

1

2

PDF Succinctly

By
Ryan Hodson

Foreword by Daniel Jebaraj

8

 The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components
for the Microsoft platform. This puts us in the exciting but challenging
position of always being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to
be about every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books
are being published, even on topics that are relatively new, one aspect that continues to
inhibit us is the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web
for relevant blog posts and other articles. Just as everyone else who has a job to do and
customers to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical
books that would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most
topics can be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t
everything wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision.
The book you now hold in your hands, and the others available in this series, are a result
of the authors’ tireless work. You will find original content that is guaranteed to get you
up and running in about the time it takes to drink a few cups of coffee.

S

9

Free forever

Syncfusion will be working to produce books on several topics. The books will always be
free. Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and
broader frameworks than anyone else on the market. Developer education greatly helps
us market and sell against competing vendors who promise to “enable AJAX support
with one click,” or “turn the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to
us at succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand
the topic of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

10

Introduction

Adobe Systems Incorporated’s Portable Document Format (PDF) is the de facto
standard for the accurate, reliable, and platform-independent representation of a paged
document. It’s the only universally accepted file format that allows pixel-perfect layouts.
In addition, PDF supports user interaction and collaborative workflows that are not
possible with printed documents.

PDF documents have been in widespread use for years, and dozens of free and
commercial PDF readers, editors, and libraries are readily available. However, despite
this popularity, it’s still difficult to find a succinct guide to the native PDF format.
Understanding the internal workings of a PDF makes it possible to dynamically generate
PDF documents. For example, a web server can extract information from a database,
use it to customize an invoice, and serve it to the customer on the fly.

This book introduces the fundamental components of the native PDF language. With the
help of a utility program called pdftk from PDF Labs, we’ll build a PDF document from
scratch, learning how to position elements, select fonts, draw vector graphics, and
create interactive tables of contents along the way. The goal is to provide enough
information to let you start building your own documents without bogging you down with
the many complexities of the PDF file format.

In addition, the last chapter of this book provides an overview of the iTextSharp library
(http://itextpdf.com/). iTextSharp is a C# library that provides an object-oriented wrapper
for native PDF elements. Having a C# representation of a document makes it much
easier to leverage existing .NET components and streamline the creation of dynamic
PDF files.

The sample files created in this book can be downloaded here:
https://bitbucket.org/syncfusion/pdf-succinctly/.

The PDF standard

The PDF format is an open standard maintained by the International Organization for
Standardization. The official specification is defined in ISO 32000-1:2008, but Adobe
also provides a free, comprehensive guide called PDF Reference, Sixth Edition, version
1.7.

http://www.pdflabs.com/docs/install-pdftk/
http://itextpdf.com/
https://bitbucket.org/syncfusion/pdf-succinctly/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=51502
http://www.adobe.com/devnet/pdf.html
http://www.adobe.com/devnet/pdf.html

11

Chapter 1 Conceptual Overview

We’ll begin with a conceptual overview of a simple PDF document. This chapter is
designed to be a brief orientation before diving in and creating a real document from
scratch.

A PDF file can be divided into four parts: a header, body, cross-reference table, and
trailer. The header marks the file as a PDF, the body defines the visible document, the
cross-reference table lists the location of everything in the file, and the trailer provides
instructions for how to start reading the file.

Figure 1: Components of a PDF document

Every PDF file must have these four components.

Header

The header is simply a PDF version number and an arbitrary sequence of binary data.
The binary data prevents naïve applications from processing the PDF as a text file. This
would result in a corrupted file, since a PDF typically consists of both plain text and
binary data (e.g., a binary font file can be directly embedded in a PDF).

12

Body

The body of a PDF contains the entire visible document. The minimum elements
required in a valid PDF body are:

• A page tree

• Pages

• Resources

• Content

• The catalog

The page tree serves as the root of the document. In the simplest case, it is just a list of
the pages in the document. Each page is defined as an independent entity with
metadata (e.g., page dimensions) and a reference to its resources and content, which
are defined separately. Together, the page tree and page objects create the “paper” that
composes the document.

Resources are objects that are required to render a page. For example, a single font is
typically used across several pages, so storing the font information in an external
resource is much more efficient. A content object defines the text and graphics that
actually show up on the page. Together, content objects and resources define the
appearance of an individual page.

