Analysis of Top N recommenders

Neham Jain Shreyas Kulkarni
eel19b084(@smail.iitm.ac.in mel9b193@smail.iitm.ac.in
Tanay Dixit Vibhhu Sharma
eel9b123@smail.iitm.ac.in eel9b128@smail.iitm.ac.in

June 15, 2020

Abstract

A product recommender system based on product-review information and metadata history was
implemented in our project. The primary goal for our recommender system is to recommend ‘top N’
products to a user based on his/her purchase history(explicit data). We used collaborative filtering models
with both user-based and item-based strategies, matrix factorization/ Autoencoders and hybrid models to
recommend products. The strengths and weaknesses of each model were analysed using targeted error
metrics like Hit rate & Average Reciprocal Hit Rate so as to gain insight into making a better model.

Introduction

Recommender Systems are in wide use by companies working in diverse fields today. The focus in
various spheres is shifting towards a more consumer-oriented approach and this requires a strategy that
will keep him/her satisfied.

Recommender Systems aim to predict the preference/taste of a user so as to recommend products that
he/she is likely to enjoy. Such an approach performs better than an approach based purely on popularity
metrics and other such standard methods. The touch of personalization offered by a recommender system
can generate a high conversion rate because of the relevant results generated by it.

Current recommender systems generally fall into two categories: content-based filtering and collaborative
filtering. We experiment with both approaches in our project. For content-based filtering, we take
metadata of Video Games such as title, description, features as inputs and use TF-IDF to calculate the
similarity between video games. For collaborative filtering, the input to our algorithm is the observed
users’ movie rating, and we use K-nearest neighbours and matrix factorization methods to predict user’s
movie ratings. Metrics used to compare the models are Hit Rate, Average Reciprocal Hit Rate(ARHR),
Novelty & Diversity each measured for a list of 1000 test users.

For our analysis, we used the Video Games dataset provided by Stanford Network Analysis group:(Julian
McAuley, UCSD). We worked with explicit data which had 446k reviews provided by 55k users to 17k
products. Along with this we also used product metadata that consists of a unique product identifier, title,
category, description, timestamp(excluded in our study) and brand.

Basic exploratory analysis revealed that
the reviews were highly skewed.
Furthermore, only a small number of
products were bought
frequently(popular products), also the
sparsity in the user-item matrix is
0.26%.

Fig-1 shows the skewed nature of ratings

with 79% of ratings>=4 on a scale of 5

Rating Distribution (Fig-1)

—— Number of reviews .

— User analysis showed that many users purchased a
uo large number of popular products, while some
=
2 0020 1 niche users had purchased a large number of
=8
5 non-popular products.

S 0.015

=

& . . .

3 0010 1 Fig-2 illustrates the long tail problem. Most

£ . .

S products have very few ratings to their name. Only

0.005

a few selected products have a large number of

0.000 . . . : . . et | reviews(>500) while most are in the range between

0 100 200 300 400 500 600 700 BOO

Number of reviews 0-50.

Fig 2: Long-tail plot

stribution of users into warious categarics

D&

As such, understanding user behaviour was key to building

a good recommender system so appropriate user bias had

to be added when rating prediction models were
implemented based on how critical or lenient the user was 3
while rating a product.

Enient ncma

Type of user

Item analysis showed:

The meta-data of the products gave information about the category, brand, shape/size, title, description, etc,
the most important being category and Brand. It was observed that only a few brand’s items were bought a
lot mainly because they provided good games or other factors(Fig3). Even analysing categories was key(Fig 4)
in content-based filtering as users who like PC games may dislike console-based games. A product could

belong to one or more than one category.

Number of prducts per category(top 50)

500000
400000
300000
200000
100000

opuzquiy £q pasu=a)| AeRW0
SPUES % 5124381 ‘SIUNC)
flowap

spue] uonduasgns | Aausuny
sawes) |e36ig

sajoway

siaydepy

Jojon Aog awes

52083

19 AI0ss210y

SURiS 7 sI0333044 ‘sage|daey
sisauzq) efbag

spaeogday bulweg
Jseawezsg ebag

siafuey

210 73 saweg [epbig
sizydepy 3 s3jqed

S3N OpUSIUIN

siabiey) 3 s2uaneg

abeiols | sase)

opuzjuy Jadng

saunfly Buiwes) anaelsju|
dSd Auog

2211y Bunues

9 OpUSIUIN

sla|jouiuoy plepuels g spedawies

SAE opuIUIN
aouenpy Aog aweo
sjaspeay

211, uonEIShe|d
1A

ST '3 SAE opuUIIUIN
uoneIsield
aqnoawes
sajosuny)

