--- title: Featurizing Time Series keywords: fastai sidebar: home_sidebar summary: "Functions used to transform time series into a dataframe that can be used to create tabular dataloaders." description: "Functions used to transform time series into a dataframe that can be used to create tabular dataloaders." nb_path: "nbs/020_data.features.ipynb" ---
{% raw %}
{% endraw %} {% raw %}
{% endraw %}

In this case we are using tsfresh that is one of the most widely known libraries used to create features from time series. You can get more details about this library here: https://tsfresh.readthedocs.io/en/latest/

{% raw %}

get_ts_features[source]

get_ts_features(X:Union[ndarray, Tensor], y:Union[NoneType, ndarray, Tensor]=None, features:Union[str, dict]='min', n_jobs:Optional[int]=None, **kwargs)

Args: X: np.array or torch.Tesnor of shape [samples, dimensions, timesteps]. y: Not required for unlabeled data. Otherwise, you need to pass it. features: 'min', 'efficient', 'all', or a dictionary. Be aware that 'efficient' and 'all' may required substantial memory and time.

{% endraw %} {% raw %}
{% endraw %} {% raw %}
dsid = 'NATOPS'
X, y, splits = get_UCR_data(dsid, return_split=False)
X.shape
(360, 24, 51)
{% endraw %}

There are 3 levels of fatures you can extract: 'min', 'efficient' and 'all'. I'd encourage you to start with min as feature creation may take a long time.

In addition to this, you can pass a dictionary to build the desired features (see tsfresh documentation in the link above).

{% raw %}
ts_features_df = get_ts_features(X, y)
ts_features_df.shape
Feature Extraction: 100%|█████████████████████████████████████| 40/40 [00:14<00:00,  2.82it/s]
/Users/nacho/opt/anaconda3/envs/py37torch110/lib/python3.7/site-packages/ipykernel_launcher.py:28: PerformanceWarning: DataFrame is highly fragmented.  This is usually the result of calling `frame.insert` many times, which has poor performance.  Consider joining all columns at once using pd.concat(axis=1) instead.  To get a de-fragmented frame, use `newframe = frame.copy()`
(360, 241)
{% endraw %}

The 'min' set creates a dataframe with 8 features per channel + 1 per target (total 193) for each time series sample (360).

{% raw %}
cont_names = ts_features_df.columns[:-1]
y_names = 'target'
dls = get_tabular_dls(ts_features_df, splits=splits, cont_names=cont_names, y_names=y_names)
dls.show_batch()
0__sum_values 0__median 0__mean 0__length 0__standard_deviation 0__variance 0__root_mean_square 0__maximum 0__absolute_maximum 0__minimum 1__sum_values 1__median 1__mean 1__length 1__standard_deviation 1__variance 1__root_mean_square 1__maximum 1__absolute_maximum 1__minimum 2__sum_values 2__median 2__mean 2__length 2__standard_deviation 2__variance 2__root_mean_square 2__maximum 2__absolute_maximum 2__minimum 3__sum_values 3__median 3__mean 3__length 3__standard_deviation 3__variance 3__root_mean_square 3__maximum 3__absolute_maximum 3__minimum 4__sum_values 4__median 4__mean 4__length 4__standard_deviation 4__variance 4__root_mean_square 4__maximum 4__absolute_maximum 4__minimum 5__sum_values 5__median 5__mean 5__length 5__standard_deviation 5__variance 5__root_mean_square 5__maximum 5__absolute_maximum 5__minimum 6__sum_values 6__median 6__mean 6__length 6__standard_deviation 6__variance 6__root_mean_square 6__maximum 6__absolute_maximum 6__minimum 7__sum_values 7__median 7__mean 7__length 7__standard_deviation 7__variance 7__root_mean_square 7__maximum 7__absolute_maximum 7__minimum 8__sum_values 8__median 8__mean 