreir e e s re e s re s e e s e e rennns 229
13.6 [0=Y o= 10T RS = 1 0= 1= 1 230
S T T 0 T 4 = T 3O 230
13.6.1 The do-while StatemENnt........ccccuiiieiiiiiiieir s rea e e s s re s shn s s rnassanssrenssrenssrensnrannns 231
13.6.2 The while StatemeENntcooceiiieiiiiiiicr s s e s rea s rrnasrenassadansnnsssenssrenssrenssrenssrensnrnnnns 231
13.6.3 The £or Statemento s e s e a s rea s e sl naaas e s nnssrnnssrnssranssrenssrensnrnnnns 232
13.6.4 The for-in and £or-of StAteMENtScccuiiiiiiiiiii e s s rr s re e s e ren s rrn s rena s rennnrennns 235
13.7 The continue StatemMENt..........cciiieiiiiiiiiiirer e e e rans s e asanas e e s s ensssennsrenssrenssrenssrnnnns 239
13.7.1 Static Semantics: Early Errors...........cuuuiiiiiiiiiiiiiiiiieiieeieeeeeeitnnneseeeeseessnssssssinssssssssssssssssssssssssssnnns 240
13.7.2 Runtime Semantics: EValUation.........ccciiieiiiiiiieiiiiirrece it e s rea s rea s rea s s ma e e sbn s e e s enanrennssennsrennns 240
13.8 The break StatemeENntccccuiiieiiiiiiiiiirr e e sdanssann e rensrrnssrenssrenssrensssanssssbassenssrenssrenssrennns 240
13.8.1 Static Semantics: Early Errors...........cccuiuiiiiiiiiiimieesdinmmmneeeeeeeeeeeeeeeeeessssssssssssssssssasssstasssssssssssssnnnns 240
13.8.2 Runtime Semantics: EValUatioN.........ccoiiieiiiiiiiesfiiiiiei s s rse s rea s rea s se s e s s senssaanssianassennsrennns 240
13.9 The return StatemMeNnt e e e s e di e ir e s e e a s en s renasrenasransseenssrenssrennns 241
13.9.1 Runtime Semantics: EValUatioN.........ccciiieiiiiiiiiiiiietie s adinnsnsn s srea s rea s rn s rrnassenasrenssrennsrensnrennns 241
13.10 The with Statemento s e sba s daneaasn s enn s ennssrnnssensssrnnssrnnsranssrenssrenssrnnnns 241
13.10.1 Static Semantics: Early Errors..........oiiieeiiiiiiiiiiceaisssssssr e esessssss s s s sssssssssssssssssssnssssssssesessnnnnsnes 241
13.10.2 Static Semantics: VarDeclaredNamES...........coiiveeeiiiiieeiiiirebiee e rree e s ressserress s srsnssssersnsssseennns 241
13.10.3 Static Semantics: VarScopedDeclarations................cccoovviimietieciiiiiisssccscs e e e rr s e eeananes 241
13.10.4 Runtime Semantics: EValUuation..........ice.iiiiii i s ceeeirrreeeseseesbu e reess s s rnas s e s enss s rsnnsssernnnsssennnns 242
13.11 The switch StatemMeENt........ooeeeiiiiiii it ireee e s e e eSS e e ans s e eesas e e s nn s e e snssssrrnnssssrnnnsssrennsssrennnns 242
13.11.1 Static Semantics: Early Errors...........cieeciieiniinnsiisse e s e s iiinsn s ssss s s esssnssssssssssssssnssssssssesessnnnnsnes 242
13.11.2 Static Semantics: LexicalDeclarationsiccuuee i e e naas 242
13.11.3 Static Semantics: LexicallyDeclaredNames............cccccoviiiiiiieecciiiir s e e e eennnnes 243
13.11.4 Static Semantics: VarDeclaredNamescccccoiiieeiiiiiecirirecr e rr e rrer e e rrn s e renns s ersnsssseennns 244
13.11.5 Static Semantics: VarScopedDeclarations.................uciiiiiiiiiiecciiiir e e 244
13.11.6 Runtime Semantics: CaseBIoCKEValuation............ccoeeuiiiiieiiiiiccrrreccr e s e e e 245
13.11.7Runtime Semantics: CaseSelectorEvaluation..............ccooveeeiiiiiiiiiiccn e e 247
13.11.8 Runtime Semantics: EValUatioN...... ...l rre s e rr e e e re e e s e e e s e e n e e e nn s s e e nnnsnseennnn 247
U e 7 P 1 Y | 1= o IR =1 =Y 1= 0] 247
13.12.1 Static Semantics: Early Errors...........ooooeeiiiiimmmmmmieeeeeeeeeeeeeeeeesene e nnmnnnnmnnnnnnn 248
13.12.2 Static Semantics: VarDeclaredNamEScoiireeiriiemecirirrirrrrserrrrennerrrensrrernssrrrsnnssseesnsssseennns 248
13.12.3 Static Semantics: VarScopedDeclarations............c.cciiiiiiiiiiecciiier i rr e 248
13.12.4Runtime Semantics: LabelledEvaluation............ccoiiieeiiiieiiicecr s e e s e s e e s e e e e e eenes 248
13.13 The throw StatemeNnt........ ..o it s e e e e s e e e e e n e e e e nn e resn s e rsnnssrrennnsnrrnnnnn 249
13.13.1Runtime Semantics: EVAlUAtION...........coui i e s rr e e s s e s e s e e e s n e e e e e n e e e e nn e eennnn 249
13.14 The try Statement ... —————— 249
13.14.1 Static Semantics: Early ErrOrs...........oooueemieemmmmmmmmmmmeeeeeeeeeeeeeeeneennnnnsnnnnnnn s s s snnsssnnnnnsnnnnnnnnnnnnnnnnnnnnnn 250
13.14.2 Static Semantics: VarDeclaredNamEeSc.ceiiieeiiiirmecirireirrrrearrrrennerrrnssrrrrnssrersnnsreennsssseennns 250
13.14.3 Static Semantics: VarScopedDeclarations............c.euuciiiiiiiiieecciiierrrrrecrc e e 250
13.14.4Runtime Semantics: BindingInitializationooo e 251
13.14.5 Runtime Semantics: CatchClauseEvaluation...............coviieeiiiiiieriiiieecrr e reeser e eea s e e en e e ennes 251
13.14.6 Runtime Semantics: EVAlUAtioN...........coui i e e s e rr e e s s e s s e na e s e s n e e e e e n s e e e e nnn e e ennnn 251
13.15 The debugger StatemMENtceeviiriimimmmimr s s s s s s s s s s s s s annsnnnnnn 252
13.15.1 Runtime Semantics: EVAlUAtioN...........oeuiiiiieiiiiicr e s s rr e s s s e s e e e e s e s n e e e e e n s e e e e nn e e ennnn 252
14 ECMAScript Language: Functions and ClasSesccceiirrririnnrrrnnsnnsssssssssssss s s sn s 252
141 LT o oY o T 1= 3 T oY T 252
14.1.1 Directive Prologues and the Use Strict Directive............ceeeeeemmemmeemememmmmmeeeeeeeeeneneennennnnnnnnnnnnnnnnnes 253
14.1.2 Static Semantics: Early ErTOrS..........ouueeiemimmiimmimmmeeieeeeeeeeeeeenneeeesssnnssnsnnnsnsssnnssssnnsnsssssnnsnssnsnnnnnnnnns 254

© Ecma International 2014 Vi

ecind

14.1.3 Static Semantics: BOUNANAMEScceeeeererrmmmmmmmmmemmememnneeenneeeenssssssssnnsssssssssssssssssssssssssssssnnsnsnnnns 254
14.1.4 Static Semantics: COoNtaAINS..........ccoiiiiiiiii s r s e e e e nm s 255
14.1.5 Static Semantics: ContaiNSEXPreSSioNcuuueieimimiiimiiimimieeiee—————————— 255
14.1.6 Static Semantics: ExpectedArgumentCount...............euueiiimiiiiiiiiimimmmmi————— 255
14.1.7 Static Semantics: HaslInitializer ... 256
14.1.8 Static Semantics: HasName............coo e 256
14.1.9 Static Semantics: IsAnonymousFunctionDefinition (production) Abstract Operation 256
14.1.10 Static Semantics: IsConstantDeclaration..........cccceeuoiiiiiiiiiiccccrrr s 257
14.1.11 Static Semantics: IsFunctionDefinition.............oooeiiii s 257
14.1.12 Static Semantics: IsSimpleParameterList ... sdini————— 257
14.1.13 Static Semantics: ISSICt........oee s errn s e 257
14.1.14 Static Semantics: LexicalDeclarations............couiiieiiiiiiiiiiiesfee e rr e ennnananes 258
14.1.15 Static Semantics: LexicallyDeclaredNames.............ceueeeemeemeneesitnmmmmmnnnninemmmnnnnnnnnnnnnssnnsnssssassssannes 258
14.1.16 Static SemantiCs: ReferencesSUPEruuuuueeeeeeeeeeeieeeninnnnnneesionnnnnenennssinsnsstassssssssssssssssssssssssssssnnns 258
14.1.17 Static Semantics: VarDeclaredNamescoouiieeiiiiiiiiimiim e serre i e e snans s s s e e e e nnnassses 259
14.1.18 Static Semantics: VarScopedDeclarations.................. it 259
14.1.19 Runtime Semantics: EvaluateBodyuuuumiimimie i sssabn e aasanaanas 259
14.1.20Runtime Semantics: IteratorBindinglnitializationeemmmmmi s 259
14.1.21 Runtime Semantics: InstantiateFunctionObject.................oemriitummmim s 260
14.1.22 Runtime Semantics: EValuation..........oooeeeeeiiiiiiiie e ere e sfinsse s s erssssa s s s e s e s n s s s s e e e e s nnnnnnas 260
14.2 Arrow Function DefinitioNscoiiiiiiiiiieciiici s irrii s sfenmmsn s s e r s s s e e s e e r s e s s e e e e nnmannnas 261
14.2.1 Static Semantics: Early Errors...........cuuiiiiiiiiiiiiiiiiesiseestiadienmeneeeeeeeeessennssssssssssssnsssssssssssssssssssssssnns 262
14.2.2 Static Semantics: BoOUNANAMESccoemiiiiiiiiiiiimiiiieine e enns s nnnnnnnn s nnnnnnnnnnnnnnnnnnnnnnnns 262
14.2.3 Static Semantics: Contains...........cciiiinneeiiiiiiiieeeeee e nnnnn 262
14.2.4 Static Semantics: ContainSEXPresSioNicuu . iiiieeeeciiiiii et e rree e e s e e e nnnnnnnes 262
14.2.5 Static Semantics: CoveredFormalsList........ ..ottt 263
14.2.6 Static Semantics: ExpectedArgumentCount.............ccciiimmiiiieeiiiiiiiiiirecese e e rr e e nnananes 263
14.2.7 Static Semantics: HaslInitializer ..o i 263
14.2.8 Static Semantics: HasNAM@...........ceeeeeriimmiiedinmmrineeeeeeeeeeeeeeeieeeeeeeeeeennnnnnsssnnnsnnnnnnnnnnnnnnnnnnnnnsssnnnnn 263
14.2.9 Static Semantics: IsSimpleParameterList.............ooeeeeiiiiiiiiccc s 264
14.2.10 Static Semantics: LexicalDeclarations..........c.....eeeeemmemmmmmmmmmimeee e 264
14.2.11 Static Semantics: LexicallyDeclaredNames...............ciiiiiiiiiieccciiii s rr e 264
14.2.12 Static Semantics: ReferenCeSSUPET ...t s s s s e e e e rnnnnanes 264
14.2.13 Static Semantics: VarDeclaredNames iiii........uvmeeeeeememmmmeeeeeeeeeeeeeeeeeeeeenneennennnee e nnnnnnnnns 264
14.2.14 Static Semantics: VarScopedDeclarations................cccooiimiiiieecciiiii s 264
14.2.15Runtime Semantics: lteratorBindinglnitializationccceemeeiriicc e, 265
14.2.16 Runtime Semantics: EvaluateBodyooer e nnnns 265
14.2.17 Runtime Semantics: Evaluation...............ooooerrmimimmiiimmmeeeeeee e 265
B T T | (=1 d g Lo I = T T o T 266
14.3:1 Static Semantics: Early Errors...........ooooeemieimmmmimmmemmeeeeeeeeeeeeeneeeeeeennennsnnnn s s s nnsssnnnnnnnnsnnnnnnnnnnnnnnnnnnnn 266
14.3.2 Static Semantics: ComputedPropertyContainsceeeeemmemmmemmmmmmmmmmmnnnnnneennnnnnnnnnnnnnnnnnnnnsnnnnns 266
14.3.3 Static Semantics: ExpectedArgumentCount..............ooommmmmimiiemmemeeeenneeeennnnnen e annnnnnnas 266
14.3.4 Static Semantics: HasComputedPropertyKeyooo o mmmmmmmmmmmmeeeeeeeneeennennennnnnnnnnn s snnnnns 267
14.3.5 Static SeMaANtiCS: PrOPINAMEeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneenennennnn e e s s s s s s s nnnnssnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 267
14.3.6 Static SemantiCS: ReferenceSSUPEruuuueeeeeeeeeeeeeeeeeeeeeeeeeeennenennnnnnnnnnnnnnnnnnnssnnnnsnnnnnnnnnnnnnnnnnnnnnnnn 267
14.3.7 Static SemantiCs: SpecialMethodeeeeeeeeeeeeeeeeeeeeeeeeeeeennnenennennnnnnnnnnnnnnnnnsnnnnsnnnssnsnsnnsnnnnnnnnnnnn 267
14.3.8 Runtime Semantics: DefineMethodooeeermmimmmmmmmeeeeee e 268
14.3.9 Runtime Semantics: PropertyDefinitionEvaluation ... 268
14.4 Generator Function Definitionsceeeeieemmmmmmmmmmmmmmeeeeeeeeeeeee s 269
14.4.1 Static Semantics: Early ErTOrS.........oooeeeeemieiimmmmimieiieeeeeeeeeeeeeneeeenneeesne e e s s nnn s s s s nnnnnnsnnnnnnnnnnnnnnnnnnnn 269
14.4.2 Static Semantics: BOUNANAMEScoeermimmmmmmmimmmmmeireeeeneeeeeeenneneennennnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 270
14.4.3 Static Semantics: ComputedPropertyContainsccccceeeemmmemmmmmmmmmmmmnmnnnnnnnnnnnnnnnnnnnnnnnnnnnsnssnnnns 270
14.4.4 Static Semantics: CONtaAINS...........coiiiiiiiii e e s e s e e e s e snn e e s e e e e e nmnnsnan 270
14.4.5 Static Semantics: HasComputedPropertyKeyoooeeemmmmmmmmmmmmmmmmmennnnnnnnnnnnnnnnsnnnnnnnsnsssnssnnnns 270
14.4.6 Static Semantics: HasName...........ccoo i rrs e s e s e s e s nn e s s e e e e e mmnnnnan 270
© Ecma International 2014 viii

ecind

14.4.7 Static Semantics: IsConstantDeclaration................eeeeeeeeeeeeemeemnmmmmmnnnmmnnnnsnnnnsssnssssssssssssssssssssssnnns 271
14.4.8 Static Semantics: IsFunctionDefinition............cooeeiiii s 271
14.4.9 Static Semantics: LexicallyDeclaredNames............ceeueeeeeemmmmmmmmmmmmmmmnnnneenennsns——————— 271
14.4.10 Static SEMANLICS: ProPINAMEuuueeeeeeeeeiiiiiiiiiiiiieeeeeeeeneeeneesesseessssssssss s sssssssssssssssssssnnsssnnnns 271
14.4.11 Static SemantiCS: ReferencesSUPEruuuuuueeeeeeeeierieiiiieninneieneeeennsseeneessssesssassaa s saaaaasaanas 271
14.4.12 Static Semantics: VarDeclaredNamesccoomiiemciiiiiiiiiiecrss s s s s e e nmannnes 272
14.4.13 Static Semantics: VarScopedDeclarations...............uuuuemememiiiiiiimieimia. 272
14.4.14 Runtime Semantics: EvaluateBody ... 272
14.4.15 Runtime Semantics: InstantiateFunctionObjectouummmimiiiiiii s 273
14.4.16 Runtime Semantics: PropertyDefinitionEvaluation ...t 273
14.4.17 Runtime Semantics: Evaluation............... it sfinse e e e e s s e e e s e e e e e e ennes 273
14.5 Class DefinitioNsooiieeiiii et rr s e e s e e e s e aan e e s s e nns s e e e n s s s e snn s e e e nnnsnsrennns 275
14.5.1 Static Semantics: Early Errors...........uuuiiiiiiiiiiiiiiiiieenieeeieeeeeeeeesdonnnssanssstnsssnsssssnsssssssssssssssssssssssnns 276
14.5.2 Static Semantics: BoUNANaAmMEScoooeeeeiiiiiiiiiricicr e sdinn s e e e rnsmsabn s e e e s s nmna s s s e e e e s nnnnnnes 276
14.5.3 Static Semantics: ConstructorMethodoooriiiii i 276
14.5.4 Static Semantics: CONtAINS..........cccoiiiiiiiiieiiiii i sde e ti e s s s e s s e s nas s sasseabaennn s sseerennnnsssen 277
14.5.5 Static Semantics: ComputedPropertyContainscoccccuueeeeeeeieieeiimenineeeeeeeeeennnstne e 277
14.5.6 Static Semantics: HasName. ...t rrrree s errs e s s e e e e s rmmmna b s e e e e nnmnnnnan 277
14.5.7 Static Semantics: IsConstantDeclaration.........c i e 278
14.5.8 Static Semantics: IsFunctionDefinition........... - 278
14.5.9 Static Semantics: ISStatiCccuuiiiiiiiiiii e e sfe e 278
14.5.10 Static Semantics: LexicallyDeclaredNames...........cccccciiimmmmeemennemmmmmmnnneennnnnnennnnnnnnnnnansssssaaaaaaaaaas 278
14.5.11 Static Semantics: PrototypeMethodDefinitionsccccmmmiimecciiii s 278
14.5.12 Static Semantics: PrototypePropertyNameList..............ccccciiummmmimmmimmmmeeeeeeeeeeeeeeense s 279
14.5.13 Static SEeMaANtiCS: PropINaMEccue it eneeeeeeneeennneemannnstan e ssnsnnnnssnsnsnsnnnnsnnnnnssnnnnnnnnnnssnnnnn 279
14.5.14 Static Semantics: StaticPropertyNameListccicunneiiiiiiiiese i 279
14.5.15 Static Semantics: StaticMethodDefinitions.............cciiii s 279
14.5.16 Static Semantics: VarDeclaredNamesceceerieeemiiiiimmeeiinneeeeeeeeeenenennnnnsnnnsnnsnssnsnsssssssnsnnnnnns 280
14.5.17 Runtime Semantics: ClassDefinitionEvaluationccooe s 280
14.5.18 Runtime Semantics: EValUAtioN.............. oo mmmmnnas 281
14.6 Tail PoSition CallS:.........ccoeiiiiiiiiiitiiieiii e teeb e eenn e e nn e e e s s s s s s s nnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnn 282
14.6.1 Static Semantics: InTailPosition(nonterminal) Abstract Operationiiinees 282
14.6.2 Static Semantics: HasProductionInTailPositionooeeimmeeeeeeee s 282
14.6.3 Runtime Semantics: PrepareForTailCallooeeeiiiiiiiieeccceererreece e 286
15 ECMAScript Language: Scripts and Modules............cccoiiiirr s 287
15T T T o] oS 287
15.1.1 Static Semantics: Early EXTOrs............ooeeemimmimmmmmmmmmieeeeeeeeeeeeeeeeeneeeeeeennnns s s s nn s s s s s s nnnnnnnnnnnnnnnnnn 287
15.1.2 Static Semantics: ISStriCt.....ciummmmimmmiiieeieieeieeeeeeeeee e nnnnn 287
15.1.3 Static Semantics: LexicallyDeclaredNames............oceeeeemmmmmmmmmmmmmmmmmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnns 287
15.1.4 Static Semantics: LexicallyScopedDeclarations............cceeeeeeememmmmmmmmmmmmenmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 287
15.1.5 Static Semantics: VarDeclaredNamesooeeeeemmmmmmmmmmmmmmmmmmeeeeeeeeeeenneennnnnnnnnnnnnnnnssnssnnnssnnnnnnnnns 288
15.1.6 Static Semantics: VarScopedDeclarations............cueuiiiiiiiiiiiecciii e 288
15.1.7 Runtime Semantics: ScriptEvaluation ... e e 288
15.1.8 Runtime Semantics: GlobalDeclarationInstantiation.................ooeeeees 288
15.1.9 Runtime Semantics: ScriptEvaluationTask (SOUICe)eeeeemeememmmmmmmmmmmmenennnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 290
07 1 o Yo (1] = 290
15.2.0 Module Static SeMaANtICS........ceerrmrmmmiimmiiiiiiieieeeeeeeeeeeeeee e nnnnnnnn 291
LIS J07200 T 11 o T o 296
00 oY o Y £ 299
15.2.3 Runtime Semantics: Loader Stateoeeeemmmmmmmmmmmmmmmmmmeeeeeeeeeeeeee e 303
15.2.4 Runtime Semantics: Module LOading..........cceeeeemmemmmmmmmmmmmmmmmmmmmennnnnnnnnnnnnnnnnnnnsnnnsssssssssssssssssnnssnnnns 305
15.2.5 Runtime Semantics: Module LinKiNg........ccceeeeeeemmmmmmmmmmmmmmmmemmeeeeeeeneennennsssnnnnnnnnnnsssssssssssssssssssssnnnns 312
15.2.6 Runtime Semantics: Module Evaluation..............coueeiiiiiiiiiieccccre s e rr s e e e e 321
16 Error Handling and Language EXteNnSIiONS ... 322

© Ecma International 2014 iX

ecind

17 ECMASCcript Standard Built-in ObjJects.........ccccoiiiiiiimmiirinerrr s 323
18 The GIobal OBJECE.........cccceiiiei i s s snr e s s e e s s amnn e e s e e s s s nnnnnns 324
18.1 Value Properties of the Global ObjJecCtueueimmimmmmmmimiiii s 324
L 700 I T 4T T2 324
L 700 I - 325
0 R T U T e 1= 13 = o 325
18.2 Function Properties of the Global Object...............ueummmmimmiiiiiii . 325
0700 B - | 325
18.2.2 iSFiNite (NUMDEK)cciviiiiiiiiiiiiiiiiiirii s s s s s s s s s e o bne s s s s sssssssssssssnnnssnnnnns 326
18.2.3 iSNaAN (NUMDEK).....cciiiiiiiiiiiiiiiiiiiriiree s s s assssssss s s s s s s sdannnananssssssssssssssssnsssnnnnnnnnnnn 326
18.2.4 parseFloat (StriNg).........ccuiiiiiiiiiiiiiiiiiiii e aanaas 326
18.2.5 parselnt (String , radiX)........ccueeeeimmmimimimmmmmimiei e dannnnantne s aaaaaaanas 327
18.2.6 URI Handling FUNCLIONcceiiiiiiiiiiiiiiiiiiiiiiieneeiisesseesesseeseseseesdannnnsssssnnnstnsssssssssssssssnnsssnssnnnnnnnnnns 328
18.3 Constructor Properties of the Global Object...............euueeiiitimineeeatae s 333
B 0 20 T V4 1 333
BT T V4 1= T =) T 333
T T = 7o o =T T o T (o 333
18.3.4 DAtaVIEW (. . .) ccccccccirerriiirisismnrrrrrssssssssssnnsereesssssiananmsensesssssssssssnnsnnsssssssssssnsnsnessssssannnabiseeesessnnsnns 333
B T T 0 T - (O 333
T 1 o N 333
T A 7= 1| = o (O N 333
18.3.8 FIOAt32AITAY (. . -) coceererriirrrassamrrrrrriasssssassnerreeesssssassssananasaas s sssnnnneessssssssssnnsnnssssssssssssnnnnnnenssssnsns 333
L 2R T e LT L i Y (O N 334
L 0 200 N VT T T (O N 334
L 20 B I 1412274 1 e N 334
L 20 8 14T L Y N 334
L 2R B 1412 7 Y N 334
L 0 200 1 = O O N 334
L 0 200 T8 0T 0T oL N 334
L 200 0 o 1= o O N 334
T e I A 2 T e T = o 334
18.3.18 ReferenCeEITOr (.. .) eeeeiiiiieebiimrieiieeieeeeeeneee e mnnsb e e e e e nnnn e e e e e e e e e e e s nnsnsnsnn 334
L 200 e TN =T 0| o T (R N 334
L 207 ST O (N 334
18.3.271 SEHNG (- - -) ceeriiiriiammre i e e 334
18.3.22 SYMDBOI (-« 2) eeiiiieeierrrr it 335
TR B 1 2= o T 335
TR R I8 < 1= o (R 335
18.3.25 UINBAITAY (. .+)uisemiueeeiiiiiiiammiiie s s s r s as s e e s s e e s an e e e e e e e e e s e annn e e e e e e e e aann 335
18.3.26 Uint8CIamPedAITAY (. . .) ceeeeeerieemmmmmmemmmerrrmmeereenennnnnnennnnnnnnnnnnnnnnennnnnsnnsnnnsnssnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 335
18.3.27 UINEIBAITAY (. . .)uuueieereriiiiiiiinniirr i da e a s e e e e e s e e an e e e e e e e e e e e annn e e e e e e e e naan 335
TR LT < 777 N4 | TR N 335
18.3.29 URIEFTOL (. . .) eeeeeendemmmrimmmmmmmmmmmmmneennnnennnnnennnnnennrnnsnnnnnsnnnnnnsnsssnnnssssssnnssssnnnnnnnnnnnsnsnnnnnnnnnnnnnnnnnnnnnnnnnnn 335
L T R L= 1 T oI (T N 335
L 2 T L= 1 Lo N 335
18.4 Other Properties of the Global OBJecCtceeeememmmmmmmmmmmmeeeeeeeeeeeeeeeee e nnnnnnnns 335
L T T L N 335
L 7 -1 N 335
L T S o) N 336
18.4.4 REFIECE ..ot 336
T BT =3 = o 336
19 Fundamental ODBjJEctSccoo o 336
B TR TR © o 1= o2 0 L = o = 336
19.1.1 The Object CONSIIUCEONceeeeiiiieeieiiieeeeeeeeeeeeeeeeeeeeeeereeeeerer s s s snsnnsssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 336

© Ecma International 2014 X

ecind

Properties of the Object CONSLIUCLONccoiiiiiiiiiiiiie s 337
Properties of the Object Prototype Object ... 342
Properties of Object INStaNcCes ..o ————————— 344
FUNction ODJEctS ... ————— 344
The FUNCLION CONSTIUCTON i r s s s s s e e s e e mn s s s e e e e nnmnnnnnnnees 344
Properties of the Function Constructor..........ccooiiiiiiiinn s 346
Properties of the Function Prototype Object ... 347
FUNCHION INSEANCES ...t e e s s s s e e e s s s s s s e e e nnmn s s s s eennnnnn 350
Boolean ODBJECtS ... ————— 351
The Boolean CONSTIUCLONciiiiiiiiiicciircrrrri s e e s s s s s s s s e nn s s n e b e s e nnn s s s e e e e nnmnsssssnsnes 351
Properties of the Boolean Constructor ... s 351
Properties of the Boolean Prototype Object ... 352
Properties of Boolean INStances ... i 353
Symbol ODBjJECtSccoviiiiiiiiiiiiiii e 353
The SYMbOol CONSLIUCLONcuviiiiiiiiiiiiiiiiiiiriieirree s ar s ssssssssssssannnsbnssssnnssssnsssssnnsnnssnnnan 353
Properties of the Symbol ConsStructor...........ccco it s 353
Properties of the Symbol Prototype Object...............ti s 355
Properties of Symbol INStaNCes..........ccooiiiiiiieeccc it rrr s e r s s senenabna s s s e e e ennnn 357
Error OBjJECtS ... 357
The Error CONSTIUCTONccciieeecciiiiiirriieces s esrnsmmasie s s s s e eesenasa e nenne s s nnnsssssnssennnnnsssssssensnnnnnnnssnnsnns 357
Properties of the Error CONStrUCtOr ..ot 358
Properties of the Error Prototype Object..........cccooiiiintin s 358
Properties of Error INStanCes.......ccuuueu i ssssmsssa e e s e s s ss s s s s e e s nnnssss s s s e s e e s e nnnssssssenennnnn 359
Native Error Types Used in This Standardcceeeeeiiiiiiiiicecccc e e s s e e 359
NativeError ObjJect STrUCIUre oottt e ereeeees s s s e e snsssaba s s s s e e s nennsss s s s e e e s nnnnnsssssseeeennmnnsnen 360
NUmMbers and Dates....... ..o s s 362
L\ L0004 =T g0] o =Y o3 N 362
The NUMDBEr CONSEIUCONcoeveiiiiieiiiiieheneefinienieeeeeeeeee s annnr e ee e eennn 362
Properties of the Number CONStrucCtor........cc...e e r s e r e s e e e nne 363
Properties of the Number Prototype Object............ccooiiii 366
Properties of NUMber INStancCes ... e s e e s e s s e e e e 371
The Math ODjJECH........... . erre e b s s e s e e e e s s s e s e s s s na s s s s e e s nnsssssssserennnnnnssnnnsnns 371
Value Properties of the Math OBJect ...t e 371
Function Properties of the Math Object......ccccu.....co i 372
[T 1 20] o 1= o1 -t 381
Overview of Date Objects and Definitions of Abstract Operations............cccoovrreeececiiirrneeennee. 381
The Date CONSIIUCTOTccoiiriieeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e s s s s s s s s s s s nnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 387
Properties of the Date CoNStrUCTOT...........cooeeeeei i s e e e e ene 389
Properties of the Date Prototype Object............ccco i 390
Properties of Date INStaNCes.............e i rr s s e e e e e e s e e e e e e nnnn 400
L= 0 S oo Xo 7 1 o 400
851 T 0] o =T o2 £ RPN 400
The String CONSEIUCKON............ooeiiiiieieeeeeeeeeeeeeeeeeee e e e e e s s s s s s s s s s nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 400
Properties of the String CoNStrucCtor..........ccco o s 401
Properties of the String Prototype ODBJect.........ccccoo i 403
Properties of String INStanCescccooo i 417
String Iterator OBJECtSooviiiieei e r e e e e e e e e enneees 418
RegExp (Regular EXpression) OBjJEcCtSccccoiriiiiiiiiiiiirrrrrcrrr s 419
= =T o TN 419
Pattern SemantiCscccooiiriii s 422
The REgEXP CONSLIUCKON.........ceviiiieieeeeeeeieiieeeeeeeeeeeeeeeeenenneneenne e e e e e s s s nnssssnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnnnnnnnnn 437
Properties of the RegEXP CONSIIUCLONcco oo 440
Properties of the RegExp Prototype Object ... 440
Properties of RegEXP INStaNCesccccciiiiiiiiiirccrrrrrr s s 449

© Ecma International 2014 Xi

ecind

22
221
2211
22.1.2
2213
2214
221.5
22.2
22.21
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7

23
231
23.1.1
23.1.2
23.1.3
23.1.4
23.1.5
23.2
23.21
23.2.2
23.2.3
23.2.4
23.2.5
23.3
23.31
23.3.2
23.3.3
23.3.4
234
23.41
23.4.2
2343
23.4.4

24
241
2411
24.1.2
241.3
2414
2415
24.2
24.21
24.2.2
24.2.3
24.2.4
24.2.5
243
24.31
243.2

