
Chun-Ta Lu & Philip Pham

1

Image embedding:

A dense representation capturing semantics

Proprietary + Confidential

[Source: Juan, et al., WSDM’20] 2

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

Proprietary + Confidential

[Source: Juan, et al., WSDM’20] 3

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

Proprietary + Confidential

[Source: Juan, et al., WSDM’20] 4

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

● Embedding to capture
semantics in images

● Core of image search
○ By textural queries
○ By image queries

[Source: Juan, et al., WSDM’20] 5

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

[Source: Juan, et al., WSDM’20] 6

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

[Source: Juan, et al., WSDM’20] 7

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

Co-Occurrence Graph

images co-occurring within a search session

[Source: Juan, et al., WSDM’20] 8

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

Query
Image

Query
ImageTop Ranked Results

Model 1

Top Ranked Results

Model 2

By NSL

[Source: Juan, et al., WSDM’20] 9

https://dl.acm.org/doi/abs/10.1145/3336191.3371784

10

● Too few labeled samples
○ overfitting to training data

● Graphs can be noisy
○ edges not relevant to classification task
○ embeddings can be noisy

Challenges

[Source: Otilia, et al., NeurIPS'19]

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning

11[Source: Otilia, et al., NeurIPS'19]

Classification Model

Agreement Model

Provides regularization
for training the
classification model

Adds confident
predictions to
training dataset

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning

12

Loss function:

[Source: Otilia, et al., NeurIPS'19]

Agreement Model

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning

13

agreement
weight

Loss function:

[Source: Otilia, et al., NeurIPS'19]

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning

14[Source: Otilia, et al., NeurIPS'19]

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning

15

● Graph regularization only
incorporates information about a
node's neighbors through a
distance function.

● There may be more information in
other nodes and relationships
among neighbors.

16

Distance function
Aggregate distance of neighbors

Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals and George E. Dahl. “Neural Message Passing for Quantum Chemistry.” ArXiv
abs/1704.01212 (2017): n. pag.

Readout phase normalizes graph loss by weighted degree

17

GNNs use graph relationships to embed nodes, edges, and the graph itself. This framework lets
us do computation over arbitrary graphs.

18

● We leverage Graph Nets to
generalize graph
regularization to Graph
Neural Networks (GNNs)

● We're able to express these
higher-level relationships
between neighbors and
more distant nodes.

model = gnn.GraphRegularizationModel(
 config=graph_reg_config,
 node_model_fn=NodeClassifier)
model.compile(
 optimizer=tf.keras.optimizers.Adam(),
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(train_dataset, epochs=30, validation_data=eval_dataset)

https://github.com/deepmind/graph_nets

19

● With Graph Nets it's easy to
implement a Graph
Convolutional Network
(GCN), which can be a
drop-in replacement for
GraphRegularizationModel.

● node_model and
edge_models are Keras
layers.

class GraphConvolutionalNodeClassifier(NodeGraphModel):
 """Classifies nodes with a simple Graph Convolutional Network."""

 def __init__(self, seq_length, num_classes, **kwargs):
 # ...

 def graph_call(self, graph, **kwargs):
 # Encode features.
 graph = graph_nets.modules.GraphIndependent(
 node_model_fn=lambda: self._dense_features)(graph)
 # Graph convolutions.
 graph = graph_nets.modules.CommNet(
 edge_model_fn=lambda: self._edge_model1,
 node_encoder_model_fn=lambda: self._node_encoder_model1,
 node_model_fn=lambda: self._node_model1)(graph)
 return graph_nets.modules.CommNet(
 edge_model_fn=lambda: self._edge_model2,
 node_encoder_model_fn=lambda: self._node_encoder_model2,
 node_model_fn=lambda: self._node_model2)(graph)

