
EXT: tollwerk Lucene search

Extension Key: tw_lucenesearch
Language: en
Version: 2.0.2
Keywords: lucene, search, index, forAdministrators, forDevelopers, forIntermediates, forAdvanced
Copyright © 2017 Dipl.-Ing. Joschi Kuphal, <joschi@kuphal.net>

This document is published under the Open Content License available from
http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3 – a GNU/GPL CMS/Framework available from
www.typo3.org

In case you are reading this manual online at the TYPO3 website, we strongly recommend that you
also visit the TYPO3 Extensions & Manuals page respectively the page about the tollwerk Lucene
search TYPO3-Extension at our own website. We provide a PDF version of this manual there, which
probably renders more nicely than the online version on typo3.org. (Sorry for our website currently
being available in German language only. However, the PDF extension manuals are in English of
course.)

For the most recent version of this extension always have a look at the corresponding GitHub
repository. Please report any issues there as well.

http://tollwerk.de/typo3-extension-manuals/
https://github.com/jkphl/TYPO3-ext-tw_lucenesearch/issues
https://github.com/jkphl/TYPO3-ext-tw_lucenesearch
https://github.com/jkphl/TYPO3-ext-tw_lucenesearch
http://tollwerk.de/typo3-extension-manuals/tollwerk-lucene-search-tw-lucenesearch/
http://tollwerk.de/typo3-extension-manuals/tollwerk-lucene-search-tw-lucenesearch/

EXT: tollwerk Lucene search - tw_lucenesearch EXT: tollwerk Lucene search

Table of Contents
EXT: tollwerk Lucene search................1

Introduction...3
What does it do?..3
Screenshots..5

Installation...8
Extension configuration...8
Static TypoScript...9

Configuration...10
Constants...10
Setup...11

Usage...17
About indexing...17

Disable indexing for single pages...............................18
Placing a search box...19
Displaying search results..21
404 search mode...21

Advanced techniques..22
Clearing the index..22
View helpers..23
Search term rewrite hooks...24
Using boost factors..26
Developer tools...27

Known problems...28
To-Do list...29
ChangeLog...30

2

EXT: tollwerk Lucene search - tw_lucenesearch Introduction

Introduction
What does it do?

This extension features a lightweight, intentionally simple but yet powerful implementation of the
Apache Lucene Index as frontend index and search solution for TYPO3. It is based on extbase / fluid
and built around Zend_Search_Lucene, which is part of the Zend Framework and offers a pure PHP
implementation of the high-performance Apache Lucene Index. Having said this, the extension doesn't
impose any additional software requirements (like a Java application server or an Apache Solr
instance), everything you'll need is just already present if you successfully run TYPO3.

Compared to search frameworks relying on relational databases (like e.g. the well-known indexed_search
extension in combination with MySQL as database storage) the Lucene Index is file based and offers a
lot of advantages like e.g.

• better performance than RDBMS / table based indices (especially if the index grows larger),

• support for (also leading) wildcard queries with reasonable result ordering by relevance /
ranking,

• proximity queries (aka “fuzzy search”, so that typos might be tolerated)

• field based queries,

• and much more ...

Besides the implementation of the Lucene Index itself (and the resulting benefits) the extensions also
offers a couple of interesting features like

• the ability to index even uncached pages / page contents,

• focused search on subsections of the page tree,

• search within pages of a specified language only,

• search term highlighting at acceptable performance costs (usually a huge problem with the
standard Zend_Search_Lucene highlighter),

• view helpers for easily altering e.g. the page title and modification timestamp from within any
fluid template,

• fine tuning the importance of certain page properties (like title, keywords etc.) during indexing
and searching (“boosting”),

• custom rewrite mechanisms for internally altering search queries (possibly interesting if the
topic of the website is somewhat special and the search terms you expect are special as well, e.g.
if they contain punctuation, digits or complex character combinations),

• and some more …

Partially in contrast to other TYPO3 extensions built around the Lucene Index this one tries to

• reduce the setup and configuration costs to an absolute minimum,

• use the most recent TYPO3 techniques like extbase / fluid

• and finally find a reasonable subset of Lucene Index features that should be supported and
implemented in a first step.

In fact, the main motivation for writing this extension was the impression that the existing extensions
with a similar approach either

• seemed to be a little outdated (e.g. haven't been built on extbase / fluid or haven't been updated
for a couple of years),

• didn't quite do what the author needed for his projects or

3

http://framework.zend.com/

EXT: tollwerk Lucene search - tw_lucenesearch Introduction

• required way to much effort to get them up and running.

However, some of them have been a valuable inspiration, and there are also some very interesting
articles on the web, e.g. (sorry, German only)

• http://www.j2h.com/publications/die-indexed-search-alternative-lucene-typo3-integrieren

• http://blog.marit.ag/2008/09/09/typo3-und-die-lucene-suche-von-zend/

Thanks to the authors!

To learn more about the Apache Lucene Index itself please visit http://lucene.apache.org.

Finally it's worth mentioning that you might also be interested in Apache Solr, which is a dedicated
enterprise search server also based on the Apache Lucene Index (with even a lot more great features).
For detailed information on Apache Solr please visit http://lucene.apache.org/solr. You will need a Java
Application Server for running Solr (which is probably the most crucial requirement compared to this
extension), but if this isn't a problem for you, you should definitely check out the Apache Solr
extension for TYPO3 – another great piece of software, to be found at http://www.typo3-solr.com and
in many respects the most comprehensive way of searching and finding with TYPO3.

Having said all this, it should be emphasized that the extension is still at it's very beginning and that
there are plenty of features that haven't been implemented yet. Please see the To-Do list for some
thoughts on this. So far, the functionality has been sufficient for the author, but if there's enough public
demand the extension will be further improved. So please let us know what you think!

