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1 Problem Statement

We believe that user experience during model building and inference is fundamentally
interactive - especially if we want to develop interpretable models and understand black box
methods. An interactive model building approach is where users can inspect different model
components in isolation, and at the same time straightforward to see the effect of “what if |
change the value of this component to X".

One of the answers to this user need is to develop a computational graph which tracks future
results. This allows users to inspect / interact / alter computer programs by working with the
graph's vertices and edges.

1.1 Graphical approach in PPL
Both PyMC3 and Edward1 enabled writing graphical models using the following syntax:



W = Normal(@, 1)
B = Normal(@, 1)
Y = LogitNormal(x * W + B, 1)

yet also supported immediate inspection of vertices in a REPL friendly manner, e.g.:

print(B.scale)

This style is very convenient. It enables fast prototyping and easy debugging.

Conversely, none of tfp.distributions.JointDistribution*, PyMC4, (num-)pyro, nor Edward2 enable
this workflow. For example, here's the same graphical model in TFP:

import tensorflow_probability as tfp

tfd = tfp.distributions

Root = tfd.JointDistributionCoroutine.Root
def model(x):

W = yield Root(tfd.Normal(®@,1))
B = yield Root(tfd.Normal(@,1))
Y = yield tfd.LogitNormal(x * W + B, 1)

my_pgm = tfd.JointDistributionCoroutine(lambda: model(1.))

While this "trace pattern" enables control flow, it also means the PGM is not easily dissectable
by the author. The atomic programmatic unit is the function not its constituents.

2 tfp.experimental.lazybones

"Lazy Bones" is an abstraction for building generic computation graphs. It began as a prototype
for REPL friendly graphical model specification but has since expanded to a general purpose
substrate for symbolic computation. It is designed to work with any python module, not just TF,
Jax, TFP, Pytorch etc.

The basic idea behind LazyBones is to have a transparent object proxy (like wrapt) which
implements every standard overloadable operator and allows the new object to be used as if it
is the result of some not-yet performed computation. Unlike wrapt however, the behavior is not
implemented by an underlying object but rather by a function called __action__. This enables a
kind of "lazy dynamic dispatch" which means computation graphs can be built as if results are
being computed yet they are not actually computed until time of need, eg, print or
tab-completion. The ultimate goal is that users apply lazybones wrapping right after import and
get instant graph experience, while the rest of the code still works as is.



https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://pypi.org/project/wrapt/
https://docs.python.org/3/reference/datamodel.html
https://en.wikipedia.org/wiki/Dynamic_dispatch

Describing LazyBones is a lot harder than using it. Here's an example:

import math

import numpy

import tensorflow_probability as tfp
1b = tfp.experimental.lazybones

np = lb.DeferredInput(numpy)
m = 1b.DeferredInput(math)
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np.random.RandomState(42).normal(0., 0.5)
x =1. / (1. + math.e**u)
m.sin(x)
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All LazyBones vertexes are Deferred:

assert isinstance(u, lb.Deferred)
assert isinstance(x, lb.Deferred)
assert isinstance(y, lb.Deferred)

No node is evaluated by default:

print(u.value) # ==> [Unknown]
print(x.value) # ==> [Unknown]
print(y.value) # ==> [Unknown]

(Usually a user wouldn't directly access value; we do so here only to "prove" no evaluation
actually happened.)

Nodes are evaluated only when they need to be, e.g.:
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v

0.4382279198026049
0.4382279198026049
[Unknown]
0.424335504617266

print(x)
print(x.value)
print(y.value)

print(y)
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Graphs are visualizable:

1b.utils.plot_graph(y)
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Graphs are also iterable, e.g.:

for u,v in lb.utils.iter_edges(y):

print(u.name, '-->', v.name)
==>
__rtruediv__ --> __call__
sin --> __call__
__radd__ --> __rtruediv__
__rpow__ --> __radd__
__call__ --> __rpow__

normal --> __call__
__call__ --> normal
RandomState --> __call__
random --> RandomState
numpy --> random

math --> sin
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Deferred values can be manually re-assigned and under a reentrant scope:

with 1b.DeferredScope() as s:
u.value = 0.
print(u,x,y)
# ==> 0.0 0.5 0.479425538604203

print(u,x,y)
# ==> 0.24835707650561634 0.4382279198026049 0.424335504617266

with s:
print(u,x,y)




# ==> 0.0 0.5 0.479425538604203

DeferredScope is deceptively simple yet powerful. It enables counterfactual assignment which
when combined with automatic descendant evaluation means the graph has semantics of a
function yet all vertices have local scope and yet the original graph values are preserved. This is
the core "trick" behind how LazyBones might be used for building a graphical model formalism
and one which we now study in greater detail.

We are not aware of direct analogues of DeferredScope in TF2 or Jax. (Please let us know if
there are!)

