
Uncovering Fake News with Machine Learning
A Comparison of Algorithms and Feature Extraction Techniques

Tom Martensen

DV2542 Machine Learning

Blekinge Institute of Technology

Karlskrona, Sweden

Abstract—The report presents a survey of different feature

extraction techniques, configurations and machine learning

algorithms to predict whether a news article is fake or genuine.

The problem is approached solely from a natural language

processing perspective and only based on the content of the

articles. In an implementation, the algorithms and techniques are

implemented and compared based on their classification accuracy.

Through the explorative design, the project forms a foundation for

further studies in fake news detection.

Keywords—fake news; text classification; feature extraction;

machine learning; comparison

I. INTRODUCTION

On October 30, 1938 Orson Welles aired his play “The War
of the Worlds” about an alien invasion on the US east coast. As
most of the audience joined later into the program, the reports
about a mass panic caused fear. The reports—when explained
later—turned out to be fake. Today, they are a very popular and
early example of “fake news”.

Fake news are news articles that are “intentionally and
verifiably false and could mislead readers” [1]. In the last years,
especially in the 2016 US presidential election, coverage on fake
news has alerted major media outlets and politicians. It is
believed that fake news spread by social bots and populistic
political websites and have influenced the election of Donald
Trump as US president.

While in earlier times misinformation in media was mostly
accidental or for entertainment purposes, people with malicious
agendas have discovered online journalism as an easy and cheap
way to spread their agendas. A challenging task for political
leaders, journalists and social networks is to detect fake news
and to stop their spreading.

Regarded from a machine learning perspective, fake news
detection is a binary text classification problem. The distinction
can be on basis of metadata (e.g. source of the article) or the text
itself. In this report, the author compares different algorithms for
feature extracting from text and machine learning algorithms.
The expected result is a list of trained models that classify news
articles based solely on the text into genuine or fake news,
ranked on their performance.

II. RELATED WORK

With an increasing number of articles considered as fake
news, researchers and the public likewise are searching for
reliable ways to debunk hoaxes.

It should be noted in the first place that fake news itself is a
broad term and requires a specific definition that is accepted by
the research community. This requires particular attention due
to the political sensitivity of the topic. In [1] and [2], the authors
distinguish fake from genuine news and show sources and
audiences of fake news. These articles act as a catalyst to
understand fake news and their definitions are a basis for this
report.

A number of reports present tools and methods to detect fake
news with network analyses, thus considering only metadata for
the classification task e.g. networks, conflicting viewpoints or
relationships of “likes” and “comments” [3–5].

As mentioned before, this report focuses on detecting fake
news only based the content text of the news itself. Text
classification is in general a well-researched topic. [4, 6] for
example have both researched how to detect fake news with
natural language processing approaches for text classification.
However, their results show room for improvement. For a
general introduction to text classification and natural language
processing, compare [7].

Like [6], this report will use the fake news dataset curated in
[8] and a sample of genuine articles from [9]. Other sources of
fake news articles have also been considered like [10]—but
ultimately discarded as they are impure with satiric articles. The
implementations are based on the sklearn library for Python [11]
that also provides some guidance for text classification.
Directives for experiment setup and interpretation stem also
from [12, 13].

III. METHOD AND DESIGN

In this section, the author explains the sequence of actions
that lead from data fetching over feature generation to the
conduction of the experiment. All necessary steps are laid out
here with their requirements, results and justifications to support
the external and internal validity of the project. The experiment
procedure shall be reproducible from the description and the
attached source code.

A. Goal and Challenge

The purpose of the experiment shall be to compare different
machine learning algorithms—preferably from different
categories—and feature extraction methods for the task of
supervised binary text classification. The result of the
experiment shall be a ranking of the best combinations.
Particularly challenging is in this context the preparation and
feature extraction from text.

B. Preprocessing

As mentioned before, two datasets from two different
sources were used in the project. Both are publicly available. To
reduce the risk of a biased fake news dataset, the articles were
obtained from the open data platform Kaggle [8]. The 13,000
news pieces covering different topics include text and metadata
from over 240 websites and were reviewed by the Kaggle
community. The Signal Media news dataset [9] consists of one
million news articles and blog entries that were scraped in
September 2015. Of these entries, 52,000 articles were selected
in a uniform sample. These articles were considered genuine and
not fake or biased in any way.

