
Sweeten Your JavaScript: Hygienic Macros for ES5

Tim Disney
UC Santa Cruz

Nathan Faubion
Flow Corp.

David Herman
Mozilla Corp.

Cormac Flanagan
UC Santa Cruz

Abstract
Lisp and Scheme have demonstrated the power of macros
to enable programmers to evolve and craft languages. In
languages with more complex syntax, macros have had
less success. In part, this has been due to the difficulty
in building expressive hygienic macro systems for such
languages. JavaScript in particular presents unique challenges
for macro systems due to ambiguities in the lexing stage that
force the JavaScript lexer and parser to be intertwined.

In this paper we present a novel solution to the lexing
ambiguity of JavaScript that enables us to cleanly separate the
JavaScript lexer and parser. This separated lexer and parser
allows us to implement an expressive hygienic macro system
for JavaScript called sweet.js.

1. Introduction
Expressive macro systems have a long history in the design
of extensible programming languages going back to Lisp and
Scheme [12, 19] as a powerful tool that enables programmers
to craft their own languages.

While macro systems have found success in many Lisp-
derived languages, they have not been widely adopted in
languages such as JavaScript. In part, this failure is due to
the difficulty in implementing macro systems in languages
that are not fully delimited. A key feature of a sufficiently ex-
pressive macro system is the ability for macros to manipulate
unparsed and unexpanded subexpressions. In a language with
parentheses like Scheme, manipulating unparsed subexpres-
sions is simple:

[Copyright notice will appear here once ’preprint’ option is removed.]

(if (> denom 0)
(/ x denom)
(error "divide by zero"))

The Scheme reader converts the source string into nested s-
expressions, which macros can easily manipulate. Since each
subexpression of the if form is a fully delimited s-expression,
it is easy to implement if as a macro.

Conceptually, the Scheme compiler lexes a source string
into a stream of tokens which are then read into s-expressions
before being macro expanded and parsed into an abstract
syntax tree.

lexer Token∗−−−−→ reader
Sexpr−−−→ expander/parser AST−−→

As a first step to designing a Scheme-like macro system
for JavaScript, it is necessary to introduce a read step into
the compiler pipline. However, the design of a correct reader
for full JavaScript turns out to be surprisingly subtle, due
to ambiguities in how regular expression literals (such as
/[0-9]*/) and the divide operator (/) should be lexed. In
traditional JavaScript compilers, the parser and lexer are
intertwined. Rather than run the entire program through the
lexer once to get a sequence of tokens, the parser calls out
to the lexer from a given grammatical context with a flag to
indicate if the lexer should accept a regular expression or a
divide operator, and the input character stream is tokenized
accordingly. So if the parser is in a context that accepts a
regular expression, the characters “/x/” will be lexed into
the single token /x/ otherwise it will lex into the individual
tokens /, x, and /.

lexer
feedback
↼−−−−−−−−⇁

Token∗
parser AST−−→

It is necessary to separate the parser and lexer in order to
implement a macro system for JavaScript. Our JavaScript
macro system, sweet.js, includes a separate reader that con-
verts a sequence of tokens into a sequence of token trees (a
little analogous to s-expressions) without feedback from the

1 2014/3/25

Figure 1: The sweet.js editor

parser.

lexer Token∗−−−−→ reader TokenTree∗−−−−−−→ expander/parser AST−−→

This enables us to finally separate the JavaScript lexer and
parser and build a fully hygienic macro system for JavaScript.
The reader records sufficient history information in order
to correctly decide whether to parse a sequence of tokens
/x/g as a regular expression or as division operators (as in
4.0/x/g). Surprisingly, this history information needs to be
remembered from arbitrarily far back in the token stream.

Once JavaScript source has been correctly read, there are
still a number of challenges to building an expressive macro
system. The lack of parentheses in particular make writing
declarative macro definitions difficult. For example, the if
statement in JavaScript allows undelimited then and else

branches:
if (denom > 0)

x / denom;
else

throw "divide by zero";

It is necessary to know where the then and else branches end
to correctly implement an if macro but this is complicated
by the lack of delimiters.

The solution to this problem that we take is by pro-
gressively building a partial AST during macro expansion.

Macros can then match against and manipulate this partial
AST. For example, an if macro could indicate that the then
and else branches must be single statements and then manip-
ulate them appropriately.

This approach, called enforestation, was pioneered by
Honu [24, 25], which we adapt here for JavaScript1. In
addition, we make two extensions to the Honu technique
that enable more expressive macros to be built. First, as
described in Section 4.1 we add support for infix macros,
which allow macros to match syntax both before and after the
macro identifier. Secondly, we implement the invoke pattern
class, described in Section 4.2, which allows macro authors
to extend the patterns used to match syntax.

Sweet.js is implemented in JavaScript and takes source
code written with sweet.js macros and produces the expanded
source that can be run in any JavaScript environment. The
project web page2 includes an interactive browser-based
editor that makes it simple to try out writing macros without
requiring any installation. Figure 1 shows the editor in action;
a macro implementing classes is being edited in the left pane
and the right pane continually shows the expanded output.

1 Honu does not support regular expression literals, which simplifies their
reader.
2 http://sweetjs.org

2 2014/3/25

http://sweetjs.org

Figure 2: AST for Simplified JavaScript

e ∈ AST ::= x | /r/ | {x: e} | (e) | e.x | e(e)
| e / e | e + e | e = e | {e} | x:e | if (e) e
| return | return e
| function x (x) {e} | e e

There is already an active community using sweet.js to, for
example, implement significant features from the upcoming
ES6 version of JavaScript [20] or implement pattern matching
in JavaScript [9].

This paper we present a reader implementation that ad-
dresses the complexities of JavaScript (Section 2), including
regular expression literals, together with a correctness proof
(Section 2.1) for this reader. We also describe our implemen-
tation of a hygienic macro system for JavaScript (Sections
3 and 4) which includes the ability to define infix macros
(Section 4.1) that match on arbitrary surrounding syntax and
the invoke primitive (Section 4.2) to allow custom parser
classes and more powerful matching.

2. Reading JavaScript
Parsers give structure to unstructured source code. In parsers
without macro systems this is usually accomplished by a
lexer (which converts a character stream to a token stream)
and a parser (which converts the token stream into an AST
according to a context-free grammar). A system with macros
must implement a macro expander that sits between the lexer
and parser. Some macros systems, such as the C preprocessor
[16], work over just the token stream. However, to implement
truly expressive Scheme-like macros that can manipulate
groups of unparsed tokens, it is necessary to structure the
token stream via a reader, which performs delimiter matching
and enables macros to manipulate delimiter-grouped tokens.

As mentioned in the introduction, the design of a correct
reader for JavaScript is surprisingly subtle due to ambigui-
ties between lexing regular expression literals and the divide
operator. This disambiguation is critical to the correct imple-
mentation of read because delimiters can appear inside of a
regular expression literal. If the reader failed to distinguish
between a regular expression/divide operator, it could result
in incorrectly matched delimiters.
function makeRegex () {

return /}/;
}

A key novelty in sweet.js is the design and implementa-
tion of a reader that correctly distinguishes between regu-
lar expression literals and the divide operator for full ES5
JavaScript3. For clarity of presentation, this paper describes

3 Our implementation also has initial support for the upcoming ES6 version
of JavaScript.

the implementation of read for the subset of JavaScript shown
in Figure 4, which retains the essential complications of the
full version of read.