8__length 8__standard_deviation 8__variance 8__root_mean_square 8__maximum 8__absolute_maximum 8__minimum 9__sum_values 9__median 9__mean 9__length 9__standard_deviation 9__variance 9__root_mean_square 9__maximum 9__absolute_maximum 9__minimum 10__sum_values 10__median 10__mean 10__length 10__standard_deviation 10__variance 10__root_mean_square 10__maximum 10__absolute_maximum 10__minimum 11__sum_values 11__median 11__mean 11__length 11__standard_deviation 11__variance 11__root_mean_square 11__maximum 11__absolute_maximum 11__minimum 12__sum_values 12__median 12__mean 12__length 12__standard_deviation 12__variance 12__root_mean_square 12__maximum 12__absolute_maximum 12__minimum 13__sum_values 13__median 13__mean 13__length 13__standard_deviation 13__variance 13__root_mean_square 13__maximum 13__absolute_maximum 13__minimum 14__sum_values 14__median 14__mean 14__length 14__standard_deviation 14__variance 14__root_mean_square 14__maximum 14__absolute_maximum 14__minimum 15__sum_values 15__median 15__mean 15__length 15__standard_deviation 15__variance 15__root_mean_square 15__maximum 15__absolute_maximum 15__minimum 16__sum_values 16__median 16__mean 16__length 16__standard_deviation 16__variance 16__root_mean_square 16__maximum 16__absolute_maximum 16__minimum 17__sum_values 17__median 17__mean 17__length 17__standard_deviation 17__variance 17__root_mean_square 17__maximum 17__absolute_maximum 17__minimum 18__sum_values 18__median 18__mean 18__length 18__standard_deviation 18__variance 18__root_mean_square 18__maximum 18__absolute_maximum 18__minimum 19__sum_values 19__median 19__mean 19__length 19__standard_deviation 19__variance 19__root_mean_square 19__maximum 19__absolute_maximum 19__minimum 20__sum_values 20__median 20__mean 20__length 20__standard_deviation 20__variance 20__root_mean_square 20__maximum 20__absolute_maximum 20__minimum 21__sum_values 21__median 21__mean 21__length 21__standard_deviation 21__variance 21__root_mean_square 21__maximum 21__absolute_maximum 21__minimum 22__sum_values 22__median 22__mean 22__length 22__standard_deviation 22__variance 22__root_mean_square 22__maximum 22__absolute_maximum 22__minimum 23__sum_values 23__median 23__mean 23__length 23__standard_deviation 23__variance 23__root_mean_square 23__maximum 23__absolute_maximum 23__minimum target
0 -4.150354 -0.432566 -0.081380 51.0 0.597360 0.356840 0.602878 0.778331 0.861279 -0.861279 -58.627594 -1.552286 -1.149561 51.0 0.601466 0.361761 1.297401 -0.056605 1.699415 -1.699415 -45.035744 -0.893296 -0.883054 51.0 0.181012 0.032765 0.901415 -0.495560 1.175184 -1.175184 38.219048 0.796074 0.749393 51.0 0.234144 0.054824 0.785120 1.111021 1.111021 0.392384 -38.509396 -1.455609 -0.755086 51.0 1.031962 1.064946 1.278711 0.693374 1.788006 -1.788006 -31.586580 -0.608169 -0.619345 51.0 0.421872 0.177976 0.749376 0.048263 1.458466 -1.458466 -31.067938 -0.635204 -0.609175 51.0 0.081749 0.006683 0.614636 -0.482192 0.746402 -0.746402 -31.909603 -0.629038 -0.625678 51.0 0.036791 0.001354 0.626759 -0.535260 0.697649 -0.697649 -17.736265 -0.304125 -0.347770 51.0 0.087451 0.007648 0.358597 -0.237202 0.495997 -0.495997 32.072475 0.629244 0.628872 51.0 0.025069 0.000628 0.629372 0.705176 0.705176 0.578095 -29.936869 -0.710722 -0.586997 51.0 0.179691 0.032289 0.613885 -0.265087 0.757163 -0.757163 -12.696542 -0.096251 -0.248952 51.0 0.292832 0.085750 0.384353 0.064884 0.710493 -0.710493 -15.762158 -0.560294 -0.309062 51.0 0.451446 0.203804 0.547104 0.387947 0.861255 -0.861255 -50.898941 -1.250778 -0.998018 51.0 0.350596 0.122918 1.057808 -0.417412 1.338018 -1.338018 -37.527363 -0.719907 -0.735831 51.0 0.064895 0.004211 0.738687 -0.624461 0.893202 -0.893202 36.929703 0.767098 0.724112 51.0 0.122116 0.014912 0.734336 0.937925 0.937925 0.508076 -35.144825 -1.175173 -0.689114 51.0 0.687803 0.473073 0.973628 0.371802 1.436428 -1.436428 -22.387865 -0.307232 -0.438978 51.0 0.260977 0.068109 0.510696 -0.122424 1.079398 -1.079398 -12.441168 -0.456977 -0.243944 51.0 0.540300 0.291924 0.592817 0.543158 0.968512 -0.968512 -55.026745 -1.469483 -1.078956 51.0 0.552103 0.304817 1.212008 -0.084885 1.574698 -1.574698 -38.722870 -0.801516 -0.759272 51.0 0.202432 0.040979 0.785794 -0.339747 1.160803 -1.160803 36.171883 0.779261 0.709253 51.0 0.187150 0.035025 0.733529 1.006178 1.006178 0.436847 -39.467243 -1.469226 -0.773867 51.0 0.965357 0.931915 1.237249 0.637314 1.777838 -1.777838 -30.077049 -0.508991 -0.589746 51.0 0.351033 0.123224 0.686312 -0.159678 1.447092 -1.447092 6.0
1 -13.291943 -0.478186 -0.260626 51.0 0.565626 0.319933 0.622783 0.792820 1.303543 -1.303543 -61.319569 -1.450219 -1.202344 51.0 0.738642 0.545592 1.411108 0.212865 2.012848 -2.012848 -56.104191 -1.049989 -1.100082 51.0 0.301088 0.090654 1.140541 -0.652380 1.808150 -1.808150 37.879345 0.528623 0.742732 51.0 0.421161 0.177376 0.853831 1.720074 1.720074 0.307349 -17.564539 -0.316360 -0.344403 51.0 1.473537 2.171310 1.513249 1.420735 2.088120 -2.088120 -28.667639 -0.747896 -0.562111 51.0 0.310389 0.096341 0.642113 -0.115223 1.038840 -1.038840 -28.772152 -0.563779 -0.564160 51.0 0.124031 0.015384 0.577633 -0.245861 0.824872 -0.824872 -33.772125 -0.645600 -0.662199 51.0 0.114726 0.013162 0.672063 -0.401062 0.818782 -0.818782 -15.236373 -0.159198 -0.298752 51.0 0.170302 0.029003 0.343883 -0.086246 0.585862 -0.585862 38.112534 0.780826 0.747305 51.0 0.179499 0.032220 0.768560 1.097624 1.097624 0.537276 -17.315622 -0.583021 -0.339522 51.0 0.437091 0.191049 0.553465 0.450234 0.775951 -0.775951 -19.989185 -0.264662 -0.391945 51.0 0.217890 0.047476 0.448438 -0.065923 0.795455 -0.795455 -19.768250 -0.556956 -0.387613 51.0 0.419555 0.176027 0.571201 0.267592 1.162521 -1.162521 -51.892273 -1.095654 -1.017496 51.0 0.480092 0.230489 1.125071 -0.065249 1.600320 -1.600320 -39.717018 -0.745883 -0.778765 51.0 0.260267 0.067739 0.821105 -0.417944 1.310366 -1.310366 40.596100 0.665194 0.796002 51.0 0.278905 0.077788 0.843450 1.461865 1.461865 0.516946 -16.516878 -0.423822 -0.323860 51.0 1.098530 1.206768 1.145274 1.163813 1.595865 -1.595865 -24.584900 -0.500748 -0.482057 51.0 0.119756 0.014342 0.496710 -0.280011 0.684521 -0.684521 -14.034793 -0.415769 -0.275192 51.0 0.505788 0.255822 0.575806 0.657360 1.240724 -1.240724 -53.058266 -1.193786 -1.040358 51.0 0.601415 0.361700 1.201684 0.181549 1.764784 -1.764784 -55.295517 -1.040858 -1.084226 51.0 0.286421 0.082037 1.121420 -0.701432 1.678984 -1.678984 40.820068 0.654046 0.800394 51.0 0.323895 0.104908 0.863445 1.589356 1.589356 0.446026 -18.153927 -0.256226 -0.355959 51.0 1.253342 1.570865 1.302909 1.182885 1.789366 -1.789366 -27.441236 -0.664347 -0.538063 51.0 0.272570 0.074294 0.603164 -0.136812 0.977601 -0.977601 6.0