[T T2 =Te I 0 oY 1= o3 1 o o 1= 449
Array ODJECTS.... 449
The Array CONSTIUCKON........cuuuiiiiiiiiiiiiiiiiririiirrrr e e asssssssssssssssssnsssssssnssnsssssssssnnnsnsnnnan 450
Properties of the Array CONStrUCTOrcccoiiiiiiiiii 452
Properties of the Array Prototype Object.........ccoooiiinni s 455
Properties of Array INStancCes ... —————————— 481
Array Iterator ODJECtS....... ..o ———————— 481
TypedArray ODjJECES..........uuiiiiiiiiiiiiiiiiiiiiiirrrrrr s s s s sss s s s s s s s s s s s s s s s s s s ssnsnnnsnnnnnnnn 483
The %TypedArray% INtrinSic ODJECt...........uuuvmiiiiiiiiiiiiiiiiee e 483
Properties of the %TypedArray% Intrinsic Object ..., 487
Properties of the %TypedArrayPrototype% Object.............cccovmmmimieiiiiniiieee e, 490
The TypedArray CONSLIUCIONSccuuiiiiiiiiimiiiiiiiiiieeinieeeeeseeeeeennneesdannnnsensssssssssssssnssssssssssssnsnnssnnnas 501
Properties of the TypedArray CoONStruCtors.........ccooiiiiiiiiiniiini st i s 502
Properties of TypedArray Prototype Objects.........cccoiiiiiiiiinitiinnnn i 503
Properties of TypedArray INStaNCeS........cccoriiiiiiiiiiiiiii i 503
Keyed ColleCtion ... s s 503
Map ODjJECLS..... . 503
The Map CONSLIUCEON........ccuiiiiiiiiiiiiiiiiiiirieeeerseeeeesdonnnneeeeeeesesessensnsssssssssssnnnnnsnnsnnnnsnssnnnnabnsssssnnsnnnnnn 503
Properties of the Map CoNStructor ... s 505
Properties of the Map Prototype Object ...t s 505
Properties of Map INStancCes ... i 508
Map Iterator ObJECtS.......cccoiii e ——————— 508
£ T 0 o =Y o2 £ 510
The Set CONStrUCLONcc.uueeiiirriii e sss s e R e s s s e e ansrr e e e e e s s s aannnns 510
Properties of the Set CoONStrUCOr.............cciii it iire e ss s ssses e e s s e e e e e s s e s s e e s e e e nnnnss s e s seeennes 511
Properties of the Set Prototype ODbject............ it ee e s e eeeene 512
Properties of Set INStanCes........cccceuciiiiiiiiicec e eeiirrnnma e st i e e e e s s s e s e e s s nnnsss s s s e s e s s nnnssssssenrennnnn 515
EST1 Q10T =1 Lo 0 o = o - s 515
WeakMap ObjJeCTES....ciiiiiiiiiieeeti e ieiiierrrennnissaaiessarennssssssssererrnnsssssssssssnsnnssssssssssmennnnsssssssesennnnnnnnsnssnns 517
The WeakMap CONSTIUCTON........ i i e e s s e s s s e e s s s s e e e s s e nn s s s e e e ennnnssssnnsnn 517
Properties of the WeakMap CONSLrUCTOrcc.ci. i rrrree s e e e s s s e e e e nnn s e e e e eenns 519
Properties of the WeakMap Prototype Object...........ccoummeiiiiiiiiiiccccr e 519
Properties of WeakMap INStANCES wuuuunn..iiiiiiieeiiiriiiiiiic e cs s e s s e s ssnsss s s s s s e e s s sn e s s e e e e s e nnnsssssssssennnns 521
LA L= T ST A0 T o =Y o PP 521
The WeakSet CONSEIUCEOYccccmmiiir i 521
Properties of the WeakSet CONStrUCtOr..............coiiiiiiiie e e s e eeene 522
Properties of the WeakSet Prototype Object...........cccoorrririiiriirirr s 523
Properties of WeakSet INStances............ooo et 524
Structured Datacoceeeiiiiii i ————————————————— 525
ArrayBuffer ODJECES. s 525
Abstract Operations For ArrayBuffer Objects.........ccccooriiiriiiiiiiir s 525
The ArrayBuffer CONSEIUCIONoooveiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e nnnnan 527
Properties of the ArrayBuffer CONStruCtor...........ccco oo 528
Properties of the ArrayBuffer Prototype ODbject..........cccoor i 528
Properties of the ArrayBuffer INStances...........ccoo i 530
[F= 1 LV A=Y A0] o (=Y o2 £ 530
Abstract Operations For DataView ObjJects...........cueuermmmmmmmmmmmmmmmmmmmennnenenennnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnas 530
The DataView CONSLrUCKONcoiiiciieeiiir i nnnes 531
Properties of the DataView CONStrUCEOr.............co it 532
Properties of the DataView Prototype Object..........ccccoorriiriiririrrrrrr s 532
Properties of DataView INStances...........ooeciiiiiiircccc et 536
The JSON ODBjJECEcciiiiceeriiri i s s s e e annr e e e e e s e nnnnns 536
JSON.parse (text [, FEVIVEI]) uuueueeeeeeeeereeeemmieeneneereenennnnnnnnsnnnnnnnnnnnnnnnnnnsnnnnnnnnnsnsnnnnnnnsnnnnnnnnnnnnnnnnen 536
JSON.stringify (value [, replacer [, SPACe]])eeeeeeeeremmmmmmmmmmmmmmmmmmmrnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnssnsnnnnas 538

© Ecma International 2014 Xii

ecind

24.3.3 JSON [@@LOSriNGTaQ J--eeeeeiiiririnmerrreriiinisssnsr s s s sssss e s s sns s s s e s s smn s e e e s e e s s e anmnn e e e e n s 543
25 Control Abstraction ObjJects ... ————— 543
251 Common lteration INterfacescoeueiiiiiiiiiicc e e 543
25.1.1 The [terable INterface........... .o rrr s s s r s s s s e s e s rnn s s s s e e e e nnmnsssssssnenennnn 543
25.1.2 The Jterator INtErfacecii i e s s s e s rn s s s s e s e s enmss s s s e s e e nnmnssssssssennnnnn 543
25.1.3 The lteratorResult INterfacecoeeeeiiiiiiiiiicrrrr e e s s e e e s nnn s s s e e ennnn 544
25.2 GeneratorFunction ObjJects..........ccoc—————————— 544
25.2.1 The GeneratorFunction CONSLIUCIONooiiieeeiiiiiiriri s e e e e e nne 545
25.2.2 Properties of the GeneratorFunction Constructor...........cccoiiiidii s 547
25.2.3 Properties of the GeneratorFunction Prototype Object...........coooriiiiiitiininnin, 548
25.2.4 GeneratorFunction INStaNCEeSccceeeeeiiiiiiiiiiiecci s r e s s e s e e rnn s s s e e e e rnnnss s s s s e e ennnn 549
25.3 Generator ODJEcCtS ... 550
25.3.1 Properties of Generator Prototype ... i s 550
25.3.2 Properties of Generator INStances..........cccociiiiiiiiiniiinn i —————— 551
25.3.3 Generator Abstract Operations...........cccoi i 551
25.4 Promise ODBJECtScccoiiiiiii e 553
25.4.1 Promise Abstract Operations...........ccooiiiinin i 553
25.4.2 PromisSe TaASKS ...cuuuciiiiiiiiiiieuiiiiiirrrinsssssssssrsrennssssianssnmennnsssssssserenmnnssssssssesssnsnnsssssssesnnnnabnsssssseesennnn 557
25.4.3 The Promise CONSErUCEONcooiiieeeiiiiiiirrecdiiinn e nensnesn s ss s e e sdnnsbn s e s s s e s e s nnnnssssssssssnnmnnnssssssnennnnnn 558
25.4.4 Properties of the Promise CoNstructor ...t s 559
25.4.5 Properties of the Promise Prototype Objectcccooii i 562
25.4.6 Properties of Promise INStaNCes ..o s 563
26 REfIECHION.....eiiiei i e 564
26.1 The Reflect ODjJECt.......cocoeeeciiiiiiiei s rss e e e et i s es s e s e e sesnns s sasssabhnnasssssssesesnnnnssssssseeesnnnnssssnssnennnnnn 564
26.1.1 Reflect.apply (target, thisArgument, argumentsList)............cccooiiiiiis 564
26.1.2 Reflect.construct (target, argumentsList)cooiiiiiiiiine i 564
26.1.3 Reflect.defineProperty (target, propertyKey, attributes) ..., 564
26.1.4 Reflect.deleteProperty (target, propertyKey) s 565
26.1.5 Reflect.enumerate (target)......cc..ccoo oo 565
26.1.6 Reflect.get (target, propertyKey [, reCeiver])cccoo i s 565
26.1.7 Reflect.getOwnPropertyDescriptor (target, propertyKey)cooeeuceiiiiiiimececccssererrcenseesseeeeeees 565
26.1.8 Reflect.getPrototypeOf (target).........ccocorrriiiiiiiiie s 565
26.1.9 Reflect.has (target; propertyKey ... i 566
26.1.10 Reflect.isExtensible (target)...........cco o 566
26.1.11 Reflect.ownKeys (target).........cccooor i s 566
26.1.12 Reflect.preventExtensions (target) ... 566
26.1.13 Reflect.set (target, propertyKey, V[, reCeiver]) ... 566
26.1.14 Reflect.setPrototypeOf (target, Proto)ccccocoriiriiiiiiirrrrrrrr s 566
b A 3= =113 00 1 o =Y o2 £ 567
26.2.1 The Reflect.Realm CONSLIUCLON..........cciiiiiiiiiiniiir i 567
26.2.2 Properties of the Reflect.Realm Constructor............oociii e e 568
26.2.3 Properties of the Reflect.Realm Prototype Object ... 569
26.2.4 Properties of Reflect.Realm INStaNCesccceeeeeeiii i e e e 571
2 N I T T 1= @ o= o3 = 572
26.3.1 The Reflect.Loader CONSLIUCEOcoiiiiiiimiimiriiirrr e 572
26.3.2 Properties of the Loader CONStructor..........cceueeeiiii it rrress s s s e e e s s enn e s s e e e enne 573
26.3.3 Properties of the Reflect.Loader Prototype Object..........ccccooiiiriiiiiriiiiccrrrrr e 573
26.3.4 Properties of Reflect.Loader INStancCes.........ceeeciiiiiiiiiieeccciie e e s s e e e e e ene 581
26.3.5 Loader Iterator OBjJECESccccceiiiriirirrrrrrrrr s 581
26.4 The System ODBjJECtccccociiiirrrr s 583
26.5 ProxXy ODjJECtSccccciiiiiiiiiiicirirrrrs s e 583
26.5.1 The Proxy Constructor FUNCLIONcccooiiiiiccrrrr s 583
26.5.2 Properties of the Proxy Constructor FUNCHiON...........cccooiiiiiiiiiccrrrrr s 584
Annex A (informative) Grammar SUMMAIYcoooeiiiiiiiiiiieieeieeeeeee e e ee e e e e s s e s s s e s s e e e s e e e e s e esesseeseesesseesseseeennee 585

© Ecma International 2014 Xiii

ecind

[0 o= 1R =0 11 .4 T | 585
o T =TT 1o L= 592
85 1= .4 1= 0 596
FUNCtioNS @Nd SCHPES.....ccuiiiiiiiiiiiiiiiiiiiiiiniiirrr sssssnsssssssssssnnsnnnnnnn 598
LW 0T o= g 0 4 Y=Y =] oY o T 599
Universal Resource ldentifier Character Classes..........ouieeiiiiiiiimiiesccsiie s rr s 600
REGUIAI EXPreSSIONS. ...ccuiiiiiiiiiiitiiiiriiirsrrrenerrerrtrrrerr i —————————————ssnnnnnnnnnn 601
Annex B (normative) Additional ECMAScript Features for Web Browsers............cccccoeviiiiiiiiiiiiiiiinnnnnnns 605
B.1 Additional SYNtaX ... 605
= 70 I T 11T 44 U= e I =Y o | 605
0 0 {4 o TN = - 605
B.1.3 HTML-like COMMENLESccoiiiiiiieiiiiiiirrrrese s s s s s s s s s s s e e s nn e s s s s s adbe s s s s e s e s nnmnsssssssennnnnnnnnnen 606
B.1.4 Regular EXpressions Patternseuuiiiiiiiiiiiiiiiieemieieeieeeeeeesdinnnnneeenssstnssassssssssssssssssssssssnssssnnns 606
B.2 Additional Built-in Properties..........cccooi i 610
B.2.1 Additional Properties of the Global ObjJectcuuueeitineimiiiim et 610
B.2.2 Additional Properties of the Object.prototype Object.c...cc...uummimmemiieeeieieiiiennnnnatae s 611
B.2.3 Additional Properties of the String.prototype Objectoummmmmmimmimmmmimte s 612
B.2.4 Additional Properties of the Date.prototype Object.............ceummmmmmmimmmmmmmimmie et 614
B.2.5 Additional Properties of the RegExp.prototype Objectcccco e 615
B.3 Other Additional Features............. i ierree e s se s e s e sdemnnss s s e s e erennnsss s s s e s e snnnnssssssssensnnnnnnnen 615
B.3.1 __ proto____ Property Names in Object Initializers.............iceeeeeeeiiiiiiieecccrrrree e 615
B.3.2 Web Legacy Compatibility for Block-Level Function Declarations...............cccvveemncciiiiinnnecnnnne. 616
B.3.3 __var statements in Catch BIOCKS....ccuiuiieeeeiiiiiiiciei b e e 617
Annex C (informative) The Strict Mode of ECMASCIIpPt..........ceuuiiiiiiimetin e erreeescs s s e s e seesnsse s e e e e ennes 619
Annex D (informative) Additions and Changes that Introduce Incompatibilities with Prior
EdifiONS.....e e e s 621
Dl 1N @ B8 EdItION....eucereerrannneceuressenssessessasnsseseesiasnssnssessesnssssatansnssessessesssssseessessssssnessenssssssessenssnnens 621
D.2 1N the 5" EditiON.......riiiressusessebineeesesressessssessaionssssessessessessssessessessssssssssessssssssssesssssssessessssnseessenssnsns 623
Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior Editions ..626
T 1 T T T s o O 626
0 1 TN T T 628

© Ecma International 2014 Xiv

§ INTERMATIONAL

© Ecma International 2014

XV

»eCma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular. expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World
Wide Web where it has become the programming language that is supported by essentially all web browsers.
Significant work was done to develop a fourth edition of ECMAScript. Although that work was not completed
and not published! as the fourth-edition of ECMAScript, it informs continuing evolution of the language. The
fifth edition of ECMAScript (published as ECMA-262 5 edition) codified de facto interpretations of the
language specification that'have become common among browser implementations and added support for
new features that had emerged since the publication of the third edition. Such features include accessor
properties, reflective creation and inspection of objects, program control of property attributes, additional array
manipulation functions, support forthe JSON object encoding format, and a strict mode that provides
enhanced error checking and program security.

The edition5.1 of the ECMAScript Standard is fully aligned with the third edition of the international standard
ISO/IEC 16262:2011.

This present sixth edition of the Standard.........

ECMAScript is. a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4’ as an Ecma International publication does not
exist.

© Ecma International 2014 XVi

secnd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on.an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2014 XVii

»eCma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret.characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not
otherwise specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript that provides an application programming interface that
supports programs that need to adapt to the linguistic and cultural conventions used by different human
languages and countries must implement the.interface defined by the most recent edition of ECMA-402
that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties,
and functions beyond those described in this specification. In particular, a conforming implementation of
ECMAScript may provide properties not described in_this specification, and values for those properties,
for objects that are describedqin this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not
described in this specification. In particular, a conforming implementation of ECMAScript may support

program syntax that makes use of the “future reserved words” listed in subclause 11.6.2.2 of this
specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

IEEE Std 754-2008: IEEE /Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic
Engineers, New York (2008)

ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

© Ecma International 2014 1

secind

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or
successor.

ECMA-402, ECMAScript Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations. and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external
data or output of computed results. Instead, it is expected that the computational environment of an
ECMAScript program will provide not only the objects and other facilities described in this specification
but also certain environment-specific objects, whose description and behaviour are beyond the scope of
this specification except to indicate that they may provide certain properties that can be accessed and
certain functions that can be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customize, and automate
the facilities of an existing system. In such systems, useful functionality.is already available through a
user interface, and the scripting language is a mechanism for_exposing that functionality to program
control. In this way, the existing system is said to provide a host environment of objects and facilities,
which completes the capabilities-of the scripting language. A scripting language is intended for use by
both professional and non-professional programmers. ECMAScript was originally designed to be used as
a scripting language, but has become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven
Web pages in browsers and to_perform server computation as part of a Web-based client-server
architecture. ECMAScript is now used both as a general propose programming language and to provide
core scripting capabilities for a variety of host environments. Therefore the core language is specified in
this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in
particular C, Java™, Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages — C.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing
Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

© Ecma International 2014 2

http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

ecind

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides a means to attach scripting
code to events such as change of focus, page and image loading, unloading, error and abort, selection,
form submission, and mouse actions. Scripting code appears within the HTML and the displayed page is
a combination of user interface elements and fixed and computed text and images. The scripting code is
reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side<computation including objects
representing requests, clients, and files; and mechanisms to lock and.share data. By using browser-side
and server-side scripting together, it is possible to distribute computation between. the client and server
while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing
the ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. In.ECMAScript, an object is a collection of
properties each with zero or more attributes that determine how each property can be used—for
example, when the Writable attribute for a property is-set to false, any attempt by executed ECMAScript
code to change the value of the property fails. Properties are containers that hold other objects, primitive
values, or functions. A primitive value is a member of one of the following built-in types: Undefined,
Null, Boolean, Number, Symbol and String; an object is a member of the remaining built-in type
Object; and a function is a callable object. A function that is associated with an object via a property is a
method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities.
These built<in objects.include the global object, the Object object, the Function object, the Array object,
the String object, the Boolean abject, the Number object, the Math object, the Date object, the RegExp
object, the JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError,
SyntaxError, TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary
operations, multiplicative operators, additive operators, bitwise shift operators, relational operators,
equality operators, binary bitwise operators, binary logical operators, assignment operators, and the
comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, a variable is not required to have its type
declared nor are types associated with properties, and defined functions are not required to have their
declarations appear textually before calls to them.

© Ecma International 2014 3

ecind

4.2.1 Objects

ECMAScript objects are not fundamentally class-based such as those in C++, Smalltalk, or Java. Instead
objects may be created in various ways including via a literal notation or via constructors which create
objects and then execute code that initializes all or part of them by assigning initial values to their
properties. Each constructor is a function that has a property named “prototype” that is used to
implement prototype-based inheritance and shared properties. Objects are created by using
constructors in new expressions; for example, new Date (2009,11) creates a new Date object. Invoking
a constructor without using new has consequences that depend on the constructor. For example, Date ()
produces a string representation of the current date and time rather than an.object.

Every object created by a constructor has an implicit reference (called.the object’s prototype) to the value
of its constructor's “prototype” property. Furthermore, a prototype may have a non-null implicit
reference to its prototype, and so on; this is called the prototype chain. When a reference is made to a
property in an object, that reference is to the property of that name in the first object in the prototype chain
that contains a property of that name. In other words, first.the object mentioned directly is.examined for
such a property; if that object contains the named property, that is the property to which the reference
refers; if that object does not contain the named property, the prototype for that object is examined next;
and so on.

4 4 .
i 1
i . . .
CF i implicit prototypelink
- i
protatype ~ CFF ______ i -
P1l
Pz CFP1 explicit prototype property
¥ 1 f 1 a
[:fi [:fz Ef3 l:f.;, == [:fg
ol gl ol ol ol
o2 - qa g2 oz

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried
by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are
carried by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. Figure 1 illustrates this:

© Ecma International 2014 4

»eCma

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf;,
cf,, cf;, cfy, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines
represent the implicit prototype relationship; so, for example, cfs’s prototype is CF,. The constructor, CF,
has two properties itself, named P1 and P2, which are not visible to CFy, cfy, cf,, cfs, cfs, or cfs. The
property named CFP1 in CFy is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties
found in CFy’s implicit prototype chain that are not named g1, g2, or CEP1. Notice that there is no implicit
prototype link between CF and CF.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning
values to them. That is, constructors are not required to name or assign values to all or any of the
constructed object’s properties. In the above diagram, one could add a.new shared property for cfy, cfy,
cf;, cf,, and cfs by assigning a new value to the property in CF,.

Although ECMAScript objects are not inherently class-based, it'is often convenient to define class-like
abstractions based upon a common pattern of constructor functions, prototype objects, and methods. The
ECMAScript built-in object themselves follow such a class-like pattern. The ECMAScript language
includes syntatic class definitions that permit programmers to concisely define objects that conform to the
same class-like abstraction pattern used by the built-in<objects.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to
restrict their usage of some features available in the language. They might do so in the interests of
security, to avoid what they consider to be ‘error-prone features, to get enhanced error checking, or for
other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the
language. The strict variant of the language excludes some specific. syntactic and semantic features of
the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant
also specifies additional error conditions that must be reported by throwing error exceptions in situations
that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and. semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit,
strict mode only imposes restrictions that have local effect within such a code unit. Strict mode does not
restrict or-modify any aspect of the ECMAScript semantics that must operate consistently across multiple
code units. A complete ECMAScript program may be composed for both strict mode and non-strict mode
ECMAScript code units. In this case, strict mode only applies when actually executing code that is defined
within a strict mode code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by
this specification. In addition, an implementation must support the combination of unrestricted and strict
mode code units into a single composite program.

4.3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
4.31

type
set of data values as defined in clause 6 of this specification

© Ecma International 2014 5

»eCma

4.3.2
primitive value
member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language
implementation.

4.3.3
object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null
value.

4.3.4

constructor

function object that creates and initializes objects

NOTE The value of a constructor's “prototype” property. is a prototype object that is used to implement
inheritance and shared properties.

4.3.5
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly. references the constructor’'s “prototype’
property for the purpose of resolving property references. The constructor’s “prototype” property can be referenced
by the program expression constructor.prototype, and properties added to an object’s prototype are shared,
through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly

specified prototype by usingthe Object. create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all
objects.

4.3.7

exotic object

object that has some alternative behaviour for one or more of the essential internal methods that must be
supported by all objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

4.3.9

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present
at the start of the execution of an ECMAScript program

© Ecma International 2014 6

»eCma

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify
and define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4.3.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an‘instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an_argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.317
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a
single 16-bit unit of UTF-16_text. However, ECMAScript does not place any restrictions or requirements on the values
except that they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19

String object
member of the Object type that is an instance of the standard built-in String constructor

© Ecma International 2014 7

»eCma

NOTE A String object is created by using the String constructor in a new expression, supplying a String value
as an argument. The resulting object has an internal slot whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (21.1.1.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.
4.3.21
Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor<in a new expression, supplying a Number
value as an argument. The resulting object has an internal slot whose value is the Number value. A Number object
can be coerced to a Number value by calling the Number constructor as a function (20.1.1.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24
NaN
number value that is an IEEE 754 “Not-a-Number” value

4.3.25
Symbol value
primitive value that represents a unique, non-String Object property key.

4.3.26
Symbol type
set.of all possible Symbol values

4.3.27
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor

4.3.28
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A function’s code may or may not be written in ECMAScript.

4.3.29
built-in function
built-in object that is a function

© Ecma International 2014 8

»eCma

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.30

property

association between a key and a value that is a part of an object. The key be either a String value or a
Symbol value.

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.31
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.32
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may
specify and provide other additional built-in methods:

4.3.33
attribute
internal value that defines some characteristic of a property

4.3.34

own property

property that is directly contained by its object
4.3.35

inherited property

property of an-object that is'not an own property but is a property (either own or inherited) of the object’s
prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language includings its syntactic encoding
and the execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard
objects that are available for use by ECMAScript programs as they execute.

© Ecma International 2014 9

»eCma

5 Notational Conventions
5.1 Syntactic and Lexical Grammars
5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified
alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along
with zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-
hand side of a production for which the nonterminal is the left-hand side:

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in _clause 11. This grammar has as its terminal symbols
characters (Unicode code points) that conform to the rules for SourceCharacter defined in clause 10.1. It
defines a set of productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that
describe how sequences of such characters are translated into a. sequence of input elements.

Input elements other than white-space and comments form the terminal symbols for the syntactic
grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not
considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon‘insertion (11.9)..Simple white space and single-line comments are discarded and do
not appear in the stream of input‘elements for the syntactic grammar. A MultiLineComment (that is, a
comment of the form “/*...* /"“regardless of whether it spans more than one line) is likewise simply
discarded if it contains no line terminator; but if a MultiLineComment contains one or more line terminators,
then it is replaced by a single line terminator, which becomes part of the stream of input elements for the
syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. 1t defines a set of productions, starting from the goal symbol
Pattern, that describe how sequences of characters are translated into regular expression patterns.
Productions of the lexical and RegExp grammars are distinguished by having two colons “::”
separating punctuation. The lexical and RegExp grammars share some productions.

as

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of
the lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter.
This grammar appears in 7.1.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

© Ecma International 2014 10

»eCma

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of
productions, starting from the goal symbol Script, that describe how sequences of tokens can form
syntactically correct independent components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream.©of input elements is then
parsed by a single application of the syntactic grammar. The script is syntactically in error if the tokens in
the stream of input elements cannot be parsed as a single instance of the‘goal nonterminal Script, with no
tokens left over.

(%}

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is actually not a complete account of
which token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences
are also accepted, namely, those that would be described by the grammar. if only semicolons were added
to the sequence in certain places (such as before line terminator characters). Furthermore, certain token
sequences that are described by the grammar are not considered acceptable if a terminator character
appears in certain “awkward” places.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalized productions that
permit token sequences that are not valid ECMAScript scripts. For example, this technique is used for
object literals and object destructuring patterns. In such cases.a more restrictive supplemental grammar is
provided that further restricts the acceptable token sequences. In certain contexts, when explicitly
specific, the input elements corresponding to such a production are parsed again using a goal symbol of
a supplemental grammar. The script is syntactically in error if the tokens in the stream of input elements
cannot be parsed as a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal
symbols of the other grammars, are shown in £fixed width font, both in the productions of the
grammars.-and throughout this specification whenever the text directly refers to such a terminal symbol.
These are to appear in a script either exactly as written. All terminal symbol characters specified in this
way are to be understood as the appropriate Unicode code points from the Basic Latin range, as opposed
to.any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in izalic type. The definition of a nonterminal (also called a “production”)
is introduced by the name of the nonterminal being defined followed by one or more colons. (The number
of colons indicates to which grammar the production belongs.) One or more alternative right-hand sides
for the nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:

© Ecma International 2014 11

secind

ArgumentList :
AssignmentExpression
ArgumentlList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed
by a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is
defined in terms of itself. The result is that an ArgumentList may contain any positive number of
arguments, separated by commas, where each argument expression is an AssignmentExpression. Such
recursive definitions of nonterminals are common.

The subscripted suffix “op”, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :
Bindingldentifier Initializerqp

is a convenient abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer

and that:

IterationStatement :
for (LexicalDeclaration Expressionep ;< Expressiones) Statement

is a convenient abbreviation for:

IterationStatement :
for (LexicalDeclaration ;- Expressiongy) Statement
for (LexicalDeclaration ; Expression; Expressions:) Statement

which in turn is an abbreviation for:

IterationStatement :
for (LexicalDeclaration ;) Statement
for (LexicalDeclaration ; Expression) Statement
for (LexicalDeclaration Expression ; ;) Statement
for (LexicalDeclaration Expression ; Expression) Statement

so, in this example; the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “parameters)”, Which may appear
as a suffix to the nonterminal symbol defined by the production. “,arameters” May be either a single name or
a comma separated list of names. A parameterized production is shorthand for a set of productions
defining all combinations of the parameter names, preceeded by an underscore, appended to the
parameterized nonterminal symbol. This means that:

© Ecma International 2014 12

oeCha

StatementListiRetum) -
ReturnStatement
ExpressionStatement

is a convenient abbreviation for:
StatementList :
ReturnStatement

ExpressionStatement

StatementList Return :

ReturnStatement
ExpressionStatement
and that:
StatementListireturn, in] -
ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList Return :
ReturnStatement
ExpressionStatement

StatementList In
ReturnStatement
ExpressionStatement

StatementList_Return_In :
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily

referenced in a complete grammar.

References to. nonterminals on the right hand side of a production can also be parameterized. For

example:

StatementList :
ReturnStatement

ExpressionStatementyn

is equivalent to saying:

StatementList :
ReturnStatement

ExpressionStatement In

© Ecma International 2014

13

oecnd

A nonterminal reference may have both a parameter list and an “," suffix. For example:

VariableDeclaration :
Bindingldentifier Initializerjnjopt

is an abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer In

Prefixing a parameter name with “” on a right hand side nonterminal reference makes that parameter

value dependent upon the occurrence of the parameter name on the reference to the current production’s

left hand side symbol. For example:

VariableDeclarationyy :
Bindingldentifier Initializer(yn)

is an abbreviation for:

VariableDeclaration :
Bindingldentifier Initializer

VariableDeclaration_In :
Bindingldentifier Initializer In

If a right hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named
parameter was used in referencing the production’s nonterminal symbol. If a right hand side alternative is
prefixed with “[~parameter]” that alternative is only available if the named parameter was not used in
referencing the production’s nonterminal symbol. This means that:

StatementListiRetum] &
[+Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ExpressionStatement

StatementList Return :

ReturnStatement
ExpressionStatement
and that
StatementListiretym) -
[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

© Ecma International 2014 14

secind

StatementList :
ReturnStatement
ExpressionStatement

StatementList Return :
ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit :.

WoJdJonUlbdWDNR

If the phrase “lempty]” appears-as the right-hand side of a production, it indicates that the production's
right-hand side contains no.terminals or nonterminals.

If the phrase “llookahead ¢ se7]” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be
written as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a
nonterminal, in which case it represents the set of all terminals to which that nonterminal could expand.
For example,.given the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6.7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

© Ecma International 2014 15

»eCma

If the phrase “Ino LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammair, it indicates that the production is a restricted production: it may not be used if a LineTerminator
occurs in the input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw
token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form “[Lexical goal LexicaiGoalSymbol]” appears on the right-hand-
side of a syntactic production then the next token must be lexically recognized using the indicated goal
symbol. In the absence of such a phrase the default lexical goal symbol.is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are-described by a descriptive phrase in sans-serif type in cases
where it would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used
to precisely specify the required semantics of ECMAScript language constructs. The algorithms are not
intended to imply the use of any specific implementation technique. In practice, there may be more
efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must
be provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this
specification, some algorithms, called abstract operations, are named and written in parameterized
functional form so that they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that
has multiple alternative definitions will typically have a distinct algorithm for each alternative. When an
algorithm is associated with a grammar production, it may reference the terminal and nonterminal

© Ecma International 2014 16

»eCma

symbols of the production alternative as if they were parameters of the algorithm. When used in this
manner, nonterminal symbols refer to the actual alternative definition that is matched when parsing the
script souce code.

When an algorithm is associated with a production alternative, the alternative is typically shown without
any ‘[I’ grammar annotations. Such annotations should only affect the syntactic recognition of the
alternative and have no effect on the associated semantics for the alternative.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that production’s left-hand side nonterminal. The implicit definition
simply reapplies the same algorithm name with the same parameters, if any, to the chain production’s
sole right-hand side nonterminal and then result. For example, assume there is a production

Block :
{ StatementList }

but there is no evaluation algorithm that is explicitly specified for that production. If in some algorithm there
is a statement of the form: “Return the result of evaluating Block” it is implicit that the algorithm has an
evaluation algorithm of the form:

Runtime Semantics: Evaluation

Block . { StatementList }

1. Return the result of evaluating StatementList.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are
indented and may themselves be further divided into'indented substeps. Outline numbering conventions
are used to identify substeps with the first level of substeps labelled with lower case alphabetic characters
and the second level of substeps labelled with lower case roman numerals. If more than three levels are
required these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep.
i. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
1. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the
substeps are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a
predicate that is the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this clause should always be understood as computing exact

© Ecma International 2014 17

»eCma

mathematical results on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point
arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a floating-point nhumber, it should be
understood as being applied to the exact mathematical value represented by that floating-point number;
such a floating-point number must be finite, and if it is +0 or —0 then the corresponding mathematical
value is simply 0.

The mathematical function abs(x) produces the absolute value of x, which is —x if x is negative (less than
zero) and otherwise is x itself.

The mathematical function sign(x) produces 1 if x is positive and —1 if x.is negative. The sign function is not
used in this standard for cases when x is zero.

The mathematical function min(xy, x,, ..., x,) produces the mathematically smallest of x; through x,.

The notation “x modulo y” (y must be finite and nonzero) computes a value k& of the same sign as y (or
zero) such that abs(k) < abs(y) and x—k = ¢ x y for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not
larger than x.