In our formalism in Figure 3, read takes a Token sequence.
Tokens are the output of a very simple lexer, which we do not
define here. This lexer does not receive feedback from the
parser like the ES5 lexer does, and so does not distinguish
between regular expressions and the divide operator. Rather it
simply lexes slashes into the ambiguous / token. Tokens also
include keywords, puncutators, the (unmatched) delimiters,
and variable identifiers.

Punctuator ::= / | + | : | ; | = | .
Keyword ::= return | function | if
Token ::= x | Punctuator | Keyword

| { | } | (|)
x, y ∈ Variable
s ∈ Token∗

The job of read is then to produce a correct TokenTree
sequence. Token trees include regular expression literals
/r/, where r is the regular expression body. We simplify
regular expression bodies to just a variable and the individual
delimiters, which captures the essential problems of parsing
regular expressions. Token trees also include fully matched
delimiters with nested token tree sequences (t) and {t} rather
than individual delimiters (we write token tree delimiters with
an underline to distinguish them from token delimiters).

k ∈ TokenTree ::= x | Punctuator | Keyword
| /r/ | (t) | {t}

r ∈ RegexPat ::= x | { | } | (|)
t, p ∈ TokenTree∗

Each token and token tree also carries their line number
from the original source string. Line numbers are needed
because there are edge cases in the JavaScript grammar
where newlines influence parsing. For example, the following
function returns the object literal {x: y} as expected.
function f(y) {

return { x: y }
}

However, adding a newline causes this function to return
undefined, because the grammar calls for an implicit semi-
colon to be inserted after the return keyword.
function g(y) {

return
{ x: y }

}

For clarity of presentation, we leave token line numbers
implicit unless we require them, in which case we use the
notation {l where l is a line number.

We write a token sequence by separating elements with a
dot so the source string “foo(/)/)” is lexed into a sequence
of six tokens foo · (· / ·) · / ·). The equivalent token tree
sequence is foo · (/)/).

3 2014/3/25

Figure 3: Simplified Read Algorithm

Punctuator ::= / | + | : | ; | = | .
Keyword ::= return | function | if
Token ::= x | Punctuator | Keyword

| { | } | (|)
k ∈ TokenTree ::= x | Punctuator | Keyword

| /r/ | (t) | {t}
r ∈ RegexPat ::= x | { | } | (|)
x ∈ Variable
s ∈ Token∗

t, p ∈ TokenTree∗

isExprPrefix : TokenTree∗ → Bool→ Int→ Bool
isExprPrefix(ε, true, l) = true
isExprPrefix(p · /, b, l) = true
isExprPrefix(p · +, b, l) = true
isExprPrefix(p · =, b, l) = true
isExprPrefix(p · :, b, l) = b
isExprPrefix(p · returnl, b, l′) = false if l 6= l′

isExprPrefix(p · returnl, b, l′) = true if l = l′

isExprPrefix(p, b, l) = false

read : Token∗ → TokenTree∗ → Bool→ TokenTree∗

read(/ · r · / · s, ε, b) = /r/ · read(s, /r/, b)
read(/ · r · / · s, p · k, b) = /r/ · read(s, p · k · /r/, b)

if k ∈ Punctuator ∪ Keyword
read(/ · r · / · s, p · if · (t), b) = /r/ · read(s, p · if · (t) · /r/, b)
read(/ · r · / · s, p · functionl · x · (t) · {t′}, b) = /r/ · read(s, p · functionl · x · (t) · {t′} · /r/, b)

if isExprPrefix(p, b, l) = false
read(/ · r · / · s, p · {t}l, b) = /r/ · read(s, p · {t}l · /r/, b)

if isExprPrefix(p, b, l) = false

read(/ · s, p · x, b) = / · read(s, p · x · /, b)
read(/ · s, p · /x/, b) = / · read(s, p · /x/ · /, b)
read(/ · s, p · (t), b) = / · read(s, p · (t) · /, b)
read(/ · s, p · functionl · x · (t) · {t′}, b) = / · read(s, p · functionl · x · (t) · {t′} · /, b)

if isExprPrefix(p, b, l) = true
read(/ · s, p · {t}l, b) = / · read(s, p · {t}l · /, b)

if isExprPrefix(p, b, l) = true

read((· s ·) · s′, p, b) = (t) · read(s′, p · (t), b)
where s contains no unmatched) where t = read(s, ε, false)

read({l · s · } · s′, p, b) = {t}l · read(s′, p · {t}l, b)
where s contains no unmatched } where t = read(s, ε, isExprPrefix(p, b, l))

read(x · s, p, b) = x · read(s, p · x, b)
read(ε, p, b) = ε

The key idea of read is to maintain of prefix of already read
token trees. When the reader comes to a slash and needs to
decide if it should read the slash as a divide token or the start
of a regular expression literal, it consults the prefix. Looking
back at most five tokens trees in the prefix is sufficient to
disambiguate the slash token. Not that this may correspond
to looking back an unbounded distance in the original token
stream.

Some of the cases of read are relatively obvious. For
example, if the token just read was one of the binary operators
(e.g. the + in f · + · / · } · /) the slash will always be the start
of a regular expression literal.

Other cases require additional context to disambiguate.
For example, if the previous token tree was a parentheses (e.g.
foo · (· x ·) · / · y) then slash will be the divide operator,
unless the token tree before the parentheses was the keyword
if, in which case it is actually the start of a regular expression
(since single statement if bodies do not require braces).

if (x) /}/ // regex

One of the most complicated cases is a slash after curly
braces. Part of the complication here is that curly braces can
be either an object literal (in which case the slash should be a
divide) or it could be a block (in which case the slash should
be a regular expression), but even more problematic is that

4 2014/3/25

Figure 4: Simplified ES5 Grammar

PrimaryExprx ::= x
PrimaryExpr/r/ ::= / · x · /
PrimaryExpr{x:e} ::= { · x · : · AssignExpre · }
PrimaryExpr(e) ::= (· AssignExpre ·)

MemberExpre ::= PrimaryExpre
MemberExpre ::= Functione

MemberExpre.x ::= MemberExpre · . · x

CallExpre (e′) ::= MemberExpre · (· AssignExpre′ ·)
CallExpre (e′) ::= CallExpre · (· AssignExpre′ ·)
CallExpre.x ::= CallExpre . x

BinaryExpre ::= CallExpre
BinaryExpre / e′ ::= BinaryExpre · / · BinaryExpre′
BinaryExpre + e′ ::= BinaryExpre · + · BinaryExpre′

AssignExpre ::= BinaryExpre
AssignExpre = e′ ::= CallExpre · = · AssignExpre′

StmtListe ::= Stmte
StmtListe e′ ::= StmtListe · Stmte′

Stmt{e} ::= { · StmtListe · }
Stmtx: e ::= x · : · Stmte
Stmte ::= AssignExpre · ; where lookahead 6= { or function
Stmtif (e) e′ ::= if · (· AssignExpre ·) · Stmte′
Stmtreturn ::= return
Stmtreturn e ::= return · [no line terminator here] AssignExpre · ;

Functionfunction x (x′) {e} ::= function · x · (· x′ ·) · { · SourceElementse · }

SourceElemente ::= Stmte
SourceElemente ::= Functione

SourceElementse ::= SourceElemente
SourceElementse e′ ::= SourceElementse · SourceElemente′

Programe ::= SourceElementse
Program ::= ε

5 2014/3/25

both object literals and blocks with labeled statements can
nest. For example, in the following code snippet the outer
curly brace is a block with a labeled statement x, which is
another block with a labeled statement y followed by a regular
expression literal.