Before assigning binary labels to all articles (1: fake, 0:
genuine), all texts were lowercased and stripped from non-word
characters, leaving space separated words in each entry. The
proportion of fake news in the experiment dataset is similar to
the empirical evidence given in [1] in an attempt to reflect a real-
world scenario. The selection was shuffled randomly and split
into three datasets for the experiment:

1. 13,000 entries/20%: Validation set for development and
hyper-parameter optimization

2. 39,000 entries/60%: Training set for final performance
training

3. 13,000 entries/20%: Test set for final performance
evaluation

After this preprocessing step, the entries in the dataset
consist of the text of the article and the binary label for fake or
genuine, respectively.

C. Feature Generation

For the process of feature generation, multiple algorithms
were considered. These included for example word2vec ([14]),
glove ([15]) or other models. However, these were discarded
because of the extra effort that would have been necessary to use
these opposing to their original intent—which is in word
classification—in sentence or even document classification
instead. Since only the text of the articles is available for the
classification, algorithms that are based on the metadata were
rejected as well. The particular challenging task in text analysis
is that the text as a sequence of words or symbols cannot be used
as input in the machine learning algorithms directly. Because
text documents vary in length and—at least with no other
preparation—consist of characters, a way to represent
documents as vectors of fixed length and numerical values has
to be found.

After the prior elimination steps and the new criteria, the
bag-of-words model (also known as vector space model or bag
of n-grams) seemed most promising.

In this model, the sentences or texts are split on whitespaces
or punctuation as separators and represented as a multiset of
their words. This removes some information about the structure
of the text, the grammar and word order, but keeps the
multiplicity of each word in the text. The idea is to use the
number of occurrences as a feature in training the classifier. The
algorithm shall be explained in a little example to familiarize
with the conceptuality.

Considering two documents: “Adam enjoys to go out. Eve
enjoys to go out too.”, “Adam also enjoys to go swimming” and
splitting after each whitespace and punctuation, leads to the
following multiset of words: [“Adam”, “enjoys”, “to”, “go”,
“out”, “Eve”, “too”, “also”, swimming”]. This is named
“vocabulary". These are all words that are known to the
algorithm. While this bag of words offers multiple ways to
characterize the text, the most common and useful in this setting
is to calculate the number of times one of the terms from the
vocabulary appears in the input text. Doing this will result in an
n long vector for each input text, where n is the length of the
vocabulary and each entry is the number of times the term in
position i of the vocabulary appeared in the text. In the example,
the two sentences would result in these two vectors:

(1) [1, 2, 2, 2, 2, 1, 1, 0, 0]

(2) [1, 1, 1, 1, 0, 0, 0, 1, 1]

Note that as mentioned before this representation removes
the information of sentence structure. A problem with this
representation however, is that it overvalues very common
words in languages like “to”, “a” or “the” in the English
language. These so called stop-words will (in longer texts than
in the example) most often have the highest term frequency and
thus be noise in the input for the machine learning algorithms,
as they do not provide additional information. To remove this
noise, a list of these stop words can be used. These words will
then be skipped, when the vocabulary is generated.

The bag of words model offers some more variation that
could yield better results. This introduces for example the idea
of n-gram models. These can be used to store some information
about the context of word occurrences in text. The bag of words
or uni-gram is a special case of the n-gram model where n=1.
Consequently, a bi-gram (n=2) model vocabulary splits the text
into units of two words, e.g. “John likes”, “likes to” … in the
vocabulary and calculates the term frequency as mentioned
above. Here as well, lists of stop words can be used to reduce
noise. In the project, n-gram models were used where n was
between 1 and 3. Additionally, a number of minimum
occurrences was set for each model. If a word or combination of
words occurred less times in the whole corpus than this
threshold, it was not considered as a feature in the vector. Again,
this may result in loss of information. However, if the
combination did not occur enough times, it would have small
influence on the training anyway and not provide additional
information. Furthermore, smaller vectors obviously improve
training and test speed.

Another approach to emphasize terms that may be rare but
interesting and that are shadowed by very frequent terms which
have not been identified as stop words, is to use the inverse
document-frequency.

The tf-idf term weighting re-weights the count features into
floating point values. Term frequency is the number of times a
term occurred in a text compared to the maximum value of this
figure (tf). The inverse document frequency (idf) depends on the
whole document corpus. The values are calculated as follows:

(1) tf-idf(t,d) = tf(t,d) ∙ idf(t), where

(2) idf(t) = log
1+𝑛𝑑

1+𝑑𝑓(𝑑,𝑡)
+ 1

In these equations, nd stands for the total number of
documents and df(d, t) is the number of documents that contain
the term. The resulting vectors are then normalized so all values
are between 0 and 1. As this transformation is an extra step after
vectorizing, it was conducted in the project for the described n-
gram vectors.