Finally, the document’s catalog tells applications where to start reading the document.
Often, this is just a pointer to the root page tree.

13

Figure 2: Structure of a document’s body

Cross-reference table

After the header and the body comes the cross-reference table. It records the byte
location of each object in the body of the file. This enables random-access of the
document, so when rendering a page, only the objects required for that page are read
from the file. This makes PDFs much faster than their PostScript predecessors, which
had to read in the entire file before processing it.

Trailer

Finally, we come to the last component of a PDF document. The trailer tells applications
how to start reading the file. At minimum, it contains three things:

• A reference to the catalog which links to the root of the document.

• The location of the cross-reference table.

• The size of the cross-reference table.

14

Since a trailer is all you need to begin processing a document, PDFs are typically read
back-to-front: first, the end of the file is found, and then you read backwards until you
arrive at the beginning of the trailer. After that, you should have all the information you
need to load any page in the PDF.

Summary

To conclude our overview, a PDF document has a header, a body, a cross-reference
table, and a trailer. The trailer serves as the entryway to the entire document, giving you
access to any object via the cross-reference table, and pointing you toward the root of
the document. The relationship between these elements is shown in the following figure.

Figure 3: Structure of a PDF document

15

Chapter 2 Building a PDF

PDFs contain a mix of text and binary, but it’s still possible to create them from scratch
using nothing but a text editor and a program called pdftk. You create the header, body,
and trailer on your own, and then the pdftk utility goes in and fills in the binary blanks for
you. It also manages object references and byte calculations, which is not something
you would want to do manually.

First, download pdftk from PDF Labs. For Windows users, installation is as simple as
unzipping the file and adding the resulting folder to your PATH. Running pdftk --help

from a command prompt should display the help page if installation was successful.

Next, we’ll manually create a PDF file for use with pdftk. Create a plain text file called
hello-src.pdf (this file is available at https://bitbucket.org/syncfusion/pdf-succinctly) and
open it in your favorite text editor.

Header

We’ll start by adding a header to hello-src.pdf. Remember that the header contains
both the PDF version number and a bit of binary data. We’ll just add the PDF version
and leave the binary data to pdftk. Add the following to hello-src.pdf.

%PDF-1.0

The % character begins a PDF comment, so the header is really just a special kind of

comment.

Body

The body (and hence the entire visible document) is built up using objects. Objects are
the basic unit of PDF files, and they roughly correspond to the data structures of popular
programming languages. For example, PDF has Boolean, numeric, string, array, and
dictionary objects, along with streams and names, which are specific to PDF. We’ll take
a look at each type as the need arises.

The page tree

The page tree is a dictionary object containing a list of the pages that make up the
document. A minimal page tree contains just one page.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://bitbucket.org/syncfusion/pdf-succinctly

16

1 0 obj

<< /Type /Pages

 /Count 1

 /Kids [2 0 R]

>>

endobj

Objects are enclosed in the obj and endobj tags, and they begin with a unique

identification number (1 0). The first number is the object number, and the second is the

generation number. The latter is only used for incremental updates, so all the generation
numbers in our examples will be 0. As we’ll see in a moment, PDFs use these identifiers

to refer to individual objects from elsewhere in the document.

Dictionaries are set off with angle brackets (<< and >>), and they contain key/value

pairs. White space is used to separate both the keys from the values and the items from
each other, which can be confusing. It helps to keep pairs on separate lines, as in the
previous example.

The /Type, /Pages, /Count, and /Kids keys are called names. They are a special

kind of data type similar to the constants of high-level programming languages. PDFs
often use names as dictionary keys. Names are case-sensitive.

2 0 R is a reference to the object with an identification number of 2 0 (it hasn’t been

created yet). The /Kids key wraps this reference in square brackets, turning it into an

array: [2 0 R]. PDF arrays can mix and match types, so they are actually more like

C#’s List<object> than native arrays.

Like dictionaries, PDF arrays are also separated by white space. Again, this can be
confusing, since the object reference is also separated by white space. For example,
adding a second reference to /Kids would look like: [2 0 R 3 0 R] (don’t actually

add this to hello-src.pdf, though).