{
x:{y: z} /}/ // regex

}

But if we change the code slightly, the outer curly braces
become an object literal and x is a property so the inner curly
braces are also an object literal and thus the slash is a divide
operator.

o = {
x:{y: z} /x/g // divide

}

While it is unlikely that a programmer would attempt to
intentionally perform division on an object literal, it is not
a parse error. In fact, this is not even a runtime error since
JavaScript will implicitly convert the object to a number
(technically NaN) and then perform the division (yielding NaN).

The reader handles these cases by checking if the prefix
of a curly brace forces the curly to be an object literal or a
statement block and then setting a boolean flag to be used
while reading the tokens inside of the braces.

Based on this discussion, our reader is implemented as a
function that takes a sequence of tokens, a prefix of previously
read token trees, a boolean indicating if the token stream
currently being read is inside an object literal, and returns a
sequence of token trees.

read : Token∗ → TokenTree∗ → Bool→ TokenTree∗

The implementation of read shown in Figure 3 includes
an auxiliary function isExprPrefix used to determine if the
prefix for a curly brace indicates that the braces should be
part of an expression (i.e. the braces are an object literal) or
if they should be a block statement.

Interestingly, the isExprPrefix function must also be used
when the prefix before a slash contains a function definition.
This is because there are two kinds of function definitions in
JavaScript, function expressions and function declarations,
and these also affect how slash is read. For example, a slash
following a function declaration is always the start of a regular
expression:

function f() {}
/}/ // regex

However, a slash following a function expression is a divide
operator:

x = function f() { }
/y/g // divide

As in the object literal case, it is unlikely that a programmer
would attempt to intentionally divide a function expression
but it is not an error to do so.

2.1 Proving Read
To show that our read algorithm correctly distinguishes divide
operations from regular expression literals, we show that a
parser defined over normal tokens produces the same AST as
a parser defined over the token trees produced from read.

The parser for normal tokens is defined in Figure 4, and
generates ASTs in the abstract syntax shown in Figure 2.
A parser for the nonterminal Program is a function from a
sequence of tokens to an AST.

Program :: Token∗ → AST

We use notation whereby the grammar production Programe ::=
SourceElementse means to match the input sequence with
SourceElementse and produce the resulting AST e.

Note that the grammar we present here is a simplified
version of the grammar specified in the ECMAScript 5.1
standard [18] and many nonterminal names are shortened
versions of nonterminals in the standard. It is mostly straight-
forward to extend the algorithm presented here to the full
sweet.js implementation for ES5 JavaScript.

In addition to the Program parser just described, we also
define a parser Program’ that works over token trees. The
rules of the two parsers are identical, except that all rules with
delimiters and regular expression literals change as follows:

PrimaryExpr/r/ ::= / · r · /
PrimaryExpr’/r/ ::= /r/
PrimaryExpr(e) ::= (· AssignExpre ·)
PrimaryExpr’(e) ::= (AssignExpr’e)

To prove that read is correct, we show that the following
two parsing strategies give identical behavior:

• The traditional parsing strategy takes a token sequence
s and parses s into an AST e using the traditional parser
Programe.

• The second parsing strategy first reads s into a token tree
sequence read(s, ε, false), and then parses this token tree
sequence into an AST e via Program’e.

Theorem 1 (Parse Equivalence).
∀s ∈ Token∗.
s ∈ Programe ⇔ read(s, ε, false) ∈ Program’e

Proof. The proof proceeds by induction on ASTs to show
that parse equivalence holds between all corresponding non-
terminals in the two grammars. We present the details of this
proof in Appendix A.

3. Writing Macros
The sweet.js system provides two kinds of macros: rule
macros (analogous to syntax-rules in Scheme [5]) and case
macros (analogous to syntax-case in Scheme [17]). Rule
macros are the simpler of the two and work by matching
on a pattern and generating a template:

6 2014/3/25

macro <name > {
rule { <pattern > } => { <template > }

}

For example, the following macro introduces a new func-
tion definition form:

macro def {
rule {

$name ($params (,) ...) { $body ... }
} => {

function $name ($params ...) {
$body ...

}
}

}
def id (x) { return x; }
// expands to:
// function id (x) { return x; }

The pattern is matched against the syntax following the
macro name. Identifiers in a pattern that begin with $ are
pattern variables and bind the syntax they match in the
template (identifiers that do not begin with $ are matched
literally). The ellipses ($params (,)...) mean match zero or
more tokens separated by commas.

The above example shows the power of matching delim-
ited groups of syntax (i.e. matching all the tokens inside the
function body). In order for macros to be convenient in a
language like JavaScript, it is necessary to have the ability to
match logical groupings of syntax that are not fully delimited.
For example, consider the let macro:

macro let {
rule { $id = $init:expr } => {

var $id = $init
}

}
let x = 40 + 2;
// expands to:
// var x = 40 + 2;

The initialization of a let can be an arbitrary expression
so we use the pattern class :expr to match the largest possible
expression, so in this example the entire expression 40 + 2 is
bound to $init.

Along with the template-based rule macros, sweet.js also
provides the more powerful procedural case macros. While
rule macros just provide term rewriting, case macros allow
macro authors to use JavaScript code to procedurally create
and manipulate syntax. For example, the following macro
creates a string from the contents of a file.

macro fromFile {
case {_ ($path) } => {

var fname = unwrapSyntax (#{ $path});
var f = readFile(fname);
letstx $content = [makeValue(f, #{here})];
return #{ $content}

}
}
var s = fromFile ("./file.txt")
// expands to:
// s = "contents of file";

Syntax bound in the macro pattern can be referenced inside
of JavaScript code using the notation #{ ... }. Here we take
the file name token matched by the macro (#{$path}), unwrap
it, and read4 the file into a variable. The makeValue function
is used to create a string syntax object (#{here} is just a
placeholder for the lexical context used for hygiene) from
the context of the file and letstx (analogous to with-syntax
in Scheme) binds that new syntax object to a pattern variable
$content that can be used inside of a template.