4

mailto:joschi@tollwerk.de
http://www.typo3-solr.com/
http://lucene.apache.org/solr
http://lucene.apache.org/
http://blog.marit.ag/2008/09/09/typo3-und-die-lucene-suche-von-zend/
http://www.j2h.com/publications/die-indexed-search-alternative-lucene-typo3-integrieren

EXT: tollwerk Lucene search - tw_lucenesearch Introduction

Screenshots
The frontend plugin can render a simple and lightweight search box that is optionally equipped with
some JavaScript functionality for displaying a default text while the input is not focused. The search box
plugin can also be included via TypoScript.

The search box and also the search results are rendered by fluid templates, so the appearance and the
source code can completely be customized. The search results support search term highlighting (via a
custom view helper) and pagination (using the standard fluid “widget.paginate”).

5

Figure 1: Simple & lightweight search box

EXT: tollwerk Lucene search - tw_lucenesearch Introduction

There's an alternative fluid template for rendering the search results in “404 search mode”, which is – of
course – also fully customizable.

6

Figure 2: Regular search results with search term highlighting and pagination

EXT: tollwerk Lucene search - tw_lucenesearch

7

Figure 3: Search results in "404 search mode"

EXT: tollwerk Lucene search - tw_lucenesearch Installation

Installation
To install the extension simply download it from the TYPO3 extension repository and enable it in the
Extension Manager. The extension doesn't expect any database changes.

Extension configuration
There are 3 settings to be configured via the Extension Manager:

Lucene Index directory
The Lucene Index is – in contrast to some other search solutions for TYPO3 like the popular
indexed_search extension – file based rather than stored in a database. The standard location where the
index is stored is the directory

/typo3temp/tw_lucenesearch

You can change this to your needs, but please be aware, that you will have to create the directory
manually if you choose a different path than the default one.

Lucene Index MergeFactor
The index MergeFactor controls the frequency of index optimization. An index is optimized if it doesn't
consist of too many segments (i.e. isn't distributed over a lot of single files on your hard drive). The
following can be found in the original Zend_Search_Lucene documentation
(http://framework.zend.com/manual/en/zend.search.lucene.index-creation.html#zend.search.lucene.index-
creation.optimization.mergefactor):

MergeFactor determines how often segment indices are merged by addDocument(). With smaller
values, less RAM is used while indexing, and searches on unoptimized indices are faster, but
indexing speed is slower. With larger values, more RAM is used during indexing, and while
searches on unoptimized indices are slower, indexing is faster. Thus larger values (> 10)
are best for batch index creation, and smaller values (< 10) for indices that are
interactively maintained.
MergeFactor is a good estimation for average number of segments merged by one auto-
optimization pass. Too large values produce large number of segments while they are not
merged into new one. It may be a cause of "failed to open stream: Too many open files" error
message. This limitation is system dependent.

8

http://framework.zend.com/manual/en/zend.search.lucene.index-creation.html#zend.search.lucene.index-creation.optimization.mergefactor
http://framework.zend.com/manual/en/zend.search.lucene.index-creation.html#zend.search.lucene.index-creation.optimization.mergefactor

EXT: tollwerk Lucene search - tw_lucenesearch Installation

The default value for MergeFactor is 10, which might be a suitable value for most setups. Furthermore,
the above text mentions a potential problem you run into regarding your operating system's limitation
on open files. Please see the known problems for this. You might want to experiment with the
MergeFactor setting if you get into trouble with the “Too many open files” error.

Enable developer tools
There are some developer tools that might become handy while working on your index configuration.
Please see the dedicated chapter below for more information. You have to enable the developer tools
here in the Extension Manager. It is recommended that they are disabled in production use though.

Static TypoScript
Include the extension's static TypoScript into the TypoScript root template of your site.

Note: The plugin's static TypoScript assumes that your main page object is called “page”. If this is not
the case, please don't include this file. Instead just copy it's contents
(EXT:tw_lucenesearch/Configuration/TypoScript/setup.txt) into a custom TypoScript template that is
part of your setup and follow the comments in the template.

9

EXT: tollwerk Lucene search - tw_lucenesearch Configuration

Configuration
Constants

All features of the extension can be controlled via the constant editor (e.g. on the TypoScript root
template). Almost any constant directly relates to a corresponding setup option that can also be set by
manually crafted TypoScript. Please see the setup chapter for details on these options.

Note: Both JavaScript constants shown in the figure try to act to your convenience, but rely on the fact
that your main PAGE object is called “page”. If this is not true, then enabling these options will have no
effect and you will have to find alternative ways to achieve the same results (please see
EXT:tw_lucenesearch/Configuration/TypoScript/setup.txt for inspiration).

Include jQuery library
This option will addthe latest jQuery library (of the version 1 branch) to your included JavaScripts,
delivered via http://ajax.googleapis.com. jQuery is required for the following option to work.

Include searchbox JavaScript
This option will include another small JavaScript, which will affect the search boxes you place using the
extension's frontend plugin. When this script is included, the search boxes will feature the value “Your
search terms ...” along with the CSS class name “default” as long as they are not currently focused by
the user. When focused, the input fields will be cleared and the CSS class name will be removed.

10

Figure 4: Constants (part 1)

http://ajax.googleapis.com/

EXT: tollwerk Lucene search - tw_lucenesearch Configuration

Setup
Frontend plugin setup
There are several TypoScript setup options controlling the behavior of the frontend plugin:

Property: Data type: Description: Default:

view.templateRo
otPath

dir Root path for the fluid templates of the plugin. The plugin
has just one controller (named “Lucene”) with three actions
(named “search”, “results” and “notfound”). Accordingly there
have to be three fluid templates at the following locations
(relative to the template root path):

• Lucene/Search.html
• Lucene/Results.html
• Lucene/Notfound.html

{$plugin.tx_twl
ucenesearch.vi
ew.templateRo
otPath}

view.partialRoot
Path

dir Root path for the fluid partials of the plugin. The default
fluid templates are using one partial named “Searchbox.html”
for rendering the simple search box. If you override the
default templates this might become irrelevant.