2 -26.369993 -0.541299 -0.517059 51.0 0.039179 0.001535 0.518541 -0.452868 0.559545 -0.559545 -92.051758 -1.793647 -1.804936 51.0 0.039004 0.001521 1.805358 -1.764378 1.951791 -1.951791 -35.927155 -0.705275 -0.704454 51.0 0.045429 0.002064 0.705917 -0.629029 0.770954 -0.770954 62.661503 0.939935 1.228657 51.0 0.709640 0.503590 1.418868 2.120925 2.120925 0.458483 -57.456329 -1.724902 -1.126595 51.0 0.855248 0.731448 1.414448 0.300213 1.855833 -1.855833 -23.699812 -0.450462 -0.464702 51.0 0.112595 0.012678 0.478148 -0.285705 0.623726 -0.623726 -31.125208 -0.622847 -0.610298 51.0 0.022984 0.000528 0.610731 -0.557779 0.637554 -0.637554 -36.694515 -0.718917 -0.719500 51.0 0.016971 0.000288 0.719700 -0.695670 0.778265 -0.778265 -6.442357 -0.144027 -0.126321 51.0 0.033981 0.001155 0.130812 -0.070041 0.161564 -0.161564 40.764172 0.681456 0.799298 51.0 0.238139 0.056710 0.834019 1.111102 1.111102 0.552852 -25.416428 -0.704276 -0.498361 51.0 0.288164 0.083038 0.575676 -0.020578 0.764308 -0.764308 -2.718482 -0.039640 -0.053304 51.0 0.046194 0.002134 0.070534 0.009132 0.120817 -0.120817 -29.257219 -0.596503 -0.573671 51.0 0.036931 0.001364 0.574858 -0.513906 0.613934 -0.613934 -70.801453 -1.392250 -1.388264 51.0 0.038705 0.001498 1.388803 -1.335494 1.483569 -1.483569 -24.860741 -0.503068 -0.487466 51.0 0.051361 0.002638 0.490164 -0.399412 0.554868 -0.554868 55.241459 0.890764 1.083166 51.0 0.499532 0.249532 1.192804 1.726409 1.726409 0.550334 -47.054955 -1.390331 -0.922646 51.0 0.645009 0.416036 1.125750 0.124965 1.487803 -1.487803 -14.331758 -0.274985 -0.281015 51.0 0.115668 0.013379 0.303889 -0.115613 0.459527 -0.459527 -19.895189 -0.410751 -0.390102 51.0 0.040469 0.001638 0.392195 -0.319673 0.470861 -0.470861 -79.544144 -1.545947 -1.559689 51.0 0.048223 0.002325 1.560434 -1.502446 1.719284 -1.719284 -35.871010 -0.713294 -0.703353 51.0 0.033074 0.001094 0.704130 -0.635125 0.811442 -0.811442 63.523643 1.030555 1.245562 51.0 0.591418 0.349775 1.378840 2.013603 2.013603 0.633188 -50.020065 -1.554366 -0.980786 51.0 0.832042 0.692294 1.286171 0.388921 1.755015 -1.755015 -22.236259 -0.419159 -0.436005 51.0 0.130094 0.016924 0.455000 -0.184703 0.600059 -0.600059 2.0
3 -22.089481 -0.426620 -0.433127 51.0 0.051887 0.002692 0.436224 -0.353775 0.493256 -0.493256 -79.072937 -1.560552 -1.550450 51.0 0.035141 0.001235 1.550848 -1.475678 1.623195 -1.623195 -48.691841 -0.953417 -0.954742 51.0 0.021985 0.000483 0.954995 -0.907814 0.998319 -0.998319 47.297810 0.649993 0.927408 51.0 0.424749 0.180412 1.020048 1.830051 1.830051 0.447356 -19.371216 -1.533620 -0.379828 51.0 1.421009 2.019268 1.470897 1.603023 1.656069 -1.656069 -14.617298 -0.637720 -0.286614 51.0 0.478551 0.229011 0.557816 0.564454 0.663262 -0.663262 -36.714886 -0.733394 -0.719900 51.0 0.051507 0.002653 0.721740 -0.645469 0.778831 -0.778831 -25.552364 -0.470940 -0.501027 51.0 0.054890 0.003013 0.504025 -0.450767 0.609533 -0.609533 -6.847224 -0.122346 -0.134259 51.0 0.041205 0.001698 0.140440 -0.079976 0.189690 -0.189690 37.426327 0.639158 0.733850 51.0 0.173450 0.030085 0.754069 1.164017 1.164017 0.588437 -13.343306 -0.673153 -0.261633 51.0 0.566572 0.321004 0.624064 0.630515 0.746939 -0.746939 6.375568 0.068729 0.125011 51.0 0.151819 0.023049 0.196664 0.368656 0.368656 -0.025980 -28.704739 -0.568022 -0.562838 51.0 0.050026 0.002503 0.565057 -0.490766 0.616910 -0.616910 -54.063286 -1.046715 -1.060064 51.0 0.033979 0.001155 1.060609 -1.027859 1.161271 -1.161271 -32.238930 -0.625409 -0.632136 51.0 0.034916 0.001219 0.633099 -0.577443 0.684264 -0.684264 45.496464 0.672017 0.892088 51.0 0.311601 0.097095 0.944942 1.600711 1.600711 0.630026 -16.706364 -1.150480 -0.327576 51.0 1.040363 1.082355 1.090716 1.165667 1.251064 -1.251064 -5.941157 -0.304926 -0.116493 51.0 0.311124 0.096798 0.332218 0.396875 0.396875 -0.387906 -29.257990 -0.564004 -0.573686 51.0 0.071533 0.005117 0.578129 -0.337868 0.652336 -0.652336 -76.428627 -1.494161 -1.498600 51.0 0.042848 0.001836 1.499213 -1.412966 1.614412 -1.614412 -44.839191 -0.880543 -0.879200 51.0 0.030976 0.000959 0.879745 -0.823003 0.934714 -0.934714 41.487835 0.517329 0.813487 51.0 0.446360 0.199238 0.927900 1.735987 1.735987 0.444740 -18.961103 -1.415916 -0.371786 51.0 1.268295 1.608572 1.321665 1.450674 1.501040 -1.501040 -14.482611 -0.537522 -0.283973 51.0 0.351348 0.123445 0.451759 0.273131 0.644848 -0.644848 1.0