4. Enforestation
The token tree structure produced by the reader is sufficient
to implement an expressive macro system for a fully delim-
ited language like Scheme. However since most of the syntax
forms in a language like JavaScript are only partially delim-
ited, it is necessary to provide additional structure during
expansion that allows macros to manipulate undelimited or
partially delimited groups of tokens. As an example, consider
the let macro described earlier:

macro let {
rule { $id = $init:expr } => {

var $id = $init
}

}
let x = 40 + 2;
// expands to:
// var x = 40 + 2;

Like many syntactic forms in JavaScript, the variable
initialization expression is an undelimited group of tokens.
Building an expressive macro system requires that the macro
can match and manipulate patterns such as an expression.

Sweet.js groups tokens by transforming a token tree
into a term tree through enforestation [24]. Enforestation
works by progressively recognizing syntax forms (e.g. literals,
identifiers, expressions, and statements) during expansion.

A term tree is a kind of proto-AST that represents a partial
parse of the program. As the expander passes through the
token trees, it creates term trees that contain unexpanded sub
trees that will be expanded once all macro definitions have
been discovered in the current scope (as discussed in Section
5.1).

For an example of how enforestation progresses, consider
the following use of the let macro:

macro let {
rule { $id = $init:expr } => {

var $id = $init
}

}
function foo(x) {

let y = 40 + 2;
return x + y;

}
foo (100);

4 Note that readFile will depend on the particular JavaScript environment
in which sweet.js is being run (e.g. in node.js it might be fs.readFile and
in the browser it might an XMLHttpRequest).

7 2014/3/25

Enforestation begins by loading the let macro into the macro
environment and converting the function declaration into a
term tree (we use angle brackets to denote a term tree). Notice
that the body of the function has not yet been enforested in
the first pass.

<fn: foo ,
args: (x),
body: {

let y = 40 + 2;
return x + y;

}>
foo (100);

Next, a term tree is created for the function call.

<fn: foo ,
params: (x),
body: {

let y = 40 + 2;
return x + y;

}>
<call: foo , args: (100)>

On the second pass through the top level scope the expander
moves into the function body. The use of let is expanded
away and the var and return term trees are created.

<fn: foo ,
params: (x),
body: {

<var: x, init: <op: +, left: 40, right: 2>
<return: <op: +, left: x right: y>

}>
<call: foo , args: (100)>

The additional structure provided by the term trees allow
macros to match undelimited groups of tokens like binary
expressions, such as <op: +, left: 40, right: 2>.

The enforestation technique described here was first pro-
posed for the Honu language [24]. We take their technique
and extend it with two features described in the following
sections: infix macros and the invoke pattern class.

4.1 Infix Macros
The macros we have described so far must all be prefixed
by the macro identifier and syntax after the macro name is
matched. This is sufficient for many kinds of macros but
some syntax forms require the macro identifier to sit between
patterns.

For example, the upcoming ES6 version of JavaScript
includes a shorthand syntax for defining functions with arrow
notation:

id = (x) => x
// equivalent to:
// id = (function(x) { return x; }).bind(this);

One of the primary goals of sweet.js is to enable the kinds
of syntax extension previously only done by the standard-
ization committee. But, prefix macros are not capable of
implementing syntax extensions like arrow functions since
the macro name (=>) is in the middle of its syntax arguments.

Honu addressed this need for more flexible syntax trans-
formation forms in a limited fashion via user definable unary
and binary operators5. Definable operators provide the ability
to set custom precedence and associativity along with a syn-
tax transformation. For example, the exponentiation operator
could be defined as:
operator ^ 10 left {$lhs , $rhs} => {

Math.pow($lhs , $rhs)
}
2 ^ 100;
// expands to:
// Math.pow(2, 100);

Unfortunately, definable operators are limited in that their
operands must be expressions (this limitation allows setting
custom precedence and associativity rules). This restriction
means it is impossible to define syntax forms such as arrow
functions via definable operators since the syntax surrounding
the arrow is not an expression.

To address this limitation, sweet.js introduces infix macros,
which allow a macro to match syntax that comes before and
after the macro identifier. Infix macros are defined by adding
the keyword infix after the rule or case keyword and placing
a pipe (|) in the pattern where the macro name would appear
(the pipe can be thought of as a cursor into the token stream).

For example, the following infix macro implements arrow
functions:
macro => {

rule infix {
($params ...) | { $body:expr }

} => {
function ($params ...) {

return $body;
}

}
}

var id = (x) => x
// expands to:
// var id = function (x) { return x; }

Standard prefix macro transformers are invoked with the
sequence of tokens following the macro identifier and then
return a modified sequence of tokens that are then expanded:

transformer : TokenTree∗ → TokenTree∗

To implement infix macros, we modify the type of a trans-
former to take two arguments, one for the tokens that precede
the macro identifier and the other with the tokens that fol-
low. The transformer may then consume from either end as
needed, yielding new preceding and following tokens:

transfomerinfix : (TokenTree∗,TokenTree∗)
→ (TokenTree∗,TokenTree∗)

A naive implementation of this transformer type will lead
to brittle edge cases. For example:

5 Sweet.js will also provide support for definable operators though at the
time of this writing they have not yet been fully implemented.

8 2014/3/25

bar(x) => x

Here the => macro is juxtaposed next to a function call, which
we did not intend to be valid syntax. The naive expansion
results in unparsable code:

bar function(x) { return x; }

In more subtle cases, a naive expansion might result in
code that actually parses but has incorrect semantics, leading
to a debugging nightmare.

To avoid this problem we provide the macro transformer
with both the previous tokens and their term tree representa-
tion.

transfomerinfix : ((TokenTree∗,TermTree∗),TokenTree∗)
→ (TokenTree∗,TokenTree∗)

We verify that an infix macro only matches previous tokens
within boundaries delimited by the term trees. In our running
example:

bar(x) => x

is first enforested to:

<call: bar , args: (x)> => x

before invoking the => transformer with both the tokens bar(x
) and the term tree <call: bar, args: (x)>. When the macro
attempts to match just (x), it detects that the parentheses splits
the term tree <call: bar, args: (x)> and fails the match.

While infix macros fill the gap left by definable operators
and allow us to write previously undefinable macros such as
arrow functions, they also come with two limitations. First,
there is no way to set custom precedence or associativity
as with operators. It is unclear if this is a fundamental
limitation or if there is some technique that might allow
custom precedence and associativity for infix macros. The
second limitation is that the preceding tokens to an infix
macro must be first expanded. This means that any macros
that occur before an infix macro will be invoked first.

This behavior introduces an asymmetry between the kinds
of syntax an infix macro can match before its identifier and the
kinds of syntax it can match after since the syntax following
the identifier can contain unexpanded macros.

Even with these limitations infix, macros work as a power-
ful complement to definable operators and greatly extend the
kinds of syntax forms that can be implemented with macros.

4.2 Invoke and Pattern Classes
Extensibility is the guiding design principle of any expressive
macro system. Since the entire point of macros is to extend the
expressive power of the language, so too should the macro
system itself be extensible by users. To that end sweet.js
provides a mechanism to extend the patterns used by macros
to match their arguments.