NOTE floor(x) = x—(x modulo 1).
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream
of input elements form a valid ECMAScript script that may be evaluated. In some situations additional
rules are needed that may be expressed using either ECMAScript algorithm conventions or prose
requirements. Such rules are always associated with a production of a grammar and are called the static
semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions
will typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a
definition for a static semantic rule named Contains which takes an argument named symbol whose value
is a terminal or nonterminal of the grammar that includes the associated production. The default definition
of Contains is:

1. For each terminal and nonterminal grammar symbol, sym, in the definition of this production do
a. Ifsymis thesame grammar symbol as symbol, return true.
b. If sym is anonterminal, then
i. Let contained be the result of sym Contains symbol.
1. If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions
(see clause 16) that are associated with specific grammar productions. Evaluation of most early error

© Ecma International 2014 18

ecind

rules are not explicitly invoked within the algorithms of this specification. A conforming implementation
must, prior to the first evaluation of a Script, validate all of the early error rules of the productions used to
parse that Script. If any of the early error rules are violated the Script is invalid and cannot be evaluated.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript
language types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to
the ECMAScript language and specification types defined in this clause.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an. ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null,
Boolean, String, Symbol, Number, and Object. An“ECMAScript language value is a value that is
characterized by an ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
value has the value undefined.

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having.two values, called true and false.
6.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript
program, in which case each element in the String is treated as a UTF-16 code unit value. Each element
is regarded as occupying a position within the sequence. These positions are indexed with nonnegative
integers. The first element (if any) is at index 0, the next element (if any) at index 1, and so on. The length
of a String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and
therefore contains no elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16
code unit. However, ECMAScript does not place any restrictions or requirements on the sequence of
code units in a String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences.
Operations that do not interpret String contents treat them as sequences of undifferentiated 16-bit
unsigned integers. No operations ensure that Strings are in a normalized form. Only operations that are
explicitly specified to be language or locale sensitive produce language-sensitive results

© Ecma International 2014 19

secind

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-
performing as possible. If ECMAScript source code is in Normalized Form C, string literals are guaranteed to also be
normalized, as long as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:
e A code unit in the range 0 to 0xD7FF or in the range 0xE000 to OxFFFF is interpreted as a code
point with the same value.
¢ A sequence of two code units, where the first code unit ¢/ is in the range 0xD800 to 0xDBFF and
the second code unit ¢2 is in the range 0xDCO00 to 0xDFFF, is a surrogate pair and is interpreted
as a code point with the value (c¢/ - 0xD800) x 0x400 + (c2 — 0xDC00) + 0x10000.
e A code unit that is in the range 0xD800 to 0xDFFF, but is not part of a surrogate pair, is interpreted
as a code point with the same value.

6.1.5 The Symbol Type

The Symbol type is the set of all non-String values that.may be used as the key of an Object property
(6.1.7).

Each possible Symbol values is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a
String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in. Symbol values that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of
a specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (8.1.2.5).

Within this specification a well-known symbol is referred to by using a notation of the form @@name,
where “name” is one of the values listed in Table 1.

© Ecma International 2014 20

»eCma

Table 1— Well-known Symbols

Specification Name

[[Description]]

Value and Purpose

@@create

"Symbol.create"

A method used to allocate an object. Called
from the [[Construct]] internal method.

@@haslnstance

"Symbol.hasInstance"

A method that determines if a constructor
object recognizes an object as one of the
constructor’'s instances. Called by the
semantics of the instanceof operator.

@@isConcatSpreadable

"Symbol.isConcatSpreadable"

A Boolean value that if true indicates that an
object should be flatten to its array elements
by Array.prototype.concat.

@@isRegExp

"Symbol . isRegExp"

A Boolean value that if true indicates that an
object may be used as a regular expression.

@@iterator

"Symbol.iterator"

A method that returns the default iterator for an
object. Called by the semantics of the for-of
statement.

@(@toPrimitive

"Symbol.toPrimitive"

A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

@@toStringTag

"Symbol. toStringTag"

A string value that is used in the creation of the
default string description of an object. Called
by the built-in method
Object.prototype.toString.

@(@unscopables

"Symbol.unscopables"

An Array of string values that are property
names that are excluded from the with
environment bindings of the associated
objects.

6.1.6 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2°~2°°+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 2°°-2) distinct “Not-a-Number” values of the IEEE
Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is
produced by the program expression NaN.) In some implementations, external code might be able to
detect a difference between various Not-a-Number values, but such behaviour is implementation-
dependent; to ECMAScript.code, all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these

values are also referred to for expository purposes by the symbols +w and —owo, respectively. (Note that
these two infinite Number values are produced by the program expressions +Infinity (or simply
Infinity)and -Infinity.)

The other 18437736874454810624 (that is, 2°*-2%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

© Ecma International 2014 21

»eCma

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to
for expository purposes by the symbols +0 and —0, respectively. (Note that these two different zero
Number values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2°*~2%-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2°*—27*) of them are normalized, having the form

sxmx2°

where s is +1 or —1, m is a positive integer less than 2°° but not less than2’, and ¢ is an integer ranging
from —1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°-2) values are denormalized, having the form

sxmx2°

where s is +1 or —1, m is a positive integer less than 272, and e is —1074.

Note that all the positive and negative integers whose magnitude is'no greater than 2°* are representable
in the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it'is nonzero and the integer m used to express it (in one of the
two forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as n) means a Number value
chosen in the following manner. Consider the set of all finite values of the Number type, with —0 removed
and with two additional values added to it that are not representable in the Number type, namely 2'°*
(which is +1 x 2% x 2”"')yand —2'** (which is —1 x 27 x 2°""). Choose the member of this set that is closest
in value to x. If two values of the set are equally close, then the one with an even significand is chosen;
for this purpose, the two extra values 2'%**and —2'"** are considered to have even significands. Finally, if
2'%% was chosen, replace it with 4+; if —2'%* was chosen, replace it with —o; if +0 was chosen, replace it
with —0 if and only if x is less than zero; any other chosen value is used unchanged. The result is the
Number value for x. (This procedure corresponds exactly to the behaviour of the IEEE 754 “round to
nearest” mode.)

Some ECMAScript operators deal only with integers in the range —2*' through 2°'-1, inclusive, or in the
range 0 through 2**-1, inclusive. These operators accept any value of the Number type but first convert
each such value to one of 2% integer values. See the descriptions of the ToInt32 and ToUint32 operators
in 7.1.5 and 7.1.6, respectively.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

e A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

o An accessor property associates a key value with one or two accessor functions, and a set of
Boolean attributes. The accessor functions are used to store or retrieve an ECMAScript language
value that is associated with the property.

© Ecma International 2014 22

»eCma

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
value. All String and Symbol values, including the empty string, are valid as property keys.

An integer index is String-valued property key that is a canonical numeric string (see 7.1.16) and whose
numeric value is either +0 or a positive integer. An array index is an integer index whose numeric value i
is in the range 0 <i < 2%>-1 and i #-0.

Property keys are used to access properties and their values. There are two kinds of access for
properties: get and set, corresponding to value retrieval and assignment, respectively. The properties
accessible via get and set access includes both own properties that are a direct part of an object and
inherited properties which are provided by another associated object via a property inheritance
relationship. Inherited properties may be either own or inherited properties of the associated object. Each
own properties of an object must each have a key value that is distinct from the key values of the other
own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form
of objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define.and explain the state of Object properties. A data
property associates a key value with the attributes listed in Table 2.

Table 2 — Attributes of a Data Property

Attribute Name Value Domain Description

[[Value]] Any ECMAScript | The value retrieved by a get access of the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the

property’s [[Value]] attribute using [[Set]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 13.6.3.5). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

© Ecma International 2014

23

ecind

Table 3 — Attributes of an Accessor Property

Attribute Name

Value Domain

Description

[[Get]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (Table 6) is called with an
empty arguments list to retrieve the property value each
time a get access of the property is performed.

([Set]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (Table 6) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]]

Boolean

If true, the property is to be enumerated by a for-in
enumeration (see 13.6.3.5). Otherwise, the property is said
to be non-enumerable.

[[Configurable]]

Boolean

If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the initial values of a property’s attributes are not explicitly specified by this specification, the default
value defined in Table 4 is used.

Table 4 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods.
Each object in an ECMAScript engine is associated with a set of internal methods that defines its runtime
behaviour. These internal methods are not part of the ECMAScript language. They are defined by this
specification ‘purely for< expository purposes. However, each object within an implementation of
ECMAScript must behave as specified by the internal methods associated with it. The exact manner in
which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different
algorithms when a common internal method name is invoked upon them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

© Ecma International 2014 24

»eCma

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending
upon the specific internal slot specification, such state may consist of values of any ECMAScript language
type or of specific ECMA specification type values. Unless explicitly specified otherwise, internal slots are
allocated as part of the process of creating an object and may not be dynamically added to an object.
Unless specified otherwise, the initial value of an internal slot is the value undefined. Various algorithms
within this specification create objects that have internal slots. However, the ECMAScript language
provides no direct way to associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double
square brackets [[]].

Table 5 summarizes the essential internal methods used by this specification that are applicable to all
objects created or manipulated by ECMAScript code. Every object must have algorithms for all of the
essential internal methods. However, all objects do not necessarily use the same algorithms for those
methods.

The “Signature” column of Table 5 and other similar-tables describes the invocation pattern for each
internal method. The invocation pattern always includes a parenthesized list of descriptive parameter
names. If a parameter name is the same as an ECMAScript type name then the name describes the
required type of the parameter value. If an internal method explicitly returns a value, its parameter list is
followed by the symbol “—” and the type name of the returned value. The type names used in signatures
refer to the types defined in clause 6 augmented by the following additional names. “any” means the
value may be any ECMAScript language type. An internal method implicitly returns a Completion Record
as described in 6.2.2. In addition to its parameters, an internal method always has access to the object
upon which it is invoked as a method.

© Ecma International 2014 25

oechd

Table 5 — Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototypeOf]]

()—Object or Null

Determine the object that provides inherited properties
for this object. A null value indicates that there are no
inherited properties.

[[SetPrototypeOf]]

(Object or Null)—Boolean

Associate with an object another object that provides
inherited properties. Passing null indicates that there
are no inherited properties. Returns true indicating
that the operation was completed successfully or
false indicating that'the operation was not successful.

[[IsExtensible]]

()—Boolean

Determine whether it is permitted to add additional
properties to an object.

[[PreventExtensions]]

()—Boolean

Control whether new properties may be added to an
object. Returns true indicating that the operation was
completed successfully or false indicating that the
operation was not successful.

[[GetOwnProperty]]

(propertyKey) —
Undefined or Property
Descriptor

Returns a Property. Descriptor for the own property of
this object whose key is propertyKey, or undefined if
no such property exists.

[[HasProperty]]

(propertyKey) — Boolean

Returns a Boolean value indicating whether the object
already has either an own or inherited property whose
key is propertyKey.

[[Get]]

(propertyKey, Receiver) — any

Retrieve the value of an object’s property using the
propertyKey parameter. If any ECMAScript code must
be executed. to retrieve the property value, Receiver is
used as the this value when evaluating the code.

[[Set]]

(propertyKey,value, Receiver)
= Boolean

Try to set the value of an object’s property indentified
by propertyKey to value. If any ECMAScript code
must be executed to set the property value, Receiver
is used as the this value when evaluating the code.
Returns true indicating that the property value was set
or false indicating that it could not be set.

[[Delete]]

(propertyKey) — Boolean

Removes the own property indentified by the
propertyKey parameter from the object. Return false if
the property was not deleted and is still present.
Return true if the property was deleted or was not
present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor)
Boolean

Creates or alters the named own property to have the
state described by a Property Descriptor. Returns true
indicating that the property was successfully
created/updated or false indicating that the property
could not be created or updated.

[[Enumerate]]

()—Object

Returns an iterator object over the string values of the
keys of the enumerable properties of the object.

[[OwnPropertyKeys]]

()—Array of propertyKey

Returns an Array object whose elements are all of the
own property keys for the object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be

called as functions.

© Ecma International 2014

26

»eCma

Table 6 — Additional Essential Internal Methods of Function Objects

Internal Method Signature Description
[[Call]] (any, a List of any) | Executes code associated with the object. Invoked via a
— any function call expression. The arguments to the internal

method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (a List of any) — | Creates an object. Invoked via the new operator. The
Object arguments to the internal method are the arguments passed
to the new operator. Objects that implement this internal
method are called constructors.. A Function object is not
necessarily a constructor and such non-constructor Function
objects do not have a [[Construct]] internal method.

The semantics of the essential internal method for ordinary objects and standard exotic objects are
specified in clause 9. If any specified use of an exotic object's internal methods is not supported by an
implementation, that usage must throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified
below. Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain
these invariants. ECMAScript Proxy objects maintain these invariants by means of runtime checks on the
result of traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects.
Violation of these invariants.may cause ECMAScript code to have unpredictable behavior and create
security issues. However, violation of these invariants must never compromise the memory safety of an
implementation.

Definitions:

e The farget of an internal.method is the object the internal method is called upon.

e A target.is non-extensible if it has been observed to return false from its [[IsExtensible]] internal
method, or true from its [[PreventExtensions]] internal method.

e A non-existent property is a property that does not exist as an own property on a non-extensible
target.

e All references to SameValue are according to the definition of SameValue algorithm specified in
7.2.3.

[[GetPrototypeOf]] ()

e The Type of the return value must be either Object or Null.

e |[f target is non-extensible, and [[GetPrototypeOf]] returns a value v, then any future calls to
[[GetPrototypeOf]] should return the SameValue as v.

e An object’s prototype chain must have finite length (that is, starting from any object, recursively
applying the [[GetPrototypeOf]] internal method to its result must eventually lead to the value null.

[[SetPrototypeOf]] (V)

e The Type of the return value must be Boolean.
e [f target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the
target’'s observed [[GetPrototypeOf]] value.

© Ecma International 2014 27

ecimna

[[PreventExtensions]] ()

e The Type of the return value must be Boolean.

e If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return
false and the target is now considered non-extensible.

[[GetOwnProperty]] (P)

e The Type of the return value must be either Object or Undefined.

e If the Type of the return value is Object, that object must be a complete property descriptor (see
6.2.4.6).

e If a property is described as a data property and it may return_different values over time, then
either or both of the Desc.[[Writable]] and Desc.[[Configurable]] attributes must be true even if no
mechanism to change the value is exposed via the other internal methods.

e If a property P is described as a data property with Desc.[[Value]] equal to v and Desc.[[Writable]]
and Desc.[[Configurable]] are both false, then the SameValue must be returned for the
Desc.[[Value]] attribute of the property on all future calls to [[GetOwnProperty]] (P).

e If P’s attributes other than [[Writable]] may change over time or if the property might disappear,
then P’s [[Configurable]] attribute must be true.

e If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must
be true.

e If the target is non-extensible and P is non-existent, thenall future calls to [[GetOwnProperty]] (P)
on the target must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined)

[[DefineOwnProperty]] (P, Desc)

e The Type of the return value must be Boolean.

e [[DefineOwnProperty]] must return false if P haspreviously been observed as a non-configurable
own property of the target; unless either:
1. P is a non-configurable writable own data property. A non-configurable writable data property
can be changed into a non-configurable non-writable data property.
2. All attributes in Desc are the SameValue as P’s attributes.
e [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-

existent own property. That is, a non-extensible target object cannot be extended with new
properties.

[[HasProperty]] (P)

o The Type of the return value must be Boolean.

e [f P was previously observed as a non-configurable data or accessor own property of the target,
[[HasProperty]] must return true.

[[Get]] (P, Receiver)

e [f P was previously observed as a non-configurable, non-writable own data property of the target
with value v, then [[Get]] must return the SameValue.

e If P was previously observed as a non-configurable own accessor property of the target whose
[[Get]] attribute is undefined, the [[Get]] operation must return undefined.

[[Set]] (P, V, Receiver)

e The Type of the return value must be Boolean.

e If P was previously observed as a non-configurable, non-writable own data property of the target,
then [[Set]] must return false unless V is the SameValue as P’s [[Value]] attribute.

© Ecma International 2014 28

»eCma

If P was previously observed as a non-configurable own accessor property of the target whose
[[Set]] attribute is undefined, the [[Set]] operation must return false.

[[Delete]] (P)

The Type of the return value must be Boolean.
If P was previously observed to be a non-configurable own data or accessor property of the
target, [[Delete]] must return false.

[[Enumerate]] ()

The Type of the return value must be Object.

[[OwnPropertyKeys]] ()

The Type of the return value must be Object.

The return value must be an exotic Array object.

The returned array must contain at least the string and symbol-valued names of all own properties
of the target that have previously been observedas non-configurable.

If the target is non-extensible, it may not claim to have any own properties not observed by
[[OwnPropertyNames]].

[[Construct]] ()

The Type of the return value must be Object.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in._ objects that areexplicitly referenced by the algorithms of this
specification and which usually have Realm specific identities. Unless otherwise specified each intrinsic
object actually corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the
current Realm, corresponding to the name. Determination of the current Realm and its intrinsics is
described in 8.1.2.5. The well-known intrinsics are listed in Table 7.

© Ecma International 2014 29

»eCma

Table 7 — Well-known Intrinsic Objects

Intrinsic Name Global Name ECMAScript Language Association

%ODbject% "Object" The Object constructor (19.1.1)

%ObjectPrototype% The initial value of the "prototype" data
property of the intrinsic %0Object%. (19.1.3)

%ObjProto_toString% The initial value.of the "toString" data
property of the intrinsic %ObjectPrototype%.
(19.1.3.6)

%Function% "Function" The Function constructor (19.2.1)

%FunctionPrototype% The initial value of the "prototype" data
property of the intrinsic %Function%.

%Array% "Array" The Array constructor (22.1.1)

%ArrayPrototype% The initial value of the "prototype" data
property of the intrinsic %Array%.

%ArrayProto_values% The initial value of the "values" data
property of the intrinsic %ArrayPrototype%o.
(22.1.3.29)

%ArraylteratorPrototype% The prototype object used for
Iterator objects created by the
CreateArraylterator abstract operation.

%String% "String" The sString constructor (21.1.1)

%StringPrototype% The initial value of the "prototype" data
property of the intrinsic %String%.

%StringlteratorPrototype% The prototype object used for
Iterator objects created by the
CreateStringlterator abstract operation

%Boolean% "Boolean" The initial value of the global object property
named "Boolean".

%BooleanPrototype% The initial value of the "prototype" data
property of the intrinsic %Boolean%.

%Number% "Number" The initial value of the global object property
named "Number".

%NumberPrototype% The initial value of the "prototype" data
property of the intrinsic %Number%.

%Date% "Date" The initial value of the global object property
named "Date".

%DatePrototype% The initial value of the "prototype" data
property of the intrinsic %Date%.

%RegExp% "RegExp" The initial value of the global object property
named "RegExp".

%RegExpPrototype% The initial value of the "prototype" data
property of the intrinsic %RegExp%.

%Map% "Map" The initial value of the global object property

© Ecma International 2014

30

oecnd

named "Map".

%MapPrototype%

The initial value of the "prototype" data
property of the intrinsic %Map%.

%MaplteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateMaplterator abstract operation

%W eakMap% "WeakMap" The initial value of the global object property
named "WeakMap".

%W eakMapPrototype% The initial wvalue of the "prototype" data
property-of the intrinsic %WeakMap%.

%Set% "Set" The initial value of the global object property
named "Set".

%SetPrototype% The initial value of the "prototype" data
property of the intrinsic %Set%.

%W eakSet% "WeakSet" The initial value of the global object property

named "WeakSet".

%W eakSetPrototype%

The initial value of the "prototype" data
property of the intrinsic %WeakSet%.

%SetlteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateSetlterator abstract operation

© Ecma International 2014

31

oecnd

%GeneratorFunction%

The constructor of generator functions.

%Generator%

The initial value of the prototype property
of the %GeneratorFunction intrinsic

%GeneratorPrototype%

The initial value of the prototype property
of the %Generator% intrinsic

%Error%

%EvalError%

%RangeError%

%ReferenceError%

Y%SyntaxError%

%TypeError%

%URIError%

%ErrorPrototype%

%EvalErrorPrototype%

%RangeErrorPrototype%

%ReferenceErrorPrototype%

%SyntaxErrorPrototype%

%TypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer%

%ArrayBufferPrototype%

The initial value of the "prototype" data
property of the intrinsic %ArrayBuffer%.

%TypedArray%

%TypedArrayPrototype%o

The initial value of the "prototype" data
property of the intrinsic %TypedArray%.

%Int8 Array%

%Int8 ArrayPrototype%

%DataView%

%DataViewPrototype%

%ThrowTypeError%

A function object that unconditionally throws
a new instance of % TypeError%.

%Realm%

%RealmPrototype%o

%Promise%

%PromisePrototype%o

%Loader%

%LoaderPrototype%

%LoaderlteratorPrototype%

%ReturnUndefined%

%Symbol%

© Ecma International 2014

32

»eCma

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics
of ECMAScript language constructs and ECMAScript language types. The specification types are
Reference, List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data
Block. Specification type values are specification artefacts that do not necessarily correspond to any
specific entity within an ECMAScript implementation. Specification type values may be used to describe
intermediate results of ECMAScript expression evaluation but such values cannot be stored as properties
of objects or values of ECMAScript language variables.

6.2.1 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists(see 12.3.6) in.new expressions, in
function calls, and in other algorithms where a simple ordered list of values is needed. Values of the List
type are simply ordered sequences of list elements containing the individual values. These sequences
may be of any length. The elements of a list may be randomly accessed using 0-origin. indices. For
notational convience an array-like syntax can be used to access List elements. For example,
arguments[2] is shorthand for saying the 3" element of the List arguments.

The Record type is used to describe data aggregations within<the algorithms of this specification. A
Record type value consists of one or more named fields. The value of each field is either an ECMAScript
value or an abstract value represented by a name associated with. the Record type. Field names are
always enclosed in double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that
has three fields each of which-isinitialized to a specific value. Field name order is not significant. Any
fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value.
For example, if R is.the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field
of R named [[field2]]".

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: PropertyDescriptor{[[Value]l: 42, [[Writable]]: false, [[Configurable]]: true}.

6.2.2 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such
as the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers
of control.

Values of the Completion type are Record values whole fields are defined as by Table 8.

© Ecma International 2014 33

ecind

Table 8 — Completion Record Fields

Field Name | Value Meaning
[[typel] One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript string or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.
6.2.2.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:
1. Return NormalCompletion(argument).
Is a shorthand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.
6.2.2.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

1. Return "Infinity".
Generally means the same thing as:

1. Return NormalCompletion("Infinity").

A “return” statement without a value‘in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

Similarly; any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the
Completion Record value unless the Completion Record is an abrupt completion.

6.2.2.3 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.
Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object,
[[target]]:empty}.

6.2.2.4 ReturnifAbrupt

Algorithms steps that say

© Ecma International 2014 34

secind

1. ReturnIfAbrupt(argument).
mean the same things as:

1. If argument is an abrupt completion, then return argument.
2. Else if argument is a Completion Record, then let argument be argument.[[value]].

6.2.3 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three. components, the base
value, the referenced name and the Boolean valued strict reference flag. The base value is either undefined,
an Object, a Boolean, a String, a Symbol, a Number, or an environment record (8.1.1). A base value of
undefined indicates that the Reference could not be resolved to a binding. The referenced name is a String
or Symbol value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using
the super keyword. A Super Reference has an additional thisValue component and its base value will
never be an environment record.

The following abstract operations are used'in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference flag component of the reference V.
HasPrimitiveBase(V).-.Returns. true if Type(base) is a Boolean, String, Symbol, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V)
is true; otherwise returns false.

e IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

o [sSuperReference(V). Returns true.if this reference has a thisValue component.

The following abstract operations are used in this specification to operate on references:

6.2.3.1 GetValue (V)

ReturnIfAbrupt(¥).

If Type(V) is not Reference, return V.

Let base be GetBase(V).

If IsUnresolvableReference(V), throw a ReferenceError exception.

If IsPropertyReference(V), then

a. [If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Let base be ToObject(base).

b. Return the result of calling the [[Get]] internal method of base passing GetReferencedName(V)
and GetThisValue(V) as the arguments.

6. Else base must be an environment record,

a. Return the result of calling the GetBindingValue (see 8.1.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

[I ST S

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and
the ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

© Ecma International 2014 35

secind

6.2.3.2 PutValue (V, W)

ReturnIfAbrupt(V).
ReturnIfAbrupt(#).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be GetBase(V).
If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i. Throw ReferenceError exception.
b. Let globalObj be the result of the abstract operation GetGlobalObject.
c. Return Put(globalObj,GetReferencedName(V), W, false).
6. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Set base to ToObject(base).
Let succeeded be the result of calling the [[Set]] internal method of base passing
GetReferencedName(V), W, and GetThisValue(¥) as arguments.
ReturnIfAbrupt(succeeded).
If succeeded is false and IsStrictReference(V) is true, then.throw a TypeError exception.
. Return.
Ise base must be a Reference whose base is an environment record.
Return the result of calling the SetMutableBinding (8.1.1) concrete method of base, passing
GetReferencedName(V), W, and IsStrictReference(V) as arguments.

wn bW =

=

me Ao

®

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the
ordinary object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.3.3 GetThisValue (V)

1. Assert: IsPropertyReference(V) is true.

If IsSuperReference(V), then

a. Return the value of the thisValue component of the reference V.
3. Return GetBase(V).

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property
attributes. Values of the Property Descriptor type are Records. Except for the optional [[Origin]] field, each
field’s name is an attribute name and its value is a corresponding attribute value as specified in 6.1.7.1. In
addition, any field may be present or absent. The schema name used within this specification to tag literal
descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property
Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that
includes any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that
includes any fields named either [[Get]] or [[Set]]. Any Property Descriptor may have fields named
[[Enumerable]] and [[Configurable]]. A Property Descriptor value may not be both a data Property
Descriptor and an accessor Property Descriptor; however, it may be neither. A generic Property
Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an accessor
Property Descriptor. A fully populated Property Descriptor is one that is either an accessor Property
Descriptor or a data Property Descriptor and that has all of the fields that correspond to the property
attributes defined in either Table 2 or Table 3.

© Ecma International 2014 36

secind

A Property Descriptor may be derived from an object that has properties that directly correspond to the
fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named [[Origin]]
whose value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor
values:

6.2.4.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. If Desc is undefined, then return false.
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
3. Return true.

6.2.4.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with Property Descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.

6.2.4.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. If Desc is undefined, then return false.
2. IfIsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false:

6.2.4.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc, the following
steps are taken:

If Desc is undefined, then return undefined.
If Desc has an [[Origin]] field, then return Desc.[[Origin]].
Let 0bj be ObjectCreate(%ObjectPrototype%).
Assert: obj is an extensible ordinary object with no own properties.
If Desc has a [[Value]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "value", and
PropertyDescriptor {[[Value]]: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}
6. If Desc has a [[Writable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "writable", and
PropertyDescriptor {[[Value]]: Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
7. 1If Desc has a [[Get]] field, then

[I SNUS I S

© Ecma International 2014 37

eCmd

10.

11.

a. Call OrdinaryDefineOwnProperty with arguments obj, "get", and
PropertyDescriptor {[[Value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

If Desc has a [[Set]] field, then

a. Call OrdinaryDefineOwnProperty with arguments obj, "set", and
PropertyDescriptor {[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

If Desc has an [[Enumerable]] field, then

a. Call OrdinaryDefineOwnProperty with arguments obj, "enumerable", and
PropertyDescriptor {[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

If Desc has a [[Configurable]] field, then

a. Call OrdinaryDefineOwnProperty with arguments 0b;j , "configurable", and
PropertyDescriptor {[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

Return obj.

6.2.4.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1
2.
3.
4

10.

ReturnIfAbrupt(Oby).

If Type(Obj) is not Object throw a TypeError exception.

Let desc be a new Property Descriptor that initially has no fields.
If HasProperty(Obj, "enumerable") is true, then

a. Let enum be Get(Obj, "enumerable").

b. ReturnIfAbrupt(enum).

c. Set the [[Enumerable]] field of desc to ToBoolean(enum).

If HasProperty(Obj; "configurable") is true, then

a. Let conf beGet(Obj, "configurable").

b. ReturnIfAbrupt(conf).

c. Set the [[Configurable]] field of desc to ToBoolean(conf).

If HasProperty(Obj, "value") is true, then

a. Let value be Get(Obj, "value").

b. ~ReturnlfAbrupt(value).

¢. Set the [[Value]] field of desc to value.

If HasProperty(Obj, "writable") is true, then

a. Let writable be Get(Obj, "writable").

b. ReturnlfAbrupt(writable).

c. . Set the [[Writable]] field of desc to ToBoolean(writable).

If HasProperty(Obj, "get") is true, then

a. Let getter be Get(Obj, "get").

b. ReturnlfAbrupt(getter).

c. IfIsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
d. Set the [[Get]] field of desc to getter.

If HasProperty(Obj, "set") is true, then

a. Let setter be Get(Obj, "set").

b. ReturnIfAbrupt(setter).

c. IfIsCallable(setter) is false and setfer is not undefined, then throw a TypeError exception.
d. Set the [[Set]] field of desc to setter.

If either desc.[[Get]] or desc.[[Set]] are present, then

a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.

© Ecma International 2014 38

secind

11. Set the [[Origin]] field of desc to Obj.
12. Return desc.

6.2.4.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptors Desc and
LikeDesc the following steps are taken:

Assert: LikeDesc is either a Property Descriptor or undefined.
ReturnlfAbrupt(Desc).
Assert: Desc is a Property Descriptor
If LikeDesc is undefined, then
a. Let like be Record{[[Value]]: undefined, [[Writable]]: false; [[Get]]: undefined, [[Set]]:
undefined, [[Enumerable]]: false, [[Configurable]]: false}.
5. else,
a. Let like be a new Property Descriptor that is a copy of LikeDesc.
b. Perform CompletePropertyDescriptor(/ike, undefined).
6. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, thenset Desc.[[Value]] to like.[[Value]].
b. If Desc does not have a [[Writable]] field, then set Desc.[[Writable]] to like.[[Writable]].
7. Else,
a. If Desc does not have a [[Get]] field, then set Dese.[[Get
b. If Desc does not have a [[Set]] field, then set Desc.[[Set]
8. If Desc does not have an [[Enumerable]] field, then set Desec.
9. [If Desc does not have a [[Configurable]] field, then set Desc.
like.[[Configurable]].
10. Return Desc.

AW -

] to like.[[Get]].

to like.[[Set]].

[Enumerable]] to like.[[Enumerable]].
[Configurable]] to

—— ——

6.2.5 The Lexical Environment-and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name
resolution in nested functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.6 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8
bit) numeric values. A Data Block value is created with a fixed number of bytes that each have the initial
value 0.

For notational convenience within this specification, an array-like syntax can be used to express to the
individual bytes of a Data Block value. This notation presents a Data Block value as a 0-origined integer
indexed sequence of b(}/tes. For example, if db is a 5 byte Data Block value then db[2] can be used to
express access to its 3" byte.

The following abstract operations are used in this specification to operate upon Data Block values:
6.2.6.1 CreateByteDataBlock(size)

When the abstract operation CreateByteDataBlock is called with integer argument size, the following steps
are taken:

1. Assert: size>0.
2. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data
Block, then throw a RangeError exception.

© Ecma International 2014 39

secind

3. Set all of the bytes of db to 0.
4. Return db.

6.2.6.2 CopyDataBlockBytes(toBlock, tolndex, fromBlock, fromindex, count)

When the abstract operation CopyDataBlockBytes is called the following steps are taken:

Assert: fromBlock and toBlock are distinct Data Block values.
Assert: fromlndex, tolndex, and count are positive integer values.
Let fromSize be the number of bytes in fromBlock.

Assert: fromlIndex+count < fromSize.

Let toSize be the number of bytes in toBlock.

Assert: tolndex+count < toSize.

Repeat, while count>0

a. Set toBlock[toIndex] to the value of fromBlock[fromIndex].
b. Increment tolndex and fromIndex each by 1.

c. Decrement count by 1.

8. Return NormalCompletion(empty)

Nk v =

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript.language. Other, more specialized abstract operations
are defined throughout this specification.

7.1 Type Conversion and Testing

The ECMAScript language .implicitly. performs "automatic type conversion as needed. To clarify the
semantics of certain constructs it is useful to define a set of conversion abstract operations. The
conversion abstract operations are polymorphic; they can accept a value of any ECMAScript language
type or of a Completion Record value.’ But no other specification types are used with these operations.

7.1.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract-operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 9:

© Ecma International 2014 40

ecind

Table 9 — ToPrimitive Conversions

Input Type Result

Completion Record | If input is an abrupt completion, return input. Otherwise return
ToPrimitive(input.[[value]]) also passing the optional hint PreferredType.

Undefined Return input (no conversion).

Null Return input (no conversion).

Boolean Return input (no conversion).

Number Return input (no conversion).

String Return input (no conversion).

Symbol Return input (no conversion).

