
Sweeten Your JavaScript: Hygienic Macros for ES5

Tim Disney
UC Santa Cruz

Nathan Faubion
Flow Corp.

David Herman
Mozilla Corp.

Cormac Flanagan
UC Santa Cruz

Abstract
Lisp and Scheme have demonstrated the power of macros to enable
programmers to evolve and craft languages. In languages with more
complex syntax, macros have had less success. In part, this has
been due to the difficulty in building expressive hygienic macro
systems for such languages. JavaScript in particular presents unique
challenges for macro systems due to ambiguities in the lexing stage
that force the JavaScript lexer and parser to be intertwined.

In this paper we present a novel solution to the lexing ambiguity
of JavaScript that enables us to cleanly separate the JavaScript lexer
and parser by recording enough history during lexing to resolve
ambiguities. We give an algorithm for this solution along with
a proof that it does in fact correctly resolve ambiguities in the
language. Though the algorithm and proof we present is specific to
JavaScript, the general technique can be applied to other languages
with ambiguous grammars. With lexer and parser separated, we
then implement an expressive hygienic macro system for JavaScript
called sweet.js.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.4 [Programming Lan-
guages]: Processors—Parsing

Keywords Macros, JavaScript, Hygiene

1. Introduction
Expressive macro systems have a long history in the design of
extensible programming languages going back to Lisp and Scheme
[15, 22] as a powerful tool that enables programmers to craft their
own languages.

While macro systems have found success in many Lisp-derived
languages, they have not been widely adopted in languages such
as JavaScript. In part, this failure is due to the difficulty of im-
plementing macro systems for languages without fully delimited
s-expressions. A key feature of a sufficiently expressive macro sys-
tem is the ability for macros to manipulate unparsed and unexpanded

[Copyright notice will appear here once ’preprint’ option is removed.]

subexpressions. In a language with parentheses like Scheme, manip-
ulating unparsed subexpressions is simple:

(if (> denom 0)
(/ x denom)
(error "divide by zero"))

The Scheme reader converts the source string into nested s-
expressions, which macros can easily manipulate. Since each subex-
pression of the if form is a fully delimited s-expression, it is easy
to implement if as a macro.

Conceptually, the Scheme compiler lexes a source string into a
stream of tokens which are then read into s-expressions before being
macro expanded and parsed into an abstract syntax tree.

lexer Token∗−−−→ reader
Sexpr−−→ expander/parser AST−−→

As a first step to designing a Scheme-like macro system for
JavaScript, it is necessary to introduce a read step into the compiler
pipeline. However, the design of a correct reader for full JavaScript
turns out to be surprisingly subtle, due to ambiguities in how regular
expression literals (such as /[0-9]*/) and the divide operator (/)
should be lexed. In traditional JavaScript compilers, the parser and
lexer are intertwined. Rather than run the entire program through
the lexer once to get a sequence of tokens, the parser calls out to the
lexer from a given grammatical context with a flag to indicate if the
lexer should accept a regular expression or a divide operator, and
the input character stream is tokenized accordingly. So if the parser
is in a context that accepts a regular expression, the characters “/x/”
will be lexed into the single token /x/ otherwise it will lex into the
individual tokens /, x, and /.

lexer
feedback
↼−−−−−−−−⇁

Token∗
parser AST−−→

It is necessary to separate the parser and lexer in order to implement a
macro system for JavaScript. Our JavaScript macro system, sweet.js,
includes a separate reader that converts a sequence of tokens into a
sequence of token trees (a little analogous to s-expressions) without
feedback from the parser.

lexer Token∗−−−→ reader TokenTree∗−−−−−→ expander/parser AST−−→

This enables us to finally separate the JavaScript lexer and parser
and build a fully hygienic macro system for JavaScript. The reader
records sufficient history information in the form of token trees in
order to correctly decide whether to parse a sequence of tokens
/x/g as a regular expression or as division operators (as in 4.0/x/g).
Surprisingly, this history information needs to be remembered from
arbitrarily far back in the token stream.

1 2014/8/21

Figure 1: The sweet.js editor

While the algorithm for resolving ambiguities we present in this
paper is specific to JavaScript, the technique of recording history in
the reader with token trees can be applied to other languages with
ambiguous grammars.

Once JavaScript source has been correctly read, there are still a
number of challenges to building an expressive macro system. The
lack of parentheses in particular make writing declarative macro
definitions difficult. For example, the if statement in JavaScript
allows undelimited then and else branches:

if (denom > 0)
x / denom;

else
throw "divide by zero";

It is necessary to know where the then and else branches end to
correctly implement an if macro but this is complicated by the lack
of delimiters.

The solution to this problem that we take is by progressively
building a partial AST during macro expansion. Macros can then
match against and manipulate this partial AST. For example, an if
macro could indicate that the then and else branches must be single
statements and then manipulate them appropriately.

This approach, called enforestation, was pioneered by Honu
[29, 30], which we adapt here for JavaScript1. In addition, we make
two extensions to the Honu technique that enable more expressive
macros to be built. First, as described in Section 4.2 we add support
for infix macros, which allow macros to match syntax both before
and after the macro identifier. Secondly, we implement the invoke

1 The syntax of Honu is similar to JavaScript but does not support regular
expression literals, which simplifies their reader.

Figure 2: AST for Simplified JavaScript

e ∈ AST ::= x | /r/ | {x: e} | (e) | e.x | e(e)
| e / e | e + e | e = e | {e} | x:e | if (e) e
| return | return e
| function x (x) {e} | e e

pattern class, described in Section 4.3, which allows macro authors
to extend the patterns used to match syntax.

