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INTRODUCTION

The Handbook of Structured Finance presents many modern quantitative
techniques used by investment banks, investors, and rating agencies
active in the structured finance markets. In recent years, we have observed
an exponential growth in market activity, knowledge, and quantitative
techniques developed in industry and academia, such that the writing of
a comprehensive book is becoming increasingly difficult. Rather than try-
ing to cover all topics on our own, we have taken advantage from the
expert wisdom of market participants and academic scholars and tried to
provide a solid coverage of a wide range of structured finance topics, but
choices had to be made.

The clear objective of this book is to blend three types of experiences
in a single text. We always aim to consider the topics from an academic
standpoint, as well as from a professional angle, while not forgetting the
perspective of a rating agency.

The review in this book goes beyond a simple list of tools and meth-
ods. In particular, the various contributors try to provide a robust frame-
work regarding the monitoring of structured finance risk and pricing. In
order to do so, we analyze the most widely used methodologies in the
structured finance community and point out their relative strengths and
weaknesses whenever appropriate. The contributors also offer insight
from their experience of practical implementation of these techniques
within the relevant financial institutions.

Another feature of this book is that it surveys significant amounts of
empirical research. Chapters dealing with correlation, for example, are
illustrated with recent statistics that allow the reader to have a better
grasp of the topic and to understand the practical implementation chal-
lenges.

Although the book focuses on collateral debt obligations (CDOs), it
provides extensive insight related to other vehicles and techniques
employed for residential mortgage-backed securities, Credit card securi-
tization, Covered Bonds, and structured investment vehicles.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.



vi INTRODUCTION

STRUCTURE OF THE BOOK

The book is divided into 16 chapters. We start with the building blocks
that are necessary to price and measure risk on portfolio structures. This
involves pricing techniques for single-name credit instruments (univari-
ate pricing), and estimation/modeling techniques for default probabili-
ties and loss given default (univariate risk) of such products. We then
focus on dependence, and more specifically on correlation in general
terms, applied to correlation among corporates as well as across struc-
tured tranches. Once this toolbox is available, we can move to the CDO
space, the second part of this book. We investigate the techniques related
to CDO pricing, CDO strategy, CDO hedging, the CDO risk assessment
employed by Standard & Poor’s, and we end up with an overview of
recent developments in the CDO space. A third building block is based on
a review of the methods used in the RMBS sector, for Covered Bonds, for
Operating Companies, and finally we focus on Basel II both from a theo-
retical as well as from a case study perspective.
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CHAPTER 1

Overview of the Structured
Credit Markets: Trends
and New Developments

Alexander Batchvarov

OVERVIEW OF STRUCTURED FINANCE
MARKETS AND TRENDS

The easiest way to highlight the development of the structured finance mar-
ket is to quantify its new issuance volume. That volume has been steadily
climbing all over the world, with U.S. leading, followed closely by Europe,
and Japan and Australia a distant third and fourth. The rest of the world is
now awakening to the opportunities offered by structured credit products
to both issuers and investors and gearing up for a strong future growth. In
that respect, it is worth mentioning Mexico, which is leading the way in
Latin America; South Korea and Republic of China lead in continental Asia
and Turkey in for the Middle East and Eastern Europe. It is only a matter of
time before Central and Eastern Europe and China and India spring into
action, and the Middle East launches its own version of securitization.

The data shown in Tables 1.1 to 1.4 are based on publicly available
information about deals executed on each market. We believe such data
to seriously understate the size of the respective markets due to several
factors:

¢ the availability of private placement markets in many countries,
data for which are not widely available;

¢ the execution of numerous transactions executed for a specific
client, known as bespoke or custom-tailored deals, especially in

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.



2 CHAPTER 1

the area of synthetic collateralized debt obligations (CDOs) and
synthetic risk transfers;

¢ the exclusion from the count of many transactions based on
synthetic indices, such as iTraxx and CDX, ABX, etc., whereby
structured products are created using tranches from those indices.

That being said, the publicly visible size of the markets and their growth
rates are sufficient to attract investors, issuers, and regulators. The struc-
tured finance market growth also stands out against the background of
declining bond issuance volumes by corporates and the rising issuance
volumes of covered bonds, which in turn are increasingly becoming more
“structured” in nature.

The markets of United States, Australia, and Europe can be viewed
as international markets, i.e., providing supply to both domestic and for-
eign investors on a regular basis and in significant amounts, whereas
the other securitization markets remain predominantly domestic in their
focus. The international or domestic nature of a given market is not only
related to where the securities are sold and who the investors are, but also
to the level of disclosure, availability of information and, subsequently, the
level of quantification (as opposed to qualification) of the risks involved,
in particular structured finance securities and underlying pools. If we
were to rank the markets by the level of disclosure of information about
the structured finance securities and their related asset pools, we should
consider the U.S. market as the leader by far in terms of breadth, depth, and
quality of the information provided—being the oldest structured finance
market helps, but it is not the only reason: investor sophistication, type of
instruments used (those subject to high convexity risk, for example), big-
ger share of lower credit quality securitization pools, higher trading inten-
sity with related desire to find and explore pricing inefficiencies, etc. are
all contributing factors.

Other structured finance markets, however, are making strides in that
direction as well. Some of the reasons are associated with the type of instru-
ments used: say, convexity-heavy-Japanese mortgages, refinancing-driven
UK subprime, default- and correlation-dependent collateralized debt
obligations (CDO) structures, etc. The existence of repeat issuers with large
issuance programs and pools of information also helps. However, outside
the United States, another major change is quietly driving toward more
quantitative work: the need to quantify risks in structured finance bonds is
moving from the esoteric (for many) area of back-office risk management to
front-office investment decision making based on economic and regulatory



TABLE 1.1

U.S. Structured Product New Issuance Volume, 2000-2005

Auto CrCards HEL MH Equip StLoans Other Other ABS CDO CMBS
2000 64.72 50.45 55.73 9.13 9.56 12.42 16.90 38.89 68.45 48.9
2001 68.96 58.47 71.79 6.27 7.40 9.94 24.14 41.48 58.49 74.3
2002 93.08 70.04 148.14 4.30 6.54 20.18 12.41 39.14 59.23 67.3
2003 85.49 66.55 21499 0.44 10.09 39.96 16.67 66.71 65.90 88
2004 77.02 50.36 320.11  0.50 5.92 44.99 6.73 57.64 106.06 103.221
2005 102.44 67.51 493.20 na 7.93 70.36 14.93 93.23 171.62 178.443

Abbreviations: na=not available; ABS =asset backed securitizations; CMBS = commercial mortgage backed securitizations; CDO = collateral debt obligations;

Auto = automobile loan securitizations; CrCards = credit card securitizations; HEL = Home Equity Loans; MH = Manufactured Housing securitizations;

Equip = Equipement / Utility recievables backed Securitizations; StLoans = Student Loans Securitizations.
Source: Merrill Lynch.
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TABLE 1.2
U.S. CDO New Issuance by CDO Type, 2000-2005

2000 2001 2002 2003 2004 2005

SF CBO 10.3 13.5 252 26.2 56.8 69.9
HY CLO 16.8 11.5 14.7 16.7 30.2 50.5
TruPS 0.3 2.2 4.3 6.5 7.5 9.0
HY CBO 17.5 15.2 1.5 0.8 0.6 0.0
IG CBO 13.1 5.2 4.4 0.0 0.0 0.0
Other 10.2 5.4 3.2 4.6 3.9 254
MV 0.2 0.0 0.0 0.0 0.9 =
Total 68.5 53.0 53.3 54.9 99.9 154.8
Synthetic = 5.5 6.0 11.0 6.2 29.7
Total 68.5 58.5 59.2 65.9 106.1 184.5

Abbreviations: SF CBO = Structured Finance Collateralized Bond Obligation; HY CLO =High Yield Collateralized Loan
Obligation; TruPS =Trust Preferred Securities; HY CBO =High Yield Collateralized Bond Obligation; IG CBO = Investment
Grade Collateralized Bond Obligation; MV =Market Value Collateralized Debt Obligation.

Source: Merrill Lynch.

capital considerations, under the new regulatory guidelines of BIS2 (Basel 2
Banking Regulation) and Solvency?2 (Regulation of Insurance Companies).
Parallel with that, the increase in trading of structured finance securities
beyond the United States, now in Europe, and in other markets over time,
requires better pricing and, hence, more sophisticated pricing models.
Besides transparency and quantification, it is worth taking a look at
some key recent developments in the U.S. and European structured finance

TABLE 1.3

European Funded Structured Product New
Issuance Volume, 2000-2005

2000 2001 2002 2003 2004 2005
ABS 16.195 28.325 30.652 36.929 47.821 53.517
CDO 14.900 26.528 20.966 20.892 32.690 57.657
CMBS 9.455 22.882 20.904 10.139 14.736 45.750
CORP 6.430 14.641 13.536 18.299 17.989 9.416
RMBS 42.186 54.001 69.463 110.653 125.933 159.748
Total 89.166 146.377 155.521 196.912 239.168 326.088

Abbreviations: ABS =asset backed securitizations; CDO =collateral debt obligations; CMBS = commercial mortgage
backed securitizations; CORP = Corporate Securitization; RMBS = Residential Mortgage Backed Securitization.
Source: Merrill Lynch.
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TABLE 1.4

European Funded CDO New Issuance Volume,
2000-2005

2000 2001 2002 2003 2004 2005
ABS 0.66 0.20 1.83 3.15 5.80 3.62
CBO 3.85 8.19 3.39 2.10 0.40 1.86
CDS 0.97 0.67 1.59 1.22 1.60 0.90
CFO 0.00 0.00 0.85 0.24 0.56 0.56
CLO 6.56 10.18 6.19 4.37 7.94 15.49
MCDO 0.00 0.00 0.27 1.33 5.81 2.78
SME 2.86 7.29 6.84 8.48 10.58 32.46

Abbreviations: ABS =asset backed securitizations; CDS = credit default swap; CFO = Collateralized Fund Obligation;
MCDO = Multiple-Credit-Dependent Obligations; SME = Small and Medium Enterprise Loan CDO.
Source: Merrill Lynch.

markets, being the major volume providers for international investors, over
the last two years. We attempt to draw parallels as well as contrasts:

¢ Unlike the U.S. market in its ripening stage, the European
market did not opt for commoditization of the securitization
and structured products. Just the opposite, new structures and
modifications of existing ones proliferated.

¢ Like the U.S. market, the European market saw compression
of the marketing period. It was not uncommon to have deals
oversubscribed even before the reds (sales reports) were printed.

¢ The shorter marketing period led to distortion in pipeline
estimates, which in turn led to surprise over volume in
December 2005, for example, catching many market
participants totally unprepared to take advantage of it.

¢ Bespoke solutions proliferated, especially in the synthetic
market, and were not restricted to deals backed by corporate
portfolios.

¢ The avalanche of deals left little time for European investors to
take in the bigger picture, the tiny details in the structure, the
variations in the collateral, the variations in prepayments,
etc., and whether they do matter. Unlike in the United States,
structured finance investors in Europe are generally not
specialized by sector of the structured finance market and, as a
consequence, are less detail-oriented in their analysis.



6 CHAPTER 1

¢ The collateral quality softened, sometimes visibly—in commercial
real estate securitizations and in leveraged loans, for example;
sometimes less so—in the residential mortgage deals, where
reportedly prime mortgage pools contained products, which will
not be viewed as prime in countries, where the differentiation is
clearer, e.g., the UK. In contrast, in the United States, the subprime
sector, usually associated with home equity loans of lower FICO
(Fair Isaac & Co. Credit) score, experienced massive growth. The
differentiation between prime and subprime pools, especially in
the mortgage and consumer finance area, is clearly defined in the
United States, and is further helped by the use of quantitative
measurements of consumer credit quality, such as FICO scoring.

¢ European deal reporting and information disclosure is improv-
ing, although slowly. While the necessary information for resi-
dential mortgage pools is getting through in larger quantities,
such information remains fairly sporadic for, say, commercial
real estate transactions. The understanding of loan prepayment
factors in either market remains largely in embryo.

While the above list of developments and trends is by no means exhaus-
tive, it is consistent with the developments we expect in the coming
years. Our positive views on the structured credit market are also sup-
ported by:

¢ The persistence of relatively weak supply of corporate paper
and covered bonds. Structured products exceeded both corpo-
rate bond and covered bond supply for a second year in a row,
which is expected to be the case in the future.

¢ Structured product spreads that remain attractive compared to
similarly rated corporate and covered bonds. The predomi-
nantly triple-A supply (about 85 percent of new issuance on the
structured product market) is offering a significant yield pick-up
over sovereign, covered bond and bank paper. We do not attrib-
ute this pick-up in its entirety to a liquidity premium (except for
bespoke structures, of course). The liquidity component is a
more appropriate explanation for the yield differential between
structured product, on the one hand, and the corporate bonds,
on the other, at below-triple-A levels.

¢ The ability of structurers to offer bespoke deals addressing spe-
cific investor demands or concerns. That alone explains the large
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private volume in synthetic execution. The requirement for pub-
lic rating for regulatory capital purposes may make some of this
volume more visible in the future. We note the increasing flexi-
bility and ingenuity applied by structurers in an effort to meet
specific client’s requirements and needs. Further customization
of the market may lead to a less volatile and less tradable
market at least for larger segments.

¢ The large range of structured product offerings dealing with
repackaging of exposures. Many of these, which are otherwise
unavailable to numerous investors, remain an attractive point
for them; e.g., the investors can take direct exposure to con-
sumer risk or real estate risk and leveraged or managed expo-
sure to familiar and less familiar corporates.

¢ The “safe harbour” argument, which is as old as the structured
credit market itself. There is a modification of this argument,
though: investors in Europe are now becoming more concerned
about mark-to-market of their bond holdings, and structured
products, at least historically, have offered lower spread volatil-
ity, maybe due to their lower liquidity, given that their rating
volatility was low. While the argument about lower event-risk
sensitivity of structured products remains valid, many structured
products have assumed more leverage, which by itself makes
them more susceptible to volatility in the future. However, by
their nature, structured products, in general, should remain more
resilient to event-idiosyncratic risk, which is one of the main
concerns of corporate bond investors. While individual events
may have little impact on specific structured finance products,
we note the delayed effect of accumulating credit risks in later
years. We emphasize this point: credit deterioration has a
cumulative negative effect in the predominantly static collateral
pools backing the majority of structured bonds.

¢ The development of synthetic asset backed securitizations (ABS)
exposures, be it on individual names [the European credit default
swap (CDS) on ABS or U.S. PAYGO versions] or on a pool basis—
through synthetic ABS pools or via the synthetic ABS index ABX
in the United States—has dramatically changed the structured
finance market. These innovations allow the ABS market to speed
up execution, provide the exposures that the cash market cannot
offer, and supply a mechanism to express a negative view on the
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market, to hedge or speculate. The importance of these develop-
ments cannot be overestimated. In this regard, the United States is
leading Europe and the rest of the world, as has often been the
case in the structured finance market.

Having said all these nice things about the structured product market, let
us be more critical and highlight some of its shortcomings. Many of our
concerns have been voiced before, but they may take a new light now that
the market, by wide consensus, has reached the peak of the current cycle
and has nowhere to go but sideways and eventually descend. The start-
ing point of that descent may be triggered by several weaknesses:

¢ Opverall, deals are more leveraged: be it because of underlying
consumer indebtedness, companies’ financial ratios, or the deal
structures. That should lead to bigger swings under unfavorable
and/or unexpected market developments.

¢+ Investors are stretched in their ability to absorb new deals, mon-
itor old ones, and keep an eye on new developments. The
growth of the market in complexity and volume has yet to be
reflected in increasing investor specialization across asset sectors
and products. Corporate analysts often know everything about
a couple or so industries and the main companies within those
industries; hence the need for several corporate analysts to man-
age a larger corporate bond portfolio. Structured credit analysts
and portfolio managers, however, are expected to cope with
numerous sectors, structures, and deals simply because they fall
into the simplistic misnomer “structured.”

¢ There is a serious need for more quantitative power dedicated to
structured products. That power can be fully used only if there
is more information about the structured product collateral.
That power, though, is powerless in the face of unquantifiable
quantities—say, the likelihood of prepayment of a given loan in
a commercial real estate portfolio or the impact of a manager in
a CDO under adverse market conditions. Under such circum-
stances, the good old reliance on “gut feeling” seems to be the
one and only last resort for the investor.

¢+ Lack of tiering to reflect differences in structure, pool composi-
tion, information availability, and servicer or manager capabili-
ties. The deplored lack of tiering is an enduring feature of the
European market and will properly change, we think, only under
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market distress. We hope some signs of change are already in the
air, say in commercial mortgage backed securitizations (CMBS)
or CDO land, although with recent tight CMBS spreads pricing
has looked haphazard, particularly for the more junior tranches.

¢ Regulatory uncertainty or uncertainty about the impact of
regulations such as BIS2 and the respective national imple-
mentation guidelines, The accounting Standard IAS39,
Solvency2, and the potential for a not-quite-level playing field
they may be creating across countries and markets. One concern
we have is that regulators” ambiguity about synthetics in some
countries is hurting not only the market development, but also
the regulated entities themselves, as they are precluded from
using this market to their benefit.

THE NOT-SO-HOMOGENEOUS CDO SECTOR

One of the major market developments in recent years is the emergence
of the CDO sector as a major market sector, with the capacity to influence
developments in other seemingly independent market sectors. The CDO
sector is not homogeneous and consists of many different subsectors and
niches. Referring to the developments in any one CDO sector, and gener-
alizing and applying the conclusions to all the others is wrong and grossly
misleading. It can increase market volatility, deter investors from making
reasonable investment decisions and, in the extreme, create a liquidity cri-
sis in a specific market sector or on the entire market, if the panic spreads
wide enough.

While this is fairly obvious, it is not fully appreciated by many
market participants. Hence, there is a need to broadly differentiate among
the several main categories of CDOs that are dominant on the market
today, and highlight their interaction with the rest of the market.

Arbitrage Cash CDOs

The arbitrage cash CDO sector includes a number of CDO types, widely
differentiated by the type of exposure used to rampup the CDO collateral
pool. Among them are:

¢ cash CDOs comprising high grade and/or mezzanine ABS
¢ cash CLO of leveraged loans and/or middle market loans
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¢ cash CDOs of insurance and bank trust preferred securities

¢+ CDO of emerging markets exposures, both sovereign and
corporate.

Each of these subsectors follows the credit and technical dynamics of its
respective market. A CDO backed by a portfolio of such instruments is
effectively a vehicle for creating tranched risk profile and leverage on that
portfolio.

In the past, there were large subsectors of cash CDOs backed by high
yield (HY) and high grade (HG) bonds, and their fortunes rose and sank
with the movements in the HY or HG bonds backing them and, not least,
with the strategy, behavior, and luck of the CDO managers running those
portfolios.

We note that in a cash CDO, the asset and liability sides of the
CDO are established at launch and may change little during the life of the
transaction:

¢ The liability side (i.e., the capital structure of the CDO) is deter-
mined at deal’s launch and changes only with the amortization
of the senior tranches or the write-down of the equity and junior
tranches in case of default and losses in the pools.

¢ The asset side (i.e., the pool of investments) is also determined
at launch and may experience little change during the life of the
deal. In the currently dominant types of cash CDOs (listed
earlier), trading occurs to a very limited degree, if at all. In most
deals, trading by the manager is restricted to credit impairment
trade (due to expected or real deterioration of a given name)
and credit improvement trade (upon certain spread tightening,
but under condition that traded credit must be replaced by
similar or better credit quality name).

¢ The asset-liability gap (i.e., the funding gap) determines the
level of return that a CDO equity investor can expect (depend-
ing on the level of defaults in the investment pool) and is a key
consideration in the placement of equity and overall economic
viability of a cash CDO.

Hence, a cash arbitrage CDO is a structure mostly set at the beginning
of the transaction and is meant to be maintained as stable as possible
throughout its life, with the ultimate purpose of repaying debt investors
and providing adequate return to equity investors over its scheduled
life.
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The initial and on-going pricing of the cash CDO tranches is market-
based (rather than model-based). It takes into account where other simi-
lar transactions price on the primary and secondary market and, in case
of significant defaults or downgrades in the pool, considers the value of
the pool and how it relates to the outstanding CDO debt obligations that
the pool is backing.

From this it follows that a cash CDO once launched has little on-
going impact on the market, with its asset and liability side meant to be
relatively stable. Looking at it the other way around: ongoing market
changes may have little impact on the cash CDO, except for defaults and
the mark-to-market of the CDO debt and equity tranches.

Hence, defaults are the issue of main consideration for arbitrage
cash CDOs, as their occurrence or not, the degree thereof, and the subse-
quent crystallized loss will determine the yield on the debt tranches and
return on the equity tranches of these transactions.

Synthetic CDOs

Synthetic CDOs are diverse in nature and include a number of instru-
ments, which are not directly comparable in terms of investment charac-
teristics and market impact. These include:

¢ Synthetic structured finance (or ABS) CDOs—an emerging
sector, in which CDS on ABS in Europe and PAYGO SFCDS in
the United States are used to build an ABS portfolio quickly and
efficiently. Such a portfolio would be more difficult to execute
in 100 percent cash due to allocation and sector and vintage
limitations on the cash-structured finance market today. Such
synthetic deals may be fully/partially funded or may be single
tranche deals. The latter require hedging for the unfunded
senior and junior (to the funded portion) tranches; hedging
usually takes place through a combination of cash purchase
and selling protection on the respective cash bonds and is
usually adjusted downwards as the referenced exposures
amortize or experience losses.

¢ Balance sheet synthetic CDOs/CLOs—associated with credit
risk transfer of a bank bond or loan portfolio—their share of
today’s market is miniscule and their behavior is more akin to
cash CDOs discussed earlier (relatively constant structure and
primarily default-driven investment performance).
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¢ Other synthetic CDO products, such as those based on constant
maturity CDS, principle protected tranches of CDOs, etc.,
whose behavior is further modified by their specific structural
features and will differ from that of other synthetic CDO
subtypes.

¢ Bespoke synthetic CDOs—single tranche CDOs on corporate
names, referenced through CDS.

¢ Standardized tranches of CDS indices—iTraxx in Europe and
CDX in the United States.

