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Abstract—The report presents a survey of different feature 

extraction techniques, configurations and machine learning 

algorithms to predict whether a news article is fake or genuine. 

The problem is approached solely from a natural language 

processing perspective and only based on the content of the 

articles. In an implementation, the algorithms and techniques are 

implemented and compared based on their classification accuracy. 

Through the explorative design, the project forms a foundation for 

further studies in fake news detection.  
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I.  INTRODUCTION 

On October 30, 1938 Orson Welles aired his play “The War 
of the Worlds” about an alien invasion on the US east coast. As 
most of the audience joined later into the program, the reports 
about a mass panic caused fear. The reports—when explained 
later—turned out to be fake. Today, they are a very popular and 
early example of “fake news”.  

Fake news are news articles that are “intentionally and 
verifiably false and could mislead readers” [1]. In the last years, 
especially in the 2016 US presidential election, coverage on fake 
news has alerted major media outlets and politicians. It is 
believed that fake news spread by social bots and populistic 
political websites and have influenced the election of Donald 
Trump as US president.  

While in earlier times misinformation in media was mostly 
accidental or for entertainment purposes, people with malicious 
agendas have discovered online journalism as an easy and cheap 
way to spread their agendas. A challenging task for political 
leaders, journalists and social networks is to detect fake news 
and to stop their spreading. 

Regarded from a machine learning perspective, fake news 
detection is a binary text classification problem. The distinction 
can be on basis of metadata (e.g. source of the article) or the text 
itself. In this report, the author compares different algorithms for 
feature extracting from text and machine learning algorithms. 
The expected result is a list of trained models that classify news 
articles based solely on the text into genuine or fake news, 
ranked on their performance. 

II. RELATED WORK 

With an increasing number of articles considered as fake 
news, researchers and the public likewise are searching for 
reliable ways to debunk hoaxes.  

It should be noted in the first place that fake news itself is a 
broad term and requires a specific definition that is accepted by 
the research community. This requires particular attention due 
to the political sensitivity of the topic. In [1] and [2], the authors 
distinguish fake from genuine news and show sources and 
audiences of fake news. These articles act as a catalyst to 
understand fake news and their definitions are a basis for this 
report.  

A number of reports present tools and methods to detect fake 
news with network analyses, thus considering only metadata for 
the classification task e.g. networks, conflicting viewpoints or 
relationships of “likes” and “comments” [3–5].  

As mentioned before, this report focuses on detecting fake 
news only based the content text of the news itself. Text 
classification is in general a well-researched topic. [4, 6] for 
example have both researched how to detect fake news with 
natural language processing approaches for text classification. 
However, their results show room for improvement. For a 
general introduction to text classification and natural language 
processing, compare [7]. 

Like [6], this report will use the fake news dataset curated in 
[8] and a sample of genuine articles from [9]. Other sources of 
fake news articles have also been considered like [10]—but 
ultimately discarded as they are impure with satiric articles. The 
implementations are based on the sklearn library for Python [11] 
that also provides some guidance for text classification. 
Directives for experiment setup and interpretation stem also 
from [12, 13]. 

III. METHOD AND DESIGN 

In this section, the author explains the sequence of actions 
that lead from data fetching over feature generation to the 
conduction of the experiment. All necessary steps are laid out 
here with their requirements, results and justifications to support 
the external and internal validity of the project. The experiment 
procedure shall be reproducible from the description and the 
attached source code.  



A. Goal and Challenge 

The purpose of the experiment shall be to compare different 
machine learning algorithms—preferably from different 
categories—and feature extraction methods for the task of 
supervised binary text classification. The result of the 
experiment shall be a ranking of the best combinations. 
Particularly challenging is in this context the preparation and 
feature extraction from text.  

B. Preprocessing 

As mentioned before, two datasets from two different 
sources were used in the project. Both are publicly available. To 
reduce the risk of a biased fake news dataset, the articles were 
obtained from the open data platform Kaggle [8]. The 13,000 
news pieces covering different topics include text and metadata 
from over 240 websites and were reviewed by the Kaggle 
community. The Signal Media news dataset [9] consists of one 
million news articles and blog entries that were scraped in 
September 2015. Of these entries, 52,000 articles were selected 
in a uniform sample. These articles were considered genuine and 
not fake or biased in any way.  