Sweet.js is implemented in JavaScript and takes source code
written with sweet.js macros and produces the expanded source
that can be run in any JavaScript environment. The project web
page2 includes an interactive browser-based editor that makes it
simple to try out writing macros without requiring any installation.
Figure 1 shows the editor in action; a macro implementing classes
is being edited in the left pane and the right pane continually shows
the expanded output. There is already an active community using
sweet.js to, for example, implement significant features from the
upcoming ES6 version of JavaScript [24] or implement pattern
matching in JavaScript [12].

2. Reading JavaScript
Parsers give structure to unstructured source code. In parsers without
macro systems this is usually accomplished by a lexer (which

2 http://sweetjs.org

2 2014/8/21

http://sweetjs.org

Figure 3: Simplified Read Algorithm

Punctuator ::= / | + | : | ; | = | .
Keyword ::= return | function | if
Token ::= x | Punctuator | Keyword

| { | } | (|)
k ∈ TokenTree ::= x | Punctuator | Keyword

| /r/ | (t) | {t}
r ∈ RegexPat ::= x | { | } | (|)
x ∈ Variable
s ∈ Token∗

t, p ∈ TokenTree∗

isExprPrefix : TokenTree∗ → Bool→ Int→ Bool
isExprPrefix(ε, true, l) = true
isExprPrefix(p · /, b, l) = true
isExprPrefix(p · +, b, l) = true
isExprPrefix(p · =, b, l) = true
isExprPrefix(p · :, b, l) = b
isExprPrefix(p · returnl, b, l′) = false if l 6= l′

isExprPrefix(p · returnl, b, l′) = true if l = l′

isExprPrefix(p, b, l) = false

read : Token∗ → TokenTree∗ → Bool→ TokenTree∗

read(/ · r · / · s, ε, b) = /r/ · read(s, /r/, b)
read(/ · r · / · s, p · k, b) = /r/ · read(s, p · k · /r/, b)

if k ∈ Punctuator ∪ Keyword
read(/ · r · / · s, p · if · (t), b) = /r/ · read(s, p · if · (t) · /r/, b)
read(/ · r · / · s, p · functionl · x · (t) · {t′}, b) = /r/ · read(s, p · functionl · x · (t) · {t′} · /r/, b)

if isExprPrefix(p, b, l) = false
read(/ · r · / · s, p · {t}l, b) = /r/ · read(s, p · {t}l · /r/, b)

if isExprPrefix(p, b, l) = false

read(/ · s, p · x, b) = / · read(s, p · x · /, b)
read(/ · s, p · /x/, b) = / · read(s, p · /x/ · /, b)
read(/ · s, p · (t), b) = / · read(s, p · (t) · /, b)
read(/ · s, p · functionl · x · (t) · {t′}, b) = / · read(s, p · functionl · x · (t) · {t′} · /, b)

if isExprPrefix(p, b, l) = true
read(/ · s, p · {t}l, b) = / · read(s, p · {t}l · /, b)

if isExprPrefix(p, b, l) = true

read((· s ·) · s′, p, b) = (t) · read(s′, p · (t), b)
where s contains no unmatched) where t = read(s, ε, false)

read({l · s · } · s′, p, b) = {t}l · read(s′, p · {t}l, b)
where s contains no unmatched } where t = read(s, ε, isExprPrefix(p, b, l))

read(x · s, p, b) = x · read(s, p · x, b)
read(ε, p, b) = ε

converts a character stream to a token stream) and a parser (which
converts the token stream into an AST according to a context-
free grammar). A system with macros must implement a macro
expander that sits between the lexer and parser. Some macros
systems, such as the C preprocessor [19], work over just the token
stream. However, to implement truly expressive Scheme-like macros
that can manipulate groups of unparsed tokens, it is necessary to
structure the token stream via a reader, which performs delimiter
matching and enables macros to manipulate delimiter-grouped
tokens.

As mentioned in the introduction, the design of a correct reader
for JavaScript is surprisingly subtle due to ambiguities between
lexing regular expression literals and the divide operator. This
disambiguation is critical to the correct implementation of read
because delimiters can appear inside of a regular expression literal.
If the reader failed to distinguish between a regular expression/divide
operator, it could result in incorrectly matched delimiters.

function makeRegex () {
// results in a parse error if the
// first / is incorrectly read as divide
return /}/;

}

A key novelty in sweet.js is the design and implementation of
a reader that correctly distinguishes between regular expression
literals and the divide operator for full ES5 JavaScript3. For clarity
of presentation, this paper describes the implementation of read
for the subset of JavaScript shown in Figure 4, which retains the
essential complications of the full version of read.

2.1 Formalism
In our formalism in Figure 3, read takes a Token sequence. Tokens
are the output of a very simple lexer, which we do not define here.
This lexer does not receive feedback from the parser like the ES5
lexer does, and so does not distinguish between regular expressions
and the divide operator. Rather it simply lexes slashes into the
ambiguous / token. Tokens also include keywords, puncutators, the

3 Our implementation also has initial support for code written in the upcom-
ing ES6 version of JavaScript.

3 2014/8/21

Figure 4: Simplified ES5 Grammar

PrimaryExprx ::= x
PrimaryExpr/r/ ::= / · x · /
PrimaryExpr{x:e} ::= { · x · : · AssignExpre · }
PrimaryExpr(e) ::= (· AssignExpre ·)

MemberExpre ::= PrimaryExpre
MemberExpre ::= Functione

MemberExpre.x ::= MemberExpre · . · x

CallExpre (e′) ::= MemberExpre · (· AssignExpre′ ·)
CallExpre (e′) ::= CallExpre · (· AssignExpre′ ·)
CallExpre.x ::= CallExpre . x

