
Chun-Ta Lu & Philip Pham

1



Image embedding:

A dense representation capturing semantics

Proprietary + Confidential
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● Embedding to capture 
semantics in images

● Core of image search
○ By textural queries
○ By image queries
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Co-Occurrence Graph

images co-occurring within a search session
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● Too few labeled samples
○ overfitting to training data

● Graphs can be noisy
○ edges not relevant to classification task
○ embeddings can be noisy

Challenges

[Source: Otilia, et al., NeurIPS'19]

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning


11[Source: Otilia, et al., NeurIPS'19]

Classification Model

Agreement Model

Provides regularization 
for training the 
classification model

Adds confident 
predictions to 
training dataset

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning
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Loss function:

[Source: Otilia, et al., NeurIPS'19]

Agreement Model

https://papers.nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning
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agreement
weight

Loss function:

[Source: Otilia, et al., NeurIPS'19]
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● Graph regularization only 
incorporates information about a 
node's neighbors through a 
distance function.

● There may be more information in 
other nodes and relationships 
among neighbors.
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Distance function
Aggregate distance of neighbors

Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals and George E. Dahl. “Neural Message Passing for Quantum Chemistry.” ArXiv 
abs/1704.01212 (2017): n. pag.

Readout phase normalizes graph loss by weighted degree
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GNNs use graph relationships to embed nodes, edges, and the graph itself. This framework lets 
us do computation over arbitrary graphs.
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● We leverage Graph Nets to 
generalize graph 
regularization to Graph 
Neural Networks (GNNs)

● We're able to express these 
higher-level relationships 
between neighbors and 
more distant nodes.

model = gnn.GraphRegularizationModel(
      config=graph_reg_config,
      node_model_fn=NodeClassifier)
model.compile(
   optimizer=tf.keras.optimizers.Adam(),
   loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(train_dataset, epochs=30, validation_data=eval_dataset)

https://github.com/deepmind/graph_nets
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● With Graph Nets it's easy to 
implement a Graph 
Convolutional Network 
(GCN), which can be a 
drop-in replacement for 
GraphRegularizationModel.

● node_model and 
edge_models are Keras 
layers.

class GraphConvolutionalNodeClassifier(NodeGraphModel):
  """Classifies nodes with a simple Graph Convolutional Network."""

  def __init__(self, seq_length, num_classes, **kwargs):
    # ...

  def graph_call(self, graph, **kwargs):
    # Encode features.
    graph = graph_nets.modules.GraphIndependent(
        node_model_fn=lambda: self._dense_features)(graph)
    # Graph convolutions.
    graph = graph_nets.modules.CommNet(
        edge_model_fn=lambda: self._edge_model1,
        node_encoder_model_fn=lambda: self._node_encoder_model1,
        node_model_fn=lambda: self._node_model1)(graph)
    return graph_nets.modules.CommNet(
        edge_model_fn=lambda: self._edge_model2,
        node_encoder_model_fn=lambda: self._node_encoder_model2,
        node_model_fn=lambda: self._node_model2)(graph)