As motivation, consider the following macro that matches
against color options:

macro colors_options {
rule { (red) } => { ["#FF0000"] }
rule { (green) } => { ["#00 FF00"] }
rule { (blue) } => { ["#0000 FF"] }

}
r = colors_options (red)
g = colors_options (green)
// expands to:
// r = ["# FF0000 "]
// g = ["#00 FF00"]

Macros can have multiple rules and the first rule to match
(from top to bottom) is used. While this macro seems to work,
attempting to generalize it quickly leads to a mess:

macro colors_options {
rule { (red , red) } => {

["#FF0000", "#FF0000"]
}
rule { (red , green) } => {

["#FF0000", "#00 FF00"]
}
rule { (red , blue) } => {

["#FF0000", "#0000FF"]
}
// ... etc.

}
r = colors_options (red , green)
g = colors_options (green , blue)
// expands to:
// r = ["# FF0000", "#00 FF00"]
// g = ["#00 FF00", "#0000 FF"]

While it is possible to solve this problem through the use of
case macros, the declarative intent is quickly lost in a mess
of token manipulation code.

Our solution to this problem is the :invoke pattern class.
This pattern class takes as a parameter a macro name which
is inserted into the token tree stream before matching. If the
inserted macro successfully matches its arguments, the result
of its expansion is bound to the pattern variable. This makes
declarative options simple to write:

macro color {
rule { red } => { "#FF0000" }
rule { green } => { "#00 FF00" }
rule { blue } => { "#0000FF" }

}
macro colors_options {

rule { ($opt:invoke(color) (,) ...) } => {
[$opt (,) ...]

}
}
colors_options (red , green , blue , blue)
// expands to:
// ["# FF0000", "#00 FF00", "#0000 FF", "#0000 FF"]

Here the color macro plays the role of enumerating the
valid colors that can be matched and bound to $opt. If the
token is not in one of the rules for color (e.g. orange), the
colors_options macro will fail to match.

As a sweet added bit of sugar, the use of :invoke can be
inferred by just using the name of a macro in scope (i.e.
$opt:color is equivalent to $opt:invoke(color)).

macro color {

9 2014/3/25

rule { red } => { "#FF0000" }
rule { green } => { "#00 FF00" }
rule { blue } => { "#0000FF" }

}
macro colors_options {

rule { ($opt:color (,) ...) } => {
[$opt (,) ...]

}
}
colors_options (red , green , blue , blue)
// expands to:
// ["# FF0000", "#00 FF00", "#0000 FF", "#0000 FF"]

By using :invoke, macro writers can encode patterns like
alternates, optional tokens, keyword classes, numeric classes,
and more in a declarative style.

5. Hygiene
Maintaining hygiene during macro expansion is perhaps the
single most critical feature of an expressive macro system.
The hygiene condition enables macros to be true syntactic
abstractions by removing the burden of reasoning about a
macro’s implementation details from the user of a macro.

Our implementation of hygiene for sweet.js follows the
Scheme approach [10, 17] of tracking the lexical context in
each syntax object.

5.1 Macro Binding Limitation
Unfortunately, the syntax of JavaScript does place a limita-
tions on our system that is not present in Scheme. In Scheme,
definitions and uses of macros can be freely mixed in a given
lexical scope. In particular, a macro can be used in an internal
definition before its definition:

(define (foo)
(define y (id 100))
(define-syntax-rule (id x) x)
(+ y y))

;; expands to:
;; (define (foo)
;; (define y 100)
;; (+ y y))

In order to support mixing use and definition, the Scheme
expander must make multiple passes through a scope. The
first pass registers any macro definitions and the second pass
expands any uses of macros discovered during the first pass.
Critically, during the first pass the expander does not expand
inside internal definitions.

For example, after the first pass of expansion the above
example will become:

(define (foo)
(define y (id 100))
(+ y y))

where the id macro has been registered in the macro envi-
ronment. During the second pass, the expander will expand
macros inside of internal definitions and so the example be-
comes:

(define (foo)

(define y 100)
(+ y y))

Scheme is able to defer expansion of macros inside of
internal definitions because internal definitions are fully
delimited. The expander can skip over all of the syntax inside
of the delimiter because there actually is an inside to skip over.
However, this is not true for JavaScript since var statements
(JavaScript’s equivalent of Scheme’s internal definitions) are
not delimited and so it is not possible to use a macro that has
not yet been defined in a var statement in sweet.js.

For example, this will fail:

function foo() {
var y = id 100;
macro id { rule { $x } => { $x } }
return y + y;

}
// fails!

When the expander reaches the var statement during the
first pass, it has not yet loaded the id macro into the macro
environment and so id 100 will be left unexpanded. Since id
100 is not a valid expression, this will fail to parse. Without

delimiters there is no way to defer expansion of the right-hand
side of a var statement.

Note that at first glance it might appear that the semicolon
could serve to delimit a var statement but this will not work
for two reasons. First, a semicolon is just a token which
might be comsumed by a macro. Second, the JavaScript
specification calls for missing semicolons to be automatically
inserted by the parser, which means it is not guaranteed that
a semicolon will close every var statement.

Though the expander cannot defer expansion of var state-
ments, it still does two passes so that the second pass can
expand inside of delimiters. For example, a macro can be
used inside of a function body that appears before the macro
definition:

function foo() {
return id 100;

}
macro id { rule { $x } => { $x } }
// expands to:
// function foo() {
// return 100;
// }

While it is unfortunate that the syntax of JavaScript
prevents fully general mixing of macro use and definition, the
primary need for flexible macro definition locations is when
writing mutually recursive macros, which is fully supported
with our approach.

6. Related Work
Macros have been extensively used and studied in Lisp [12,
23] and related languages for many years. Scheme in par-
ticular has embraced macros, pioneering the development
of declarative definitions [19] and working out the hygiene
conditions for term rewriting macros (rule macros) [5] and

10 2014/3/25

procedural macros (case macros) [17] that enable true com-
posability. In addition there has been work to integrate pro-
cedural macros and module systems [11, 14]. Racket takes
it even further by extending the Scheme macro system with
deep hooks into the compilation process [10, 30] and robust
pattern specifications [7].

In addition, there are a number of macro systems for
languages with more traditional syntax that are not fully
delimited. As mentioned before, sweet.js is most closely
related to Honu [24, 25]. In contrast with Honu, which does
not include regular expression literals, we solve the reader
ambiguity problem for JavaScript and introduce infix macros
along with the invoke pattern class.

Macro systems that use a similar technique as Honu in-
clude Fortress [2] and Dylan [3] however they only provide
support for term rewriting macros (our rule macros). Dy-
lan’s auxilary rules are similar to our invoke pattern class.
Nemerle [28] also uses a similar technique but does not allow
local definitions of macros.

C++ templates [1] are a powerful compile time meta pro-
gramming facility for C++. In contrast to C++ templates
sweet.js provides more syntactic flexibility in the definable
syntactic forms along with the ability to define transforma-
tions in the host language rather than the just the template
language.