Page(s)

Next, we’ll create the second object, which is the only page referenced by /Kids in the

previous section.

17

2 0 obj

<< /Type /Page

 /MediaBox [0 0 612 792]

 /Resources 3 0 R

 /Parent 1 0 R

 /Contents [4 0 R]

>>

endobj

The /Type entry always specifies the type of the object. Many times, this can be omitted

if the object type can be inferred by context. Note that PDF uses a name to identify the
object type—not a literal string.

The /MediaBox entry defines the dimensions of the page in points. There are 72 points

in an inch, so we’ve just created a standard 8.5 × 11 inch page. /Resources points to

the object containing necessary resources for the page. /Parent points back to the

page tree object. Two-way references are quite common in PDF files, since they make it
very easy to resolve dependencies in either direction. Finally, /Contents points to the

object that defines the appearance of the page.

Resources

The third object is a resource defining a font configuration.

3 0 obj

<< /Font

 << /F0

 << /Type /Font

 /BaseFont /Times-Roman

 /Subtype /Type1

 >>

 >>

>>

endobj

The /Font key contains a whole dictionary, opposed to the name/value pairs we’ve

seen previously (e.g., /Type /Page). The font we configured is called /F0, and the font

face we selected is /Times-Roman. The /Subtype is the format of the font file, and

/Type1 refers to the PostScript type 1 file format.

The specification defines 14 “standard” fonts that all PDF applications should support.

18

Figure 4: Standard fonts for PDF-compliant applications

Any of these values can be used for the /BaseFont in a /Font dictionary. Non-

standard fonts can be embedded in a PDF document, but it’s not easy to do manually.
We’ll put off custom fonts until we can use iTextSharp’s high-level framework.

Content

Finally, we are able to specify the actual content of the page. Page content is
represented as a stream object. Stream objects consist of a dictionary of metadata and
a stream of bytes.

4 0 obj

<< >>

stream

BT

 /F0 36 Tf

 50 706 Td

 (Hello, World!) Tj

ET

endstream

endobj

The << >> creates an empty dictionary. pdftk will fill this in with any required metadata.

The stream itself is contained between the stream and endstream keywords. It

contains a series of instructions that tell a PDF viewer how to render the page. In this
case, it will display “Hello, World!” in 36-point Times Roman font near the top of the
page.

The contents of a stream are entirely dependent on context—a stream is just a container
for arbitrary data. In this case, we’re defining the content of a page using PDF’s built-in
operators. First, we created a text block with BT and ET, then we set the font with Tf,

19

then we positioned the text cursor with Td and finally drew the text “Hello, World!” with

Tj. This new operator syntax will be discussed in full detail over the next two chapters.

But, it is worth pointing out that PDF streams are in postfix notation. Their operands are
before their operators. For example, /F0 and 36 are the parameters for the Tf

command. In C#, you would expect this to look more like Tf(/F0, 36). In fact,

everything in a PDF is in postfix notation. In the statement 1 0 obj, obj is actually an

operator and the object/generation numbers are parameters.

You’ll also notice that PDF streams use short, ambiguous names for commands. It’s a
pain to work with manually, but this keeps PDF files as small as possible.

Catalog

The last section of the body is the catalog, which points to the root page tree (1 0 R).

5 0 obj

<< /Type /Catalog

 /Pages 1 0 R

>>

endobj

This may seem like an unnecessary reference, but dividing a document into multiple
page trees is a common way to optimize PDFs. In such a case, programs need to know
where the document starts.

Cross-reference table

The cross-reference table provides the location of each object in the body of the file.
Locations are recorded as byte-offsets from the beginning of the file. This is another job
for pdftk—all we have to do is add the xref keyword.

xref

We’ll take a closer look at the cross-reference table after we generate the final PDF.

Trailer

The last part of the file is the trailer. It’s comprised of the trailer keyword, followed by

a dictionary that contains a reference to the catalog, then a pointer to the cross-
reference table, and finally an end-of-file marker. Let’s add all of this to hello-src.pdf.