BinaryExpre ::= CallExpre
BinaryExpre / e′ ::= BinaryExpre · / · BinaryExpre′
BinaryExpre + e′ ::= BinaryExpre · + · BinaryExpre′

AssignExpre ::= BinaryExpre
AssignExpre = e′ ::= CallExpre · = · AssignExpre′

StmtListe ::= Stmte
StmtListe e′ ::= StmtListe · Stmte′

Stmt{e} ::= { · StmtListe · }
Stmtx: e ::= x · : · Stmte
Stmte ::= AssignExpre · ; where lookahead 6= { or function
Stmtif (e) e′ ::= if · (· AssignExpre ·) · Stmte′
Stmtreturn ::= return
Stmtreturn e ::= return · [no line terminator here] AssignExpre · ;

Functionfunction x (x′) {e} ::= function · x · (· x′ ·) · { · SourceElementse · }

SourceElemente ::= Stmte
SourceElemente ::= Functione

SourceElementse ::= SourceElemente
SourceElementse e′ ::= SourceElementse · SourceElemente′

Programe ::= SourceElementse
Program ::= ε

(unmatched) delimiters, and variable identifiers.

Punctuator ::= / | + | : | ; | = | .
Keyword ::= return | function | if
Token ::= x | Punctuator | Keyword

| { | } | (|)
x, y ∈ Variable
s ∈ Token∗

The job of read is then to produce a correct TokenTree sequence.
Token trees include regular expression literals /r/, where r is the
regular expression body. We simplify regular expression bodies to
just a variable and the individual delimiters, which captures the
essential problems of parsing regular expressions. Token trees also
include fully matched delimiters with nested token tree sequences
(t) and {t} rather than individual delimiters (we write token
tree delimiters with an underline to distinguish them from token

delimiters).

k ∈ TokenTree ::= x | Punctuator | Keyword
| /r/ | (t) | {t}

r ∈ RegexPat ::= x | { | } | (|)
t, p ∈ TokenTree∗

Each token and token tree also carries their line number from
the original source string. Line numbers are needed because there
are edge cases in the JavaScript grammar where newlines influence
parsing. For example, the following function returns the object literal
{x: y} as expected.
function f(y) {

return { x: y }
}

However, adding a newline causes this function to return undefined,
because the grammar calls for an implicit semicolon to be inserted
after the return keyword.
function g(y) {

4 2014/8/21

return
{ x: y }

}

For clarity of presentation, we leave token line numbers implicit
unless we require them, in which case we use the notation {l where
l is a line number.

We write a token sequence by separating elements with a dot
so the source string “foo(/)/)” is lexed into a sequence of six
tokens foo · (· / ·) · / ·). The equivalent token tree sequence is
foo · (· /)/ ·).

2.2 Read Algorithm
The key idea of read is to maintain a prefix of already read token
trees. When the reader comes to a slash and needs to decide if it
should read the slash as a divide token or the start of a regular
expression literal, it consults the prefix. Looking back at most five
tokens trees in the prefix is sufficient to disambiguate the slash
token. Note that this may correspond to looking back an unbounded
distance in the original token stream.

Some of the cases of read are relatively obvious. For example,
if the token just read was one of the binary operators (e.g. the + in
f ·+ ·/ ·} ·/) the slash will always be the start of a regular expression
literal.

Other cases require additional context to disambiguate. For
example, if the previous token tree was a parentheses (e.g. foo · (·
x ·) · / · y) then slash will be the divide operator, unless the token
tree before the parentheses was the keyword if, in which case it is
actually the start of a regular expression (since single statement if
bodies do not require braces).

if (x) /}/ // regex

One of the most complicated cases is a slash after curly braces.
Part of the complication here is that curly braces can either indicate
an object literal (in which case the slash should be a divide) or a
block (in which case the slash should be a regular expression), but
even more problematic is that both object literals and blocks with
labeled statements can nest. For example, in the following code
snippet the outer curly brace is a block with a labeled statement x,
which is another block with a labeled statement y followed by a
regular expression literal.

{
x:{y: z} /}/ // regex

}

But if we change the code slightly, the outer curly braces become
an object literal and x is a property so the inner curly braces are also
an object literal and thus the slash is a divide operator.

o = {
x:{y: z} /x/g // divide

}

While it is unlikely that a programmer would attempt to inten-
tionally perform division on an object literal, it is not a parse error. In
fact, this is not even a runtime error since JavaScript will implicitly
convert the object to a number (technically NaN) and then perform
the division (yielding NaN).

The reader handles these cases by checking if the prefix of a
curly brace forces the curly to be an object literal or a statement
block and then setting a boolean flag to be used while reading the
tokens inside of the braces.

Based on this discussion, our reader is implemented as a function
that takes a sequence of tokens, a prefix of previously read token
trees, a boolean indicating if the token stream currently being read
is inside an object literal, and returns a sequence of token trees.

read : Token∗ → TokenTree∗ → Bool→ TokenTree∗

The implementation of read shown in Figure 3 includes an
auxiliary function isExprPrefix used to determine if the prefix for a
curly brace indicates that the braces should be part of an expression
(i.e. the braces are an object literal) or if they should be a block
statement.

Interestingly, the isExprPrefix function must also be used when
the prefix before a slash contains a function definition. This is
because there are two kinds of function definitions in JavaScript,
function expressions and function declarations, and these also
affect how slash is read. For example, a slash following a function
declaration is always the start of a regular expression:
function f() {}
/}/ // regex

However, a slash following a function expression is a divide opera-
tor:
x = function f() { }
/y/g // divide

As in the object literal case, it is unlikely that a programmer would
attempt to intentionally divide a function expression but it is not an
error to do so.