Template Haskell [27] makes a treadoff by forcing the
macro call sites to always be demarcated. The means that
macros are always a second class citizen; macros in Haskell
cannot seamlessly build a language on top of Haskell in the
same way that Scheme and Racket can.

Some systems such as SugarJ [8], ometa [32], Xtc [15],
Xoc [6], and Polyglot [22] provide extensible grammars but
require the programmer to reason about parser details. Multi
stage systems such as mython [26] and MetaML [21, 29] can
also be used to create macros systems like MacroML [13].
Systems like Stratego [31] transforms syntax using its own
language, separate from the host language. Metaborg [4]
and SugarJ [8] are syntax extension facilities built on top of
Stratego.

7. Conclusion
We have presented sweet.js, a hygienic macro system for
JavaScript. Our macro system follows in the footsteps of
Scheme by providing declarative and procedural macro defi-
nition functionality.

In addition we presented an algorithm for read that cor-
rectly handles key ambiguities in the JavaScript grammar that
allows the lexer and parser to be separated for the first time
in JavaScript.

References
[1] Andrei Alexandrescu. Modern C++ design: generic program-

ming and design patterns applied. 2001.

[2] E Allen, R Culpepper, and JD Nielsen. Growing a syntax.
Proceedings of Workshop on Foundations of Object-Oriented
Languages, 2009.

[3] Jonathan Bachrach, Keith Playford, and Chandler Street. D-
Expressions : Lisp Power , Dylan Style. Style DeKalb IL,
1999.

[4] M Bravenboer and E Visser. Concrete syntax for objects:
domain-specific language embedding and assimilation without
restrictions. OOPSLA ’04 Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 2004.

[5] William Clinger. Macros that work. In Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’91, pages 155–162, New
York, New York, USA, January 1991. ACM Press.

[6] R Cox, T Bergan, and AT Clements. Xoc, an extension-oriented
compiler for systems programming. ACM SIGARCH Computer
Architecture News, 2008.

[7] Ryan Culpepper and Matthias Felleisen. Fortifying macros.
In Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming - ICFP ’10, volume 45,
page 235, New York, New York, USA, September 2010. ACM
Press.

[8] S Erdweg, T Rendel, C Kästner, and K Ostermann. SugarJ:
library-based syntactic language extensibility. OOPSLA ’11
Proceedings of the 2011 ACM international conference on Ob-
ject oriented programming systems languages and applications,
2011.

[9] Nate Faubion. The Sparkler project. https://github.com/
natefaubion/sparkler.

[10] M Flatt and R Culpepper. Macros that Work Together. Journal
of Functional Programming, 2012.

[11] Matthew Flatt. Composable and compilable macros: You Want
it When? ICFP ’02 Proceedings of the seventh ACM SIG-
PLAN international conference on Functional programming,
37(9):72–83, September 2002.

[12] JK Foderaro, KL Sklower, and K Layer. The FRANZ Lisp
Manual. 1983.

[13] SE Ganz, A Sabry, and W Taha. Macros as multi-stage com-
putations: type-safe, generative, binding macros in MacroML.
ICFP ’01 Proceedings of the sixth ACM SIGPLAN interna-
tional conference on Functional programming, 2001.

[14] Abdulaziz Ghuloum and R. Kent Dybvig. Implicit phasing for
R6RS libraries. ICFP ’07 Proceedings of the 12th ACM SIG-
PLAN international conference on Functional programming,
42(9):303, October 2007.

[15] R Grimm. Better extensibility through modular syntax. PLDI
’06 Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation, 2006.

[16] S P Harbison and Jr. Steele, G. L. C: A Reference Manual.
Prentice-Hall, 1984.

[17] R Hieb, RK Dybvig, and C Bruggeman. Syntactic abstraction
in scheme. Lisp and symbolic computation, 5(4):295–326,
1992.

11 2014/3/25

https://github.com/natefaubion/sparkler
https://github.com/natefaubion/sparkler

[18] E. C. M. A. International. ECMA-262 ECMAScript Language
Specification. Number June. ECMA (European Association
for Standardizing Information and Communication Systems),
5.1 edition, 2011.

[19] E. E. Kohlbecker and M. Wand. Macro-by-example: Deriving
syntactic transformations from their specifications. In Pro-
ceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages - POPL ’87, pages 77–
84, New York, New York, USA, October 1987. ACM Press.

[20] James Long. The es6-macros project. https://github.com/
jlongster/es6-macros.

[21] M Martel and T Sheard. Introduction to multi-stage program-
ming using metaml. 1997.

[22] N Nystrom, MR Clarkson, and AC Myers. Polyglot: An ex-
tensible compiler framework for Java. Compiler Construction,
2003.

[23] Kent M. Pitman. Special forms in Lisp. In Proceedings of the
1980 ACM conference on LISP and functional programming -
LFP ’80, pages 179–187, New York, New York, USA, August
1980. ACM Press.

[24] Jon Rafkind. Syntactic extension for languages with implicitly
delimited and infix syntax. PhD thesis, 2013.

[25] Jon Rafkind and Matthew Flatt. Honu: Syntactic Extension for
Algebraic Notation through Enforestation. Proceedings of the
11th International Conference on Generative Programming
and Component Engineering, 2012.

[26] J Riehl. Language embedding and optimization in mython.
DLS ’09 Proceedings of the 5th symposium on Dynamic
languages, 2009.

[27] T Sheard and SP Jones. Template meta-programming for
Haskell. Proceedings of the 2002 ACM SIGPLAN workshop
on Haskell, 2002.

[28] K Skalski, M Moskal, and P Olszta. Meta-programming in Ne-
merle. Proceedings Generative Programming and Component
Engineering, 2004.

[29] W Taha and T Sheard. Multi-stage programming with explicit
annotations. PEPM ’97 Proceedings of the 1997 ACM SIG-
PLAN symposium on Partial evaluation and semantics-based
program manipulation, 1997.

[30] S Tobin-Hochstadt and V St-Amour. Languages as libraries.
PLDI ’11 Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, 2011.

[31] E Visser. Program transformation with Stratego/XT. Domain-
Specific Program Generation, 2004.

[32] A Warth and I Piumarta. OMeta: an object-oriented language
for pattern matching. Proceedings of the 2007 symposium on
Dynamic languages, 2007.

12 2014/3/25

https://github.com/jlongster/es6-macros
https://github.com/jlongster/es6-macros

A. Proof of Parse Equivalence
To help reason about prefixes, we use two disjoint sets,
RegexPrefix and DividePrefix, that contain the prefixes that
determine if a slash should be either a divide or the start of a
regular expression. Theses sets are parametrized by a boolean
indicating if the prefix is inside an object literal or a block
statement:

RegexPrefixb ::= ε
| p · k if k ∈ Punctuator ∪ Keyword
| p · if · (t)
| p · functionl · x · (t) · {t′}

if isExprPrefix(p, b, l) = false
| p · {t}l

if isExprPrefix(p, b, l) = false

DividePrefixb ::= p · x
| p · /r/
| p · k · (t) if k 6= if

if isExprPrefix(p, b, l) = true
| p · {t}l

if isExprPrefix(p, b, l) = true

These sets correspond to the prefixes in the read function that
determine if a slash should be regular expression or a divide
operator.

