

Flutter Succinctly

By

Ed Freitas

Foreword by Daniel Jebaraj

3

Copyright © 2019 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

11

Introduction

With the rapid rise of cross-platform mobile frameworks such as Ionic, React Native, and

Xamarin, the folks at Google decided to step into the game and develop their own framework

with support for both Android and iOS using the same codebase—this is how Flutter came to

be.

Flutter is an open-source mobile application development SDK primarily developed and

sponsored by Google, used for developing applications for Android and iOS—as well as being

the primary method of creating applications for the Google Fuchsia operating system.

Flutter is written in C, C++, and Dart, and uses the Skia Graphics Engine. It offers a rich set of

fully customizable widgets for building native interfaces, including the beautiful Material Design

library and Cupertino (iOS-flavored) widgets, rich motion APIs, smooth natural scrolling,

platform awareness, and hot reload—which helps to quickly build UIs without losing state on

emulators, simulators, and any hardware for iOS and Android.

All these great features have helped Flutter take off very quickly, and developers are flocking to

the framework. It’s also one of the trending projects in GitHub, which has helped it gain even

more popularity.

With Flutter gaining momentum, it seems unlikely that it will fade away anytime soon, so I

decided to give it a whirl and write an application with it. My personal experience: I was blown

away. I felt immediately productive, even though I had never programmed in Dart before.

Throughout this book, I want to go on that same journey with you. We’ll do this by creating a

fully functional app, which will allow you to get a good grasp of the framework—whether you are

coming from another mobile development framework, or have no previous mobile development

experience.

I’m quite excited to embark on this journey with you. I hope that by the end of it, you’ll have a

great impression of the framework and be able to assess whether Flutter is the right choice for

your mobile development needs. So, without further ado, let’s get going.

https://ionicframework.com/
https://facebook.github.io/react-native/
https://visualstudio.microsoft.com/xamarin/
https://flutter.io/
https://www.android.com/
https://developer.apple.com/ios/
https://en.wikipedia.org/wiki/Google_Fuchsia
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://www.dartlang.org/
https://skia.org/
https://material.io/design/
https://github.com/flutter/flutter

12

Chapter 1 Setup

Project overview

The application that we’ll be building throughout this book is one that we can use to keep track

of important personal documents that have an expiration date, such as passports, driver’s

licenses, or credit cards.

This type of application is handy to have so we know when we need to renew these important

documents before they expire. If you have read my other book, Electron Succinctly, this is the

same application concept we explored back then.

Using the Dart programming language with Flutter, we will take our application one step

further—we’ll also explore how to use a local SQLite database.

Awesome—let’s get our engines ready so we can start setting up our development environment

straight away.

Installation

The Flutter setup is incredibly easy, with all the installation steps well documented within the

official Flutter documentation site.

I’ll be using Windows 10, so I’ll be describing setup steps and information related to this

operating system; however, there are also easy-to-follow setup guidelines for both macOS and

Linux.

On Windows, there are some essential system requirements that need to be in place, which

include having PowerShell 5.0 (or later) and Git for Windows 2.X (or later) installed.

Even though you can write Flutter apps in any editor of your choice—personally, I’m a big fan of

Visual Studio Code—Flutter relies on a full installation of Android Studio to supply its Android

platform dependencies. You’ll also need to set up an Android device emulator. These steps are

described in the official documentation.

With the prerequisites in place for Windows, all we need to do is download the installation

bundle of the Flutter SDK—at the time of writing, it is Flutter’s 1.0.0 stable version for Windows.

Once you’ve downloaded the zip file, extract it to a desired folder within your drive, such as

C:\Flutter. Don’t extract the Flutter files to C:\Program Files or C:\Program Files (x86), which

require elevated or admin permissions.

Once the files are in the desired folder, locate the file Flutter_console.bat file—this is how it

looks on my machine.

https://www.syncfusion.com/ebooks/electron-succinctly
https://www.dartlang.org/
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install/windows
https://flutter.io/docs/get-started/install/macos
https://flutter.io/docs/get-started/install/linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell?view=powershell-6
https://git-scm.com/download/win
https://code.visualstudio.com/
https://developer.android.com/studio/
https://flutter.io/docs/get-started/install/windows
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.0.0-stable.zip

13

Figure 1-a: The Flutter SDK files

In principle, you are now ready to run the Flutter console by executing the Flutter_console.bat

file. It’s recommended—although not strictly necessary—to add the Flutter\Bin folder to the

System Path Environment variable in Windows.

If you are unsure how to add a folder to the Windows Path variable, please refer to this nice

article that explains how to do it, step by step, with screenshots.

In my machine, this looks as follows.

Figure 1-b: Flutter added to the Path variable in Windows

With the SDK file in place, we can now run the Flutter_console.bat file—this is what you

should see.

https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/

14

Figure 1-c: The Flutter console running

On the prompt, type the following command to check if Flutter is fully operational.

Code Listing 1-a: The “flutter doctor” command

flutter doctor

After you execute this command, you will get a result with any issues found—in my case,

because I had previously installed Android Studio and Visual Studio Code, I get the following

information.