The last two sectors tend to be also lumped together under the “correla-
tion trades” moniker. The latter, because correlation is a derived variable
from a pricing/trading model and a function of spread movements. The
former, because to be priced, the implied correlation input is referenced
from the standardized tranche market. These two sectors can be viewed
as model-driven from the perspective of pricing and trading (exploring
trading opportunities), but there are differences:

¢ The structure of a bespoke single-tranche CDO is set at its
launch, but there is a need for the intermediary to hedge expo-
sures senior and junior to the investor’s tranche, creating an on-
going interaction with and impact on the market. The need to
rebalance the delta hedges creates the need to trade certain CDS
and thus influences the supply and demand for these credits in
the market. The larger the size of the single-tranche market, the
larger the impact such secondary delta-rebalancing trades may
have on it: large and more single-tranche deals suggest larger
and more referenced portfolios, whose senior and junior
tranches must be hedged and the hedges rebalanced. However,
the single-tranche investor may be relatively sheltered in his
investment from such movements, as long as defaults do not
cross certain threshold or he is in some way protected against
trading /hedging losses.

¢ The standardized index tranches are used by investors to
express a view (take a position) on spread direction and correla-
tion, and as their view changes or the market developments do
not justify such view (positioning), a need to trade arises. It may
take place in order to adjust the position or to reverse it (to close
a position altogether). That creates secondary market activity
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and, almost inevitably, market volatility. The standardized
tranches market is also used to hedge positions or execute cer-
tain strategies. A desire to unwind the hedges or the positions
when not needed or the market moves against them may
further exacerbate market volatility.

From this it follows that correlation trades can have a strong on-going
impact on the market either through the need to rebalance the hedges or
to take a position and subsequently unwind it. The opposite is also true:
ongoing market changes, such as spread movements, and the perception
in correlation changes can have an impact on standardized index tranche
pricing and associated positions. Hence, ongoing spread movements,
actual downgrades/defaults, and the related perception of correlation are
the main factors to consider in synthetic standardized tranche trades and in
hedging single-tranche CDOs. From the perspective of the single-tranche
CDO investor, though, the main concern is the level of default in the
reference pool.

Different Investors “Own” Different
CDO Sectors

The review of the CDO market so far indicates some fairly fundamental
differences among the broadly defined cash arbitrage and synthetic CDO
sectors. Such differences can be further illustrated by looking at the moti-
vation and identity of the investors in the different sectors:

¢ “Real” money accounts tend to focus on cash CDOs and tend to
be buy-and-hold investors when buying synthetic and bespoke
synthetic CDOs. In that space, different parts of the capital
structure of a CDO attract a different type of investor—that
spreads the slices of risk to the broadest possible range of
market participants.

¢+ “Leveraged” money accounts (hedge funds) drive most of
the activities on the standardized tranche market, although
some real money accounts have become more active in recent
months. The activities in that space are associated with
taking a view on correlation and how spread changes in the
market could trigger repricing of the different tranches of the
synthetic indices. To some degree, this sector can be viewed as
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“speculative,” although using it for the purposes of hedging is
not uncommon.

Although this division is general and there are some investors who cross
the line in both directions, it is certainly not imprecise.

The mark-to-market aspect affects the different investor types in a dif-
ferent way and is common to all fixed income instruments. We note that
cash CDO “held to maturity” are not subject to mark-to-market, whereas
all synthetic CDOs regardless of their classification are subject to mark-to-
market. MTM issues are of a particular concern to European fixed income
investors this year, as a result of the introduction of IAS39.

While the fall-out from the recent hedge fund standardized tranches
investment strategy gone wrong could be wider spreads and high mark-to-
market losses, there is no evidence in the market to suggest that the different
cash and synthetic tranche CDOs have widened more than similarly rated
other fixed income investments.

Liquidity and the “Unexpected” MTM Problem

A key market consideration is the liquidity of structured finance instru-
ments and the associated mark-to-market volatility. The latter is a rela-
tively recent concern associated with the introduction of mark-to-market
accounting.

Table 1.5 demonstrates the spread movements for a variety of Euro-
pean structured products. Given the limited time frame of this analysis, as
well as the limited time frame of a relatively mature European market, we
suggest that readers do not focus on the nominal values, but rather on the
relative magnitude across asset classes and sectors. If we assume that the
period given in Table 1.5 embraces the tightest spreads seen on the mar-
ket in recent years, it is natural to ask the question as to how much the
spreads can widen. While we expect spread widening to be cyclical (trend-
line), we foresee the actual spread movements to be shaped by technical
and fundamental factors along the way (zigzagging along the trend line).
From that perspective, it is important for investors to understand the
expected behavior of the different sectors and subsectors of the European
structured finance market, their reaction to technical and fundamental
factors, and their interaction with each other.

When considering their portfolio strategies, investors can conceptual-
ize the market and their portfolios in different ways. On that basis, they can
re-examine their tolerance to mark-to-market and credit risk in a market



TABLE 1.5

Monthly Average Launch Spreads by Asset Class and Rating, 1998-2004

1998 1999 2000 2001 2002 2003 March 2004
Asset Sub

Class type Rating Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min

MBS NCF AAA 27 58 14 41 65 31 35 55 28 35 55 19 27 50 22 35 54 26 19 19 19
MBS PRM AAA 18 24 11 23 28 18 25 28 14 24 30 22 24 28 18 24 40 20 17 22 12
CMBS CMBS AAA 47 47 47 44 55 27 34 51 25 37 44 24 43 63 28 45 50 40 38 38 38
CDO CDO  AAA 15 39 7 15 30 11 37 43 26 45 57 35 55 68 25 71 81 61 57 64 48
ABS CAR AAA 45 45 45 32 50 19 31 35 26 24 28 14 24 38 13 30 42 11 15 15 15
ABS CCD AAA 22 30 14 18 20 15 20 30 16 25 28 23 20 22 16 20 27 5 13 22 3

ABS ucc AAA 23 36 17 24 36 16 28 33 25 32 35 28 31 36 28 25 31 20

MBS NCF A 70 83 40 125 160 85 124 150 85 139 203 100 109 125 98 164 188 135 95 95 95
MBS PRM A 57 80 35 63 77 50 69 86 48 68 77 63 64 83 45 71 85 65 52 62 39
CMBS CMBS A 112 138 73 89 115 65 99 108 83 97 110 83 109 118 93 103 103 103
CDO CDO A 66 120 36 59 93 45 100 120 48 118 146 97 182 2283 125 216 279 174 202 203 200
ABS CAR A 75 75 75 65 90 51 76 85 65 65 68 47 58 80 43 74 100 35 40 40 40
ABS CCD A 45 48 40 54 75 37 74 77 70 57 62 50 59 78 30 37 55 19
ABS ucc A 55 72 47 62 75 40 69 79 50 82 120 47 75 88 43 72 75 69

MBS NCF BBB 139 175 92 244 275 200 256 300 200 256 300 218 240 270 207 326 350 300 212 212 212

MBS PRM BBB 88 93 82 153 160 150 145 188 130 144 165 135 141 179 120 140 163 127 103 121 81
CMBS CMBS BBB 140 140 140 248 375 165 199 275 140 194 220 183 201 280 138 214 232 200
CDO CDO BBB 131 183 77 124 188 59 159 200 85 238 311 168 322 467 215 348 490 285 375 500 300
ABS CAR BBB 175 175 175 75 75 75 178 180 175 225 225 225 150 150 150 160 170 155
ABS CCD BBB 90 90 90 112 150 88 151 165 138 149 168 120 159 187 110 83 120 45
ABS ucc BBB 130 130 130 160 160 160 175 175 175 217 275 188 150 170 125 153 170 140

Abbreviations: Ave =average; Max =maximum; Min=minimum.

Asset Class: MBS =mortgage backed securitizations; CMBS =commercial mortgage backed securitizations; CDO =collateral debt obligations; ABS =asset backed securitizations.

Subtypes: NCF =nonconforming; PRM = prime; CMBS =commercial mortgage backed securitizations; CDO =collateral debt obligations; CAR =automobiles; CCD =credit cards; UCC = unsecured consumer loans.
Source: Merrill Lynch.
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downturn. Then, they can model how their current (at the peak of the mar-
ket) portfolio will react to different levels of market downturn and deter-
mine what is the acceptable credit and marked-to-market loss they can bear.

Furthermore, investors can anticipate the evolution of their portfo-
lio between today and some future point [factoring WAL (Weighted
Average Loss) scheduled and unscheduled amortization, expected losses,
etc.], when they expect the market downturn and see how such a portfo-
lio will react to such downturn. Finally, investors must consider what
steps to take now and in the near future to bring their current portfolio
to that which is sensitive to credit and MTM losses and is consistent with
their own (institutional or personal) tolerance.

CRITERIA FOR STRUCTURED FINANCE
DEALS AND PORTFOLIOS

Review and Risk Tolerance

The analysis of structured finance products and portfolios is a complex
undertaking. We highlight a number of criteria in no particular order:

Granularity

Granular deals with strong credit quality are less susceptible to event risk
of single-name exposures than nongranular deals. Historical evidence sug-
gests that more granular, high quality ABS have experienced little spread
volatility compared with low quality granular deals and nongranular deals.
These observations are true across ABS capital structures. They also hold
for high grade mortgage backed securitizations (MBS) and CMBS as an
example of highly granular and less granular deals, as well as for prime
RMBS and subprime RMBS as an example of deals with similar granularity
but different credit quality. While correct, this outcome may be influenced
by the fact that granular deals in general are associated with consumer
exposures and nongranular deals—with corporate exposures.

Types of Credit Exposure

Consumer ABS in Europe tends to demonstrate less spread volatility than
corporate exposure ABS (in the form of CDOs and CMBS). That may be
also associated with the granularity of the portfolios as mentioned earlier.
In general, though, consumer pools’ tranches tend to reflect tranching of
the systemic risk, associated with a large securitization pool and reflect
the state of the economy of the respective country.
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In addition, consumer portfolios are exposed more to systemic risk,
say widespread economic deterioration, than to event risk (collapse of a
single company or an industrial sector). We caution, however, that today,
in most countries, the consumer is over-indebted, i.e., the consumer sec-
tor is stretched or even over-stretched, which was not the case during the
last corporate credit cyclical downturn. (The two countries, which in the
past downturns have had relatively high consumer indebtedness—
United States and UK, are even more indebted today, with the consumer
debt stretching beyond residential mortgage debt.) Consumer lending
and spending softened the blow during the last downturn—this buffer
may not be as readily available in a future downturn. Hence, the economy
as a whole and the consumer pools, in particular, may suffer more than
previous downturns in history.

Senior versus Junior Tranches

It is a fact that senior tranches have more cushion against credit deterio-
ration than junior tranches. The former seems to hold true for different
asset classes, even ones of similar granularity. An interesting way to look
at the credit cushion is to compare the level of credit enhancement for
each tranche to the level of five-year cumulative losses of a given asset
class. The challenge arises, when such cumulative loss numbers are not
robust, statistically speaking.

As mentioned earlier, senior tranches tend to experience less spread
volatility than junior tranches of the same asset class. Their bid-offer
spread is much lower than the one for junior tranches. Almost always se-
nior tranches are more liquid than junior tranches of the same deal. It
is not uncommon for market participants to often use secondary trade-
based pricing for marking-to-market their senior tranche positions and
estimated pricing (on the basis of primary market or dealer talk) for mez-
zanine positions. In the case of the latter, there is the risk that one-off trade
may lead to serious repricing and mark-to-market volatility.

Sensitivity to Third Parties (Originator,

Servicer, Counterparty)

While structured finance bonds are set up in such a way as to minimize
or eliminate the role of the asset originator and its potential bankruptcy,
some linkages (in terms of credit or portfolio performance) remain—they
may be with the originator or servicer, a third-party servicer and/or hedge
counterparty. These linkages may have both direct and indirect effect on
the bond pricing on the secondary market, and understanding the potential
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for problems from that corner is crucial in defending against mark-to-
market losses, defaults or downgrades.

In addition, idiosyncratic aspects of underwriting and servicing
should be taken into account in determining future pool performance—
this is particularly true for subprime and commercial real estate sectors.
Nonbank, nonrated servicers are of particular concern when anticipating
the performance of the securitized pools and the headline risk of the
respective bonds.

High versus Low Leverage Positions

In a low spread, low default market environment, leverage is a necessary
way of achieving yield. In the course of the last couple years, investors
had to take leverage to achieve their yield targets. The discussion about
what leverage is in structured finance, how to estimate it, etc. is a never
ending one, and we do not intend to reproduce it here. What is clear,
though, is that leverage can enhance returns in good times and magnify
losses in bad times. Hence, there is a need to review the amount of lever-
age, how it is achieved, and the extent to which it can be detrimental to
the portfolio performance in a market downturn. Investors need to dif-
ferentiate between de-levering structures (say, an MBS) and those that are
meant to remain fully levered for life (say, a CDO Squared).

Pool versus Single-Name Exposures

While this may seem as a repetition of the granularity argument, it is not
necessarily so. Single-name exposure may have many different connota-
tions: it could be in the repetition of a given corporate name in numerous
portfolios, or in the presence of the same servicer in multiple deals, or,
alternatively, in the high dependence of a given transaction on the cash
flows generated by a given entity. The need to estimate the accumulation
of multiple exposures to a single name under different transactions is
obvious, but the estimate is not that simple to make in practice. We sug-
gest going beyond the issue of overlap, as know from CDO land, and con-
sidering all forms of exposure or potential exposure to a given name
present in the structured finance portfolio.

Anticipated Impact of BIS2

We believe that BIS2 considerations should be an inextricable part of the
European investment strategy over the next several years. BIS2 risk
weights favor all senior securitization exposures and do not favor all
subinvestment grade securitization exposures. Investors should factor the
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lower and higher capital requirements post January 1, 2007, when deter-
mining the adequate price for a securitization bonds, scheduled to mature
after 2006. We also note the granularity adjustment differentiation for
senior tranches of securitization exposures.

Other Country-Specific Considerations
Such considerations, e.g., may include:

¢ The changes in pension regulations and eventual new Real
Estate Investment Trust (REITS) legislation in the UK should
have a positive impact on commercial real estate pricing. That
may make CMBS rarer, on one hand, and improve the property
values for existing deals, on the other. In the short-term, this is
offset by the growth in real estate conduits.

¢+ The introduction of covered bonds in more countries should
reduce the supply of MBS and make them more attractive.

¢ The reduction of budget support for SMEs in Spain should
reduce their supply, change their geographic diversity, or con-
vert them into stand-alone structures with higher subordination
levels (more supply of non-triple-A paper).

We certainly do not intend an exhaustive list here, but suggest that
investors consider these changes and how they could affect future supply
and pricing in specific structured finance sectors.

Modeling

Structured finance securities are complex credit structures, which can per-
form differently under similar economic and market scenarios. All the
more, when addressing the need to fully understand the variations in
their performance, modeling comes handy. In that regard, availability of
models and people able to use them properly becomes a key factor in
better understanding the future performance of structured finance deals
and related portfolios. The preceding discussion indicates that the simply
rerunning historical scenarios are not enough for investors to fully under-
stand the risk (credit, MTM, duration) of their holdings. One needs not
only modellers, but also credit-savvy ones at that.

Increase Asset-Based Liquidity of the Portfolio

In a market downturn scenario the need for liquidity in a portfolio is most
acutely felt, especially one with margin calls or with a potential for money
withdrawals at a short notice. In that regard, we suggest that investors
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use the rating agencies guidelines for liquidity eligibility and haircuts for
different asset classes of structured finance securities, in determining the
asset-based liquidity of structured investment vehicles. Regulatory guide-
lines for repo eligibility and haircuts can also be useful, although the list
of such securities is limited to primarily senior tranches of ABS backed by
granular pools.

Distinguishing Between Cyclical Sectors

Distinguish between cyclical (CLOs, office CMBS, subprime consumet, etc.)
and cycle-neutral sectors (retail CMBS, high quality consumer pools, etc.).
Corporate ABS seems to be more affected by the event risk of down cycles
than prime consumer ABS. Alternatively, high quality consumer-related
ABS seems to be more cycle-neutral than low-credit-quality consumer-pool
ABS. We refer here to the cyclical nature of the exposures comprising the
pool of the respective structured financing. A CDO, e.g., being a derivative
of the underlying corporate high-yield or high-grade sector will perform
according to the cycles of that sector—the deal performance, however, will
be modified by the actions of the CDO managers. Similarly, the perfor-
mance of a subprime mortgage pool will be dependent on the performance
of the economy and the housing market (hence, its cyclical nature), but
modified by the actions of the respective servicer.

Senior Mezzanine-Equity Positions

That the credit risk and mark-to-market risk of the different tranches of
structured financings are different is a given. What is more important is
that such differences persist across the tranches of different asset classes,
so the equity position of a CDO of senior ABS will have different suscep-
tibility to the earlier risks than, say, the equity position of a CDO of high-
yield loans, not to mention the mezzanine of prime mortgage master trust
MBS compared to the mezzanine of a residential real estate mezzanine
CDO, or the senior tranche of stand-alone amortizing Dutch prime MBS
in comparison with senior tranche of a mixed lease Italian ABS.

BIS2 AND OTHER REGULATIONS-
LONGER-TERM IMPACT ON THE
STRUCTURED FINANCE MARKETS

As we noted on several occasions so far, BIS2 is expected to have a major
effect on the structured finance market in all its aspects: supply, demand,
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spreads, and mark-to-market volatility. We explored some of the mark-
to-market aspects earlier, and we turn our attention now to some of
the more fundamental changes we anticipate BIS2 implementation will
prompt. Here, we take into account only the consequences from the new
capital treatment, as if securitization’s only function were to achieve cap-
ital relief for the securitizing bank and as if banks invested only on the
basis of regulatory capital considerations. We note that the number of
banks expected to adopt the IRB (Internal Rating Based) approach is high
in Europe, making this approach dominant in determining risk capital
and the BIS2 impact in securitization.

From the Perspective of the Originating Bank

Again, if the only reason for securitization were capital relief, then the
expected changes in capital requirements for different types of exposures
on the banks’ balance sheet should give a good understanding of which
assets could conducive to securitization and which not. The chart above
is based on QIS3 data and broadly indicates that banks will have reduced
incentive to securitize consumer assets, and increased incentive to securi-
tize special lending exposures, sovereign and to some degree other banks.
That is because BIS2 leads to significant reduction in risk weights for retail
exposures, particularly mortgages, and an increase in risk weights for
specialized lending and sovereigns, particularly high volatility real estate.
In more specific terms:

¢ There will be a seriously reduced capital relief benefit from
securitizing mortgage portfolios and somewhat reduced benefit
for retail and retail SME portfolios.

¢ The incentive should shift toward the securitization of higher-
risk weighted assets such as lower investment and subinvest-
ment grade corporate exposures, commercial real estate, special-
ized lending, etc.

¢ Securitization of mortgage and retail portfolios should be driven
more by nonregulated companies, as well as by the funding con-
siderations of banks.

These conclusions, however, should be further detailed on the basis of the
credit quality of the underlying exposures, subject to securitization. The
chart below compares the capital requirements for different types of retail
exposures under both standardized and the IRB approaches.
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In all cases, the bank should consider the capital requirement
before securitization and after securitization (in the form of capital for
retained portion of securitization exposure). To simplify, it will depend
on whether the capital before securitization is higher, equal, or less than
the equity piece of the securitization transactions, which is usually the
piece retained by the bank originator. In that regard, the supervisor’s
and bank’s own estimates for loss given default, EAD (Exposure at
Default), and M (Maturity) play a key role in determining the benefits of
securitization for a Foundation IRB bank.

In that respect, we note the wide range of corporate exposures listed
under the IRB approach and the potential difficulty for banks to get
supervisory approval to use their own inputs for capital calculation. That
may lead the banks to use the prescribed risk weightings for specialized
lending, as indicated in the discussion of IRB, and thus have regulatory
capital incentives to securitize such exposures.

Banks who continue to dominate the issuance volume of structured
products may modify their issuance patterns, as a result of incorporating
regulatory capital treatment of the underlying exposures in the econom-
ics equation of securitization. Securitization of mortgages may be prima-
rily done for funding purposes, given limited regulatory capital benefit for
it, whereas securitization of commercial real estate, unsecured consumer
loans, and project finance may be driven by regulatory capital relief con-
siderations in the first place. Alternatively, banks using the standardized
approach may still have a regulatory capital benefit from securitization,
while that benefit will be largely unavailable for banks applying the IRB
approach. All this could lead to a change in supply levels, types of prod-
ucts securitized, and servicer considerations.

To achieve better realignment of regulatory and economic capital,
banks may be tempted to issue also double-Bs and single-Bs, and even
sell first loss positions. That raises questions about the rating agencies’
methodologies for rating below investment grade pieces and how
reliable they are as well as about the breadth of investor base for such
exposures.

From the Perspective of the Investing Bank

An investing bank naturally takes into account the cost of regulatory cap-
ital among other things when determining its investment interest in a
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securitization position. Again from the perspective of regulatory capital
considerations alone, a bank investor should:

¢ Buy riskier sovereign, bank and corporate exposures (say, rated
single B and below) rather than less risky securitization
exposures (say, rated double-B).

¢ Avoid subinvestment grade securitization tranches regardless of
their actual risk, unless of course the pricing of such tranches is
sufficient to compensate the bank for both the risk of the tranche
and the increased cost of capital. The placement of subordinated
tranches may become more dependent on the appetite of
nonregulated investors. In fact, the question of placement of
noninvestment grade tranches of securitizations will become
a key factor in determining the viability of many future
securitization transactions.

¢ Standardized approach requires more capital for investment
grade tranches (except for BBB-) and less capital for lower-rated
tranches, which should lead to different investment incentives
for standardized and IRB bank investors and lead them to
modify their investment allocations.

¢ IRB banks are even less likely than standardized banks to invest
in subordinated noninvestment grade securitization tranches,
and even more likely than standardized banks to seek most
senior investment grade tranches.

¢ The gap between senior secured corporate and securitization
exposure risk weightings for noninvestment grade exposure
widens even further. This creates even bigger disincentives for
IRB banks to invest in subordinated securitization exposures
and make them choose instead high-yield corporate exposures.

¢ The risk weightings for covered bonds and RMBS are converging,
thus reducing or eliminating the regulatory capital advantage of
covered bonds, characterizing the current investment decisions.

Given the reduced risk weights for senior tranches under BIS2, banks are
expected to realize certain savings from holding such securitization posi-
tions. Given that banks are the dominant investors in securitization in
Europe, it is highly likely that such savings are passed on to the market in
the form of spread tightening. Those savings, which can be viewed as a
potential range of spread tightening for securitization exposures. We note
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the “dis-saving” BB exposures or increase in regulatory capital require-
ment for bank investors, which we already stated, should lead them to
shun away from such exposures.