Before assigning binary labels to all articles (1: fake, 0: 
genuine), all texts were lowercased and stripped from non-word 
characters, leaving space separated words in each entry. The 
proportion of fake news in the experiment dataset is similar to 
the empirical evidence given in [1] in an attempt to reflect a real-
world scenario. The selection was shuffled randomly and split 
into three datasets for the experiment: 

1. 13,000 entries/20%: Validation set for development and 
hyper-parameter optimization 

2. 39,000 entries/60%: Training set for final performance 
training 

3. 13,000 entries/20%: Test set for final performance 
evaluation 

After this preprocessing step, the entries in the dataset 
consist of the text of the article and the binary label for fake or 
genuine, respectively. 

C. Feature Generation 

For the process of feature generation, multiple algorithms 
were considered. These included for example word2vec ([14]), 
glove ([15]) or other models. However, these were discarded 
because of the extra effort that would have been necessary to use 
these opposing to their original intent—which is in word 
classification—in sentence or even document classification 
instead. Since only the text of the articles is available for the 
classification, algorithms that are based on the metadata were 
rejected as well. The particular challenging task in text analysis 
is that the text as a sequence of words or symbols cannot be used 
as input in the machine learning algorithms directly. Because 
text documents vary in length and—at least with no other 
preparation—consist of characters, a way to represent 
documents as vectors of fixed length and numerical values has 
to be found. 

After the prior elimination steps and the new criteria, the 
bag-of-words model (also known as vector space model or bag 
of n-grams) seemed most promising.  

In this model, the sentences or texts are split on whitespaces 
or punctuation as separators and represented as a multiset of 
their words. This removes some information about the structure 
of the text, the grammar and word order, but keeps the 
multiplicity of each word in the text. The idea is to use the 
number of occurrences as a feature in training the classifier. The 
algorithm shall be explained in a little example to familiarize 
with the conceptuality.  

Considering two documents: “Adam enjoys to go out. Eve 
enjoys to go out too.”, “Adam also enjoys to go swimming” and 
splitting after each whitespace and punctuation, leads to the 
following multiset of words: [“Adam”, “enjoys”, “to”, “go”, 
“out”, “Eve”, “too”, “also”, swimming”]. This is named 
“vocabulary". These are all words that are known to the 
algorithm. While this bag of words offers multiple ways to 
characterize the text, the most common and useful in this setting 
is to calculate the number of times one of the terms from the 
vocabulary appears in the input text. Doing this will result in an 
n long vector for each input text, where n is the length of the 
vocabulary and each entry is the number of times the term in 
position i of the vocabulary appeared in the text. In the example, 
the two sentences would result in these two vectors: 

(1) [1, 2, 2, 2, 2, 1, 1, 0, 0] 

(2) [1, 1, 1, 1, 0, 0, 0, 1, 1] 

Note that as mentioned before this representation removes 
the information of sentence structure. A problem with this 
representation however, is that it overvalues very common 
words in languages like “to”, “a” or “the” in the English 
language. These so called stop-words will (in longer texts than 
in the example) most often have the highest term frequency and 
thus be noise in the input for the machine learning algorithms, 
as they do not provide additional information. To remove this 
noise, a list of these stop words can be used. These words will 
then be skipped, when the vocabulary is generated.  

The bag of words model offers some more variation that 
could yield better results. This introduces for example the idea 
of n-gram models. These can be used to store some information 
about the context of word occurrences in text. The bag of words 
or uni-gram is a special case of the n-gram model where n=1. 
Consequently, a bi-gram (n=2) model vocabulary splits the text 
into units of two words, e.g. “John likes”, “likes to” … in the 
vocabulary and calculates the term frequency as mentioned 
above. Here as well, lists of stop words can be used to reduce 
noise. In the project, n-gram models were used where n was 
between 1 and 3. Additionally, a number of minimum 
occurrences was set for each model. If a word or combination of 
words occurred less times in the whole corpus than this 
threshold, it was not considered as a feature in the vector. Again, 
this may result in loss of information. However, if the 
combination did not occur enough times, it would have small 
influence on the training anyway and not provide additional 
information. Furthermore, smaller vectors obviously improve 
training and test speed.  