3 How could LazyBones be used to build a PPL?

We imagine LazyBones could be useful for a variety of symbolic computation problems. In the
context of probabilistic programming, one of the most basic use cases is to evaluate the
probability of particular values of a graphical model. We now explore how one can wrap TFP
and simply "walk the LazyBones graph."

For example,

import tensorflow

import tensorflow_probability

1b = tensorflow_probability.experimental.lazybones
tf = 1lb.DeferredInput(tensorflow)

tfp = lb.DeferredInput(tensorflow_probability)

tfd = tfp.distributions

tfb = tfp.bijectors

a = tfd.Normal(@, 1)

b = a.mean() # Like a random variable "test value."

c = tf.exp(b)

d = tfb.Exp()(tfd.Normal(c, 2.))

e = d.sample(seed=42) # Like a random variable "test value."
print(lb.utils.log_prob([b, e], [None, Nonel)) # ==> -11.846617 [random]
print(lb.utils.log_prob([b, el, [3., 4.])) # ==> -52.125027
print(lb.utils.log_prob([e, b], [06.1, 8.2])) # ==> -1.8007501
print(lb.utils.log_prob([b, e], [3., 4.])) # ==> -52.125027
print(lb.utils.log_prob([b, e], [None, Nonel)) # ==> -9.62112 [ random]

Note that we can also pin values in the global scope and that these values are "sticky."

# By pinning the random variables to a different set of values, we now show that the
values of the "global graph" are unaffected.

b.value = 0.1

e.value = 0.2




print(lb.utils.log_prob([b, e], [None, None])) # ==> -1.847724
print(lb.utils.log_prob([b, e], [3., 4.])) # ==> -52.125027
print(lb.utils.log_prob([e, b], [6.1, ©.2])) # ==> -1.8007501
print(lb.utils.log_prob([b, e], [3., 4.])) # ==> -52.125027
# We now show that the values of the "global graph" are unaffected.
print(lb.utils.log_prob([b, e], [None, Nonel)) # ==> -1.847724

The 1b.utils.log_prob implementation is surprisingly simple. Under a DeferredScope it assigns
values to LB vertices and returns the sum of the log_probs:

def log_prob(vertexes, values):
"""Returns log prob when vertexes take on values."""
return _distribution_measure(vertexes, values, 'log_prob', sum)

def _distribution_measure(vertexes, values, attr, combine):
"""Returns getattr(distribution) when vertexes take on values."""
vertexes = tf.nest.flatten(vertexes)
values = tf.nest.flatten(values)
distributions = []
with 1b.DeferredScope():
for x, v in zip(vertexes, values):
if not isinstance(x, deferred.DeferredBase):
raise ValueError()
if v is not None:
x.value = v
# We assume the provided nodes are grandchildren of a distribution.
d = x.parents[0].parents[0]
distributions.append(d)
r = combine(getattr(d, attr)(x) for d, x in zip(distributions, vertexes))
return r.eval()

3.1 User Examples

In this section we demonstrate how LazyBones can trivially "wrap" TFP to enable building
probabilistic graphical models in a REPL friendly way. See the accompanying colab for
end-to-end executable/trainable versions of the following examples.

We emphasize that the following demonstrations exploit no special treatment from LazyBones
other than the above 16 lines of code in 1b.utils.log_prob. Thatis, the PPL use-case of
LazyBones is exactly the same as the general use of LazyBones.

3.1.1 Simple Linear Regression with pure Scipy

The following example implements a simple linear regression model, with hyper priors on
coefficients:

M ~ Normal(loc=0, scale=100)



Oy, 04 ~ HalfNormal(scale=5)

-,

w ~ Normal(loc=y, scale=a,)

Y ~ Normal(loc=@ * X, scale=0,)

Which in LazyBones looks like:

1b import tfp.experimental.lazybones
sp = DeferredInput(sp)

# Hyperpriors:
hyper_mu = sp.stats.norm(@., 100.).rvs()
hyper_sigma = sp.stats.halfnorm(@., 5.).rvs()

# Priors:
beta = sp.stats.norm(hyper_mu, hyper_sigma).rvs(n_feature)
sigma = sp.stats.halfnorm(@., 100.).rvs()

# Likelihood
y_hat = sp.matmul(design_matrix, beta)
y = sp.stats.norm(y_hat, sigma).rvs()

3.1.2 Hierarchical Linear Model

The following example implements this graphical model (radon data set):

do, 91, g2 ~ Normal(loc=0, scale=10)
H =g, + g, * predictor; + g, * predictor,
Oy, 04 ~ Exp(rate=1.)
& ~ Normal(loc=H, scale=0,)
fori=1...n:

b ~ Normal(loc=0, scale=1)

B = Wingexy + b * predictor;,

Y, ~ Normal(loc=6,, scale=g,)

Which in LazyBones looks like:

import tfp.experimental.lazybones as 1b
tfw = 1lb.DeferredInput(tf)

tfpw = lb.DeferredInput(tfp)
tfdw = 1lb.DeferredInput(tfp.distributions)
tfbw = 1lb.DeferredInput(tfp.bijectors)