20

trailer

<< /Root 5 0 R

>>

startxref

%%EOF

The /Root points to the catalog, not the root page tree. This is important because the

catalog can also contain important information about the document structure. The
startxref keyword points to the location (in bytes) of the beginning of the cross-

reference table. Again, we’ll leave this for pdftk. Between these two bits of information, a
program can figure out the location of anything it needs.

The %%EOF comment marks the end of the PDF file. Incremental updates make use of

multiple trailers, so it’s possible to have multiple %%EOF lines in a single document. This

helps programs determine what new content was added in each update.

Compiling the valid PDF

Our hello-src.pdf file now contains a complete document, minus a few binary
sequences and byte locations. All we have to do is run pdftk to fill in these holes.

pdftk hello-src.pdf output hello.pdf

You can open the generated hello.pdf file in any PDF viewer and see “Hello, World!” in
36-point Times Roman font in the upper left corner.

Figure 5: Screenshot of hello.pdf (not drawn to scale)

Let’s take a look at what pdtfk had to add to our source file…

Header binary

If you open up hello.pdf, you’ll find another line in the header.

21

%PDF-1.0

%âãÏÓ

Again, this prevents programs from processing the file as text. We didn’t have much
binary in our “Hello, World!” example, but many PDFs embed complete font files as
binary data. Performing a naïve find-and-replace on such a file has the potential to
corrupt the font data.

Content stream length

Next, scroll down to object 4 0.

4 0 obj

<< /Length 62

>>

stream

...

pdftk added a /Length key that contains the length of the stream, in bytes. This is a

useful bit of information for programs reading the file.

Cross-reference table

After that, we have the complete xref table.

endobj xref

0 6

0000000000 65535 f

0000000015 00000 n

0000000074 00000 n

0000000182 00000 n

0000000280 00000 n

0000000395 00000 n

It begins by specifying the length of the xref (6 lines), then it lists the byte offset of each

object in the file on a separate line. Once a program has located the xref, it can find

any object using only this information.

Trailer dictionary

Also note that pdftk added the size of the xref to the trailer dictionary.

22

<<

/Root 5 0 R

/Size 6

>>

Finally, pdftk filled in the startxref keyword, enabling programs to quickly find the

cross-reference table.

startxref

445

Summary

And that’s all there is to a PDF document. It’s simply a collection of objects that define
the pages in a document, along with their contents, and some pointers and byte offsets
to make it easier to find objects.

Of course, real PDF documents contain much more text and graphics than our
hello.pdf, but the process is the same. We got a small taste of how PDFs represent
content, but skimmed over many important details. The next chapter covers the text-
related operators of content streams.

23

Chapter 3 Text Operators

As we saw in the previous chapter, PDFs use streams to define the appearance of a
page. Content streams typically consist of a sequence of commands that tell the PDF
viewer or editor what to draw on the page. For example, the command (Hello,

World!) Tj writes the string “Hello, World!” to the page. In this chapter, we’ll discover

exactly how this command works, and explore several other useful operators for
formatting text.

The basics

The general procedure for adding text to a page is as follows:

1. Define the font state (Tf).

2. Position the text cursor (Td).

3. “Paint” the text onto the page (Tj).

Let’s start by examining a simplified version of our existing stream.

BT

 /F0 36 Tf

 (Hello, World!) Tj

ET

First, we create a text block with the BT operator. This is required before we can use any

other text-related operators. The corresponding ET operator ends the current text block.

Text blocks are isolated environments, so the selected font and position won’t be applied
to subsequent text blocks.

The next line sets the font face to /F0, which is the Times Roman font we defined in the

3 0 obj, and sets the size to 36 points. Again, PDF operators use postfix notation—the

command (Tf) comes last, and the arguments come first (/F0 and 36).

Now that the font is selected, we can draw some text onto the page with Tj. This

operator takes one parameter: the string to display ((Hello, World!)). String literals

in a PDF must be enclosed in parentheses. Nested parentheses do not need to be
escaped, but single ones need to be preceded by a backslash. So, the following two
lines are both valid string literals.

(Nested (parentheses) don’t need a backslash.)

(But a single \(parenthesis needs one.)

24

Of course, a backslash can also be used to escape itself (\\).