Another approach to emphasize terms that may be rare but 
interesting and that are shadowed by very frequent terms which 
have not been identified as stop words, is to use the inverse 
document-frequency.  

The tf-idf term weighting re-weights the count features into 
floating point values. Term frequency is the number of times a 
term occurred in a text compared to the maximum value of this 
figure (tf). The inverse document frequency (idf) depends on the 
whole document corpus. The values are calculated as follows: 

(1) tf-idf(t,d) = tf(t,d) ∙ idf(t), where 

(2) idf(t) = log
1+𝑛𝑑

1+𝑑𝑓(𝑑,𝑡)
+ 1 

In these equations, nd stands for the total number of 
documents and df(d, t) is the number of documents that contain 
the term. The resulting vectors are then normalized so all values 
are between 0 and 1. As this transformation is an extra step after 
vectorizing, it was conducted in the project for the described n-
gram vectors.  

A more practical problem when vectorizing a large corpus 
with bag of words is that the mapping from the terms to integer 
features happens in-memory. For larger datasets, the vocabulary 
is obviously large too and thus, the memory requirements may 
exceed the machine limits. Furthermore, when fitting, even more 
intermediate data structures have to be used. As a global 
vocabulary must be maintained in vectorizing, parallelization 
requires so much overhead that it is not implemented in the 
standard library, because it would make the algorithm in effect 
slower.  

The biggest consummator of memory is undoubtedly the 
dictionary that holds the mapping of vocabulary to vector 
indices. To phase out this problem, [16] proposed to use hash 
functions to map terms directly to indices. Thus, no memory is 
required at all to store the dictionary. By providing a sufficiently 
large amount of hash buckets or increasing their number in the 
progress, hash collisions can be avoided. While hashing enables 
parallelization, it does not have a bad effect on model 
performance, as shown in [17]. 

In the project, feature hashers were used for n-grams with n 
between 1 and 3 to compare the performance with the ordinary 
and transformed generated features. In total, nine different 
representations of the validation set and training set were 
generated. The test set was vectorized using the same vectorizers 
from the training set with their respective dictionary or hash 
function.  

D. Choice of Algorithms 

To cover and evaluate a broad field of algorithms, the 
available algorithms were categorized into four categories: 

1. probability based classifiers, 

2. functional classifiers, 

3. tree based classifiers and 

4. neural network classifiers. 

One algorithm in each category was researched further, 
implemented and used in the project. In the following, the four 
algorithms shall be explained shortly with their general idea.  

For the probability based classifiers, a Gaussian Naïve Bayes 
classifier was used. This method is very popular in text 
categorization and is based on Bayes’ theorem of independence 
assumptions between the features, in this case the term 
frequencies. This means that the algorithms does not regard 
possible correlations between the features. For further 
information, compare [13, pp. 262-282]. The Gaussian Naïve 
Bayes algorithm works on continuous data, as represented in the 
input vectors, and assumes that the values in each class are 
distributed according to a Gaussian distribution. This approach 
was used in the experiment as a baseline to compare with more 
advanced models.  

As an example of a functional classifier, a Logistic 
Regression model was used in the experiment. Similarly to the 
linear regression, this model tries to optimize a function to fit 
best with the available data and uses the maximum likelihood 
estimation (MLE)—different from the method of least square in 
linear regression. An example for a logistic function can be seen 
in figure 1. The method’s codomain are values between 0 and 1 
and follows this general scheme:  

(1) 𝑃(𝑦 = 1) =
1

1+𝑒−𝑧, where z is a linear function: 

(2) 𝑧 =  𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2+. . . +𝜀,  

where 𝑥𝑘are the independent variables, 𝛽𝑘 are regression 
coefficients and 𝜀 is an error bias. The regression coefficients 
are estimated through MLE as mentioned before. It aims to 
provide a clear division between the probabilities of y’s values. 