50 OpUSIUIN

Oy

513||043U00

TR

3uQ xoqy

7 uoneisheld
 ueieisheld

£ uonEisheld

09E ¥oqy

Ay 13 spry

d

SILIOSTIITY
530SUDI0IN 5 BulED anay
saleg)

SBLLED 0PI

Category

Fig3: This plot shows the number of products bought by users for each category

Mumber of prducts per brand(top 50)

2300

2000

]
q

spud Jo J2quiny

1000

500

o

JUALIEYEIUT Jemely
S3WET N7

s

aloug

LER

Dlds

oasalepy
supsAIBIN
Aempliy

15114 ABajens
subisaqg uixs |fup
1eubig v
epsayieg

soIpnjs aAnaelagy Azusig
Jhdsy

Aejdizau
SHysean]

Uooug

yosign
2upiSI03dem
woddey

Iueumy

OHL

Yosonly

sauweg gy

yInweasp
vonershelg

330U
1) peyy
1epueg
UOISIATY

b4

[eSI3AU [pUAIA
S U033
efiag

XIu3 auenbs
fuos

1By
waoade)

OHL

1050

ey

fuog
opuBuIN
yosian

efiag
opuSUIN
oISy
SUY 0IR3

Brand

F1g4 ThlS plOt Sl‘lOWS the number ofproducts bought by users fOI‘ each Brand

For each of the following methods, we analyse the top 10 recommendations for a particular user

(Userld: A14XH33SGMTAT7R). This user was selected because he had a clear liking for action/adventure video
games as he had purchased games like X-Men, Street Fighter, Marvel Superheroes Set, Age of Empires and
other PS games.

3)Meth0ds

1)Memory-based
r.1)Content-based Collaborative Filtering

Content-based CF is a model based on recommending similar products on the basis of content. To find
similar products we make use of the product title, features & category present in the meta-data file. We
merge these columns for each product, apply cleaning algorithms ie: Stemming/lemmatization and remove
stop words. We apply Term Frequency-Inverse Document Frequency (TF-IDF) vectorizer. This will give a
matrix where each column represents a word in the content vocabulary (all the words that appear in at least one
document) and each row represents an item, as before. This is done to reduce the importance of words that occur

frequently and therefore, their significance in computing the final similarity score.

To reduce the size of the TF-IDF matrix, Truncated SVD was implemented to reduce the dimensions to
much more condensed space. We use cosine similarity on the TFE-IDF vectors for each product in order to
find similar products. A cosine similarity of 1 implies the two products are identical while a score of 0 means

thCy are completely unrelated.

A.B i1

cosine similarity = cos(®) = e - T
N
= =

i

We identify the products which are similar to a user’s purchase history and multiply each similarity score by
the rating the user gave to the corresponding product, then we sort the products by their net score and

recommend the top 20 products to a user.

The following plot is of the Content Embeddings obtained from the item-T

was compressed to a 2-dimensional space with the help of t-SNE algorithm.

Content Embeddings

fidf macrix. The Tfidf macrix

SlliconeProtectiveCaseforContraller
150 JPS3ControllerSilicenSleeveProtector
_NintendoGanGd /P52 Agh fitbrzio
100 Farsaken snowboard KidsFAGERABFAATRMGIL I
Llay Fighter 63 1/3 JTTLENew louchScreenRepair _USBM fropheneforRocki
fario Karl 64 #Pack-GatorCrunch
GameBoyMicroACWall
& Klonoa: Door to Prantomile
JK-Men vs. Street Fighter [DotopSonyPlaystatien2P52
ki ! ;
fice Combat 2 Folo Frenzy: Spot Lthe Gifference
080 Snowl o = ezt Flghter EX Plus Alpha
0 A eayshngs noicont 3,% Flahter EX f
irt 3
JNT Warzone £
Minja: Shadow of Darkness
-50 Fmp— I AR PR NS
% roes
cathtrap Dungesn Jom Clancy's HAWE 2
ibmah s dlor Fate
mﬂlﬂay’m‘ Grm Fandango - PC Star vjars: Rogue Squa
—100 1 Mega Man Legends
Riven: The Seguel To Myst JAnne 2070 Ship Simulator 2008
=150
Rt Raide trdventuresof
—200 4
200 150 -100 -50 0 50 100 150

Products having similar features are closer to each other as compared to dissimilar products. As a simple

example: all the gaming consoles can be seen on one side of the plot, all

tl’lC VidCO games can bC seen on

another side of the plot. So our content-based system looks at the user’s purchase history and recommends

products having similar features.