{$plugin.tx_twl
ucenesearch.vi
ew.partialRoot
Path}

11

Figure 5: Constants (part 2)

EXT: tollwerk Lucene search - tw_lucenesearch Configuration

Property: Data type: Description: Default:

view.layoutRoot
Path

dir Root path for the fluid layouts of the plugin (not used by
default)

{$plugin.tx_twl
ucenesearch.vi
ew.layoutRootP
ath}

view.widget.Tx_
Fluid_ViewHelp
ers_Widget_Pagi
nateViewHelper.
templateRootPat
h

dir Root path for the fluid templates for widgets used by the
plugin. By default the plugin uses a slightly modified version
of the standard fluid paginate widget for displaying the
search results. The modified version supports direct links to
the result pages and offers localization support. The
corresponding template is located at
ViewHelpers/Widget/Paginate/Index.html (relative to the
template root path).

{$plugin.tx_twl
ucenesearch.vi
ew.templateRo
otPath}

settings.defaultR
esultsPage

int ID of the default page that should be used for displaying
search results. If not given, the page sending the search
request will be used.

{$plugin.tx_twl
ucenesearch.se
ttings.pid}

[tsref:plugin.tx_twlucenesearch]

Indexer setup
The indexer component – in charge of indexing and storing pages to the Lucene Index – also
introduces some TypoScript settings, which belong to the “config” namespace:

Property: Data type: Description: Default:

index_enable boolean Enables pages to be indexed. This is a standard TYPO3
setting, also see the CONFIG object in the core TypoScript
documentation. You definitely have to enable this for indexing
to work at all.

This setting defaults to false.

false

index_injectTim
estamp

boolean Enables the injection of modification timestamp meta tags
into the HTML output. The following meta elements will be
written to the source code of all pages (with varying
timestamp of course):

<meta name="DC.Date" content="2012-07-
23T14:12:06+02:00"/>
<meta name="Date" content="2012-07-
23T14:12:06+02:00"/>
<meta name="Last-Modified" content="2012-07-
23T14:12:06+02:00"/>

In general, these meta tags are absolutely harmless and could
tell search engines if a page has changed recently. However,
the author doesn't know if any of the search engines does
really respect one of these timestamp tags though.

The indexer uses the modification timestamp meta tags as
one of several possible indicators for detecting whether a page
has to be re-indexed or whether the index still is up to date.
Please see the chapter about the indexing process for details
on this process.

This setting defaults to true.

{$plugin.tx_twl
ucenesearch.in
dex.timestamp}

12

http://typo3.org/documentation/document-library/core-documentation/doc_core_tsref/4.7.0/view/1/6/#id1556666
http://typo3.org/documentation/document-library/core-documentation/doc_core_tsref/4.7.0/view/1/6/#id1556666

EXT: tollwerk Lucene search - tw_lucenesearch Configuration

Property: Data type: Description: Default:

index_reference string This is the list of GET parameters that jointly build up the
unique page references used as keys for storing (and
retrieving) indexable page contents (“index documents”) to the
search index. These are also the GET parameters that are
ultimately necessary for (re-)constructing working URLs for
the indexed pages (some common parameters are not
absolutely necessary and should be omitted in this list, like
e.g. “cHash”, “no_cache” etc.). Please enter a comma separated
list here. Don't worry to include GET parameters that are
optional: If a parameter is not present when the page
reference string is built, and if there is no default value
specified (see below), then the parameter will simply be
omitted.

The default value of this setting is the page ID parameter:

config.index_reference = id

For multilingual sites you may want to include the language
parameter as well:

config.index_reference = id,L

In case the values of a parameter are constrained to either
certain predefined options or an integer value range (or a
combination of both), you can (and should) define this as well.

Examples:
config.index_reference = L(0|1|2)
config.index_reference = L(0-6)
config.index_reference = xyz(one|two|three)
config.index_reference = ABC(1-9|none)

Also, you can define a default value that will be used if a
parameter is not presentat index time (would be skipped
otherwise):

config.index_reference = L(0-2)=0

Be aware that the relevant reference parameters might alter
from page to page, so you will have to adapt this setting
accordingly. Imagine e.g. a website subsection dealing with
news. You may want to alter the reference parameters just for
this very section like this:

config.index_reference = id,L(0-
2)=0,tx_ttnews[tt_news]

Note: As a rule of thumb, always keep the list of necessary
parameters as short as possible.

{$plugin.tx_twl
ucenesearch.in
dex.reference}

[tsref:config]

Search setup
Finally there are some TypoScript settings controlling the search process itself, also belonging to the
“config” namespace.

13

EXT: tollwerk Lucene search - tw_lucenesearch Configuration

Property: Data type: Description: Default:

search_lucene.re
strictByRootline
Pids

string Restricts the search results to pages that are descendants of
certain root pages (or the root pages themselves). This way you
can easily restrict a search to a certain portion of your page tree (or
the combination of several branches). Furthermore, this setting is
quite essential in a multi-domain setup, as you surely want to
separate the search results by domain …

Enter a comma separated list of root page IDs.

Example:
config.search_lucene.restrictByRootlinePids = 1,2

This settings defaults to an empty string.

{$plugin.tx_twl
ucenesearch.se
arch.rootline}

search_lucene.re
strictByLanguag
e

boolean Restricts the search results to the current frontend language. If
enabled, a visitor only gets search results matching the currently
active frontend language. Obviously this setting only makes sense
for multilingual sites.

This setting defaults to true.