 

Fig. 1. Logistic function 

Random Forest classifiers use tree based classifiers as a base 
for their algorithm. These decision trees are not correlated and 
grow randomly during learning. For every classification, the 
class that most trees assign to the input, decides the final 
classification. In comparison to other classification algorithms, 
Random Forest classifiers are considerably fast in training and 
the evaluation can be parallelized. Thus, it is very efficient for 
large datasets. Random Forest classifiers were developed to 
overcome the shortcomings of decision trees and are part of 
ensemble algorithms in Machine Learning [18]. 



Artificial Neural Networks (ANN) try to mimic the brain and 
are based on units (neurons) and connections between them 
(synapse). Each connection transmits a signal from one unit to 
another. The signal is a real number. Each unit has inputs and 
output that is calculated by a non-linear function using all input 
values. Similar to the brain, connections and units have a weight 
that adjusts during the learning process to stress some inputs or 
calculations in favor of others. Using backpropagation the 
functions and weights are optimized. Neural networks can have 
multiple “hidden” layers and are commonly used in big data 
settings in all domains today.  

E. Hyper-Parameter Optimization 

After the algorithms were selected and the features were 
generated according to the descriptions above, the 
implementation of the algorithms was needed. Fortunately, all 
algorithms are already implemented in the sklearn library and 
proven in practice by a community and researchers. Thus, the 
experiment was based on this framework. 

A hindrance for beginners in the machine learning field and 
a challenging task in general is to find the optimal parameters 
for the algorithms. For different sets of data, different parameters 
are optimal and may influence the performance of the models.  

There are multiple ways to tune these so called “hyper-
parameters”. To stay in the scope of the project, only the two 
methods implemented in sklearn were considered. Both 
approaches take a range of values for each of the algorithm 
parameters and search this value space for the optimum. 
Therefore, a performance measure has to be selected.  

For this, the F-score was chosen. It is widely used in natural 
language processing research, can be used to assess binary 
classifiers and—through precision and recall—offers additional 
insights into the performance. 

The available hyper-parameter optimization algorithms are 
the grid search and the randomized search. Where the grid search 
searches all combinations of possible values, the randomized 
search takes random parameter values from the available range 
for each iteration. The number of iterations can be specified.  

Because the randomized search is faster and yields equally 
good results (compare [19]), it was finally used in the project. 
The performance of each parameter set is evaluated using a five-
fold cross validation (compare [13, pp. 348-250]) and conducted 
for three of the algorithms with all nine data sets generated from 
the validation set as described in section C. As the Gaussian 
Naïve Bayes classifier does not have a relevant, configurable 
parameter, no randomized search was done for it. The results of 
this step can be seen in the appendix. Only the top ranked 
model’s parameters were considered further. 

F. Experiment 

In the final evaluation step, the test set was—as 
aforementioned—vectorized using the same vectorizers that 
were used for the respective training set vectorization regarding 
the parameters. This is a necessity to have the same input vector 
length for the training and test set in the final experiment.  

Additionally, the output from the hyper-parameter 
optimization must be considered now. Therefore, the parameters 
of the model that achieved the highest rank (best F-score) in that 
step are put into a configuration directly in the code of the 
experiment. This manual step was added to ensure the validity 
of the parameters, as during the hyper-parameter optimization it 
has happened that no optimal parameters were found in the given 
number of iterations. To cope with this deficiency, the hyper-
parameter optimization was rerun for these configurations. 

Once this was done, the evaluation experiment was run for 
each of the 36 combinations of the four machine learning 
algorithms and nine feature generation configurations. In each 
combination, training and test data were loaded, the model was 
fitted with the training data and evaluated with the test data.  

As in the hyper-parametrization, the measure of model 
performance is the F-score. Additionally, the results of recall 
and precision are calculated to gain more insights. All results 
were fetched and are presented in table 1. 