2.3 Proving Read
To show that our read algorithm correctly distinguishes divide
operations from regular expression literals, we show that a parser
defined over normal tokens produces the same AST as a parser
defined over the token trees produced from read.

The parser for normal tokens is defined in Figure 4, and generates
ASTs in the abstract syntax shown in Figure 2. A parser for the
nonterminal Program is a function from a sequence of tokens to an
AST.

Program :: Token∗ → AST
We use notation whereby the grammar production Programe ::=
SourceElementse means to match the input sequence with
SourceElementse and produce the resulting AST e.

Note that the grammar we present here is a simplified version
of the grammar specified in the ECMAScript 5.1 standard [21] and
many nonterminal names are shortened versions of nonterminals in
the standard. It is mostly straightforward to extend the algorithm pre-
sented here to the full sweet.js implementation for ES5 JavaScript.

In addition to the Program parser just described, we also define
a parser Program’ that works over token trees. The rules of the two
parsers are identical, except that all rules with delimiters and regular
expression literals change as follows:

PrimaryExpr/r/ ::= / · r · /
PrimaryExpr’/r/ ::= /r/
PrimaryExpr(e) ::= (· AssignExpre ·)
PrimaryExpr’(e) ::= (AssignExpr’e)

To prove that read is correct, we show that the following two
parsing strategies give identical behavior:

• The traditional parsing strategy takes a token sequence s and
parses s into an AST e using the traditional parser Programe.

• The second parsing strategy first reads s into a token tree
sequence read(s, ε, false), and then parses this token tree
sequence into an AST e via Program’e.

Theorem 1 (Parse Equivalence).
∀s ∈ Token∗.
s ∈ Programe ⇔ read(s, ε, false) ∈ Program’e

Proof. The proof proceeds by induction on ASTs to show that parse
equivalence holds between all corresponding nonterminals in the
two grammars. We present the details of this proof in an appendix
available online [10].

5 2014/8/21

3. Writing Macros
The sweet.js system provides two kinds of macros: rule macros
(analogous to syntax-rules in Scheme [7]) and case macros (anal-
ogous to syntax-case in Scheme [20]). Rule macros are the simpler
of the two and work by matching on a pattern and generating a
template:

macro <name > {
rule { <pattern > } => { <template > }

}

For example, the following macro introduces a new function
definition form:

macro def {
rule {

$name ($params (,) ...) { $body ... }
} => {

function $name ($params ...) {
$body ...

}
}

}
def id (x) { return x; }
// expands to:
// function id (x) { return x; }

The pattern is matched against the syntax following the macro
name. Identifiers in a pattern that begin with $ are pattern variables
and bind the syntax they match in the template (identifiers that do not
begin with $ are matched literally). The ellipses ($params (,)...)
mean match zero or more tokens separated by commas.

The above example shows the power of matching delimited
groups of syntax (i.e. matching all the tokens inside the function
body). In order for macros to be convenient in a language like
JavaScript, it is necessary to have the ability to match logical
groupings of syntax that are not fully delimited. For example,
consider the let macro:

macro let {
rule { $id = $init:expr } => {

var $id = $init
}

}
let x = 40 + 2;
// expands to:
// var x = 40 + 2;

The initialization of a let can be an arbitrary expression so we
use the pattern class :expr to greedily match the largest possible
expression, so in this example the entire expression 40 + 2 is bound
to $init.

Note that sweet.js does not provide a non-greedy form of :expr
so there is no way, for example, to match the pattern $x:expr +
10. In our experience to date it appears rare to need to match on
syntax that extends an expression and so have avoided increasing the
complexity of the implementation and pattern matching language
by adding a non-greedy form.

Along with the template-based rule macros, sweet.js also pro-
vides the more powerful procedural case macros. While rule macros
just provide term rewriting, case macros allow macro authors to use
JavaScript code to procedurally create and manipulate syntax. For
example, the following macro creates a string from the contents of a
file.

macro fromFile {
case {_ ($path) } => {

var fname = unwrapSyntax (#{ $path});
var f = readFile(fname);
letstx $content = [makeValue(f, #{here})];
return #{ $content}

}
}
var s = fromFile ("./file.txt")
// expands to:
// s = "contents of file";

Syntax bound in the macro pattern can be referenced inside of
JavaScript code using the notation #{ ... }. Here we take the
file name token matched by the macro (#{$path}), unwrap it (like
in Scheme, tokens that can be manipulated by a case macro are
represented as a syntax object which wraps a token with its lexical
context used to maintain hygiene so unwrapping extracts just the
token), and read4 the file into a variable. The makeValue function is
used to create a string syntax object (#{here} is just a placeholder
for the lexical context used for hygiene) from the context of the file
and letstx (analogous to with-syntax in Scheme) binds that new
syntax object to a pattern variable $content that can be used inside
of a template.

4. Enforestation
The token tree structure produced by the reader is sufficient to im-
plement an expressive macro system for a fully delimited language
like Scheme. However since most of the syntax forms in a language
like JavaScript are only partially delimited, it is necessary to pro-
vide additional structure during expansion that allows macros to
manipulate undelimited or partially delimited groups of tokens. As
an example, consider the let macro described earlier:

macro let {
rule { $id = $init:expr } => {

var $id = $init
}

}
let x = 40 + 2;
// expands to:
// var x = 40 + 2;

Like many syntactic forms in JavaScript, the variable initial-
ization expression is an undelimited group of tokens. Building an
expressive macro system requires that the macro can match and
manipulate patterns such as an expression.