Theorem 2 (Parse Equivalence for Program).
∀s ∈ Token∗.

s ∈ Programe

⇔ read(s, ε, false) ∈ Program’e

Proof. For the left-to-right direction, the are two production
rules for Programe.

• s ∈ ε. The result is immediate.
• s ∈ SourceElementse. Holds by Lemma 1.

A similar argument holds for the other direction.

Lemma 1 (Parse Equivalence for SourceElements).
∀s ∈ Token∗.

s ∈ SourceElementse
⇔ read(s, ε, false) ∈ SourceElements’e

Proof. For the left-to-right direction there are two production
rules for SourceElementse.

• s ∈ SourceElemente. This holds by Lemma 2.
• s ∈ SourceElementse · SourceElemente′ . We have
s = s′ · s′′ where s′ ∈ SourceElementse and s′′ ∈
SourceElemente′ .

t = read(s′ · s′′, ε, false)
= read(s′, ε, false) · read(s′′, read(s′, ε, false), false)

By induction read(s′, ε, false) ∈ SourceElements’e
and by Lemma 2, read(s′′, read(s′, ε, false), false) ∈

SourceElement’e′ (since by Lemma 11, read(s′, ε, false) ∈
RegexPrefixb). Thus t ∈ SourceElements’e e′ .

The argument is similar for the other direction.

Lemma 2 (Parse Equivalence for SourceElement).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb.

s ∈ SourceElemente
⇔ read(s, p, false) ∈ SourceElement’e

Proof. For the left-to-right direction there are two production
rules for SourceElemente.

• s ∈ Stmte. This holds by Lemma 4 since p ∈
RegexPrefixb.

• s ∈ FunctionDecle. This holds by Lemma 3.

The argument is similar for the other direction.

Lemma 3 (Parse Equivalence for Function).
∀s ∈ Token∗, b ∈ Bool, p ∈ TokenTree∗.

s ∈ Functione

⇔ read(s, p, b) ∈ Function’e

Proof. For the left-to-right direction there is one production
rule for Functione:

s ∈ function · x · (· x′ ·) · { · SourceElementse · }

We have s = function · x · (· x ·) · { · s′ · } where
s′ ∈ SourceElementse so:

t = read(function · x · (· x ·) · { · s′ · }, p, b)
= function · x · (x) · {t′}

where t′ = read(s′, ε, false). Since by Lemma 1, t′ ∈
SourceElements’e we have t ∈ FunctionDecl’function x (x) {e}.

The argument is similar for the other direction.

Lemma 4 (Parse Equivalence for Stmt).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb.

s ∈ Stmte
⇔ read(s, p, false) ∈ Stmt’e

Proof. For the left-to-right direction we have several produc-
tion rules for Stmte.

• s ∈ { · StmtListe · }. We have s = { · s′ · } where
s′ ∈ StmtListe. Then:

t = read({ · s′ · }, p, false)
= {t′}

where t′ = read(s′, ε, false). By Lemma 5, t′ ∈
StmtList’e so t ∈ Stmt’{e}.

13 2014/3/25

• s ∈ AssignExpre · ;. We have s = s′ · ; where s′ ∈
AssignExpre. Then:

t = read(s′ · ;, p, false)
= read(s′, p, false) · ;

Since p ∈ RegexPrefixb by Lemma 6, read(s′, p, false) ∈
AssignExpr’e we have t ∈ Stmt’e.

• s ∈ if · (· AssignExpre ·) · Stmte′ . We have s =
if ·(· s′ ·) · s′′ where s′ ∈ AssignExpre and s′′ ∈ Stmte′ .

t = read(if · (· s′ ·) · s′′, p, false)
= if · (t′) · t′′

where
t′ = read(s′, ε, false)
t′′ = read(s′′, p · if · (t′), false)

By Lemma 6 t′ ∈ AssignExpr’e. By induction, t′′ ∈
Stmt’e′ (since p · (t′) ∈ RegexPrefixb). Thus t ∈
Stmt’if (e) e′ .

• s ∈ return. Since s = return and read(s, p, false) =
return ∈ Stmt’return we have our result directly.

• s ∈ return · AssignExpre;. We have s = return · s′ · ;
where s′ ∈ AssignExpre. Then:

t = read(return · s′ · ;, p, false)
= return · read(s′, p · return, false) · ;

By Lemma 6, read(s′, p ·return, false) ∈ AssignExpr’e
thus t ∈ Stmt’return e.

• s ∈ x · : · Stmte. We have s = x · : · s′ where s′ ∈ Stmte.
Then:

t = read(x · : · s′, p, false)
= x · : · read(s′, p · x · :, false)

By induction, read(s′, p · x · :, false) ∈ Stmt’e so
t ∈ Stmt’x : e.

The argument for the other direction is similar.

Lemma 5 (Parse Equivalence for StmtList).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb.

s ∈ StmtListe
⇔ read(s, p, false) ∈ StmtList’e

Proof. For the left-to-right direction we have two production
rules for StmtListe.

• s ∈ Stmte. This follows by Lemma 4 since p ∈
RegexPrefixb.

• s ∈ StmtListe ·Stmte′ . So s = s′ ·s′′ where s′ ∈ StmtListe
and s′′ ∈ Stmte′ . Then,

t = read(s′ · s′′, p, false)
= read(s′, p, false) · read(s′′, p · read(s′, p, false), false)

By induction read(s′, p, false) ∈ StmtList’e and by
Lemma 4, read(s′′, p · read(s′, p, false), false) ∈
Stmt’e′ (since by Lemma 12, p · read(s′, p, false) ∈
RegexPrefixb). Thus, t ∈ StmtList’e e′ .

The argument for the other direction is similar.

Lemma 6 (Parse Equivalence for AssignExpr).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb. Where if

b = false then s 6= { · s′, we have that

s ∈ AssignExpre
⇔ read(s, p, b) ∈ AssignExpr’e

Proof. The constraint on s when b is false is due to the
lookahead check in the production Stmte ::= AssignExpre ;.
Lemma 10 will make use of this constraint.

For the left-to-right direction we have two production rules
for AssignExpre.

• s ∈ BinaryExpre. This holds by Lemma 7.
• s ∈ CallExpre · = · AssignExpre′ . Then s = s′ · = · s′′

where s′ ∈ CallExpre and s′′ ∈ AssignExpre′ . Then:

t = read(s′ · = · s′′, p, b)
= read(s′, p, b) · read(= · s′′, p · read(s′, p, b), b)
= read(s′, p, b) · = · read(s′′, p · read(s′, p, b) · =, b)

Since p ∈ RegexPrefixb by Lemma 8, read(s′, p, b) ∈
CallExpr’e and by induction read(s′′, p · read(s′, p, b) ·
=, b) ∈ AssignExpr’e′ (since p · read(s′, p, b) · = ∈
RegexPrefixb) so t ∈ AssignExpr’e = e′ .

The argument for the other direction is similar.