Positioning text

If you use pdftk to generate a PDF with the content stream at the beginning of this
chapter (without the Td operator), you’ll find that “Hello, World!” shows up at the bottom-

left corner of the page.

Since we didn’t set a position for the text, it was drawn at the origin, which is the bottom-
left corner of the page. PDFs use a classic Cartesian coordinate system with x

increasing from left to right and y increasing from bottom to top.

Figure 6: The PDF coordinate system

We have to manually determine where our text should go, then pass those coordinates
to the Td operator before drawing it with Tj. For example, consider the following stream.

BT

 /F0 36 Tf

 50 706 Td

 (Hello, World!) Tj

ET

This positions our text at the top-left of the page with a 50-point margin. Note that the
text block’s origin is its bottom-left corner, so the height of the font had to be subtracted
from the y-position (792-50-36=706). The PDF file format only defines a method for

25

representing a document. It does not include complex layout capabilities like line
wrapping or line breaks—these things must be determined manually (or with the help of
a third-party layout engine).

To summarize, pages of text are created by selecting the text state, positioning the text
cursor, and then painting the text to the page. In the digital era, this process is about as
close as you’ll come to hand-composing a page on a traditional printing press.

Next, we’ll take a closer look at the plethora of options for formatting text.

Text state operators

The appearance of all text drawn with Tj is determined by the text state operators. Each

of these operators defines a particular attribute that all subsequent calls to Tj will reflect.

The following list shows the most common text state operators. Each operator’s
arguments are shown in angled brackets.

• <size> Tf: Set font face and size.

• <spacing> Tc: Set character spacing.

• <spacing> Tw: Set word spacing.

• <mode> Tr: Set rendering mode.

• <rise> Ts: Set text rise.

• <leading> TL: Set leading (line spacing).

The Tf operator

We’ve already seen the Tf operator in action, but let’s see what happens when we call it

more than once:

BT

 /F0 36 Tf

 50 706 Td

 (Hello, World!) Tj

 /F0 12 Tf

 (Hello, Again!) Tj

ET

This changes the font size to 12 points, but it’s still on the same line as the 36-point text:

26

Figure 7: Changing the font size with Tf

The Tj operator leaves the cursor at the end of whatever text it added—new lines must

be explicitly defined with one of the positioning or painting operators. But before we start
with positioning operators, let’s take a look at the rest of the text state operators.

The Tc operator

The Tc operator controls the amount of space between characters. The following stream

will put 20 points of space between each character of “Hello, World!”

BT

 /F0 36 Tf

 50 706 Td

 20 Tc

 (Hello, World!) Tj

ET

This is similar to the tracking functionality found in document-preparation software. It is
also possible to specify a negative value to push characters closer together.

Figure 8: Setting the character spacing to 20 points with Tc

The Tw operator

Related to the Tc operator is Tw. This operator controls the amount of space between

words. It behaves exactly like Tc, but it only affects the space character. For example,

27

the following command will place words an extra 10 points apart (on top of the character
spacing set by Tc).

10 Tw

Together, the Tw and Tc commands can create justified lines by subtly altering the

space in and around words. Again, PDFs only provide a way to represent this—you must
use a dedicated layout engine to figure out how words and characters should be spaced
(and hyphenated) to fit the allotted dimensions.

That is to say, there is no “justify” command in the PDF file format, nor are there “align
left” or “align right” commands. Fortunately, the iTextSharp library discussed in the final
chapter of this book does include this high-level functionality.

The Tr operator

The Tr operator defines the “rendering mode” of future calls to painting operators. The

rendering mode determines if glyphs are filled, stroked, or both. These modes are
specified as an integer between 0 and 2.

Figure 9: Text rendering modes

For example, the command 2 Tr tells a PDF reader to outline any new text in the

current stroke color and fill it with the current fill color. Colors are determined by the
graphics operators, which are described in the next chapter.

The Ts operator

The Ts command offsets the vertical position of the text to create superscripts or

subscripts. For example, the following stream draws “x²”.

28

BT

 /F0 12 Tf

 50 706 Td

 (x) Tj

 7 Ts

 /F0 8 Tf

 (2) Tj

ET

Text rise is always measured relative to the baseline, so it isn’t considered a text
positioning operator in its own right.