Top 10 recommendations for our sample user by Content-based CF :

Klonoa 2: Lunatea's Veil

»

PlayStation 2 SingStar Bundle - Ceramic White
Samurai Warriors 4 Empires - PlayStation 4
Age Of Mythology: Titans - PC

PlayStation 2 Console (Slim Line Version 1)
Skylanders Giants GAME ONLY for the PS3
Playstation 2 Console Slim - Ceramic White
Saints Row IV: Re-Elected + Gat out of Hell
Civilization II: Multiplayer (Gold Edition)

R AR I L Sl

AmazonBasics Heavy-Duty Vault Case for PlayStation Vita and Vit
Sony)

a Slim (Officially Licensed by

These recommendations are quite good as they are all action related games that the user hasn’t bought. The best
part of content-based recommendations is, it recommends items from the long tail as a result helping new items

get discovered.

1.2) Item-based Collaborative Filtering

Item-based CF helps to find similar products based on all the user’s purchase patterns. This algorichm was
very popular in Amazon recommendations systems, Eg. When you buy any product on Amazon, you will
find this line "Users who bought this item also bought...",

We use the item-user matrix which is a sparse matrix with items as the rows and users as the columns and
the entries are the rating a user gave to a particular item. We compute the cosine similarity between two
item vectors in the user dimension. Then we find similar products to the products a user purchased and
multiply the similarity score by the rating the user gave to the corresponding product. After sorting we

recommend the highest rated products.

In the beginning, we used NearestNeighbours algorithm to find similar items, but this approach was
time-consuming as it took 7 sec per user, in order to improve this we decided to build it from scratch with
the help of cosine similarity kernel(inbuilt python function) along with our own functions. This approach
reduced the computational time to 0.1 sec, which is 70 times faster and didn’t compromise Hit Rate at all.

Another plus point was that by removing KNN we were able to parallelise the computation for different

users which further improved the computational time.

Top 10 recommendations for our sample user by Item-based CF

1. X-Men: Children of the Atom - PlayStation

Dragon Ball GT: Final Bout

Rival Schools

The Simpsons: Night of the Living Treehouse of Horror

N

Driver 2 Advance

Mega Man Anniversary Collection - PlayStation 2
Samurai Shodown - Sega Genesis

Street Fighter 111 3rd Strike

Mortal Kombat 4

O N

10. Puyo Pop Fever

Item-based recommendations are arguably one of the best as they not only recommend new games but also the
new versions of the games the user has played, ex Street Fighter 3. However, one important point is that all these

games are popular and none are from the long tail.

1.3)User-based Collaborative Filtering

User-based CF involves the basic idea that users with similar past purchase histories/interests are likely to

continue to show interest in similar products.

This model uses a “user-item” matrix-a sparse matrix with each user as a separate TOw and each item as a

column. The matrix is populated by the ratings given by a user to a corresponding item. Each row of this

matrix now serves as a vector which is then used to compute cosine similarity with the vector representing a

different user.

The top 30 most similar users to the user under consideration are found and their respective ratings to each

item are scaled by the similarity score for the user. Ultimately, each item gets a final rating by summing over

the values obtained for the 30 users. They are sorted according to this rating and the highest rated products

are recommended.

The following plot depicts the interaction between users and items.The green user is our test user and the

remaining are users are who have similar buying history (shown in dark lines)

Bipartite graph of users and products

Rise of Nations + Rise of Nations: Thron

. Hge of Conan: Hybarian Adventures Call

—
War(_(gﬁ-?‘lfaﬂie Chest: Tides of Darkness |

‘Console Slim(

fge OF Mythology: Titans
Age of Conan: Rise of the Gods|

~XMenvs. Street Fighte]

products
ALTG test_user
S other users

AL
A1HGNLI2D
ATHGH!