A more practical problem when vectorizing a large corpus
with bag of words is that the mapping from the terms to integer
features happens in-memory. For larger datasets, the vocabulary
is obviously large too and thus, the memory requirements may
exceed the machine limits. Furthermore, when fitting, even more
intermediate data structures have to be used. As a global
vocabulary must be maintained in vectorizing, parallelization
requires so much overhead that it is not implemented in the
standard library, because it would make the algorithm in effect
slower.

The biggest consummator of memory is undoubtedly the
dictionary that holds the mapping of vocabulary to vector
indices. To phase out this problem, [16] proposed to use hash
functions to map terms directly to indices. Thus, no memory is
required at all to store the dictionary. By providing a sufficiently
large amount of hash buckets or increasing their number in the
progress, hash collisions can be avoided. While hashing enables
parallelization, it does not have a bad effect on model
performance, as shown in [17].

In the project, feature hashers were used for n-grams with n
between 1 and 3 to compare the performance with the ordinary
and transformed generated features. In total, nine different
representations of the validation set and training set were
generated. The test set was vectorized using the same vectorizers
from the training set with their respective dictionary or hash
function.

D. Choice of Algorithms

To cover and evaluate a broad field of algorithms, the
available algorithms were categorized into four categories:

1. probability based classifiers,

2. functional classifiers,

3. tree based classifiers and

4. neural network classifiers.

One algorithm in each category was researched further,
implemented and used in the project. In the following, the four
algorithms shall be explained shortly with their general idea.

For the probability based classifiers, a Gaussian Naïve Bayes
classifier was used. This method is very popular in text
categorization and is based on Bayes’ theorem of independence
assumptions between the features, in this case the term
frequencies. This means that the algorithms does not regard
possible correlations between the features. For further
information, compare [13, pp. 262-282]. The Gaussian Naïve
Bayes algorithm works on continuous data, as represented in the
input vectors, and assumes that the values in each class are
distributed according to a Gaussian distribution. This approach
was used in the experiment as a baseline to compare with more
advanced models.

As an example of a functional classifier, a Logistic
Regression model was used in the experiment. Similarly to the
linear regression, this model tries to optimize a function to fit
best with the available data and uses the maximum likelihood
estimation (MLE)—different from the method of least square in
linear regression. An example for a logistic function can be seen
in figure 1. The method’s codomain are values between 0 and 1
and follows this general scheme:

(1) 𝑃(𝑦 = 1) =
1

1+𝑒−𝑧, where z is a linear function:

(2) 𝑧 = 𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2+. . . +𝜀,

where 𝑥𝑘are the independent variables, 𝛽𝑘 are regression
coefficients and 𝜀 is an error bias. The regression coefficients
are estimated through MLE as mentioned before. It aims to
provide a clear division between the probabilities of y’s values.

Fig. 1. Logistic function

Random Forest classifiers use tree based classifiers as a base
for their algorithm. These decision trees are not correlated and
grow randomly during learning. For every classification, the
class that most trees assign to the input, decides the final
classification. In comparison to other classification algorithms,
Random Forest classifiers are considerably fast in training and
the evaluation can be parallelized. Thus, it is very efficient for
large datasets. Random Forest classifiers were developed to
overcome the shortcomings of decision trees and are part of
ensemble algorithms in Machine Learning [18].

Artificial Neural Networks (ANN) try to mimic the brain and
are based on units (neurons) and connections between them
(synapse). Each connection transmits a signal from one unit to
another. The signal is a real number. Each unit has inputs and
output that is calculated by a non-linear function using all input
values. Similar to the brain, connections and units have a weight
that adjusts during the learning process to stress some inputs or
calculations in favor of others. Using backpropagation the
functions and weights are optimized. Neural networks can have
multiple “hidden” layers and are commonly used in big data
settings in all domains today.

E. Hyper-Parameter Optimization

After the algorithms were selected and the features were
generated according to the descriptions above, the
implementation of the algorithms was needed. Fortunately, all
algorithms are already implemented in the sklearn library and
proven in practice by a community and researchers. Thus, the
experiment was based on this framework.

A hindrance for beginners in the machine learning field and
a challenging task in general is to find the optimal parameters
for the algorithms. For different sets of data, different parameters
are optimal and may influence the performance of the models.

