How to avoid NaN gradients when using
‘tf.where' to select finite results.

date: 2017-feb-7 [2019-jul-23]
owner: jvdillon

Abstract

So you have a NaN in your gradient and don't know why? Assuming you use “tf.where’,
“tf.minimum’, “tf.maximum’, this note might help!

Tl;dr: Instead of this: tf.where(x_ok, f(x), safe_f(x))
Do this: tf.where(x_ok, f(tf.where(x_ok, x, safe x)), safe f(x))

Both give the same result. Only the latter gives the correct’ gradient.

(Keep reading if the "tl;dr" doesn't make sense!)

Detailed Example

Let's develop our intuition of the problem by considering a specific example. Suppose you wish
to differentiate the following function:

flz) = 0

A naive implementation results in NaNs in the gradient, i.e.,

import tensorflow.compat.v2 as tf
import tensorflow_probability as tfp
tf.enable_v2_behavior()

f = lambda x: tf.where(x < 1., 0., 1. / Xx)
x = tf.constant(e.)
tfp.math.value_and_gradient(f, x)[1]

==> nan ...bah.

' Arguably. Don't ask.

https://www.codecogs.com/eqnedit.php?latex=f%28x%29%20%3D%20%5Cbegin%7Bcases%7D%20%5Cfrac%7B1%7D%7Bx%7D%20%26%20x%5Cge%201%20%5C%5C%200%20%26%20x%20%3C%201%20%5Cend%7Bcases%7D

The basic pattern for avoiding NaN gradients when using "tf.where’ is to call "tf.where" twice.?
The innermost “tf.where’ ensures that the result *f(x)" is always finite. The outermost “tf.where’
ensures the correct result is chosen. For the running example, the trick plays out like this:

def safe_f(x):
safe_x = tf.where(tf.equal(x, 0.), 1., x) # inner tf.where
return tf.where(x < 1., 0., 1. / safe_x) # outer tf.where; just like f(x)

But did it work?

x = tf.constant(@.)
tfp.math.value_and_gradient(safe_f, x)[1]
==> 0.0 ...yay! double-where trick worked.

General Recipe

1. Use an inner “tf.where" to ensure the function has no asymptote.
l.e., alter the input to the inf generating function such that no inf can be created.

2. Use a second 'tf.where’ to always select the valid code-path.
l.e., implement the mathematical condition as you would "normally", i.e., the "naive"
implementation.

In Python code, the recipe is:

Instead of this: tf.where(x_ok, f(x), alt_f(x))
Do this: tf.where(x_ok, f(tf.where(x_ ok, x, safe _x)), alt_f(x))

Can we do better?

With luck, sometimes things work out even more cleanly. For example,

def cross_entropy(x, y, axis=-1):
safe_y = tf.where(tf.equal(y, 0.), tf.ones_like(y), y)
return -tf.reduce_sum(x * tf.math.log(safe_y), axis)

def entropy(x, axis=-1):
return cross_entropy(x, x, axis)

Here we only needed one "tf.where’ because the "x ** acts like an outer "tf.where’.

But did it work?

2 The "double-tf.where" trick always works, assuming you have access to the data before it
becomes +/- inf.

-2-

tf.constant([0.1, 0.2, 0., 0.7])

e = entropy(x)

==> 0.80181855

tfp.math.value_and_gradient(entropy, x)[1]

==> [1.30258512, ©0.60943794, 0., -0.64332503] ...yay! no nan.

X

For additional discussion, see this StackOverflow post.

https://stackoverflow.com/questions/33712178/tensorflow-nan-bug/42497444#42497444