To clarify further, a standardized bank investing in AAA RMBS
securitization tranche will use risk weight of 50 percent under BIS1 (Basel
1 regulation) and 20 percent under BIS2. That will translate into 40 bps
savings on average cost of capital. Those savings can be passed on to the
market in the form of spread tightening, although that will not be a one-
for-one transfer. The same bank needs to increase the risk weight for a BB
securitization exposure from 100 percent under BIS1 to 350 percent under
BIS2. The increase in its regulatory capital is 125bps, which in turn should
see respective widening of the BB spreads of such exposure, to compen-
sate the bank for the increased regulatory capital. Similar analysis can
be performed for the RBA approach to securitization to be applied by the
IRB banks under BIS2. The respective capital savings or “gains” are
slightly larger in comparison to the standardized approach.

Demand-Supply Dynamics

From the perspective of the demand—supply dynamics of the securitiza-
tion market, our conclusions can be further expanded:

¢ Nonregulated companies may increase their share in consumer
asset securitization, while banks could increase their share in the
securitization of commercial real estate and other corporate
assets. In addition, there will be differentiation of the incentives
to securitize by asset class or at all across banks depending on
the approach to regulatory capital they adopt.

¢ Spreads on subinvestment grade securitization tranches should
widen, and on senior tranches should tighten, compared to pres-
ent levels, although it is difficult to anticipate the changes in the
overall cost of securitization, as the earlier movements may or
may not be netted out.

¢ The spread movements of securitization tranches in comparison
to similarly rated corporate exposures is somewhat less certain,
although we would expect noninvestment grade securitization
tranches to widen more than similarly rated corporate exposures.

¢+ We expect ratings to continue to play a major role in the securiti-
zation market, probably more so than in the corporate market.
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In that respect, further improvement in rating approaches
and models for securitization tranching will likely become a
matter of urgency, given the significant differentiation of risk
weights by tranche’s credit rating.

¢ The new BIS2 guidelines will probably slow down the
securitization market, as we know it today, but simultaneously
create new distortions that new structuring techniques will aim
to address. Hence, while this may be the end of securitization,
as we know it, it may be the beginning of a new stage of
securitization and structured market development.

¢ Given that banks and related conduits account for two-thirds
roughly of securitization paper placed on the market, it is
conceivable that lower-risk weights should translate into
lower-target spreads for such holdings. The potential for
significantly lower-risk weights for senior tranches may be
fuelling demand for them in expectation for spread tightening,
as those weights are introduced (or less spread widening if
their introduction coincides with a softening market):

o Entities, which benefit from such spread tightening as it
occurs, but do not have the permanent benefit of regulatory
capital reduction, may be induced to sell once the tightening
is over, i.e., once the risk weight effect is fully priced in.

o Entities, which benefit from the permanent reduction of regu-
latory capital will be exposed to different regulatory capital
and, subsequently, potentially higher spread volatility as their
securitization holdings are upgraded or, God forbid, are
downgraded.

o In both cases, the aforementioned result may be more trading
and more volatility.

o Downgrades may lead to higher than before spread move-
ments, especially on the border points, where one tranche
moves from one type of investors to another; particularly
given the fact that at least, at present, the breadth and depth
of the investor base rapidly declines from senior to junior
tranches.

¢ Banks may be more sensitive to downgrades in the future, as
they will have to tolerate both MTM losses and regulatory capi-
tal increase. As a result, they may be more likely to sell upon a
downgrade.
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¢ More pronounced differentiation of investor base by tranche
will eventually subject the pricing and dynamics of each tranche
to the developments in its respective specialized investor base,
which in turn may suggest more opportunities to arbitrage the
capital structure of structured products (akin to correlation arbi-
trage of the different layers of standardized tranches of iTraxx).

¢ Given the lack of clarity about regulatory capital treatment of
many structured products (say, combo notes, CPPI, securitiza-
tion of a single commercial real estate loan, etc.), the conse-
quences of a treatment away from market expectation or
practices may be dramatic: no demand and oversell are two that
come to mind.

REGULATORY CHANGES PARALLEL TO BIS2

Two other regulatory changes are already putting their stamp on the
structured finance market. One is the change in accounting practices, the
other is the introduction of regulatory capital requirements for insurance
companies and pension funds, loosely tailored after BIS1 (rather than
BIS2). The accounting changes strike at the heart of securitization prac-
tices, affecting off-balance sheet treatment of securitization, accounting
for securitization exposures, etc. Given the uncertainty about the final res-
olution of numerous points here below we highlight only one of them—
the accounting for synthetic securitizations. Solvency?2, on the other hand,
is an exercise similar to the introduction of BIS1 years ago and could
change the way insurance companies and pension funds go about doing
their business in the future.

IAS/Accountancy

While TAS may seem more straightforward, its consequences remain
under scrutiny. The main issue of ambiguity there is related to synthetic
securitizations, in general, and synthetic CDOs, in particular. The ques-
tion has taken on a magnitude worthy almost of Hamlet: to invest or not
to invest? The requirement for bifurcation of synthetic CDOs has intro-
duced unnecessary complexity.

In some cases, auditors have taken the Draconian approach of
stopping certain institutions from investing in the product altogether.
Not to mention that different auditors have adopted different views and
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interpretations of the issue. This suggests replacement of economic sense
with auditor’s inclination. The American FASB has left some hope that
bifurcation issue may find a quiet end for the benefit of all parties con-
cerned. If that is to be the solution, the interest in single tranche synthet-
ics and their secondary and tertiary derivatives will likely be rejuvenated.

Solvency2

As for Solvency? (the insurance companies and pension funds equivalent
to BIS2), it may be too early to discuss yet—it is not coming into force
before 2009, but it suffices to point to two potential developments: more
demand from insurance companies and pension funds for structured
products and more insurance companies becoming originators of securi-
tization in their own right.
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CHAPTER 2

Univariate Risk
Assessment?

Arnaud de Servigny and Sven Sandow

INTRODUCTION

In this chapter, we discuss the credit risk that is associated with a single
debt instrument and various methods to assess this risk. The credit risk
associated with a defaultable debt instrument can be decomposed into two
components: default risk and recovery risk. The former captures the uncer-
tainty related to a possible default while the latter reflects the uncertainty
related to recovery in the case of default. We shall discuss both types of risk
in this chapter while keeping the focus on single credits; the risk associated
with portfolios of defaultable instruments is discussed in Chapters 4 to 10.

Default risk can be analyzed from various perspectives. One of these
perspectives is provided by the rating approach, in which default risk is
quantified by means of a credit rating. These credit ratings are assigned
by rating agencies, such as Standard & Poor’s (S&P), Moody’s, and Fitch,
and the ratings assigned by these agencies are widely used as default risk
indicators by market participants. We shall review the rating approach in
the next section.

Another widely used approach to quantifying credit risk is the
application of statistical techniques. In this approach, one uses historical
data and analyzes them by means of methods from classical statistics or

*This chapter contains material from de Servigny and Renault (2004).
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machine learning. The result of such an analysis can be a credit score or a
probability of default (PD) for an obligor. The thus estimated PDs can
refer to a fixed period of time, typically one year, or they can provide a
complete term structure for the possible default event. These statistical
approaches are the topic of Section 2.

From a fundamental perspective, one can view default as the exer-
cise of an option by the shareholders of a firm. Therefore, one can, at least
in principle, derive PDs based on the Black-Scholes option pricing frame-
work. This leads to the so-called structural or Merton models, which are
analyzed in the section “The Merton Approach.”

Yet another perspective on default risk is provided by spreads of
traded bonds and credit default swaps. These spreads contain informa-
tion about the market’s view on default risk. Although these spreads
depend on other factors as well, they can be used for the extraction of
default risk information. We shall discuss these in the section “Spreads.”

Recovery risk is not as well understood as default risk. However,
recovery risk has received a lot of attention in recent years; this is in part
driven by the Basel Il requirements. A number of models have been devel-
oped, which will be reviewed in the section “Recovery Risk.” In the final
section, we will discuss the combined effect of recovery and default risk.
In particular, we shall focus on the effect of common factors underlying
the two types of risk.

Some of the models and results reviewed in this chapter are dis-
cussed more rigorously and in more detail in various textbooks on credit
risk such as the ones by Bielicki and Rutkowski (2002), Duffie and
Singleton (2003), Schénbucher (2003), de Servigny and Renault (2004), and
Lando (2004). A more detailed review of models for recovery risk is pro-
vided by Altman et al. (2005). Other results are not included in these
books; we shall give references for those below.

Many of the modeling approaches that we discuss in this chapter, as
well as many other approaches that practitioners use for quantifying credit
risk, rely on standard statistical methods as well as on methods from
the field of machine learning. For a more detailed discussion of statistical
methods, we refer the reader to statistics textbooks, e.g., to the ones by
Davidson and MacKinnon (1993), Gelman et al. (1995), or Greene (2000).
Good overviews of machine learning approaches are provided by Hastie
et al. (2003), Jebara (2004), Mitchell (1997), and Witten and Frank (2005). We
would also like to refer the reader to the textbooks by Andersen et al. (1993),
Hougaard (2000), and Klein and Moeschberger (2003) on survival analysis,
which underlies most of the commonly used default term-structure models.
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THE RATING APPROACH
What is a Rating?

A credit rating represents the agency’s opinion about the creditworthiness
of an obligor, with respect to a particular debt security or other financial
obligation (issue-specific credit ratings). It also applies to an issuer’s general
creditworthiness (issuer credit ratings). There are generally two types of
assessment corresponding to different financial instruments: long-term
and short-term ones. One should stress that ratings from various agencies
do not convey the same information. S&P perceives its ratings primarily
as an opinion on the likelihood of default of an issuer,* while Moody’s
ratings tend to reflect the agency’s opinion on the expected loss (probability
of default times loss severity) on a facility.

Long-term issue-specific credit ratings and issuer ratings are
divided into several categories, e.g., from “AAA” to “D” for S&P. Short-
term issue-specific ratings can use a different scale (e.g., from “A-1” to
“D”). Figure 2.1 reports Moody’s and S&P rating scales. Although these
grades are not directly comparable as recalled earlier, it is common to put
them in parallel. The rated universe is broken down into two very broad
categories: investment grade (IG) and noninvestment grade (NIG) or
speculative issuers. IG firms are relatively stable issuers with moderate
default risk while bonds issued in the NIG category, often called “junk
bonds,” are much more likely to default.

The credit quality of firms is best for Aaa/AAA ratings and deterio-
rates as ratings go down the alphabet. The coarse grid AAA, AA A, ...
CCC can be supplemented with plusses and minuses in order to provide
a finer indication of risk.

The Rating Process

A rating agency supplies a rating only if there is adequate information
available to provide a credible credit opinion. This opinion relies on vari-
ous analyses’ based on a defined analytical framework. The criteria
according to which any assessment is provided are very strictly defined
and constitute the intangible assets of rating agencies, accumulated over
years of experience. Any change in criteria is typically discussed at a
worldwide level.

*A notching-down may be applied to junior debt, given relatively worse recovery prospects.
Notching up is also possible.
fQuantitative, qualitative, and legal.
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FIGURE 2.1

Moody’'s and S&P’s Rating Scales.

Description Moody’s S&P
Investment grade

Aaa AAA Maximum safety

Aa AA A

A A

Baa BBB
Speculative grade

Ba BB

B B

v
Caa CCC

Worst credit quality

For industrial companies, the analysis is commonly split between
business reviews (firm competitiveness, quality of the management and
of its policies, business fundamentals, regulatory actions, markets, opera-
tions, cost control, etc.) and quantitative analyses (financial ratios, etc.).
The impact of these factors depends highly on the industry.

Figure 2.2* is an illustration of how various factors may impact dif-
ferently on various industries. It also reports various business factors that
impact the ratings in different sectors.

Following meetings with the management of the firm asking for a
rating, the rating agency reviews qualitative as well as quantitative fac-
tors and compares the company’s performance to its peers (see the ratio
medians per rating in Table 2.1). Following this review, a rating commit-
tee meeting is convened. The committee discusses the lead analyst’s rec-
ommendation before voting on it.

The issuer is subsequently notified of the rating and the major con-
siderations supporting it. A rating can be appealed prior to its publication
if meaningful new or additional information is to be presented by the
issuer. But there is no guarantee that a revision will be granted. When a
rating is assigned, it is disseminated to the public through the news
media.

*This figure is for illustrative purposes and may not reflect the actual weights and factors
used by one agency or another.



Univariate Risk Assessment

33

FIGURE 2.2

An Example of Various Factors that May be Used
to Assign Ratings.
Indicative Retail Airlines Property Pharmaceuticals
averages
Investment Investment grade: 82% linvestment grade: 24% Investment grade: 90% Investment grade:
and Speculative grade: 18% Speculative grade: 76% Speculative grade: 10% 78%
speculative Speculative grade:
grade(%) 22%
Business . high B
Risk heigh low ig high
Weight
Financial .
Risk low high low low
Weight
-Market Position (share | -Quality and location of the | -R&D Programs
Business capacity) assets -Product portfolio
Qualitative | -Scale & Geographic profile | -Ultimation of capacity. | -Quality of tenarts -Patert expirations
Factors -Position on price, value and | -Aircraftfleet (type/age) -Lease structure
service -Cost control (labour fuel) ~Country-specific criteria
. (laws, taxation, and market
-Regulatory environment liquidity

TABLE 2.1

Financial Ratios per Rating (Three-Year Medians—
1998-2000) in U.S. firms

AAA AA A BBB BB B CCC
EBIT int. cov. (x) 21.4 10.1 6.1 3.7 21 0.8 0.1
EBITDA int. cov. (x) 265 129 9.1 5.8 3.4 1.8 1.3
Free oper. cash flow/ 842 252 15.0 8.5 2.6 (32) (12.9)
total debt (%)
Funds from oper./ 128.8 55.4 43.2 30.8 18.8 7.8 1.6
total debt (%)
Return on capital (%) 349 217 19.4 13.6 11.6 6.6 1.0
Operating income/ 27.0 221 18.6 15.4 15.9 11.9 11.9
sales (%)
Long-term debt/ 13.3 282 33.9 42.5 572  69.7 68.8
capital (%)
Total debt/capital (%) 229 377 42.5 48.2 626 748 87.7
Number of 8 29 136 218 273 281 22

Companies

Source: S&P’s.
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All ratings are monitored on an ongoing basis. Any new qualitative
and quantitative piece of information is under surveillance. Regular meet-
ings with the issuer’s management are organized. As a result of the sur-
veillance process, the rating agency may decide to initiate a review (i.e.,
put the firm on Credit Watch) and change the current rating. When a rat-
ing comes on a Credit Watch listing, a comprehensive analysis is under-
taken. After the process, the rating change or affirmation is announced.

More recently, the “outlook” concept has been introduced. It pro-
vides information about the rating trend. If, for instance, the outlook is
positive, it means that there is some potential upside conditional to the
realization of current assumptions regarding the company. If the opposite,
a negative outlook suggests that the creditworthiness of the company fol-
lows a negative trend.

A very important fact that is persistently emphasized by agencies is
that their ratings are mere opinions. They do not constitute any recom-
mendation to purchase, sell, or hold any type of security. A rating in itself
indeed says nothing about the price or relative value of specific securities.
A CCC bond may well be under-priced while an AA security may be trad-
ing at an overvalued price, although the risk may be appropriately reflected
by their respective ratings.

The Link between Ratings and PDs

Although a rating is meant to be forward looking, it is not devised to pin-
point a precise PD but rather to a broad risk bucket. Rating agencies pub-
lish on a regular basis tables reporting observed default rates per rating
category, per year, per industry, and per region. These tables reflect the
empirical average defaulting frequencies of firms per rating category
within the rated universe. The primary goal of these statistics is to verify
that better (worse) ratings are indeed associated with lower (higher)
default rates. They show that ratings tend to have roughly homogeneous
default rates across industries,* as illustrated in the Table 2.2.

Figure 2.3 displays cumulative default rates in S&P’s universe per
rating category. There is a striking difference in default patterns between
investment grade and speculative grade categories. The clear link
between observed default rates and rating categories is the best support

*For some industries, observed long-term default rates can differ from the average figures.
This type of change can be explained as major business changes like, for example, regulatory
changes within the industry. Statistical effects, such as too limited and nonrepresentative
sample, can also bias results.



TABLE 2.2

g€

Average One Year Default Rates Per Industry*

Trans.  Util. Tele. Media Insur. Hightec Chem Build Fin. Ener. Cons. Auto.
AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AA 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A 0.00 0.11 0.00 0.00 0.09 0.00 0.00 0.42 0.00 0.20 0.00 0.00
BBB 0.00 0.14 0.00 0.27 0.67 0.73 0.19 0.64 0.32 0.22 0.17 0.29
BB 1.46 0.25 0.00 1.24 1.59 0.75 1.12 0.89 0.86 0.98 1.77 1.47
B 6.50 6.31 5.86 4.97 2.38 4.35 5.29 5.41 8.97 9.57 6.77 5.19
CCC  19.40 7143 3585  29.27 10.53 9.52 2162 21.88 2466 1444 26.00 33.33

*Default rates for CCC bonds are based on a very small sample and may not be statistically robust.
Source: S&P’s CreditPro, over the period 1981-2001.
Abbreviations: Trans. = transportation; Util. = utilities excluding Energy comps.; Tele. =telecoms; Insur. =insurance; Hightec = High Technology; Chem = chemistry;
Build = construction; Fin. =Financial companies excluding insurance companies; Ener. = Energy companies; Cons. =consumer products; Auto. =automotive companies..
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FIGURE 2.3

Cumulative Default Rates per Rating Category (S&P’s
CreditPro).

O AAA
B AA
OA

] BBB
BB
HB

B CCC

Percent

for agencies’ claim that their grades are appropriate measures of credit-
worthiness.

Rating agencies also calculate transition matrices, which are tables
reporting probabilities of migrations from one rating category to another.
They serve as indicators of the likely path of a given credit up to a given
horizon. Ex-post information, as that provided in default tables or transi-
tion matrices, does not guarantee provision of ex-ante insights regarding
future PDs or migration. The stability over time of the PD in a given rating
class and stability of rating criteria used by agencies, however, contribute
to making ratings forward-looking predictors of default.

Estimating Cumulative Default Rates
and Transition Matrices

Stability of Default Rates and Transition

Matrices over the Cycle

Transition matrices appear to be dependent on the economic cycle, as
downgrades and PDs increase significantly during recessions. Nickell
etal. (2000) classify years between 1970 and 1997 in three categories
(growth, stability, and recession), according to GDP growth for the G7
countries. One of their observations is that for IG counterparts, migration
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volatility is much lower during growth periods than during recessions.
Their conclusion is that transition matrices unconditional on the economic
cycle cannot be considered as Markovian.*

In another study based on S&P’s data, Bangia et al. (2002) observe that
the more the time horizon of an independent transition matrix increases, the
less monotonic' the matrix becomes. Regarding its Markovian property, the
authors tend to be less affirmative than Nickell et al. (2000), that is, their
tests show that the Markovian hypothesis is not strongly rejected. The
authors however acknowledge that one can observe path dependency in
transition probabilities. For example, a past history of downgrades has an
impact on future migrations. Such path dependency is significant as future
PDs can increase up to five times for recently downgraded companies.

The authors then focus on the impact of economic cycles on transi-
tion matrices. They select two types of periods (expansion, recession)
according to NBER indicators. The main difference between the two matri-
ces corresponds mainly to a higher frequency of downgrades during
recession periods. Splitting transition matrices in two periods is helpful,
i.e., out of diagonal terms are much more stable. Their conclusion is that
choosing two transition matrices conditional to the economic cycle gives
much better results, in terms of Markovian stability, than considering only
one matrix unconditional on the economic cycle.

In order to further investigate the impact of cycles on transition
matrices and credit VaR, Bangia et al. (2002) use a version of CreditMetrics
on a portfolio of 148 bonds. They show that during recession periods, the
necessary economic capital increases substantially compared to growth
periods (by 30 percent for a 99 percent confidence level of credit VaR or 25
percent for a 99.9 percent confidence level). Note that the authors ignore
the increase in correlation during recessions.

Estimating Default and Rating Transition
Probabilities via Cohort Analysis

A common approach for rated companies is to derive historic average
default or rating transition probabilities by observing the performance of
groups of companies—frequently called cohorts—with identical credit

*A Markov chain is defined by the fact that information known at time -1, used in the
chain, is sufficient to determine the probabilities at time ¢. In other words, it is not necessary
the complete path till -1 in order to obtain the probabilities at time ¢.

*Monotonicity rule: probabilities are decreasing when the distance to the diagonal of the
matrix increases. This property is characteristic from the trajectory concept: migrations occur
through regular downgrade or upgrade rather than through a big shift.
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ratings. These estimates are particularly suitable in the context of long-
term “through-the-cycle” risk management, which attempts to dampen
fluctuations due to business cycle and other economic effects.

We start by considering all companies at a specific point in time ¢
(e.g., December 31, 2000). We denote the total number of companies in the
kth cohort at time ¢ by N,(t), and the total number of observed defaults in
period T (i.e., between time t+T-1 and time t+T) by D,(t, T). We then
obtain an estimate for the (marginal) PD in year T (as seen from time t):

D (t,T) *
Pk(t,T)zﬁ.

Repeating this analysis for cohorts created at M different points in time ¢
allows us to obtain an estimate for the unconditional PD in period T,

M
P(T) = Zwk(t)Pk(t).
t=1

These unconditional probabilities are simply weighted averages of the
estimates obtained for cohorts considered in different periods. Typically,

N, ()
Z:f:l Nk(m)

(weighted according to the number of observations in different periods).

wk(t):% (each period is equally weighted) or w,(t) =

One way to obtain unconditional cumulative PDs is to replace the
(marginal) number of defaults in period T, D, (t, T), with the cumulative

T
number of defaults up to period T, D;(t, T):Zmlek(t,m).

Unfortunately, this estimator “loses” more and more information as T
increases.” An alternative method, which incorporates all available infor-
mation, is to calculate the unconditional (weighted average) cumulative
probabilities E{““‘“(T) from the unconditional marginal probabilities

E{(T). This can be done by means of the following recursion:

*The cohort analysis outlined here is based on the global ratings performance data contained
in S&P’s CreditPro® Version 6.60 (http://creditpro.standardandpoors.com/).

*Some companies will have their rating withdrawn during the course of the year. It is com-
mon to treat these transitions to NR (not rated) as noninformative with respect to the credit
quality. Hence, companies that have their rating withdrawn during the period of interest are
ignored in the subsequent analysis.


http://creditpro.standardandpoors.com/
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Iskcum (1) — I_Jk(l),
ISkcum (T) = ]3kcum T-D+(1- E{mm(T - 1))13k (T).