A13FA18J88TZ00

A1B2SVLMT6Z26

——fRome: Total War Gold Editio)

= of Empires it Complete Collectiq

Age of Wonders - PC
) Mega Man X Callection - Plays

cyel Vs. Capcom: Clash of Su

Marvel Super Heroes Vs. Stree

God of War- Ascension Collector's Editi

Top 10 recommendations for our sample user by user-based CF

1. Age Of Mythology: Titans - PC

Age of Wonders - PC

Warcraft 2 Battle Chest: Tides of Darkness / Beyond the Dark Portal
Kingdom Hearts

Rome: Total War Gold Edition - PC

Rise of Nations + Rise of Nations: Thrones & Patriots - PC

Empire: Total War - PC

Age of Conan: Hyborian Adventures Collector's Edition - PC

Age of Conan: Rise of the Godslayer - PC

10. God of War: Ascension Collector's Edition - Playstation 3

N

R I

These recommendations are a little off as they're all PC games and the user showed no specific inclination
towards PC games, though the genre of all games is as per his interest. This is one flaw of user-based, it is very

difficult to find similar users based on purchase pattern unless one has a really big dataset to work with

One more problem in user-based collaborative approaches is that it doesn’t treat likes and dislikes separately, ie.,
it may say two users are similar if they hate the common products also, but they may not necessarily like the same

things which matters the most while providing recommendations.

2)Model-based

2.1) Matrix Factorization

Matrix factorization decomposes the user-item matrix into the product of two smaller matrices: the first one
has a row for each user, while the second has a column for each item. These matrices represent user-latent
and item-latent matrices respectively. Matrix factorization forces the model to learn *k’ latent features for
each user and product. By reducing dimensionality, it allows the model to focus on the factors most relevant

to rating prediction.

The predictions are further improved by adding a user bias and item bias, unique for each user/item, as well
as the global rating mean. The global ratings mean was 4.2329. This allows the model to better differentiate
between users who are more inclined to always give good ratings and those who generally rate negative

products.

rui= Wb bt gpy

The predicted rating which a user (u) will give an item (i) is given by the sum of p (global ratings mean), b,
the item bias, b, the user bias and the 2 term obtained by taking the dot product of a row from item

latent matrix (g,)with a column from user latenc macrix(p?)

s = T3 ()

u € #users i € #items

Note: Mean squared error is computed on already known ratings and the objective function aims to
minimise this error. Stochastic Gradient Descent(SGD) outperformed Alternating Least Squares(ALS) in

RMSE score hence we used SGD to minimise the loss function.

The first implementation was done without Keras/TensorFlow with no in-built SGD. SGD on the loss
function was performed using NumPy functions. As a result, it was computationally expensive. To make use
of in-build SGD we used Keras with a basic architecture of input, user embeddings, item embeddings and
user/item bias. These layers were added and the dot product was fed to the output layer(ratings). It was

much faster than the previous method and even RMSE score improved by a margin of (0.1).
To make it even faster and improve aecuraey/ sealability we decided to use Apple’s open—soureed library

Turi create. This library was chosen because it had many methods which were very helpful in providing

Top—N recommenders ie; RankingFactorizationReeommedner

10

Top 10 recommendations by using Matrix Factorization for our sample user :

-

Xbox One Play and Charge Kit

Uncharted: The Nathan Drake Collection -PS4
The Legend Of Zelda

Tomb Raider: Definitive Edition: PS4

Tomb Raider

Pokemon Y

PlayStation 2 Dualshock Controller Black
Minecraft - PlayStation 3

N e oy K~ N

Gears of wars 3

_
o

Xbox One Wireless Controller (Without 3.5—millimeter headset jack)

This model is doing quite well even though its hit rate is relatively low as it is able to understand the fact the
user likes action games. Furthermore, it has also figured out that the user has not purchased any additional
accessories and is recommending them accordingly too.