Object Perform the steps following this table.

When Type(input) is Object, the following steps are taken:

If PreferredType was not passed, let hint be "default".

Else if PreferredType is hint String, let hint be "string".

Else PreferredType is hint Number, let hint be "numbexr".

Let exoticToPrim be GetMethod(input, @@toPrimitive).

ReturnIfAbrupt(exoticToPrim).

If exoticToPrim is not undefined, then

a. Let result be the result of calling the [[Call]] internal method of exoticToPrim, with input as
thisArgument and (hint) as argumentsList.

b. ReturnIfAbrupt(result).

c. Ifresultis an ECMASecript language valueand Type(result) is not Object, then return result.

d. Else, throw a TypeError exception.

7. [If hint is "default" then, let hint be "number".

8. Return OrdinaryToPrimitive(input, hint).

AN B W —

When the OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

1. Assert: Type(O) is Object
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. Af hint is "string", then
a. Let methodNames be the List ("toString", "valueOf").
4. Else,
a. Let methodNames be the List ("valueOf", "toString").
5.7 For each name in methodNames in List order, do
a. Let method be Get(O, name).
b. ReturnIfAbrupt(method).
c. IflsCallable(method) is true then,
i. Let result be the result of calling the [[Call]] internal method of method, with O as
thisArgument and an empty List as argumentsList.
ii. ReturnIfAbrupt(result).
iii. If Type(result) is not Object, then return result.
6. Throw a TypeError exception.

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,
objects may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification
only Date objects (see 20.3) and Symbol objects (see 19.4.3.4) over-ride the default ToPrimitive behaviour. Date
objects treat no hint as if the hint were String.

© Ecma International 2014 41

ecind

7.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table

10:
Table 10 — ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, <0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Symbol Return true

Object Return true

7.1.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 11:

Table 11 — ToNumber Conversions

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])

Undefined Return NaN

Null Return +0

Boolean Return 1 if argument is true. Return +0 if argument is false.

Number Return argument (no conversion).

String See grammar and conversion algorithm below.

Symbol Return NaN

Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue).

7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot
interpret the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

© Ecma International 2014

42

oecind

Syntax

StringNumericLiteral :::
StrWhiteSpaceqpt
StrWhiteSpaceqp StrNumericLiteral StrWhiteSpace oy

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpacep

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexlIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimallLiteral
- StrUnsignedDecimallLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsqp ExponentPartopt
. DecimalDigits ExponentPartqp
DecimalDigits ExponentPart oy

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6.7 8 9

ExponentPart :::
Exponentindicator SignedInteger

Exponentlndicator ::: one of
e E

SignedInteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral :::
0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b

© Ecma International 2014

d

e

f A B C D E F

43

ecimnd

NOTE Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
11.8.3):

o A SwingNumericLiteral may be preceded and/or followed by white space and/or line terminators.

o A SwringNumericLiteral that is decimal may have any number of leading 0 digits.

o A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

o A StringNumericLiteral that is empty or contains only white space is converted to +0.

e Infinity and -Infinity arerecognized as a StringNumericLiteral but notas a NumericLiteral.

7.1.3.1.1 Runtime Semantics: MV’s

The conversion of a String to a Number value is similar overall to the determination of the Number value
for a numeric literal (see 11.8.3), but some of the details are different, so the process for converting a
String numeric literal to a value of Number type is given here in full. This value is determined in two steps:
first, a mathematical value (MV) is derived from the String numeric literal; second, this. mathematical value
is rounded as described below.

The MV of StringNumericLiteral ::: [empty] iS 0.

The MV of StringNumericLiteral ::: StrWhiteSpace is 0:

The MV of StringNumericLiteral ::: StrWhiteSpace,y, StrNumericLiteral StrWhiteSpace,, is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this
MV is also 0. The rounding.rule described below handles the conversion of this signless mathematical
zero to a floating-point +0 or —0 as appropriate.)

The MV of StrUnsignedDecimalLiterali:: Infinity is 10'°" (a value so large that it will round to +o).
The MV of StrUnsignedDecimalLiteral::: DecimalDigits . is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first
DecimalDigits plus (the. MV of the second DecimalDigits times 10™"), where n is the number of
characters in the second DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times
10°, - where e is the MV. of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™)) times 10°, where # is the number of
characters in the second DecimalDigits and e is the MV of ExponentPart.

The MV. of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 107", where n is
the number of characters in DecimalDigits.

The MV of SurUnsignedDecimalLiteral:::. DecimalDigits ExponentPart is the MV of DecimalDigits times
10°™", where n is themumber of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV
of DecimalDigit.

The MV of ExponentPart ::: ExponentIndicator SignedInteger is the MV of Signedinteger.

The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits.

© Ecma International 2014 44

ecimna

o The MV of Signedinteger ::: + DecimalDigits is the MV of DecimalDigits.
o The MV of Signedinteger ::: = DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::
The MV of DecimalDigit :::

0 or of HexDigit :::
1 or of HexDigit :::
2 or of HexDigit :::
3 or of HexDigit :::
4 or of HexDigit :::
5 or of HexDigit :::
6 or of HexDigit :::
7 or of HexDigit :::
8 or of HexDigit :::
9 or of HexDigit :::

0is 0.
lis 1.
2is 2.
3is 3.
4is 4.
5is 5.
6 is 6.
7is 7.
8is 8.
9is 9.

e The MV of HexDigit ::: a or of HexDigit ::: Ais 10.
e The MV of HexDigit ::: b or of HexDigit ::: Bis 11.
e The MV of HexDigit ::: ¢ or of HexDigit ::: Cis 12.
e The MV of HexDigit ::: d or of HexDigit ::: D is 13.
e The MV of HexDigit ::: e or of HexDigit ::: E is 14.
e The MV of HexDigit ::: £ or of HexDigit ::: Fis 15.
o The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
o The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

o The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is-(the MV of HexIntegerLiteral times 16) plus
the MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0; then the rounded value is +0 unless the first non white space character in the
String numeric literal is ‘=’, in which case the rounded value is —0. Otherwise, the rounded value must be
the Number value for the MV (in the sense 'defined in 6.1.6), unless the literal includes a
StrUnsignedDecimalLiteral. and the literal_has_more than 20 significant digits, in which case the Number
value may be either the Number value for the MV of a literal produced by replacing each significant digit
after the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each
significant digit after.the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A
digit is significant if it is not part of an ExponentPart and

o jtis not0; or

e thereis a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract
operation functions. as follows:

Let number be ToNumber(argument).

ReturnIlfAbrupt(number).

If number is NaN, return +0.

If number is +0, —0, +oo, or —oo, return number.

Return the result of computing sign(number) x floor(abs(number)).

W=

© Ecma International 2014 45

oecnd

71.5

Tolnt32: (Signed 32 Bit Integer)

The abstract operation ToInt32 converts its argument to one of 2°% integer values in the range —2°' through
2%'-1, inclusive. This abstract operation functions as follows:

AN N W

NOTE

7.1.6

Let number be ToNumber(argument).
ReturnlfAbrupt(number).
If number is NaN, +0, —0, +oo, or —oo, return +0.

Let int be sign(number) x floor(abs(number)).
Let int32bit be int modulo 2°2.

If int32bit > 2°", return int32bit — 2*%, otherwise return int32bit.

Given the above definition of Tolnt32:

The Tolnt32 abstract operation is idempotent: if applied to a.result that it produced, the second application
leaves that value unchanged.

Tolnt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +o and
—o0 are mapped to +0.)
Tolnt32 maps —0 to +0.

ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2*% integer values in the range 0 through
2%2-1, inclusive. This abstract operation functions as follows:

AN A W=

NOTE

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, —0, 400, or —oo, return +0:
Let int be sign(number) x floor(abs(number)).
Let int32bit be int-modulo 2°%.

Return int32bit:

Given the above definition of ToUint32:

Step 6 is the only difference between ToUint32 and Tolnt32.

The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application
leaves that value unchanged.

ToUint32(Tolnt32(x)). is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +oo
and —oo are mapped to +0.)

ToUint32 maps —0 to +0.

7.1.7 Tolnt16: (Signed 16 Bit Integer)

The abstract operation Tolnt16 converts its argument to one of 2'° integer values in the range —32768
through 32767, inclusive. This abstract operation functions as follows:

AN W=

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, —0, +oo, or —co, return +0.

Let int be sign(number) x floor(abs(number)).
Let int16bit be int modulo 2'°.

If int16bit > 2'°, return int16bit — 2'°, otherwise return intI6bit.

© Ecma International 2014 46

secind

7.1.8 ToUint16: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2'° integer values in the range 0 through
2'%_1, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnlfAbrupt(number).

If number is NaN, +0, —0, +o0, or —oo, return +0.
Let int be sign(number) x floor(abs(number)).
Let int16bit be int modulo 2'°.

Return int16bit.

AN B W

NOTE Given the above definition of ToUint16:

e The substitution of 2!¢ for 2** in step 5 is the only difference between ToUint32 and ToUint16.
ToUint16 maps —0 to +0.

7.1.9 Tolnt8: (Signed 8 Bit Integer)

The abstract operation Tolnt8 converts its argument to one of 2° integer values in the range —128 through
127, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, —0, +oo, or —o0, return +0:
Let int be sign(number) x floor(abs(number)).
Let int8bit be int modulo 2°.

If int8bit > 27, return int8bit — 2%, otherwise return int8bit.

AN N A W=

7.1.10 ToUint8: (Unsigned 8 Bit Integer)

The abstract operation ToUint8 converts its argument to one of 2* integer values in the range 0 through
255, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, +0, =0, +oo, or —oo, return +0.
Let int be sign(number) x floor(abs(number)).
Let int8bit be int modulo 2*.

Return int8bit.

AN WA~ W N

7.1.11 ToUint8Clamp: (Unsigned 8 Bit Integer, Clamped)

The abstract operation ToUint8Clamp converts its argument to one of 2° integer values in the range 0
through 255, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).
ReturnlfAbrupt(number).

If number is NaN, return +0.

If number < 0, return +0.

If number > 255, return 255.

Let f'be floor(number).

If f+0.5 > number, then return f+1.
Return f.

RN R LD =

© Ecma International 2014 47

secind

NOTE

Note that unlike the other integer conversion abstract operation, ToUnit8Clamp rounds rather than

truncates non-integer values does not convert +w to 0.

7.1.12 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 12:

Table 12 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return

ToString(argument.[[value]])

Undefined "undefined"
Null "null"
Boolean If argument is true, then return "true".
If argument is false, then return"£false".
Number See 7.1.121.
String Return argument (no conversion)
Symbol Throw a TypeError exception.
Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

7.1.12.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

1.

W AW N

10.

If m is NaN, return the String "NaN".

If m is +0 or —0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).

If m is +oo, return the String "Infinity".

Otherwise, let n, k, and s be integers such that £ > 1, 105! < 5 < 10%, the Number value for s x 10"
is myand 'k is as small as possible. Note that & is the number of digits in the decimal representation
of s, that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely
determined by these criteria.

If k < n <21, return the String consisting of the & digits of the decimal representation of s (in order,
with no leading zeroes), followed by n—k occurrences of the character ‘0’.

If 0 <n <21, return the String consisting of the most significant » digits of the decimal
representation of s, followed by a decimal point ‘., followed by the remaining k—» digits of the
decimal representation of s.

If -6 <n <0, return the String consisting of the character ‘0’, followed by a decimal point *.”’,
followed by —n occurrences of the character ‘0°, followed by the £ digits of the decimal
representation of s.

Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase
character ‘e’, followed by a plus sign ‘+’ or minus sign ‘=’ according to whether n—1 is positive or
negative, followed by the decimal representation of the integer abs(n—1) (with no leading zeroes).
Return the String consisting of the most significant digit of the decimal representation of s,
followed by a decimal point ‘.’, followed by the remaining k—1 digits of the decimal representation
of s, followed by the lowercase character ‘e’, followed by a plus sign ‘4’ or minus sign ‘-’

© Ecma International 2014 48

»eCma

according to whether n—1 is positive or negative, followed by the decimal representation of the
integer abs(n—1) (with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the
normative requirements of this Standard:

e If xis any Number value other than —0, then ToNumber(ToString(x)) is exactly the same Number value as x.
e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k > 1, 10" < 5 < 10, the Number value for s x 10"™* is m, and k is as
small as possible. If there are multiple possibilities for s, choose the value of s for whichus x 10" is closest in value to
m. If there are two such possible values of s, choose the one that is even. Note that & is the number of digits in the
decimal representation of s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-
decimal conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey)./November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as

http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.13 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 13:

Table 13 — ToObject Conversions

Argument Type Result

Completion Record” | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to
the value of argument. See 19.3 for a description of Boolean objects.

Number Return a new. Number object whose [[NumberDatal]] internal slot is set to
the value of argument. See 20.1 for a description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to the
value of argument. See 21.1 for a description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to
the value of argument. See 19.4 for a description of Symbol objects.

Object Return argument (no conversion).

7.1.14 ToPropertyKey

The abstract operation ToPropertyKey converts its argument to a value that can be used as a property key
by performing the following steps:

1. ReturnIfAbrupt(argument).
2. If Type(argument) is Symbol, then

© Ecma International 2014 49

ecind

a. Return argument.
3. Return ToString(argument).

7.1.15 ToLength

The abstract operation ToLength converts its argument to an integer suitable for use as the length of an
array-like object. It performs the following steps:

1. ReturnIfAbrupt(argument).

Let len be Tolnteger(argument).
ReturnlfAbrupt(len).

If len < +0, then return +0.
Return min(len, 2°3-1).

WD AW

7.1.16 CanonicalNumericString(argument)

The abstract operation CanonicalNumericString returns its argument converted to a numeric value if it is a
String representation of a Number that would be produced by ToString.. Otherwise, it returns undefined.
This abstract operation functions as follows:

Assert: Type(argument) is String.

Let n be ToNumber(argument).

If n=—0, then return +0.

If SameValue(ToString(n), argument) is false, then return undefined.
Return .

[I S R S

A canonical numeric string is any String value for which the . CanonicalNumericString abstraction
operation does not return undefined.

7.2 Testing and Comparison Operations
7.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throwsan error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 14:

Table 14 — CheckObjectCoercible Results

Argument Type Result

Completion Record | If argument'is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return argument

Number Return argument

String Return argument

Symbol Return argument

Object Return argument

© Ecma International 2014 50

secind

7.2.2

IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language
value or a Completion Record, is a callable function Object according to Table 15:

Table 15 — IsCallable Results

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
IsCallable(argument.[[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Symbol Return false.

Object Iff ilrgument has a [[Call]] internal method, then return true, otherwise return
alse.

7.2.3 SameValue(x, y)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language
values, produces true or false. Such a comparison is performed as.follows:

AN N AW =

8.

9.

ReturnIfAbrupt(x).

ReturnIfAbrupt(y).

If Type(x) is different from Type(y), return false.

If Type(x) is Undefined, return true.

If Type(x) isNull, return true:

If Type(x) is Number, then

a. Ifxis NaN and y.is NaN, return true.

b. Ifx.is+0 and yis -0, return false.

c.< Ifx is -0 and y is +0, return false.

d. TIf x is the same Number value as y, return true.

e. Return false.

If Type(x) is String, then

a. Ifxand y are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.

If Type(x) is Boolean, then

a. Ifxand y are both true or both false, then return true; otherwise, return false.

If Type(x) is Symbol, then

a. Ifx and yare both the same Symbol value, then return true; otherwise, return false.

10. Return true if x and y are the same Object value. Otherwise, return false.

7.2.4 SameValueZero(x, y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript
language values, produces true or false. Such a comparison is performed as follows:

1.
2.

ReturnIfAbrupt(x).
ReturnlfAbrupt(y).

© Ecma International 2014 51

eCmd

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. Ifxis NaN and y is NaN, return true.
b. Ifxis+0 and y is -0, return true.
c. Ifxis-0andy is+0, return true.
d. Ifxisthe same Number value as y, return true.
e. Return false.
7. If Type(x) is String, then
a. Ifx and y are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.
8. If Type(x) is Boolean, then
a. Ifx and y are both true or both false, then return true; otherwise, return false.
9. If Type(x) is Symbol, then
a. Ifx and y are both the same Symbol value, then return true; otherwise, return false.
10. Return true if x and y are the same Object value. Otherwise, return false.

AN DN A~ W

NOTE SameValueZero differs from SameValue only in its treatment of +0.and -0.
7.2.5 IsConstructor

The abstract operation IsConstructor determines if its argument, which must be an ECMAScript language
value or a Completion Record, is a function object with a [[Construct]] internal method.

1. ReturnIfAbrupt(argument).

2. If Type(argument) is not Object, return false.

3. [If argument has a [[Construct]] internal method, return true.
4. Return false.

7.2.6 IsPropertyKey

The abstract operation IsPropertyKey determines if its argument, which must be an ECMAScript language
value or a Completion Record, is a value that may be used as a property key.

1. ReturnlfAbrupt(argument).

2. IfType(argument) is String, return true.
3. </If Type(argument). is Symbol, return true.
4. Return false.

7.2.7 IsExtensible (O)

The abstract operation IsExtensible is used to determine whether additional properties can be added to the
object that is O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Return the result of calling the [[IsExtensible]] internal method of O.
7.2.8 Isinteger

The abstract operation IsConstructor determines if its argument is a finite integer numeric value.

1. ReturnIfAbrupt(argument).
2. If Type(argument) is not Number, return false.
3. If argument is NaN, 4+, or —oo, return false.

© Ecma International 2014 52

oecnd

4.
5.

If floor(abs(argument)) # abs(argument), then return false.
Return true.

7.2.9 Abstract Relational Comparison

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that
at least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LefiFirst as
a parameter. The flag is used to control the order in which operations with potentially visible side-effects
are performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of
expressions. The default value of LefiFirst is true and indicates that the x_parameter corresponds to an
expression that occurs to the left of the y parameter’'s corresponding expression. If LefiFirst is false, the
reverse is the case and operations must be performed upon y before x. Such a comparison is performed

as follows:
1. ReturnIfAbrupt(x).
2. ReturnIfAbrupt(y).
3. [Ifthe LeftFirst flag is true, then

a. Let px be ToPrimitive(x, hint Number).

b. ReturnIfAbrupt(px).

c. Let py be ToPrimitive(y, hint Number).

d. ReturnIfAbrupt(py).

Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Let py be ToPrimitive(y, hint Number).

b. ReturnlfAbrupt(py).

c. Let px be ToPrimitive(x, hint Number).

d. ReturnIfAbrupt(px).

If both px and py are Strings, then

a. Ifpyis a prefix of px; return false. (A String value p is a prefix of String value ¢ if ¢ can be the
result of concatenating p and some other String ». Note that any String is a prefix of itself,
because r may be the empty String.)

If px is a prefix of py, return true.

Let k be.the smallest nonnegative integer such that the character at position £ within px is
different from the character at position k within py. (There must be such a k, for neither String
is a prefix of'the other.)

Let m be the integer that is the code unit value for the character at position & within px.

Let n be the integer that is the code unit value for the character at position & within py.

If m < n, return true. Otherwise, return false.

o

—_—
[72]
(¢

b}

Let nx be ToNumber(px). Because px and py are primitive values evaluation order is not
important.

Let ny be ToNumber(py).

If nx is NaN, return undefined.

If ny is NaN, return undefined.

If nx and nyare the same Number value, return false.

If nx 1s +0 and ny is -0, return false.

If nx is =0 and ny is +0, return false.

If nx is +oo, return false.

If ny is +oo, return true.

If ny is —oo, return false.

If nx is —oo, return true.

If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

®mho e

TAETITE® e aco

© Ecma International 2014 53

oecnd

NOTE 1 Step 5 differs from step 11 in the algorithm for the addition operator + (12.7.3) in using “and” instead of

or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There
is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating
order defined in the Unicode specification. Therefore String values that are canonically equal according to the
Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalized
form. Also, note that for strings containing supplementary characters, lexicographic ordering on sequences of UTF-16
code unit values differs from that on sequences of code point values.

7.2.10 Abstract Equality Comparison

The comparison x == y, where x and y are values, produces true or false. Such a comparison is
performed as follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x === y.
2. Ifxis null and y is undefined, return true.
3. Ifxis undefined and y is null, return true.
4. If Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y).
5. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) == y.
6. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
7. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
8. If Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).
9. [If Type(x) is Object and Type(y) is either String.or Number,
return the result of the.comparison ToPrimitive(x) == y.
10. Return false.

7.2.11 Strict Equality Comparison

The comparison x === y, where'x and y are values, produces true or false. Such a comparison is
performed as follows:

1. IfType(x) is different from Type(y), return false.
2. <If Type(x) is Undefined, return true.
3. If Type(x) is Null, return true.
4. 1If Type(x) is Number, then
a. Ifxis NaN, return false.
b. Ify is NaN, return false.
c.. Ifx is the same Number value as y, return true.
d. Tfxis +0 and y is -0, return true.
e. Ifxis—=0andy is +0, return true.
f. Return false.
5. [If Type(x) is String, then
a. Ifx and y are exactly the same sequence of characters (same length and same characters in
corresponding positions), return true.
b. Else, return false.
6. If Type(x) is Boolean, then
a. Ifx and y are both true or both false, return true.
b. Else, return false.
7. Ifx and y are the same Symbol value, return true.

© Ecma International 2014 54

secind

8. Ifx and y are the same Object value, return true.
9. Return false.

NOTE This algorithm differs from the SameValue Algorithm (7.2.3) in its treatment of signed zeroes and NaNs.
7.3 Operations on Objects
731 Get(O,P)

The abstract operation Get is used to retrieve the value of a specific property of an object. The operation
is called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[Get]] internal method.of O passing P and O as the arguments.

7.3.2 Put(O,P,V, Throw)

The abstract operation Put is used to set the value of a specific property of an object. The operation is
called with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value
for the property and Throw is a Boolean flag. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Assert: Type(Throw) is Boolean.

Let success be the result of calling the [[Set]] internal method. of O passing P, V, and O as the
arguments.

5. ReturnIfAbrupt(success).

6. If success is false and Throwis true, then throw a TypeError exception.

7. Return success.
3

CreateDataProperty (O, P, V)

AW N =

7.3

The abstract operation CreateDataProperty is used to create a new own property of an object. The
operation is_called.with arguments O, P, and V" where O is the object, P is the property key, and V' is the
value for.the property. This abstract operation performs the following steps:

L& Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

4. Return the result of calling the [[DefineOwnProperty]] internal method of O passing P and newDesc
as arguments.

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for
properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If
it does exist and is not configurable or O is not extensible [[DefineOwnProperty]] will return false.

7.3.4 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropertyOrThrow is used to create a new own property of an object. It
throws a TypeError exception if the requested property update cannot be performed. The operation is
called with arguments O, P, and 7 where O is the object, P is the property key, and 7 is the value for the
property. This abstract operation performs the following steps:

© Ecma International 2014 55

ecimna

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let success be CreateDataProperty(O, P, V).
4. ReturnIfAbrupt(success).
5. [If success is false, then throw a TypeError exception.
6. Return success.
NOTE This abstract operation creates a property whose attributes are set to the same defaults used for

properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If
it does exist and is not configurable or O is not extensible [[DefineOwnProperty]] will return false causing this
operation to throw a TypeError exception.

7.3.5 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperty]] internal method of
an object in a manner that will throw a TypeError exception«if the requested property update cannot be
performed. The operation is called with arguments O, P, and desc where O is the object, P is the property
key, and desc is the Property Descriptor for the property. This abstract.operation perform, the following
steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be the result of calling the [[DefineOwnProperty]] internal method of O passing P and
desc as arguments.

4. ReturnIfAbrupt(success).

5. [If success is false, then throw a TypeError exception.

6. Return success.

7.3.6 DeletePropertyOrThrow (O, P)

The abstract operation. DeletePropertyOrThrow is used to remove a specific own property of an object. It
throws an exception.if the property is not configurable. The operation is called with arguments O and P
where O is the objectand P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be the result of calling the [[Delete]] internal method of O passing P as the argument.
ReturnIfAbrupt(success).

If success is false, then throw a TypeError exception.

Return success.

AN W —

7.3.7 GetMethod (O, P)

The abstract operation GetMethod is used to get the value of a specific property of an object when the
value of the property is‘expected to be a function. The operation is called with arguments O and P where
O is the object, P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let func be the result of calling the [[Get]] internal method of O passing P and O as the arguments.
4. ReturnIfAbrupt(func).

5. [If func is undefined, then return undefined.

6. If IsCallable(func) is false, then throw a TypeError exception.

7. Return func.

© Ecma International 2014 56

secind

7.3.8 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the
specified property key. The property may be either an own or inherited. A Boolean value is returned. The
operation is called with arguments O and P where O is the object and P is the property key. This abstract
operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[HasProperty]] internal method of O with argument P.

7.3.9 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with
the specified property key. A Boolean value is returned. The operation is called with arguments O and P
where O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the
argument.

4. ReturnlIfAbrupt(desc).

5. Ifdesc is undefined, return false.

6. Return true.

7.3.10 Invoke(O,P, [args])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments O, P, and optionally args where O serves as both the lookup point for the property and the
this value of the call, P is the property key, and args is the list of arguments values passed to the method.
If args is not present, an empty List is used as its value. This abstract operation performs the following
steps:

1. Assert: Pis a valid property key.

2. [If args was not passed, then let args be a new empty List.

3. Let 0bj-be ToObject(O).

4. ReturnIfAbrupt(oby).

5. < Let func be the result of calling the [[Get]] internal method of 0bj passing P and O as the
arguments.

6. If IsCallable(func) is false, then throw a TypeError exception.

7. ReturnIfAbrupt(func).

8. "Return the result of calling the [[Call]] internal method of func passing O as thisArgument and args
as argumentsList.

7.3.11 SetintegrityLevel (O, level)

The abstract operation SetIntegritylevel is used to fix the set of own properties of an object. This abstract
operation performs the following steps:

Assert: Type(O) is Object.

Assert: level is either "sealed" or "frozen".

Let keysArray be the result of calling the [[OwnPropertyKeys]] internal method of O.
Let keys be CreateListFromArrayLike(keysArray).

ReturnIfAbrupt(keys).

DN bW N =

© Ecma International 2014 57

oeCha

9.

10.

Let pendingException be undefined.
If level is "sealed", then
a. Repeat for each element & of keys,

i. Let status be DefinePropertyOrThrow(O, k, PropertyDescriptor{ [[Configurable]]: false}).

ii. If status is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to status.
Else level is "frozen",
a. Repeat for each element & of keys,

i. Let status be the result of calling the [[GetOwnProperty]] internal method of O with £.

ii. If status is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to status.
iii. Else,
1. Let currentDesc be status.[[value]].
2. If currentDesc is not undefined, then
a. IfIsAccessorDescriptor(currentDesc) is'true, then
i. Let desc be the PropertyDescriptor {[[Configurable]]: false}.
b. Else,

i. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]:

false }.
c. Let status be DefinePropertyOrThrow(O, k,desc).
d. [If status is an abrupt completion, then
i. If pendingException is undefined, then set pendingException to status.
If pendingException is not undefined, then return pendingException.
Return the result of calling the [[PreventExtensions]] internal method of O.

7.3.12 TestIntegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are
fixed. This abstract operation performs the following steps:

$2 A el e

—
W= O

Assert: Type(O) is Object.

Assert: levelis either "sealed" or "frozen".

Let status be IsExtensible(Q).

ReturnlfAbrupt(status).

If status-is.true, then return false

NOTE If the object is extensible, none of its properties are examined.

Let keysArray be the result of calling the [[OwnPropertyKeys]] internal method of O.
Let keys be CreateListFromArrayLike(keysArray).

ReturnIfAbrupt(keys).

. Let pendingException be undefined.
. Let configurable be false.

. Let writable be false.

. Repeat for each element & of keys,

a. Let status be the result of calling the [[GetOwnProperty]] internal method of O with £.
b. If status is an abrupt completion, then

i. If pendingException is undefined, then set pendingException to status.

ii. Let configurable be true.
c. Else,

i. Let currentDesc be status.[[value]].

1i. If currentDesc is not undefined, then

1. Set configurable to configurable logically ored with currentDesc.[[Configurable]].

2. [If IsDataDescriptor(currentDesc) is true, then
a. Set writable to writable logically ored with currentDesc.[[Writable]].

© Ecma International 2014

58

eCmd

14.
15.
16.
17.

If pendingException is not undefined, then return pendingException.
If level is "£rozen" and writable is true, then return false.

If configurable is true, then return false.

Return true.

7.3.13 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are
provided by a List. This abstract operation performs the following steps:

AW N =

5.

Assert: elements is a List whose elements are all ECMAScript language values.
Let array be ArrayCreate(0) (see 9.4.2.2).

Let n be 0.

For each element e of elements

a. Let status be the result of CreateDataProperty(array, ToString(n), e).

b. Assert: status is true.

c. Increment n by 1.

Return array.

7.3.14 CreateListFromArrayLike (obj)

The abstract operation CreateListFromArrayLike is used to create a List value whose elements are
provided by the indexed properties of an array-like object. This abstract operation performs the following

steps:

A S e

9.

ReturnIfAbrupt(obyj).

If Type(obj) is not Object, then throw a TypeError exception.
Let /en be Get(obj, "length").

Let n be ToLength(/en).
ReturnIfAbrupt(n):

Let /ist be an empty List.

Let index be 0.

Repeat while index < n

a. Let indexName be ToString(index).

b. Let next be Get(obj, indexName).

c. < ReturnIfAbrupt(next).

d. Append nrextas the last element of /isz.
e. Setindex toindex + 1.

Return /ist.

7.3.15 OrdinaryHaslnstance (C, O)

The abstract operation OrdinaryHasInstance implements the default algorithm for determining if an object
O inherits from the instance object inheritance path provided by constructor C. This abstract operation
performs the following steps:

1.
2.

AN bW

If IsCallable(C) is false, return false.

If C has a [[BoundTargetFunction]] internal slot, then

a. Let BC be the value of C’s [[BoundTargetFunction]] internal slot.
b. Return InstanceofOperator(O,BC) (see 12.9.4).

If Type(O) is not Object, return false.

Let P be Get(C, "prototype").

ReturnIfAbrupt(P).

If Type(P) is not Object, throw a TypeError exception.

© Ecma International 2014 59

secind

7. Repeat
a. Set O to the result of calling the [[GetPrototypeOf]] internal method of O with no arguments.
b. ReturnlfAbrupt(O).
c. IfOisnull, return false.
d. If SameValue(P, O) is true, return true.

7.3.16 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be
used to create an object corresponding to a specific constructor. The value is retrieved from the
constructor's prototype property, if it exists. Otherwise the supplied default is used for [[Prototype]].
This abstract operation performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object.
The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value
of an object.
If IsConstructor (constructor) is false, then throw a TypeError exception.
Let proto be Get(constructor, "prototype").
ReturnlfAbrupt(proto).
If Type(proto) is not Object, then
a. If constructor has a [[Realm]] internal slot, let realm be constructor’s [[Realm]] internal slot.
b. Else,
i. Let ctx be the running execution context.
ii. Let realm be ctx’s Realm.
c. Let proto be realm’s intrinsic object named intrinsic DefaultProto.
6. Return proto.

W\ AW N

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the
Code Realm of the constructor function rather than from the running execution context. This accounts for the
possibility that a built-in @@create method from a different Code Realm might be installed on constructor.

7.3.17 CreateFromConstructor (F)

When the abstract operation CreateFromConstructor is called with Object F the following steps are taken:

1. Letcreator be GeMethod (F, @@create).

2. ReturnIfAbrupt(creator).

3. If creator is undefined, then return undefined.

4. Let obj be the result of calling the [[Call]] internal method of creator with arguments F and an
empty List.

ReturnIfAbrupt(obyj).

6. If Type(obj) is not Object, then throw a TypeError exception.

7. Return obj.

9]

NOTE This operation is equivalent to: F[Symbol.create] () followed by an error check.
7.3.18 Construct (F, argumentsList)
When the abstract operation Construct is called with Object F and List argumentsList the following steps

are taken:

1. Assert: Type(F) is Object.
2. Let obj be CreateFromConstructor(F).
3. ReturnIfAbrupt(oby).

© Ecma International 2014 60

eCmd

4. 1If obj is undefined, then
a. Let obj be OrdinaryCreateFromConstructor(F, "$ObjectPrototype%").
b. ReturnlfAbrupt(obj).
c. Assert: Type(obj) is Object.
5. Let result be the result of calling the [[Call]] internal method of F, providing obj and argumentsList
as the arguments.
6. ReturnIfAbrupt(result).
7. If Type(result) is Object then return result.
8. Return obj.