Table 2.3 and Figure 2.4 show the cumulative PDs for time horizons of up
to 10 years, estimated from the S&P CreditPro® database. The database
contains the ratings history of 9740 companies from December 31, 1981 to
December 31, 2003, and includes 1386 defaults. Figure 2.4 plots the results
for rating classes “AAA” to “B.”

The estimates for “AAA” companies over short horizons reveal one
of the main drawbacks of cohort analysis. The approach is not capable of
deriving nonzero probabilities if no defaults have been observed in the
past. However, it is clear that there is a chance (however small) that even
a highly rated company will default within the course of one or two
years.

The same approach can be taken for estimating probabilities for rat-
ing transitions. In this case, we have, for a given horizon, a matrix of
probabilities (transition matrix) instead of a vector of probabilities. The
entries of this matrix can be estimated using straightforward generaliza-
tions of the given equations. The corresponding rating transition matrix is
given in Table 2.4.

TABLE 2.3
Cumulative PDs (in Percents) 1981-2003.

Rating Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

AAA 0.00 0.00 0.03 0.06 0.10 017 025 038 043 0.48

AA 0.01 0.04 0.10 0.19 0.31 043 058 071 0.82 0.94
A 0.05 0.15 028 045 065 087 1.11 134 162 1.95
BBB 0.37 1.01 167 253 341 424 494 561 622 6.93
BB 1.36 4.02 7.12 992 1238 14.75 16.65 18.24 19.84 21.00
B 6.08 13.31 19.20 23.66 26.82 29.29 31.33 33.01 34.21 35.41

CCC/C 30.85 39.76 45.47 49.53 53.00 54.30 55.50 56.11 57.59 58.44

Source: S&P’s.

*For T=5 years, e.g., the last cohort that can be considered is December 1998 if the last entry
in the database corresponds to December 2003. This is because cohorts originating from later
dates would not be not observed for the whole five years, they are “right-censored.”
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FIGURE 2.4

Cumulative Default Probabilities (AAA to B) 1981-2003.
(S&P's).
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TABLE 2.4

One year Transition Matrix (Percents) in U.S. Industries
(1981-2001)

End rating
Initial
Rating AAA AA A BBB BB B CcC D
AAA 89.41 5.58 0.44 0.08 0.04 0 0 0
AA 0.58 88.28 6.51 0.6 0.07 0.09 0.03 0.01
A 0.07 2.05 87.85 4.99 0.46 0.17 0.05 0.06
BBB 0.04 0.24 4.52 84.4 4.24 0.68 0.16 0.27
BB 0.03 0.07 0.43 6.1 75.56 7.33 0.82 1.17
B 0 0.09 0.25 0.32 4.78 74.59 3.75 5.93
CCC 0.13 0 0.25 0.75 1.63 8.67 51.01 25.25

D denotes default in this table.
Source: S&P’s Credit Pro.
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Adjusting for Withdrawn Ratings (NR). Some firms that
have a rating at the beginning of a given period may no longer have one
at the end. This may be because the issuer has not paid the agency’s fee or
that it has asked the agency to withdraw its rating. These events are not
rare and account for about 4.5 percent of transitions in the IG class and
10 percent in the speculative grade category over a given year.

When calculating probabilities, one needs to adjust the probabilities
calculated earlier to take into consideration the possibility of withdrawn
rating. Otherwise, the sum of transition probabilities to the n ratings
would be less than one.

The adjustment is performed by ignoring the firms that have their
rating withdrawn during a given period. The underlying assumption is
that the withdrawal of a rating is a neutral event, i.e., it is not associated
with any information regarding the credit quality of the issuer. One
could, however, argue that firms that expect a downgrade below what
they perceive is an acceptable level ask for their ratings to be withdrawn,
whereas firms that are satisfied with their grade generally want to main-
tain it.

It is difficult to get information about the motivation behind a
rating’s withdrawal and, therefore, such adjustment is generally considered
acceptable.

Table 2.5 shows the default table used in collateral debt obligations
S&P CDO Evaluator version 2.4.1. In that version, the cohort analysis was
the basis of the methodology used.

Estimating Default and Rating Transition
Probabilities via a Duration Technique

The cohort approach outlined earlier is also frequently employed in the
calculation of rating transition probabilities or transition matrices. Instead
of counting the number of defaults, D,(t, T), we use the number of rating
migrations from rating class k to a different class I, N,(t, T). Although
matrices can be obtained for different horizons T, it is common to focus on
the average one-year transition matrix, denoted by Q. Assuming that rat-
ing transitions follow a time homogeneous Markov process, the T-period
matrix Q(T) is given by Q (T)=QT. The analysis does not take into account
the exact timing of events and ignores multiple transitions between time
t and the end of the observation period, ¢+ T. The estimates may also vary
with the exact choice of t and the number of cohorts considered within a
fixed period of time (e.g., monthly or annual cohorts). One way to over-
come these drawbacks is to work within a so-called duration (or hazard)



TABLE 2.5

Cumulative PDs per Rating Category (in Percents)—-CDO Evaluator 2.41 Assumptions

AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC+ CCC ccCc- cC SD D
1 0.023 0.0283 0.111 0.136 0.136 0.136 0.145 0.225 0.225 0.544 1.666 2.772 2792 3.667 8.594 9.563 14.693 19.824 46.549 100.000 100.000 100.000
2 0.062 0.071 0.242 0.290 0.303 0.317 0.358 0.532 0.638 1.357 3.316 5265 5.667 7.535 14.514 16.626 23.401 30.176 53.451 100.000 100.000 100.000
3 0.119 0.143 0.394 0464 0501 0.542 0632 0911 1.182 2317 4.916 7498 8.380 11.078 18.594 21.564 28.696 35.829 57.219 100.000 100.000 100.000
4 0.193 0.239 0.565 0.659 0.728 0.808 0.959 1.352 1.814 3.344 6.439 9489 10.826 14.122 21.446 24.962 32.024 39.086 59.390 100.000 100.000 100.000
5 0284 0357 0.757 0.875 0.984 1.111 1330 1.841 2500 4.387 7.866 11.255 12,973 16.655 23.488 27.316 34.200 41.083 60.722 100.000 100.000 100.000
6 0392 0497 0.968 1.113 1265 1.448 1737 2368 3.215 5415 9.189 12817 14.834 18.735 24.997 28.985 35.690 42.394 61.596 100.000 100.000 100.000
7 0517 0656 1.198 1372 1570 1.814 2173 2921 3.941 6.410 10.407 14.197 16.436 20.438 26.151 30.208 36.762 43.317 62.211 100.000 100.000 100.000
8 0.658 0.835 1445 1.650 1.896 2204 2632 3.492 4667 7.360 11.525 15.419 17.816 21.840 27.065 31.141 37.576 44.010 62.673 100.000 100.000 100.000
9 0815 1.033 1.710 1946 2242 2.614 3.108 4.074 5383 8261 12548 16.503 19.008 23.004 27.816 31.883 38.222 44.562 63.041 100.000 100.000 100.000
10 0.988 1.247 1.990 2259 2604 3.041 3.597 4.661 6.084 9.112 13.486 17.470 20.044 23.984 28.453 32.497 38.760 45.023 63.349 100.000 100.000 100.000
11 1176 1.478 2285 2588 2981 3.481 4.096 5248 6.766 9.914 14.346 18.338 20.952 24.821 29.008 33.023 39.223 45.424 63.616 100.000 100.000 100.000
12 1378 1.724 2594 2931 3371 3.931 4599 5831 7428 10.671 15139 19.122 21.755 25.548 29.504 33.488 39.635 45.782 63.855 100.000 100.000 100.000
13 1.594 1985 2916 3.287 3.772 4.389 5.106 6.409 8.068 11.384 15.872 19.835 22.473 26.190 29.957 33.910 40.011 46.111 64.074 100.000 100.000 100.000
14 1.823 2259 3.249 3.654 4.183 4.852 5614 6.979 8.687 12.058 16.554 20.489 23.122 26.765 30.377 34.300 40.359 46.418 64.278 100.000 100.000 100.000
15 2.066 2546 3.593 4.032 4601 5.319 6.120 7.539 9.286 12.697 17.189 21.093 23.714 27.288 30.771 34.667 40.687 46.708 64.472 100.000 100.000 100.000
16 2.320 2844 3.947 4.418 5025 5789 6.624 8.090 9.864 13.304 17.786 21.655 24.260 27.770 31.146 35.015 41.000 46.986 64.657 100.000 100.000 100.000
17 2586 3.154 4.310 4.812 5454 6.259 7.125 8.629 10.425 13.882 18.349 22.182 24.768 28.220 31.506 35.349 41.301 47.253 64.835 100.000 100.000 100.000
18 2.863 3473 4.681 5213 5887 6.728 7.621 9.159 10.967 14.435 18.882 22.680 25.245 28.643 31.854 35.673 41.593 47.513 65.009 100.000 100.000 100.000
19 38.150 3.802 5.058 5.619 6.323 7.197 8.112 9.677 11.493 14.965 19.390 23.152 25.696 29.045 32.191 35.987 41.877 47.766 65.178 100.000 100.000 100.000
20 3.447 4140 5442 6.030 6.761 7.663 8598 10.185 12.005 15.474 19.875 23.603 26.126 29.430 32.520 36.294 42.154 48.014 65.343 100.000 100.000 100.000
21 3.753 4.485 5831 6.444 7200 8.127 9.078 10.683 12502 15.966 20.342 24.036 26.538 29.801 32.843 36.595 42.427 48.258 65.505 100.000 100.000 100.000
22 4.067 4.838 6.224 6.861 7.639 8.588 9.552 11.171 12.987 16.442 20.792 24.454 26.935 30.161 33.159 36.892 42.695 48.498 65.665 100.000 100.000 100.000
23 4.389 5.197 6.622 7.281 8.078 9.046 10.021 11.650 13.460 16.904 21.227 24.858 27.319 30.510 33.471 37.183 42.959 48.735 65.823 100.000 100.000 100.000
24 4719 5562 7.023 7.702 8517 9.500 10.483 12.120 13.923 17.353 21.650 25.251 27.692 30.852 33.779 37.472 43.220 48.969 65.979 100.000 100.000 100.000
25 5.056 5932 7.426 8.124 8954 9.950 10.940 12582 14.376 17.791 22.062 25.634 28.056 31.186 34.083 37.756 43.479 49.201 66.134 100.000 100.000 100.000
26 5.398 6.307 7.831 8.547 9.389 10.396 11.391 13.036 14.819 18.219 22463 26.008 28.412 31.515 34.383 38.039 43.734 49.430 66.287 100.000 100.000 100.000
27 5.747 6.686 8239 8970 9.823 10.838 11.836 13.482 15.255 18.638 22.856 26.375 28.761 31.838 34.681 38.318 43.988 49.658 66.438 100.000 100.000 100.000
28 6.101 7.068 8.647 9.392 10.254 11.276 12.276 13.921 15.683 19.048 23.242 26.735 29.104 32.157 34.976 38.595 44.239 49.883 66.589 100.000 100.000 100.000
29 6.459 7.454 9056 9.813 10.684 11.710 12.711 14.354 16.104 19.452 23.620 27.089 29.442 32.472 35.268 38.870 44.489 50.107 66.738 100.000 100.000 100.000
30 6.822 7.842 9465 10.234 11.110 12.140 13.140 14.780 16.518 19.848 23.992 27.437 29.775 32.783 35.559 39.143 44.737 50.330 66.887 100.000 100.000 100.000
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modeling framework, where the exact points in time of migrations are
captured. In its simplest form, the duration analysis involves the estima-
tion of a generator matrix of a Markov chain, which, for the time-
homogeneous as well as time-inhomogeneous case, is only marginally
more complex than a cohort analysis. Lando and Skodeberg (2002),
Jafry and Schuermann (2003), and Jobst and Gilkes (2003) discuss these
approaches in more detail. Another advantage of the duration framework
is that the estimation process can be extended to incorporate state vari-
ables (economic variables or past ratings), in order to capture business
cycle effects and ratings momentum. See, e.g., Kavvathas (2001),
Christensen et al. (2004), and Couderc and Renault (2005).

Let us consider the simplest case of a time-homogeneous, constant
intensity estimator. A transition matrix can be estimated in a straight-
forward manner. The maximum-likelihood estimator under the assumption
of constant transition intensities is:

ml.],(O,T)

ij T
J.O n.(u)du

where ml.j(O, T) corresponds to the total number of migrations from class
i to class j with i #j over the interval [0, T]; it includes firms that were
not in rating class 7 initially, but have entered into this class i during the
period [0, T] and subsequently moved to class j during the same period.T
n(u) is the total number of firms in class i at time u. As a consequence, JO
n(u)du represents the total number of firms in class i during the [0, T]
period weighted by the actual length of time each firm spent in this
class.

We show in Tables 2.6A and B how the estimation of a one-year
time-homogeneous transition matrix can differ whether it is computed
with the duration method or with the cohort approach. We use S&P’s
Credit Pro over the period 1981-2002, adjusting for NRs.

A comparison of the matrices reveals three major differences:

1. AAA default probabilities and migration rates to B and CCC are
nonzero for the duration method, despite the fact that no
defaults were observed for highly rated issuers. Migrations of a
firm from AAA to AA to A to a subsequent default are sufficient
to contribute probability mass to AAA default probabilities

(PDjan)-
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TABLE 2.6A

Duration Method: One-year (NR-adjusted) Transition
Matrix (1981-2002)

AAA AA A BBB BB B CccC D

AAA 93.1178 6.1225 0.5736 0.1267 0.0536 0.0048 0.0006  0.0003
AA 0.5939 91.3815 7.3290 0.5600 0.0697 0.0527 0.0092  0.0040
A 0.0641 1.9125 91.9291 5.4793 0.4386 0.1514 0.0157  0.0093
BBB 0.0363 0.2314 4.0335 89.5775 5.0656 0.8554 0.0866 0.1137
BB 0.0299 0.0987 0.5407 5.0917 83.8964 8.8088 0.8564 0.6774
B 0.0043 0.0764 0.2531 0.4936 4.3764 83.4296 6.3009 5.0658
CCC 0.0595 0.0101 0.3169 0.4650 1.1593 7.0421 47.1048 43.8423
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.000

2. In particular, IG (except AAA) PDs are significantly smaller for
the time-homogeneous duration approach: the less-efficient
cohort approach appears to overestimate default risk
significantly. For example, PD, is approximately six times
higher in the cohort approach. These lower estimates are
obtained when firms spend time in the A state during the year
on their way up (down) to higher (lower) ratings from lower
(higher) rating classes (passing through effects). Such moves
reduce the default intensity of A-rated issuers (as the denomi-
nator increases) which in turn leads to lower PDs.

TABLE 2.68B

Cohort Method: Average One-year (NR-adjusted)
Transition Matrix (1981-2002)

AAA AA A BBB BB B cccC D

AAA 93.0859 6.2624 0.4534 0.1417 0.0567 0.0000 0.0000 0.0000
AA 0.5926 91.0594 7.5372 0.6134 0.0520 0.1144 0.0208 0.0104
A 0.0538 2.0987 91.4858 5.6084 0.4664 0.1913 0.0419 0.0538
BBB 0.0324 0.2265 4.3362 89.2161 4.6355 0.9223 0.2751 0.3560
BB 0.0361 0.0843 0.4334 5.9595 83.0966 7.7173 1.2039  1.4688
B 0.0000 0.0830 0.2844 0.4029 5.2264 82.4484 4.8353 6.7196
CCC 0.1053 0.0000 0.3158 0.6316 1.5789 9.8947 56.5263 30.9474
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000
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3. For very low rating categories (CCC in the above coarse setup),
the differences are also extreme; About 30 percent CCC default
rates for the cohort approach compared to 44 percent for the
duration method. Hence, using the less efficient (yet industry
standard) cohort approach leads to 13 percent lower results. One
explanation is that companies pass through CCC ratings on their
way to default and if they do so, usually spend only little time
there. This yields a small denominator and therefore higher PDs.

The use of this duration approach has had a significant impact on the
default table embedded into CDO Evaluator version 3. The new default
table (Table 2.7) is presented next, and changes can be seen from the table
(Table 2.5) that corresponded to CDO Evaluator version 2.41. This new
table is a result of a blend between the cohort approach, the duration
approach, and empirically observed cumulative default rates.

STATISTICAL PD MODELING
AND CREDIT SCORING

In order to quantify credit risk, practitioners often build models that
provide PDs of specific obligors over a given period of time. Alternatively,
one often assigns a so-called credit score to an obligor, e.g., a number
between 1 and 10 with 1 corresponding to low risk and 10 corresponding
to high risk of default.

There are two fundamentally different approaches to modeling PDs
or assigning credit scores:

¢ Statistical approach

¢ Structural approach (also called Merton model)

Both types of approaches, along with a myriad of hybrids, are commonly
used in practice. We shall review some popular examples for the former
approach first, and we shall discuss the latter approach in a later section.

Some Statistical Techniques

In this section, we briefly discuss some statistical approaches to model-
ing PDs for a given period of time (typically one year) and deriving
credit scores. Some of these approaches are based on techniques from
classical statistics, whereas others resort to methods from machine learning



TABLE 2.7

Cumulative PD per Rating Category (in Percents)-CDO

Evaluation 3

Default Rates

AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC+ CCC CCC- CC SD D
1 0.000 0.001 0.008 0.014 0.018 0.022 0.033 0.195 0.294 0.806 1.484 2296 3.457 4.100 5.295 8.138 23.582 45.560 66.413 100.000 100.000 100.000
2 0.005 0.009 0.039 0.048 0.064 0.080 0.121 0427 0.684 1805 2.915 4506 6.624 8.124 10.833 16.559 38.046 59.087 79.205 100.000 100.000 100.000
3 0.016 0.027 0.085 0.102 0.138 0.172 0.262 0.701 1.162 2.899 4.312 6.597 9.516 11.903 15.940 23.729 46.605 64.704 82.840 100.000 100.000 100.000
4 0.034 0.056 0.144 0.178 0.240 0.298 0.451 1.023 1.713 4.034 5.681 8567 12.164 15.388 20.479 29.578 52.040 67.875 84.478 100.000 100.000 100.000
5 0.061 0.098 0219 0276 0.371 0459 0686 1.391 2323 5179 7.020 10.424 14.595 18.571 24.463 34.333 55.809 70.042 85.513 100.000 100.000 100.000
6 0.097 0.153 0.310 0.397 0.531 0.655 0.966 1.805 2980 6.316 8.327 12.175 16.832 21.462 27.947 38.234 58.626 71.685 86.285 100.000 100.000 100.000
7 0.144 0224 0420 0543 0.719 0.887 1287 2261 3.672 7.434 9.598 13.826 18.895 24.083 30.999 41.476 60.850 73.005 86.907 100.000 100.000 100.000
8 0.204 0311 0549 0.713 0.937 1.152 1.648 2756 4.390 8529 10.831 15.387 20.800 26.457 33.680 44.209 62.672 74.105 87.429 100.000 100.000 100.000
9 0276 0.414 0.700 0.909 1.184 1.451 2047 3284 5127 9.598 12.025 16.862 22.563 28.610 36.046 46.543 64.204 75.041 87.877 100.000 100.000 100.000
10 0.362 0.536 0.872 1.130 1.458 1.782 2479 3.842 5876 10.637 13.179 18.258 24.197 30.565 38.145 48.559 65.517 75.853 88.268 100.000 100.000 100.000
11 0.463 0678 1.066 1.377 1.761 2143 2943 4425 6.634 11.649 14.295 19.580 25.717 32.346 40.016 50.320 66.657 76.565 88.614 100.000 100.000 100.000
12 0581 0.839 1.284 1.650 2.092 2534 3434 5029 7.396 12.631 15.371 20.834 27.132 33.973 41.694 51.871 67.659 77.197 88.921 100.000 100.000 100.000
13 0715 1.020 1.525 1.947 2448 2952 3952 5651 8.160 13.587 16.410 22.025 28.453 35.463 43.206 53.248 68.548 77.762 89.197 100.000 100.000 100.000
14 0.867 1223 1.790 2270 2830 3.396 4.491 6.287 8.923 14.515 17.414 23.157 29.689 36.832 44.575 54.481 69.343 78.271 89.447 100.000 100.000 100.000
15 1.087 1.447 2078 2617 3237 3.864 5.051 6.936 9.684 15418 18.383 24.234 30.849 38.096 45.822 55.592 70.060 78.732 89.674 100.000 100.000 100.000
16 1225 1693 2.389 2988 3.666 4.353 5.628 7.593 10.441 16.296 19.320 25.262 31.940 39.265 46.962 56.599 70.710 79.154 89.882 100.000 100.000 100.000
17 1.433 1.961 2724 3382 4.117 4.862 6.221 8.258 11.193 17.152 20.226 26.243 32.969 40.351 48.009 57.517 71.304 79.541 90.074 100.000 100.000 100.000
18 1.661 2250 3.080 3.798 4.588 5390 6.826 8.928 11.940 17.985 21.103 27.181 33.941 41.363 48.976 58.359 71.848 79.898 90.250 100.000 100.000 100.000
19 1908 2561 3.458 4.234 5078 5.934 7.442 9.602 12.680 18.798 21.952 28.081 34.862 42.310 49.872 59.134 72.350 80.229 90.414 100.000 100.000 100.000
20 2175 2.893 3.858 4.690 5.586 6.493 8.068 10.279 13.414 19.591 22777 28.944 35.737 43.198 50.706 59.851 72.816 80.538 90.568 100.000 100.000 100.000
21 2462 3246 4277 5165 6.110 7.065 8.701 10.957 14.142 20.365 23.577 29.773 36.570 44.034 51.486 60.517 73.249 80.827 90.711 100.000 100.000 100.000
22 2769 3.619 4715 5657 6.648 7.648 9.340 11.636 14.862 21.123 24.355 30.572 37.365 44.824 52.216 61.140 73.654 81.099 90.845 100.000 100.000 100.000
23 3.095 4.012 5.171 6.164 7.200 8.241 9.985 12314 15575 21.863 25.112 31.343 38.126 45.571 52.904 61.723 74.035 81.355 90.973 100.000 100.000 100.000
24 3.440 4.423 5644 6.687 7.763 8.844 10.633 12991 16.281 22.589 25.850 32.087 38.855 46.281 53.554 62271 74.394 81.598 91.093 100.000 100.000 100.000
25 3.804 4.853 6.133 7.223 8.337 9.454 11.284 13.667 16.980 23.300 26.570 32.808 39.556 46.958 54.169 62.789 74.733 81.828 91.207 100.000 100.000 100.000
26 4.187 5300 6.638 7.772 8921 10.070 11.937 14.340 17.671 23.997 27.272 33.506 40.230 47.604 54.754 63.280 75.055 82.048 91.316 100.000 100.000 100.000
27 4586 5763 7.156 8.331 9.513 10.692 12.591 15.010 18.356 24.682 27.959 34.184 40.881 48.222 55.311 63.746 75.362 82.258 91.419 100.000 100.000 100.000
28 5.008 6.241 7.686 8.901 10.112 11.318 13.245 15.678 19.033 25.354 28.630 34.842 41.510 48.815 55.844 64.190 75.655 82.459 91.519 100.000 100.000 100.000
29 5.436 6.735 8229 9.480 10.718 11.947 13.900 16.342 19.704 26.015 29.288 35.483 42.118 49.386 56.355 64.615 75.935 82.653 91.614 100.000 100.000 100.000
30 5.885 7.241 8.781 10.066 11.329 12.580 14.553 17.003 20.367 26.665 29.933 36.108 42.709 49.936 56.845 65.022 76.205 82.839 91.706 100.000 100.000 100.000
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(also called statistical learning). They share the common idea that the PD
of an obligor is learned from the data with no or little input of knowledge
about the mechanisms that lead firms to default.

