
Tock Embedded OS Tutorial

SenSys 2017

Welcome to the Tock OS Training!

Please make sure you have completed all of the tutorial
pre-requisites. If you prefer, you can download a virtual machine
image with all the pre-requisites already installed.

https://github.com/helena-project/tock/tree/master/
doc/courses/sensys/README.md

aka

http://j2x.us/tock

https://github.com/helena-project/tock/tree/master/doc/courses/sensys/README.md
https://github.com/helena-project/tock/tree/master/doc/courses/sensys/README.md
http://j2x.us/tock

Agenda Today

1. Intro to hardware, tools and development environment

2. Write an end-to-end Bluetooth Low Energy environment sensing
application

3. Add functionality to the Tock kernel
▶ Write some Rust!

Part 1: Hardware, tools, and development
environment

Hail

We need the Hails back at the end of the tutorial

But you can take one home with you! Purchase here:

https://tockos.org/hardware

Put in “SENSYS17” for $5 off, and “2600 Hearst Ave, Berkeley CA 94709” as
the address for local pickup.

https://tockos.org/hardware

Binaries on-board in flash

▶ 0x00000: Bootloader: Interact with Tockloader; load code
▶ 0x10000: Kernel
▶ 0x30000: Processes: Packed back-to-back

Tools

▶ make
▶ Rust/Cargo/Xargo (Rust code → LLVM)
▶ arm-none-eabi (LLVM → Cortex-M)
▶ tockloader to interact with Hail and the bootloader

Tools: tockloader

Write a binary to a particular address in flash

$ tockloader flash --address 0x10000 \
target/thumbv7em-none-eabi/release/hail.bin

Program a process in Tock Binary Format¹:

$ tockloader install myapp.tab

Restart the board and connect to the debug console:

$ tockloader listen

¹TBFs are relocatable process binaries prefixed with headers like the package name.
.tab is a tarball of TBFs for different architectures as well as a metadata file for
tockloader.

Check your understanding

Turn to the person next to you:

1. What kinds of binaries exist on a Tock board? Hint: There are three,
and only two can be programmed using tockloader.

2. What steps would you follow to program a process onto Hail? What
about to replace the kernel?

Answers

1. The three binaries are the serial bootloader, the kernel, and a series of
processes. The bootloader can be used to load the kernel and
processes, but cannot replace itself.

2. Use tockloader:
▶ tockloader install app.tab
▶ tockloader flash --address 0x10000 hail-kernel.bin

Hands-on: Set-up development environment

3. Compile and program the kernel

4. (Optional) Familiarize yourself with tockloader commands
▶ uninstall
▶ list
▶ erase-apps

5. (Optional) Add some other apps from the repo, like blink and
sensors

▶ Head to http://j2x.us/tock1 to get started!
▶ (https://github.com/helena-project/tock/blob/master/doc/courses/sensys/environment.md)

http://j2x.us/tock1
https://github.com/helena-project/tock/blob/master/doc/courses/sensys/environment.md

Part 2: User space

System calls

Tock supports five syscalls that applications use to interact with the kernel.

Call Target Description

command Capsule Invoke an operation on a capsule

allow Capsule Share memory with a capsule

subscribe Capsule Register an upcall

memop Core Modify memory break

yield Core Block until next upcall is ready

C System Calls: command & allow

// Start an operation
int command(u32 driver, u32 command, int arg1, int arg2);

// Share memory with the kernel
int allow(u32 driver, u32 allow, void* ptr, size_t size);

C System Calls: subscribe

// Callback function type
typedef void (sub_cb)(int, int, int, void* userdata);

// Register a callback with the kernel
int subscribe(u32 driver,

u32 subscribe,
sub_cb cb,
void* userdata);

C System Calls: yield & yield_for

// Block until next callback
void yield(void);

// Block until a specific callback
void yield_for(bool *cond) {

while (!*cond) {
yield();

}
}

Example: printing to the debug console

#define DRIVER_NUM_CONSOLE 0x0001

bool done = false;

static void putstr_cb(int x, int y, int z, void* ud) {
done = true;

}

int putnstr(const char *str, size_t len) {
allow(DRIVER_NUM_CONSOLE, 1, str, len);
subscribe(DRIVER_NUM_CONSOLE, 1, putstr_cb, NULL);
command(DRIVER_NUM_CONSOLE, 1, len, 0);
yield_for(&done);

return SUCCESS;
}

Inter Process Communication (IPC)

Tock Inter Process Communication Overview

Servers

▶ Register as an IPC service
▶ Call notify to trigger callback in connected client
▶ Receive a callback when a client calls notify

Clients

▶ Discover IPC services by application name
▶ Able to share a buffer with a connected service
▶ Call notify to trigger callback in connected service
▶ Receive a callback when service calls notify

Client Inter Process Communication API

// Discover IPC service by name
int ipc_discover(const char* pkg_name);

// Share memory slice with IPC service
int ipc_share(int pid, void* base, int len);

// Register for callback on server `notify`
int ipc_register_client_cb(int pid, subscribe_cb cb,

void* userdata);

// Trigger callback in service
int ipc_notify_svc(int pid);

Check your understanding

Turn to the person next to you:

1. How does a process perform a blocking operation? Can you draw the
flow of operations when a process calls delay_ms(1000)?

2. Which functions would a client call to interact with an IPC service that
provides a UART console? What does the design of the console service
look like?

Answers

1. A blocking call follows these steps:

▶ Set up a callback using subscribe
▶ Initiate an operation with command
▶ Continually yield using yield_for

2. A console service first registers a callback to receive notifications from clients. When
the callback triggers, it uses a buffer shared by the client and prints the contents to
the console.