NOTE This operation is equivalent to: new F(...argumentsList)
7.3.19 GetOption (options, P)

The abstract operation GetOption is used to retrieve the value of a specific property of an object in
situation where the object may not be present. The operation is called with arguments options and P
where options is the object and P is the property key. This abstract operation performs the following steps:

Assert: IsPropertyKey(P) is true.

If options is undefined, then return undefined.

If Type(options) is not Object, then throw a TypeError exception.

Return the result of calling the [[Get]] internal method of options passing P and options as the
arguments.

AW =

7.4 Operations on Iterator Objects
See Commmon lteration Interfaces (25.1).
7.41 Checklterable (obj)

The abstract operation Checklterable with argument ob; performs the following steps:

1. If Type(obj) is not Object, then return undefined.
2. Let iteratorGetter be Get(obj, @@iterator).
3. Return.iteratorGetter.

7.4.2 Getlterator (obj, method)

The abstract operation Getlterator with argument obj and optional argument method performs the following
steps:

1. If method was not passed, then
a. Letmethod be Checklterable(oby).
b. ReturnlfAbrupt(method).

2. IfIsCallable(method) is false, then throw a TypeError exception.

3. Let iterator be the result of calling the [[Call]] internal method of method with obj as thisArgument
and an empty List as argumentsList.

4. ReturnIfAbrupt(iterator).

5. [If Type(iterator) is not Object, then throw a TypeError exception.

6. Return iterator.

© Ecma International 2014 61

secind

7.4.3 IteratorNext (iterator, value)

The abstract operation IteratorNext with argument iterator and optional argument value performs the
following steps:

1. If value was not passed, let value be undefined.
a. Let result be Invoke(iterator, "next", ()).
2. Else,
a. Let result be Invoke(iterator, "next", (value)).
3. ReturnIfAbrupt(result).
4. If Type(result) is not Object, then throw a TypeError exception.
5. Return result.

7.4.4 IteratorComplete (iterResult)

The abstract operation IteratorComplete with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Let done be Get(iterResult, "done™").
3. Return ToBoolean(done).

7.4.5 IteratorValue (iterResult)

The abstract operation IteratorValue with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return Get(iterResult, "value").

7.4.6 lteratorStep (iterator)

The abstract operation lteratorStep with argument iterator requests the next value from iterator and
returns either false indicating that the iterator has reached its end or the lteratorResult object if a next
value is available. IteratorStep performs the following steps:

Let result be IteratorNext(iterator).
ReturnlfAbrupt(result).

Let done be IteratorComplete(result).
ReturnIfAbrupt(done).

If done is true, then return false.
Return result.

AN W AW —

7.4.7 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments value and done creates an object that
supports the lteratorResult interface by performing the following steps:

Assert: Type(done) is Boolean.

Let obj be ObjectCreate(%ObjectPrototype%).
Perform CreateDataProperty(obj, "value", value).
Perform CreateDataProperty(obj, "done™", done).
Return obj.

N W=

© Ecma International 2014 62

secind

7.4.8 CreateListlterator (list)

The abstract operation CreateListlterator with argument /ist creates an Iterator (25.1.2) object whose next
method returns the successive elements of /isz. It performs the following steps:

1. Let iterator be the result of ObjectCreate(%ObjectPrototype%, ([[IteratedList]],
[[ListIteratorNextIndex]])).

Set iterator’s [[IteratedList]] internal slot to /ist.

Set iterator’s [[ListlteratorNextIndex]] internal slot to 0.

Define Listlterator next (7.4.8.1) as an own property of iterator.

Return iterator.

WD bW

7.4.8.1 Listlterator next()

The Listlterator next method is a standard built-in function object (clause 17) that performs the following
steps:

1. Let O be the this value.
2. If O does not have a [[IteratedList]] internal slot; then throw a TypeError exception.
3. Let list be the List that is value of the [[IteratedList] internal slot of O.
4. Let index be the value of the [[ListlteratorNextIndex]] internal slot of O.
5. Let /len be the number of elements of /ist.
6. Ifindex > len, then
a. Return CreatelterResultObject(undefined, true).
7. Set the value of the [[ListlteratorNextIndex]] internal slot of O to index+1.

8. Return CreatelterResultObject(/ist[index], false).
7.4.9 CreateEmptylterator ()

The abstract operation CreateEmptylterator with ' no arguments creates an lterator object whose next
method always reports that the iterator is done. It performs the following steps:

1. Let empty be a List with no elements.
2. Return CreateListlterator(empty).

7.5 Operations.on Promise Objects

Promise Objects (25.4) serve as a place holder for the eventual result of a deferred (and possibly
asynchronous) computation.

Within this specification the adjective “eventual” mean a value or a Promise object that will ultimately
resolves to the value. For example, “Returns an eventual String” is equivalent to “Returns either a String
or a Promise object that will eventually resolves to a String”. A “resolved value” is the final value of an
“eventual value”.

NOTE The Promise related abstract operations defined in this subclause are used by specification algorithms
when they perform or respond to asynchronous operations. They ensure that the actual built-in Promise operations
are used by the algorithms, even if ECMAScript code has modified the properties of %Promise%
or %PromisePrototype%.

7.5.1 PromiseNew (executor) Abstact Operation

The abstract operation PromiseNew allocates and initializes a new promise object for use by specification
algorithm. The executor argument initiates the deferred computation.

© Ecma International 2014 63

»eCma

1. Let promise be AllocatePromise(%Promise%).
2. Return InitializePromise(promise, executor).

7.5.2 PromiseBuiltinCapability () Abstact Operation

The abstract operation PromiseBuiltinCapability allocates a PromiseCapability record (25.4.1.1) for a
builtin promise object for use by specification algorithm.

1. Let promise be AllocatePromise(%Promise%).
2. Return CreatePromiseCapabilityRecord(promise, %Promise%).

NOTE This abstract operation is the same as the default built-in behavior of NewPromiseCapability abstract
operation (25.4.1.4).

7.5.3 PromiseOf (value) Abstact Operation

The abstract operation PromiseOf returns a new Promise that resolves to the argument value.

1. Let capability be PromiseBuiltinCapability().

2. ReturnIfAbrupt(capability).

3. Let resolveResult be the result of calling the [[Call]] internal‘'method of capability.[[Resolve]] with
undefined as thisArgument and (value) as argumentsList.

4. ReturnlfAbrupt(resolveResult).

5. Return capability.[[Promise]].

NOTE This abstract operation is the same as the default built-in behavior of the Promise.resolve method
(25.4.4.5).

7.5.4 PromiseAll (promiseList) Abstact Operation
7.5.5 PromiseCatch (promise, rejectedAction) Abstact Operation

7.5.6 PromiseThen (promise, resolvedAction, rejectedAction) Abstact Operation

8 Executable Code and Execution Contexts
8.1 Lexical Environments

ALexical Environment is a specification type used to define the association of Identifiers to specific
variables. and functions based upon the lexical nesting structure of ECMAScript code. A Lexical
Environment consists of an Environment Record and a possibly null reference to an outer Lexical
Environment. Usually a Lexical Environment is associated with some specific syntactic structure of
ECMAScript code such as‘a FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement and
a new Lexical Environment is created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own
outer Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner
Lexical Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then

© Ecma International 2014 64

»eCma

the Lexical Environments of each of the nested functions will have as their outer Lexical Environment the
Lexical Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global
environment’s outer environment reference is null. A global environment’s environment record may be
prepopulated with identifier bindings and includes an associated global object whose properties provide
some of the global environment’s identifier bindings. This global object is the value of a global
environment’s this binding. As ECMAScript code is executed, additional properties may be added to the
global object and the initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript
function object that establishes a new this binding. A method environment also captures the state
necessary to support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative
environment records and object environment records. Declarative environment records are used to define
the effect of ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations,
and Catch clauses that directly associate identifier bindings with ECMAScript language values. Object
environment records are used to define the effect of ECMAScript elements such as WithStatement that
associate identifier bindings with the properties of some object.. Global Environment Records and
Function Environment Records-are specializations<that are used for specifically for Script global
declarations and for top-level declarations within functions.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with three concrete subclasses,
declarative environment record, object environment record, and global environment record. Function
environment records are a subclass of declarative environment record. The abstract class includes the
abstract specification methods defined in Table 16. These abstract methods have distinct concrete
algorithms-for each of the concrete subclasses.

© Ecma International 2014 65

ecind

Table 16 — Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D)

Create a new but uninitialized mutable binding in an
environment record. The String value N is the text of the bound
name. If the optional Boolean argument D is true the binding is
may be subsequently deleted.

CreatelmmutableBinding(N)

Create a new but uninitialized immutable binding in an
environment record. The String value N is the text of the bound
name.

InitializeBinding(N,V)

Set the value of an.already existing but uninitialized binding in
an environment record. The String value N is the text of the
bound name. Vis the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S.is a Boolean flag. If S is true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environmentrecord. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and the binding does not exist throw a ReferenceError
exception.” If. the binding exists but is uninitialized a
ReferenceError is thrown, regardless of the value of S.

DeleteBinding(N)

Delete a binding from an environment record. The String value
N is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

HasThisBinding()

Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.

HasSuperBinding()

Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObject ()

If this environment record is associated with a with statement,
return the with object. Otherwise, return undefined.

8.1.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing
variable, constant, let, class, module, import, and/or function declarations. A declarative environment
record binds the set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by

the following algorithms.

© Ecma International 2014

66

secind

8.1.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply
determines if the argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. Return false.

8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for.declarative environment records
creates a new mutable binding for the name N that is uninitialized. A binding must.not already exist in this
Environment Record for N. If Boolean argument D is provided and has the value true the new binding is
marked as being subject to deletion.

1. Let envRec be the declarative environment record for.which the method was invoked.

2. Assert: envRec does not already have a binding for V.

3. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true record that
the newly created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty).

8.1.1.1.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name A that is uninitialized. A binding must not already exist in
this environment record for N.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialized.

8.1.1.1.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for declarative environment records is used to
set the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. An uninitialized binding for N must already exist.

1. Let envRec be the declarative environment record for which the method was invoked.
2. . Assert: envRec must have an uninitialized binding for N.

3. Set the bound value for N in envRec to V.

4. "Record that the binding for N in envRec has been initialized.

8.1.1.1.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records
attempts to change the bound value of the current binding of the identifier whose name is the value of the
argument N to the value of argument V. A binding for N must already exist. If the binding is an immutable
binding, a TypeError is thrown if S is true.

Let envRec be the declarative environment record for which the method was invoked.

Assert: envRec must have a binding for N.

If the binding for N in envRec has not yet been initialized throw a ReferenceError exception.
4. Else if the binding for N in envRec is a mutable binding, change its bound value to V.

W N =

© Ecma International 2014 67

»eCma

5. Else this must be an attempt to change the value of an immutable binding so if S is true throw a
TypeError exception.
6. Return NormalCompletion(empty).

8.1.1.1.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. If S is true and the
binding does not exist throw a ReferenceError exception. If the binding exists but is uninitialized a
ReferenceError is thrown, regardless of the value of S.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If envRec does not have a binding for the name that is the value of N, then
a. IfSis false, return undefined, otherwise throw a ReferenceError exception.
4. If the binding for N in envRec is an uninitialized binding, then throw a ReferenceError exception.
5. Return the value currently bound to N in envRec.

8.1.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only
delete bindings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative environment record for which the method was invoked.
If envRec does not have a binding for the name that is the value of &V, return true.

If the binding for N in envRec cannot be deleted, return false.

Remove the binding for N from envRec.

Return true.

(O I S R S

8.1.1.1.8 HasThisBinding ()

Regular Declarative Environment Records do not provide a this binding.

1. Return false.

8.1.1.1.9 ~HasSuperBinding ()

Regular Declarative Environment Records do not provide a super binding.

1. Return false.

8.1.1.1.10 WithBaseObject()

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.
8.1.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object
environment record binds the set of string identifier names that directly correspond to the property names
of its binding object. Property keys that are not strings in the form of an IdentifierName are not included in
the set of bound identifiers. Both own and inherited properties are included in the set regardless of the
setting of their [[Enumerable]] attribute. Because properties can be dynamically added and deleted from

© Ecma International 2014 68

»eCma

objects, the set of identifiers bound by an object environment record may potentially change as a side-
effect of any operation that adds or deletes properties. Any bindings that are created as a result of such a
side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding
property has the value false. Immutable bindings do not exist for object environment records.

Object environment records also have a possibly empty List of strings called unscopables. The strings in
this List are excluded from the environment records set of bound names, regardless of whether or not
they exist as property keys of its binding object.

Object environment records created for with statements (13.10) can provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironment Boolean value
that is associated with each object environment record. By default, the value of withEnvironment is false
for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

8.1.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. Let envRec be the object environment record for which the method was invoked.
2. If Nis an element of envRec’s unscopables, then return false.

3. Let bindings be the binding object for envRec.

4. Return the result of HasProperty(bindings, N).

8.1.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates
in an environment record’s associated binding object a property whose name is the String value and
initializes it to the value undefined. If Boolean argument D is provided and has the value true the new
property’s [[Configurable]] attribute’is set to true; otherwise it is set to false.

1. Let envRec be the object environment record for which the method was invoked.

2. Letbindings be the binding object for envRec.

3. Af Dis true then let configValue be true otherwise let configValue be false.

4. Return DefinePropertyOrThrow(bindings, N, PropertyDescriptor {[[Value]]:undefined, [[Writable]]:
true, [[Enumerable]]: true , [[Configurable]]: configValue}).

NOTE Normally envRec will not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may
result in an existing binding being replaced or shadowed or cause an abrupt completion to be returned.

8.1.1.2.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding is never used within this
specification in association with Object environment records.

8.1.1.2.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for object environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument 7. An uninitialized binding for N must already exist.

© Ecma International 2014 69

ecimna

Let envRec be the object environment record for which the method was invoked.

Assert: envRec must have an uninitialized binding for N.

Record that the binding for N in envRec has been initialized.

Return the result of calling the SetMutableBinding concrete method of envRec with N, V, and false
as arguments.

A WO -

8.1.1.2.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to
set the value of the environment record’s associated binding object’s property whose name is the value of
the argument N to the value of argument V. A property named N normally already exists but if it does not
or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return Put(bindings, N, V, and S).

8.1.1.2.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the
value of its associated binding object’s property whose name is the String value of the argument identifier
N. The property should already exist but if it does not the result depends upon the value of the §
argument:

Let envRec be the object environment record for which the method was invoked.

Let bindings be the binding object for envRec.

Let value be HasProperty(bindings, N).

ReturnIfAbrupt(value).

If value is false, then

a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
6. Return Get(bindings, N).

(O S R S

8.1.1.2.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that.correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

L& Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Delete]] internal method of bindings passing N as the argument.

8.1.1.2.8° HasThisBinding ()

Regular Object Environment Records do not provide a this binding.

1. Return false.
8.1.1.2.9 HasSuperBinding ()

Regular Object Environment Records do not provide a super binding.

1. Return false.

© Ecma International 2014 70

»eCma

8.1.1.2.10 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag
is true.

1. Let envRec be the object environment record for which the method was invoked.
2. [Ifthe withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

8.1.1.3 Function Environment Records

A function environment record is a declarative environment record that is used to represent the outer
most scope of a function that provides a this binding. In addition to its identifier bindings, a function
environment record contains the this value used within its scope. If such a function references super, its
function environment record also contains the state that is used to perform super method invocations
from within the function.

Function environment records store their this binding as the value of<their thisValue. If the associated
function references super, the environment record stores.in HomeObject the object that the function is
bound to as a method and in MethodName the property key used.for unqualified super invocations from
within the function. The default value for HomeObject and MethodName is undefined.

Methods environment records support all of Declarative Environment Record methods listed in Table 16
and share the same specifications for all of those methods except for HasThisBinding and
HasSuperBinding. In addition, declarative environment records support the methods listed in Table 17:

Table 17 — Additional Methods of Function Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.
GetSuperBase() Return the object that is the base for super property accesses

bound-in.this environment record. The object is derived from this
environment record’s HomeObject binding. If the value is Empty,
return undefined.

GetMethodName() Return the value of this environment record’s MethodName binding.

The behaviour of the additional concrete specification methods for Function Environment Records is
defined by the following algorithms:

8.1.1.3.1 " HasThisBinding ()

Function Environment Records always provide a this binding.

1. Return true.
8.1.1.3.2 HasSuperBinding ()

1. Ifthis environment record’s HomeObject has the value Empty, then return false. Otherwise, return
true.

© Ecma International 2014 71

secind

8.1.1.3.3 GetThisBinding ()
1. Return the value of this environment record’s thisValue.
8.1.1.34 GetSuperBase ()

Let hiome be the value of this environment record’s HomeObject.

If home has the value Empty, then return undefined.

Assert: Type(home) is Object.

Return the result of calling home’s [[GetPrototypeOf]] internal method.

A~ W ==

8.1.1.3.5 GetMethodName ()
1. Return the value of this environment record’s MethodName:
8.1.1.4 Global Environment Records

A global environment record is used to represent the outer most scope that is shared by all of the
ECMAScript Script elements that are processed in a common Realm (8.1.2.5). A global environment
provides the bindings for built-in globals (clause 18), properties of the global object, and for all
declarations that are not function code and that occur within Seript productions.

A global environment record is logically a single record but it is specified as a composite encapsulating an
object environment record and a declarative environment record. The object environment record has as
its base object the global object of the associated Realm. This global object is also the value of the global
environment record’s thisValue. The object environment record component of a global environment record
contains the bindings for all. built-in globals (clause 18) and all bindings introduced by a
FunctionDeclaration, GeneratorDeclaration, or VariableStatement contained in global code. The bindings for
all other ECMAScript declarations in global code are contained in the declarative environment record
component of the global environment record.

Properties may be created directly.on a-global object. Hence, the object environment record component
of a global environment record'may contain both bindings created explicitly by FunctionDeclaration,
GeneratorDeclaration, or VariableDeclaration declarations and binding created implicitly as properties of the
global object. In order to identify which bindings were explicitly created using declarations, a global
environment record maintains a list of the names bound using its CreateGlobalVarBindings and
CreateGlobalFunctionBindings concrete methods.

Global environment records have the additional state components listed in Table 18 and the additional
methods listed in Table 19.

© Ecma International 2014 72

ecind

Table 18 -- Components of Global Environment Records

Component

Purpose

ObjectEnvironment

An Object Environment Record whose base object is the global object.
It contains global built-in bindings as well as FunctionDeclaration,
GeneratorDeclaration, and VariableDeclaration bindings in global code
for the associated Realm.

DeclarativeEnvironment

A Declarative Environment Record that contains bindings for all
declarations in global code for the associated‘Realm code except for
FunctionDeclaration, GeneratorDeclaration, < and VariableDeclaration
bindings.

VarNames A List containing the string names bound by FunctionDeclaration,
GeneratorDeclaration, and VariableDeclaration declarations in global
code for the associated Realm.

Table 19 — Additional Methods of Global Environment Records
Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.

HasVarDeclaration (N)

Determines if the argument identifier has a binding in this
environment.. record that. was created using a
VariableDeclaration, FunctionDeclaration, or GeneratorDeclaration.

HasLexicalDeclaration (N)

Determines if the argument identifier has a binding in this
environment record that was created using a lexical declaration
such as a LexicalDeclaration or a ClassDeclaration.

CanDeclareGlobalVar (N)

Determines if a corresponding CreateGlobalVarBinding call
would succeed if called for the same argument N.

CanDeclareGlobalFunction (N)

Determines' if .a corresponding CreateGlobalFunctionBinding
call would succeed if called for the same argument N.

CreateGlobalVarBinding(N, D)

Used to create global wvar bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global
object property will have attribute values approate for a var.
The String value N is the text of the bound name. V is the initial
value of the binding If the optional Boolean argument D is true
the binding is may be subsequently deleted. This is logically
equivalent to CreateMutableBinding but it allows var
declarations to receive special treatment.

CreateGlobalFunctionBinding(N, V, D)

Used to create and initialize global function bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global
object property will have attribute values approate for a
function.The String value N is the text of the bound name. If
the optional Boolean argument D is true the binding is may be
subsequently deleted. This is logically equivalent to
CreateMutableBinding followed by a SetMutableBinding but it
allows function declarations to receive special treatment.

© Ecma International 2014

73

secind

The behaviour of the concrete specification methods for Global Environment Records is defined by the
following algorithms.

8.1.1.4.1 HasBinding(N)

The concrete environment record method HasBinding for global environment records simply determines if
the argument identifier is one of the identifiers bound by the record:

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling Dc/Rec’s HasBinding concrete method with argument N is true, return true.
Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling ObjRec’s HasBinding concrete method with argument N.

[R T R N

8.1.1.4.2 CreateMutableBinding (N, D)

The concrete environment record method CreateMutableBinding for global environment records creates a
new mutable binding for the name N that is uninitialized. The binding is created in the associated
DeclarativeEnvironment. A binding for N must not already exist in the DeclarativeEnvironment. If Boolean
argument D is provided and has the value true the new binding is marked as being subject to deletion.

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

Assert: DclRec does not already have a binding for M.

Return the result of calling the CreateMutableBinding concrete method of DclRec with arguments N
and D.

AW N —

8.1.1.4.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for global environment records
creates a new immutable binding for the name N that is uninitialized. A binding must not already exist in
this environment record for N.

1. Let envRec be the global environment record for which the method was invoked.

2. Let DclRec be envRec’s DeclarativeEnvironment.

3. Assert:DelRec does not already have a binding for N.

4. Return the result of calling the CreatelmmutableBinding concrete method of Dcl/Rec with argument
N.

8.1.1.4.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for global environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument 7. An uninitialized binding for N must already exist.

1. Let envRec bethe global environment record for which the method was invoked.
. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling Dc/Rec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling DclRec’s InitializeBinding concrete method with arguments N and
V.
4. Assert: If the binding exists it must be in the object environment record.
Let ObjRec be envRec’s ObjectEnvironment.
6. Return the result of calling ObjRec’s InitializeBinding concrete method with arguments N and V.

9]

© Ecma International 2014 74

oecnd

8.1.1.4.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for global environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N
to the value of argument V. If the binding is an immutable binding, a TypeError is thrown if S is true. A
property named N normally already exists but if it does not or is not currently writable, error handling is
determined by the value of the Boolean argument S.

1.

3.

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling Dc/Rec’s HasBinding concrete method with argument N is true, then

a. Return the result of calling the SetMutableBinding concrete method of DclRec with arguments
N, V, and S.

Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling the SetMutableBinding concrete method of ObjRec with arguments N, V,

and S.

8.1.1.4.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for<global environment records simply
returns the value of its bound identifier whose name is the value of the argument N. If the binding is an
uninitialized binding throw a ReferenceError exception. A property named N normally already exists but if
it does not or is not currently writable, error-handling is determined by the value of the Boolean argument

S.

[

Let envRec be the global environment record for which.the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling Dcl/Rec’s HasBinding concrete method with argument N is true, then

a. Return the result of calling the GetBindingValue concrete method of Dc/Rec with arguments N
and S.

Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling the'GetBindingValue concrete method of ObjRec with arguments N, and

S.

8.1.1.4.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRec be the global environment record for which the method was invoked.
Let DclRec be envRec’s DeclarativeEnvironment.
If the result of calling Dcl/Rec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the DeleteBinding concrete method of Dc/Rec with argument M.
Let ObjRec be envRec’s ObjectEnvironment.
If the result of calling ObjRec’s HasBinding concrete method with argument A is true, then
a. Let status be the result of calling the DeleteBinding concrete method of ObjRec with argument
N.
ReturnIfAbrupt(status).
c. [Ifstatus is true, then
i. Let varNames be envRec’s VarNames List.
ii. If N is an element of varNames, then remove that element from the varNames.
d. Return status.
Return true.

© Ecma International 2014 75

secind

8.1.1.4.8 HasThisBinding ()

Global Environment Records always provide a this binding whose value is the associated global object.

1. Return true.

8.1.1.4.9 HasSuperBinding ()
1. Return false.

8.1.1.4.10 WithBaseObject()

Global Environment Records always return undefined as their WithBaseObject.

1. Return undefined.
8.1.1.4.11 GetThisBinding ()

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.

Let bindings be the binding object for ObjRec.

Return bindings.

AW =

8.1.1.4.12 HasVarDeclaration (N)

The concrete environment record method HasVarDeclaration for global environment records determines
if the argument identifier has a binding in this record that was created using a VariableStatement or a
FunctionDeclaration:

1. Let envRec be the global environment record for which the method was invoked.
2. Let varDeclaredNames be envRec’s VarNames List.

3. IfvarDeclaredNames contains the value of N, return true.

4. Return false.

8.1.1.4.13 HasLexicalDeclaration (N)

The concrete environment record method HasLexicalDeclaration for global environment records
determines if the argument identifier has a binding in this record that was created using a lexical
declaration such as a LexicalDeclaration or a ClassDeclaration:

1. Let envRec be the global environment record for which the method was invoked.
2. Let.DclRec be envRec’s DeclarativeEnvironment.
3. Return the result of calling Dc/Rec’s HasBinding concrete method with argument N.

8.1.1.4.14 CanDeclareGlobalVar (N)

The concrete environment record method CanDeclareGlobalVar for global environment records
determines if a corresponding CreateGlobalVarBinding call would succeed if called for the same
argument N. Redundent var declarations and var declarations for pre-existing global object properties are
allowed.

1. Let envRec be the global environment record for which the method was invoked.
2. Let ObjRec be envRec’s ObjectEnvironment.
3. [Ifthe result of calling ObjRec’s HasBinding concrete method with argument N is true, return true.

© Ecma International 2014 76

oecnd

4. Let bindings be the binding object for ObjRec.
5. Let extensible be IsExtensible(bindings).
6. Return extensible.

8.1.1.4.15 CanDeclareGlobalFunction (N)

The concrete environment record method CanDeclareGlobalFunction for global environment records
determines if a corresponding CreateGlobalFunctionBinding call would succeed. if called for the same
argument N.

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

Let globalObject be the binding object for ObjRec.

Let extensible be IsExtensible(globalObject).

ReturnIfAbrupt(extensible).

If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then return

extensible.

7. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject
with argument N.

8. [If existingProp is undefined, then return extensible.

If existingProp.[[Configurable]] is true, then return true:

10. If IsDataDescriptor(existingProp) is true and existingProp has attribute values {[[Writable]]: true,
[[Enumerable]]: true}, then return true:

11. Return false.

[IS R S

©

8.1.1.4.16 CreateGlobalVarBinding (N, D)

The concrete Environment Record. method CreateGlobalVarBinding for global environment records
creates a mutable binding in the associated object environment record and records the bound name in
the associated VarNames List. If a binding already exists, it is reused.

1. Let envRec be'the global environment record for which the method was invoked.
2. Let ObjRec be envRec’s ObjectEnvironment.
3. [Ifthe result of calling ObjRec’s HasBinding concrete method with argument N is false, then
a. Let status be the result of calling the CreateMutableBinding concrete method of ObjRec with
arguments N and D.
b. ReturnIfAbrupt(status).
4. Let varDeclaredNames be envRec’s VarNames List.
5. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
6. Return NormalCompletion(empty).

8.1.1.4.17 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateGlobalFunctionBinding for global environment records
creates a mutable binding in the associated object environment record and records the bound name in
the associated VarNames List. If a binding already exists, it is replaced.

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

Let globalObject be the binding object for ObjRec.

Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject
with argument N.

5. [If existingProp is undefined or existingProp.[[Configurable]] is true, then

AW =

© Ecma International 2014 77

eCmd

a. Let desc be the PropertyDescriptor {[[Value]]:V, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: D}.
6. Else,
a. Let desc be the PropertyDescriptor {[[Value]]:V }.
Let status be DefinePropertyOrThrow(globalObject, N, desc).
ReturnlfAbrupt(status).
Let varDeclaredNames be envRec’s VarNames List.
0. If varDeclaredNames does not contain the value of &, then
a. Append N to varDeclaredNames.
11. Return NormalCompletion(empty).

— \O 0

NOTE Global function declarations are always represented as own properties of the global object. If possible, an
existing own property is reconfigured to have a standard set of attribute values.

8.1.2 Lexical Environment Operations
The following abstract operations are used in this specification to operate upon lexical environments:
8.1.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and
a Boolean flag strict. The value of lex may be.null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value is undefined, whose referenced name is
name, and whose strict reference flag is strict.
2. Let envRec be lex’s environment record.
3. Let exists be the result of calling the HasBindingconcrete method of envRec passing name as the
argument.
4. ReturnlfAbrupt(exists).
5. If exists is true, then
a. Return a‘value of type Reference whose base value is envRec, whose referenced name is name,
and whose strict reference flag is strict.
6. Else
a. Let outer be the value of /ex’s outer environment reference.
b.< Return GetldentifierReference(outer, name, strict).

8.1.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or
null as argument E the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new declarative environment record containing no bindings.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

N AW~

8.1.2.3 NewObjectEnvironment (O, E)
When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical
Environment E (or null) as arguments, the following steps are performed:

1. Let env be a new Lexical Environment.

© Ecma International 2014 78

eCmd

Let envRec be a new object environment record containing O as the binding object.
Set envRec’s unscopables to an empty List.

Set env’s environment record to envRec.

Set the outer lexical environment reference of env to E.

Return env.

A

8.1.2.4 NewFunctionEnvironment (F, T)

When the abstract operation NewFunctionEnvironment is called with an ECMAScript function Object F
and an ECMAScript value T as arguments, the following steps are performed:

Assert: The value of F’s [[ThisMode]] internal slot is not lexical.
Let env be a new Lexical Environment.
Let envRec be a new Function environment record containing containing no bindings.
Set envRec’s thisValue to T.
If F’s [[NeedsSuper]] internal slot is true, then
a. Let home be the value of F’s [[HomeObject]] internal slot.
b. If home is undefined, then throw a ReferenceError exception.
c. Set envRec’s HomeObject to home.
d. Set envRec’s MethodName to the value of F’s [[MethodName]] internal slot.
6. Else,
a. Set envRec’s HomeObject to Empty.
7. Set env’s environment record to be envRec.
8. Set the outer lexical environment reference of env to the value of F'’s [[Environment]] internal slot.
9. Return env.

DN kAN =

8.1.2.5 NewGlobalEnvironment (G)

When the abstract operation NewGlobalEnvironment is called with an ECMAScript Object G as its
argument, the following steps are performed:

Let env be a new Lexical Environment.

Let objRec be a new object environment record containing G as the binding object.
Set objRec’s unscopables to an empty List.

Let dclRec be a new declarative environment record containing no bindings.
Let-globalRec be a new global environment record.

Set globalRec’s ObjectEnvironment to objRec.

Set globalRec’s DeclarativeEnvironment to dc/Rec.

Set globalRec’s VarNames to a new empty List..

Set env’s environment record to globalRec.

Set the outer lexical environment reference of env to null

Return env.

N ph—= =0 003 WN ~—

8.2 Code Realms

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm
consists of a set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that
is loaded within the scope of that global environment, a Loader object that can associate new
ECMAScript code with the realm, and other associated state and resources.

A Realm is specified as a Record with the fields specified in Table 20:

© Ecma International 2014 79

»eCma

Table 20 — Realm Record Fields

Field Name Value Meaning

[[intrinsics]] A record whose field names are | These are the intrinsic values used by
intrinsic keys and whose values are | code associated with this Realm
objects

[[global This]] An object The global object for this Realm

[[globalEnv]] An ECMAScript environment The global environment for this Realm

[[directEvalTranslate]]

undefined or an object that is callable
as a function.

[[nonEvalFallback]] undefined or an object that is callable
as a function.
[[indirectEval]] undefined or an object that is callable
as a function.
[[loader]] any ECMAScript identifier or empty The Loader object that can associate
ECMAScript code with this Realm
8.2.1 CreateRealm ()

When the abstract operation CreateRealm is called with no arguments, the following steps are performed:

1.
2.

AN bW

— \O 00

Let realmRec be a new Record.

Let intrinsics be a record initialized with the values listed in Table 7. Each intrinsic object is a new
object value fully and recursively populated with properties values as defined by the specification
of each object in clauses 18-26. All object property values are newly created object values. All
values that are built-in function objects are created by performing CreateBuiltinFunction(realmRec,
<steps>) where <steps> is the definition of that function provided by this specification.

Set realmRec.[[intrinsics]] be intrinsics.

Let

Let newGlobal be ObjectCreate(null).

