
Tock Embedded OS Training

SOSP 2017

Please make sure you have completed all of the tutorial
pre-requisites. If you prefer, you can download a virtual
machine image with all the pre-requisites already
installed.

https://github.com/helena-project/tock/tree/master/doc/courses/
sosp/README.md

aka

https://goo.gl/s17fy8

https://github.com/helena-project/tock/tree/master/doc/courses/sosp/README.md
https://github.com/helena-project/tock/tree/master/doc/courses/sosp/README.md
https://goo.gl/s17fy8

Tock

A secure operating system for microcontrollers

▶ Kernel components in Rust
▶ Type-safe API for safe driver development
▶ Hardware isolated processes for application code

Microcontrollers

System-on-a-chip with integrated flash, SRAM, CPU and a bunch
of hardware controllers.
Typically:

▶ Communication: UART, SPI, I2C, USB, CAN…
▶ External I/O: GPIO, external interrupt, ADC, DAC
▶ Timers: RTC, countdown timers

Maybe…

▶ Radio (Bluetooth, 15.4)
▶ Cryptographic accelerators
▶ Other specialized hardware…

Low Resource

▶ 10’s of µA average power draw
▶ 10’s of kBs of RAM
▶ Moderate clock speeds

Use cases

▶ Security applications (e.g. authentication keys)
▶ Sensor networks
▶ Programmable wearables
▶ PC/phone peripherals
▶ Home/industrial automation
▶ Flight control

Two types of components: capsules and processes

Virtual Alarm

Timer SysCalls

Timer Driver

Timer I2CSPI

RF233 Driver

SPI Driver

802.15.4 Net.

Peripherals

Microcontroller

Kernel

Processes

I2C Driver

Temp Sensor

Figure 1

Two types of scheduling: cooperative and preemptive

HW Timer

Process

Process

Process

Process
Scheduler

IRQ
Dispatch

com
man

d

subscribe

allow

Virtual Alarm Timer SysCalls

Timer Driver

Figure 2

Agenda Today

1. Intro to hardware, tools and development environment
2. Write an end-to-end Bluetooth Low Energy environment

sensing application
3. Add functionality to the Tock kernel

Part 1: Hardware, tools and development
environment

Hail

Figure 3

Binaries on-board

Bootloader

Kernel

Processes

Tools

▶ make (just instrumenting xargo)
▶ Rust (nightly for asm!, compiling core, etc)
▶ xargo to automate compiling base libraries
▶ arm-none-eabi GCC/LD to link binaries
▶ tockloader to interact with Hail and the bootloader

Tools: tockloader

Write a binary to a particular address in flash

$ tockloader flash --address 0x1000 \
target/thumbv7em-none-eabi/release/hail.bin

Program a process in Tock Binary Format1:

$ tockloader install myapp.tab

Restart the board and connect to the debug console:

$ tockloader listen

1TBFs are relocatable process binaries prefixed with headers like the
package name. .tab is a tarball of TBFs for different architectures as well as a
metadata file for tockloader.

Check your understanding

1. What kinds of binaries exist on a Tock board? Hint: There are
three, and only two can be programmed using tockloader.

2. Can you point to the chip on the Hail that runs the Tock
kernel? How about the processes?

3. What steps would you follow to program a processes onto
Hail? What about to replace the kernel?

Hands-on: Set-up development environment

1. Compile and flash the kernel
2. (Optional) Familiarize yourself with tockloader commands

▶ uninstall
▶ list
▶ erase-apps

3. (Optional) Add some other apps from the repo, like blink
and sensors

▶ Head to <http://bit.ly/2lniNt6> to get started!
▶ (github.com/helena-project/tock/blob/master/doc/courses/sosp/environment.md)

https://github.com/helena-project/tock/blob/master/doc/courses/sosp/environment.md

Part 2: User space

System calls

Call Target Description
command Capsule Invoke an operation on a capsule
allow Capsule Share memory with a capsule
subscribe Capsule Register an upcall
memop Core Modify memory break
yield Core Block until next upcall is ready

C System Calls: command & allow

int command(uint32_t driver, uint32_t command,
int arg1, int arg2);

int allow(uint32_t driver, uint32_t allow, void* ptr,
size_t size);

C System Calls: subscribe

typedef void (subscribe_cb)(int, int, int,
void* userdata);

int subscribe(uint32_t driver, uint32_t subscribe,
subscribe_cb cb, void* userdata);

C System Calls: yield & yield_for

void yield(void);

void yield_for(bool *cond) {
while (!*cond) {

yield();
}

}

Example: printing to the debug console

static void putstr_cb(int _x, int _y, int _z, void* ud) {
putstr_data_t* data = (putstr_data_t*)ud;
data->done = true;

}

int putnstr(const char *str, size_t len) {
putstr_data_t data;
data.buf = str;
data.done = false;

allow(DRIVER_NUM_CONSOLE, 1, str, len);
subscribe(DRIVER_NUM_CONSOLE, 1, putstr_cb, &data);
command(DRIVER_NUM_CONSOLE, 1, len, 0);
yield_for(&data.done);
return ret;

}

Inter Process Communication (IPC)

Figure 4

Tock Inter Process Communication Overview

Servers

▶ Register as an IPC service
▶ Call notify to trigger callback in connected client
▶ Receive a callback when a client calls notify

Clients

▶ Discover IPC services by application name
▶ Able to share a buffer with a connected service
▶ Call notify to trigger callback in connected service
▶ Receive a callback when service calls notify

Inter Process Communication API

// discover IPC service by name
// returns error code or PID for service
int ipc_discover(const char* pkg_name);

// shares memory slice at address with IPC service
int ipc_share(int pid, void* base, int len);

// register for callback on server `notify`
int ipc_register_client_cb(int pid, subscribe_cb cb,

void* userdata);

// trigger callback in service
int ipc_notify_svc(int pid);

// trigger callback in a client
int ipc_notify_client(int pid);

Check your understanding

1. How does a process perform a blocking operation? Can you
draw the flow of operations when a process calls
delay_ms(1000)?