There are multiple ways to tune these so called “hyper-
parameters”. To stay in the scope of the project, only the two
methods implemented in sklearn were considered. Both
approaches take a range of values for each of the algorithm
parameters and search this value space for the optimum.
Therefore, a performance measure has to be selected.

For this, the F-score was chosen. It is widely used in natural
language processing research, can be used to assess binary
classifiers and—through precision and recall—offers additional
insights into the performance.

The available hyper-parameter optimization algorithms are
the grid search and the randomized search. Where the grid search
searches all combinations of possible values, the randomized
search takes random parameter values from the available range
for each iteration. The number of iterations can be specified.

Because the randomized search is faster and yields equally
good results (compare [19]), it was finally used in the project.
The performance of each parameter set is evaluated using a five-
fold cross validation (compare [13, pp. 348-250]) and conducted
for three of the algorithms with all nine data sets generated from
the validation set as described in section C. As the Gaussian
Naïve Bayes classifier does not have a relevant, configurable
parameter, no randomized search was done for it. The results of
this step can be seen in the appendix. Only the top ranked
model’s parameters were considered further.

F. Experiment

In the final evaluation step, the test set was—as
aforementioned—vectorized using the same vectorizers that
were used for the respective training set vectorization regarding
the parameters. This is a necessity to have the same input vector
length for the training and test set in the final experiment.

Additionally, the output from the hyper-parameter
optimization must be considered now. Therefore, the parameters
of the model that achieved the highest rank (best F-score) in that
step are put into a configuration directly in the code of the
experiment. This manual step was added to ensure the validity
of the parameters, as during the hyper-parameter optimization it
has happened that no optimal parameters were found in the given
number of iterations. To cope with this deficiency, the hyper-
parameter optimization was rerun for these configurations.

Once this was done, the evaluation experiment was run for
each of the 36 combinations of the four machine learning
algorithms and nine feature generation configurations. In each
combination, training and test data were loaded, the model was
fitted with the training data and evaluated with the test data.

As in the hyper-parametrization, the measure of model
performance is the F-score. Additionally, the results of recall
and precision are calculated to gain more insights. All results
were fetched and are presented in table 1.

 Logistic
Regression

Random
Forest

Neural
Network

Gaussian
Naïve
Bayes

n-gram 1 F: 0.85
P: 0.81
R: 0.89

F: 0.67
P: 0.68
R: 0.65

F: 0.88
P: 0.88
R: 0.87

F: 0.66
P: 0.55
R: 0.83

n-gram 1
(tf-idf)

F: 0.85
P: 0.85
R: 0.86

F: 0.70
P: 0.83
R: 0.60

F: 0.85
P: 0.88
R: 0.82

F: 0.78
P: 0.82
R: 0.74

n-gram 1
(hashed)

F: 0.84
P: 0.80
R: 0.88

F: 0.65
P: 0.66
R: 0.63

F: 0.83
P: 0.82
R: 0.84

F: 0.63
P: 0.53
R: 0.77

n-gram 2 F: 0.80
P: 0.87
R: 0.74

F: 0.60
P: 0.88
R: 0.45

F: 0.81
P: 0.89
R: 0.74

F: 0.49
P: 0.33
R: 0.97

n-gram 2
(tf-idf)

F: 0.78
P: 0.74
R: 0.83

F: 0.54
P: 0.88
R: 0.39

F: 0.80
P: 0.80
R: 0.80

F: 0.69
P: 0.56
R: 0.89

n-gram 2
(hashed)

F: 0.66
P: 0.64
R: 0.70

F: 0.53
P: 0.71
R: 0.42

F: 0.59
P: 0.51
R: 0.71

F: 0.58
P: 0.54
R: 0.62

n-gram 3 F: 0.64
P: 0.79
R: 0.54

F: 0.31
P: 0.84
R: 0.19

F: 0.62
P: 0.91
R: 0.47

F: 0.42
P: 0.26
R: 0.998

n-gram 3
(tf-idf)

F: 0.63
P: 0.75
R: 0.55

F: 0.31
P: 0.85
R: 0.19

F: 0.64
P: 0.87
R: 0.50

F: 0.42
P: 0.27
R: 0.99

n-gram 3
(hashed)

F: 0.43
P: 0.35
R: 0.55

F: 0.0
P: --
R: 0.0

F: 0.45
P: 0.40
R: 0.50

F: 0.36
P: 0.34
R: 0.38

Tab. 1. Experiment results per method and algorithm. (F: F-score, P:

precision, R: recall)

IV. RESULTS AND ANALYSIS

The results from the experiment show a broad variety in
performance between the algorithms and the configurations. In
the following section, some results that stand out shall be
highlighted and compared to other results in the same category.
The effects of high precision and recall shall also be explained
in the context of the project.