4 -32.628990 -0.644253 -0.639784 51.0 0.020251 0.000410 0.640105 -0.572807 0.679860 -0.679860 -89.749023 -1.733067 -1.759785 51.0 0.056407 0.003182 1.760689 -1.711828 1.927346 -1.927346 -32.873745 -0.624872 -0.644583 51.0 0.038699 0.001498 0.645744 -0.606139 0.737429 -0.737429 53.582626 0.669528 1.050640 51.0 0.652160 0.425313 1.236591 2.193117 2.193117 0.406379 -22.418583 -1.047039 -0.439580 51.0 1.489712 2.219241 1.553213 1.570286 1.922065 -1.922065 -22.601217 -0.572285 -0.443161 51.0 0.230570 0.053163 0.499554 -0.027844 0.701309 -0.701309 -33.820431 -0.664035 -0.663146 51.0 0.006335 0.000040 0.663176 -0.645632 0.673221 -0.673221 -39.140232 -0.745812 -0.767456 51.0 0.040633 0.001651 0.768530 -0.724313 0.849395 -0.849395 -5.892992 -0.106280 -0.115549 51.0 0.031008 0.000961 0.119637 -0.072815 0.166745 -0.166745 41.573116 0.809982 0.815159 51.0 0.202847 0.041147 0.840019 1.217381 1.217381 0.599070 -13.143985 -0.537164 -0.257725 51.0 0.616849 0.380502 0.668524 0.673150 0.841494 -0.841494 -6.945975 -0.156077 -0.136196 51.0 0.042467 0.001803 0.142663 -0.047679 0.181731 -0.181731 -35.198357 -0.694434 -0.690164 51.0 0.009910 0.000098 0.690235 -0.670637 0.706775 -0.706775 -71.361565 -1.372697 -1.399246 51.0 0.053486 0.002861 1.400268 -1.343534 1.580812 -1.580812 -23.765221 -0.452385 -0.465985 51.0 0.034227 0.001171 0.467240 -0.432714 0.554767 -0.554767 50.013210 0.789709 0.980651 51.0 0.437645 0.191533 1.073876 1.828212 1.828212 0.564621 -18.617342 -0.836133 -0.365046 51.0 1.162697 1.351865 1.218656 1.316921 1.487885 -1.487885 -17.978405 -0.443914 -0.352518 51.0 0.151959 0.023092 0.383875 -0.074808 0.500007 -0.500007 -28.447517 -0.551409 -0.557794 51.0 0.028066 0.000788 0.558500 -0.505120 0.621642 -0.621642 -78.526917 -1.509886 -1.539744 51.0 0.057831 0.003344 1.540829 -1.480418 1.671857 -1.671857 -33.922092 -0.656946 -0.665139 51.0 0.042927 0.001843 0.666523 -0.610782 0.774058 -0.774058 53.689266 0.806081 1.052731 51.0 0.530544 0.281477 1.178863 2.034978 2.034978 0.476695 -20.115297 -0.966044 -0.394418 51.0 1.327914 1.763356 1.385251 1.476527 1.724308 -1.724308 -23.407701 -0.512247 -0.458975 51.0 0.164467 0.027049 0.487552 -0.137660 0.776553 -0.776553 1.0
5 -24.176491 -0.488977 -0.474049 51.0 0.043168 0.001863 0.476010 -0.366197 0.527277 -0.527277 -87.327805 -1.710973 -1.712310 51.0 0.031561 0.000996 1.712601 -1.631805 1.772976 -1.772976 -21.451313 -0.408822 -0.420614 51.0 0.032761 0.001073 0.421888 -0.376194 0.493162 -0.493162 58.397629 0.748125 1.145051 51.0 0.692690 0.479820 1.338269 2.103378 2.103378 0.480623 -48.922287 -1.675132 -0.959261 51.0 0.974441 0.949535 1.367375 0.852968 1.817363 -1.817363 -29.856304 -0.640901 -0.585418 51.0 0.124195 0.015424 0.598447 -0.312080 0.750260 -0.750260 -27.958775 -0.565279 -0.548211 51.0 0.035193 0.001239 0.549340 -0.492060 0.583746 -0.583746 -37.864830 -0.732618 -0.742448 51.0 0.041091 0.001688 0.743584 -0.692059 0.802448 -0.802448 -0.649227 -0.005362 -0.012730 51.0 0.039293 0.001544 0.041304 0.035067 0.069732 -0.069732 43.424145 0.733217 0.851454 51.0 