2.2)AutoRec

Although the matrix factorization model achieves decent performance , input: | [(2, 5559)]
UserRating: InputLayer
output: | [(?, 5559)]

on the rating prediction task, it is essentially a linear model. Thus,

such models are not capable of capturing complex nonlinear and !

intricate relationships that may be predictive of users’ preferences. Enclayer0: Dense input: E: ?223;
output: ?,

We introduce a nonlinear neural network collaborative filtering

input: | (?, 1024)

model, which essentially performs collaborative filtering (CF) with an EncLayer1: Dense)
output: ?,

autoencoder architecture and aims to integrate nonlinear

transformations into CF on the basis of explicit feedback. Neural 1
input: | (?, 256)

output: | (7, 64)

IlCtWOI‘kS have been proven to bC capable Of approximating any LatentSpace: Dense

continuous function, making it suitable to address the limitation of

matrix factorization and enrich the expressiveness of martrix

input: ?, 64
factorization. dropout_3: Dropout |— (. 64)

output: | (?, 64)

On one hand, AutoRec has the same structure as an autoencoder mput | 2 64)

. DecLayerl: D
which consists of an input layer, a hidden layer, and a reconstruction B e I put: | % 256)
(output) layer. An autoencoder is a neural network that learns to copy
its input to its output in order to code the inputs into the hidden (and input | (% 256)
. . . 3 DecLayer0: Dense
usually low-dimensional) representations. In AutoRec, instead of output: | (?, 1024)
explicitly embedding users/items into low-dimensional space, it uses
the column/row of the interaction matrix as the input, then nput: | (2, 1024)
UserScorePred: Dense
reconstructs the interaction matrix in the output layer. output: | (2, 5559)

11

AutoRec doesn't drastically improve the performance of ‘top N’ recommenders, thus implying that there

aren’t many non-linear features to extract from the data.

Top 10 recommendations for our sample user by AutoRec

1. Xbox 360 Wireless Controller - Glossy Black

2. Super Smash Bros. - Nintendo 3DS

3. Redragon Mé6o1 Wired Gaming Mouse, Ergonomic, Programmable 6 Buttons, 3200 DPI with Red
LED Mouse for Windows PC Games - Black

4. Xbox One Play and Charge Kit

Turtle Beach - Ear Force PX22 Universal Amplified Gaming Headset - PS3, Xbox 360, PC

Turtle Beach - Ear Force PX22 - Universal Amplified Gaming Headset- PS3, Xbox 360, PC - FFP

[Old Version]

Assassin's Creed - Ezio Trilogy Edition Xbox 360

4

Halo 4: Game of the Year Edition
Nintendo Wii U Pro Controller - Black
10. PlayStation 2 Dualshock Controller Black

o »

3)Hybrid Recommenders

Combining models in order to learn from one other’s weakness is key to building a good recommender. The
main drawback of Collaborative Filtering models is the cold start problem. The recommenders cannot learn
enough features from new users/items, as they have very little interaction with the items/users, hence as a
result performs poorly on them. Solving the cold start problem is key in attracting new users and

incorporating new products into the system, it's a win-win situation for all.

In order to solve this issue, ensembling content-based recommenders with Collaborative Filtering models
will help it learn more about new users/items. Content-based model is weak by itself since it only limits it’s
recommendations to the same category/type of products, but if we incorporate item/user-based CF, along

with content-based patterns it will also learn user patterns.

There are multiple ways to ensemble the two, simple Weighted average or matrix stacking.
The weighted average approach involves taking the ‘weighted average’ of the rank of the items present in the
list of recommendations provided by item-based CF and Content-based Recommendation for a user and

then sorting it based on the new average rank generated.

In the second approach, we merge the item-user matrix with the item- TF-IDF matrix, column-wise to

obtain a matrix in which each item vector is not only represented by every user vector but also by its

12

content vector. As a result, items which haven’t been bought many times can be grouped with other
products on the basis of their content vector space in the matrix.

Note now the size of the matrix can get really large SO using sparse matrix representation can be very helpful
(ex: csr_matrix kernel), various other approaches can also be used ie: subgrouping the matrix, or

subgrouping the users.

Simple Weighted average doesn’t completely merge the two algorithms as it's solely based on the outputs,
while matrix stacking adds completely new dimensions to our user-item space.

We tried both approaches and as expected matrix stacking was more promising.

Weighted Averaging helps to sort the recommendations better thus improving ARHR, while matrix
stacking helps to generate better recommendations thus improving Hit Rate.