In statistical learning, one often makes a distinction between super-
vised and unsupervised classification. These two approaches differ with
respect to the data from which we learn. In the first case, so-called labeled
training data are available, i.e., observations that provide a default indi-
cator or a credit score along with the potential risk factors. In other words,
a supervised algorithm learns from historical observations of firms for
which we know the class labels (default indicator or credit score).
Unsupervised learning algorithms, on the other hand, rely on so-called
unlabeled data, i.e., observations for which the class labels are unknown.
While this type of learning can be used for the assignment of credit scores,
it is not commonly used for modeling PDs; we will not discuss unsuper-
vised learning in this chapter.

Some approaches that can be used for modeling PDs or deriving
credit scores are*:

=

Logistic regression and probit
Maximum-likelihood estimation

Bayesian estimation (e.g., naive Bayes classifier)
Minimume-relative-entropy models

Fisher linear-discriminant analysis

k-Nearest neighbor classifiers

Classification trees

Support vector machines

© X NG WD

Neural networks

p—
e

Genetic algorithms

Some of the methods in this list are closely related to each other, and the
methods in the list are not exclusive. For example, logistic regression can
be viewed as a special case of methods 2, 3, or 4, and maximum-likelihood
estimation can be interpreted in the Bayesian framework. However, all
of these methods are interesting in their own right and are applied by
practitioners.

The first four of these methods provide conditional probabilities for
the classes (default or nondefault for PD modeling and the score for credit

*See, e.g., Mitchell (1997), Hastie et al. (2003), Jebara (2004), or Witten and Frank (2005).
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scoring), given the values of the risk factors. The remaining methods in
the list are classifiers by design, i.e., they assign a single class but no class
probabilities to obligors. This makes these methods more relevant for
credit scoring than for PD modeling. However, some of these methods
can be generalized to provide conditional probabilities. One way for
doing this is to apply multiple, slightly different, classifiers for a given
obligor and assign class probabilities according to how often each class is
assigned.

In what follows, we shall focus on PD modeling and restrict our-
selves to logistic regression, which is perhaps the most popular method
for PD modeling, and to a generalization that fits into frameworks 2, 3,
and 4.

Let us consider a vector X of risk factors, with X € R%. In a logistic
regression, the probability of a default (symbolized by a “1”) in a given
period of time (e.g., one year), conditional on the information X, is writ-
ten as the logit transformation of a linear combination of the feature func-
tionsf], (X),j=1,...,] 1ie,

1

P(lx) = T

1+e—

where the ; are parameters. One can think of the feature functions as
terms of a Taylor expansion of some appropriate function of X that reflects
the dependency of the PD on the risk factors. The logit transformation*
enables us to obtain a result located in the interval ]0, 1].

There are various choices one can make for the feature functions.
The simplest choice, which is frequently used, is a set of linear functions.
In this case, we obtain the so-called linear logit model, i.e.,

1

P(X) = S

1+e—(

Another occasionally used choice for feature functions is the set of
all first- and second-order combinations of risk factors; it results in

*Other transformations such as the probit are possible; the probit is used by Moody’s
Riskcalc™, see Falkenstein (2000).
Another way to present it is to further reduce the residual or error term.
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1
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P([X) = |
1+e—

We have renamed some of the j; as &, here in order to simplify the nota-
tion.

Another choice made for S&P PD model, called Credit Risk Tracker
(CRT) (see Zhou et al., 2006), is to include, besides the first- and second-
order terms, additional cylindrical kernel features of the form f]»(X )=

2
M, a; are the selected centers and o is a bandwidth corre-
c
sponding to the decay rate of the kernels.

In order to specify a model of any of these types, one has to estimate
the model parameters, i.e., the B. The standard approach for doing so is
to maximize, with respect to the [3]., the log-likelihood function

N

L(B) = Y (Y, log P(IX,) + (1 - Y;)log[1 - P(IX))]},

i=1

where the (X, Y,),i=1,..., N, are observed pairs of risk factors and
default indicators (1 for default and 0 for no default). This approach is
often called logistic regression (see, e.g., Hosmer and Lemeshow, 2000).
This maximum-likelihood approach is effective if there are relatively
few feature functions and relatively many observations available for
the model training. Otherwise, it can lead to overfitting, i.e., to a model
that fits the training data well, but performs poorly on out-of-sample
data. In order to mitigate overfitting, one can use so-called regulariza-
tion, i.e.,, maximize a regularized likelihood that typically takes the
form

L(B)+R(B).

Here, R(p) is a regularization term that takes a large value for large
absolute /3] and a small value for small absolute [3].. Since smaller /3], corre-
spond to smoother (as a function of the risk factors) PDs, the above regu-
larization term penalizes nonsmooth PDs. The result of the estimation
isthe PD that is smoother than the one we would obtain from the
maximum-likelihood estimation. In practice, one uses regularization
terms that are either quadratic or linear in the absolutes of the B] It is
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interesting to observe that regularization linear in the absolutes of the j;
leads to automatic feature selection.*

The above statistical methods are usually characterized as (pos-
sibly regularized) maximum-likelihood estimations of exponential
probabilities. They can also be shown to be equivalent to minimum-
relative-entropy methods (see, e.g., Jebara, 2004). Moreover, the result-
ing probabilities turn out to be robust from the perspective of an
expected utility maximizing investor (see Friedman and Sandow,
2003b).

Performance Analysis for PD Models

There are a variety of measures that are commonly used to quantify the
performance of PD models. Many, such as the Gini curve or cumulative
accuracy curve (CAP) and receiver operator characteristic (ROC), which
we shall discuss next, analyze how a PD model ranks individual obligors.
Other performance measures, such as the likelihood, which we shall also
discuss next, do not explicitly focus on ranks but rather depend on the PD
values that are assigned to obligors.

The Gini/CAP and ROC Approachest

A commonly used measure of classification performance is the Gini curve
or CAP. This curve assesses the consistency of the predictions of a scoring
model (in terms of the ranking of firms by order of default probability) to
the ranking of observed defaults. Firms are first sorted in descending
order of default probability as produced by the scoring model (horizontal
axis of Figure 2.5). The vertical axis displays the fraction of firms that have
actually defaulted.

A perfect model would have assigned the D highest PDs to the D
firms that have actually defaulted out of a sample of N. The perfect
model would therefore be a straight line from the point (0, 0) to the point
(D/N,1), and then a horizontal line from (D/N, 1) to (1, 1). Conversely,
an uninformative model would assign randomly the PDs to high risk
and low risk firms. The resulting CAP curve is the diagonal from (0, 0)
to (1, 1).

*See Hastie et al. (2003) for the general idea of regularization, and Zhou et al. (2006) for an
application in the PD context.

A more formal presentation of the Gini is in Appendix 1. For a more detailed discussion of
ROC, see, e.g., Hosmer and Lemeshow (2000).
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Any real scoring model will have a CAP curve somewhere in between.
The Gini ratio (or accuracy ratio), which measures the performance of the
scoring model for rank ordering, is defined as: G=F/(E+F), where E and F
are the areas depicted in Figure 2.5. This ratio lies between 0 and 1; the
higher this ratio, the better the performance of the model.

The CAP approach provides a rank-ordering performance measure
of a model and is highly dependent on the sample on which the model
is calibrated. For example any model calibrated on a sample with no
observed default, which predicts zero default, will have a 100 percent
Gini coefficient. However, this result will not be very informative about
the “true performance” of the underlying models. For instance, the same
model can exhibit an accuracy ratio under 50 percent or close to 80 per-
cent, according to the characteristic of the underlying sample. Comparing
different models on the basis of their accuracy ratio and calculated with
different samples is therefore totally nonsensical.

A closely related approach is the ROC curve. Here one varies a par-
ameter o and computes, for each ¢, the hit rate [percentage of correct
default prediction assuming that P(1]X)>a predicts default] and the
false alarm rate (percentage of wrong default prediction assuming that
P(l‘X)>a predicts default). The ROC curve is the plot of the hit rate

FIGURE 2.5
The CAP Curve.
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against the false alarm rate. There exists a simple relationship between
the area, ROC, under the ROC curve and the Gini coefficient, Gini,
which is

Gini=2(ROC-0.5).

In order to give an idea of what ranges to expect for Gini or ROC, we
quote Hosmer and Lemeshow (2000):

¢ If ROC=0.5: this suggests no discrimination (i.e., we might as
well flip a coin).

¢ If 0.7<ROC<0.8: this is considered as an acceptable discrimina-
tion.

¢ If 0.8<ROC<0.9: this is considered as an excellent discrimina-
tion.

¢ If ROC>0.9: this is considered as an outstanding discrimination.

¢+ In practice, it is extremely unusual to observe areas under the
ROC curve greater than 0.9.

All of the model performance measures focus exclusively on how a model
ranks the PDs of a set of obligors. They provide very valuable information
and often work well in practice. However, they neglect the absolute lev-
els of the PDs. That is, if, e.g., all PDs for a given set of obligors are mul-
tiplied by 10 (or any other monotone transformation is applied), the above
performance measures do not change their values. So it seems advisable
to supplement these measures, e.g., with the likelihood.

Log-likelihood Ratio

Among statisticians, the perhaps most popular performance measure for
probabilistic models is the likelihood. We have discussed it in the previ-
ous section as a tool to estimate model parameters. For the purpose of
measuring the relative performance of two PD models, one often uses the
following log-likelihood ratio (the logarithm of the ratio of the two model
likelihoods):

al P (1X, 1-P(1X.
L(PI’PZ):E{YilOg q¢ l)+(1_x)log¢},

P P,(1X,) 1-P,(1X,)

where the (X, Y)), i=1,...,N, are observed pairs of risk factors and
default indicators (1 for default and 0 for survival) on a test dataset (as
opposed to the model training dataset) here.
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The above log-likelihood ratio has a number of interpretations:

¢ It measures the relative probabilities the two models assign to
the observed data (by construction).

¢ It is the natural performance measure from the standpoint of
Bayesian statistics (see, e.g., Jaynes, 2003).

¢ It is the performance measure that generates an optimal (in the
sense of the Neyman-Pearson Lemma) decision surface for
model selection (see, e.g., Cover and Thomas, 1991).

¢ It is the difference in expected utility between a particular
rational investor who believes the first model and such an
investor who believes the second model, in a complete market
with probabilities corresponding to the empirical ones of the test
dataset (see Friedman and Sandow, 2003a).

Modeling the Term Structure of PDs

So far, we have discussed PDs for a fixed period of time. For many prac-
tical applications in Structured Finance, one needs to quantify the term
structure of PDs, i.e., one needs to know the probability of default for a
series of time intervals in the future. For example, in order to understand
the credit risk associated with a typical CDO tranche, one has to be able
to model the quantity and the timing of cashflows originated by the
collateral, which requires a model for the term structure of PDs.

The most natural framework for modeling PD term structures is the
so-called hazard rate framework. Perhaps, the easiest way to introduce
hazard rates is to start with a set of consecutive discrete time intervals t,,
t, ..., ty that start at the current time. The discrete-time hazard-rate of a
given obligor is then defined as

h(t,, x, z(t;)) =Prob(default in t,Ino default before t,, X=x, Z(t) =z(t,)),

where X is a set of risk factors at time zero (e.g., balance sheet information
about an obligor) and Z(t) is a set of risk factors at time ¢, (e.g., the state
of the economy). There are various choices one can make for the risk fac-
tors X and Z; in particular, one can omit variables of the Z-type or vari-
ables of the X-type.

Knowing the hazard rates of a given obligor, one can compute the
probability of survival till the end of ¢, as

1

S(t,x,2) = H [1-h(t,,x, 2(t,)]

j=1
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and the probability of default at time ¢, as

S(t;,_,, x, z) h(t,, x, z(t,)).

i-1

Unfortunately, the survival probability, S(t,), depends on the Z(t].) for
all times upto t. which are unknown at the observation time. There are
essentially two ways to deal with this issue: one can either build a model
that does not include any Z-type factors, or one can build a time series
model for those factors and average over their joint distribution.* Both
approaches are viable and are used in practice.

Many models work with a continuous-time hazard rate A(f, x, z(t)),
which can be defined by letting the time-interval length, At, approach
zero, i.e., as

. K, x,z(t)
l(t, X, Z(t)) = Altlr—I}O T
The survival probability is then
t
S(t,x,z) = exp —j M1, x,z(7)dT) |.
0

For both type of models, discrete or continuous, the hazard rates
have to be estimated from data. This is typically done by assuming a para-
metric form and estimating the parameters by means of the (possible
regularized) maximum-likelihood method.! One can also make use of
nonparametric techniques, such as the Nelson-Aalen estimator (see, e.g.,
Klein and Moeschberger, 2003). However, these nonparametric tech-
niques are not appropriate for directly deriving the conditional (on X
and/or Z) hazard rates; one can use them in our context only for model-
ing the time dependence after separating out the time-dependence from
the risk-factor dependence.

*Including, modeling, and averaging out Z-type factors (e.g., macroeconomic variables) that
are common to all obligors in a portfolio provides a way to model default dependencies.
Even if the individual hazard rates are independent given a realization of the Z-paths, after
averaging out the Z-type variables, defaults become dependent.

In a somewhat different approach, one can model the hazard rates as an affine stochastic
processes of the type commonly used for interest rates (see, e.g., Lando, 2004).

The latter approach is usually taken to estimate the Cox proportional hazard model (see
Cox, 1972, or Klein and Moeschberger, 2003).
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An example for a model that contains only credit factors of X-type is
the model by Shumway (2001). In this model, a discrete hazard rate of the
form

h(t.,x) = !
e 1+exp(g(t)0, +x'0,)

is estimated, where 6, and 6, are parameters, and g is a function of time,
which reflects the firm’s age.

A model that includes Z-type variables, but no X-type variables, is
the one from Duffie et al. (2005). Here, the Z-type variables describe
macroeconomic as well as firm-specific information; e.g., each firm’s dis-
tance to default (see the next section) and trailing one-year stock return are
Z-type variables in the model. The model is formulated in the continuous-
time setting.

Another, slightly different, approach is taken by Friedman et al.
(2006), who incorporate firm-specific information in terms of X-type and
macroeconomic information in terms of Z-type variables.

THE MERTON APPROACH

In their original option pricing paper, Black and Scholes (1973) suggested
that their methodology could be used to price corporate securities.
Merton (1974) was the first to use their intuition and to apply it to corpo-
rate debt pricing. Many academic extensions have been proposed and
some commercial products use the same basic structure.

The Merton Model

The Merton (1974) model is the first example of an application of contin-
gent claims analysis to corporate security pricing. Using simplifying
assumptions about the firm value dynamics and the capital structure of
the firm, the author is able to give pricing formulas for corporate bonds
and equities in the familiar Black and Scholes (1973) paradigm.

In the Merton model, a firm with value V is assumed to be financed
through equity (with value S) and pure discount bonds with value P and
maturity T. The principal of the debt is K. The value of the firm is the sum
of the values of its securities: V,=S,+P,. In the Merton model, it is assumed
that bondholders cannot force the firm into bankruptcy before the maturity
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FIGURE 2.6

Payoff of Equity and Corporate Bond at Maturity T.
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share holders Payoff to

bond holders

P(T, T)
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of the debt. At the maturity date T, the firm is considered solvent if its value
is sufficient to repay the principal of the debt. Otherwise, the firm defaults.

The value of the firm V is assumed to follow a geometric Brownian
motion* such that™: dV=uVdt+ o VdZ. Default happens if the value of the
firm is insufficient to repay the debt principal: V., .<K. In that case, bond-
holders have priority over shareholders and seize the entire value of the
firm V. Otherwise (if V. >K), bondholders receive what they are due: the
principal K. Thus, their payoff is P(T, T)=min(K, V;)=K-max(K-V_, 0)
(see Figure 2.6).

Equity holders receive nothing if the firm defaults, but profit from
all the upside when the firm is solvent, i.e., the entire value of the firm net
of the repayment of the debt (V. —K) falls in the hands of shareholders.
The payoff to equity holders is therefore max(V,—K, 0) (see Figure 2.6).

Readers familiar with options will recognize that the payoff to equity
holders is similar to the payoff of a call on the value of the firm struck at
K. Similarly, the payoff received by corporate bond holders can be seen as
the payoff of a risk-less bond minus a put on the value of the firm.

*A geometric Brownian motion is a stochastic process that results in a lognormal distribu-
tion for a fixed point of time. u is the growth rate while o, is the volatility of the process. Z
is a standard Brownian motion whose increments dZ have mean zero and variance equal to
time. The term uV dt is the deterministic drift of the process, and the other term o, Vd Z is
the random volatility component. See Hull (2002) for a simple introduction to geometric
Brownian motion.

*We drop the time subscripts to simplify notations.
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Merton (1974) makes the same assumptions as Black and Scholes
(1973), and the call and the put can be priced using Black-Scholes option
prices. For example, the call (equity) is immediately obtained as:

S, = V,N(k+ 0, VT —t) - Ke"T-ON(k),

with k= (In(V,/K) + (r - %Gé)(T -t)/(o,NT —t) and N(-) denoting the
cumulative normal distribution and r the risk-less interest rate.

The Merton model provides a lot of insight into the relationship
between the fundamental value of a firm and of its securities. The origi-
nal model, however, relies on very strong assumptions:

¢ The capital structure is simplistic: equity + one issue of zero-
coupon debt.
¢ The value of the firm is assumed to be perfectly observable.

¢ The value of the firm follows a lognormal diffusion process.
With this type of process, a sudden surprise (a jump), leading to
an unexpected default, cannot be captured. Default has to be
reached gradually, “not with a bang but with a whisper,” as
Dulffie and Lando (2001) put it.

¢ Default can only occur at debt maturity.
¢ Risk-less interest rates are constant through time and maturity.

¢ The model does not allow for debt renegotiation between equity
and debt holders.

¢ There is no liquidity adjustment.

These stringent assumptions may explain why the simple version of
the Merton model struggles to cope with the empirical spreads observed on
the market. Van Deventer and Imai (2002) test empirically the hypothesis of
inverse comovement of stock prices and of credit spread prices, as predicted
by the Merton model. Their sample comprises First Interstate Bancorp two-
year credit spread data and associated stock price. The authors find that
only 42 percent of changes in credit spread and equity prices are consistent
with the directions (increases or decreases) predicted by the Merton model.

Practical difficulties also contribute to hamper the empirical rele-
vance of the Merton model:

¢ The value of the firm is difficult to pin down, because the
marked-to-market value of debt is often unknown. In addition,
all that relates to goodwill or to out-of-the-balance-sheet
elements is difficult to measure accurately.
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¢ The estimation of assets volatility is difficult due to the low
frequency of observations.

A vast literature has contributed to extend the original Merton
model and lift some of its most unrealistic assumptions. To cite a few, we
can mention:

¢ Early bankruptcy (default barrier) and liquidation costs have
been introduced by Black and Cox (1976)

¢ Coupon bonds, e.g., Geske (1977)

¢ Stochastic interest rates, e.g., Nielsen et al. (1993) and Shimko
etal. (1993)

¢ More realistic capital structures (senior and junior debt), e.g.,
Black and Cox (1976)

¢+ Stochastic processes including jumps in the value of the firm,
e.g., Zhou (1997)

¢ Strategic bargaining between shareholders and debtholders, e.g.,
Anderson and Sundaresan (1996)

¢ The effect of incomplete accounting information is analyzed in
Duffie and Lando (2001)

¢ Uncertain default barrier, e.g., Duffie and Lando (2001)

¢ Endogenous default boundaries, e.g., Leland (1994) and Leland
and Toft (1996).

Moody’s KMV Credit Monitor® Model
and Related Approaches

Although the primary focus of Merton (1974) was on debt pricing, the
firm-value based approach has been scarcely applied for that purpose in
practice. Its main success has been in default prediction.

Moody’s KMV Credit Monitor® (see Crosbie and Bohn, 2003) applies
the structural approach to extract probabilities of default at a given hori-
zon from equity prices. Equity prices are available for a large number of
corporates. If the capital structure of these firms is known, then it is pos-
sible to extract market-implied probabilities of default from their equity
price. The probability of default is called expected default frequency
(EDF) by Moody’s KMV.

There are two key difficulties in implementing the Merton-type
approach to firms with realistic capital structure. The original Merton
model only applies to firms financed by equity, and one issue of zero-
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coupon debt is: how should one calculate the strike price of the call
(equity) and put (default component of the debt) when there are multi-
ple issues of debt? The estimation of the firm value process is also diffi-
cult: how to estimate the drift and volatility of the asset value process
when this value is unobservable? Moody’s KMV uses a “rule of thumb”
to calculate the strike price of the default put and a “proprietary method-
ology” to calculate the volatility.