{$plugin.tx_twl
ucenesearch.se
arch.language}

14

EXT: tollwerk Lucene search - tw_lucenesearch Configuration

Property: Data type: Description: Default:

search_lucene.se
archConfig

string This setting is quite essential. It controls which index document
fields are queried when searching, how relevant / important a
single field is for ranking / ordering the results and whether you
want to run wildcard or fuzzy searches on these fields. Enter a
comma separated list of field definitions here. Each field definition
must have the format

<field name>:<search template>[<fuzzy flag>]
[<boost factor>]

<field name> has to be one of the following values. These are the
properties of every document in the Lucene Index (the fields in
parentheses are mainly intended for internal use and should not be
used for search queries):

• title
• bodytext
• keywords
• abstract
• language
• (type)
• (reference)
• (rootline)
• (timestamp)

The <search template> is a template string used for building the
final query submitted to the search service. There has to be a
question mark “?” in this string, which will be substituted by the
search terms. A single “?” is the most simple search template
possible. Additionally you can prepend or append wildcards “*” or
constant strings to the search template. Examples:

?*
?
constant-prefix-?

The optional <fuzzy flag> simply is a tilde sign “~”. If present, a
fuzzy search will be performed for the given search template. That
means that even matches with slightly different spelling might be
found, thus compensating potential typos. A fuzzy search for
“roam” could for example also match “roams” as well as “foam”.

Finally, the optional <boost factor> controls the importance of a
match for the overall ranking of a single search result. E.g. it makes
sense to consider a search term match in the title of a document a
little bit more significant than a match in the bodytext field. By
using a query level boost factor these matches can be influenced so
that they are treated more relevant from the ordering point of view.
By default, each field definition has a boost factor of 1, meaning
“normal” (you can omit the <boost factor> component if you don't
want to change this). You can lower the boost factor below 1
(meaning “less important”) or raise it appropriately. The boost
factor has to be denoted after a leading “^” sign.

The searchConfig setting defaults to:
title:?*^2, keywords:?*^1.6, abstract:?*~^1.2,
bodytext:?*~

Explained in words: The search will be performed on the fields
“title”, “keywords”, “abstract” and “bodytext”, each with a global
trailing wildcard. The matches in the field “abstract” and
“bodytext” will be fuzzy. The most important match will be a “title”
match (with boost factor 2), the least important a “bodytext” match
(with normal boost factor, i.e. 1).

Attention: Entering no or an invalid value for this setting will
render the whole search completely useless!

{$plugin.tx_twl
ucenesearch.se
arch.config}

15

EXT: tollwerk Lucene search - tw_lucenesearch Configuration

Property: Data type: Description: Default:

search_lucene.li
mits.query

int Limits the maximum number of internal search term matches
for wildcard and fuzzy search queries. Those queries may match too
many terms, causing incredible search performance downgrade.
Limiting the max. number of matches will help. Set this to zero to
suspend all limitations.

This setting defaults to 100.

{$plugin.tx_twl
ucenesearch.se
arch.limits.que
ry}

search_lucene.li
mits.display

int Limits the maximum number of search results per result page. If
used with the default fluid templates the frontend plugin will render
a pagination widget as soon as the number of search results exceeds
this value.

This setting defaults to 20.

{$plugin.tx_twl
ucenesearch.se
arch.limits.disp
lay}

search_lucene.hi
ghlightMatches

boolean Enables search term highlighting in the search results.
Highlighting can be a complicated task, especially with fuzzy or
wildcard searches. The original highlighter implementation of
Zend_Search_Lucene can lead to tremendous performance
downgrade. This extension uses it's own improved technique for
highlighting, which might still impact performance, but is way faster
than the Zend version.

This setting defaults to true.

{$plugin.tx_twl
ucenesearch.se
arch.highlight}

[tsref:config]

16

EXT: tollwerk Lucene search - tw_lucenesearch Usage

Usage
About indexing

From this extension's point of view indexing pages is a pretty straight forward process. It uses two
standard hooks (“contentPostProc-output” for non-cached pages, “contentPostProc-all” for cached pages) to
intercept content output and do the indexing just immediately before a page gets delivered. In contrast
to several other search extensions and their indexing approaches this technique allows for even non-
cached pages to be indexed.

When a page is about to be sent to a visitor, the indexer first decides if indexing should happen at all
(as defined by the config.index_enable TypoScript setting and the no_search flag aka disabled “Include in
Search” option of this very page). If indexing should occur, the indexer will further analyze the source
code of the page in order to find out, if the page has already been indexed and / or if the indexed
version needs to be updated.

For the purpose of querying (and storing a document to) the index a unique page reference gets built,
reliably identify a certain page. It depends on the GET parameters defined by the config.index_reference
setting (usually at least the id parameter should be member of this list, but also e.g. language and
extension parameters could be contained). By querying the index for the reference key of the current
page the indexer can determine if the page has ever been indexed before.

Knowing the indexing timestamp of the previous version (if any) the indexer examines several indicators
(in the following order) to find the last modification timestamp of the current page:

• At first, the indexer looks for the presence of modification timestamp meta tags in the
HTML source code (DC.Date, Date, Last-Modified) and extracts the first occurrence of these if
available.

• Secondly, if no suitable meta tags are present, it will look at the tstamp property of the current
frontend page ($GLOBALS['TSFE']->page['tstamp']), which indicates the last update of the page
record itself. This value also gets updated automatically if any content element on the page is
modified.

• If still no non-empty timestamp has been found, the indexer will look for an index_timestamp
property on the global frontend engine object ($GLOBALS['TSFE']->index_timestamp) and use
this one if available. This property is not a native property of the frontend engine, but gets
introduced by one of the extension's view helpers (tw:index.timestamp) and can theoretically be
used by any other extension to indicate a custom modification date of the page. This is quite
handy if you e.g. display news articles on a page and want the modification timestamp for each
article page to depend on the article itself (instead of the page's timestamp or the news plugin
residing on it).

• Finally, if none of the above options apply, the current timestamp will be used, which generally
means that the page gets (re-)indexed by all means.

If the page has never been indexed before, or if the indexed version needs to be updated, then the
indexer will go ahead and extract the indexable contents out of the HTML source. There are several
(text) properties of a page that are considered indexable:

• title

• bodytext

• keywords

• abstract

The title of the page will be determined by the first matching option of the following (in this order):

• If there's a non-empty indexedDocTitle property of the global frontend engine, it will be used for

17

EXT: tollwerk Lucene search - tw_lucenesearch Usage

indexing ($GLOBALS['TSFE']->indexedDocTitle).