Define the Global Object properties specified in clause 18 on newGlobal using intrinsics as the
source of the values.

SetrealmRec.[[globalThis]] be newGlobal.

Let newGlobalEny be NewGlobalEnvironment(newGlobal, intrinsics).

Set realmRec.[[globalEnv]] be newGlobalEnv.

Set each of realmRec.[[directEvalTranslate]], realmRec.[[directEvalFallback]],
realmRec.[[indirectEval]], and rea/mRec.[[Function]] to undefined.

. Return realmRec.

8.3 Execution Contexts

An execution contextis a specification device that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one execution context that is actually
executing code. This is known as the running execution context. A stack is used to track execution
contexts. The running execution context is always the top element of this stack. A new execution context
is created whenever control is transferred from the executable code associated with the currently running
execution context to executable code that is not associated with that execution context. The newly
created execution context is pushed onto the stack and becomes the running execution context.

© Ecma International 2014 80

ecind

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has at least the state components listed in Table
21.

Table 21 —State Components for All Execution Contexts

Component Purpose

code evaluation state Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

Realm The Realm from which associated code accesses ECMAScript
resources.

Evaluation of code by the running execution context may be suspended at various points defined within
this specification. Once the running execution context has been suspended a different execution context
may become the running execution context and commence evaluating its code. At some later time a
suspended execution context may again become the running execution‘context and continue evaluating
its code at the point where it had previously been suspended. Transition of the running execution context
status among execution contexts usually occurs in stack-like last-in/first-out manner. However, some
ECMAScript features require non-LIFO transitions of the running execution context.

The value of the Realm component of the running.execution context is also called the current Realm.
Execution contexts for ECMAScript code have the additional state components listed in Table 22.

Table 22 — Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always
Lexical Environments. When an execution context is created its LexicalEnvironment and
VariableEnvironment components initially have the same value. The value of the VariableEnvironment
component never changes while the value of the LexicalEnvironment component may change during
execution of code within an execution context.

Execution contexts representing the evaluation of generator objects have the additional state components
listed in Table 23.

Table 23 — Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and

© Ecma International 2014 81

secind

“VariableEnvironment” are used without qualification they are in reference to those components of the
running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular
artefact of an ECMAScript implementation. It is impossible for ECMAScript code to directly access or
observe an execution context.

8.3.1 ResolveBinding(name)

The ResolveBinding abstract operation is used to determine the binding of name passed as a string value
using the LexicalEnvironment of the running execution context. During execution of ECMAScript code,
ResolveBinding is performed using the following algorithm:

1. Let env be the running execution context’s LexicalEnvironment.

2. If the syntactic production that is being evaluated is contained in strict mode code, then let strict be
true, else let strict be false.

3. Return GetldentifierReference(env, name, strict).

The result of resolving name is always a Reference value with its referenced name component equal to
the name argument.

8.3.2 GetThisEnvironment

The abstract operation GetThisEnvironment finds the lexical environment that currently supplies the binding
of the keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.
Repeat
Let envRec be lex’s environment record.
Let exists be the result of calling the HasThisBinding concrete method of envRec.
If exists is true, then return envRec.
Let outer be the value of /ex’s outer environment reference.
Let /ex be outer.

oo ow

NOTE The loop in step 2 will‘always terminate because the list of environments always ends with the global
environment which-has a this binding.

8.3.3 ResolveThisBinding
The abstract operation ResolveThisBinding determines the binding of the keyword this using the
LexicalEnvironment of the running execution context. ResolveThisBinding performs the following steps:

1. Let eny be GetThisEnvironment().

2. Return the result of calling the GetThisBinding concrete method of env.
8.3.4 GetGlobalObject
The abstract operation GetGlobalObject returns the global object used by the currently running execution
context. GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. Let currentRealm be ctx’s Realm.
3. Return currentRealm.[[globalThis]].

© Ecma International 2014 82

ecind

8.4 Tasks and Task Queues

A Task is an abstract operation that initiates an ECAMScript computation when no other ECMAScript
computation is currently in progress. A Task abstract operation may be defined to accept an arbitrary set
of task parameters.

Execution of a Task can be initiated only when there is no running execution context and the execution
context stack is empty. A PendingTask is a request for the future execution of a Task. A PendingTask is
an internal Record whose fields are specified in Table 24.

Table 24 — PendingTask Record Fields

Field Name | Value Meaning
[[Task]] The name of a Task | This is the abstract operation that is performed when execution of
abstract operation this PendingTask is initiated. Tasks are abstract operations that

use NextTask rather than Return to indicate that they have
completed.

[[Arguments]] | A List. The List of argument values that are to be passed to [[Task]]
when it is activated.

[[Realm]] A Realm Record The Realm for the initial execution context when this Pending
Task is initiated.

A Task Queue is a FIFO queue of PendingTask records. Each Task Queue has a name and the full set of
available Task Queues are defined by an ECMAScript implementation. Every ECMAScript
implementation has at least the task queues defined in Table 25.

Table 25 — Required Task Queues

Name Purpose

ScriptTasks Tasks that validate and evaluate ECMAScript Script and Module code
units. See clauses 10 and 15.

PromiseTasks Tasks that are responses to the settlement of a Promise (see 25.4).

A request for the future execution of a Task is made by enqueueing on a Task Queue a PendingTask
record that includes a Task abstract operation name and any necessary argument values. When there is
norunning execution context and the execution context stack is empty, the ECMAScript implementation
removes. the first PendingTask from a Task Queue and uses the information contained in it to create an
execution context and starts execution of associated Task abstract operation.

The PendingTask records from a single Task Queue are always initiated in FIFO order. This specification
does not define the order in which multiple Task Queues are serviced. An ECMAScript implementation
may interweave the FIFO evaluation of the PendingTask records of a Task Queue with the evaluation of
the PendingTask records of one or more other Task Queues. An implementation must define what occurs
when there are no running execution context and all Task Queues are empty.

NOTE Typically an ECMAScript implementation will have its Task Queues are pre-initialized with at least one
PendingTask and one of those Tasks will be the first to be executed. An implementation might choose to free all
resources and terminate if the current Task completes and all Task Queues are empty. Alternatively, it might choose
to wait for a some implementation specific agent or mechanism to enqueue new PendingTask requests.

The following abstract operations are used to create and manage Tasks and Task Queues:
© Ecma International 2014 83

secind

8.4.1 EnqueueTask (queueName, task, arguments) Abstract Operation

The abstract operation requires three arguments: queueName, task, and arguments. It performs the following
steps:

1. Assert: Type(queueName) is String and its value is the name of a Task Queue recognized by this
implementation.

Assert: task is the name of a Task.

Assert: arguments is a List whose size is the same as the number of parameters used by fask.

Let callerContext be the running execution context.

Let callerReam be callerContext’s Realm.

Let pending be PendingTask{ [[Task]]: task, [[Arguments]]: arguments, [[Realm]]: callerRealm }.
Add pending at the back of the Task Queue named by queueName.

Return NormalCompletion(empty).

PN B LD

8.4.2 NextTask (result) Algorithm Step

A step such as:
1. NextTask result.

Is used in Task abstract operation in place of:

1. Return result.

Task abstract operations must not contain a Return step or a ReturnlfAbrupt step. The NextTask resuit
operation is equivalent to the following steps:

1. If result is an abrupt completion, then perform implementation defined unhandled exception
processing.

2. Suspend the running execution context.

3. Assert: The execution context stack is now empty.

4. Let nextQueue be a non-empty Task Queue chosen in an implementation defined manner. If all Task
Queues are empty, the result/is implementation defined.

5. Let nextPending be the PendingTask record at the front of nextQueue. Remove that record from
nextQueue.

6. LetmewContext be a new exeution context.

7. Set newContext’s Realm to nextPending.[[Realm]].

8. Push newContext onto the execution context stack; newContext is now the running execution
context.

9. Perform the abstract operation named by nextPending.[[Task]] using the elements of
nextPending.[[Arguments]] as its arguments.

8.5 Initialization

An ECMAScript implementation performs the following steps prior to the execution of any Tasks or the
evaluation of any ECMAScript code.

9 Ordinary and Exotic Objects Behaviours
9.1 Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or
an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are

© Ecma International 2014 84

secind

inherited (are visible as properties of the child object) for the purposes of get access, but not for set

access. Accessor properties are inherited for both get access and set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot that controls whether or not
properties may be added to the object. If the value of the [[Extensible]] internal slot is false then additional
properties may not be added to the object. In addition, if [[Extensible]] is false the value of the
[[Prototype]] internal slot of the object may not be modified. Once the value of an object’s [[Extensible]]

internal slot has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V' is any

ECMAScript language value, and Desc is a Property Descriptor record.
9.1.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of O is called the following steps are taken:
1. Return the value of the [[Prototype]] internal slot of-O.

9.1.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of O is called with argument V'’ the following steps are taken:

Assert: Either Type(V) is Object or Type(F) is Null.
Let extensible be the value of the [[Extensible]].internal slot of O.
Let current be the value of the [[Prototype]] internal slot of O.
If SameValue(V, current), then return true.
If extensible is false, then return false.
If 7 is not null, then
a. LetpbelV.
b. Repeat, while p is not null
i. If SameValue(p, O) is true, then return false.

AN N AW =

ii. Let nextp be the result of calling the [[GetPrototypeOf]] internal method of p with no

arguments.
iii. ReturnIfAbrupt(nextp).
ive—Let p be nextp.
7. Let extensible be the value of the [[Extensible]] internal slot of O.
8. < If extensible is false, then
a. Let current2 be the value of the [[Prototype]] internal slot of O.
b. If SameValue(V, current2)is true, then return true.
¢. Return false.
9. Set the value of the [[Prototype]] internal slot of O to V.
10. Return true.

9.1.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called the following steps are taken:
1. Return the value of the [[Extensible]] internal slot of O.

9.1.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called the following steps are taken:

1. Set the value of the [[Extensible]] internal slot of O to false.

© Ecma International 2014

85

secind

2. Return true.
9.1.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are
taken:

1. Return OrdinaryGetOwnProperty(O, P).
9.1.5.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P,
the following steps are taken:

Assert: IsPropertyKey(P) is true.
If O does not have an own property with key P, return undefined.
Let D be a newly created Property Descriptor with no-fields.
Let X be O’s own property whose key is P.
If X is a data property, then
a. Set D.[[Value]] to the value of X’s [[Value]] attribute.
b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X°s [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. Return D.

DN bW~

9.1.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and Property
Descriptor Desc, the following steps are taken:

1. Return OrdinaryDefineOwnProperty(O, P;-Desc).
9.1.6.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and
Property Descriptor Desc the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
2. Let extensible be the value of the [[Extensible]] internal slot of O.
3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).

9.1.6.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and
Property Descriptors Desc, and Current the following steps are taken:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).
9.1.6.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,
Boolean value extensible, and Property Descriptors Desc, and current the following steps are taken:

© Ecma International 2014 86

oeCha

This algorithm contains steps that test various fields of the Property Descriptor Desc for specific values.
The fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is
considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and no object updates are
performed.
1. Assert: If O is not undefined then P is a valid property key.
If current is undefined, then
a. Ifextensible is false, then return false.
b. Assert: extensible is true.
c. IfIsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i. If O is not undefined, then create an own data property named P of object O whose
[[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described
by Desc. If the value of an attribute field of Descis absent, the attribute of the newly
created property is set to its default value.

d. Else Desc must be an accessor Property Descriptor,

i. If O is not undefined, then create an own accessor property named P of object O whose
[[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc.
If the value of an attribute field of Desc is absent, the attribute of the newly created
property is set to its default value.

e. Return true.
3. Return true, if every field in Desc is absent.
4. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the
same value as the corresponding field in current when compared using the SameValue algorithm.
5. [Ifthe [[Configurable]] field of current is false then
a. Return false, if the [[Configurable]] field of Desc is true.
b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of
current and Desc are the Boolean negation of each other.
6. If IsGenericDescriptor(Desc) is true, then no further validation is required.
7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then

i. If O is not undefined, then convert the property named P of object O from a data property
to.an accessor property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes
to their default values.

c. Else,

i. If O is not undefined, then convert the property named P of object O from an accessor
property to a data property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes
to their default values.

8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. Ifthe [[Configurable]] field of current is false, then

i. Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is
true.

ii. If the [[Writable]] field of current is false, then
1. Return false, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],

current.[[Value]]) is false.
b. Else the [[Configurable]] field of current is true, so any change is acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,

a. Ifthe [[Configurable]] field of current is false, then

© Ecma International 2014 87

oecnd

i. Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]],
current.[[Set]]) is false.
ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]],
current.[[Get]]) is false.
10. If O is not undefined, then
a. For each field of Desc that is present, set the correspondingly attribute of the property named P
of object O to the value of the field. The [[Origin]] field, if present, is ignore.
11. Return true.

NOTE Step 8.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This even permits changing the [[Value]] of a property-whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an _equivalent sequence of calls where
[[Writable]] is first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9.1.7 [[HasProperty]](P)

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let iasOwn be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
ReturnIfAbrupt(hasOwn).

If hasOwn is not undefined, then return true.

Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.
ReturnIfAbrupt(parent).

If parent is not null, then

a. Return the result of calling the [[HasProperty]] internal method of parent with argument P.

8. Return false.

Nk LN =

9.1.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value
Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. ReturnlfAbrupt(desc).

4. Ifdesc is undefined, then

Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.
ReturnIfAbrupt(parent).

If parent is null, then return undefined.

Return the result of calling the [[Get]] internal method of parent with arguments P and
Receiver.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, [sAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

If getter is undefined, return undefined.

Return the result of calling the [[Call]] internal method of getter with Receiver as the thisArgument
and an empty List as argumentsList.

e o

e ANY

9.1.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value V, and ECMAScript language
value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

© Ecma International 2014 88

eCmd

2. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
ReturnlfAbrupt(ownDesc).
4. If ownDesc is undefined, then
a. Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.
b. ReturnIfAbrupt(parent).
c. If parent is not null, then
i. Return the result of calling the [[Set]] internal method of parent with arguments P, V, and
Receiver.
d. Else,
i. Let ownDesc be the PropertyDescriptor {[[Value]]: undefined; [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}.
5. [IfIsDataDescriptor(ownDesc) is true, then
a. IfownDesc.[[Writable]] is false, return false.
b. If Type(Receiver) is not Object, return false.
c. Let existingDescriptor be the result of calling the [[GetOwnProperty]] internal method of
Receiver with argument P.
d. ReturnIfAbrupt(existingDescriptor).
e. If existingDescriptor is not undefined, then
i. Let valueDesc be the PropertyDescriptor{[[Value]]: V}«
ii. Return the result of calling the [[DefineOwnProperty]] internal method of Receiver with
arguments P and valueDesc.
f. Else Receiver does not currently have a property P,
i. Return CreateDataProperty(Receiver, P, V).
6. If IsAccessorDescriptor(ownDesc) is true, then
a. Let setter be ownDesc.[[Set]].
b. If setter is undefined, return false.
c. Let setterResult be the result of calling the [[Call]] internal method of setter providing Receiver
as thisArgument and a new. List containing V as argumentsList.
d. ReturnIfAbrupt(setterResult).
e. Return true.

W

9.1.10 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. <Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. Ifdesc is undefined, then return true.
4. 1If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
5. Return false.

9.1.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator object (25.1.2) whose next method iterates over all the String valued keys of
enumerable property keys of O. The mechanics and order of enumerating the properties is not
specified but must conform to the rules specified below.

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during

© Ecma International 2014 89

secind

enumeration is deleted, then it will not be visited. If new properties are added to the object being
enumerated during enumeration, the newly added properties are not guaranteed to be visited in the active
enumeration. A property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is
“shadowed” because some previous object in the prototype chain has a property with the same name.
The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype
object is shadowed by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

1. Let proto be the result of calling the [[GetPrototypeOf]] internal method of O with no arguments.
ReturnlfAbrupt(proto).
3. If proto is the value null, then
a. Let propList be a new empty List.
4. Else
a. Let propList be the result of calling the [[Enumerate]] internal method of proto.
ReturnlfAbrupt(propList).
6. For each name that is the property key of an own property of O
a. If Type(name) is String, then
i. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with
argument name.
ii. If name is an element of propList, then remove name as an element of propList.
iii. If desc.[[Enumerable]] is true, then add name as an element of propList.
7. Order the elements of propList in an implementation defined order.
8. Return proplList.

(9]

9.1.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of O'is called the following steps are taken:

1. Let keys be a new empty List:
2. For each own property key P of O that is an integer index, in ascending numeric index order
a. Add P as the last element of keys.
3. Foreach own property key P of O that is a String but is not an integer index, in property creation
order
a. Add P as the last element of keys.
4. For each own property key P of O that is a Symbol, in property creation order
a. Add P as the last element of keys.
5.° Return CreateArrayEromList(keys).

9.1.13 ObjectCreate(proto, internalSlotsList) Abstract Operation

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalSlotsList is a List of the names of
additional internal slots that must be defined as part of the object. If the list is not provided, an empty List
is used. If no arguments are provided %ObjectPrototype% is used as the value of protfo. This abstract
operation performs the following steps:

1. IfinternalSlotsList was not provided, let internalSlotsList be an empty List.

2. Let obj be a newly created object with an internal slot for each name in internalSlotsList.

3. Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
4. Set the [[Prototype]] internal slot of 0bj to proto.

© Ecma International 2014 90

secind

5. Set the [[Extensible]] internal slot of 0bj to true.
6. Return obj.

9.1.14 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList)

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototypel]]
value is retrieved from a constructor's prototype property, if it exists. Otherwise the supplied default is
used for [[Prototype]]. The optional internalSlotsList is a List of the names of additional internal slots that
must be defined as part of the object. If the list is not provided, an empty List is used. This abstract
operation performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object.
The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value
of an object.

2. Let proto be GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. ReturnlfAbrupt(proto).

4. Return ObjectCreate(proto, internalSlotsList).

9.2 ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical
environment and support the dynamic evaluation of that code. An ECMAScript function object is an
ordinary object and has the same internal slots and (except as noted below) and the same internal
methods as other ordinary objects. The code of an ECMAScript function object may be either strict mode
code (10.2.1) or non-strict mode code.

ECMASCcript function objects have the additional internal slots listed in Table 26.

ECMASCcript function objects whose code is not strict mode code (10.2.1) provide an alternative definition
for the [[GetOwnProperty]] internal method. This alternative prevents the value of strict mode function
from being revealed as the value of a function object property named "caller". The alternative definition
exist solely to preclude a non-standard legacy feature of some ECMAScript implementations from
revealing information about strict:-mode callers. If -an_implementation does not provide such a feature, it
need not implement this alternative internal method for ECMAScript function objects. ECMAScript
function objects are considered to be ordinary objects even though they may use the alternative definition
of [[GetOwnProperty]].

© Ecma International 2014 91

oecna

Table 26 -- Internal Slots of ECMAScript Function Objects

Internal Slot Type Description
[[Environment]] Lexical The Lexical Environment that the function was closed over.
Environment Used as the outer environment when evaluating the code
of the function.

[[FormalParameters]] Parse Node The root parse node of the source code that defines the
function’s formal parameter list.

[[FunctionKind]] String Either "normal" or "generator':

[[Code]] Parse Node The root parse node of the source code that defines the
function’s body.

[[Realm]] Realm Record | The Code Realm in which the function was created and
which provides any .intrinsic objects that are accessed
when evaluating the function.

[[ThisMode]] (lexical, strict, Defines how this references are interpreted within the

global) formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict. means that the this value is used
exactly as provided by an invocation of the function. global
means that a this value of undefined is interpreted as a
reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false if this is not a strict
mode function.

[[NeedsSuper]] Boolean true if this function uses super.

[[HomeObject]] Object If the function uses super, this is the object whose
[[GetPrototypeOf]] provides the object where super
property lookups begin.

[[MethodName]] String or If the function uses super, this is the property key that is

Symbol used for unqualified references to super.

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that
are also constructors in addition‘have the [[Construct]] internal method. ECMAScript function objects
whose code is not strict mode‘code have the [[Get]] and [[GetOwnProperty]] internal methods defined
here.

9.2.1 < [[Construct]] (argumentsList)

The [[Construct]] internal method for an ECMAScript Function object F is called with a single parameter
argumentsList which is a possibly empty List of ECMAScript language values. The following steps are
taken:

1. Return Construct(¥, argumentsList).
9.2.2 [[GetOwnProperty]] (P)
When the [[GetOwnProperty]] internal method of non-strict ECMAScript function object F is called with

property key P, the following steps are taken:

1. Let v be the result of calling the default ordinary object [[GetOwnProperty]] internal method (9.1.5)
on F passing P as the argument.

2. ReturnIfAbrupt(v).

3. [If IsDataDescriptor(v) is true, then

© Ecma International 2014 92

oecnd

4.

a. IfPis "caller" and v.[[Value]] is a strict mode Function object, then
i. Set v.[[Value]] to null.
Return v.

If an implementation does not provide a built-in caller property for non-strict ECMAScript function
objects then it must not use this definition. Instead the ordinary object [[GetOwnProperty]] internal method

is used.

9.2.3 FunctionAllocate Abstract Operation

The abstract operation FunctionAllocate requires the two arguments functionPrototype and strict. It also
accepts one optional argument, functionKind. FunctionAllocate performs the following steps:

1.
2.
3.
4

5.

7.
8.
9

10.
11.
12.
13.
14.

Assert: Type(functionPrototype) is Object.

Assert: If functionKind is present, its value is either "normal" or "generator".

If functionKind is not present, then let functionKind be"normal".

Let F be a newly created ECMAScript function object with the internal slots listed in Table 26. All
of those internal slots are initialized to undefined.

Set F’s essential internal methods except for [[GetOwnProperty]] to the default ordinary object
definitions specified in 9.1.

If strict is true, set F’s [[GetOwnProperty]] internal method to the default ordinary object
definitions specified in 9.1.

Else, set F’s [[GetOwnProperty]] internal method to the definitions specified in 9.2.2.

Set F’s [[Call]] internal method to the definition specified in 9.2.1.

Set the [[Strict]] internal slot of F to strict.

Set the [[FunctionKind]] internal slot of F to functionKind.

Set the [[Prototype]] internal slot of F to functionPrototype.

Set the [[Extensible]] internal slot of F to true:

Set the [[Realm]] internal slot of F to the running execution context’s Realm.

Return F.

9.2.4 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for‘an ECMAScript function object F is called with parameters thisArgument
and argumentsList;a List of ECMAScript language values. The following steps are taken:

NS RORG-~ = N

10.

If F’s [[Code]] internal slot has the value undefined, then throw a TypeError exception.

Let callerContext be the running execution context.

If callerContext is not already suspended, then Suspend callerContext.

Let calleeContext be a new ECMAScript Code execution context.

Let calleeRealm be the value of F’s [[Realm]] internal slot.

Set calleeContext’s Realm to calleeRealm.

Let thisMode be the value of F’s [[ThisMode]] internal slot.

Let needsThis Wrapper be false.

If thisMode is lexical, then

a. Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the
[[Environment]] internal slot of F as the argument.

Else,

a. If thisMode is strict, then let thisValue to thisArgument.

b. Else

i. if thisArgument is null or undefined, then
1. Let thisValue be calleeRealm.[[globalThis]].
ii. Else

© Ecma International 2014 93

eCind

1. if Type(thisArgument) is not Object, then let needsThisWrapper to true.
2. Let thisValue be thisArgument.
c. Let localEnv be NewFunctionEnvironment(F, thisValue).
d. ReturnIfAbrupt(localEnv).
e. NOTE Any exception objects produced by NewFunctionEnvironment are associated with
callerReam.
11. Set the LexicalEnvironment of calleeContext to localEnv.
12. Set the VariableEnvironment of calleeContext to localEnv.
13. Push calleeContext onto the execution context stack; calleeContext is now the running execution
context.
14. If needsThis Wrapper is true then,
a. Let wrapperedThis be ToObject(thisArgument).
b. Assert: wrapperedThis is not an abrupt conpletion.
c. NOTE Wrappering deferred until calleeContext is running so that ToObject produces objects
using calleeRealm.
d. Let functionEnv be local Env’s environment record:
e. Set functionEnv’s thisValue to wrapperedThis.
15. Let status be the result of performing Function Declaration Instantiation using the function F,
argumentsList , and localEnv as described in 9.2.14.
16. If status is an abrupt completion, then
a. Remove calleeContext from the execution context stack and restore callerContext as the
running execution context.
b. Return status.
17. Let result be the result of EvaluateBody of the production that is the value of F's [[Code]] internal
slot passing F as the argument.
18. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.
19. Return result.

NOTE 1 Most ECMAScript functions use a Function Environment Record as their LexicalEnvironment.
ECMAScript functions that are arrow functions use a Declarative Environment Record as their LexicalEnvironment.

NOTE 2 When calleeContext is removed from the execution context stack it must not be destroyed because it may
have been suspended and retained by a generator object for later resumption.

9.2.5 Functionlnitialize Abstract Operation

The-abstract operation Functioninitialize requires the arguments: a function object F, kind which is one of
(Normal, Method, Arrow), a parameter list production specified by ParameterList, a body production
specified by Body, a Lexical Environment specified by Scope. Functionlnitialize performs the following
steps:

1. Let/len be the ExpectedArgumentCount of ParameterList.
. Let strict be the vale of F’s [[Strict]] internal slot.
3. Let status be DefinePropertyOrThrow(F, "length", PropertyDescriptor {[[Value]]: len,
[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true}).
4. ReturnIfAbrupt(status).
5. [Ifstrict is true, then
a. Let status be AddRestrictedFunctionProperties(F).
b. ReturnIfAbrupt(status).
6. Set the [[Environment]] internal slot of F to the value of Scope.
Set the [[FormalParameters]] internal slot of F to ParameterList .
8. Set the [[Code]] internal slot of F to Body.

~

© Ecma International 2014 94

ecimna

9. Ifkind is Arrow, then set the [[ThisMode]] internal slot of F to lexical.
10. Else if strict is true, then set the [[ThisMode]] internal slot of F to strict.
11. Else set the [[ThisMode]] internal slot of F to global.

12. Return F.

9.2.6 FunctionCreate Abstract Operation

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method,
Arrow), a parameter list production specified by ParameterList, a body production specified by Body, a
Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype.
FunctionCreate performs the following steps:

1. Ifthe functionPrototype argument was not passed, then

a. Let functionPrototype be the intrinsic object %FunctionPrototype%.
2. Let F be FunctionAllocate(functionPrototype, Strict).
3. Return Functionlnitialize(F, kind, ParameterList, Body; Scope).

9.2.7 GeneratorFunctionCreate Abstract Operation

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method, Arrow), a parameter list production specified by ParameterList, a body production specified by
Body, a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object
SfunctionPrototype. GeneratorFunctionCreate performs the following steps:

1. If the functionPrototype argument was not passed; then

a. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be FunctionAllocate(functionPrototype, Strict, "generator").
3. Return FunctionlInitialize(F, kind, ParameterList, Body, Scope).

9.2.8 AddRestrictedFunctionProperties Abstract Operation
The abstract operation AddRestrictedFunctionProperties is called with a function object F as its argument.

It performs the following steps:

1. If SameValue(F, %ThrowTypeError%) is true, then let thrower be F.

2. Elseslet thrower be the %ThrowTypeError% intrinsic function Object.

3. Let status be DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: false}).

4. ReturnlfAbrupt(status).

5. Return DefinePropertyOrThrow(F , "arguments", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: false}).

9.2.8.1 %ThrowTypeError% ()

The %ThrowTypeError% intrinsic is a anonymous built-in function object that is defined once for each
Realm. When %ThrowTypeError% is called it performs the following steps:

1. Throw a TypeError exception.

The value of the [[Extensible]] internal slot of a % ThrowTypeError% function is false.

© Ecma International 2014 95

oecnd

9.2.9 MakeConstructor Abstract Operation

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an object prototype. If prototype is provided it is assumed to already contain, if
needed, a "constructor" property whose value is F. This operation converts F into a constructor by
performing the following steps:

1.
2.
3.

7.

8.
9.

Assert: F'is an ECMAScript function object.

Let installNeeded be false.

If the prototype argument was not provided, then

a. Let installNeeded be true.

b. Let prototype be ObjectCreate(%ObjectPrototype%o).

If the writablePrototype argument was not provided, then

a. Let writablePrototype be true.

Set F”’s essential internal method [[Construct]] to the definition specified in 9.2.1.

If installNeeded, then

a. Let status be DefinePropertyOrThrow(prototype; "constructor",
PropertyDescriptor {[[Value]]: F, [[Writable]]: writablePrototype, [[Enumerable]]: false,
[[Configurable]]: writablePrototype }).

b. ReturnlfAbrupt(status).

Let status be DefinePropertyOrThrow(F, "prototype",and PropertyDescriptor {[[Value]]:

prototype, [[Writable]]: writable Prototype, [[Enumerable]]: false, [[Configurable]]: false}.

ReturnIfAbrupt(status).

Return NormalCompletion(undefined).

9.2.10 MakeMethod (F, methodName, homeObject) Abstract Operation

The abstract operation MakeMethod. with arguments F, methodName and homeObject configures F as a
method by performing the following steps:

Nk L=

Assert: Fis an ECMAScript function object.

Assert: methodName is either undefined or a property key.
Assert: Type(homeObject) is either Undefined or Object.
Set the [[NeedsSuper]] internal slot of F to true.

Set the [[HomeObject]] internal slot of F'to homeObject.
Set'the [[MethodName]] internal slot of F' to methodName.
Return NormalCompletion(undefined).

9.2.11 SetFunctionName Abstract Operation

The abstract operation SetFunctionName requires a Function argument F, a String or Symbol argument
name and optionally a String argument prefix. This operation adds a name property to F by performing the
following steps:

1.

3.

Assert: F is anextensible ECMAScript function object that does not have a name own property.
Assert: Type(name) is either Symbol or String.

If Type(name) is Symbol, then

a. Let description be the values of name’s [[Description]].

b. Ifdescription is undefined, then let name be the empty String.

c. Else, let name be the concatenation of " [", description, and "]1".

If name is not the empty string and prefix was passed, then let name be the concatenation of prefix,
Unicode code point U+0020 (Space) , and name.

© Ecma International 2014 96

eCmd

5. Call the [[DefineOwnProperty]] internal method of F with arguments "name" and
PropertyDescriptor {[[Value]]: name, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:
true}.

6. Assert: Defining the name property will always succeed.

7. Return NormalCompletion(undefined).

9.2.12 GetSuperBinding(obj) Abstract Operation

The abstract operation GetSuperBinding is called with obj as its argument. It performs the following steps:

1. If Type(obj) is not Object, then return undefined.
2. Ifthe value of 0bj’s [[NeedsSuper]] internal slot is not true, thenreturn undefined.
3. Return the value of 0bj’s [[HomeObject]] internal slot.

9.2.13 CloneMethod(function, newHome, newName) Abstract Operation

The abstract operation Clone is called with a function object function, an object newHome, and a property
key newName as its argument. It performs the following steps:

Assert: function is an ECMAScript function object or an exoti¢'Built-in function object.
Assert: Type(newHome) is Object.
Assert: Type(newName) one of Undefined, String, or Symbol.
If function is an ECMAScript functiony then
a. Let new be a new ECMAScript function object that has all of the same internal methods and
internal slots as function.
5. Else
a. Assert: function is an exotic Built-in function object.
b. Let new be a new exotic Built-in function object that has all of the same internal methods and
internal slots as function.
6. Set the value of each of new’s internal slots, except for [[Extensible]], [[HomeObject]] and
[[MethodName]] to the value of function’s corresponding internal slot.
7. Set new’s [[Extensible]] internal slot to true.
8. If'the value of function’s [[NeedsSuper]] internal slot is true, then
a. Set the value of new’s [[HomeObject]] internal slot to newHome.
b. If newName is not undefined, then
i. Set the value of new’s [[MethodName]] internal slot to newName.
¢c. Else,
i. Set the value of new’s [[MethodName]] internal slot to the value of function’s
[[MethodName]] internal slot.
9. If function is an exotic Built-in function object or if function’s [[Strict]] internal slot is true, then
a. . Let status be AddRestrictedFunctionProperties(new).
b. ReturnIfAbrupt(status).
10. Return new.

AW =

NOTE The purpose of this abstract operation is to create a new function object that is identical to the argument
object in all always except for its identity and the value of its [[HomeObject]] internal slot. However, properties of the
function object, except for the restricted function properties, are not created or copied.

