
Confidential + ProprietaryConfidential + Proprietary

Ti50: What we want from Tock

Confidential + Proprietary

TL;DR

This is a broadcast of ideas

We are looking for collaboration / deduplication / inspiration of work

and early feedback

Sharing “why” we do some changes, what we want to accomplish

Confidential + Proprietary

ChromeOS Use Case

Security IC
(RV32IMC+)

Crypto
HWiRoT

Optional Dedicated IC Software:
 Extended Root of Trust, Certified Crypto Libraries, Initialization

H
A

L

Scheduler

Config

S
P

I

I2
C

U
A

R
T

Console
N

V

S
to

ra
ge

G
P

IO

Ti
m

er

C
ry

pt
o

vSPI vUART Filesystem

vFlashvi2C vAlarm

Sensors

TPM Security
Manager

Tock Core Kernel + Drivers

Capsules (Abstractions)

FIDO U2F

Ti50 on
Tock

Application
Processor

Embedded
Controller

SPI
Flash

Fingerprint
Sensor

Internal
Flash

APRESET

SPI

SPI

UART,
RESET,
KBD, ...GPIO

USB
Closed Case Debug

UART

PWR_BTN

SERVO

Chromebook Platform

Crypto

Ti50

Confidential + Proprietary

ChromeOS Use Case

- System Manager / Platform Root Of Trust
- enhanced, security hardened RISC-V chip
- detection, mitigation and recovery of security issues
- always ON, even when Application Processor is powered off -> power management

- Multiple applications
- execution from flash (due to the code size)
- max code reuse between several chip variants

- Secure & robust firmware upgrades
- 2 flash banks - active(golden) copy and updateable + active data

- Management of platform secrets (TPM, U2F, OS login, etc)
- hardened crypto API
- confidentiality & integrity of system & apps persistent data

Confidential + Proprietary

ChromeOS Use Case (2)

- Closed-case debug support
- low latency UART multiplexing

- Shared interface to apps (SPI or I2C)
- Dispatching of commands from AP among Ti50 apps based on command codes

- High availability - reboot cause platform reboot
- Support for Watchdog timer, sleep & deep sleep modes

- Certifications (FIPS crypto, Common Criteria - TPM, U2F, etc)
- Need to prove that isolation of applications is good enough. Example of requirements.
- Testing, fuzzing, 100% branch-coverage, no dead code at source & binary
- Traceability of security threats, security objectives, security functional requirements

and functional tests -> tracking of requirements, artifacts
- Reproducible builds
- Independent testing, including vulnerability reward program

https://www.niap-ccevs.org/MMO/PP/pp_skpp_hr_v1.03.pdf

Confidential + Proprietary

Multiple Applications

- extended threat model for our application - WIP
- confidentiality & integrity of data, residual data leakage, covert channels, vulnerabilities, …
- defense in depth (lite-ASLR, check for stack pivoting, no data execution, etc)

- code size & performance optimizations
- shared libs among apps
- static applications -> possible changes in Process::Create
- efficient IPC, ideally close to zero-copy
- syscall performance (next slide)

- isolation of resources
- ACLs on syscalls / devices / capsules
- encrypted files system with ACLs
- crypto key management
- application reset on panic

https://github.com/tock/tock/issues/1663

Confidential + Proprietary

Performance optimizations

- low latency requirement for interrupt processing
- transfer data from one UART to another while monitoring for control sequences

- syscall penalty reduction
- expect many syscalls for crypto & I/O
- home-grown OS has 50 cycles penalty, Tock ~5172* cycles
- synchronous syscalls (don’t subscribe just to always yield) -> remove 2 syscalls
- enable direct use of constants from .rodata -> remove some allow() syscalls
- different syscall conventions (a0 -> t6 to minimize register shuffling), pass more regs, stay with

just ‘command’ syscall, make ‘allow’ as part of ‘command’ syscall

- IPC using shared-memory
- dispatch commands/responses up to 4K among apps
- AppID as u32 or u8

- 64-bit timers, avoid long division in timer by changing timer frequency
* - OpenTitan team reduced it to ~450

https://github.com/tock/tock/issues/1730

Confidential + Proprietary

Enhanced RISC-V core (Google internal)

- Integrated Root of Trust
- code signing required

- Certified crypto libraries
- Use API to perform operations vs. direct HW access

- 16 PMP regions
- Power management, Deep sleep support
- Security alerts
- Additional protection mechanism extending PMPs
- New CSRs, and instructions (subset of bitmanip)

- Modified toolchain to support

Confidential + Proprietary

Crypto libraries

- API for key generation and management
- use key handles for apps
- export keys only using key-wrapping, blob for apps
- access control to keys on per application basis
- side-loading of keys for hardware-bound keys
- zeroization of keys
- board-specific flash region with restricted access

- symmetric ciphers, different modes (-OFB, -GMAC, -KWP, -CTR, etc)
- public-key crypto (RSA 4K, ECDSA P-256/P-384, ECDAA(?), etc)
- parallel context support, sharing hardware resources
- FIPS 140-3 compliance (health tests, known-answer tests, etc)
- post-quantum crypto, firmware signature verification
- HW-accelerators (AES, HMAC, DRBG, Big num)

- via certified crypto lib primarily for ChromeOS

Confidential + Proprietary

Filesystem

- efficient use of shared flash space
- device-bound, application-bound encryption
- integrity protection (AEAD, etc)
- flash brown-out resistance (incomplete writes/erase due to power-off)
- ACLs for objects
- transaction support (detect incomplete transactions)
- flash wear minimization
- performance considerations:

- minimize erase count
- flash bank aware (avoid updating the one with active firmware)

Confidential + Proprietary

Host emulation

- multiple targets for same code
- target security IC
- verilator
- QEMU (with device emulation at register level)
- host (device emulation at register level)

- device emulation at register level
- hooks to tock::register
- use mostly same driver code as on target for coverage

- host execution model
- maximize code reuse from target, not just emulated syscalls
- emulate context switching
- interrupts from devices
- syscall handling

Addressing:

● Unit testing for drivers
● CQ testing, including full

product ChromeOS + TI50
● Development velocity
● 100% branch coverage

Confidential + Proprietary

Testing

- automated unit tests
- automated integration tests (single & multi-app)

- reuse same test framework among apps and core
- all levels and targets

- branch coverage (on target and host emulation)
- no dead code requirement for source and compiled code
- some stuff require emulation (security alerts, I/O errors, etc)

- fuzzing
- HWASAN (software memory tagging)

- apps can be in C, unsafe code in crypto libs, etc
- need toolchain enabling for RISC-V support
- OS-specific libraries for Tock

https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html

Confidential + Proprietary

Toolchain enhancements

- support new instructions (wip)
- build / link multiple Tock apps
- code size optimization

- support for linker relaxation
- support for tp- relative addressing for apps vs. gp- used for kernel (?)
- -Oz general improvements

- on-target code coverage for embedded
- replace 64-bit counters with 32-bit or 8-bit flags to save data & code
- download coverage data from target

- HWASAN for RISC-V
- toolchain stabilization