• If there's a non-empty <title> element in the source code, it's contents will be used for indexing.

• If the global frontend engine has a non-empty altPageTitle property, it will be used for indexing
($GLOBALS['TSFE']->altPageTitle).

• If the current page record has a non-empty title property, it will be used for indexing
($GLOBALS['TSFE']->page['title']).

• If none of the above apply, the title will be an empty string.

The bodytext value will be obtained by extracting and concatenating all text nodes from the page's
HTML source. Furthermore, the well known comment tags commonly used by e.g. the indexed_seach
extension for marking indexable sections will be respected as well. That means, if at least one instance
of the <!--TYPO3SEARCH_begin--> comment marker is part of the source code, then the text contents
will be analyzed further. Only those text parts will get indexed, that are surrounded by the following
marker combination:

...
This is text that will not become indexed.
...

<!--TYPO3SEARCH_begin-->
...
Now an indexable section has begun and this part of the text will be indexed.
...
<!--TYPO3SEARCH_end-->

...
The indexable section has ended and this part of the text will not get indexed anymore.
...

It is up to you to spread those markers over your HTML output appropriately (by inserting these
comments into your HTML templates). It is quite common to exclude e.g. the main and sub navigation
from indexing as they are present on every page without contributing really meaningful information
from the search point of view.

Finally, both the keywords and the abstract values will preferably be obtained from the appropriate
HTML meta tags out of the source code. If these are missing or empty, the indexer will fallback to the
corresponding page record properties ($GLOBALS['TSFE']->page['keywords'] and $GLOBALS['TSFE']-
>page['abstract'] respectively).

When the indexer has extracted the indexable contents out of the page, a so called index document is
created and stored to the index (using the the page reference as unique key, see above), along with these
additional properties:

• language (e.g. “en”)

• type (currently only “0” is supported, meaning “TYPO3 page”)

• reference (like a primary key, for uniquely identifying the index document)

• rootline (space separated list of page IDs belonging to the rootline of the indexed page)

• timestamp (last modification timestamps)

The newly constituted document is handed over to the index service being in charge of managing the
Lucene Index. As soon as the document has been stored, it will be accessible for search queries.

Disable indexing for single pages
If you want to exclude a single page from being indexed (respectively from being found by the search),
you can set the no_search flag in the page's properties:

18

EXT: tollwerk Lucene search - tw_lucenesearch Usage

Placing a search box
Probably the easiest way to include a search box on your website is to put a “Lucene search” plugin on
your page and select “Search box” as display type:

19

EXT: tollwerk Lucene search - tw_lucenesearch Usage

By default the plugin will render the search box using the fluid template Lucene/Search.html (relative to
the template root directory set with the view.templateRootPath setting). The output of this template is
simple and looks somewhat like this:

<!--TYPO3SEARCH_end-->
<form class="tx-twlucenesearch-searchform" action="index.php?id=1" method="GET">

<input name="tx_twlucenesearch_lucene[searchterm]" class="tx-twlucenesearch-sword
 default" type="text" value="Your search terms ..." title="Your search terms ..." />
<input name="tx_twlucenesearch_lucene[search]" class="tx-twlucenesearch-search"
 type="submit" value="Search" />

</form>
<!--TYPO3SEARCH_begin-->

There are no default CSS styles applied, so styling the search box is completely up to you. In case you
enabled the “Include searchbox JavaScript” constant (in the constant editor), a simple JavaScript will be
included that prints something like “Your search terms here ...” into the search box as long as it's empty
and not focused by the visitor. Furthermore, while in this state the search box will carry the CSS class
name “default”, so you have full styling control as well.

Secondly, you can also insert the search box via TypoScript:

10 = USER_INT
10 {

userFunc = tx_extbase_core_bootstrap->run
settings < plugin.tx_twlucenesearch.settings
persistence < plugin.tx_twlucenesearch.persistence
view < plugin.tx_twlucenesearch.view
pluginName = Lucene
extensionName = TwLucenesearch
controller = Lucene
action = search
switchableControllerActions{

Lucene {
1 = search

}
}

}

If you use one of the above methods, the search box will potentially pick up a previously submitted
search term and display it. That means, if you enter a search term into the box (in the frontend of
course), submit the search form and the target page does also feature a search box, the submitted search
term will be displayed there from the beginning.

The form containing the search box will send the search request to the page with the ID that you
specified by the settings.defaultResultsPage setting. Be sure to set this appropriately and place a search
results plugin on the target page.

For the sake of completeness it should be mentioned that you can also insert the search box by simply
rendering the corresponding fluid template via TypoScript. This way you can even control the
target page by passing the in variable page. But please make sure that you use this insertion style only in
an uncached context (e.g. as part of a USER_INT object), otherwise you might experience strange
behavior with the display of a potentially picked up search term.

10 = FLUIDTEMPLATE
10 {

file = EXT:tw_lucenesearch/Resources/Private/Templates/Lucene/Search.html

20

EXT: tollwerk Lucene search - tw_lucenesearch Usage

partialRootPath = EXT:tw_lucenesearch/Resources/Private/Partials
variables {

page = TEXT
page.value = 123
searchterm = TEXT
searchterm.data = GP:tx_twlucenesearch_lucene|searchterm

}
}

Displaying search results
Displaying search results is as easy as including the search box: Again, put a “Lucene Search” plugin on
your page and choose “Search results” as display type.

By default the search results are rendered with the fluid template Lucene/Results.html (relative to the
template root directory set with the view.templateRootPath setting) and mainly consist of

• a header section re-displaying the terms that have been searched for, as well as the result total,

• an ordered list of search results (with highlighted search terms if you enabled this via the
config.search_lucene.highlightMatches setting) including links to the respective result pages,

• an optional result pagination rendered automatically if the number of results exceed the
config.search_lucene.limits.display setting (by default the pagination is rendered using the
standard fluid paginator widget).