As described in the section on Data Preprocessing, genuine,
non-fake articles outnumber fake news articles, which are the
positive samples in this setup, by factor 4. To be precise, of the
13,000 articles in the test set, 19.6% are fake (2,555 of 13,000).

The precision—the ratio of true positives of all predicted
positives—of all models is therefore expected to be high. A
model that guesses every test sample as negative would acquire
a high accuracy. The recall—the ratio of the correctly classified
positive samples—is harder to optimize. Together with the F-
score that combines recall and precision, the recall shall be the
benchmark for the models in this analysis. All F-score, precision
and recall values from the experiment are also displayed in the
diagrams in figure 2 to 4.

Analyzing the results from the Logistic Regression models,
it appears that the performance was best with the different
configurations of uni-grams, n-grams where n=1. However,
there are no significant differences between the three
configurations for this type of model. Recall reached values of
more than 0.85, which means that of 100 fake news articles,
more than 85 are detected. As aforementioned expected, the
precision is high for these models as well. For bi- and tri-grams
however, the performance decreased significantly and recall
dropped to values of just over 0.50. A reason for this
performance loss could be that the growth in available
information produced noise in the logistic function that resulted
in function parameters that did not converge well.

Similar patterns can be observed with the Neural Network.
While the values for F-score, precision and recall are in similar
ranges for uni-grams—with little higher precision values—bi-
and trigrams seem harder to solve even for the Neural Network.
The algorithm can still produce considerably high precision
numbers for the normal and inversely transformed bi- and
trigrams, but for the hashed n-grams the precision drops even
more. This could mean that the Neural Networks have not been
able to be trained properly by these data sets.

When comparing the results for Random Forests to the
aforementioned methods, the performance clearly disappoints.
While it can maintain relatively high precision scores, the recall
values already in the uni-grams, but more obviously in bi- and
tri-grams are not competitive. Uni-grams can still detect more
than half of the fake news as fake, but tri-grams are only able to
detect one out of five fake news articles. Worse still, in the tri-
gram scenario with a hash function, the random forest classifier
could not detect a single fake news articles. This shows how
complex the task is and that tree-based models may reach their
limits for these probability based classification tasks when the
number of features is this high.

In the first intention, the Gaussian Naïve Bayes algorithm
was used in the project as a benchmark for the other algorithms.
During the experiment, it became clear that this algorithm can

outperform the others in special settings when it comes to recall.
As one can see from table 1, the trained model detects nearly all
of the fake news articles as fakes for bi-grams, tri-grams and the
inversely transformed tri-grams. This comes however at a cost:
The false positive rate, which is the ratio between false positives
and actual negatives, and the precisions are both among the
worst values detected in the experiment. This means that too
many “false alarms” were triggered by the model. It seems that
the model overestimates the probability of a sample being
positive, or—as spoken in terms of the example—categorizes
too many genuine articles as fakes.

In summary, logistic regression and neural networks were
able to bring the best results in terms of F-score and recall with
uni-grams and outperformed the other two approaches. Adding
more information about context with bi- or tri-grams does not
necessarily help the performance. Inverse document frequency
and using hashing functions for the n-grams did only improve
the computing time and had no significant influence on the
performance of the models.

Fig 2: F-score for all algorithms and configurations

Fig 3. Precision for all algorithms and configurations

Fig 4. Recall for all algorithms and configurations

V. CONCLUSIONS

Fake news detection based only on the content of the articles
has been proven as an example of binary text classification. In
the project implementation and the accompanying experiment,
it was shown that the combination of uni-grams and logistic
regression or neural networks model show the best performance
and can detect over 8 out of 10 fake news articles correctly, thus
being well suited for the text classification task. It is obvious that
these algorithms were better able to cope with the large number
of features that they were presented with, because they can
weigh some features more than others.

Another takeaway is that one should not only try to achieve
a high recall, as this may come with a large number of “false
alarms” as it has happened in the experiment with the Gaussian
Naïve Bayes algorithms.

The study itself was presented transparent and
comprehensible. Neither the fake news articles nor the genuine
articles are biased in any deliberate way. All intermediate steps
have been laid out, reasoned and explained. As with the
implementation, the experiment can be repeated, although minor
variations in test results should be expected.