0.218725 0.047841 0.879099 1.171012 1.171012 0.632703 -21.846182 -0.721695 -0.428356 51.0 0.389760 0.151912 0.579139 0.287935 0.756129 -0.756129 -13.696244 -0.290477 -0.268554 51.0 0.049435 0.002444 0.273066 -0.169651 0.314362 -0.314362 -28.335342 -0.570419 -0.555595 51.0 0.031328 0.000981 0.556478 -0.508227 0.598616 -0.598616 -67.415817 -1.322900 -1.321879 51.0 0.020617 0.000425 1.322040 -1.252832 1.356348 -1.356348 -14.509363 -0.280158 -0.284497 51.0 0.027159 0.000738 0.285791 -0.237379 0.326241 -0.326241 54.223145 0.808409 1.063199 51.0 0.487772 0.237921 1.169749 1.747880 1.747880 0.582484 -38.194836 -1.286616 -0.748918 51.0 0.720042 0.518461 1.038913 0.589410 1.341641 -1.341641 -24.306427 -0.513999 -0.476597 51.0 0.113742 0.012937 0.489981 -0.236320 0.606179 -0.606179 -20.204275 -0.414832 -0.396162 51.0 0.036496 0.001332 0.397840 -0.328904 0.434622 -0.434622 -71.983742 -1.408678 -1.411446 51.0 0.031827 0.001013 1.411805 -1.346405 1.477625 -1.477625 -23.991568 -0.466880 -0.470423 51.0 0.027061 0.000732 0.471201 -0.430881 0.532167 -0.532167 53.270744 0.767735 1.044524 51.0 0.671843 0.451373 1.241936 2.002148 2.002148 0.376754 -38.753330 -1.399783 -0.759869 51.0 0.882002 0.777927 1.164186 0.885538 1.513484 -1.513484 -31.401262 -0.670306 -0.615711 51.0 0.152118 0.023140 0.634224 -0.286498 0.862852 -0.862852 2.0
6 -6.016619 -0.559591 -0.117973 51.0 0.587422 0.345064 0.599151 0.673467 0.863061 -0.863061 -59.364861 -1.720628 -1.164017 51.0 0.790454 0.624818 1.407037 0.057125 1.929770 -1.929770 -42.813259 -0.903392 -0.839476 51.0 0.224383 0.050348 0.868946 -0.450092 1.215354 -1.215354 23.519859 0.432229 0.461174 51.0 0.124770 0.015568 0.477754 0.710500 0.710500 0.220367 -16.209703 0.118847 -0.317837 51.0 1.314500 1.727910 1.352380 1.112054 1.939464 -1.939464 -37.199425 -0.725223 -0.729400 51.0 0.380468 0.144756 0.822667 -0.163260 1.562108 -1.562108 -28.374754 -0.577443 -0.556368 51.0 0.082587 0.006821 0.562464 -0.426011 0.700476 -0.700476 -33.831715 -0.692064 -0.663367 51.0 0.055319 0.003060 0.665670 -0.562892 0.785335 -0.785335 -9.785879 -0.120882 -0.191880 51.0 0.189782 0.036017 0.269880 0.029362 0.480300 -0.480300 31.432211 0.615669 0.616318 51.0 0.047582 0.002264 0.618152 0.724455 0.724455 0.508044 -17.988781 -0.505427 -0.352721 51.0 0.404562 0.163670 0.536733 0.349224 0.806139 -0.806139 -27.356274 -0.701033 -0.536398 51.0 0.296890 0.088144 0.613079 -0.133365 0.880810 -0.880810 -17.563057 -0.612013 -0.344374 51.0 0.363105 0.131845 0.500438 0.263199 0.805357 -0.805357 -51.258610 -1.292328 -1.005071 51.0 0.465966 0.217124 1.107832 -0.286899 1.439254 -1.439254 -32.161274 -0.654616 -0.630613 51.0 0.213219 0.045462 0.665684 -0.275235 1.050876 -1.050876 27.698662 0.561557 0.543111 51.0 0.077043 0.005936 0.548548 0.716459 0.716459 0.435221 -14.300674 -0.091825 -0.280405 51.0 1.000590 1.001181 1.039138 0.962385 1.426472 -1.426472 -35.823841 -0.588274 -0.702428 51.0 0.258499 0.066822 0.748483 -0.320927 1.462986 -1.462986 -12.420489 -0.572502 -0.243539 51.0 0.496830 0.246840 0.553309 0.556555 0.795882 -0.795882 -52.548584 -1.538987 -1.030364 51.0 0.756947 0.572969 1.278523 0.127194 1.766567 -1.766567 -39.116135 -0.778130 -0.766983 51.0 0.221984 0.049277 0.798461 -0.459320 1.228481 -1.228481 22.935024 0.383720 0.449706 51.0 0.130926 0.017142 0.468377 0.765694 0.765694 0.272558 -14.095066 0.043224 -0.276374 51.0 1.124726 1.265009 1.158184 0.981844 1.666249 -1.666249 -37.573940 -0.750010 -0.736744 51.0 0.329468 0.108549 0.807057 -0.145154 1.427878 -1.427878 6.0