(Refer to Table 2)

Top 10 recommendations for our sample user by Hybrid Model
1. Riven: The Sequel To Myst

Tenchu 2

N

Street Fighter Ex 2 Plus

WWF Royal Rumble

Mega Man Anniversary Collection - PlayStation 2
Mischief Makers

Catwoman - Xbox

R-Type Command - Sony PSP

King of Fighters 2002/2003 - Xbox

R I I L Y

10. Star Wars Episode I: Jedi Power Battles

Even though these recommendations are completely different from the rest, the user may like them as they
are very similar to the games he has played in the past and some are even newer versions of the games he has
played. The plus point is the diversity of the recommendations is good and there’s no bias towards one

category ofgames.

13

4) Metrics used for evaluating our models

The best way to rate an offline recommender is with Hit rate/ Average Reciprocal Hit Rate. If we
are able to recommend an item which the user went and bought independently we can surely say

we are recommending good items.

4.1)Hit Rate(HR):

HR = #hits
Husers

where #hits is the number of users for which the model was successfully able to recall the test item in the
size-N recommendation list(ie: hit) and #users is the total number of test users.This metric tests the ability of

a recommender system to give predictions that the user is already known to be inclined towards.

An HR value of 1.0 indicates that the algorithm is able to always recommend the hidden item, whereas an
HR value of 0.0 denotes that the algorithm is not able to recommend any of the hidden items. A drawback
of HR is that it treats all hits equally regardless of where they appear in the Top-N list. ARHR addresses it

by rewarding each hit based on where it occurs in the Top-N list, which is defined as follows:

4.2)Average Reciprocal Hit Rate(ARHR):

ARHR =

Husers Z

L
; P

#hits
1
=1
where p; is the position of the test item in the ranked Top-N list for the i-th hit. That is, hits that occur
earlier in the ranked list are weighted higher than those occurring later and thus ARHR measures how
strongly an item is recommended. The highest value of ARHR is equal to the hit rate and occurs when all

the hits occur in the first position, whereas the lowest value is equal to HR/N when all the hits occur in the

last position of the list.

We chose HR and ARHR as evaluation metrics since they directly measure the performance of the model

on the ground truth data i.e., what users have already provided feedback for.

14

4.3)Diversity

Diversity = 1-S

where § is the average similarity score between every possible pair of recommendations for a given user.

This metric measures how ‘diverse’ the list of recommendations is. For example, if the final list contains a lot
of products from the same brand, it represents low diversity. Ideally, a model should produce sufficiently
diverse recommendations so that the user is introduced to newer avenues while maintaining a decent

proportion of similar items as well.

4.4)Novelty:

Average popularity rank of recommended items. Higher means more novel. Helps us see if the model is only
recommending “popular” items. A good model’s novelty should neither be too high(always recommending
low-popularity products) nor too low(only recommending highly popular products).

The maximum Novelty possib]e is 346 (because of the common number of ratings for items, many items
have same “number of reviews”, thus having “same popularity”) which is when the model recommends items

with only 1 rating while; Novelty of 1 is achieved when it recommends only the most popular item.

15

5)Results & Conclusion:

All thCSC metrics were measured fOI‘ a 1iSt Of I000 test users.

Tl’lC modcls are analysed based on their COI‘I‘CSpOl’ldil’lg VRIUCS to each metric.

A random baseline model which recommends a set of random products to a user has also been created for

comparison purposes.

Model HR (%) | ARHR Diversity | Novelty
(%) (o)

Random Recommender 0.00 0.00 99.28 321.05
Content-Based Collaborative Filtering 6.36 1.85 83.59 317.83
Item Based Collaborative Filtering 16.6 6.00 97.40 266.11
User-Based Collaborative Filtering 3.50 0.83 98.82 27.57
Matrix Factorization 4.08 0.61 97.15 60.00
AutoRec 4.12 0.93 N/A N/A
Hybrid Model with matrix stacking 20.35 6.32 98.07 303.78

Table 1

Comparison of the hybrid models
Model HR(%)

Hybrid model with weighted average 19
Hybrid model with matrix stacking 20.35

Table 2

Item-based CF is more accurate than user-based CF as the similarity between items always remains fixed with

time while users' tastes may change. Also, the number of items will always be way less than the number of users

who visit the site, so this approach is computationally cheaper. User-based Collaborative Filtering doesn’t

16

perform as well as other models mainly because the user’s taste changes with time: it is possible that the user
may not continue to like a product in the future. As we aren’t taking timestamps into account in our study,

it becomes difficult to group users who have similar interests.