When you run the Android Studio installer, please make sure you follow the official

documentation so that you end up with a successful Android Studio and SDK setup.

Figure 1-d: Results from running the flutter doctor command

In my case, Flutter is telling me that I need to run the flutter doctor --android-licenses

command to resolve an issue with some Android licenses not being accepted.

It also highlighted that I don’t have a physical device connected, which is fine for now.

https://developer.android.com/studio/
https://code.visualstudio.com/
https://developer.android.com/studio/install

15

Make sure that you resolve all the conflicts highlighted by the flutter doctor command

before proceeding.

Setting up an editor

Once you have completed all the installation steps, it is necessary to set up Flutter to work with

your editor of choice. Although I usually use Visual Studio Code for my projects, this time I

decided to use Android Studio to code our Flutter application—to me, it felt more natural, and a

better fit for mobile development.

The official Flutter documentation describes how to configure Android Studio (IntelliJ) and Visual

Studio Code to work with Flutter—please follow these steps.

If you will also be using Android Studio, once you have followed the steps described, you should

see the Dart and Flutter plugins installed. On my machine, this looks as follows.

Figure 1-e: The Dart and Flutter plugins installed on Android Studio

Creating the app

Once your editor of choice has been correctly set up following the official documentation

guidelines and my previous suggestions, it’s time to perform a quick test. We’ll create a demo

application from one of the predefined templates, and then experience the “hot reload”

mechanism after making a change to the app.

https://flutter.io/docs/get-started/editor

16

The official documentation, which covers the steps that are described and explained in this

section, is worth checking.

Open Android Studio and navigate to File > New > New Flutter Project. The following screen

will be displayed.

Figure 1-f: Create new Flutter project option (step 1)

Choose the Flutter Application option, and then click Next. We’ll then be presented with a

screen where we can enter the Project name, Flutter SDK path, Project location, and a

Description for the application—we can see this as follows.

https://flutter.dev/docs/get-started/test-drive?tab=androidstudio

17

Figure 1-g: Create new Flutter project option (step 2)

Make sure the Flutter SDK path text field specifies the correct folder location of the SDK, as

previously explained. With those options entered, click Next.

In the final step of the app creation process, we are asked to enter the Company domain and

include (if applicable) Kotlin support for Android code and Swift support for iOS code—in

our case, there’s no need to include these options.

The following figure shows the final step of the application creation screen.

18

Figure 1-h: Create new Flutter project option (step 3)

To finalize the creation of the demo application, click Finish. With the demo application created,

make sure you have a virtual device created and ready so we can quickly test the app.

Creating a virtual device

Let’s quickly go over the steps required to create a virtual device. With Android Studio opened,

go to the Tools menu and click on the AVD Manager option, which will display the following

screen.

https://developer.android.com/studio/run/managing-avds

19

Figure 1-i: Creating a virtual device (step 1)

Then, click Create Virtual Device, which will display the following window with all the available

virtual devices that can be created for different categories, such as: phones, TV, tablets, and

wearable devices.

I’m going to select the Nexus 6 model from the Phone category, but feel free to choose any

other.

Figure 1-j: Creating a virtual device (step 2)

20

Once you have your model selected, click Next. You will be prompted to select one of the

available device images.

Figure 1-k: Creating a virtual device (step 3)

I’m going with the first recommended option from the available list; however, you can choose

any other. It’s important to choose an image that plays well with your computer’s host operating

system. In essence, for emulator performance reasons, it’s not recommended to choose an

ARM-based image if your computer’s host operating system is based on a x86 architecture.

If you’ve chosen a different image than the one highlighted in Figure 1-k you might have to

download the image, using the Download link next to the image Release Name field.

Once the image has been selected (and downloaded, if applicable), click Next to continue to the

last step.

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/X86

21

Figure 1-l: Creating a virtual device (step 4)

The last step contains the configuration details for the virtual device image, which you can

normally leave to the default options, and then simply click Finish.

Awesome—you now have created a virtual device. You can create more than one if you wish,

as it might help you test your application with multiple devices. In my case, I’ve also created

another virtual device for a Pixel 2 XL phone API 28, which looks as follows.

22

Figure 1-m: Virtual device—Android emulator

Testing our setup

With our virtual device in place, it’s now time to run the application we have created and see

what it does.

To do that, select the Open Android Emulator option from the Android SDK built for x86

drop-down list, which is next to the run button. Once the Android emulator is opened, you’ll be

able to execute the application when you click run.

Figure 1-n: The emulator drop-down and run button

Try to run the application to see what happens—in my case, I get the following Android Studio

console output.

23

Code Listing 1-b: Console output when running the application

Launching lib\main.dart on Android SDK built for x86 in debug mode...

Initializing gradle...

Resolving dependencies...

* Error running Gradle:

ProcessException: Process
"C:\Projects\test\flutter_app\android\gradlew.bat" exited abnormally:

> Configure project :app

Checking the license for package Android SDK Build-Tools 28.0.3 in
C:\Users\EdFreitas\AppData\Local\Android\sdk\licenses

Warning: License for package Android SDK Build-Tools 28.0.3 not accepted.