VI. FUTURE WORK

The author believes that the results from this project form a
good basis for future improvements. It has been shown that the
analysis of fake news articles based only on the text and not the
metadata is able to bring quite good results. Especially, Logistic
Regression and Neural Networks seem to work fine with uni-
grams. An eye should also be kept on the simple implementation
of Naïve Bayes algorithms that outperformed the other
algorithms for some configurations in terms of recall.

In the future, other configurations, such as GloVe could be
added to the tests. Furthermore, it would be interesting to see
how an evaluation of sentence structure, grammar or typos as
features could influence the performance of the algorithms.
Lastly, one can also consider to include some metadata about the
articles, like the website on which it was published, as features
to improve the performance of the algorithms. For an application
of a fake news detection system, human participation is also an
important factor that should be studied by social scientists.

VII. REFERENCES

[1] H. Allcott and M. Gentzkow, “Social Media and Fake News

in the 2016 Election,” Journal of Economic Perspectives,

vol. 31, no. 2, pp. 211–236, 2017.

[2] V. L. Rubin, Y. Chen, and N. J. Conroy, “Deception

detection for news: Three types of fakes,” Proc. Assoc. Info.

Sci. Tech., vol. 52, no. 1, pp. 1–4, 2015.

[3] Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo,

“News Verification by Exploiting Conflicting Social

Viewpoints in Microblogs,” Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence, pp. 2972–2978,

2016.

[4] N. J. Conroy, V. L. Rubin, and Y. Chen, “Automatic

deception detection: Methods for finding fake news,” Proc.

Assoc. Info. Sci. Tech., vol. 52, no. 1, pp. 1–4, 2015.

[5] E. Tacchini, G. Ballarin, M. L. Della Vedova, S. Moret, and

L. de Alfaro, Some Like it Hoax: Automated Fake News

Detection in Social Networks. Available:

http://arxiv.org/pdf/1704.07506.

[6] Samir Bajaj, “"The Pope Has a New Baby!": Fake News

Detection Using Deep Learning,” Report, Stanford

University, Stanford, 2017.

[7] C. D. Manning, P. Raghavan, and H. Schütze, Introduction

to information retrieval, 1st ed. Cambridge u.a.: Cambridge

Univ. Press, 2009.

[8] Getting Real about Fake News. [Online] Available:

https://www.kaggle.com/mrisdal/fake-news. Accessed on:

Feb. 13 2018.

[9] NewsIR'16 - Signal Media News Dataset. [Online]

Available: http://research.signalmedia.co/newsir16/signal-

dataset.html. Accessed on: Feb. 13 2018.

[10] W. Y. Wang, "Liar, Liar Pants on Fire": A New Benchmark

Dataset for Fake News Detection. Available:

http://arxiv.org/pdf/1705.00648.

[11] scikit-learn: machine learning in Python — scikit-learn

0.19.1 documentation. [Online] Available: http://scikit-

learn.org/stable/. Accessed on: Feb. 13 2018.

[12] Machine Learning course. [Online] Available:

https://www.bth.se/eng/courses/T0001661/20202/. Accessed

on: Feb. 13 2018.

[13] P. Flach, Machine learning: The art and science of

algorithms that make sense of data. Cambridge: Cambridge

Univ. Press, 2012.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient

Estimation of Word Representations in Vector Space,”

[Online] Available: http://arxiv.org/pdf/1301.3781v3.

[15] Jeffrey Pennington, Richard Socher, and Christopher D.

Manning, “GloVe: Global Vectors for Word

Representation,” Computer Science Department, Stanford,

2014.

[16] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J.

Attenberg, “Feature hashing for large scale multitask

learning,” in Proceedings of the 26th Annual International

Conference on Machine Learning, Montreal, Quebec,

Canada, 2009, pp. 1–8.

[17] K. Ganchev and M. Dredze, “Small Statistical Models by

Random Feature Mixing,” in Proceedings of the ACL-08:

HLT Workshop on Mobile Language Processing,

Association for Computational Linguistics, Ed., Columbus,

Ohio, 2008, pp. 19–20.

[18] T. K. Ho, “Random decision forests,” in Proceedings of the

third International Conference on Document Analysis and

Recognition: August 14-16, 1995, Montréal, Canada,

Montreal, Que., Canada, 1995, pp. 278–282.

[19] “Introduction,” in Introduction to Polymer Rheology, M. T.

Shaw, Ed., Hoboken: John Wiley & Sons, 2012, pp. 1–14.