2. How would you write an IPC service to print to the console?
Which functions would the client need to call?

Hands-on: Write a BLE environment sensing application

1. Get an application running on Hail
2. Print “Hello World” every second
3. Extend your app to sample on-board sensors
4. Extend your app to report through the ble-env-sense

service

▶ Head to <http://bit.ly/2hgpl8n> to get started!
▶ (github.com/helena-project/tock/blob/master/doc/courses/sosp/application.md)

https://github.com/helena-project/tock/bloc/master/doc/courses/sosp/exercises/app/solutions/sosp-repeat-hello.c
https://github.com/helena-project/tock/bloc/master/doc/courses/sosp/exercises/app/solutions/sosp-sensors.c
https://github.com/helena-project/tock/bloc/master/doc/courses/sosp/exercises/app/solutions/sosp-ble-ess.c
https://github.com/helena-project/tock/bloc/master/doc/courses/sosp/exercises/app/solutions/sosp-ble-ess.c
https://github.com/helena-project/tock/blob/master/doc/courses/sosp/application.md#2-check-your-understanding

Part 3: The kernel

Trusted Computing Base (unsafe allowed)

▶ Hardware Abstraction Layer
▶ Board configuration
▶ Event & Process scheduler
▶ Rust core library
▶ Core Tock primitives

kernel/
chips/

Capsules (unsafe not allowed)

▶ Virtualization
▶ Peripheral drivers
▶ Communication protocols (IP, USB, etc)
▶ Application logic

capsules/

Constraints

Small isolation units
Breaking a monolithic component into smaller ones should have
low/no cost

Avoid memory exhaustion in the kernel
No heap. Everything is allocated statically.

Low communication overhead
Communicating between components as cheap as an internal
function call. Ideally inlined.

Event-driven execution model

pub fn main<P, C>(platform: &P, chip: &mut C,
processes: &mut [Process]) {

loop {
chip.service_pending_interrupts();
for (i, p) in processes.iter_mut().enumerate() {

sched::do_process(platform, chip, process);
}

if !chip.has_pending_interrupts() {
chip.prepare_for_sleep();
support::wfi();

}
}

}

Event-driven execution model

fn service_pending_interrupts(&mut self) {
while let Some(interrupt) = get_interrupt() {

match interrupt {
ASTALARM => ast::AST.handle_interrupt(),
USART0 => usart::USART0.handle_interrupt(),
USART1 => usart::USART1.handle_interrupt(),
USART2 => usart::USART2.handle_interrupt(),
...

}
}

}

Event-driven execution model
impl Ast {

pub fn handle_interrupt(&self) {
self.clear_alarm();
self.callback.get().map(|cb| { cb.fired(); });

}
}
impl time::Client for MuxAlarm {

fn fired(&self) {
for cur in self.virtual_alarms.iter() {

if cur.should_fire() {
cur.armed.set(false);
self.enabled.set(self.enabled.get() - 1);
cur.fired();

}
}

}
}

Figure 5: Capsules reference each other directly, assisting inlining

The mutable aliases problem

enum NumOrPointer {
Num(u32),
Pointer(&mut u32)

}

// n.b. will not compile
let external : &mut NumOrPointer;
match external {
Pointer(internal) => {

// This would violate safety and
// write to memory at 0xdeadbeef
*external = Num(0xdeadbeef);
*internal = 12345; // Kaboom

},
...

}

Interior mutability to the rescue

Type Copy-only Mutual exclusion Opt. Mem Opt.
Cell 3 7 3 3

VolatileCell 3 7 7 3

TakeCell 7 3 7 3

MapCell 7 3 3 7

pub struct Fxos8700cq<`a> {
i2c: &`a I2CDevice,
state: Cell<State>,
buffer: TakeCell<`static, [u8]>,
callback:

Cell<Option<&`a hil::ninedof::NineDofClient>>,
}

impl<`a> I2CClient for Fxos8700cq<`a> {
fn cmd_complete(&self, buf: &`static mut [u8]) { ... }

}

impl<`a> hil::ninedof::NineDof for Fxos8700cq<`a> {
fn read_accelerometer(&self) -> ReturnCode { ... }

}

pub trait NineDofClient {
fn callback(&self, x: usize, y: usize, z: usize);

}

Check your understanding

1. What is a VolatileCell? Can you find some uses of
VolatileCell, and do you understand why they are needed?
Hint: look inside chips/sam4l/src.

2. What is a TakeCell? When is a TakeCell preferable to a
standard Cell?

Hands-on: Write and add a capsule to the kernel

1. Read the Hail boot sequence in boards/hail/src/main.rs
2. Write a new capsule that prints “Hello World” to the debug

console.
3. Extend your capsule to print “Hello World” every second
4. Extend your capsule to print light readings every second
5. Extra credit

▶ Head to <http://bit.ly/2zLoD9W> to get started!
▶ (github.com/helena-project/tock/blob/master/doc/courses/sosp/capsule.md)

https://github.com/helena-project/tock/blob/master/doc/courses/sosp/capsule.md#2-check-your-understanding

Stay in touch!

https://www.tockos.org
https://github.com/helena-project/tock
tock-dev@googlegroups.com
#tock on Freenode

Quick Survey!

▶ https://goo.gl/ntxsgX

https://www.tockos.org
https://github.com/helena-project/tock
mailto:tock-dev@googlegroups.com
https://goo.gl/ntxsgX

	Part 1: Hardware, tools and development environment
	Part 2: User space
	Part 3: The kernel