Sweet.js groups tokens by transforming a token tree into a term
tree through a technique pioneered by the Honu language called en-
forestation [29]. Enforestation works by progressively recognizing
and grouping (potentially undelimited) syntax forms (e.g. literals,
identifiers, expressions, and statements) during expansion. Essen-
tially, enforestation delimits undelimited syntax.

A term tree is a kind of proto-AST that represents a partial parse
of the program. As the expander passes through the token trees, it
creates term trees that contain unexpanded sub trees that will be
expanded once all macro definitions have been discovered in the
current scope (as discussed in Section 5.1).

For an example of how enforestation progresses, consider the
following use of the let macro:

macro let {
rule { $id = $init:expr } => {

var $id = $init
}

}
function foo(x) {

let y = 40 + 2;
return x + y;

}
foo (100);

4 Note that readFile will depend on the particular JavaScript environment
in which sweet.js is being run (e.g. in node.js it might be fs.readFile and
in the browser it might be an XMLHttpRequest).

6 2014/8/21

Enforestation begins by loading the let macro into the macro
environment and converting the function declaration into a term
tree (we use angle brackets to denote the term tree data structure).
Notice that the body of the function has not yet been enforested in
the first pass.

<fn: foo ,
args: (x),
body: {

let y = 40 + 2;
return x + y;

}>
foo (100);

Next, a term tree is created for the function call.

<fn: foo ,
params: (x),
body: {

let y = 40 + 2;
return x + y;

}>
<call: foo , args: (100)>

On the second pass through the top level scope the expander moves
into the function body. The use of let is expanded away and the var
and return term trees are created.

<fn: foo ,
params: (x),
body: {

<var: x, init: <op: +, left: 40, right: 2>
<return: <op: +, left: x right: y>

}>
<call: foo , args: (100)>

The additional structure provided by the term trees allow macros
to match undelimited groups of tokens like binary expressions, such
as <op: +, left: 40, right: 2>.

4.1 Custom Operators
The macros we have described so far are prefix macros: the macro
identifier appears before the syntax that it matches. While prefix
macros are sufficient for many syntax forms, other forms require
additional flexibility.

Following Honu, sweet.js provides custom operators, which
are user definable unary and binary operators. Custom operators
provide the ability to set custom precedence and associativity along
with a syntax transformation. For example, using sweet.js the
exponentiation operator can be defined as:

operator (^^) 14 right
{ $base , $exp } => #{ Math.pow($base , $exp) }

y + x ^^ 10 ^^ 100 - z
// expands to:
// y + Math.pow(x, Math.pow(10, 100)) - z;

4.2 Infix Macros
While powerful, custom operators are limited in that their operands
must be expressions, they cannot match on arbitrary syntax. This
restriction means that with just prefix macros and custom operators
it is impossible to define syntax forms like the arrow functions in
the upcoming ES6 version of JavaScript:

id = (x) => x
// equivalent to:
// id = (function(x) { return x; });

One of the primary goals of sweet.js is to enable the kinds
of syntax extension previously only done by the standardization

committee. But, prefix macros are not capable of implementing
syntax extensions like arrow functions since the macro name (=>) is
in the middle of its syntax arguments and the syntax on the left hand
side of the arrow is not an expression (meaning custom operators
are not sufficient to implement arrow functions).

To address this limitation, sweet.js introduces infix macros, which
allow a macro to match syntax that comes before and after the macro
identifier. Infix macros are defined by adding the keyword infix
after the rule or case keyword and placing a pipe (|) in the pattern
where the macro name would appear (the pipe can be thought of as
a cursor into the token stream).

For example, the following infix macro implements arrow func-
tions5:

macro => {
rule infix {

($params ...) | { $body:expr }
} => {

function ($params ...) {
return $body;

}
}

}

var id = (x) => x
// expands to:
// var id = function (x) { return x; }

Standard prefix macro transformers are invoked with the se-
quence of tokens following the macro identifier and then return a
modified sequence of tokens that are then expanded:

transformer : TokenTree∗ → TokenTree∗

To implement infix macros, we modify the type of a transformer to
take two arguments, one for the tokens that precede the macro iden-
tifier and the other with the tokens that follow. The transformer may
then consume from either end as needed, yielding new preceding
and following tokens:

transfomerinfix : (TokenTree∗, TokenTree∗)
→ (TokenTree∗, TokenTree∗)

A naive implementation of this transformer type will lead to
brittle edge cases. For example:

bar(x) => x

Here the => macro is juxtaposed next to a function call, which we
did not intend to be valid syntax. The naive expansion results in
unparsable code:

bar function(x) { return x; }

In more subtle cases, a naive expansion might result in code that
actually parses but has incorrect semantics, leading to a debugging
nightmare.

To avoid this problem we provide the macro transformer with
both the previous tokens and their term tree representation.

transfomerinfix : ((TokenTree∗, TermTree∗), TokenTree∗)
→ (TokenTree∗, TokenTree∗)

We verify that an infix macro only matches previous tokens within
boundaries delimited by the term trees. In our running example:

bar(x) => x

is first enforested to:

<call: bar , args: (x)> => x

5 For simplicity, this example does not bind this in the same manner as full
ES6 arrow functions, though it is straightforward to do so.

7 2014/8/21

before invoking the => transformer with both the tokens bar(x) and
the term tree <call: bar, args: (x)>. When the macro attempts
to match just (x), it detects that the parentheses splits the term tree
<call: bar, args: (x)> and fails the match.

While infix macros fill the gap left by custom operators and allow
us to write previously undefinable macros such as arrow functions,
they also come with two limitations. First, there is no way to set
custom precedence or associativity as with operators. It is unclear
if this is a fundamental limitation or if there is some technique that
might allow custom precedence and associativity for infix macros.
The second limitation is that the preceding tokens to an infix macro
must be first expanded. This means that any macros that occur before
an infix macro will be invoked first.

