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Ti50: What we want from Tock 



Confidential + Proprietary

TL;DR

This is a broadcast of ideas

We are looking for collaboration / deduplication / inspiration of work

and early feedback

Sharing “why” we do some changes, what we want to accomplish
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ChromeOS Use Case
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ChromeOS Use Case

- System Manager / Platform Root Of Trust
- enhanced, security hardened RISC-V chip
- detection, mitigation and recovery of security issues
- always ON, even when Application Processor is powered off -> power management

- Multiple applications
- execution from flash (due to the code size)
- max code reuse between several chip variants

- Secure & robust firmware upgrades
- 2 flash banks - active(golden) copy and updateable + active data

- Management of platform secrets (TPM, U2F, OS login, etc)
- hardened crypto API
- confidentiality & integrity of system & apps persistent data
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ChromeOS Use Case (2)

- Closed-case debug support
- low latency UART multiplexing

- Shared interface to apps (SPI or I2C)
- Dispatching of commands from AP among Ti50 apps based on command codes

- High availability - reboot cause platform reboot
- Support for Watchdog timer, sleep & deep sleep modes

- Certifications (FIPS crypto, Common Criteria - TPM, U2F, etc)
- Need to prove that isolation of applications is good enough. Example of requirements.
- Testing, fuzzing, 100% branch-coverage, no dead code at source & binary
- Traceability of security threats, security objectives, security functional requirements

and functional tests -> tracking of requirements, artifacts
- Reproducible builds
- Independent testing, including vulnerability reward program

https://www.niap-ccevs.org/MMO/PP/pp_skpp_hr_v1.03.pdf
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Multiple Applications

- extended  threat model for our application - WIP
- confidentiality & integrity of data, residual data leakage, covert channels, vulnerabilities, …
- defense in depth (lite-ASLR, check for stack pivoting, no data execution,  etc)

- code size & performance optimizations
- shared libs among apps
- static applications -> possible changes in Process::Create
- efficient IPC, ideally close to zero-copy
- syscall performance (next slide)

- isolation of resources
- ACLs on syscalls / devices / capsules
- encrypted files system with ACLs
- crypto key management
- application reset on panic

https://github.com/tock/tock/issues/1663
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Performance optimizations

- low latency requirement for interrupt processing
- transfer data from one UART to another while monitoring for control sequences

- syscall penalty reduction
- expect many syscalls for crypto & I/O
- home-grown OS has 50 cycles penalty, Tock ~5172* cycles
- synchronous syscalls (don’t subscribe just to always yield) -> remove 2 syscalls
- enable direct use of constants from .rodata -> remove some allow() syscalls
- different syscall conventions (a0 -> t6 to minimize register shuffling), pass more regs, stay with 

just ‘command’ syscall,  make ‘allow’ as part of ‘command’ syscall

- IPC using shared-memory
- dispatch commands/responses up to 4K among apps
- AppID as u32 or u8

- 64-bit timers, avoid long division in timer by changing timer frequency
* - OpenTitan team reduced it to ~450 

https://github.com/tock/tock/issues/1730
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Enhanced RISC-V core (Google internal)

- Integrated Root of Trust
- code signing required

- Certified crypto libraries
- Use API to perform operations vs. direct HW access

- 16 PMP regions
- Power management, Deep sleep support
- Security alerts
- Additional protection mechanism extending PMPs
- New CSRs, and instructions (subset of bitmanip)

- Modified toolchain to support
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Crypto libraries

- API for key generation and management
- use key handles for apps
- export keys only using key-wrapping, blob for apps
- access control to keys on per application basis
- side-loading of keys for hardware-bound keys
- zeroization of keys
- board-specific flash region with restricted access

- symmetric ciphers, different modes (-OFB, -GMAC, -KWP, -CTR, etc)
- public-key crypto (RSA 4K, ECDSA P-256/P-384, ECDAA(?), etc)
- parallel context support, sharing hardware resources
- FIPS 140-3 compliance (health tests, known-answer tests, etc)
- post-quantum crypto, firmware signature verification
- HW-accelerators (AES, HMAC, DRBG, Big num)

- via certified crypto lib primarily for ChromeOS
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Filesystem

- efficient use of shared flash space
- device-bound, application-bound encryption
- integrity protection (AEAD, etc)
- flash brown-out resistance (incomplete writes/erase due to power-off)
- ACLs for objects
- transaction support (detect incomplete transactions)
- flash wear minimization
- performance considerations:

- minimize erase count
- flash bank aware (avoid updating the one with active firmware)
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Host emulation

- multiple targets for same code
- target security IC
- verilator
- QEMU (with device emulation at register level)
- host (device emulation at register level)

- device emulation at register level
- hooks to tock::register
- use mostly same driver code as on target for coverage

- host execution model
- maximize code reuse from target, not just emulated syscalls
- emulate context switching
- interrupts from devices
- syscall handling

Addressing:

● Unit testing for drivers
● CQ testing, including full 

product ChromeOS + TI50
● Development velocity
● 100% branch coverage
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Testing

- automated unit tests
- automated integration tests (single & multi-app)

- reuse same test framework among apps and core
- all levels and targets

- branch coverage (on target and host emulation)
- no dead code requirement for source and compiled code
- some stuff require emulation (security alerts, I/O errors, etc)

- fuzzing
- HWASAN (software memory tagging)

- apps can be in C, unsafe code in crypto libs, etc
- need toolchain enabling for RISC-V support
- OS-specific libraries for Tock

https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
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Toolchain enhancements

- support new instructions (wip)
- build / link multiple Tock apps
- code size optimization

- support for linker relaxation
- support for tp- relative addressing for apps vs. gp- used for kernel (?)
- -Oz general improvements

- on-target code coverage for embedded
- replace 64-bit counters with 32-bit or 8-bit flags to save data & code
- download coverage data from target

- HWASAN for RISC-V
- toolchain stabilization