# Hyperpriors:
g = tfdw.Sample(tfdw.Normal(loc=0., scale=10.), sample_shape=3).sample()
sigma_a = tfdw.Exponential(rate=1.).sample()

# Varying intercepts uranium model:
a = g[@e] + g[1] * uranium + g[2] * avg_floor
za_county = tfdw.Sample(




tfdw.Normal(loc=0., scale=1.),
sample_shape=counties) .sample()
a_county = a + za_county * sigma_a

# Common slope:
b = tfdw.Normal(loc=0., scale=1.).sample()

# Expected value per county:
theta = a_county[county_idx] + b * floor_measure

# Model error:
sigma = tfdw.Exponential(rate=1.0).sample()

y = tfdw.Independent(
tfdw.Normal(loc=theta, scale=sigma),
reinterpreted_batch_ndims=1).sample()

3.1.3 Latent Mixture

The following example implements this graphical model (robust regression using mixture
likelihood for outlier detection):

bo, b1, Houtier ~ Normal(loc=0, scale=10)
W = b, + b, * predictor
Moutier ~ HalfNormal(scale=1.)
a ~ Uniform(low=0, high=0.5)
Y ~ Mixture([a, 1 - a]
[ Normal(a, o-observed),
Normal(Moutiers Oobserved + Ooutier)])

Which in LazyBones looks like:

1b = import tfp.experimental.lazybones
jaxw = DeferredInput(jax)

jnpw = DeferredInput(jnp)

tfpw = DeferredInput(tfp)

tfdw = DeferredInput(tfp.distributions)
nobs = len(y_sigma)

# Priors

bo = tfdw.Normal(loc=0., scale=10.).sample()

b1 tfdw.Normal(loc=0., scale=10.).sample()
mu_out = tfdw.Normal(loc=0., scale=10.).sample()
sigma_out = tfdw.HalfNormal(scale=1.).sample()
weight = tfdw.Uniform(low=0., high=.5).sample()

# Likelihood
# note we are constructing components as distributions but not RV
mixture_dist = tfdw.Categorical(

probs=jnpw.repeat(




jnpw.array([1 - weight, weight])[None, ...], nobs, axis=0))

component_dist = tfdw.Normal(

loc=jnpw.stack([b@ + bl1*predictors,

jnpw.repeat(mu_out, nobs)]).T,

scale=jnpw.stack([y_sigma, sigma_out + y_sigma]).T)
observed = tfdw.Independent(

tfdw.MixtureSameFamily(mixture_dist, component_dist),

reinterpreted_batch_ndims=1).sample()

# Posterior

target_log_prob_fn = lambda *values: lb.utils.log_prob(
vertexes=[b0, b1, mu_out, sigma_out, weight, observed],
values=[*values, obs])

(Note: in the above example we used Jax because....why not?!)

3.1.4 Autoregressive Time-Series

The following example implements this graphical model:

b ~ LogitNormal(loc=0.5, scale=1.)
X, ~ Normal(loc=0, scale=0,)
fori =1...n:
X; ~ Normal(loc=b * X, scale=0,)
Y; ~ Normal(loc=X;, scale=0,)

Which in LazyBones looks like:

1b = import tfp.experimental.lazybones
tfw = DeferredInput(tf)

tfpw = DeferredInput(tfp)

tfdw = DeferredInput(tfp.distributions)
tfbw = DeferredInput(tfp.bijectors)

b = tfdw.LogitNormal(loc=0.5, scale=1.).sample(seed=seed)
x0 = tfdw.Normal(loc=0., scale=driving_noise).sample(seed=seed)
X = [x0]

for t in range(1, T):
x_ = tfdw.Normal(loc=b * x[t - 1], scale=driving_noise).sample()
x.append(x_)

yobs2 = tfdw.Independent(
tfdw.Normal(
loc=tfw.repeat(tfw.stack(x)[..., None], n_obs, axis=-1)
scale=measure_noise),
reinterpreted_batch_ndims=2).sample()




4 Known Limitations

4.1 Control Flow

Currently LazyBones does not support python control flow, e.g., for, while, if. For most
graphical models we don't actually anticipate this as a problem. For example, for time series one
need only build the lazybones graph for the longest possible sequence then evaluate
observations against the leading set of vertices of the full lazybones graph (and ignore the tail).
Since lazybones only evaluates what's needed, any unaccessed tail vetexes have zero
computational overhead.

Although control flow is not currently supported, wynnv@ is exploring minimal AST munging to
make this possible. We believe minimal AST access (e.g. for "ForLoop") is ideal because of
minimizing wall time and also keeping code complexity low. That is, a key part of the beauty of
LazyBones is that it is surprisingly easy to debug because it's so lightweight.

4.2 Other Things?
TODO: Find other flaws and list them here.


https://en.wikipedia.org/wiki/Abstract_syntax_tree