9.2.14 Function Declaration Instantiation

NOTE When an execution context is established for evaluating an ECMAScript function a new Declarative
Environment Record is created and bindings for each formal parameter are instantiated in that environment record.
Each declaration in the function body is also instantiated. If the function’s formal parameters do not include any
default value initializers then the body declarations are instantiated in the same environment record as the

© Ecma International 2014 97

oeCha

parameters. If default value parameter initializers exist, a second environment record is created for the body
declarations. Formal parameters and functions are initialized as part of function declaration instantiations. All other
bindings are initialized during evaluation of the function body.

Function Declaration Instantiation is performed as follows using arguments func, argumentsList, and env.
func is the function object that for which the execution context is being established. env is the declarative
environment record in which formal parameter bindings are to be created.

WD bW =

XN

14.
15.
16.

17.

18.

19.
20.

21.

Let code be the value of the [[Code]] internal slot of func.

Let strict be the value of the [[Strict]] internal slot of func.

Let formals be the value of the [[FormalParameters]] internal slot of func.

Let parameterNames be the BoundNames of formals.

If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let
hasDuplicates be false.

Let needsParameterEnvironment be ContainsExpression of formals.

Let simpleParameterList be IsSimpleParameterList of formals.

Let varNames be the VarDeclaredNames of code.

Let varDeclarations be the VarScopedDeclarations of code.

. Let lexicalNames be the LexicallyDeclaredNames of code.
11.
12.
13.

Let functionNames be an empty List.
Let functionsTolnitialize be an empty List.
For each d in varDeclarations, in reverse list order do
a. Ifdisnota VariableDeclaration, then
i. Assert: d is either a FunctionDeclaration or a GeneratorDeclaration.
ii. Let fn be the sole element of the BoundNames of d.
iii. If fi is not an element of functionNames, then
1. Insert fn as the first element of functionNames.
2. NOTE If thererare multiple FunctionDeclarations or GeneratorDeclarations for the same
name, the last declaration is used.
3. Insertd as the first element of functionsTolnitialize.
Let needsSpecialArgumentsBinding be true.
Let argumentsObjectNeeded be true.
If the value of the [[ThisMode]] internal slot of func is lexical, then
a. NOTE Arrow functions never have an arguments objects.
b. Let needsSpecialArgumentsBinding be false.
c. Let argumentsObjectNeeded be false.
Else if "arguments" is an element of parameterNames, then
a. Let needsSpecialArgumentsBinding be false.
b. Let argumentsObjectNeeded be false.
Else
a. If "arguments' is an element of functionNames, then let argumentsObjectNeeded be false.
b. Else if "arguments" is an element of /exicalNames, then let argumentsObjectNeeded be false.
If argumentsObjectNeeded is false, then let ao be undefined.
Else,
a. Ifstrict is true or if simpleParameterList is false, then
i. Let @o be CreateUnmapped ArgumentsObject(argumentsList).
b. Else,
i. Let ao be CreateMapped ArgumentsObject(func, formals, argumentsList, env).
c. ReturnIfAbrupt(ao).
For each String paramName in parameterNames, do
a. Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing
paramName as the argument.

© Ecma International 2014 98

oeCha

22.
23.

24.

25.

26.
27.

28.

29.
30.

b. NOTE Early errors ensure that duplicate parameter names can only occur in non-strict functions
that do not have parameter default values or rest parameters.
c. IfalreadyDeclared is false, then
i. Let status be the result of calling env’s CreateMutableBinding concrete method passing
paramName as the argument.
ii. If hasDuplicates is true, then
1. Let status be the result of calling env’s InitializeBinding concrete method passing
paramName and undefined as the argument.
iii. Assert: status is never an abrupt completion for either of the above operations.
Let instantiatedVarNames be a copy of the List parameterNames.
If needSpecialArgumentsBinding is true, then
a. Ifstrict is true, then
i. Let status be the result of calling env’s CreatelmmutableBinding concrete method passing
"arguments" as the argument.
b. Else,
i. Let status be the result of calling env’s CreateMutableBinding concrete method passing
"arguments" as the argument.
c. Assert: status is never an abrupt completion
d. If argumentsObjectNeeded is true, then
i. Call env’s InitializeBinding concrete method passing "arguments" and ao as arguments.
ii. Append "arguments" to instantiatedVarNames.
If hasDuplicates is true, then
a. Let formalStatus be the result of performing IteratorBindinglnitialization for formals with
CreateListlterator(argumentsList) and undefined as arguments.
Else,
a. Let formalStatus be the result of performing IteratorBindinglInitialization for formals with
CreateListlterator(argumentsList) and env as arguments.
ReturnIfAbrupt(formalStatus).
If needsParameterEnvironment is true, then
a. NOTE A separate enviornemnt record is needed to ensure that closures created by
parameter default value expressions do not have visibility of declarations in the function body.
b. Let env be NewDeclarativeEnvironment(eny).
c. Let calleeContext be the running execution context.
d. Set the LexicalEnvironment of calleeContext to env.
e. _Set the VariableEnvironment of calleeContext to env.
For each n in varNames, do
a. Ifnis notan element of instantiatedVarNames, then
i. Append n toinstantiatedVarNames.
ii. Let status be the result of calling env’s CreateMutableBinding concrete method passing n as
the argument.
iii. Assert: status 1s never an abrupt completion.
iv.. Call env’s InitializeBinding concrete method passing n and undefined as arguments.
v. NOTE vars and functions whose names are the same as a formal parameter, use the same
binding element as the the parameter.
Let lexDeclarations be the LexicalDeclarations of code.
For each element d in lexDeclarations do

a. NOTE A lexically declared name cannot be the same as a function/generator declaration,
formal parameter, or a var name. Lexically declared names are only instantiated here but not
initialized.

b. For each element dn of the BoundNames of d do
1. IfIsConstantDeclaration of d is true, then
1. Let status be the result of calling env’s CreatelmmutableBinding concrete method
passing dn as the argument.

© Ecma International 2014 99

secind

1. Else,
1. Let status be the result of calling env’s CreateMutableBinding concrete method passing
dn and false as the arguments.
c. Assert: status is never an abrupt completion.
31. For each production f'in functionsTolnitialize, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Let fref be ResolveBinding(fn).
d. Let status be PutValue(fref, fo).
e. Assert: status is never an abrupt completion.
32. Return NormalCompletion(empty).

9.3 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ECMAScript
function objects (9.2) whose behaviour is provided using ECMAScript code or as implementation provided
exotic function objects whose behaviour is provided in some other manner. In either case, the effect of
calling such functions must conform to their specifications.

If a built-in function object is implemented as an exotic object it must have the ordinary object behaviour
specified in 9.1 except [[GetOwnProperty]] which must be as specified in 9.2.2. All such exotic function
objects also have [[Prototype]] and [[Extensible]] internal slots.

Unless otherwise specified every built-in function object initially has the %FunctionPrototype% object
(19.2.3) as the initial value of its [[Prototype]] internal slot.

The behaviour specified for each built-in function via algorithm steps or other means is the specification of
the [[Call]] behaviour for thatfunction with the [[Call]] ¢hisArgument providing the this value and the [[Call]]
argumentsList providing the named parameters for each built-in function. If the built-in function is
implemented as an ECMAScript function object then this specified behaviour must be implemented by the
ECMAScript code that is the body of the function. Built-in functions that are ECMAScript function objects
must be strict mode functions.

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal
method unless otherwise specified in the description of a particular function. When a built-in constructor is
called as part of a new expression the argumentsList parameter of the invoked [[Construct]] internal
method provides the values for the built-in constructor's named parameters.

Built-in functions that are not constructors do not have a prototype property unless otherwise specified
in the description of a particular function.

If a built-in function object.is not implemented as an ECMAScript function it must have a [[Realm]] internal
slot. It must also have a{[Call]] internal method that conforms to the following definition:

9.3.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for a built-in function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

1. Let callerContext be the running execution context.

2. [If callerContext is not already suspended, then Suspend callerContext.
3. Let calleeContext be a new execution context.

4. Let calleeRealm be the value of F’s [[Realm]] internal slot.

© Ecma International 2014 100

ecimna

5. Set calleeContext’s Realm to calleeRealm.

6. Perform any necessary implementation defined initialization of calleeContext.

7. Push calleeContext onto the execution context stack; calleeContext is now the running execution
context.

8. Let result be the Completion Record that is the result of evaluating F in an implementation defined
manner that conforms to this specification of F.

9. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.

10. Return result.

NOTE 1 When calleeContext is removed from the execution context stack it must not be destroyed because it may
have been suspended and retained by a generator object for later resumption.

9.3.2 CreateBuiltinFunction(realm, steps, internalSlotsList) Abstract Operation

The abstract operation CreateBuiltinFunction takes arguments realm and steps. The optional argument
internalSlotsList is a List of the names of additional internal slot that must be defined as part of the object.
If the list is not provided, an empty List is used. CreateBuiltinFunctionreturns a built-in function object
created by the following steps:

1. Assert: realm is a Realm Record.

2. Assert: steps is either a set of algorithm steps or other definition of a functions behaviour provided
in this specification.

3. Let func be a new built-in function object that when called performs the action described by steps.
The new function object has internal slots whose names are the the elements of internalSlotsList.
The initial value of each of those internal slots is undefined.

4. Set the [[Realm]] internal slot of func to realm.

5. Perform the AddRestrictedFunctionProperties (9.2.8) abstract operation with argument func.

6. Return func.

9.4 Built-in Exotic Object Internal Methods and Data Fields

This specification defines several kinds of built-in_exotic objects. These objects generally behave similar
to ordinary objects except for a few specific situations. The following exotic objects use the ordinary
object internal methods except where it is explicitly specified otherwise below:

9.4.1 _Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A bound function is callable (it
has a [[Call]] internal method and may have a [[Construct]] internal method). Calling a bound function

generally results in a call of its wrapped function.

Bound function objects do'not have the internal slots of ECMAScript function objects defined in Table 26.
Instead they have the internal slots defined in Table 27.

© Ecma International 2014 101

oecnd

Table 27 -- Internal Slots of Exotic Bound Function Objects

Internal Slot Type Description

[[BoundTargetFunction]] | Callable Object | The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call to the wrappered function.

Unlike ECMAScript function objects, bound function objects do not use alternative definitions of the [[Get]]
and [[GetOwnProperty]] internal methods. Bound function objects provide all of the essential internal
methods as specified in 9.1. However, they use the following definitions for the essential internal methods
of function objects.

9.41.1 [[Call]]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is called with parameters thisArgument and argumentsList, a List:of ECMAScript language values,
the following steps are taken:

1. Let boundArgs be the value of F’s [[BoundArguments]] internal slot.

2. Let boundThis be the value of F’s [[BoundThis]] internal slot.

3. Let target be the value of F'’s [[BoundTargetFunction]] internal slot.

4. Let args be a new list containing the same values as the list boundArgs in the same order followed
by the same values as the list argumentsList in the same order.

5. Return the result of calling the [[Call]] internal method of zarget providing boundThis as
thisArgument and providing args as argumentsList.

9.4.1.2 [[Construct]]

When the [[Construct]}iinternal method of an exotic bound function object, F’ that was created using the
bind function is called with a list of arguments ExtraArgs, the following steps are taken:

Let target be the value of £’s [[BoundTargetFunction]] internal slot.

Assert: target has a [[Construct]] internal method.

Let-boundArgs be the value of F’s [[BoundArguments]] internal slot.

Let args be a new list containing the same values as the list boundArgs in the same order followed
by the same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]] internal method of target providing args as the
arguments.

AW N —

9.4.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is
used to specify the creation of new Bound Function exotic objects. It performs the following steps:

1. Let proto be the intrinsic %FunctionPrototype%.
2. Let obj be a newly created object.
3. Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
4. Set the [[Call]] internal method of 0bj as described in 9.4.1.1.
5. If targetFunction has a [[Construct]] internal method, then
a. Set the [[Construct]] internal method of 0bj as described in 9.4.1.2.
6. Set the [[Prototype]] internal slot of 0bj to proto.
7. Set the [[Extensible]] internal slot of 0bj to true.

© Ecma International 2014 102

ecimna

8. Set the [[BoundTargetFunction]] internal slot of 0bj to targetFunction.
9. Set the [[BoundThis]] internal slot of 0bj to the value of boundThis.
10. Set the [[BoundArguments]] internal slot of 0bj to boundArgs.

11. Return obyj.

9.4.2 Array Exotic Objects

An Array object is an exotic object that gives special treatment to array index property keys (see 6.1.7). A
property whose property name is an array index is also called an element. Every Array object has a
length property whose value is always a nonnegative integer less than 2*%. The value of the 1length
property is numerically greater than the name of every property whose name is an array index; whenever
a property of an Array object is created or changed, other properties are adjusted as necessary to
maintain this invariant. Specifically, whenever a property is added:-whose name is an array index, the
length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the length property is changed, every property whose name is an array index whose value is
not smaller than the new length is automatically deleted. This constraint applies only to own properties of
an Array object and is unaffected by length or array index properties that may be inherited from its
prototypes.

NOTE A String property name P is an array index if and only if ToString(ToUint32(P)) is equal to P and
ToUint32(P) is not equal to 2*2-1.

Exotic Array objects have the same ‘internal. slots as ordinary objects. They also have an
[[ArraylnitializationState]] internal slot.

Exotic Array objects always have a non-configurable property named."length".

Exotic Array objects provide an alternative definition for the [[DefineOwnProperty]] internal method.
Except for that internal method, exotic Array objects provide all of the other essential internal methods as
specified in 9.1.

9.4.21 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object 4 is called with property key P,
and Property Descriptor Desc the following steps are taken:

1.« Assert: IsPropertyKey(P) is true.
2. 1If Pis "length", then
a. Return ArraySetLength(4, Desc).
3. Else if P is an array index, then
a. Let oldLenDesc be the result of calling the [[GetOwnProperty]] internal method of 4 passing
"length" as the argument. The result will never be undefined or an accessor descriptor
because Array objects are created with a length data property that cannot be deleted or
reconfigured.
Let oldLen be oldLenDesc.[[Value]].
Let index be ToUint32(P).
Assert: index will never be an abrupt completion.
If index > oldLen and oldLenDesc.[[Writable]] is false, then return false.
Let succeeded be the result of calling OrdinaryDefineOwnProperty passing 4, P, and Desc as
arguments.
ReturnIfAbrupt(succeeded).
If succeeded is false, then return false.
i. Ifindex > oldLen

© Ecma International 2014 103

me a0 o

P

oecnd

4.

i. Set oldLenDesc.[[Value]] to index + 1.
ii. Let succeeded be OrdinaryDefineOwnProperty(4, "length", oldLenDesc).
iii. ReturnIfAbrupt(succeeded).

j- Return true.

Return OrdinaryDefineOwnProperty(4, P, Desc).

9.4.2.2 ArrayCreate(length) Abstract Operation

The abstract operation ArrayCreate with argument length (a positive integer.or undefined) and optional
argument proto is used to specify the creation of new exotic Array objects. It performs the following steps:

1.
2.

98]

Noawns

9.

10.

11.

If the proto argument was not passed, then let proto be the intrinsic object %ArrayPrototype%.
Let 4 be a newly created Array exotic object.

Set A’s essential internal methods except for [[DefineOwnProperty]] to the default ordinary object
definitions specified in 9.1.

Set the [[DefineOwnProperty]] internal method of 4 asspecified in 9.4.2.1.

Set the [[Prototype]] internal slot of 4 to proto.

Set the [[Extensible]] internal slot of 4 to true.

If length is not undefined, then

a. Set the [[ArraylnitializationState]] internal slot of 4 to true.

Else

a. Set the [[ArraylnitializationState]] internal slot of A to false.

b. Let length be 0.

If length>2-1, then throw a RangeError exception.

Call OrdinaryDefineOwnProperty with arguments 4;." length" and PropertyDescriptor{[[Value]]:
length, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}.

Return 4.

9.4.2.3 ArraySetLength(A, Desc) Abstract Operation

When the abstract operation ArraySetLength is called with an exotic Array object 4, and Property
Descriptor Desc the following steps are taken:

1.

SRR > N

~

10.
11.

12.
13.

If the [[Value]] field of Desc is absent, then

a. Return OrdinaryDefineOwnProperty(4, "length", Desc).

Let newLenDesc be a copy of Desc.

Let newLen be ToUint32(Desc.[[Value]]).

If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.

Set newLenDesc.[[Value]] to newLen.

Let oldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing
"length" as the argument. The result will never be undefined or an accessor descriptor because
Array objects are created with a length data property that cannot be deleted or reconfigured.

Let oldLen be oldLenDesc.[[Value]].

If newLen >oldLén, then

a. Return OrdinaryDefineOwnProperty(4, "length", newLenDesc).

If oldLenDesc.[[Writable]] is false, then return false.

If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.

Else,

a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.

c. Set newLenDesc.[[Writable]] to true.

Let succeeded be OrdinaryDefineOwnProperty(4, "length", newLenDesc).
ReturnIfAbrupt(succeeded).

© Ecma International 2014 104

ecimna

14. If succeeded is false, return false.
15. While newLen < oldLen repeat,
a. SetoldLen to oldLen — 1.
b. Let deleteSucceeded be the result of calling the [[Delete]] internal method of 4 passing
ToString(oldLen).
c. ReturnIfAbrupt(succeeded).
d. IfdeleteSucceeded is false, then
i. Set newLenDesc.[[Value]] to oldLen+1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.
iii. Let succeeded be OrdinaryDefineOwnProperty(4, "length'y newlLenDesc).
iv. ReturnIfAbrupt(succeeded).
v. Return false.
16. If newWritable is false, then
a. Call OrdinaryDefineOwnProperty passing 4, "length', and PropertyDescriptor {[[Writable]]:
false} as arguments. This call will always return true.
17. Return true.

NOTE In steps 3 and 4, if Desc.[[Value]] is an objectthen its valueOf method is called twice. This is
legacy behaviour that was specified with this effect starting with the 2" Edition of this specification.

9.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual integer indexed
data properties corresponding to the individual code unit elements of the string value. Exotic String
objects always have a data property named "length" whose value is the number of code unit elements
in the encapsulated String value. Both the code unit data properties and the "length" property are non-
writable and non-configurable.

Exotic String objects have the same internal slots as ordinary objects. They also have a [[StringDatal]
internal slot.

Exotic String objects provide alternative definitions for the following internal methods. All of the other
exotic String object essential internal methods that are not defined below are as specified in 9.1.

9.4.31 _[[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic String object S is called with property key P the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let desc be OrdinaryGetOwnProperty(S, P).
ReturnIfAbrupt(desc).

If desc is not undefined return desc.

If Type(P) is.not String, then return undefined.
Let index be CannonicalNumericString(P).
Assert: index is not an abrupt completion.

If index is undefined, then return undefined.
Let str be the String value of the [[StringDatal]] internal slot of S, if the value of [[StringDatal]] is
undefined the empty string is used as its value.
10. Let /en be the number of elements in s¢r.

11. If index < 0 or len < index, return undefined.

XA AL —

© Ecma International 2014 105

eCmd

12.

13.

9.4.3.2

Let resultStr be a String value of length 1, containing one code unit from str, specifically the code
unit at position index, where the first (leftmost) element in st is considered to be at position 0, the
next one at position 1, and so on.

Return a PropertyDescriptor{ [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false }.

[[Enumerate]] ()

When the [[Enumerate]] internal method of an exotic String object O is called the following steps are

taken:

1.

9.4.3.3

Let keys be a new empty List.

Let str be the String value of the [[StringData]] internal slot of O, if the value of [[StringData]] is
undefined the empty string is used as its value.

Let len be the number of elements in str.

For each integer i starting with 0 such that i < /en. in ascending order.

a. Add ToString(i) as the last element of keys

Return the result of calling the default ordinary object [[Enumerate]] internal method (9.1.11) on O
but including every element of keys as included as a property keys that is returned by the resulting
iterator.

[[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a String exotic object O.is called the following steps are

taken:

1.
2.

3.

7.

8.

9.4.3.4

Let keys be a new empty List.

Let str be the String value of the [[StringData]] internal slot of O, if the value of [[StringData]] is
undefined the empty string is used as its value.

Let len be the number of elements in str.

For each integer i starting with 0 such that i < /en. in ascending order.

a. Add ToString(i) as the last element of keys

For each own property key P of O that is-an integer index and Tolnteger(P) > /en, in ascending
numeric index order

a. Add P as the last element of keys.

For each own property key P of O that is a String but is not an integer index, in property creation
order

a. Add P as the last element of keys.

For each own property key P of O that is a Symbol, in property creation order

a. Add P as the last element of keys.

Return CreateArrayFromList(keys).

StringCreate Abstract Operation

The abstract operation StringCreate with argument prototype is used to specify the creation of new exotic
String objects. It performs the following steps:

AN AW =

Let 4 be a newly created String exotic object.

Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of 4 as specified in 9.4.3.1.

Set the [[Enumerate]] internal method of 4 as specified in 9.4.3.2.

Set the [[OwnPropertyKeys]] internal method of 4 as specified in 1.

Set the [[Prototype]] internal slot of 4 to prototype.

© Ecma International 2014 106

secind

7. Set the [[Extensible]] internal slot of 4 to true.
8. Return 4.

9.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments objects available to their code. Depending upon the
characteristics of the function definition, its argument object is either an ordinary object or an arguments
exotic object. An aguments exotic object is an exotic object whose array index properties map to the
formal parameters bindings of an invocation of its associated ECMAScript function.

Arguments exotic objects have the same internal slots as ordinary objects. They also have a
[[ParameterMap]] internal slot.

Arguments exotic objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not-defined below are as specified in 9.1

NOTE 1 For non-strict mode functions the integer indexed data properties of an arguments object whose numeric
name values are less than the number of formal parameters.-of the corresponding function object initially share their
values with the corresponding argument bindings in the function’s execution context. This means that changing the
property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if
such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments object’s properties are simply a copy of the arguments passed to the function
and there is no dynamic linkage between the property values and the formal parameter values.

NOTE2 The ParameterMap object and its property values are used as a device for specifying the arguments
object correspondence to argument bindings. The ParameterMap object and the objects that are the values of its
properties are not directly observable from ECMAScript code. An ECMAScript implementation does not need to
actually create or use such objects to.implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named
"caller" and "callee" which throw a TypeError exception on access. The "callee" property has a more specific
meaning for non-strict mode functions and a "caller" property has historically been provided as an implementation-
defined extension by some ECMAScript implementations. The strict mode definition of these properties exists to
ensure that neither of them is defined.in any other manner by conforming ECMAScript implementations.

9.4.4.1 [[GetOwnProperty]] (P)

The [[GetOwnProperty]] internal method of an arguments exotic object when called with a property name
P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method for ordinary objects
(9.1.5) on the arguments object passing P as the argument.

2. Ifdesc is undefined then return desc.

3. Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

4. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as
the argument.

5. [Ifthe value of isMapped is not undefined, then
a. Set desc.[[Value]] to Get(map, P).

6. If IsDataDescriptor(desc) is true and P is "caller" and desc.[[Value]] is a strict mode Function
object, throw a TypeError exception.

7. Return desc.

© Ecma International 2014 107

oecnd

9.4.4.2

[[DefineOwnProperty]] (P, Desc)

The [[DefineOwnProperty]] internal method of an arguments exotic object when called with a property
name P and Property Descriptor Desc performs the following steps:

1.

3.

9]

7.
9.4.4.3

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.
Let isMapped be HasOwnProperty(map, P).
Let allowed be the result of calling the default [[DefineOwnProperty]] internal method for ordinary
objects (9.1.6) on the arguments object passing P and Desc as the arguments.
Assert: allowed is not an abrupt completion.
If allowed is false, then return false.
If the value of isMapped is not undefined, then
a. IfIsAccessorDescriptor(Desc) is true, then
i. Call the [[Delete]] internal method of map passing P as the argument.
b. Else
i. If Desc.[[Value]] is present, then
1. Let putStatus be Put(map, P, Desc.[[Value]], false).
2. Assert: putStatus is true because formal parameters mapped by argument objects are
always writable.
ii. If Desc.[[Writable]] is present and its value is false,then
1. Call the [[Delete]] internal method of map passing P as the argument.
Return true.

[[Get]] (P, Receiver)

The [[Get]] internal method of an arguments exotic object when called with a property name P and
ECMAScript language value Receiver performs the following steps:

DN W~

7.
8.
9.

9.44.4

Let args be the arguments object.

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

Let isMapped be HasOwnProperty(map, P).

Assert: isMapped is not an abrupt completion.

If the value of isMapped is undefined, then

a. Let v be the result of calling the default ordinary object [[Get]] internal method (9.1.8) on args
passing P and Receiver as the arguments.

Else map contains a formal parameter mapping for P,

a. Let v be Get(map, P).

ReturnIfAbrupt(v).

If Pis "caller"™ and v is a strict mode Function object, throw a TypeError exception.

Return v.

[[Set]] (P, V, Receiver)

The [[Set]] internal method of an arguments exotic object when called with with property key P, value 7,
and ECMAScript language value Receiver performs the following steps:

1.
2.

3.

Let args be the arguments object.

If SameValue(args, Receiver) is false, then

a. Let isMapped be undefined.

Else,

a. Let map be the value of the [[ParameterMap]] internal slot of the arguments object.
b. Let isMapped be HasOwnProperty(map, P).

c. Assert: isMapped is not an abrupt completion.

© Ecma International 2014 108

oecnd

4. If the value of isMapped is undefined, then
a. Return the result of calling the default ordinary object [[Set]] internal method (9.1.8) on args
passing P, V and Receiver as the arguments.
5. Else map contains a formal parameter mapping for P,
a. Return Put(map, P, V, false).

9.4.4.5 [[Delete]] (P)

The [[Delete]] internal method of an arguments exotic object when called with-a property key P performs
the following steps:

Let map be the value of the [[ParameterMap]] internal slot of the’arguments object.
Let isMapped be HasOwnProperty(map, P).
Assert: isMapped is not an abrupt completion.
Let result be the result of calling the default [[Delete]] internal method for ordinary objects (9.1.10)
on the arguments object passing P as the argument.
5. If result is true and the value of isMapped is not undefined, then
a. Call the [[Delete]] internal method of map passing P as the argument.
6. Return result.

A~ WO

NOTE 1 For non-strict mode functions with simple parameter lists, those integer indexed data properties of an
arguments object whose numeric name values are less than the number of formal parameters of the function initially
share their values with the corresponding argument bindings in the function’s execution context. This means that
changing the property changes the corresponding value of the argument binding and vice-versa. This
correspondence is broken if such a property is deleted and then redefined or if the property is changed into an
accessor property. For strict mode functions, the values of the arguments object’s properties are simply a copy of the
arguments passed to the function and there is no dynamic.linkage between the property values and the formal
parameter values.

NOTE2 The ParameterMap object and its property values are used as a device for specifying the arguments
object correspondence toargument bindings. The ParameterMap object and the objects that are the values of its
properties are not directly accessible from ECMAScript code. An ECMAScript implementation does not need to
actually create or use such objects to implement the specified semantics.

NOTE3 Arguments objects for strict mode functions define non-configurable accessor properties named
"caller" and "callee" which throw a TypeError exception on access. The "callee" property has a more specific
meaning for non-strict mode functions and a "caller" property has historically been provided as an implementation-
defined extension by some ECMAScript.implementations. The strict mode definition of these properties exists to
ensure that neither of them'is defined in any other manner by conforming ECMAScript implementations.

9.4.4.6 CreateUnmappedArgumentsObject(argumentsList) Abstract Operation

The abstract operation CreateStrictArgumentsObject called with an argument argumentsList performs the
following steps:

1. Let len be the number of elements in argumentsList.
. Let 0bj be ObjectCreate(%ObjectPrototype%).

3. Perform DefinePropertyOrThrow(obj, ""1length", PropertyDescriptor {[[Value]]: /en, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}).

4. Let index be 0.

5. Repeat while index < len,
a. Let val be the element of argumentsList at 0-origined list position index.
b. Perform CreateDataProperty(obj, ToString(index), val).
c. Let index be index + 1

© Ecma International 2014 109

oeCha

9.
10.
9.44.7

Perform DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor
{[[Value]]:%ArrayProto_values%, [[Writeable]]: true, [[Enumerable]]: false, [[Configurable]]:
true}).

Perform DefinePropertyOrThrow(obj, "caller", PropertyDescriptor {[[Get]]:
%ThrowTypeError%, [[Set]]: %ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]:
false}).

Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Get]]:
%ThrowTypeError%, [[Set]]: %ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]:
false}).

Assert: the above property definitions will not produce an abrupt completion.

Return obj

CreateMappedArgumentsObject (func, formals, argumentsList, env) Abstract Operation

The abstract operation CreateMappedArgumentsObject is called with object func, grammar production

formals,

1.

e e Nl

16.

17.
18.
19.
20.

List argumentsList, and environment record env. The following steps are performed:

Assert: formals does not contain a rest parameter, any binding patterns, or any initializers. It may
contain duplicate identifiers.

Let len be the number of elements in argumentsList.

Let obj be a newly created arguments exotic object with-a [[ParameterMap]] internal slot.

Set the [[GetOwnProperty]] internal method of ob;j as specified in 9.4.4.1.

Set the [[DefineOwnProperty]] internal method of 0bj as specified in 9.4.4.2.

Set the [[Get]] internal method of obj as specified in 9.4.4.3.

Set the [[Set]] internal method of obj as specified in 9.4.4.4.

Set the [[Delete]] internal method of 0bj as specified in9.4.4.5.

Set the remainder of 0bj’s essential internal methods to the default ordinary object definitions
specified in 9.1.

Set the [[Prototype]] internal slot of 0bj to %ObjectPrototype%o.

. Set the [[Extensible]] internal slot of 0bj to true.
. Let parameterNames be the BoundNames of formals.
. Let numberOfParameters be the number of elements in parameterNames

Let index be 0.

. Repeat while index < len 4

a. Let val be the element of argumentsList at 0-origined list position index.
b. ~Perform CreateDataProperty(obj, ToString(index), val).
¢. Letindex beindex + 1
Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor{[[Value]]: len, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}).
Let map be ObjectCreate(null).
Let mappedNames be an empty List.
Let index be numberOfParameters — 1.
Repeat while index= 0,
a. Let name bethe element of parameterNames at 0-origined list position index.
b. If name is‘not an element of mappedNames, then
i. Add name as an element of the list mappedNames.
1. Ifindex < len, then

1. Let g be MakeArgGetter(name, env).

2. Let p be MakeArgSetter(name, env).

3. Call the [[DefineOwnProperty]] internal method of map passing ToString(index) and
the PropertyDescriptor {[[Set]]: p, [[Get]]: g, [[Enumerable]]: false, [[Configurable]]:
true} as arguments.

c. Let index be index — 1

© Ecma International 2014 110

eCmd

21. Set the [[ParameterMap]] internal slot of 0bj to map.

22. Perform DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor
{[[Value]]:%ArrayProto_values%, [[Writeable]]: true, [[Enumerable]]: false, [[Configurable]]:
true}).

23. Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Value]]: func, [[Writab
le]]: true, [[Enumerable]]: false, [[Configurable]]: true}).

24. Assert: the above property definitions will not produce an abrupt completion.

25. Return obj

94471 MakeArgGetter (name, env) Abstract Operation

The abstract operation MakeArgGetter called with String name and environment record env creates a built-
in function object that when executed returns the value bound for name in env. It performs the following
steps:

Let realm be the current Realm.

Let steps be the steps of a ArgGetter function as specified below.

Let getter be CreateBuiltinFunction(realm, steps, ([[name]], [[env]])).
Set getter’s [[name]] internal slot to name.

Set getter’s [[env]] internal slot to env.

Return getter.

AN DN AW =

An ArgGetter function is an anonymous built-in function with [[name]] and [[enV]] internal slots. When an
ArgGetter function fthat expects no arguments is called it performs the following steps:

1. Let name be the value of f’s [[name]] internal slot.

2. Let env be the value of f’s [[env]] internal slot

3. Return the result of calling the GetBindingValue concrete method of env with arguments name and
false.

NOTE ArgGetter functions are never directly accessible to ECMAScript code.
9.4.4.7.2 MakeArgSetter (name, env) Abstract Operation

The abstract operation MakeArgSetter called with String name and environment record env creates a built-
in function object.that when executed sets the value bound for name in env. It performs the following steps:

Let realm be the current Realm.

Let steps be the steps of a ArgSetter function as specified below.

Let setter be CreateBuiltinFunction(realm, steps, ([[name]], [[env]])).
Set setter’s [[name]] internal slot to name.

Set setter’s [[env]] internal slot to env.

Return setter.