 Logistic 
Regression 

Random 
Forest 

Neural 
Network 

Gaussian 
Naïve 
Bayes 

n-gram 1 F: 0.85 
P: 0.81 
R: 0.89 

F: 0.67 
P: 0.68 
R: 0.65 

F: 0.88 
P: 0.88 
R: 0.87 

F: 0.66 
P: 0.55 
R: 0.83 

n-gram 1 
(tf-idf) 

F: 0.85 
P: 0.85 
R: 0.86 

F: 0.70 
P: 0.83 
R: 0.60 

F: 0.85 
P: 0.88 
R: 0.82 

F: 0.78 
P: 0.82 
R: 0.74 

n-gram 1 
(hashed) 

F: 0.84 
P: 0.80 
R: 0.88 

F: 0.65 
P: 0.66 
R: 0.63 

F: 0.83 
P: 0.82 
R: 0.84 

F: 0.63 
P: 0.53 
R: 0.77 

n-gram 2 F: 0.80 
P: 0.87 
R: 0.74 

F: 0.60 
P: 0.88 
R: 0.45 

F: 0.81 
P: 0.89 
R: 0.74 

F: 0.49 
P: 0.33 
R: 0.97 

n-gram 2 
(tf-idf) 

F: 0.78 
P: 0.74 
R: 0.83 

F: 0.54 
P: 0.88 
R: 0.39 

F: 0.80 
P: 0.80 
R: 0.80 

F: 0.69 
P: 0.56 
R: 0.89 

n-gram 2 
(hashed) 

F: 0.66 
P: 0.64 
R: 0.70 

F: 0.53 
P: 0.71 
R: 0.42 

F: 0.59 
P: 0.51 
R: 0.71 

F: 0.58 
P: 0.54 
R: 0.62 

n-gram 3 F: 0.64 
P: 0.79 
R: 0.54 

F: 0.31 
P: 0.84 
R: 0.19 

F: 0.62 
P: 0.91 
R: 0.47 

F: 0.42 
P: 0.26 
R: 0.998 

n-gram 3 
(tf-idf) 

F: 0.63 
P: 0.75 
R: 0.55 

F: 0.31 
P: 0.85 
R: 0.19 

F: 0.64 
P: 0.87 
R: 0.50 

F: 0.42 
P: 0.27 
R: 0.99 

n-gram 3 
(hashed) 

F: 0.43 
P: 0.35 
R: 0.55 

F: 0.0 
P: -- 
R: 0.0 

F: 0.45 
P: 0.40 
R: 0.50 

F: 0.36 
P: 0.34 
R: 0.38 

Tab. 1.  Experiment results per method and algorithm. (F: F-score, P: 

precision, R: recall) 



IV. RESULTS AND ANALYSIS 

The results from the experiment show a broad variety in 
performance between the algorithms and the configurations. In 
the following section, some results that stand out shall be 
highlighted and compared to other results in the same category. 
The effects of high precision and recall shall also be explained 
in the context of the project.  

As described in the section on Data Preprocessing, genuine, 
non-fake articles outnumber fake news articles, which are the 
positive samples in this setup, by factor 4. To be precise, of the 
13,000 articles in the test set, 19.6% are fake (2,555 of 13,000).  

The precision—the ratio of true positives of all predicted 
positives—of all models is therefore expected to be high. A 
model that guesses every test sample as negative would acquire 
a high accuracy. The recall—the ratio of the correctly classified 
positive samples—is harder to optimize. Together with the F-
score that combines recall and precision, the recall shall be the 
benchmark for the models in this analysis. All F-score, precision 
and recall values from the experiment are also displayed in the 
diagrams in figure 2 to 4. 

Analyzing the results from the Logistic Regression models, 
it appears that the performance was best with the different 
configurations of uni-grams, n-grams where n=1. However, 
there are no significant differences between the three 
configurations for this type of model. Recall reached values of 
more than 0.85, which means that of 100 fake news articles, 
more than 85 are detected. As aforementioned expected, the 
precision is high for these models as well. For bi- and tri-grams 
however, the performance decreased significantly and recall 
dropped to values of just over 0.50. A reason for this 
performance loss could be that the growth in available 
information produced noise in the logistic function that resulted 
in function parameters that did not converge well.  