This behavior introduces an asymmetry between the kinds of
syntax an infix macro can match before its identifier and the kinds
of syntax it can match after since the syntax following the identifier
can contain unexpanded macros.

Even with these limitations infix, macros work as a powerful
complement to custom operators and greatly extend the kinds of
syntax forms that can be implemented with macros.

4.3 Invoke and Pattern Classes
Extensibility is the guiding design principle of any expressive macro
system. Since the entire point of macros is to extend the expressive
power of the language, so too should the macro system itself be
extensible by users. To that end sweet.js provides a mechanism to
extend the patterns used by macros to match their arguments.

As motivation, consider the following macro that matches against
color options:

macro colors_options {
rule { (red) } => { ["#FF0000"] }
rule { (green) } => { ["#00 FF00"] }
rule { (blue) } => { ["#0000 FF"] }

}
r = colors_options (red)
g = colors_options (green)
// expands to:
// r = ["# FF0000 "]
// g = ["#00 FF00"]

Macros can have multiple rules and the first rule to match (from top
to bottom) is used. While this macro seems to work, attempting to
generalize it quickly leads to a mess:

macro colors_options {
rule { (red , red) } => {

["#FF0000", "#FF0000"]
}
rule { (red , green) } => {

["#FF0000", "#00 FF00"]
}
rule { (red , blue) } => {

["#FF0000", "#0000FF"]
}
// ... etc.

}
r = colors_options (red , green)
g = colors_options (green , blue)
// expands to:
// r = ["# FF0000", "#00 FF00"]
// g = ["#00 FF00", "#0000 FF"]

While it is possible to solve this problem through the use of case
macros, the declarative intent is quickly lost in a mess of token
manipulation code.

Our solution to this problem is the :invoke pattern class. This
pattern class takes as a parameter a macro name which is inserted
into the token tree stream before matching. If the inserted macro
successfully matches its arguments, the result of its expansion is

bound to the pattern variable. This makes declarative options simple
to write:

macro color {
rule { red } => { "#FF0000" }
rule { green } => { "#00 FF00" }
rule { blue } => { "#0000FF" }

}
macro colors_options {

rule { ($opt:invoke(color) (,) ...) } => {
[$opt (,) ...]

}
}
colors_options (red , green , blue , blue)
// expands to:
// ["# FF0000", "#00 FF00", "#0000 FF", "#0000 FF"]

Here the color macro plays the role of enumerating the valid colors
that can be matched and bound to $opt. If the token is not in one of
the rules for color (e.g. orange), the colors_options macro will
fail to match.

As a sweet added bit of sugar, the use of :invoke can be inferred
by just using the name of a macro in scope (i.e. $opt:color is
equivalent to $opt:invoke(color)).

macro color {
rule { red } => { "#FF0000" }
rule { green } => { "#00 FF00" }
rule { blue } => { "#0000FF" }

}
macro colors_options {

rule { ($opt:color (,) ...) } => {
[$opt (,) ...]

}
}
colors_options (red , green , blue , blue)
// expands to:
// ["# FF0000", "#00 FF00", "#0000 FF", "#0000 FF"]

By using :invoke, macro writers can encode patterns like alter-
nates, optional tokens, keyword classes, numeric classes, and more
in a declarative style.

5. Hygiene
Maintaining hygiene during macro expansion is perhaps the single
most critical feature of an expressive macro system. The hygiene
condition enables macros to be true syntactic abstractions by
removing the burden of reasoning about a macro’s implementation
details from the user of a macro.

Our implementation of hygiene for sweet.js follows the Scheme
approach [14, 20] of tracking the lexical context in each syntax
object.

5.1 Macro Binding Limitation
Unfortunately, the syntax of JavaScript does place a limitations on
our system that is not present in Scheme. The hygiene algorithm in
Scheme allows definitions and uses of macros to be freely mixed
in a given lexical scope. In particular, a macro can be used in an
internal definition before its definition:

(define (foo)
(define y (id 100))
(define-syntax-rule (id x) x)
(+ y y))

;; expands to:
;; (define (foo)
;; (define y 100)
;; (+ y y))

In order to support mixing use and definition, the Scheme
expander must make multiple passes through a scope. The first pass

8 2014/8/21

registers any macro definitions and the second pass expands any
uses of macros discovered during the first pass. Critically, during the
first pass the expander does not expand inside internal definitions.

For example, after the first pass of expansion the above example
will become:

(define (foo)
(define y (id 100))
(+ y y))

where the id macro has been registered in the macro environment.
During the second pass, the expander will expand macros inside of
internal definitions and so the example becomes:

(define (foo)
(define y 100)
(+ y y))

Scheme is able to defer expansion of macros inside of internal
definitions because internal definitions are fully delimited. The
expander can skip over all of the syntax inside of the delimiter
because there actually is an inside to skip over. However, this is
not true for JavaScript since var statements (JavaScript’s equivalent
of Scheme’s internal definitions) are not delimited and so it is not
possible to use a macro that has not yet been defined in a var
statement in sweet.js.

For example, this will fail:

function foo() {
var y = id 100;
macro id { rule { $x } => { $x } }
return y + y;

}

When the expander reaches the var statement during the first pass,
it has not yet loaded the id macro into the macro environment
and so id 100 will be left unexpanded. Since id 100 is not a valid
expression, this will fail to parse. Without delimiters there is no way
to defer expansion of the right-hand side of a var statement.