404 search mode
As a special variant you can include the plugin in “404 search mode”. The plugin will then try to detect
if your visitor came from a search engine and requested a non-existing page (normally he would get a
“404 Page not found” error in these cases).

If the plugin is able to extract some search keywords used by the visitor at the search engine (by
examining the referrer URL), it will trigger a local site search with these keywords and display the
results. This way the visitor might still have luck and find the page he was looking for. If the plugin
cannot extract any search keywords, it will render a standard search form (or whatever you customize
the corresponding fluid template to) as a fallback.

Unfortunately Google is gradually switching all it's services to SSL, omitting the search keywords from
the URL, so this feature doesn't seem to work with Google any longer ...

21

EXT: tollwerk Lucene search - tw_lucenesearch Advanced techniques

Advanced techniques
Clearing the index

Currently the extension's update script serves as very simple management tool for the Lucene Index.
You can call it via the Extension Manager:

The script shows the current total of indexed documents and let's you clear the whole index (delete all
existing index documents):

A future version of the extension could feature a dedicated backend module for managing the index.
There could be a selective deletion of index documents or extended index statistics. Truly, the update
script is definitely not the perfect location for stuff like this ...

22

EXT: tollwerk Lucene search - tw_lucenesearch Advanced techniques

View helpers
The extension comes with four custom view helpers that you can use in your fluid templates. If you
want to do so, you have to register the appropriate view helper namespace in the beginning of your
templates, e.g. like this:

{namespace tw=Tx_TwLucenesearch_ViewHelpers}

<!--TYPO3SEARCH_end-->
<f:if condition="{error}">

...
</f:if>
<!--TYPO3SEARCH_begin-->

tw:array.key
This view helper returns the key of an array at a certain (zero-based) index / position. As an example,
the view helper call

<tw:array.key array="{one: 'first', two: 'second', three: 'third'}" position="1" />

would return the string

two

, as “two” is the key at position / index 1 inside the array.

tw:index.timestamp
With the help of the index.timestamp view helper you can control the timestamp that the indexer will use
as modification timestamp of the current page. This is especially useful with hub pages like e.g. a
single news display page. Most likely you will want to use the news article's timestamp as modification
time (instead of the rendering page's one):

<twlucene:index.timestamp timestamp="{article.tstamp}"/>

Internally the view helper will set the index_timestamp property of the global frontend engine
($GLOBALS['TSFE']->index_timestamp), which will be picked up by the indexer later on.

tw:index.title
The index.title view helper can be used to set the title of the current page, which also impacts the
document title used for indexing. The title you set will be injected into the HTML source code output of
the current page as <title> element (replacing an already existing one if available).

<twlucene:index.title title="{article.title}" format="%C - %S: %P"/>

As you can see in the example, the format parameter is used as a template string for rendering the title
content, supporting three substitution placeholders:

• “%C” will be replaced with your custom title provided via the title attribute

• “%S” will be replaced with the global site title (as defined e.g. by your TypoScript root
template)

• “%P” will be replaced with the regular page title of the current page (as defined by the page's
title property)

The new page title will be used in (and written to) several locations:

• As <title> element for the HTML source code output

• As explicit page title for indexing ($GLOBALS['TSFE']->indexedDocTitle)

• As title of the current frontend page record ($GLOBALS['TSFE']->page['title']), so that it is
available to other consuming applications as well

23

EXT: tollwerk Lucene search - tw_lucenesearch Advanced techniques

tw:search.highlight
This view helper takes care of the search term highlighting in search result lists. It can also be used to
crop a search result text to a certain length. The arguments are all optional and defined as follows:

• text: This is the text that should be given back cropped and / or with highlighted search terms.
If not given as an attribute of the view helper element, the rendered content of the element will
be used (if not in shortcut notation).

• search: This argument represents the search terms to be highlighted (if any) and may be of one
of the following formats:

◦ Array of literal search terms

◦ A query hits object (which is the result of a search query; instance of the PHP class
Tx_TwLucenesearch_Domain_Model_QueryHits)

◦ A search query object (which is what the default fluid templates use, so please see there for
an example; instance of the PHP class Zend_Search_Lucene_Search_Query)

◦ A string as you would literally enter it into a search box

• Search term highlighting only happens if this argument expresses some reasonable search terms.

• crop: If given, this argument denotes the number of characters the resulting string may have in
total (including an optional prefix and / or suffix). A string will preferably be cropped at it's
end. If search term highlighting is active and the string has to be cropped by at least one third
(33%), then it might also be cropped in it's beginning, keeping the last three words before the
first occurrence of the first search term match within the string. This sounds complicated, but
the result is pretty much what you expect as a regular human visitor anyway, so don't worry too
much about the cropping logic … The argument is empty by default (no cropping will occur).

• append: This is the string that gets appended as a suffix if the string has to be cropped at it's
end. Defaults to “ ...”.

• prepend: This is the string that gets prepended as a prefix if the string has to be cropped at it's
beginning. Defaults to “... ”.

• bodytext: This argument tells the highlighter from which index document field the value of the
text parameter has been drawn (if no search term highlighting is used, this argument simply
doesn't matter). The originating field is important as the internal search definition may differ
from field to field. You might e.g. use a fuzzy search for the bodytext field, whereas the title field
requires an exact match, so the highlighter has to work differently for the two fields … Mostly
you will want to highlight search results extracted from the bodytext field (which is the default
for this argument anyway).

Search term rewrite hooks
There are some situations where it might be necessary (or just reasonable) to pre-process your visitors'
search terms, maybe depending on your site's topic. Imagine e.g. the situation that you expect your
visitors to search for metric lengths. Some people will enter a space between the number and the unit
(like “10 m”), some won't (like “10m”), others will write out the whole unit (like “10 meters”), Germans
will use a comma as decimal separator, the rest of the world will use a dot, and so on. It would
definitely make sense to do some normalization in these cases, internally manipulating the visitors'
search terms so that they conform to the general spelling / writing style on your website.