AN LB W N —

An ArgSetter function is<an anonymous built-in function with [[name]] and [[enV]] internal slots. When an
ArgSetter function fiscalled with argument value it performs the following steps:

1. Let name be the value of f’s [[name]] internal slot.
. Let env be the value of f’s [[env]] internal slot
3. Return the result of calling the SetMutableBinding concrete method of env with arguments name,
value, and false.

NOTE ArgSetter functions are never directly accessible to ECMAScript code.

© Ecma International 2014 111

secind

9.4.5 Integer Indexed Exotic Objects

An Integer Indexed object is an exotic object that performs special handling of integer index property
keys.

Integer Indexed exotic objects have the same internal slots as ordinary objects additionally
[[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]] internal slots.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the
other Integer Indexed exotic object essential internal methods that are not defined below are as specified
in 9.1.

9.4.51 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an Integer Indexed exotic object O is called with property
key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internalslot.
3. If Type(P) is String, then
a. Let numericIndex be CanonicalNumericString(P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Let value be IntegerIndexedElementGet (O, numericlndex).
ii. ReturnIfAbrupt(value).
iii. If value is undefined, then return undefined.
iv. Return a PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: true, [[Writable]]: true,
[[Configurable]]: false }.
4. Return OrdinaryGetOwnProperty(O, P).

9.4.5.2 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] .internal method. of an Integer Indexed exotic object O is called with
property key P, and Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
34 If Type(P) is String, then
a. Let numericIndex be CanonicalNumericString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericIndexis not undefined, then
i.. If IsInteger(numericlndex) is false then return false
ii. Let intIndex be numericlndex.
iii. IfintIndex < 0, then return false.
iv. Let length be the value of O’s [[ArrayLength]] internal slot.
v. If intIndex > length, then return false.
vi. If IsAccessorDescriptor(Desc) is true, then return false.
vii. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is true, then return false.
viii.If Desc has an [[Enumerable]] field and if Desc.[[Enumerable]] is false, then return false.
ix. If Desc has a [[Writable]] field and if Desc.[[Writable]] is false, then return false.
x. If Desc has a [[Value]] field, then
1. Let value be Desc.[[Value]].
2. Let status be IntegerIndexedElementSet (O, intIndex, value).

© Ecma International 2014 112

oecnd

3. ReturnIfAbrupt(status).
xi. Return true.
4. Return OrdinaryDefineOwnProperty(O, P, Desc).

9.4.5.3 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
If Type(P) is String and if SameValue(O, Receiver) is true, then
a. Let numericIndex be CanonicalNumericString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Return IntegerIndexedElementGet (O, numericIndex).
3. Return the result of calling the default ordinary object [[Get]] internal method (9.1.8) on O passing
P and Receiver as arguments.

9.4.5.4 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an Integer Indexed exotic object O is called with property key P, value
¥, and ECMAScript language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
If Type(P) is String and if SameValue(O, Receiver) is true, then
a. Let numericIndex be CanonicalNumericString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is.not undefined, then
i. Return ToBoolean(IntegerIndexedElementSet (O, numericlndex, V)).
3. Return the result of calling the default ordinary object [[Set]] internal method (9.1.8) on O passing
P, V, and Receiver as arguments.

9.4.5.5 [[Enumerate]] ()

When the [[Enumerate]] internal method of an Integer Indexed exotic object O is called the following steps
are taken:

1. Let keys be a new empty List.

2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayNamel]] internal slots.

3. " Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

4. If buffer is undefined, then throw a TypeError exception.

5. Let len be the value of O’s [[ArrayLength]] internal slot.

6. For each integer 7 starting with 0 such that 7 < /en. in ascending order.

a. Add ToString(i) as the last element of keys.

7. Return the result of calling the default ordinary object [[Enumerate]] internal method (9.1.11) on O
but including every element of keys as included as a property keys that is returned by the resulting
iterator.

9.4.5.6 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an Integer Indexed exotic object O is called the
following steps are taken:

© Ecma International 2014 13

oeCha

—_

Let keys be a new empty List.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and

[[TypedArrayName]] internal slots.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

If buffer is undefined, then throw a TypeError exception.

Let len be the value of O’s [[ArrayLength]] internal slot.

For each integer i starting with 0 such that i < len. in ascending order.

a. Add ToString(i) as the last element of keys.

7. For each own property key P of O that is an integer index and Tolnteger(P) = len, in ascending
numeric index order
a. Add P as the last element of keys.

8. For each own property key P of O that is a String but is not an integer index, in property creation
order
a. Add P as the last element of keys.

9. For each own property key P of O that is a Symbol, in property creation order
a. Add P as the last element of keys.

10. Return CreateArrayFromList(keys).

»

NN bW

9.4.5.7 IntegerindexedObjectCreate Abstract Operation

The abstract operation IntegerindexedObjectCreate with argument prototype is used to specify the
creation of new Integer Indexed exotic objects. It performs the following steps:

Let 4 be a newly created object.
Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of 4 as specified in 9.4.5.1.
Set the [[DefineOwnProperty]] internal method of 4 as specified in 9.4.5.2.
Set the [[Get]] internal method of A4 as specified in 9.4.5.3.
Set the [[Set]] internal method of 4 as specified in 9.4.5.4.
Set the [[Enumerate]] internal method of 4 as specified in 9.4.5.5.
Set the [[OwnPropertyKeys]] internal method of A as specified in 0.
Set the [[Prototype]] internal slot of 4 to prototype.

. Set the [[Extensible]] internal slot of 4 to.true.

Return 4.

e BN ol

—_—O

9.4.5.8 _IntegerindexedElementGet (O, index) Abstract Operation

—_—

Assert: Type(index) is Number.

Assert: O is an Object that has [[Viewed ArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and

[[TypedArrayName]] internal slots.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

If buffer is undefined, then throw a TypeError exception.

If IsInteger(index) s false then return undefined

Let length be the value of O’s [[ArrayLength]] internal slot.

If index <0 ot index > length, then return undefined.

Let offset be the value of O’s [[ByteOffset]] internal slot.

Let arrayTypeName be the string value O’s [[TypedArrayName]] internal slot.

0. Let elementSize be the Number value of the Element Size value specified in Table 44 for
arrayTypeName.

11. Let indexedPosition = (index % elementSize) + offset.

12. Let elementType be the string value of the Element Type value in Table 44 for arrayTypeName.

13. Return GetValueFromBuffer(buffer, indexedPosition, elementType).

B

SO PN LR W

© Ecma International 2014 114

oecnd

9.4.5.9 IntegerindexedElementSet (O, index, value) Abstract Operation

—_

Assert: Type(index) is Number.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

3. Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

4. If buffer is undefined, then throw a TypeError exception.

5. [If IsInteger(index) is false then return false
6

7

8

>

Let length be the value of O’s [[ArrayLength]] internal slot.
Let numValue be ToNumber(value).
. ReturnIfAbrupt(numValue).

9. Ifindex <0 or index > length, then return false.

10. Let offset be the value of O’s [[ByteOffset]] internal slot.

11. Let arrayTypeName be the string value O’s [[TypedArrayName]] internal slot.

12. Let elementSize be the Number value of the Element Size value specified in Table 44 for
arrayTypeName.

13. Let indexedPosition = (index x elementSize) + offset.

14. Let elementType be the string value of the Element Type value in_Table 44 for arrayTypeName.

15. Let status be SetValuelnBuffer(buffer, indexedPosition, elementType, numValue).

16. ReturnIfAbrupt(status).

17. Return true.

9.4.6 Module Exotic Objects

A module object is an exotic object that exposes the bindings.exported from an ECMAScript Module (See
15.1.9). There is a one-to-one correspondence between the own properties of a module exotic object and
the ExportedBindings of the Module. Each own property name is the StringValue of the corresponding
exported binding. These are_the only. properties of a module exotic object. Each such property has the
attributes {[[Configurable]]: false, [[Enumerable]]: true}. Module objects are not extensible.

Bound function objects do not have the internal slots of ECMAScript function objects defined in Table 26.
Instead they have the internal slots defined. in Table 28.

Table 28 -- Internal Slots of Module Exotic Objects

Internal Slot Type Description

[[ModuleEnvironment]] Environment The Declrative Environment Record that contains all of the
declared top-level bindings for the corresponding module.

[[Exports]] List of String A List containing the bound names exposed as own

properties of this object. The list is ordered as an Array of
the the same wvalues had been sorted using
Array.prototype.sort using SortCompare as
comparefn.

Module exotic objects provide alternative definitions for all of the internal methods.
9.4.6.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of a module exotic object O is called the following steps are
taken:

1. Return null.

© Ecma International 2014 115

»eCma

9.4.6.2 [[SetPrototypeOf]] (V)
When the [[SetPrototypeOf]] internal method of a module exotic object O is called with argument V the
following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.

2. Return false.
9.4.6.3 [[IsExtensible]] ()
When the [[IsExtensible]] internal method of a module exotic object O is<called the following steps are
taken:

1. Return false.

9.4.6.4 [[PreventExtensions]] ()
When the [[PreventExtensions]] internal method of a module exotic object O is called the following steps
are taken:

1. Return true.

9.4.6.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a module exotic object O is called with property key P,
the following steps are taken:

1. Throw a TypeError exception.
9.4.6.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of @ module exotic object O is called with property key P
and Property Descriptor Desc, the following steps are taken:

1. Return false.
9.4.6.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of a module exotic object O is called with property key P, the
following steps are taken:

1. Let exports be the value of O’s [[Exports]] internal slot.
2. If Pis an element of exports, then return true.
3. Return false.

9.4.6.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of a module exotic object O is called with property key P and
ECMASCcript language value Receiver the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let exports be the value of O’s [[Exports]] internal slot.

If P is not an element of exports, then return undefined.

Let env be the value of O’s [[ModuleEnvironment]] internal slot.

Return the result of calling the GetBindingValue concrete method of env with arguments P and
true.

© Ecma International 2014 116

I N I S

»eCma

NOTE Attempting to [[Get]] the value of a module export that has not yet been initialized will throw a
ReferenceError exception.

9.4.6.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of a module exotic object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Return false.
9.4.6.10 [[Delete]] (P)

When the [[Delete]] internal method of a module exotic object O is called with property key P the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let exports be the value of O’s [[Exports]] internal slot.
3. If Pis an element of exports, then return false.

4. Return true.

9.4.6.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of-a module exotic object O is called the following steps are
taken:

1. Let exports be the value of O’s [[Exports]] internal slot.
2. Return CreateListlterator(exports).

9.4.6.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of @ module exotic object O is called the following steps
are taken:

1. Let exports be the value of O’s [[Exports]] internal slot.
2. Return CreateArrayFromList (exports).

9.4.6.13 ModuleObjectCreate (environment, exports)

Assert: environment is a Declarative Environment Record.

Assert: exports is a List of string values.

Let M be a newly created object.

Set M’s essential internal methods to the definitions specified in 9.4.6.
Set M’s [[ModuleEnvironment]] internal slot to environment.

Set M’s [[Exports]]internal slot to exports.

Return M.

B - I TN

9.5 Proxy Object Internal Methods and Internal Slots

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal slot called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an object, called the proxy’s handler object. Methods of a handler object may
be used to augment the implementation for one or more of the proxy object’s internal methods. Every
proxy object also has an internal slot called [[ProxyTarget]] whose value is either an object or the null
value. This object is called the proxy's target object.

© Ecma International 2014 117

secind

When a handler method is called to provide the implementation of a proxy object internal method, the
handler method is passed the proxy’s target object as a parameter. A proxy’s handler object does not
necessarily have a method corresponding to every essential internal method. Invoking an internal method
on the proxy results in the invocation of the corresponding internal method on the proxy’s target object if
the handler object does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the
object is created and typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequently revoked. When a proxy is revoked, its [[ProxyHander]] and
[[ProxyTarget]] internal slots are set to null causing subsequent invocations of internal methods on that
proxy obeject to throw a TypeError exception.

Because proxy permit arbitrary ECMAScript code to be used to in the implementation of internal methods,
it is possible to define a proxy object whose handler methods violates the invariants defined in 6.1.7.3.
Some of the internal method invariants defined in 6.1.7.3 <are essential integrity invariants. These
invariants are explicitly enforced by the proxy internal methods specified in this section. An ECMAScript
implementation must be robust in the presence of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key
value, V'is any ECMAScript language value, Desc is a Property Descriptor record, and B is a Boolean flag.

9.5.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of an exotic Proxy object O.is called the following steps are
taken:

Let handler be the value of the [[ProxyHandler]].internal slot of O.

If handler is null, then throw.a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "getPrototypeOf").

ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[GetPrototypeOf]] internal method of target.

7. Let handlerProto be the result of calling the [[Call]] internal method of trap with handler as the
this value and a new List containing target.

8. ReturnlfAbrupt(handlerProto).

9. < If Type(handlerProto) is neither Object nor Null, then throw a TypeError exception.

10. Let extensibleTarget be IsExtensible(target).

11. ReturnIfAbrupt(extensibleTarget).

12. If extensibleTarget is true, then return handlerProto.

13. Let targetProto be the result of calling the [[GetPrototypeOf]] internal method of target.

14. ReturnIfAbrupt(targetProto).

15. If SameValue(handlerProto, targetProto) is false, then throw a TypeError exception.

16. Return handlerProto.

AN B W=

NOTE [[GetPrototypeOf]] for proxy objects enforces the following invariant:
e The result of [[GetPrototypeOf]] must be either an Object or null.
e If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must return the same
value as [[GetPrototypeOf] applied to the proxy object’s target object.

© Ecma International 2014 118

oecnd

9.5.2

[[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of an exotic Proxy object O is called with argument V the
following steps are taken:

Nk e =

10.
11.
12.
13.
14.
15.
16.

17.

NOTE

9.5.3

Assert: Either Type(V) is Object or Type(V) is Null.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "setPrototypeOf").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[SetPrototypeOf]] internal method of target with argument V.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target and V.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnIfAbrupt(booleanTrapResult).

Let extensibleTarget be IsExtensible(target).

ReturnlfAbrupt(extensibleTarget).

If extensibleTarget is true, then return booleanTrapResult.

Let targetProto be the result of calling the [[GetPrototypeOf]] internal method of target.
ReturnIfAbrupt(targetProto).

If booleanTrapResult is true and SameValue(V, targetProto) is false, then throw a TypeError
exception.

Return booleanTrapResult.

[[SetPrototypeOf]] for proxy objects enforces the following invariant:

If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]]
applied to target object:

[[IsExtensible]] ()

When the [[IsExtensible]] internal method of -an_exotic Proxy object O is called the following steps are

taken:

AN B W=

10.
11.
12.
13.

NOTE

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "isExtensible").

ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[IsExtensible]] internal method of target.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnlfAbrupt(booleanTrapResult).

Let targetResult be the result of calling the [[IsExtensible]] internal method of target.
ReturnIfAbrupt(targetResult).

If SameValue(booleanTrapResult, targetResult) is false, then throw a TypeError exception.
Return booleanTrapResult.

[[IsExtensible]] for proxy objects enforces the following invariant:
[[IsExtensible]] applied to the proxy object must return the same value as [[IsExtensible]] applied to the proxy
object’s target object with the same argument.

© Ecma International 2014 119

oecnd

9.5.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of an exotic Proxy object O is called the following steps
are taken:

1.

AN

\O o0

11.

NOTE

9.5.5

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "preventExtensions").
ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[PreventExtensions]] internal.method of target.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target.

Let booleanTrapResult be ToBoolean(trapResult)
ReturnIfAbrupt(booleanTrapResult).

. If booleanTrapResult is true, then

a. Let targetisExtensible be the result of calling the [[IsExtensible]] internal method of target.
b. ReturnlfAbrupt(targetisExtensible).

c. [If targetlsExtensible is true, then throw a TypeError exception.

Return booleanTrapResult.

[[PreventExtensions]] for proxy objects enforces the following invariant:
[[PreventExtensions]] applied to the proxy object only returns true if [[ISExtensible]] applied to the proxy
object’s target object is false.

[[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Proxy object O is called with property key P,
the following steps are taken:

el

10.
11.

12.
13.

14.

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "getOwnPropertyDescriptor").
ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[GetOwnProperty]] internal method of rarger with argument P.
Let trapResultObj be the result of calling the [[Call]] internal method of trap with handler as the
this value and a new List containing target and P.

ReturnIfAbrupt(¢trapResultObyj).

If Type(trapResultObj) is neither Object nor Undefined, then throw a TypeError exception.
Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of fargetr with
argument P.

ReturnlfAbrupt(targetDesc).

If trapResultObj is undefined, then

If targetDesc is undefined, then return undefined.

If targetDesc.[[Configurable]] is false, then throw a TypeError exception.

Let extensibleTarget be IsExtensible(target).

ReturnIfAbrupt(extensibleTarget).

If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.

f. Return undefined.

Let extensibleTarget be IsExtensible(target).

o0 o

© Ecma International 2014 120

eCmd

15.
16.
17.
18.
19.
20.
21.

22.

NOTE

9.5.6

ReturnlfAbrupt(extensibleTarget).
Let resultDesc be ToPropertyDescriptor(trapResultObj).
ReturnlfAbrupt(resultDesc).
Call CompletePropertyDescriptor(resultDesc, undefined).
Let valid be IsCompatiblePropertyDescriptor (extensibleTarget, resultDesc, targetDesc).
If valid is false, then throw a TypeError exception.
If resultDesc.[[Configurable]] is false, then
a. IftargetDesc is undefined or targetDesc.[[Configurable]] is true, then
i. Throw a TypeError exception.
Return resultDesc.

[[GetOwnProperty]] for proxy objects enforces the following invariants:
The result of [[GetOwnProperty]] must be either an Object or undefined.
A property cannot be reported as non-existent, if it exists as a_non-configurable own. property of the target
object.
A property cannot be reported as non-existent, if it exists-as an own property of the target object and the
target object is not extensible.
A property cannot be reported as existent, if it does not exists as an own property of the target object and
the target object is not extensible.
A property cannot be reported as non-configurable, if it does notexists as an own property of the target
object or if it exists as a configurable own property of the target object.
The result of [[GetOwnProperty]] can be applied to the target object using [[DefineOwnProperty]] and will not
throw an exception.

[[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Proxy-object O is called with property key P
and Property Descriptor Desc, the following steps are taken:

N s v =

e

10.

11.
12.
13.
14.

15.
16.
17.
18.

19.

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "defineProperty").

ReturnIfAbrupt(zrap).

If trap-issundefined, then

a: Return the result of calling the [[DefineOwnProperty]] internal method of targer with
arguments P and Desc.

Let descObj be FromPropertyDescriptor(Desc).

NOTE If Desc was originally generated from an object using ToPropertyDescriptor, then descObj will

be that original object.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this

value and a new List containing target, P, and descObj.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnlfAbrupt(booleanTrapResult).

If booleanTrapResult is false, then return false.

Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with

argument P.

ReturnIfAbrupt(targetDesc).

Let extensibleTarget be IsExtensible(target).

ReturnIfAbrupt(extensibleTarget).

If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then

a. Let settingConfigFalse be true.

Else let settingConfigFalse be false.

© Ecma International 2014 121

eCmd

20.

21.

22.

NOTE

If targetDesc is undefined, then

a. If extensibleTarget is false, then throw a TypeError exception.

b. IfsettingConfigFalse is true, then throw a TypeError exception.

Else targetDesc is not undefined,

a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc , targetDesc) is false, then throw a
TypeError exception.

b. [IfsettingConfigFalse is true and targetDesc.[[Configurable]] is true, then throw a TypeError
exception.

Return true.

[[DefineOwnProperty]] for proxy objects enforces the following invariants:
A property cannot be added, if the target object is not extensible.
A property cannot be added as or modified to be non-configurable, if it does not exists as a non-configurable
own property of the target object.
A property may not be non-configurable, if is corresponding configurable property of the target object exists.
If a property has a corresponding target object property then apply the Property Descriptor of the property to
the target object using [[DefineOwnProperty]] will not throw an exception.

9.5.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

Nk L=

10.
11.

12.

NOTE

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal slot of O:
If handler is null, then throw a TypeError exception.
Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "has").
ReturnIfAbrupt(zrap):
If trap is undefined, then
a. Return the result of calling the [[HasProperty]] internal method of target with argument P.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target and P.
Let booleanTrapResult be ToBoolean(trapResult).
ReturnlfAbrupt(booleanTrapResult).
If booleanTrapResult is false, then
a. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of zarget with
argument P.
. ReturnIfAbrupt(targetDesc).
c. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
ii. Let extensibleTarget be IsExtensible(target).
iii. . ReturnIfAbrupt(extensibleTarget).
iv. If extensibleTarget is false, then throw a TypeError exception.
Return booleanTrapResult.

[[HasProperty]] for proxy objects enforces the following invariants:
A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target
object.
A property cannot be reported as non-existent, if it exists as an own property of the target object and the
target object is not extensible.

© Ecma International 2014 122

oecnd

9.5.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of an exotic Proxy object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

Nk wN =

11.
12.

13.

NOTE

9.5.9

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "get").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Get]] internal method of targef with arguments P and Receiver.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing farget, P, and Receiver.

ReturnIfAbrupt(trapResult).

. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with

argument P.

ReturnlfAbrupt(targetDesc).

If targetDesc is not undefined, then

a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, then throw a TypeError

exception.

b. IfIsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Get]] is undefined, then
i. If trapResult is not undefined, then throw a TypeError exception.

Return trapResult.

[[Get]] for proxy.objects enforces the following invariants:
The value reported for a property must be the same as the value of the corresponding target object property
if the target object property is a non-writable, non-configurable data property.
The value reported. for a property must.be undefined if the corresponding corresponding target object
property is non-configurable ‘accessor property that-has undefined as its [[Get]] attribute.

[[Set]] (P, V; Receiver)

When the [[Set]] internal method of an exotic Proxy object O is called with property key P, value ¥, and
ECMAScript language value Receiver, the following steps are taken:

Nownkw g

8.
9.
10.
11.

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "set").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Set]] internal method of farget with arguments P, V, and
Receiver.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this

value and a new List containing target, P, V, and Receiver.

Let booleanTrapResult be ToBoolean(trapResult).

ReturnIfAbrupt(booleanTrapResult).

If booleanTrapResult is false, then return false.

© Ecma International 2014 123

eCmd

12. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.
13. ReturnIfAbrupt(targetDesc).
14. If targetDesc is not undefined, then
a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, then throw a TypeError exception.
b. IfIsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is.false, then
i. IftargetDesc.[[Set]] is undefined, then throw a TypeError exception.
15. Return true.

NOTE [[Set]] for proxy objects enforces the following invariants:
e Cannnot change the value of a property to be different from the value of the corresponding target object
property if the corresponding target object property is a non-writable, non-configurable data property.
e Cannot set the value of a property if the corresponding corresponding target object property is a non-
configurable accessor property that has undefined as its [[Set]] attribute.

9.5.10 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Proxy object O‘is called with property name P the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "deleteProperty").

ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return the result of calling the [[Delete]] internal method of target with argument P.

8. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target and P.

9. Let booleanTrapResult be ToBoolean(trapResult).

10. ReturnIfAbrupt(booleanTrapResult).

11. If booleanTrapResult is false, then return false.

12. LettargetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.

13. ReturnIfAbrupt(targetDesc).

14. If targetDesc is undefined, then return true.

15. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.

16. Return true.

Nk L=

NOTE [[Delete]] for proxy objects enforces the following invariant:
e A property cannotbe deleted, if it exists as a non-configurable own property of the target object.

9.5.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of an exotic Proxy object O is called the following steps are
taken:

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

4. Let trap be GetMethod(handler, "enumerate").

W N =

© Ecma International 2014 124

eCmd

\O o0

NOTE

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Enumerate]] internal method of target.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing target.

ReturnlfAbrupt(trapResult).

If Type(trapResult) is not Object, then throw a TypeError exception.

. Return trapResult.

[[Enumerate]] for proxy objects enforces the following invariants:
The result of [[Enumerate]] must be an Object.

9.5.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Proxy object O is called the following steps

are taken:
1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
2. If handler is null, then throw a TypeError exception.
3. Let target be the value of the [[ProxyTarget]] internal slot of O.
4. Let trap be GetMethod(handler, "ownKeys").
5. ReturnIfAbrupt(zrap).
6. Iftrap is undefined, then

\O o0

11.

NOTE

a. Return the result of calling the [[OwnPropertyKeys]] internal method of target.

Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this
value and a new List containing farget.

ReturnIfAbrupt(trapResult).

If Type(trapResult) is not:Object, then throw a TypeError exception.

. TODO: we may need to add a lot of additional invariant checking here according to the wiki spec.

But maybe it really isn’t necessary
Return trapResult.

[[OwnPropertyKeys]] for proxy objects enforces the following invariants:
The result of [[OwnPropertyKeys]] must be an Object.

9.5.13 [[Call]] (thisArgument, argumentsList)

The {[Call]] internal method of an exotic Proxy object O is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

AN B WN =

~

NOTE

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "apply").

ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return the result of calling the [[Call]] internal method of farget with arguments thisArgument
and argumentsList.

Let argArray be CreateArrayFromList(argumentsList).

Return the result of calling the [[Call]] internal method of trap with handler as the this value and a

new List containing farget, thisArgument, and argArray.

A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal

slot is an object that has a [[Call]] internal method.
© Ecma International 2014 125

secind

9.5.14 [[Construct]] Internal Method

The [[Construct]] internal method of an exotic Proxy object O is called with a single parameter
argumentsList which is a possibly empty List of ECMAScript language values. The following steps are
taken:

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, then throw a TypeError exception.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "construct").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. If target does not have a [[Construct]] internal method, then throw a TypeError exception.

b. Return the result of calling the [[Construct]] internal method of targef with argument
argumentsList.

7. Let argArray be CreateArrayFromList(argumentsList).

8. Let newObj be the result of calling trap with handler as the this value and a new List containing
target and argArray.

9. ReturnlfAbrupt(newObyj).

10. If Type(newObj) is not Object, then throw a TypeError exception.

11. Return newObj.

[N R N

NOTE 1 A Proxy exotic object only has a [[Construct]] internal method. if the initial value of its [[ProxyTarget]]
internal slot is an object that has a [[Construct]] internal method.

NOTE 2 [[Construct]]] for proxy objects enforces the following invariants:
e The result of [[Construct]] must be an Object.

9.5.15 ProxyCreate(target,chandler) Abstract Operation

The abstract operationProxyCreate with arguments target and handler is used to specify the creation of
new Proxy exotic objects. It performs the following steps:

If Type(target) is not Object, throw a TypeError Exception.
If Type(handler) is not Object, throw a TypeError Exception.
Let P be anewly created object.
Set P’s essential internal methods to the definitions specified in 9.5.
If IsCallable(farget) is true, then
a. Set the [[Call]] internal method of P as specified in 9.5.13.
b. If target has a [[Construct]] internal method, then
i. Set the [[Construct]] internal method of P as specified in 9.5.14.
6. Set the [[ProxyTarget]] internal slot of P to target.
Set the [[ProxyHandler]] internal slot of P to handler.
8. Return P.

DN AW~

~

10 ECMAScript Language: Source Code
10.1 Source Text

Syntax

SourceCharacter ::
any Unicode code point

© Ecma International 2014 126

»eCma

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of code points. All Unicode code point values from U+0000 to U+10FFFF, including surrogate
code points, may occur in source text where permitted by the ECMAScript grammars. The actual
encodings used to store and interchange ECMAScript source text is not relevant to this specification.
Regardless of the external source text encoding, a conforming ECMAScript implementation processes
the source text as if it was an equivalent sequence of SourceCharacter values. Each SourceCharacter being
a Unicode code point. Conforming ECMAScript implementations are not required to perform any
normalisation of text, or behave as though they were performing normalisation of text.

The components of a combining character sequence are treated as individual Unicode code points even
though a user might think of the whole sequence as a single character.

NOTE In string literals, regular expression literals,template literals and‘identifiers, any Unicode code point may
also be expressed using Unicode escape sequences that explicitly express a code point’s numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java
program, if the Unicode escape sequence \u000A, for example, occurs within a_single-line comment, it is interpreted
as a line terminator (Unicode character 000A is line feed) and therefore the next character is not part of the comment.
Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of \u000A to
cause a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape
sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of the
comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program always
contributes a Unicode code unit or code point (depending upon the first of the escape) to the literal and is never
interpreted as a line terminator or as a quote mark that might terminate the string literal.

10.1.1 Static Semantics: UTF-16Encoding
The UTF-16Encoding of a:-numeric code point value, ¢p, is determined as follows:

Assert: 0 < ¢p < 0x10FFFF.

If cp < 65535, then return cp.

Let cul be floor((cp— 65536) / 1024) + 55296..NOTE 55296 is 0xD800.
Let cu2 be ((cp — 65536) modulo 1024) + 56320. NOTE 56320 is 0xDC00.
Return the code unit sequence consisting of cu/ followed by cu?2.

(S T SN ST S

10.1.2 Static Semantics: UTF16Decode(lead, trail)

Two code units, lead and trail, that form a UTF-16 surrogate pair are converted to a code point by
performing.the following steps:

1. Assert: 0xD800 < /ead < 0xDBFF and 0xDCO00 < trail < 0xDFFF.
2. Let cp be (lead—55296)x1024+(trail-56320)+65536. NOTE 55296 is 0xD800 and 56320 is 0xDCO0.
3. Return the code point cp.

10.2 Types of Source Code
There are four types of ECMAScript code:
e Global code is source text that is treated as an ECMAScript Script. The global code of a

particular Script does not include any source text that is parsed as part of a FunctionBody,
GeneratorBody, ConciseBody, ClassBody, or ModuleBody.

© Ecma International 2014 127

»eCma

e FEval code is the source text supplied to the built-in eval function. More precisely, if the
parameter to the built-in eval function is a String, it is treated as an ECMAScript Script. The
eval code for a particular invocation of eval is the global code portion of that Script.

e Function code is source text that is parsed to supply the value of the [[Code]] internal slot (see
9.1.14) of function and generator objects. It includes the code that defines and initializes the
formal parameters of the function. The function code of a particular function or generator does
not include any source text that is parsed as the function code of a nested FunctionBody,
GeneratorBody, ConciseBody, or ClassBody.

e Module code is source text that is code that is provided as a ModuleBody. It is the code that is
directly evaluated when a module is initialized. The module code of a particular module does
not include any source text that is parsed as part of a nested FunctionBody, GeneratorBody,
ConciseBody, ClassBody, or ModuleBody.

NOTE Function code is generally provided as the bodies: of Function Definitions (14.1), Arrow Function
Definitions (14.2), Method Definitions (14.3) and Generator Definitions (14.4). Function code is also derived from the
last argument to the Function constructor (19.2.1.1) and the GeneratorFunction constructor (25.2.1.1).

10.2.1 Strict Mode Code

An ECMAScript Script syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the four types of ECMAScript code are referred to as
module code, strict global code, strict eval code, and strict function code. Code is interpreted as strict
mode code in the following situations:

e Global code is strict global code if it begins with' a Directive Prologue that contains a Use Strict
Directive (see 14.1.1).

¢ Module code is always strict code.
o All parts of a ClassDeclaration or'a ClassExpression are strict code.

o Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive
or if the call to eval is a direct call (see 18.2.1.1) to the eval function that is contained in strict mode
code.

e < Function code that is part of a FunctionDeclaration, FunctionExpression, GeneratorDeclaration,
GeneratorExpression, MethodDefinition, or ArrowFunction is strict function code if its
GeneratorDeclaration, GeneratorExpression, MethodDefinition, or ArrowFunction is contained in strict
mode code or if its FunctionBody begins with a Directive Prologue that contains a Use Strict Directive.

e Function code that' is supplied as the last argument to the built-in Function constructor is strict
function code if the last argument is a String that when processed as a FunctionBody begins with a
Directive Prologue that contains a Use Strict Directive.

10.2.2 Non-ECMAScript Functions
An ECMAScript implementation may support the evaluation of exotic function objects whose evaluative

behaviour is expressed in some implementation defined form of executable code other than via
ECMAScript code. Whether a function object is an ECMAScript code function or a non-ECMAScript

© Ecma International 2014 128

secind

function is not semantically observable from the perspective of an ECMAScript code function that calls or
is called by such a non-ECMAScript function.

11 ECMAScript Language: Lexical Grammar

The source text of an ECMAScript script is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical
grammar. The InputElementDiv goal symbol is the default goal symbol and is used in those syntactic
grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp goal symbol is used in all syntactic grammar contexts where a
RegularExpressionLiteral is permitted. The InputElementTemplateTail goal is used in syntactic grammar
contexts where a TemplateLiteral logically continues after a substitution element.

NOTE There are no syntactic grammar contexts where both a leadi