Lemma 7 (Parse Equivalence for BinaryExpr).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb. Where if

b = false then s 6= { · s′, we have that

s ∈ BinaryExpre
⇔ read(s, p, b) ∈ BinaryExpr’e

Proof. For the left-to-right direction there are three produc-
tions for BinaryExpre.

• s ∈ CallExpre. This holds by Lemma 8 since p ∈
RegexPrefixb.

• s ∈ BinaryExpre ·/ ·BinaryExpre′ . We have s = s′ ·/ ·s′′
where s′ ∈ BinaryExpre and s′′ ∈ BinaryExpre′ . Then:

t = read(s′ · / · s′′, p, b)
= read(s′, p, b) · read(/ · s′′, p · read(s′, p, b), b)
= read(s′, p, b) · / · read(s′′, p · read(s′, p, b) · /, b)

(since p · read(s′, p, b) ∈ DividePrefixb)

By induction read(s′, p, b) ∈ BinaryExpr’e and
read(s′′, p · read(s′, p, b) · /, b) ∈ BinaryExpr’e′
(since p · read(s′, p, b) · / ∈ RegexPrefixb) thus
t ∈ BinaryExpr’e / e′ .

• s ∈ BinaryExpre ·+ ·BinaryExpre′ . We have s = s′ ·+ ·s′′
where s′ ∈ BinaryExpre and s′′ ∈ BinaryExpre′ . Then:

t = read(s′ · + · s′′, p, b)
= read(s′, p, b) · + · read(s′′, p · read(s′, p, b) · +, b)

14 2014/3/25

By induction read(s′, p, b) ∈ BinaryExpr’e and
read(s′′, p · read(s′, p, b) · +, b) ∈ BinaryExpr’e′
(since p · read(s′, p, b) · + ∈ RegexPrefixb) thus
t ∈ BinaryExpr’e + e′ .

The argument for the other direction is similar.

Lemma 8 (Parse Equivalence for CallExpr).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb. Where if

b = false then s 6= { · s′, we have that

s ∈ CallExpre
⇔ read(s, p, b) ∈ CallExpr’e

Proof. For the left-to-right direction there are two production
rules for CallExpre.

• s ∈ MemberExpre ·(·AssignExpr’e′ ·). We have s = s′ ·
(·s′′ ·) where s′ ∈ MemberExpre and s′′ ∈ AssignExpre′ .
Then

t = read(s′ · (· s′′ ·), p, b)
= read(s′, p, b) · read((· s′′ ·), p · read(s′, p, b), b)

Since p ∈ RegexPrefixb, by Lemma 9 we have
read(s′, p, b) ∈ MemberExpr’e and my Lemma 6
we have read(s′′, ε, false) ∈ AssignExpr’e′ thus t ∈
CallExpr’e (e′).

• s ∈ CallExpre · . · x. Then s = s′ · . · x where
s′ ∈ CallExpre. Then

t = read(s′ · . · x, p, b)
= read(s′, p, b) · . · x

By induction read(s′, p, b) ∈ CallExpr’e. Thus t ∈
CallExpr’e .x.

The argument for the other direction is similar.

Lemma 9 (Parse Equivalence for MemberExpr).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb. Where if

b = false then s 6= { · s′, we have that

s ∈ MemberExpre
⇔ read(s, p, b) ∈ MemberExpr’e

Proof. For the left-to-right direction there are two three
production rules for MemberExpre.

• s ∈ PrimaryExpre. This follows from Lemma 10 since
p ∈ RegexPrefixb.

• s ∈ Functione. This follows from Lemma 3.
• s ∈ MemberExpre · . · x. We have s = s′ · .x where
s ∈ MemberExpre. Then

t = read(s′ · . · x, p, b)
= read(s′, p, b) · . · x

By induction read(s′, p, b) ∈ MemberExpr’e thus t ∈
MemberExpr’e.x.

The argument for the other direction is similar.

Lemma 10 (Parse Equivalence for PrimaryExpr).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb. Where if

b = false then s 6= { · s′, we have that

s ∈ PrimaryExpre
⇔ read(s, p, b) ∈ PrimaryExpr’e

Proof. For the left-to-right direction there are several produc-
tion rules for PrimaryExpre.

• s ∈ x. Then s = x and read(x, p, b) ∈ PrimaryExpr’x
directly.

• s ∈ / · r · /. Then s = / · r · / and read(/ · r · /, p, b) =
/r/ ∈ PrimaryExpr’/r/ since p ∈ RegexPrefixb.

• s ∈ { · x · : · AssignExpre · }. Then s = { · x · : · s′ · }
where s′ ∈ AssignExpre. Then:

t = read({ · x · : · s′ · }, p, true)
= {x · : · t′}

where t′ = read(s′, x · :, true). By Lemma 6, t′ ∈
AssignExpr’e and thus t ∈ PrimaryExpr’{x:e}.

• s ∈ (· AssignExpre ·). Then s = (· s′ ·) where
s′ ∈ AssignExpre. So,

t = read((· s′ ·), p, b)
= (t′)

where t′ = read(s′, ε, false). By Lemma 6 t′ ∈
AssignExpr’e. So, t ∈ PrimaryExpr’(e).

For the other direction the argument is similar.

Lemma 11 (SourceElement Prefix).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb.

s ∈ SourceElemente
⇒ read(s, p, false) ∈ RegexPrefixb

Proof. There are two cases:

• s ∈ Stmte. This holds by Lemma 12.
• s ∈ Functione. Follows directly.

Lemma 12 (Stmt Prefix).
∀s ∈ Token∗, b ∈ Bool, p ∈ RegexPrefixb.

read(s, p, false) ∈ Stmt’e
⇒ p · read(s, p, false) ∈ RegexPrefixb

Proof. We have several cases:

• read(s, p, false) ∈ {StmtList’e}. Follows since p ∈
RegexPrefixb.

• read(s, p, false) ∈ AssignExpr’e · ;. Follows since
t · ; ∈ RegexPrefixb for any t.

15 2014/3/25

• t = read(s, p, false) ∈ if · (AssignExpr’e) Stmte′ .
Since t = if · (t′) · t′′ where t′′ ∈ Stmt’e′ by induction
t′′ ∈ RegexPrefixb and thus p · t ∈ RegexPrefixb.

• read(s, p, false) ∈ return. Follows since p · return ∈
RegexPrefixb.

• t = read(s, p, false) ∈ return · AssignExpr’e · ;. Since
; ∈ RegexPrefixb then p · t ∈ RegexPrefixb.

• t = read(s, p, false) ∈ x · : · Stmt’e. Since t = x · : · t′
where t′ ∈ Stmt’e. Since p ∈ RegexPrefixb and by
induction t′ ∈ RegexPrefixb we have p · t ∈ RegexPrefixb.

16 2014/3/25

	Introduction
	Reading JavaScript
	Proving Read

	Writing Macros
	Enforestation
	Infix Macros
	Invoke and Pattern Classes

	Hygiene
	Macro Binding Limitation

	Related Work
	Conclusion
	Proof of Parse Equivalence