Note that at first glance it might appear that the semicolon could
serve to delimit a var statement but this will not work for two
reasons. First, a semicolon is just a token which might be comsumed
by a macro. Second, the JavaScript specification calls for missing
semicolons to be automatically inserted by the parser, which means
it is not guaranteed that a semicolon will close every var statement.

Though the expander cannot defer expansion of var statements,
it still does two passes so that the second pass can expand inside of
delimiters. For example, a macro can be used inside of a function
body that appears before the macro definition:

function foo() {
return id 100;

}
macro id { rule { $x } => { $x } }
// expands to:
// function foo() {
// return 100;
// }

While it is unfortunate that the syntax of JavaScript prevents
fully general mixing of macro use and definition, the primary need
for flexible macro definition locations is when writing mutually
recursive macros, which is fully supported with our approach.

6. Discussion
The primary contribution this paper has presented is the separation
of the lexer and the parser for JavaScript by way of a reader. Though
the algorithm and proof presented here is JavaScript specific, the
general technique can be leveraged in other languages in which
ambiguities are present in the lexing phase.

For example, Perl 5 shares the / ambiguity with JavaScript [27]
and in Rust [2] the token < is ambiguous—it can signify either the
less than operator or the start of a template—and this ambiguity is
resolved by intertwining the lexer and parser.

fn foo <T>(x: int , v: Vec <T>) -> bool {
return x < 10;

}

The key insight of our approach is that the structure inherent
in a token tree (in which delimited tokens are grouped together)
provides a way to efficiently resolve ambiguities by looking at a
relatively small prefix of token trees. The specific prefix required to
disambiguate tokens such as / or < will depend on the grammar of
the language in question but we hypothesize that our basic technique
could be applied for other languages. Verifying this hypothesis is an
interesting topic for future work.

In addition to enabling the construction of a macro system (the
motivation for our work here), a correct reader also enables other
tools that benefit from the additional structure provided by token
trees such as robust syntax highlighters or editors that can correctly
manipulate the structure of code while avoiding the expense of a
full parse or expansion. The reader algorithm also allows traditional
JavaScript parsers to be built with a cleaner design where the lexing
and parsing stages are separated. The JavaScript parser Esprima [1]
has incorporated our reader algorithm into their lexing stages to
accomplish this separation.

7. Related Work
Macros have been extensively used and studied in Lisp [15, 28] and
related languages for many years. Scheme in particular has embraced
macros, pioneering the development of declarative definitions [22]
and working out the hygiene conditions for term rewriting macros
(rule macros) [7] and procedural macros (case macros) [20] that
enable true composability. In addition there has been work to
integrate procedural macros and module systems [13, 17]. Racket
takes it even further by extending the Scheme macro system with
deep hooks into the compilation process [14, 35] and robust pattern
specifications [9].

In addition, there are a number of macro systems for languages
with more traditional syntax that are not fully delimited. As men-
tioned before, sweet.js is most closely related to Honu [29, 30].
In contrast with Honu, which does not include regular expression
literals, we solve the reader ambiguity problem for JavaScript and
introduce infix macros along with the invoke pattern class.

Macro systems that use a similar technique as Honu include
Fortress [4] and Dylan [5] however they only provide support for
term rewriting macros (our rule macros). Dylan’s auxilary rules are
similar to our invoke pattern class. Nemerle [33] also uses a similar
technique but does not allow local definitions of macros.

The Marco system [23] is an interesting alternative approach
that presents a cross-language macro system. Rather than tightly
integrate the macro system with a specific language Marco provides
a separate macro definition language that can compile to multiple
languages. While this approach provides generality it sacrifices
language specific expressiveness (e.g. name clashes are errors in
their system while they are just renamed in ours).

C++ templates [3] are a powerful compile time meta program-
ming facility for C++. In contrast to C++ templates sweet.js provides
more syntactic flexibility in the definable syntactic forms along with
the ability to define transformations in the host language rather than
the just the template language.

Template Haskell [32] makes a tradeoff by forcing the macro call
sites to always be demarcated. The means that macros are always a
second class citizen; macros in Haskell cannot seamlessly build a

9 2014/8/21

language on top of Haskell in the same way that Scheme and Racket
can.

Some systems such as SugarJ [11], ometa [37], Xtc [18], Xoc [8],
and Polyglot [26] provide extensible grammars but require the
programmer to reason about parser details. Multi stage systems such
as mython [31] and MetaML [25, 34] can also be used to create
macros systems like MacroML [16]. Systems like Stratego [36]
transforms syntax using its own language, separate from the host
language. Metaborg [6] and SugarJ [11] are syntax extension
facilities built on top of Stratego.

8. Conclusion
We have presented sweet.js, a hygienic macro system for JavaScript.
Our macro system follows in the footsteps of Scheme by providing
declarative and procedural macro definition functionality.

In addition we presented an algorithm for read that correctly
handles key ambiguities in the JavaScript grammar that allows the
lexer and parser to be separated for the first time in JavaScript.

References
[1] The Esprima JavaScript Parser. http://esprima.org/.

[2] The Rust Language. http://www.rust-lang.org/.

[3] A. Alexandrescu. Modern C++ design: generic programming and
design patterns applied. 2001.

[4] E. Allen, R. Culpepper, and J. Nielsen. Growing a syntax. Proceedings
of Workshop on Foundations of Object-Oriented Languages, 2009.

[5] J. Bachrach, K. Playford, and C. Street. D-Expressions: Lisp Power,
Dylan Style. Style DeKalb IL, 1999.

[6] M. Bravenboer and E. Visser. Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions.
OOPSLA ’04 Proceedings of the 19th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and
applications, 2004.