▶ Call ipc_discover() to find the ID of the console service.
▶ Call ipc_share to share a buffer where output will live
▶ Fill the buffer with output
▶ Call ipc_notify_svc to invoke a console write.

Hands-on: Write a BLE environment sensing application

3. Get an application running on Hail

4. Print “Hello World” every second

5. Extend your app to sample on-board sensors

6. Extend your app to report through the ble-env-sense service

▶ Head to http://j2x.us/tock2 to get started!
▶ (https://github.com/helena-project/tock/blob/master/doc/courses/sensys/application.md)

https://github.com/helena-project/tock/bloc/master/doc/courses/sensys/exercises/app/solutions/repeat-hello.c
https://github.com/helena-project/tock/bloc/master/doc/courses/sensys/exercises/app/solutions/sensors.c
https://github.com/helena-project/tock/bloc/master/doc/courses/sensys/exercises/app/solutions/ble-ess.c
http://j2x.us/tock2
https://github.com/helena-project/tock/blob/master/doc/courses/sensys/application.md#2-check-your-understanding

Part 3: The kernel

Trusted Computing Base (unsafe allowed)

▶ Hardware Abstraction Layer
▶ Board configuration
▶ Event & Process scheduler
▶ Rust core library
▶ Core Tock primitives

arch/
chips/
kernel/

Capsules (unsafe not allowed)

▶ Virtualization
▶ Peripheral drivers
▶ Communication protocols (IP, USB, etc)
▶ Application logic

capsules/

Constraints

Small isolation units

Breaking a monolithic component into smaller ones should have low/no
cost

Avoid memory exhaustion in the kernel

No heap. Everything is allocated statically.

Low communication overhead

Communicating between components as cheap as an internal function
call. Ideally inlined.

Event-driven execution model

pub fn main<P, C>(platform: &P, chip: &mut C,
processes: &mut [Process]) {

loop {
chip.service_pending_interrupts();
for (i, p) in processes.iter_mut().enumerate() {

sched::do_process(platform, chip, process);
}

if !chip.has_pending_interrupts() {
chip.prepare_for_sleep();
support::wfi();

}
}

}

Event-driven execution model

fn service_pending_interrupts(&mut self) {
while let Some(interrupt) = get_interrupt() {

match interrupt {
ASTALARM => ast::AST.handle_interrupt(),
USART0 => usart::USART0.handle_interrupt(),
USART1 => usart::USART1.handle_interrupt(),
USART2 => usart::USART2.handle_interrupt(),
...

}
}

}

Event-driven execution model

impl Ast {
pub fn handle_interrupt(&self) {

self.clear_alarm();
self.callback.get().map(|cb| { cb.fired(); });

}
}
impl time::Client for MuxAlarm {

fn fired(&self) {
for cur in self.virtual_alarms.iter() {

if cur.should_fire() {
cur.armed.set(false);
self.enabled.set(self.enabled.get() - 1);
cur.fired();

}
}

}
}

Process

Timer Driver

AST

HW Alarm

Check your understanding

Turn to the person next to you:

1. What are Tock kernel components called?

2. Is the kernel scheduled cooperatively or preemptively? What happens
if a capsule performs a very long computation?

3. How is a hardware interrupt handled in the kernel?

Answers

1. Tock kernel components are called “capsules”

2. The kernel is scheduled cooperatively by capsules calling methods on
each other. If a capsule performs a very long computation it might
prevent other capsules from running or cause them tomiss events.

3. Hardware interrupts are scheduled to run when capsules next yield. If
a process is running when a hardware event happens, the hardware
event will be immediately handled.

Hands-on: Write and add a capsule to the kernel

4. Read the Hail boot sequence in boards/hail/src/main.rs
5. Write a new capsule that prints “Hello World” to the debug console.

6. Extend your capsule to print “Hello World” every second

7. Extend your capsule to print light readings every second

8. Extra credit

▶ Head to http://j2x.us/tock3 to get started!
▶ (https://github.com/helena-project/tock/blob/master/doc/courses/sensys/capsule.md)

http://j2x.us/tock3
https://github.com/helena-project/tock/blob/master/doc/courses/sensys/capsule.md#2-check-your-understanding

We need the Hails back!

But you can take one home with you! Purchase here:

https://tockos.org/hardware

Put in “SENSYS17” for $5 off, and “2600 Hearst Ave, Berkeley CA 94709” as
the address for local pickup.

https://tockos.org/hardware

imix ($100) Hail ($60)

Sensors

- Accelerometer ✓ ✓

- Temperature/Humidity ✓ ✓

- Light ✓ ✓

- Accelerometer ✓ ✓

Radios BLE & 802.15.4 BLE

Buttons 1 user, 1 reset 1 user, 1 reset

LEDs 3 1 blue, 1 RGB

Hardware RNG ✓

USB Host ✓ pins only

Independent Power Domains ✓

Form Factor Custom, 2.45” x 4” Particle Photon

Stay in touch!

https://www.tockos.org

https://github.com/helena-project/tock

tock-dev@googlegroups.com

#tock on Freenode

Quick Survey!

▶ https://j2x.us/tock-survey

Hardware!

https://tockos.org/hardware

Put in “SENSYS17” for $5 off, and “2600 Hearst Ave, Berkeley CA 94709” as
the address for local pickup.

https://www.tockos.org
https://github.com/helena-project/tock
mailto:tock-dev@googlegroups.com
https://j2x.us/tock-survey
https://tockos.org/hardware

	Part 1: Hardware, tools, and development environment
	Part 2: User space
	Part 3: The kernel