Moody’s KMV assumes that the capital structure of an issuer is con-
stituted of long-term debt (i.e., with maturity longer than the chosen hori-
zon) denoted by LT and short-term debt (maturing before the chosen
horizon) denoted by ST. The strike price default point is then calculated
as a combination of short- and long-term debt: “We have found that the
default point, the asset value at which the firm will default, generally lies
somewhere between total liabilities and current, or short term liabilities”
(see Crosbie and Bohn, 2003). The practical rule for choosing the default
value, K, is

K=ST+05LT

This rule of thumb is purely empirical and does not rest on any solid
theoretical foundation. Therefore, there is no guarantee that the same rule
should apply to all countries/jurisdictions and all industries. In addition,
no empirical study has been shown to provide information about the con-
fidence level associated with this default point.*

In the Merton model, the PD' is

PD, = N(-DD),

where DD = (In(V,) - In(K) + (u — 03 /2)(T - t))/(c, VT —t) is the so-
called distance to default, and we have used the following notation:

N(-) =the cumulative Gaussian distribution
V,=the value of the firm at ¢
X =the default threshold
o0, = the asset volatility of the firm
u=the expected return on assets

*Recent articles and papers focus on the stochastic behavior of this default threshold. See
e.g., Hull and White (2000) and Avellaneda and Zhu (2001).
*This is the probability under the historical measure. The risk neutral probability is
N(-K)=1-N(K), as described in the equity pricing formula.
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Example: Consider a firm with a market cap of $3 billion, an equity
volatility of 40 percent, ST liabilities of $7 billion and LT of $6 billion. Thus
X=7+0.5x6=%$10billion. Assume, further, that we have solved for
A,=$12.511 billion and 6=9.6 percent. Finally =5 percent, the firm does
not pay dividends, and the credit horizon is one year. Then (log(V,/K) + (u—
0,? /2))/0,=3. And the “Merton” probability of default at a one-year hori-
zon is N(=3)=0.13 percent.

In order to use the Merton framework for practical ends, one needs
to estimate the current asset value and the asset volatility from market
data.* Moody’s KMV does this by using the Black-Scholes option pricing
framework, viewing equity as an option on the asset value. In this picture
we have the following two equations:

1%
O'SZC'(Vt,GV)O'VS—[, and S, =C(V,,0,,tK,r),

t

where S, is the equity value, o its volatility, and C is the function that
assigns the Black-Scholes value to a call option. The equity value is usu-
ally known (at least for publicly traded firms), and the equity volatility
can be either estimated from historical data or implied from option prices
if those are available. Knowing S, and o, one can solve the above equa-
tions for V, and o,, which completes the calibration of the Merton model.

An alternative approach to the estimation of V, and o, is the itera-
tive scheme of Vassalou and Xing (2004). According to this scheme, a time
series of asset values is computed from a times series of equity values by
means of the Black-Scholes formula for call options, and o, is subse-
quently estimated from this time series.

Moody’s KMV approximates the DD as

V. -K
DD = - -
oV,
The EDF is then computed as
EDF,=Z(-DD)

(see Crosbie and Bohn, 2003). Here, we denote by Z(-) the function map-
ping the DD to EDFs. Unlike Merton, Moody’s KMV does ot rely on the

*The PD actually depends, through the distance to default, on the asset value drift as well.
However, this dependence is often neglected in practical approaches (see the approximative
formula for the DD given herewith).
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cumulative normal distribution N(-). PDs calculated as N(—DD) would
tend to be much too low due to the assumption of normality (too thin
tails). Moody’s KMV therefore calibrates its EDF to match historical
default frequencies recorded on its databases. For example, if historically
two firms out of 1000 with a DD of 3 have defaulted over a one-year hori-
zon, then firms with a DD of 3 will be assigned an EDF of 0.2 percent.
Firms can therefore be put in “buckets” based on their DD. What buckets
are used in the software is not transparent to the user.

Figure 2.7 is a graph of the asset value process and the interpretation
of EDFE.

Once the EDFs are calculated, it is possible to map them to a more
familiar grid, such as agency rating classes (see Table 2.8). This mapping,
while commonly used by practitioners, makes little sense, since the EDFs
are point-in-time measures of credit risk focused on default probability at
the one-year horizon; while ratings are through-the-cycle assessments of
creditworthiness, they cannot therefore be reduced to a one-year PD.

A similar approach is taken by S&P internal Merton model (see
Park, 2006). Results from this model are demonstrated in Figure 2.8,
which shows the one-year PD for the Delta Airline stock. This model is
compared with S&P CRT for U.S. public firms (see Huang, 2006 and

FIGURE 2.7
The PD is related to the DD.
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t T: Horizon
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TABLE 2.8

EDFs and Corresponding Rating Class

EDF(%) S&P
0.02-0.04 AAA
0.04-0.10 AA/A
0.10-0.19 A/BBB+
0.19-0.40 BBB+/BBB-
0.40-0.72 BBB-/BB
0.72-1.01 BB/BB-
1.01-1.43 BB-/B+
1.43-2.02 B+/B
2.02-3.45 B/B-

Source: Crouhy, Galai, and Mark (2000).

Zhou et al., 2006), which is a statistical model (see section “Some
Statistical Techniques”).

In Table 2.9, we compare S&P Merton model with S&P CRT for
U.S. public firms. This Merton model ranks companies according to their

FIGURE

2.8

Evolution of the One-Year PDs from S&P’s Merton
Model and CRT for Delta Airlines. (S&P).
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TABLE 2.9

ROCs for S&P’s Merton Model (see Park, 2006) and
S&P’s CRT for U.S. Public Firms. ROCs were
Computed for all Public U.S. Firms and for the Subset
of the Largest 2000 Firms. In All Cases, a Five-Fold
Cross-Validation was Applied.

CRT Merton model
ROC on all public U.S. firms 0.87 0.80
ROC on largest 2000 public U.S. firms 0.95 0.92

Source: S&P (see Zhou et al. 2006).

distance to default, which is sufficient to compute ROC without any map-
ping on a real-world PD. CRT uses the distance to default from the
Merton model as one of its input variables. The results shown in the table
are very interesting. One can see that both models perform much better
on the largest 2000 firms than on the set of all public firms. One can also
see that the Merton model rank-orders firms surprisingly well. In partic-
ular, for large firms, the ROC difference between the statistical model and
the Merton model is only 3 percent; i.e., a large part of the explanatory
power of the statistical model can be derived from the DD. Furthermore,
the table seems to suggest that the Merton model is somewhat tuned
toward large firms.

Uses and Abuses of Equity-Based
Models for Default Prediction

Equity-based models can be useful as early warning systems for individ-
ual firms. Crosbie (1997) and Delianedis and Geske (1999) study the early
warning power of structural models and show that these models can give
early information about ratings migration and defaults.

There has undoubtedly been many examples of successes where
structural models have been able to capture early warning signals from
the equity markets. These examples, such as the WorldCom case, are
heavily publicized by vendors of equity-based systems. What the vendors
do not mention is that there are also many examples of false starts: a gen-
eral fall in the equity markets will tend to be reflected in increases in
all EDFs and many “downgrades” in internal ratings based on them,
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although the credit quality of some firms may be unaffected. False starts
can be costly, as they often induce banks to sell the position in a tempo-
rary downturn at an unfavorable price.

Conversely, in a period of booming equity markets such as 1999,
these models will tend to assign very low PDs to almost all firms. In short,
equity-based models are prone to overreaction due to market bubbles.

Toward a Term Structure of Merton PDs:
Use of Merton Model Results as an
Input into CDO Models

In order to obtain a default term structure, one has to generalize the
Merton model. One such generalization was proposed by Black and Cox
(1976), who assume that default can occur at any time before the maturity
of a particular bond, whenever the asset value hits a given barrier. This
idea can be motivated if there are bond safety covenenants or in the con-
text of a continuous stream of payments to be made by the obligor.

The basic idea of the Black—Cox model is that, as in the Merton
model, the firm’s value undergoes a geometric Brownian motion, i.e.,

dV=uVdt+o,VdZ.

Default occurs when V hits, for the first time, the barrier C, which
undergoes the dynamics

C,=C, exp(yt).

Computing the term structure of PDs in this setting amounts to solv-
ing a well-understood first passage time problem. This makes the
Black—Cox model very attractive. Moreover, it is theoretically possible to
generalize this model to a multivariate setting (see Zhou, 2001).

The default term structure one obtains from a Black—-Cox model is
not necessarily realistic. Although one can try to calibrate the parameters
C, and 7y to a term structure obtained from a statistical hazard rate model,
the calibration is rarely very good, since there are only two parameters
available. To avoid this problem, one can generalize the dynamics of the
default barrier. One such generalization has been proposed by Hull and
White (2001), who assume a very flexible dynamics that can be calibrated
to an arbitrary term structure. This type of model, however, can hardly be
viewed as a structural model anymore.
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SPREADS (YIELD SPREADS AND
CDS SPREADS)

Dynamics of Credit Spreads
(Yield Spreads)

In this section, we review the dynamics of credit-spread series in the
United States. The data consists of 4177 daily observations of Aaa and Baa
average spread indices, from the beginning of 1986 to the end of 2001.
Spread indices are calculated by subtracting the 10-year constant maturity
treasury yield from Moody’s average yield on U.S. long-term (>10 years)
Aaa and Baa bonds.

S,Aaa=Y,Aaa-Y,T, and SBaa=YBaa-Y,T.

All series are available on the Federal Reserve’s web site,* and bonds
in this sample do not contain option features.

Aaa is the best rating in Moody’s classification with a historical
default frequency over 10 years of 0.64 percent, whereas Baa is at the bot-
tom of the IG category and have historically suffered a 4.41 percent
default rate over 10 years (see Keenan et al., 1999). Both minima were
reached in 1989 after two years of very low default experience. At the end
of our sample, spreads were at their historical maximum, only matched
by 1986 for the Aaa series. The rating agencies branded 2001 as the worst
year ever in terms of the amount of defaulted debt.

Summary statistics of the series are provided in Table 2.10.

TABLE 2.10

Summary Statistics

StAaa SlBaa
Average 1.16% 2.04%
Standard deviation 0.40% 0.50%
Minimum 0.31% 1.16%
Maximum 2.67% 3.53%
Skewness 0.872 0.711
Kurtosis 3.566 2.701

*http: / www.federalreserve.gov
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FIGURE 2.9
U.S. Baa and Aaa spreads—1986 to 2001.
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Figure 2.9 depicts the history of spreads in the Aaa and Baa classes
whereas Figure 2.10 is a scatter plot of daily changes in Baa spreads, as a
function of their level. The Aaa series oscillates around a mean of about
1.2 percent, whereas the term mean of the Baa series appears to be around
2 percent.

Several noticeable events have affected spread indices over the past
20 years. The first major incident occurred during the famous stock market
crash of October 1987. This event is remembered as an equity market
debacle, but corporate bonds were equally affected with Baa spreads soar-
ing by 90 basis points (bp) over two days, the biggest rise ever (see Figures
2.10 and 2.11).

The Gulf war is also clearly visible on Figure 2.9. On the run-up to the
war, Baa spreads rose by nearly 100bp and started to tighten immediately
after the start of the conflict and by the end of the war; they had narrowed
back to their initial level. Aaa spreads were little affected by the event.

Finally, let us mention the spectacular and sudden rises which
occurred after the Russian default of August 1998 and after September 11,
2001.%

*September 14 was the first trading day after the tragedy.
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FIGURE 2.10

Daily Changes in U.S. Baa Spread Indices.
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Explaining the Baa-Aaa Spread

We have noted earlier that some events such as the Gulf war did substan-
tially impact on Baa spreads, whereas Aaa spreads were little affected. It
is therefore interesting to focus on the relative spread between Baa and
Aaa yields. Figure 2.11 is a plot of this differential.

FIGURE 2.11

Relative Spreads between Baa and Aaa Yields.
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One can observe a clear downward trend between 86 and 98 only
interrupted by the Gulf war. This contraction in relative spreads was due
mainly to the improvement in liquidity of the market for lower-rated bonds.

We can observe three spikes in the relative spread (Baa—Aaa): 1991,
1998, and 2001. These are all linked to increases in market volatility, and
the peaks can be explained in the light of a structural model of credit risk.

Recall that in a Merton (1974)-type model, a risky bond can be seen
as a risk-less bond minus a put on the value of the firm. The put’s exercise
price is linked to the leverage of the issuing firm (in the simple case, where
the firm’s debt is only constituted of one issue of zero-coupon bond, the
strike price of the put is the principal of the debt). Obviously the values of
Baa firms are closer to their “strike price” (higher risk) than those of Aaa
firms. Therefore, Baa firms have higher vega than Aaa issuers.* As a result,
as volatility increases, Baa spreads increase more than Aaa spreads.

Determinants of Yield Spreads

Spreads should at least reflect the probability of default and the recovery
rate. In a careful analysis of the components of corporate spreads in the
context of a structural model, Delianedis and Geske (2001) report that
only 5 percent of AAA spreads and 22 percent of BBB spreads can be
attributed to default risk. We now turn in greater details to the possible
components of an explanatory model for spreads.

Recovery

The expected recovery rate for a bond of given seniority in a given industry
affects credit spreads and is therefore a natural candidate for inclusion in
a spread model. Recoveries will be discussed in the forthcoming section.
We shall see there that they tend to fluctuate with the economic cycle. So,
ideally, a measure of expected recovery conditional on the state of the
economy would be a more appropriate choice.

Probability of Default
Spreads should also reflect PD. The most readily available measure of
creditworthiness for large corporates is undoubtedly ratings, and they are

*The vega (or kappa) of an option is the sensitivity of the option price to changes in the
volatility of the underlying. The vega is higher for options near the money, i.e., when the
price of the underlying is close to the exercise price of the option (see, e.g., Hull, 2002).
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easy to include in a spread model. Figure 2.12 is a plot of U.S. industrial
and treasury bond yields. Spreads are clearly increasing as credit rating
deteriorates. The model by Fons (1994) provides an explicit link between
default rates per rating class and the level of spreads. The main difficulty
is to model the risk premium associated with the volatility in the default
rate, as market spreads incorporate investors risk aversion.

A similar but dynamic perspective on the relationship between rat-
ings and spreads is provided in Figure 2.13. We again observe what
appears to be a structural break in the dynamics of spreads in August
1998. The post-1998 period is characterized by much higher mean spreads
and volatilities for all risk classes. Although the event triggering the
change is well identified (Russian default followed by flight to quality
and liquidity), analysts disagree on the reasons for the persistence of high
spreads in the markets. Some argue that investors risk aversion has
durably changed and that each extra “unit” of credit risk is priced more
expensively in terms of risk premium. Other put forward the fact that
asset volatility is still very high and that default rates have increased
steadily over the period. Keeping unchanged the perception of risk by
investors, spreads merely reflect higher real credit risk.

An alternative explanation lies in the fact that the change coincided
with the increasing impact of the equity market on corporate bond
prices. The reasons for this are two-fold: the recent popularity of equity/

FIGURE 2.12

U.S. Industrial and Treasury Bond Yields. (Riskmetrics).
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FIGURE 2.13
10Y Spreads per Rating. (S&P Indices).
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corporate bond trades among market participants and the common use of
equity driven credit risk models.

PD Extracted from Structural Models

In many empirical studies of spreads, equity volatility often turns out to be
one of the most powerful explanatory variables. This is consistent with
the structural approach to credit risk, where default is triggered when the
value of the firm falls below its liabilities. The higher the volatility, the more
likely the firm will reach the default boundary and the higher the spreads
should be. Several choices are possible: historical versus implied volatil-
ity, aggregate versus individual, etc. Implied volatility has the advantage
of being forward looking (the trader’s view on future volatility) and is
arguably a better choice. It is, however, only available for firms with
traded stock options. At the aggregate level, the VIX index, released by
the Chicago Board Options Exchange VIX, is often chosen as a measure of
implied volatility. It is a weighted average of the implied volatilities of
eight options with 30 days to maturity.

The second crucial factor of PD in a structural approach is the lever-
age of a firm. This measures the level of indebtedness of the firm scaled
by the total value of its assets. Leverage is commonly measured in empir-
ical work, as the book value of debt divided by the market value of
equity plus the book value of debt. The reason for the choice of book
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FIGURE 2.14

Default rates and Economic Growth. (S&P).
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value in the case of debt is purely a matter of data availability: a large
share of the debt of a firm will not be traded and it is therefore impossi-
ble in many cases to obtain its market value. This problem does not arise
with the equity of public companies. If no information about the level of
indebtedness is available or if the model aims at estimating aggregate
spreads, then equity returns (individual or at the market level) can be
used as a rough proxy for leverage. The underlying assumption is that
book values of debt outstanding are likely to be substantially less volatile
than the market value of the firms” equity. Hence, on average, a positive
stock return should be associated with a decrease in leverage and in
spreads.

At the macroeconomic level, the yield curve is often used as an indi-
cator of the market’s view of future growth. In particular, a steep yield
curve is frequently associated with an expectation of growth whereas an
inverted or flat yield curve is often observed in periods of recessions.
Naturally, default rates are much higher in recessions (see Figure 2.14%);
the slope of the yield curve can therefore be used as a predictor of future
default rates and we can expect yield spreads to be inversely related to the
slope of the term structure.

*GDP and NIG, respectively, stand for Gross Domestic Product and Non-Investment Grade.
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Risk-less Interest Rate

There has been much debate in the academic literature on the interaction
between the risk-less interest rates and spreads. Most papers (e.g., Duffee,
1998) report a negative correlation, implying that when interest rates
increase (respectively decrease), risky yields do not reflect the full impact
of the rise (fall). Morris et al. (1998) make a distinction between a negative
short-term impact and a positive long-term impact of changes in risk-free
rates on corporate spreads. One possible explanation for this finding
would be that risky yields adjust slowly to changes in the treasury rate
(short-term impact) but that in the long run, an increase in interest rates
is likely to be associated with a slowdown in growth and therefore an
increase in default frequency and spreads.

Risk Premium

The credit spread measures the excess return on a bond granted to
investors as a compensation for credit risk. Measuring credit risk as the
probability of default and recovery is insufficient. Investors’ risk aversion
also needs to be factored in.

If the purpose of the exercise is to determine the level of spreads
for a sample of bonds, one can extract some information about the “mar-
ket price of credit risk” from credit-spread indices. Assuming that the
risk differential between highly rated bonds and speculative bonds
remains constant through time (which is a strong assumption), changes
in the difference between two credit-spread indices, such as those stud-
ied earlier in the chapter, should be the result of changes in the risk
premium.

Is a Systemic Factor at Play? Many of the variables iden-
tified earlier are instrumental in explaining the levels and changes in cor-
porate yield spreads. A similar analysis could be performed to determine
the drivers of sovereign spread, such as that of Italy versus Germany or
Mexico versus the United States. The fundamentals in these markets are
however very different, and one could argue that trading or investment
strategies in these various markets should be uncorrelated. This intuition
would appear valid in most cases but spreads tend to exhibit periods of
extreme comovement at times of crises.

To illustrate this, let us consider the Russian and LTCM crises in 1998.
We have seen that the Russian default in August did push up corporate
spreads dramatically. This was not an isolated phenomenon. Figure 2.15
jointly depicts the spread of the 10-year Italian government bond yield
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FIGURE 2.15
Mexican Brady and ITL/DEM Spreads.
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over the 10-year Bund (German benchmark) on the right-hand scale, and
the spread of the Mexican Brady* discount bond versus the 30-year U.S.
treasury on the left-hand scale.

Figure 2.15 is instructive on several counts. First, it shows that finan-
cial instruments on apparently segmented markets can react simultane-
ously to the same event. In this case, it would appear that the Russian
default in August 1998 was the critical event.*

Secondly, it explains partly why hedging, diversification, and risk
management strategies failed so badly over the period from August 1998
through February 1999. Typical risk management tools, including value at
risk, use fixed correlations among assets in order to calculate the required
amount of capital to set aside. In our case, the correlation between the
two spreads from January to July 1998 was —11 percent. Then suddenly,
although the markets are not tied by economic fundamentals and

*Brady bonds are securities issued by developing countries as part of a negotiated restruc-
turing of their external debt. They were named after U.S. treasury secretary Nicholas Brady,
whose plan aimed at permanently restructuring outstanding sovereign loans and arrears
into liquid debt instruments. Brady bonds have a maturity of between 10 to 30 years and
some of their interest payments are guaranteed by a collateral of high-grade instruments
(typically the first three coupons are secured by a rolling guaranty). They are among the
most liquid instruments in emerging markets.

*A more thorough investigation of this case can be found in Anderson and Renault (1999).
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although the crisis occurred in a third market apparently unrelated, cor-
relations all turned positive and very significantly so. In this example, the
correlation over the rest of 1998 increased to 62 percent.

Some may argue that the Russian default may just have increased
default risk globally or that market participants expected spill-over effects
in all bond markets. Another explanation lies in the flight-to-liquidity and
flight-to-safety observed over that period: investors massively turned to
the most liquid and safest products, which were U.S. treasuries and
German bunds. Many products bearing credit risk did not seem to find
any buyer at any price in the immediate aftermath of the crisis.

From a risk management perspective, it is sensible to consider that a
global factor (possibly investors’ risk aversion) impacts across all bond
markets and may lead to substantial losses in periods of turmoil.

Liquidity

Finally, and perhaps most importantly, yield spreads reflect the relative
liquidity of corporate and treasury securities. Liquidity is one of the
main explanations for the existence of corporate yield spreads. This has
been recognized early (see, e.g., Fisher, 1959) and can be justified by the
fact that government bonds are typically very actively traded large
issues, whereas the corporate bond market is an over-the-counter mar-
ket whose volumes and trade frequencies are much smaller. Investors
require some compensation (in terms of added yield) for holding less
liquid securities.

In the case of IG bonds, where credit risk is not as important as in the
speculative class, liquidity is arguably the main factor in spreads. Liquidity
is, however, a very nebulous concept and there does not exist any clear-cut
definition for it. It can encompass the rapid availability of funds for a cor-
porate to finance unexpected outflows or it can mean the marketability of
the debt on the secondary market. We will focus on the latter definition.
More specifically, we perceive liquidity as the ability to close out a position
quickly on the market without substantially affecting the price. Liquidity
can therefore be seen as an option to unwind a position.

Longstaff (1995) follows this approach and provides upper bounds
on the liquidity discounts on securities with trading restrictions. If a secu-
rity cannot be bought or sold for say seven days, it will trade at a discount
compared to an identical security for which trading is available continu-
ously. This discount represents the opportunity cost of not being able to
trade during the restricted period. It should therefore be bounded by the
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value of selling* the position at the best (highest) price during the
restricted period. The value of liquidity is thus capped by the price of a
lookback put option.