Similar patterns can be observed with the Neural Network. 
While the values for F-score, precision and recall are in similar 
ranges for uni-grams—with little higher precision values—bi- 
and trigrams seem harder to solve even for the Neural Network. 
The algorithm can still produce considerably high precision 
numbers for the normal and inversely transformed bi- and 
trigrams, but for the hashed n-grams the precision drops even 
more. This could mean that the Neural Networks have not been 
able to be trained properly by these data sets.  

When comparing the results for Random Forests to the 
aforementioned methods, the performance clearly disappoints. 
While it can maintain relatively high precision scores, the recall 
values already in the uni-grams, but more obviously in bi- and 
tri-grams are not competitive. Uni-grams can still detect more 
than half of the fake news as fake, but tri-grams are only able to 
detect one out of five fake news articles. Worse still, in the tri-
gram scenario with a hash function, the random forest classifier 
could not detect a single fake news articles. This shows how 
complex the task is and that tree-based models may reach their 
limits for these probability based classification tasks when the 
number of features is this high. 

In the first intention, the Gaussian Naïve Bayes algorithm 
was used in the project as a benchmark for the other algorithms. 
During the experiment, it became clear that this algorithm can 

outperform the others in special settings when it comes to recall. 
As one can see from table 1, the trained model detects nearly all 
of the fake news articles as fakes for bi-grams, tri-grams and the 
inversely transformed tri-grams. This comes however at a cost: 
The false positive rate, which is the ratio between false positives 
and actual negatives, and the precisions are both among the 
worst values detected in the experiment. This means that too 
many “false alarms” were triggered by the model. It seems that 
the model overestimates the probability of a sample being 
positive, or—as spoken in terms of the example—categorizes 
too many genuine articles as fakes.  

In summary, logistic regression and neural networks were 
able to bring the best results in terms of F-score and recall with 
uni-grams and outperformed the other two approaches. Adding 
more information about context with bi- or tri-grams does not 
necessarily help the performance. Inverse document frequency 
and using hashing functions for the n-grams did only improve 
the computing time and had no significant influence on the 
performance of the models. 

 

Fig 2: F-score for all algorithms and configurations 

 

Fig 3. Precision for all algorithms and configurations 

 

Fig 4. Recall for all algorithms and configurations 



V. CONCLUSIONS 

Fake news detection based only on the content of the articles 
has been proven as an example of binary text classification. In 
the project implementation and the accompanying experiment, 
it was shown that the combination of uni-grams and logistic 
regression or neural networks model show the best performance 
and can detect over 8 out of 10 fake news articles correctly, thus 
being well suited for the text classification task. It is obvious that 
these algorithms were better able to cope with the large number 
of features that they were presented with, because they can 
weigh some features more than others.  

Another takeaway is that one should not only try to achieve 
a high recall, as this may come with a large number of “false 
alarms” as it has happened in the experiment with the Gaussian 
Naïve Bayes algorithms. 

The study itself was presented transparent and 
comprehensible. Neither the fake news articles nor the genuine 
articles are biased in any deliberate way. All intermediate steps 
have been laid out, reasoned and explained. As with the 
implementation, the experiment can be repeated, although minor 
variations in test results should be expected.  

VI. FUTURE WORK 

The author believes that the results from this project form a 
good basis for future improvements. It has been shown that the 
analysis of fake news articles based only on the text and not the 
metadata is able to bring quite good results. Especially, Logistic 
Regression and Neural Networks seem to work fine with uni-
grams. An eye should also be kept on the simple implementation 
of Naïve Bayes algorithms that outperformed the other 
algorithms for some configurations in terms of recall.  

In the future, other configurations, such as GloVe could be 
added to the tests. Furthermore, it would be interesting to see 
how an evaluation of sentence structure, grammar or typos as 
features could influence the performance of the algorithms. 
Lastly, one can also consider to include some metadata about the 
articles, like the website on which it was published, as features 
to improve the performance of the algorithms. For an application 
of a fake news detection system, human participation is also an 
important factor that should be studied by social scientists.
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