[7] W. Clinger. Macros that work. In Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages - POPL ’91, pages 155–162, New York, New York, USA,
Jan. 1991. ACM Press.

[8] R. Cox, T. Bergan, and A. Clements. Xoc, an extension-oriented com-
piler for systems programming. ACM SIGARCH Computer Architecture
News, 2008.

[9] R. Culpepper and M. Felleisen. Fortifying macros. In Proceedings
of the 15th ACM SIGPLAN international conference on Functional
programming - ICFP ’10, volume 45, page 235, New York, New York,
USA, Sept. 2010. ACM Press.

[10] T. Disney, N. Faubion, D. Herman, and C. Flanagan. The
Sweet.js Appendix. https://github.com/mozilla/sweet.js/
blob/master/doc/dls2014/sweetjs-appendix.pdf.

[11] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: library-
based syntactic language extensibility. OOPSLA ’11 Proceedings of the
2011 ACM international conference on Object oriented programming
systems languages and applications, 2011.

[12] N. Faubion. The Sparkler project. https://github.com/
natefaubion/sparkler.

[13] M. Flatt. Composable and compilable macros: You Want it When?
ICFP ’02 Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, 37(9):72–83, Sept. 2002.

[14] M. Flatt and R. Culpepper. Macros that Work Together. Journal of
Functional Programming, 2012.

[15] J. Foderaro, K. Sklower, and K. Layer. The FRANZ Lisp Manual. 1983.

[16] S. Ganz, A. Sabry, and W. Taha. Macros as multi-stage computations:
type-safe, generative, binding macros in MacroML. ICFP ’01 Proceed-
ings of the sixth ACM SIGPLAN international conference on Functional
programming, 2001.

[17] A. Ghuloum and R. K. Dybvig. Implicit phasing for R6RS libraries.
ICFP ’07 Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming, 42(9):303, Oct. 2007.

[18] R. Grimm. Better extensibility through modular syntax. PLDI ’06
Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, 2006.

[19] S. P. Harbison and J. Steele, G. L. C: A Reference Manual. Prentice-
Hall, 1984.

[20] R. Hieb, R. Dybvig, and C. Bruggeman. Syntactic abstraction in
scheme. Lisp and symbolic computation, 5(4):295–326, 1992.

[21] E. C. M. A. International. ECMA-262 ECMAScript Language Specifi-
cation. Number June. ECMA (European Association for Standardizing
Information and Communication Systems), 5.1 edition, 2011.

[22] E. E. Kohlbecker and M. Wand. Macro-by-example: Deriving syntactic
transformations from their specifications. In Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages - POPL ’87, pages 77–84, New York, New York, USA, Oct.
1987. ACM Press.

[23] B. Lee, R. Grimm, M. Hirzel, and K. McKinley. Marco: safe, expressive
macros for any language. ECOOP 2012–Object-Oriented . . . , 2012.

[24] J. Long. The es6-macros project. https://github.com/
jlongster/es6-macros.

[25] M. Martel and T. Sheard. Introduction to multi-stage programming
using metaml. 1997.

[26] N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An extensible
compiler framework for Java. Compiler Construction, 2003.

[27] PerlMonks. On Parsing Perl. http://www.perlmonks.org/?node_
id=44722.

[28] K. M. Pitman. Special forms in Lisp. In Proceedings of the 1980 ACM
conference on LISP and functional programming - LFP ’80, pages
179–187, New York, New York, USA, Aug. 1980. ACM Press.

[29] J. Rafkind. Syntactic extension for languages with implicitly delimited
and infix syntax. PhD thesis, 2013.

[30] J. Rafkind and M. Flatt. Honu: Syntactic Extension for Algebraic
Notation through Enforestation. Proceedings of the 11th International
Conference on Generative Programming and Component Engineering,
2012.

[31] J. Riehl. Language embedding and optimization in mython. DLS ’09
Proceedings of the 5th symposium on Dynamic languages, 2009.

[32] T. Sheard and S. Jones. Template meta-programming for Haskell.
Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, 2002.

[33] K. Skalski, M. Moskal, and P. Olszta. Meta-programming in Nemerle.
Proceedings Generative Programming and Component Engineering,
2004.

[34] W. Taha and T. Sheard. Multi-stage programming with explicit anno-
tations. PEPM ’97 Proceedings of the 1997 ACM SIGPLAN sympo-
sium on Partial evaluation and semantics-based program manipulation,
1997.

[35] S. Tobin-Hochstadt and V. St-Amour. Languages as libraries. PLDI ’11
Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, 2011.

[36] E. Visser. Program transformation with Stratego/XT. Domain-Specific
Program Generation, 2004.

[37] A. Warth and I. Piumarta. OMeta: an object-oriented language for
pattern matching. Proceedings of the 2007 symposium on Dynamic
languages, 2007.

10 2014/8/21

http://esprima.org/
http://www.rust-lang.org/
https://github.com/mozilla/sweet.js/blob/master/doc/dls2014/sweetjs-appendix.pdf
https://github.com/mozilla/sweet.js/blob/master/doc/dls2014/sweetjs-appendix.pdf
https://github.com/natefaubion/sparkler
https://github.com/natefaubion/sparkler
https://github.com/jlongster/es6-macros
https://github.com/jlongster/es6-macros
http://www.perlmonks.org/?node_id=44722
http://www.perlmonks.org/?node_id=44722

	Introduction
	Reading JavaScript
	Formalism
	Read Algorithm
	Proving Read

	Writing Macros
	Enforestation
	Custom Operators
	Infix Macros
	Invoke and Pattern Classes

	Hygiene
	Macro Binding Limitation

	Discussion
	Related Work
	Conclusion