Little research has been performed on the liquidity of nontreasury
bonds. Kempf and Uhrig (1997) propose a direct modeling of liquidity
spreads—the share of yield spreads attributable to the liquidity differen-
tial between government and corporate bonds. They assume that liquid-
ity spreads follow a mean reverting process and estimate it on German
government bond data. Longstaff (1994) considers the liquidity of munic-
ipal and other credit risky bonds in Japan. Ericsson and Renault (2001)
model the behaviour of a bondholder who may be forced to sell his posi-
tion due to and external shock (immediate need for cash). Liquidity
spreads arise because a forced sale may coincide with a lack of demand in
the market (liquidity crisis). Their theoretical model based on a Merton
(1974) default risk framework generates downward sloping term struc-
ture of liquidity spreads as those reported in Kempf and Uhrig (1997) and
also in Longstaff (1994). They also find that liquidity spreads should be
increasing in credit risk: if liquidity is the option to liquidate a position,
then this option is more valuable in presence of credit risk, as the inabil-
ity to unwind a position for a long period may lead the bondholder to be
forced to keep a bond entering default and to face bankruptcy costs. On a
sample of over 500 U.S. corporate bonds, they find support for the nega-
tive slope of the term structure of liquidity premiums and for the positive
correlation between credit risk and liquidity spreads.

On the empirical side, the liquidity of equity markets (and to a lesser
extent also of treasury bond markets) has been extensively studied empir-
ically, but very little has yet been done to measure liquidity premiums in
default risky securities. Several variables can be used to proxy for liquid-
ity. The natural candidates are the number of trades and the volume of
trading on the market. The OTC nature of the corporate bond market
makes this data difficult to obtain. As second best, the issue amount out-
standing can also serve as proxy for liquidity. The underlying implicit
assumption is that larger issues are traded more actively than smaller
ones.

A stylized fact about bonds is that they are more liquid immediately
after issuance and rapidly lose their marketability as a larger share of the
issues becomes locked into portfolios (see, e.g., Chapter 10 in Fabozzi and

*We assume the investor has a long position in the security.



76 CHAPTER 2

Fabozzi, 1995). The age of an issue could therefore stand for liquidity in
an explanatory model for yield spreads. In the same spirit, the on-the-
run/ off-the-run spread (the difference between the yields of seasoned and
newly issued bonds with same residual time to maturity) is frequently
used as an indicator of liquidity. During the Russian crisis of 1998, which
was associated with a substantial liquidity crunch, the U.S. long bond
(30-year benchmark) was trading at a 35 basis point premium versus the
second longest bond with just a few months less to maturity, while the
historical differential was only 7 to 8 basis points (Poole, 1998).

Taxes

In order to conclude this nonexhaustive list of factors influencing spreads,
we can mention taxes. In some jurisdictions (such as the United States), cor-
porate and treasury bonds do not receive the same tax treatment (see Elton
etal., 2001). For example, in the United States, treasury securities are exempt
from some taxes while corporate bonds are not. Investors will of course
demand a higher return on instruments on which they are taxed more.

We have reported that many factors impact on yield spreads and
that spreads cannot be seen as purely due to credit. We will now focus
more specifically on the ability of structural models to explain the dynam-
ics and level of spreads.

CDS Rates

Another market quantity that provides default risk information is the
CDS rate. Here, CDS stands for credit default swap. The credit default
swap is the most commonly used credit derivative. In its most basic form,
it works as follows: Party A, the so-called protection buyer, pays an
annual or semi-annual premium to party B, the so-called protection seller.
These payments end either after a given period of time (the maturity of
the CDS) or at default of the reference entity. In the case of such a default,
the protection seller compensated the protection buyer for the loss
incurred due to the default. The CDS rate, also called credit-swap spreads
or CDS premiums, is the premium paid by the protection buyer. Figure 2.16
illustrates the cashflows in a credit default swap.

It follows from a no-arbitrage argument that, under some idealized
assumptions, the CDS rates are the same as the corresponding bond
spreads (off LIBOR) for the same obligor, and are therefore determined by
some of the same factors, such as default probability, risk premium, and
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recovery expectations. However, the assumptions underlying this rela-
tionship are often not accurate in practice, which can lead to differences
between CDS rates and bond yields, i.e., between CDS spreads and yield
spreads. We list a couple of reasons why such differences may appear:

¢ If the note that underlies a CDS is very illiquid, the no-arbitrage
argument does not apply and CDS spreads can differ substan-
tially from yield spreads.

¢ CDS usually have a cheapest-to-deliver option, which tends to
increase CDS spreads with respect to bond spreads.

¢+ CDS often have a wider definition of a credit event, which can
increase CDS spreads with respect to bond spreads for long-
dated bonds that trade below par.

¢ Shorting notes through a reverse repo is usually not cost-free,
which increases CDS spreads with respect to bond spreads. The
amount of increase is the so-called repo-special.

For empirical research on CDS rates, we refer to the reader to
Houweling and Vorst (2002), Aunon-Nerin et al. (2002), and Nordon and
Weber (2004). Examples for historical CDS spreads as a function of time
are shown in Figure 2.17.

FIGURE 2.16

Cashflows for a Credit Default Swap (CDS) with
Notional 100 in the Case where the Reference Entity
Defaults at Some Time Before the Maturity of the CDS.
Here, s Denotes in CDS Premium and V the Value of
the Reference not at the Time of Default. In Case of
No Default, the Payments of the CDS Premium
Continue Until the CDS Expires.
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FIGURE 2.17

Five-Year CDS Spreads for General Motors as
Functions of Time. (Markit Partners).
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Extracting Default Information from
Spreads: Market-Implied Ratings

As we have seen in the previous section, spreads contain information
about default risk or rather about the market’s perceived default risk.
There are various ways to extract this information from spread data; one
approach is to construct market-implied ratings. Moody’s offers a prod-
uct providing such ratings based on bond spreads and on CDS rates.
Some recent research conducted by S&P suggests that one approach
to constructing market-implied ratings can be from bond or CDS rates.
Since these spreads depend not only on default probabilities, but also on
other factors such as recovery expectations and liquidity, one has to
filter out some of these other factors in order to map spreads on ratings.
These other factors have market wide and idiosyncratic components.
One can filter out components of the first type by working with spreads
relative to average market spreads for the corresponding rating cate-
gory. In order to do this, one constructs, at a given point of time, a
market spread curve for each (actual) rating. This can be done, e.g., by
applying joint Nelson-Siegel (see Nelson and Siegel, 1987) interpolations



Univariate Risk Assessment 79

FIGURE 2.18

Spread Curves for Rating Categories Constructed with
U.S. Bond Spread Data Based on Nelson-Siegel
Interpolations. (S&P).
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to the spreads for each rating at a given date.* An example for a set of
resulting spread curves is shown in Figure 2.18.

Having constructed a spread curve for each rating category at a
given date, one can assign a spread-implied rating by comparing the
spreads of a given obligor (again, after adjusting for idiosyncratic compo-
nents of non-default-related factors) to the spread curves. A simple dis-
tance measure, e.g., the average square distance, can be used to identify
the spread curve that is closest to the obligor of interest. The rating that
corresponds to this closest spread curve is the spread-implied rating.

Another approach to implying ratings from spreads introduced by
Breger et al. (2002). In this approach, optimal spread boundaries between

*Before the actual interpolation is done, one should remove outliers and adjust for idiosyn-
cratic components of nondefault-related factors, such as recovery and liquidity. Such an
adjustment can be done via regressions on historical data.
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the rating categories are determined by means of a penalty function; these
boundaries are subsequently used to imply ratings. Kou and Varotto
(2004) use this approach to predict rating migrations.

RECOVERY RISK

In the previous sections, we have reviewed various approaches to assess
default risk. However, the credit risk that an investor is exposed to con-
sists of default risk and recovery risk. The latter, which reflects the uncer-
tainty associated with the recovery from defaulted debt, is the topic of this
section. To date, much less research effort has been made toward model-
ing recovery risk than toward understanding default risk. Consequently,
the literature on this topic is fairly small in volume; the perhaps earliest
works on recoveries were published by Altman and Kishore (1996) and
Asarnow and Edwards (1995). A fairly comprehensive overview is pro-
vided by Altman et al. (2005).

The quantity that characterizes recovery risk is recovery given
default (RGD) or equivalently loss given default (LGD). RGD is usually
defined as the ratio of the recovery value from a defaulted debt instru-
ment and the invested par amount, and LGD=1-RGD. There are various
ways to define the recovery value; some people define it as the traded
value of the defaulted security immediately after default, others define it
as the payout to the debt holder at the time of emergence from bank-
ruptcy (often called ultimate recovery). Which one of the recovery defini-
tion is the appropriate one, depends on the purpose of the analysis. For
example, an investor (e.g., a mutual bond fund) who always sells debt
securities immediately after they have defaulted should be interested in
the first type of recovery value; whereas an investor (e.g., a bank that
works out defaulted loans) who holds on to defaulted debt till emergence
should care about the second type of recovery.

A prominent feature of RGD is its high uncertainty given the infor-
mation a typical investor can obtain at a time before default. For exam-
ple, an investor in bonds of large U.S. firms who has access to the
obligor’s balance sheet and is aware of the economic environment, but
does not have any more detailed information about the debt, is only able
to predict RGD with an uncertainty in the range of 30 to 40 percent,
as measured by the standard deviation of a forecasting model (see
Friedman and Sandow, 2005). For this reason, given relevant factors it is
desirable to model the uncertainty associated with recovery and not just
its expected value.
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The perhaps most commonly used approach to modeling RGD is the
beta-distribution. Here one assumes that RGD has the following condi-
tional probability density function (pdf):*

B(x)-1 o(x)-1
p(?"D X)= 1 r_rmin 1_r_rmin
T B, BN, P '

where r__ is the largest and _, the smallest possible value of RGD," B
denotes the beta function, and o and f are parameterized functions of the
risk factors x. The D in this equation indicates that we condition all PDs
having happened. Often one assumes the o and f are linear in the risk fac-
tors x. It is then straightforward to estimate the model parameters via the
maximum-likelihood method.

An RGD model that relies on this beta-distribution is Moody’s
KMV’s LossCalc™ (see Gupton and Stein, 2002).* This model, which pre-
dicts trading price recoveries of U.S. corporations, is commercially avail-
able. It was trained on data from Moody’s recovery database.

Another commercially available RGD model is S&P’s LossStats™
Model (see Friedman and Sandow, 2005). This model predicts ultimate
recoveries and trading prices at arbitrary times after default for large U.S.
corporations; it was built using data from S&P LossStats™ Database.S It is
based on a methodology that is related to the one S&P’s for PD modeling
(see section “Some Statistical Techniques”). Specifically, for trading prices
it is assumed that

p(r ‘ D,x)=

7() expla(x)r+ B(x)r? +y(x)r’]

*This conditional probability density function is interpreted as follows: for an obligor with
risk factors x, the probability of recovering a value in the infinitesimal interval (r, r+dr) is
p(rID, x)dr.

*One might think that 7 ax= 1, which corresponds to complete recovery. However, at least for
ultimate recoveries of large U.S. firms, one can actually recover more than the invested par
amount. This happens, e.g., if the investor recovers equity that has increased in value dur-
ing the bankruptcy proceedings. The smallest possible recovery value, r_. , is zero, unless
we include workout costs. In the latter case, 7_. can be negative.

In LossCalc™, the parameters of the distribution are not estimated via the maximum-

min’

min

likelihood method, but rather by means of a linear regression after a transformation of the
distribution into a normal distribution.
$See, e.g., Bos et al., 2002, for more details.
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FIGURE 2.19

Conditional Probability Density Function (blue lines) of
Trading Price Recovery from LossStats™ Model for
Varying Debt Above Class. The Other Risk factors are
kept fixed in the Middle of their Historical Ranges. The
Red Dots are Actually Observed Data for Large U.S.
Firms from the LossStats™ Database.
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where Z(x) is a normalization constant and ¢, 3, and yare linear functions
of the risk factors x. In the case of ultimate recovery, additional point prob-
abilities are added for =0 and r=1 to account for the fact that there are
substantial numbers of observations concentrated on these points. The pa-
rameters are estimated by means of a regularized maximume-likelihood
method. As it was the case for S&P PD model, the resulting probabilities
are robust from the perspective of an expected-utility maximizing investor.
The risk factors in S&P LossStats™ Model are

¢ Collateral quality. The collateral quality of the debt is classified
into 16 categories, ranging from “unsecured” to “all assets.”

¢ Debt below class. This is the percentage of debt on the balance
sheet that is contractually inferior to the class of the debt instru-
ment considered.
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¢ Debt above class. This is the percentage of debt on the balance
sheet that is contractually superior to the class of the debt
instrument considered.

¢ Regional default rate. This is the percentage of S&P-rated U.S.-
bonds that defaulted within the 12 months prior to default.

¢ Industry factor. This is the ratio of the percentage of S&P-rated
bonds in the industry of interest that defaulted within the
12 months prior to default to the above regional default rate.

The risk factors in Moody’s KMV’s LossCalc™ are not the same, but cap-
ture similar characteristics of the balance sheet and the economy.

A typical model output is shown in Figure 2.19. The figure demon-
strates how the probability density depends on one of the risk factors. It
also shows that the probability density is fairly flat, i.e., is associated with
a high uncertainty.

The models mentioned here approach recoveries from a statistical
point of view: a probability density is learned from data without any
assumptions about the underlying process, which leads to default. An
alternative approach is taken by Chew and Kerr (2005), who approach
recovery modeling from a fundamental perspective.

COMBINING PD AND RECOVERY MODELS

Investors in credit-risky debt are usually interested in the expected loss
or the loss distribution of a given debt instrument. The latter one can be
used, in its turn, as an input into a portfolio model for the computation
of portfolio VaR, economic capital, or other risk characteristics of a
credit portfolio. The loss distribution of a single credit can be computed
by combining a PD model and a recovery model. Let us consider a debt
instrument with risk factors x (this denotes the vector of all risk factors
that affect either LGD or PD), and denote the PD by P(D|x) and the prob-
ability density for LGD (which is 1-RGD) by p(I D, x), where I denotes
a loss value and D denotes the default event. The loss distribution is
then

p(|x)=(1-P(D|x))8()+P(D|x)p(l|D, x),
where §is Dirac’s delta function. This equation implies that

E[L|x]=P(D|x)E[L|D, x],
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that is, that, for a debt instrument with known risk factors x, the expected
loss is equal to the PD times the expected LGD. This formula is widely
used by practitioners.

In many practical applications, however, the risk factors should be
viewed as having a probability distribution, p(x), rather than being given
by a single value. Possible reasons for this are the following:

¢ The economic environment at the default time is uncertain.

¢ We are interested in a portfolio instead of in a single loan. The
components of the portfolio are typically not identical with
respect to their risk factor values.

In this case, the loss distribution is
p(0)=lp@p(t Dz =pe11 - PO )5 D + POWpA

and the expected loss is

D, x)]dx,

EL]=po)ELL xldx = p(o PO IWELLID, x1dx.

These expressions involve integrals over products. Therefore, if
there are any risk factors that PD and LGD share,* one cannot simply cal-
culate the loss distribution or the expected loss based on the formulae for
given credit factors after averaging PD and LGD separately over x. This
fact, which received some attention in the recent literature (see, e.g., Frye,
2003 or Altman et al., 2006), has important practical consequences. It has
been shown that there are indeed joint risk factors, such as the economy-
wide default rate, which typically drive PDs and LGDs in the same direc-
tion. Numerical experiments have shown (see Altman et al., 2006) that
this leads to an expected loss; a VAR that is higher than the expected loss
would be in the absence of such joint risk factors. These experiments are
in line with what one would expect from the previous equation for p(l); if
those x-values with a higher PD have a greater probability for larger
losses than those x-values with a lower PD, then p(l) is more concentrated
on higher loss values than it would be otherwise. In other words, in the
case of common factors that drive PD and LGD in the same direction, if
situations turn bad with regard to PDs they also turn bad with regard to
LGDs, and the investor gets hit twice.

*Risk factors that affect either the PD or LGD only can be averaged out separately, and there-
fore do not affect the argument which follows.
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CONCLUSION

In this chapter, we have reviewed some popular approaches to modeling
PDs and RGD. Most practitioners analyze PDs from one of the following
perspectives:

1. Ratings

2. Statistical modeling

3. Structural (Merton-type) models
4. Spreads

Interestingly enough, in the pricing world (risk-neutral), the dominant
technique relies on spread, but we have seen that under the historical
measure, it is very difficult to extract a probability of default from spread.
This explains why the first three methods have been so dominant.

Going forward, we believe that the two dominant approaches that
are going to be used are rating-based models and statistical models, i.e.,
approaches 1 and 2. We do not exclude structural models, but think that
the refinements they go through these days increasingly bring them closer
to statistical models. These two approaches usually provide different infor-
mation. The first one, which is based to a large extent on expert judgement,
gives a smoothed view over a longer horizon (through the cycle), whereas
approach 2, which is usually used to derive a one-year PD from quantita-
tive factors, gives a more precise but more volatile view of the term struc-
ture of the creditworthiness of an obligor. One can, however, use approach
2 to estimate long-term PDs, in which case its output resembles a rating-
derived PD more closely.

RGD is rather difficult to predict. For this reason, it seems advisable
to model its conditional probability distribution given a set of credit fac-
tors. Perhaps the most popular approach to doing so is to estimate a beta-
distribution. More general families of distributions (e.g., exponential
densities with point probabilities), however, can improve the perfor-
mance of an RGD model substantially. An important feature, which any
RGD model should reflect, is the empirical observation that RGD and PD
share some credit factors, a fact which tends to increase the risk of high
portfolio losses.
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APPENDIX 1
Definition of the Gini Coefficient

Given a sample of n ordered individuals with x, the size of individual 7, in
this specific case ordered by the PD with respect to the percentage of
default events, and x,<x,< - - - <x,, the sample Lorenz curve is the poly-
gon joining the points (h/n, L,, L), where h=0,1,2,...,n, L;=0 and

h
Lh=121 x;. If all the individuals are the same size, the Lorenz curve is a
iz

straight diagonal line, called the line of equality. The Lorentz curve can be

Ig xF(x)

expressed as L(y) = , where F(x) is a c.d.f. and u is the mean size

of x..

If there is any equality in size, the Lorenz curve falls below or above
the line of equality.

The total amount of inequality can be summarized by the Gini coef-
ficient, which is the ratio between the area enclosed by the line of equal-
ity and the Lorenz curve, and the total triangular area under the line of
equality. The Gini coefficient G is a summary statistic of the Lorenz curve
and a measure of inequality in a population. The Gini coefficient is most
easily calculated from unordered size data as the “relative mean differ-
ence,” ie., the mean of the difference between every possible pair of
individuals, divided by u:

n n | |
22
G = i=1 j=1

2n%u

Alternatively, if the data is ordered by increasing size of individuals, in
this specific case ordered by PD with respect to the percentage of default
events, G is given by:

S (Qi-n-T)x,
G = &=
n2u

The Gini coefficient ranges from a minimum value of zero, when all
individuals are equal, to a theoretical maximum of one, in an infinite
population in which every individual except one has a size of zero. In
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general, in the Credit universe, Gini coefficients are positioned in the 50
to 85 percent interval.
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CHAPTER 3

Univariate Credit
Risk Pricing

Arnaud de Servigny and Philippe Henrotte

INTRODUCTION

Univariate pricing is a key component to the pricing of structured credit
vehicles. Several books like Bielecki and Rutkowski (2002) (BR) provide a
detailed review of up to date modeling techniques.* In this chapter, we rather
focus on giving an overview of the various possible pricing alternatives. We
start with reduced-form models that have become the market standard. We
then detail recent customizations in structural modeling, and we ultimately
offer an example of a more advanced hybrid-modeling framework.

To date, credit is still very much an incomplete market. In addition,
it is usually difficult to use a simple diffusion setup to model its dynamic,
as default risk is usually perceived as an unexpected event, i.e., a jump.
An incomplete market and the presence of jumps make the credit space a
difficult market, where it is not always easy to derive prices from the cost
of related replicating (hedging) strategies/portfolios.

Due to these characteristics, market participants have been trying
hard to make the most of two alternatives:

*These authors spend some time on the definition of the appropriate reference filtration,
more generally of the appropriate probability space and the uniqueness of martingale mea-
sures. We revert interested readers to them.
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¢+ Use the dynamics derived from the rating information in order
to take advantage of the (more or less perfect) Markov chain
properties of credit events.

¢ Use the information available in equity markets (stock and option
prices) to improve the accuracy of the pricing of credit instru-
ments. Interestingly, the structural approach has been rejuvenated
mainly for this purpose. Unfortunately, its contribution in terms
of calibration is generally poor and the incremental information it
considers is limited, as these models mainly focus on the price of
stocks and very little on equity option information.

We believe that further developments are required in this area. In this
chapter, we therefore provide a discussion of joint calibration of various
risks /underlyings, such as ratings and credit spreads, or debt and equity
instruments.

REDUCED-FORM MODELS*

In structural models of credit risk, the default event is explicitly
related to the value of the issuing firm. One of the difficulties with this
approach lies in the estimation of the parameters of the asset value pro-
cess and in the definition of the default boundary. For complex capital
structures or securities with nonstandard payoffs such as credit deriva-
tives, firm value-based models tend to be cumbersome to deal with.
Reduced-form models aim at simplifying the pricing of these instru-
ments by ignoring what the default mechanism is. In this approach,
default is unpredictable and driven by a jump process: when no jump
occurs, the firm remains solvent, but as soon as there is a jump, default
is triggered.

In this section, we first review the usual processes used in the pric-
ing literature to describe default, namely hazard rate processes. Once their
main properties have been recalled, we give pricing formulae for default-
risky bonds and explain some key results derived using the reduced-form
approach.

In a second step, we build on continuous time transition matrices to
cover rating-based pricing models for bonds and credit derivatives, before
focusing on spread calibration.

*Also called intensity-based models.
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At last, we focus on what tends to become a market standard: the
combination of spread processes with migrations.

Pricing Based on Hazard Rate Models

The main approach to spread modeling (see Lando, 1998; Duffie and
Singleton, 1999) consists of describing the default event as the unpre-
dictable outcome of a jump process. Default occurs when a Poisson pro-
cess with intensity A, jumps for the first time. A, dt is the instantaneous
probability of default. Under some assumptions, Duffie and Singleton
(1999) establish that default risky bonds can be priced in the usual mar-
tingale framework* used for pricing treasury bonds. Hence the price of a
credit risky zero-coupon bond is:

TA ds
P(t,T) = EtQ{e_-[t 1

where A =r+A L, and Q denotes the risk neutral probability measure
(see Appendix 1 for further details).

L, is the loss given default (LGD) and the second term therefore
takes the interpretation of an expected loss (probability of default times
loss given default). A, L, can also be seen as an instantaneous spread, the
extra return above the risk-less rate. This approach is very versatile as it
allows to price bonds and also credit-risky securities as discounted expec-
tation under Q but with modified discount rate.