The TL operator

The TL operator sets the leading to use between lines. Leading is defined as the

distance from baseline to baseline of two lines of text. This takes into account the
ascenders and descenders of the font face. So, instead of defining the amount of space
you want between lines, you need to add it to the height of the current font to determine
the total value for TL.

Figure 10: Measuring leading from baseline to baseline

For example, setting the leading to 16 points after selecting a 12-point font will put 4
points of white space between each line. However, font designers can define the height
of a font independently of its glyphs, so the actual space between each line might be
slightly more or less than what you pass to TL.

BT

 /F0 36 Tf

 50 706 Td

 (Hello, World!) Tj

 /F0 12 Tf

 16 TL

 T*

 (Hello, Again!) Tj

ET

29

T* moves to the next line so we can see the effect of our leading. This positioning

operator is described in the next section.

Text positioning operators

Positioning operators determine where new text will be inserted. Remember, PDFs are a
rather low-level method for representing documents. It’s not possible to define the width
of a paragraph and have the PDF document fill it in until it runs out of text. As we saw
earlier, PDFs can’t even line-wrap on their own. These kinds of advanced layout features
must be determined with a third-party layout engine, and then represented by manually
moving the text position and painting text as necessary.

The most important positioning operators are:

• <x> <y> Td: Move to the start of the next line, offset by (<x>, <y>).

• T*: Move to the start of the next line, offset by the current leading.

• <a> <c> <d> <e> <f> Tm: Manually define the text matrix.

The Td operator

Td is the basic positioning operator. It moves the text position by a horizontal and

vertical offset measured from the beginning of the current line. We’ve been using Td to

put the cursor at the top of the page (50 706 Td), but it can also be used to jump down

to the next line.

BT

 /F0 36 Tf

 50 706 Td

 (Hello, World!) Tj

 /F0 12 Tf

 0 -16 Td

 (Hello, Again!) Tj

ET

The previous stream draws the text “Hello, World!” then moves down 16 points with Td

and draws “Hello, Again!” Since the height of the second line is 12 points, the result is a
4-point gap between the lines. This is the manual way to define the leading of each line.

Note that positive y values move up, so a negative value must be used to move to the
next line.

30

The T* operator

T* is a shortcut operator that moves to the next line using the current leading. It is the

equivalent of 0 -<leading> Td.

The Tm operator

Internally, PDFs use a transformation matrix to represent the location and scale of all
text drawn onto the page. The following diagram shows the structure of the matrix:

Figure 11: The text transformation matrix

The e and f values determine the horizontal and vertical position of the text, and the a

and d values determine its horizontal and vertical scale, respectively. Altering more than

just those entries creates more complex transformations like skews and rotations.

This matrix can be defined by passing each value as an argument to the Tm operator.

<a> <c> <d> <e> <f> Tm

Most of the other text positioning and text state commands are simply predefined
operations on the transformation matrix. For example, setting Td adds to the existing e

and f values. The following stream shows how you can manually set the transformation

matrix instead of using Td or T* to create a new line.

BT

 /F0 36 Tf

 1 0 0 1 50 706 Tm

 (Hello, World!) Tj

 1 0 0 1 50 670 Tm

 (Hello, World!) Tj

ET

31

Likewise, we can change the matrix’s a and d values to change the font size without

using Tf. The next stream scales down the initial font size by 33%, resulting in a 12-

point font for the second line.

BT

 /F0 36 Tf

 1 0 0 1 50 706 Tm

 (Hello, World!) Tj

 .33 0 0 .33 50 694 Tm

 (Hello, World!) Tj

ET

Of course, the real utility of Tm is to define more than just simple translation and scale

operations. It can be used to combine several complex transformations into a single,
concise representation. For example, the following matrix rotates the text by 45 degrees
and moves it to the middle of the page.

BT

 /F0 36 Tf

 .7071 -.7071 .7071 .7071 230 450 Tm

 (Hello, World!) Tj

ET

More information about transformation matrices is available from any computer graphics
textbook.

Text painting operators

Painting operators display text on the page, potentially modifying the current text state or
position in the process. The Tj operator that we’ve been using is the core operator for

displaying text. The other painting operators are merely convenient shortcuts for
common typesetting tasks.

