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Image Semantic Embedding

Spectrum of semantic similarity
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Image embedding:

A dense representation capturing semantics

[Source: Juan, et al., WSDM'20] ,
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Learning Image Semantic Embedding
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e Core of image search
o By textural queries
o Byimage queries

[Source: Juan, et al., WSDM'20]

5



https://dl.acm.org/doi/abs/10.1145/3336191.3371784

T
Neural Architecture

40M Classes

Training Images L] [
Subsampling

100K classes
ﬂ% Image Embedding v v

A V 2e-6 1e-6
by A\ e ResNet (zu) 03 0.45
M e 1e-6 1e-6
= 1e6| Supervised [7cg
Loss

Input > — | —_— | | —
Layer > 0.35 0.45
Graph 2e-6 1e-6
Regularizer p' (:L‘) q/ (:1))
Predicted Label

- Probability Probability
Co-Occurrence Graph é(zy)

[Source: Juan, et al., WSDM'20]

6



https://dl.acm.org/doi/abs/10.1145/3336191.3371784

T
Neural Architecture

40M Classes

Subsampling

|
|
|
: 100K classes
% Image Embedding : v v
|
|
|
|
|
|

Training Images

1
1
1
1
1
1
! % 2e-6 1e-6
: “E b= ResNet P(zu) 0.3 0.45
" \h g 1e-6 1e-6
I 1e6| Supervised [7cg
1 ] Loss
1 Input > — || ——F—|  |—
: Layer > ! 0.35 0.45
: Graph : 2e-6 1e-6
i / /
: Regularizer | P (:L‘) q (:1))
1
|  Predicted Label
| - | Probability Probability
! |
! |
! I
: Co-Occurrence Graph o(zy) :

[Source: Juan, et al., WSDM'20]

__________________________________________ 7



https://dl.acm.org/doi/abs/10.1145/3336191.3371784

T
Neural Architecture

40M Classes

(] ]

Subsampling

E 100K classes
ﬁ% Image Embedding l
“K‘H 5 ResNet 3(zu) y

E3
o |
Co-Occurrence Graph . o supervissd
\\ o R R - . Loss
N Layer =
: [2e6]

Training Images

o
1O
e
Graph
Regularizer I p/ (x)
S Predicted Label
. Probability Probability

o

1O

Co-Occurrence Graph B(zy)

+ images co-occurring within a search session
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Qualitative Results
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. Graph Agreement Models

Challenges

e Too few labeled samples
@ o overfitting to training data

/
- : / ; e Graphs can be noisy

/ o edges not relevant to classification task
—@ — @ o embeddings can be noisy

P
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[Source: Otilia, et al., NeurlPS'19] .,
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¥ Graph Agreement Models

Classification Model
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predictions to
training dataset

Provides regularization
for training the
classification model
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Agreement Model

[Source: Otilia, et al., NeurlPS'19] |,
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¥ Learn neighbor agreement

Agreement Model

Node 1 Node 2

Loss function: ‘ .
3 Z

Encoder Encoder
3 o

['g = E :e(g(xi’mj’wij)?]]‘yi=yj) ) (@e9)
i€L,EL,ijEE S e
Aggregator
2
an
R
Predictor
¥ Agreement
L = labeled nodes set D probability

FE = edges set

x; = features for node %
f(z;) = predicted label distribution for node %

¢ = loss function (e.g. cross entropy) [Source: Otilia, et al., NeurlPS'19] .,
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T Classification: use neighbor agreement

Classification Model

Loss function: agreement

weight
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L = labeled nodes set
U = unlabeled nodes set
E = edges set
x; = features for node 7
y; = true label distribution for node %
f(z;) = predicted label distribution for node %
g(z;,x;) = predicted probability that nodes ¢ and j
have similar labels
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A = regularization parameter
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Graph Agreement Models

S el T R

Train the agreement model g using L

Train classification model f using
labeled nodes in L and predictions
of g on edges between 1.-1. nodes,
L-U nodes and U-U nodes

S e

Extend L using the most
confident predictions of f on
unlabeled nodes from U

[Source: Otilia, et al., NeurlPS'19] .,
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Beyond Graph Regularization: GNNs

e Graph regularization only
incorporates information about a
node's neighbors through a
distance function.

e There may be more information in @
other nodes and relationships
among neighbors.




T
Graph Regularization with
Message Passing

Distance function
Aggregate distance of neighbors /

o o mitl = Z My (hE, bt evw)
weEN (v)

o Readout phase normalizes graph loss by weighted degree

@ hitl = U, (Rt , mit)

Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals and George E. Dahl. “Neural Message Passing for Quantum Chemistry.” ArXiv
abs/1704.01212 (2017): n. pag.
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Graph Regularization is a GNN
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GNNs use graph relationships to embed nodes, edges, and the graph itself. This framework lets
us do computation over arbitrary graphs.
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GNNs with GraphNets

u— " |-
e We leverage Graph Nets to \ \(_\/pv—m
generalize graph V= a — -V’
regularization to Graph N p<Y po
Neural Networks (GNNs) E —|-{¢° .y
e We're able to express these
Edge block Node block Global block

higher-level relationships

between neighbors and model = gnn.GraphRegularizationModel(
config=graph_reg_config,
node_model_fn=NodeClassifier)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(train_dataset, epochs=30, validation_data=eval_dataset)

more distant nodes.



https://github.com/deepmind/graph_nets
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Graph Neural Network: GCNs

class GraphConvolutionalNodeClassifier (NodeGraphModel):
"""Classifies nodes with a simple Graph Convolutional Network."""

e With Graph Nets it's easy to

def __init__(self, seq_length, num_classes, **kwargs):

implement a Graph o
Convolutional Network def graph_call(self, graph, **kwargs):
. # Encode features.
(GCN), which can be a graph = graph_nets.modules.GraphIndependent(
. node_model_fn=lambda: self._dense_features)(graph)
drop-ln replacement for # Graph convolutions.
; ; graph = graph_nets.modules.CommNet (
GratheQUIarlzatlonMOdel‘ edge_model_fn=lambda: self._edge_modell,
PY node model and node_encoder_model_fn=lambda: self._node_encoder_modelT,
- node_model_fn=lambda: self._node_modell)(graph)
edge_models are Keras return graph_nets.modules.CommNet (
edge_model_fn=lambda: self._edge_model2,
Iayers. node_encoder_model_fn=1lambda: self._node_encoder_model2,

node_model_fn=lambda: self._node_model2)(graph)