Another problem in user-based Collaborative filtering is it doesn’t treat likes and dislikes separately meaning
it may say two users are similar if they hate the common products also, but they may not necessarily like the same
things which matters the most while providing recommendations. Finding common interests is way more

important than finding common hates.

Factorization methods work well when one has to predict what a particular user will watch or click on next
given his history (ex: Youtube recommendations), but for movie/product recommendations ‘ratings prediction’
models aren’t solVing the problem in hand which is recommending Top N items. Even if we improve our
RMSE score by a margin, the top N recommendations may still remain the same implying improved
accuracy doesn’t always lead to better recommendations. On paper, they may have better results but the top

N results can be obscure as they are trying to solve the wrong problem.

One can see that the hybrid model outperforms the rest mainly because it takes care of new users/ items as a
result it provides way better recommendations to all. The Matrix Factorization models don’t perform at par
with the others, although it gave a really good RMSE, implying that they are good as ‘ratings predictions’

models but not as ‘Top N’ recommenders.

All models perform better than our baseline model in all metrics except novelty & diversity, thus implying
that these metrics aren’t the sole condition to judge a model but instead should be used to analyse how
diverse our recommendations are. A good model should have a decent novelty and diversity score, a model
with very high diversity may imply its just recommending random items and a model with low novelty score

implies it suffers badly from popularity bias.

Most of the models suffer from popularity bias, ie: the majority of the recommendations are the produets
which are popular, the sole reason being the sparsity of the user-item matrix. While some users may like
being recommended popular produets, there are some niche interest users who may want non—popular items

in their recommendations. The best way to analyse this is with A/B testing.

17

6)Future Work

In the future, we plan to improve our system by incorporating the following changes:

Addition of timestamps will help sort our recommendations better by giving more weights to the recently
bought products, also possible splitting of users into 3 groups based on the percentage of popular products
purchased, and then analysing them separately will help to solve the popularity bias.

We would also like to implement Restricted Boltzmann Machines(RBMs), as a version of it is being

currently used by Amazon.

A special thanks to Aniket Patil(Data analysts at Vrythms) for mentoring
us throughout the project

18

7)References

Amazon Review and metadata for Video Games by JC Mcauley, UCSD:

hteps://nijianmo.github.io/amazon/index.html.

Justifying recommendations using distantly-labelled reviews and fined-grained aspects
Jianmo Ni, Jiacheng Li, Julian McAuley Empirical Methods in Natural Language Processing (EMNLP),
2019

Sundog Education Recommender Systems: http://sundog-education.com/RecSys

Lazyprogrammer GitHub repo:

heeps://github.com/lazyprogrammer/machine_learning_examples/tree/master/recommenders
Sedhain, Suvash & Menon, Aditya & Sanner, Scott & Xie, Lexing. (2015). AutoRec: Autoencoders
Meet Collaborative Filtering. 111-112. 10.1145/2740908.2742726.

Tran, Dai & Hussain, Zawar & Zhang, Wei Emma & Nguyen, Khoa & Tran, Nguyen & Sheng,
Quan. (2018). Deep Autoencoder for Recommender Systems: Parameter Influence Analysis.
https://towardsdatascience.com/crcating—a—hvbrid—contcnt—collaborativc—movic—recommcnder—usin

g-deep-learning-cc8b431618af
Apple Turicreate documentation:

heeps://apple.github.io/turicreate/docs/api/turicreate.toolkits.recommender.html
Abdollahpouri, Himan & Mansoury, Masoud & Burke, Robin & Mobasher, Bamshad. (2019). The

Unfairness of Popularity Bias in Recommendation.

19

https://nijianmo.github.io/amazon/index.html
http://sundog-education.com/RecSys
https://github.com/lazyprogrammer/machine_learning_examples/tree/master/recommenders
https://towardsdatascience.com/creating-a-hybrid-content-collaborative-movie-recommender-using-deep-learning-cc8b431618af
https://towardsdatascience.com/creating-a-hybrid-content-collaborative-movie-recommender-using-deep-learning-cc8b431618af
https://apple.github.io/turicreate/docs/api/turicreate.toolkits.recommender.html