The PDF specification defines four text painting operators:

• <text> Tj: Display the text at the current text position.

• <text> ': Move to the next line and display the text.

• <word-spacing> <character-spacing> <text> ": Move to the next line,

set the word and character spacing, and display the text.

• <array> TJ: Display an array of strings while manually adjusting intra-letter

spacing.

32

The Tj operator

The Tj operator inserts text at the current position and leaves the cursor wherever it

ended. Consider the following stream.

BT

 /F0 36 Tf

 50 706 Td

 (Hello, World!) Tj

 (Hello, Again!) Tj

ET

Both Tj commands will paint the text on the same line, without a space in between

them.

The ' (single quote) operator

The ' (single quote) operator moves to the next line then displays the text. This is the

exact same functionality as T* followed by Tj:

BT

 50 706 Td

 /F0 36 Tf

 36 TL

 (Hello, World!) Tj T*

 (I'm On Another Line!) Tj

 (So Am I!) '

ET

Like T*, the ' operator uses the current leading to determine the position of the next

line.

The " (double quote) operator

The " (double quote) operator is similar to the single quote operator, except it lets you

set the character spacing and word spacing at the same time. Thus, it takes three
arguments instead of one.

2 1 (Hello!) "

This is the exact same as the following.

33

2 Tw

1 Tc

(Hello!) '

Remember that Tw and Tc are often used for justifying paragraphs. Since each line

usually needs distinct word and character spacing, the " operator is a very convenient

command for rendering justified paragraphs.

BT

 /F0 36 Tf

 50 706 Td

 36 TL

 (The double quote oper-) Tj

 1 1 (ator is very useful for) "

 1 1.7 (creating justifed text) "

ET

This stream uses character and word spacing to justify three lines of text:

Figure 12: Adjusting character and word spacing to create justified lines

The TJ operator

The TJ operator provides even more flexibility by letting you independently specify the

space between letters. Instead of a string, TJ accepts an array of strings and numbers.

When it encounters a string, TJ displays it just as Tj does. But when it encounters a

number, it subtracts that value from the current horizontal text position.

This can be used to adjust the space between individual letters in an entire line using a
single command. In traditional typography, this is called kerning.

34

BT

 /F0 36 Tf

 50 706 Td

 36 TL

 (Away With You!) Tj T*

 [(A) 100 (way W) 60 (ith Y) 150 (ou!)] TJ

ET

This stream uses TJ to kern the “Aw”, “Wi”, and “Yo” pairs. The idea behind kerning is to

eliminate conspicuous white space in order to create an even gray on the page. The
result is shown in the following figure.

Figure 13: Kerning letter pairs with TJ

Summary

This chapter presented the most common text operators used by PDF documents.
These operators make it possible to represent multi-page, text-based documents with a
minimum amount of markup. If you’re coming from a typographic background, you’ll
appreciate many of the convenience operators like TJ for kerning and " for justifying

lines.

You’ll also notice that PDFs do not separate content from presentation. This is a
fundamental difference between creating a PDF versus an HTML document. PDFs
represent content and formatting at the same time using procedural operators, while
other popular languages like HTML and CSS apply style rules to semantic elements.
This allows PDFs to represent pixel-perfect layouts, but it also makes it much harder to
extract text from a document.

	The Story Behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	Introduction
	The PDF standard

	Chapter 1 Conceptual Overview
	Header
	Body
	Cross-reference table
	Trailer
	Summary

	Chapter 2 Building a PDF
	Header
	Body
	The page tree
	Page(s)
	Resources
	Content
	Catalog

	Cross-reference table
	Trailer
	Compiling the valid PDF
	Header binary
	Content stream length
	Cross-reference table
	Trailer dictionary

	Summary

	Chapter 3 Text Operators
	The basics
	Positioning text

	Text state operators
	The Tf operator
	The Tc operator
	The Tw operator
	The Tr operator
	The Ts operator
	The TL operator

	Text positioning operators
	The Td operator
	The T* operator
	The Tm operator

	Text painting operators
	The Tj operator
	The ' (single quote) operator
	The " (double quote) operator
	The TJ operator

	Summary