The extension features a search service (Tx_TwLucenesearch_Service_Lucene) that offers two hooks you
can use for manipulating your visitor's search terms prior to running a single search (please visit
http://typo3.org/documentation/article/how-to-use-existing-hooks-in-your-own-extension/ for general
information on the nature and usage of hooks). The hooks are typically registered in

• either the /typo3conf/localconf.php

• or any extension's ext_localconf.php file

24

http://typo3.org/documentation/article/how-to-use-existing-hooks-in-your-own-extension/

EXT: tollwerk Lucene search - tw_lucenesearch Advanced techniques

• and are processed in the following order:

Search rewrite hook
The search rewrite hook basically operates on the whole raw search string, prior to any parsing by the
search service. Changes you do inside this hook are just the same as if the seeker had entered them
himself. This is the place for

• normalizing spelling / writing differences (like in the metric length example above),

• converting typical word combinations to phrases (by encapsulating them in quotes),

• excluding stop words from the search (a feature that is not natively implemented yet),

• and so on.

Just always keep in mind that using this rewrite hook will alter the search term before it gets parsed by
the search service.

The search rewrite callbacks always get passed two arguments:

1. A list of parameters with (currently) one meaningful element, carrying the key “searchterm” and
containing the raw search term string. The parameters array gets passed by reference, so you
have to modify the value of the “searchterm” element in order to impact the current search.

2. A reference to the search service instance itself (you most likely don't need this for anything).

Inside the hook callback you can do whatever you want – just remember to write back your changes to
the $parameters['searchterm'] element in the end.

Example

The following example aims to be as simple and obvious as possible, so we'll simply put everything into
the file /typo3conf/localconf.php.

/**
 * Normalize different spellings of metric lengths
 *
 * The method detects and converts several metric length formats (like e.g. "10 m",
 * "10m", "10 meter", “10 metres” etc.) to one common format (“10m”) and casts them
 * as phrase.
 *
 * @param array $params Parameters
 * @param Tx_TwLucenesearch_Service_Lucene $service Lucene Index Service
 * @return void
 */
function user_rewriteMetrics(array &$params, Tx_TwLucenesearch_Service_Lucene $service) {

$searchterm = ' '.trim($params['search']).' ';
$pattern = "%\s((?:\d+(?:[\.\,]\d+)?)|(?:[\.\,]\d+))\s*m(?:

(?:(?:eter)|(?:etre))s?)?\s%i";

// Match and rewrite metric lengths
while(preg_match($pattern, $searchterm, $metric)) {

$length = floatval(str_replace(',', '.', $metric[1]));
$rewritten = ' "'.$length.'m" ';
$searchterm = str_replace($metric[0], $rewritten, $searchterm);

}

$params['search'] = trim($searchterm);
}

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['tw_lucenesearch']['search-rewrite-hooks'][] =
'user_rewriteMetrics';

Of course you could (and maybe even should) outsource the callback to an external PHP class or
similar. Always make sure that your callback name (or class name respectively) starts with a valid class
prefix (i.e. “tx_”, “Tx_”, “user_” or “User_”):

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['tw_lucenesearch']['search-rewrite-hooks'][] =
'EXT:myext/Classes/Utility/Lucene.php:&Tx_Myext_Utility_Lucene->rewriteMetrics';

25

EXT: tollwerk Lucene search - tw_lucenesearch Advanced techniques

Term rewrite hook
The term rewrite hook acts shortly after the search rewrite hook and is applied on every single query
token that has been extracted from the original search string. Again, the callback also gets passed two
arguments:

1. A list of parameters with (currently) one meaningful element, having the key “token” and
containing the current query token. A query token might be a single “word” or a “phrase”
(quoted part of a search string) and always is an instance of the PHP class
Zend_Search_Lucene_Search_QueryToken. The parameters array gets passed by reference, so you
have to modify (or replace) the value of the “token” element in order to impact the current
search.

2. A reference to the search service instance itself (you most likely don't need this for anything).

Compared to the search rewrite hook, which can modify the original search string and thus alter the
number and structure of the resulting query tokens, the term rewrite hook operates on a single query
token only. However, these tokens have already been parsed and typified by the search service. To learn
more about the different token types and the query tokens' object properties you will have to study the
Zend_Search_Lucene_Search_QueryToken source code (or the related articles available on the internet).
The term rewrite hook enables you e.g. to modify or even completely replace a query token based on
it's type and / or content.

Example

Again, the following example can be put into the file /typo3conf/localconf.php. It demonstrates how a
term rewrite hook can be used to convert non-phrase tokens representing floating point numbers into
phrases (while substituting comma based decimal separators with dots at the same time).

/**
 * Rewrite single query tokens
 *
 * @param array $params Parameters
 * @param Tx_TwLucenesearch_Service_Lucene $service Lucene Index Service
 * @return void
 */
function user_rewriteFloats(array $params, Tx_TwLucenesearch_Service_Lucene $service) {

/* @var $token Zend_Search_Lucene_Search_QueryToken */
$token =& $params['token'];
$term = $token->text;

// Convert floating numbers to phrase tokens (and replace commas with dots)
if (($token->type != Zend_Search_Lucene_Search_QueryToken::TT_PHRASE) &&

preg_match("%^\d*[\,\.]\d+$%", $term)) {
$token = new Zend_Search_Lucene_Search_QueryToken(

Zend_Search_Lucene_Search_QueryToken::TT_PHRASE,
str_replace(',', '.', $term),
$token->position

);
}

}

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['tw_lucenesearch']['term-rewrite-hooks'][] =
'user_rewriteFloats';

Using boost factors
The Lucene Index allows influencing the relevance / order of search results by “boosting” search
matches on three levels:

1. Document level boosting: Applied during indexing, enhancing whole index documents
(currently not supported by this extension).

2. Field level boosting: Applied during indexing, enhancing single fields within documents
(currently not supported by this extension).