FAILURE: Build failed with an exception.

* Where:

Build file 'C:\Projects\test\flutter_app\android\build.gradle' line: 24

* What went wrong:

A problem occurred evaluating root project 'android'.

> A problem occurred configuring project ':app'.

 > Failed to install the following Android SDK packages as some
licences have not been accepted.

 build-tools;28.0.3 Android SDK Build-Tools 28.0.3

 To build this project, accept the SDK license agreements and install
the missing components using the Android Studio SDK Manager.

 Alternatively, to transfer the license agreements from one
workstation to another, see http://d.android.com/r/studio-ui/export-
licenses.html

 Using Android SDK: C:\Users\EdFreitas\AppData\Local\Android\sdk

* Try:

24

Run with --stacktrace option to get the stack trace. Run with --info or -
-debug option to get more log output. Run with --scan to get full
insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 1s

 Command: C:\Projects\test\flutter_app\android\gradlew.bat
app:properties

Finished with error: Please review your Gradle project setup in the
android/ folder.

If you didn’t get this console output message after running your application, awesome—you may

skip the rest of this section and go directly to the “Hot reloading” section.

If you did, then by carefully reviewing this output information, we find a reference to this

http://d.android.com/r/studio-ui/export-licenses.html URL that redirects to here.

This article explains how Gradle can automatically download packages that might be missing,

and that are required when running an application.

We can also see that the last line of the message indicates to review the Gradle project setup in

the Android project folder—which refers to the Build.gradle file found within the Android folder of

our application. We can see this in the following screenshot.

https://developer.android.com/studio/intro/update#download-with-gradle
https://gradle.org/

25

Figure 1-o: The project structure

Let’s open the Build.gradle file and inspect its content. Notice in my case how it depends on

com.android.tools.build:gradle:3.2.1—we can see this in the screenshot that follows.

Figure 1-p: The Build.gradle file contents

26

The previous console output gives us a hint of what the problem might be: License for

package Android SDK Build-Tools 28.0.3 not accepted.

What this is telling us is that it wasn’t able to run the application with this

com.android.tools.build:gradle:3.2.1 dependency, because I have no license for it.

In other words, that specific com.android.tools.build:gradle version probably didn’t get

installed when I went through the Android Studio setup process.

In that case, the solution is to use a version of the com.android.tools.build:gradle

dependency that was installed during the Android Studio setup process—which can be one

version lower than the one mentioned on the Build.gradle file.

To resolve the problem, all I need to do is change that line on the Build.gradle file from

com.android.tools.build:gradle:3.2.1 to com.android.tools.build:gradle:3.2.0.

Figure 1-q: The Build.gradle file contents edited

After saving the change to the Build.gradle file, if I now click Run, I’ll get the following build

console output within Android Studio.

Code Listing 1-c: Console output when running the application (after updating Build.gradle)

Launching lib\main.dart on Android SDK built for x86 in debug mode...

Initializing gradle...

Resolving dependencies...

Gradle task 'assembleDebug'...

Built build\app\outputs\apk\debug\app-debug.apk.

Awesome—that’s so much better! The application has been built, and it is running. We can see

this on the Android emulator as follows.

27

Figure 1-r: The demo app running

With the building issues sorted, let’s now explore how Flutter’s “hot reload” mechanism works,

and what it does.

Hot reloading

Hot reloading is one of the coolest features of Flutter, and basically means that if a change to

the code is made while the application is running, that change is almost immediately reflected

within the running application.

Let’s give hot reloading a try. With the application running, let’s go to the main.dart file under the

lib folder of our demo application, and locate the following code.

Code Listing 1-d: Snippet of code of main.dart

Text(
 'You have pushed the button this many times:',
)

28

Let’s replace the word pushed with the word clicked. The code should now look as follows.

Code Listing 1-e: Snippet of code of main.dart

Text(
 'You have clicked the button this many times:',
)

Figure 1-s shows the source code and the application running before the change.

Figure 1-s: App running (before the change)

Figure 1-t shows the source code and the application running after the change.

29

Figure 1-t: App running (after the change)

As you can clearly see, hot reloading worked. Something to notice about hot reloading is that

the changes take a few seconds to propagate and become effective, as the application is

basically redeployed to the emulator or device when changes take place.

Web developers will notice that hot reloading in Flutter is slower than when developing web

applications. This is because during web development, hot reloading only applies to the HTML,

CSS, or JavaScript being modified, whereas with Flutter, the actual application runtime needs to

be synced to the device.

Nevertheless, Flutter’s hot-reloading mechanism is impressive and very useful, as it helps us

avoid having to stop the app and restart it.

Summary

The goal of this chapter was to set up Flutter and get started—that’s exactly what we managed

to achieve.

Next, we’ll dive straight into the code and start writing the fundamental pillars of our app. It’s

going to be a lot of fun, as we’ll look at how to design our app’s UI and implement its essential

logic.

	Introduction
	Chapter 1 Setup
	Project overview
	Installation
	Setting up an editor
	Creating the app
	Creating a virtual device
	Testing our setup
	Hot reloading
	Summary