7 -30.054667 -0.586762 -0.589307 51.0 0.026791 0.000718 0.589916 -0.537303 0.637069 -0.637069 -89.805847 -1.763582 -1.760899 51.0 0.051333 0.002635 1.761647 -1.595123 1.831372 -1.831372 -30.299511 -0.599651 -0.594108 51.0 0.017791 0.000317 0.594374 -0.555780 0.624197 -0.624197 57.054878 0.590898 1.118723 51.0 0.690255 0.476451 1.314531 2.181025 2.181025 0.523483 -54.861839 -1.783685 -1.075722 51.0 1.023313 1.047169 1.484705 0.780975 1.866018 -1.866018 -30.463106 -0.687972 -0.597316 51.0 0.233482 0.054514 0.641327 -0.052382 0.885776 -0.885776 -31.239834 -0.610331 -0.612546 51.0 0.008938 0.000080 0.612611 -0.589627 0.626576 -0.626576 -35.954945 -0.707961 -0.704999 51.0 0.009692 0.000094 0.705065 -0.681811 0.723934 -0.723934 -1.693566 -0.034172 -0.033207 51.0 0.005121 0.000026 0.033600 -0.025034 0.043316 -0.043316 41.362114 0.611083 0.811022 51.0 0.266158 0.070840 0.853579 1.230610 1.230610 0.590663 -27.009262 -0.764834 -0.529593 51.0 0.352210 0.124052 0.636019 0.164998 0.783654 -0.783654 -4.671733 -0.120645 -0.091603 51.0 0.039557 0.001565 0.099779 0.012086 0.132251 -0.132251 -33.829697 -0.661835 -0.663327 51.0 0.016654 0.000277 0.663536 -0.629331 0.698473 -0.698473 -67.871452 -1.321654 -1.330813 51.0 0.049303 0.002431 1.331726 -1.228574 1.440540 -1.440540 -18.070618 -0.351222 -0.354326 51.0 0.036134 0.001306 0.356164 -0.280387 0.420330 -0.420330 52.747173 0.672712 1.034258 51.0 0.501497 0.251499 1.149430 1.832273 1.832273 0.611130 -44.644840 -1.400284 -0.875389 51.0 0.739913 0.547472 1.146201 0.524037 1.451716 -1.451716 -19.645128 -0.469470 -0.385199 51.0 0.163351 0.026683 0.418403 -0.018850 0.508339 -0.508339 -25.314772 -0.484376 -0.496368 51.0 0.038528 0.001484 0.497861 -0.424774 0.636847 -0.636847 -77.000114 -1.515560 -1.509806 51.0 0.045546 0.002074 1.510493 -1.345332 1.600864 -1.600864 -31.448179 -0.617746 -0.616631 51.0 0.018259 0.000333 0.616901 -0.558595 0.647373 -0.647373 52.555771 0.479092 1.030505 51.0 0.712963 0.508317 1.253099 2.134455 2.134455 0.432490 -51.433918 -1.547762 -1.008508 51.0 0.842653 0.710063 1.314212 0.560371 1.694775 -1.694775 -30.186773 -0.691490 -0.591898 51.0 0.220352 0.048555 0.631583 -0.083429 0.843667 -0.843667 2.0
8 -16.060301 -0.667104 -0.314908 51.0 0.627565 0.393838 0.702143 0.812297 0.983708 -0.983708 -74.788139 -1.897522 -1.466434 51.0 0.800985 0.641577 1.670930 -0.321444 2.274097 -2.274097 -59.309460 -1.029285 -1.162931 51.0 0.350030 0.122521 1.214466 -0.699534 1.934789 -1.934789 50.793800 0.795298 0.995957 51.0 0.342537 0.117332 1.053215 1.691689 1.691689 0.662314 -43.320175 -1.703624 -0.849415 51.0 1.443293 2.083095 1.674694 1.171774 2.230080 -2.230080 -44.213379 -0.858646 -0.866929 51.0 0.205225 0.042117 0.890889 -0.585371 1.341791 -1.341791 -34.511520 -0.695397 -0.676696 51.0 0.136958 0.018757 0.690417 -0.398315 0.945305 -0.945305 -35.628326 -0.752094 -0.698595 51.0 0.152363 0.023214 0.715017 -0.438759 0.870392 -0.870392 -21.092607 -0.313079 -0.413581 51.0 0.179414 0.032189 0.450820 -0.235212 0.879265 -0.879265 42.521458 0.793477 0.833754 51.0 0.112848 0.012735 0.841356 1.138605 1.138605 0.712911 -31.566500 -0.889622 -0.618951 51.0 0.374500 0.140250 0.723430 0.124171 0.946994 -0.946994 -19.891979 -0.189327 -0.390039 51.0 0.288866 0.083444 0.485360 -0.155909 0.919305 -0.919305 -23.640608 -0.695592 -0.463541 51.0 0.435593 0.189741 0.636091 0.436059 0.912495 -0.912495 -62.360683 -1.449398 -1.222759 51.0 0.569461 0.324286 1.348860 -0.391525 1.833394 -1.833394 -48.145874 -0.905404 -0.944037 51.0 0.225033 0.050640 0.970487 -0.683651 1.391908 -1.391908 48.720406 0.832892 0.955302 51.0 0.268162 0.071911 0.992226 1.627967 1.627967 0.656658 -37.167072 -1.435417 -0.728766 51.0 1.070713 1.146427 1.295194 0.923269 1.716019 -1.716019 -33.509415 -0.583996 -0.657047 51.0 0.171576 0.029438 0.679080 -0.394781 1.083638 -1.083638 -19.663610 -0.613898 -0.385561 51.0 0.564985 0.319208 0.684007 0.629170 1.007365 -1.007365 -70.090225 -1.704903 -1.374318 51.0 0.624232 0.389666 1.509442 -0.415971 2.108225 -2.108225 -52.366474 -0.926542 -1.026794 51.0 0.287308 0.082546 1.066232 -0.679140 1.731807 -1.731807 47.941799 0.909545 0.940035 51.0 0.348823 0.121677 1.002668 1.692501 1.692501 0.545740 -40.263035 -1.575590 -0.789471 51.0 1.202905 1.446981 1.438835 0.958755 2.064477 -2.064477 -40.953861 -0.808996 -0.803017 51.0 0.155434 0.024160 0.817922 -0.565620 1.240218 -1.240218 6.0
9 -35.325958 -0.716327 -0.692666 51.0 0.746616 0.557435 1.018440 0.675705 2.227856 -2.227856 -50.240242 -1.649973 -0.985103 51.0 0.882919 0.779545 1.322865 0.595470 1.769741 -1.769741 -43.784492 -0.854625 -0.858519 51.0 0.344355 0.118581 0.925006 0.057911 1.537225 -1.537225 42.223888 0.788022 0.827919 51.0 0.715912 0.512530 1.094523 2.239191 2.239191 -0.598289 -54.839199 -1.685413 -1.075278 51.0 0.818133 0.669341 1.351135 0.612057 1.832077 -1.832077 -20.362839 -0.457162 -0.399271 51.0 0.460404 0.211972 0.609417 0.856180 1.371877 -1.371877 -37.779381 -0.721153 -0.740772 51.0 0.192792 0.037169 0.765449 -0.347428 1.109891 -1.109891 -25.893764 -0.660764 -0.507721 51.0 0.221849 0.049217 0.554074 -0.062809 0.701248 -0.701248 -16.999693 -0.266673 -0.333327 51.0 0.174279 0.030373 0.376139 -0.160579 0.760730 -0.760730 35.923653 0.602151 0.704385 51.0 0.173165 0.029986 0.725358 1.077855 1.077855 0.535991 -33.310738 -0.766126 -0.653152 51.0 0.188555 0.035553 0.679824 -0.233124 0.794142 -0.794142 3.365476 0.101030 0.065990 51.0 0.211689 0.044812 0.221736 0.411540 0.411540 -0.391043 -37.174194 -0.756994 -0.728906 51.0 0.534179 0.285348 0.903688 0.445568 1.704221 -1.704221 -40.664139 -1.260805 -0.797336 51.0 0.613188 0.376000 1.005855 0.267926 1.335273 -1.335273 -33.628231 -0.656351 -0.659377 51.0 0.213429 0.045552 0.693058 -0.345712 1.234546 -1.234546 39.727489 0.724312 0.778970 51.0 0.488670 0.238798 0.919561 1.743218 1.743218 -0.255513 -44.954082 -1.299834 -0.881453 51.0 0.540043 0.291646 1.033733 0.210265 1.411317 -1.411317 -10.318247 -0.179946 -0.202319 51.0 0.344015 0.118346 0.399098 0.628464 1.018573 -1.018573 -37.053024 -0.741383 -0.726530 51.0 0.672777 0.452630 0.990189 0.653344 2.026216 -2.026216 -46.345230 -1.434940 -0.908730 51.0 0.742306 0.551018 1.173375 0.604051 1.582865 -1.582865 -40.739742 -0.794713 -0.798818 51.0 0.303034 0.091830 0.854366 0.037086 1.368740 -1.368740 39.737450 0.763644 0.779166 51.0 0.626881 0.392980 1.000040 1.959837 1.959837 -0.491782 -51.506882 -1.503687 -1.009939 51.0 0.735450 0.540887 1.249345 0.475179 1.694034 -1.694034 -20.552256 -0.483298 -0.402985 51.0 0.397737 0.158195 0.566209 0.663350 1.459374 -1.459374 4.0
{% endraw %} {% raw %}
x_cat, x_cont, yb = first(dls.train)
x_cont[:10]
tensor([[ 0.2804,  0.4747,  0.2804,  ..., -0.4816, -0.3325,  0.0887],
        [-0.3196, -0.4142, -0.3196,  ..., -0.0979, -0.7659,  0.4576],
        [-0.0764, -0.1685, -0.0764,  ..., -0.1120,  0.7963, -0.8724],
        ...,
        [-1.3950, -0.6392, -1.3950,  ...,  0.6344,  1.4236, -1.4065],
        [-0.0188,  0.0513, -0.0188,  ..., -1.4496, -0.2021, -0.0224],
        [-0.3864, -0.1467, -0.3864,  ...,  0.3099,  1.5548, -1.5182]])
{% endraw %}