3. Query level boosting: Applied during querying, enhancing document relevance if a single term
is matched. This is the only boosting level currently supported by this extension.

26

EXT: tollwerk Lucene search - tw_lucenesearch Advanced techniques

By default, index documents have no boost – or, rather, they all have the same boost factor of 1.0.
Although the boost factor always has to be positive, it can be less then 1 (e.g. 0.2). By changing a
document's boost factor, you can instruct the Lucene Index to consider it more or less important with
respect to other documents in the index. The same concept applies on the field level: By changing a
single field's boost factor, a term match within this field will be considered more or less important
compared to matches within fields with different boost factors.

With the TypoScript setting search_lucene.searchConfig you can control the query level boosting and thus
the importance of query term matches within the searchable document fields. For more information on
query level boosting – or the Lucene query syntax in general – please visit
http://lucene.apache.org/core/3_6_1/queryparsersyntax.html#N100DA.

Developer tools
Currently there are two developer tools you can use for working on and optimizing your index
configuration. Please make sure to enable them in your extension configuration via the Extension
Manager (and disable it again for production use).

Display index relevant contents only
Sometimes it is quite handy to see exactly what the indexer sees. For this purpose, simply append the
GET parameter index_content_only with the value 1 to the frontend URL you want to examine:

Example

http://example.com/index.php?id=1&index_content_only=1

The indexer will then abort the regular page rendering and output the indexable contents of the page
instead (as plain text). This way you can e.g. check if you used the indexing control markers <!--
TYPO3SEARCH_begin--> and <!--TYPO3SEARCH_end--> correctly in your templates.

Force the re-indexing of a document
In case you want a page to be forcibly re-indexed (e.g. because you altered the search_lucene.searchConfig
settings after the page has been indexed), you can append the GET parameter index_force_reindex with
the value 1 to the URL.

Example

http://example.com/index.php?id=1&index_force_reindex=1

The page will be re-indexed, regardless of it's last modification timestamp.

27

http://lucene.apache.org/core/3_6_1/queryparsersyntax.html#N100DA

EXT: tollwerk Lucene search - tw_lucenesearch Known problems

Known problems
The Lucene Index is file based. Depending on the size and structure of your index it might grow until it
exists of quite a lot of single files that all have to be kept open while indexing or searching. The number
of files that can be opened at the same time is limited by your operating system. Under certain
circumstances this limit might get exceeded by your index, resulting in a “Too many open files” error.
This is not a limitation of the extension or the Lucene Index but rather of the operating system itself.
You can probably do something about it by altering the MergeFactor value in your extension
configuration. To learn more about the meaning of the MergeFactor please visit
http://framework.zend.com/manual/en/zend.search.lucene.index-creation.html#zend.search.lucene.index-
creation.optimization.mergefactor.

28

http://framework.zend.com/manual/en/zend.search.lucene.index-creation.html#zend.search.lucene.index-creation.optimization.mergefactor
http://framework.zend.com/manual/en/zend.search.lucene.index-creation.html#zend.search.lucene.index-creation.optimization.mergefactor

EXT: tollwerk Lucene search - tw_lucenesearch To-Do list

To-Do list
Future improvements could include:

• Indexing of external documents (pdf, doc, txt …)

• Indexing and searching of something else than frontend pages

• A crawler that gets everything indexed on a regular basis (or maybe an alternative and better
approach?)

• An “advanced search” assistant / form

• A dedicated backend module for managing the index (instead of using the update script), e.g.
with the ability of deleting / updating single index documents

• Support for stop words

In general, this extension is still very basic and leverages only a small subset of the features supported
by the Lucene Index. So far, the functionality has been sufficient for the author, but if there's enough
public demand the extension will be further improved. So please let us know what you think and use the
GitHub repository for reporting of issues. Thanks!

29

https://github.com/jkphl/TYPO3-ext-tw_lucenesearch/issues
https://github.com/jkphl/TYPO3-ext-tw_lucenesearch
mailto:joschi@tollwerk.de

EXT: tollwerk Lucene search - tw_lucenesearch ChangeLog

ChangeLog
Version: Changes:

2.0.2 Bugfix release: Fixed problem with Umlauts in search terms

2.0.1 Bugfix release: Fixed incompatible view helper declaration

2.0.0 TYPO3 8 release: Uses new Icon API (TYPO3 7.5+)

1.6.0 TYPO3 7 release: Multiple bugfixes, suitable for composer mode TYPO3

1.0.2 Fixed a regression bug with wrong Flexform file name

1.0.1 Fixed a bug causing whitespace errors when indexing HTML5 documents

1.0.0 TYPO3 CMS 6 Release: Switch to PHP namespaces and the new class / sysext structure (no usage
of the compatibility layer!)
ATTENTION: Support for TYPO3 4.x has been dropped, use the 0x versions instead!
Added more German language labels

0.6.1 Fixed significant manual error: The indexing start marker is <!--TYPO3SEARCH_begin-->
(instead of <!--TYPO3SEARCH_start--> as erroneously documented before)! Minor manual
corrections

0.6.0 Initial public release to the TYPO3 Extension Repository

30

	EXT: tollwerk Lucene search
	Introduction
	What does it do?
	Screenshots

	Installation
	Extension configuration
	Lucene Index directory
	Lucene Index MergeFactor
	Enable developer tools

	Static TypoScript

	Configuration
	Constants
	Include jQuery library
	Include searchbox JavaScript

	Setup
	Frontend plugin setup
	Indexer setup
	Search setup

	Usage
	About indexing
	Disable indexing for single pages
	Placing a search box
	Displaying search results
	404 search mode

	Advanced techniques
	Clearing the index
	View helpers
	tw:array.key
	tw:index.timestamp
	tw:index.title
	tw:search.highlight

	Search term rewrite hooks
	Search rewrite hook
	Term rewrite hook

	Using boost factors
	Developer tools
	Display index relevant contents only
	Force the re-indexing of a document

	Known problems
	To-Do list
	ChangeLog