Standard Poisson Process
Let N, be a standard Poisson process. It is initialized at time 0 (N,=0) and
increases by one unit at random times T}, T,, T}, .. . . Durations betweens
jump times T,-T,_, are exponentially distributed.

The traditional way to approach Poisson processes is to consider dis-
crete time intervals and to take the limit to continuous time. Consider a
process whose probability of jumping over a small time period At is
proportional to time:

PIN,,,,—N,=1]=2At and' P[N,,, —N,=0]~1-2At.

t+At t+ At

The constant A is called the intensity or hazard rate of the Poisson process.

*See Appendix 1 for a brief introduction to this concept.
*For At sufficiently small, the probability of multiple jumps is negligible.
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Breaking down the time interval [t, s] into n subintervals of length At
and letting 7 — oo and At — dt, we obtain the probability of the process
not jumping:

P[N,—~N,=0]=exp(-A(s — 1)),
and the probability of observing exactly m jumps is:
1 m am
P[N,-N,=m]= E(S — )" A" exp(—A(s — t)). (0)

Finally, the intensity is such that: E[dN]=A dt. These properties character-
ize a Poisson process with intensity A.

Inhomogeneous Poisson Process

An inhomogeneous Poisson process is built in a similar way as the stan-
dard Poisson process and shares most of its properties. The difference is
that the intensity is no longer a constant but a deterministic function of
time A(t). Jump probabilities are slightly modified accordingly:

PIN, - N, = 0]= exp(—f,l(u)du) (1)

and

P[N,-N, = m]%(f A(u)du)m exp(—-[s ),(u)du). )

Cox Process

Cox processes or “doubly stochastic” Poisson processes go one step fur-
ther and let the intensity itself to be random. Therefore, not only the time
of jump is stochastic (as in all Poisson processes) but so is the conditional
probability of observing a jump over a given time interval. Equations (1)
and (2) remain valid but in expectation, that is,

P[N,-N, =0] = E|:exp(— .[ S %d”ﬂ 3)

and

PIN,-N,=m]=E [% ( L gudu)’“ exp(— _[ ) Auduj:| 4

where A is a positive-valued stochastic process.
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Default-Only Reduced-Form Models

We now study the pricing of defaultable bonds in a hazard-rate setting by
assuming that the default process is a Poisson process with intensity A.
The case of Cox processes is studied afterwards. We further assume that
multiple defaults are possible and that each default incurs a fractional loss
of a constant percentage L of the principal (RMV).* This means that in case
of default, the bond is exchanged for a security with identical maturity
and lower face value.

In this section, we do not derive the equations of the pricing models
for all the recovery options. For the RT and RFV cases, we revert the read-
ers to Jobst and Schonbucher (2002).

Let P(t, T) be the price at time t of a defaultable zero-coupon bond
with maturity T.

Using Ito’s lemma, we derive the dynamics of the risky bond price:

_oP oP 10°P . ,
dpP = o dt + > dr + > 32 (dr)> —LPdN. ®)
The first three terms in Equation (5) correspond to the dependence of the
bond price on calendar time and on the risk-less interest rate. The last
term translates the fact that when there is a jump (IN=1), the price drops
by a fraction L.

Under the risk-neutral measure' Q, we must have EQ[dP]=rP dt and
thus, assuming that the risk-less rate follows a stochastic process dr=p,
dt + o, dw,_, with a drift term u_and a volatility o,, under Q, we obtain:

0P 0P 1 0P
ot ar#' 2 " or?

Comparing this partial differential equation with that satisfied by a
default free bond B(¢, T):

0 —(r+LA)P.} (6)

B B 1 ,0°B
0=—+—u +—02—-7B,
o Tt TR e T )

*So far, we have not considered the case of uncertain recovery. Various options have been
studied like (1) the recovery of treasury (RT), where a predefined fraction of the value of a
comparable default-free bond is provided in the event of default, (2) the fractional recovery
of face value immediately upon default (recovery of face value—RVEF), (3) the fractional
recovery of predefault value of the defaultable bond (recovery of market value—RMYV), (4)
the stochastic recovery, etc. We revert the readers to BR for further details.

See Appendix 1.

Given that EQ[dN]=A dt and EQ[dr]=p, dt.
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one can easily see that the only difference is in the last term and that if one
can solve Equation (7) for B(t, T), the solution for the risky bond is imme-
diately obtained as P(t T)=B(t, T)e"MT-9. The spread is therefore LA,
which is the risk-neutral expected loss.

Of course, this example is simplistic in many ways. The probability
of default over an interval of given length is assumed to be constant as the
intensity of the process is constant. In addition, default risk and interest
rates are also not correlated.

We can consider a more the versatile specification of a stochastic
hazard rate with intensity 4,, such that under the risk-neutral measure:*

dr = dt +c, dW,
dA= u,dt +o,dW,,

The instantaneous correlation between the two Brownian motions W, and
W, is p.

The derivation of the credit-risky zero-coupon bond follows closely
that described earlier in the case of a Poisson intensity. We start by apply-
ing Ito’s lemma to the dynamics of the bond price:

dP = a—Pdt+a—Pdr+a—Pd/l

ot or oA
1 d%P d%P 02P

We then impose the no arbitrage condition: EQ[dP]=rP dt which leads to
the partial differential equation:

+_
a T Ty

0= +02—+2poc o

oP oP oP 1( ,0°P 9P 9P
=—+— o —
Tart R "% aral

] —(r+LA)P. (9)

The solution of this equation of course depends on the specification of the
interest rate and intensity processes, but again one can observe that the
spread is likely to be related to LA.

Rather than setting up the dynamics of the credit-risky zero coupon
bond through the stochastic differential equation (SDE) defined in

*We drop the time subscripts in 7, and A, to simplify notations.
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Equation (9), it is possible to derive the solution using martingale meth-
ods. This is the approach chosen by Duffie and Singleton (1999).

From the FTAP* we know that the risk-less and risky bond prices
must satisfy

T
BG,T)::EP{lxexp(—L chj} (10)
and
P@Dz@%kmwxa%{%th (11)

respectively.

Equation (10) corresponds to the discounted expected value of the
$1 risk-free zero-coupon bond, given the paths of r. Equation (11) expresses
the fact that the payoff at maturity is no longer always $1 as in the case
of the risk-less security, but is reduced by a percentage L each time the
process has jumped over the period [0, T]. N is the total number of jumps
before maturity and the payoff is therefore (1-L)N"<1.

Using the properties of Cox processes, one can simplify equation
(11)* to obtain

PmnszWGf@+myﬂ}
T
= E?{exp(—_[ A, ds)} (12)

which corresponds to the discounted expected value of a defaultable bond,
conditional on the paths of r, and A_. This formulation is extremely useful,
as it signifies that one can use the familiar Treasury bond pricing tools to
price defaultable bonds as well. One just has to substitute the risk-adjusted
discount rate A,=r,+LA, for the risk-less rate and all the usual formulas
remain valid. Similar formulas can be derived for defaultable securities with
more general payoffs by decomposing them into combinations/functions
of defaultable zero-coupon bonds with different characteristics.
Obviously, the main practical challenge remains the appropriate cal-
ibration of the hazard rate process. Up to now, we have focused on a par-
ticular credit event: default. The next section focuses on multiple credit

*FTAP: first fundamental theorem of asset pricing, see Appendix 1.
*See Schonbucher (2000) for details of the steps.
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events in an elegant setup based on the existence of multiple discrete
intensity regimes related to rating migrations.

Defaultable HIM/Market Models

As in the interest rate universe, the natural next step is to move from the
calibration of a unique hazard rate specification to the modeling of its
entire term structure.

The Heath, Jarrow, and Morton (1992) (HJM) framework is therefore
extended in order to model the dynamics of the defaultable forward rates:

¢ Schonbucher (2000) shows that under certain arbitrage free
conditions, this model is applicable to the “zero recovery”
situation and a multiple default setup that is (under certain
assumptions) equivalent to the RMV assumption.

¢ Dulffie and Singleton (1999) obtain similar results in the case of
fractional recovery (RMV).

¢ Dulffie and Singleton (1998) show that in the case of RT, it is still
possible to refer to the HJM setup, provided that the usual con-
ditions get customized.

These results are important from a methodological perspective. A practi-
cal limitation has, however, been so far the lack of data to calibrate such
term structures appropriately.

Rating-Based Models

The idea behind this class of models is to use the creditworthiness of the
issuer as a key state variable on which to calibrate the risk-neutral haz-
ard rate.

The seminal article in this rating-based class is Jarrow, Lando and
Turnbull (1997) (JLT). We review their continuous time pricing approach
and discuss extensions that have lifted some of the original assumptions
of the JLT model.

Key Assumptions and Basic Structure

The model by JLT considers a progressive drift in credit quality toward
default and no longer a single jump to bankruptcy, as in many intensity-
based models. Recovery rates are assumed to be constant and default is
an absorbing state.
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JLT assume the availability of risk-less and risky zero-coupon bonds
for all maturities and the existence of a martingale measure Q equivalent
to the historical measure P. In the sequel we work directly under Q.

The authors assume that the transition process under the historical
measure is a time homogeneous Markov chain with K nondefault states (1
being the best rating and K the worst) and one absorbing default state
(K+1).

The risk-neutral transition matrix over a given horizon  is

g gl . gLk
Q) = gkl gk2 ... KKl (13)
0 0 o1

where for example q;? denotes the risk-neutral probability to migrate
from rating 1 to rating 2 over the time period h.

Transition matrices for all horizons h can be obtained from the gen-
erator* matrix A:

A 12
A A
A=|"22 ™
: - ’ 14
: : ;LK,K+1 (14)
0 0 0

via the relationship Q(h) =exp(hA). Over an infinitesimal period dt, Q(dt)=
I+ A dt, where I is the (K+1) x (K+1) identity matrix.

Pricing Zero-Coupon Bonds
Let B(t, T) be the price of a risk-less zero-coupon bond paying $1 at matu-
rity T, with t<T. It is such that:

T
B(t,T)= EtQ{exp(—J; r dsﬂ,

Pi(t, T) is the value at time t of a defaultable zero-coupon bond with rat-
ing i due to pay $1 at T. In case of default (assumed to be absorbing in
the JLT model), the recovery rate is constant and equal to § <1. The default

*Loosely speaking the matrix of intensities.



100 CHAPTER 3

process is assumed to be independent from the interest rate process and
the time of default is denoted as 7. Finally, let G(t)=1,. . ., K be the rating
of the obligor at time ¢.

The price of the risky bond therefore is:

Pi(t,T) = EtQ[exp( J; r dsj(Sl e<T) ( >T))]G(if } (15)

Given that the default process is independent from interest rates we can
split the expectations into two components:

T
Pi(t,T) = EQ {exp(—‘[ r dsﬂEfQ [él(fg) (e5T) IG(t) = 1]
= B(, T)EQ[1-(1- 8)1,,,[G(t) = i]

B, T)1- (1- 8)a35"), (16)

where q%’fjl:E?[l(fsan(t)zi] is the probability of default before matu-
rity T for an i-rated bond.

From Equations (10) and (16), one can observe that the term struc-
ture of spreads is fully determined by the changes in probability of default
as T changes. We return to spreads a little later.

Pricing other Credit-Risky Instruments

The main comparative advantage of a rating-based model does not
reside in the pricing of zero-coupon bonds for which the only relevant
information is whether or not default will occur before maturity. JLT-
type models are particularly convenient for the pricing of securities
whose payoffs depend on the rating of the issuer. Some credit derivatives
are written on the rating of specific firms, e.g., derivatives compensating
for downgrades.* More commonly, step-up bonds whose coupon is a
function of the rating of the issuer can also be priced using rating-based
models.

We will consider a simple example of an European style credit deriv-
ative based on the terminal rating G(T) of a company. We assume that its
initial rating is G(t)=1 and that the derivative pays nothing in default. The
payoff of the derivative is ®(G(T)) and its values are known conditional
on the realization of a terminal rating G(T).

*See Moraux and Navatte (2001) for pricing formulas for this type of options.



Univariate Credit Risk Pricing 101

From the FTAP, the price of the derivative is:
, T
Ci(t,T) = E?{exp(—‘[ r ds)(D(G(T))|G(t) - i} (17)
t

Given that the rating process is independent from the interest rate, we can
write:

T
Ci(t,T) = EtQ[exp(—J‘t rsdsﬂEtQ[d)(G(T)ﬂG(t) =i

K
= B(t, 1)) 47 @())- (18)
j=1

Deriving Spreads in the JLT Model
dlogB(t,T)
JoT
borrowing and lending over an instantaneous period of time at time T. It
is such that: f(t, t)=r,.
The risky forward rate for rating class i is:

Let f(t,T) = be the risk-less forward rate agreed at date ¢ for

_dlogPi(t,T) _ —0log(B(t, T)(1-(1- 0)95 ™M)

fieT) = oT oT

Hence,
a i, K+1
(1-8) Mt

FOT) = 1) +1,, | oT

(1= 8T (49

The credit spread in rating class i for maturity T is defined as fi(t, T)—f{(t, T).
From Equation (19), one can indeed observe that spread variations reflect
changes in the probability of default and changes in the steepness of the
curve relating the probability of default to time T.
In order to obtain the risky short rate, one takes the limit as T —¢
and f(t, T) —>r,:
ri=r+1_(1-0)A

iK+17

which immediately yields the spot instantaneous spread as r/—7,.
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Calculating Risk-Neutral Transition Matrices from
Empirical Ones*

For pricing purposes, one requires “risk-neutral” probabilities. A risk neu-
tral transition matrix can be extracted from the historical matrix and a set
of corporate bond prices.

q}ll,l %1,2 L q1,1<+1
Q(h) = gRi gk2 . grka |
0 0 1

where all q probabilities take the same interpretation as the empirical
transition matrix that follows, but are under the risk-neutral measure.

pll1,l pll1,2 . P]lI,K+]

|
plf,l plf,Z P]I](,K+1
o 0 -1

Time Nonhomogeneous Markov Chain In the original JLT paper,
the authors impose the following specification for the risk premium
adjustment, allowing to compute risk-neutral probabilities from histori-
cal ones:

ni(t)pirf fori #7j,

. o (20)
1-z.(H)(A-p") fori=j.

qii(t,t+1) ={

Note that the risk premium adjustments n(t) are deterministic and do not
depend on the terminal rating but only on the initial one. This assumption
enables JLT to obtain a nonhomogenous Markov chain for the transition
process under the risk-neutral measure.

The calculation of risk-neutral matrices on real data can be per-
formed as follows. Assuming that the recovery in default is a fraction 6 of
a treasury bond with same maturity, the price of a risky zero-coupon bond
at time t with maturity T is

Pi(t, T)=B(t, T) x (1-giX*1(1-5)).

*Some parts of the section come from de Servigny and Renault (2004).
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Thus, we have

i K+l _ B(t,T)—- Pi(t,T)
B, T)(1-96)

7

and thus the one-year risk premium is

_ B(t,t+1)— Pi(t,t+1)
B(t,t +1)(1 - §)gik+1 "

()

The JLT specification is easy to implement but often leads to numerical
problems because of the very low probability of default of investment
grade bonds at short horizons. In order to preclude arbitrage, the risk-
neutral probabilities must indeed be non-negative. This constrains the
risk premium adjustments to be in the interval:

O<m,(t)<

1 —, forall i
1-p*t
From this we notice that the historical probability of an AAA bond default-
ing over a one-year horizon is zero. Therefore, the risk-neutral probability
of the same event is also zero.* This would however imply that the spreads
on short dated AAA bond should be zero. (Why have a spread on default
risk-less bonds?) To tackle this numerical problem, JLT assume that the
historical one-year probability of default for an AAA bond is actually 1
basis point. The risk premium for the AAA row adjustment is therefore
bounded above. This bound is, as we will see in the next equation, fre-
quently violated on actual data.

Kijima and Komoribayashi (1998) propose another risk premium
adjustment that guarantees the positivity of the risk-neutral probabilities
in practical implementations.

77:l.],(t) =1(t) forj#K+1,

L(t)yp'i fori # K+1, 1)

ij =
g7+ ) {l—li(t)(l—pi'i) fori=K+1.

where [(t) are deterministic functions of time. Thanks to this adjustment,
“negative prices” can be avoided.

Time-Homogeneous Markov Chain Unlike the precedent authors,
Lamb, Peretyatkin, and Perraudin (2005) propose to compute a time-

*Recall that two equivalent probability measures share the same null sets.
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homogeneous Markovian risk-adjusted transition matrix. They rely on
bond spreads, thanks to the term structure of spreads per rating category.

exp(=5,(t)) = (84 () + (1 =g (1))

where t corresponds to integer-year maturities.
In order to obtain the matrix, they minimize*

n K
Min 3 Y[5,(0- @001+ =g @) @)
q; (t

t=1 i=1

knowing that g¥*! (f) is a function of the /().
A minor weakness of this approach is that it does not ensure that
spreads are matching market prices for all maturities.

Some Extentions of JLT

Das and Tufano (1996) The specificity of the model by Das and
Tufano (1996) is to allow for stochastic recovery rates correlated to the
risk-less interest rate. A wider variety of spreads can be generated due to
this flexibility. In particular, features of the model include the following:

¢ Credit spreads can change although ratings are unchanged. In
the JLT model, a given rating class is associated with a unique
term structure of spreads, and all bonds with same maturity and
rating are identical.

¢ Spreads are correlated with interest rates.

¢ Spreads are “firm specific” and not only “rating class specific.”

¢ The pricing of credit derivatives is facilitated.

While the JLT model assumed that recovery in default was paid at
the maturity of the claim,’ Das and Tufano (1996) assume that recovery is
a random fraction of par paid at the default time 7.

Arvanitis et al. (1999): Arvanitis et al. (1999) extend the JLT model by
considering nonconstant transition matrices. Their model is “pseudo

*Attaching penalties if entries in the transition matrix become negative in the course of the
minimization.
*Or identically that recovery occurs at the time of default but is a fraction § of a T-maturity
risk-less bond.
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nonMarkovian” in the sense that past ratings changes impact on future
transition probabilities. This conditioning enables the authors to replicate
much more closely the observed term structure of spreads.

In particular, their class of models allows for correlations between
default probabilities and interest rate changes and for correlation of
spreads across credit classes and spread differences within a given rating
class for bonds that have been upgraded or downgraded.

Calibration of Spread Processes

Market practice is often to model spreads directly, which eliminates the
need to make assumptions on recovery.

Spread modeling

Longstaff and Schwartz (1995) present a simple parametric specification
and provide first empirical results on real market data. The main stylized
fact incorporated in their model is the mean reverting behavior of
spreads: the logarithm of the spread is assumed to follow an Ornstein-
Uhlenbeck process under the risk-neutral measure Q:

ds,=k(6~-s)dt+odW, (23)

where the log of the spread is s,. The parameters are constant, with long-
term mean 6, and volatility o and a speed of mean reversion k.

Mean reversion is an important feature in credit spreads and has
been found in Longstaff and Schwartz (1995) and Prigent, Renault, and
Scaillet (2001) (PRS). Interestingly the speed of mean reversion is not the
same for Baa and Aaa spreads, for example. PRS provide a detailed para-
metric and nonparametric analysis of credit spread indices and find that
higher rated spreads tend to revert much faster to their long-term mean
than lower rated spreads. A similar finding is reported on a different sam-
ple by Longstaff and Schwartz (1995).

Another property of spreads is that their volatility tends to be
increasing in level. This was not captured by the earlier model. To tackle
this, Das and Tufano (1996) suggest an alternative specification, similar to
the Cox-Ingersoll-Ross (1985) specification for interest rates:

ds,= K(6—s,)dt + o5, dW,.* (24)

*Their specification is actually in discrete time. This stochastic differential equation is the
“equivalent” specification in continuous time.
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Of course, various other stochastic processes can be considered. For
example, a generalization of Equation (1) is given by

dx=(a+bx)dt+ ox’dW

where the mean reverting level is given by 8=—(a/b) and the mean rever-
sion speed is given by f=-b, and yis a scalar. PRS apply the model to credit
spread data. Depending on the parameter y (which measures the level of
nonlinearity between the level and volatility), several commonly known
models can be derived. For example, y=0 leads to the Vasicek (1977) process,
while y=1/2 results in the Cox, Ingersoll, and Ross (1985) (CIR) process.
PRS also discuss a Jump-diffusion dynamics and support their claim
by empirical evidence. They therefore extend the model of Longstaff and
Schwartz (1995b) in a different direction and incorporate binomial jumps:*

ds,= K(0—s)dt+o dW,+dN,, (25)

where N, is a compound Poisson process whose jumps take either the
value +a or —a (given that the specification is in logarithm, they are per-
centage jumps).

Jumps are found to be significant in different rating series (Aaa and
Baa), and a likelihood ratio test of the jump process versus its diffusion
counterpart strongly rejects the assumption of no jumps at the 5 percent
level. Note that the size of percentage jumps in Baa spreads is about half
that of jumps in Aaa spreads. In absolute terms, however, average jumps
in both series are approximately the same size, because the level of Aaa
spreads is about half that of Baa spreads.

Calibration of Spreads Modeled as
Jump-Diffusion Processes
The model specification we retain here corresponds to Equation (25)

Specification The discretization of Equation (25) leads to:
5,,, =S, =K(0—s,)dt + oNt.N(0,1) + I,.N, (1, v) (26)

The compound Poisson process specification means that the time-arrival
of the jumps follows a Poisson process and that the size of the jumps

*Models estimated by PRS are under the historical measure and cannot be directly compared
to the risk-neutral process mentioned earlier.
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follows a normal distribution with parameters u and v. Practically, I, is
equal to 1 when there is a jump at time ¢ and 0 otherwise. u is drawn
from a standard uniform distribution and a jump takes place if u<1-
exp(-A dt).

MLE Calibration The common approach is to maximize the log-
likelihood function. In order to build this function, we want to define the
probability of obtaining a level of spread s,, given a level of spread s,
previous observation. We know from Ball and Torous (1983) that p(ds,)
will follow a normal distribution weighted by the probability of a jump
(K=P(x=1)=1—-exp(-At))

m

1 _(dst - Ejump)2
p(ds,) = p(s, —s,;) =K P v

jump jump

—(dS - Eno jum; )2
+(1-K) ! exp d Sl
\/ 277:‘/n()7]'141mp 2V

no_jump

with the density of normally distributed spread changes being written as:

(ds) 1 —(ds, — E)?
s,)= ex
PAas, J2nv P 2V
E o jump=K(6—s)dt and E;  =K(6—s)di+u being the expectation of the
spread process
— 52 — 52 2
Vo jump=07dt and V. =0*dt+0%

The Log-likelihood function to be maximized is then:
T
Max(L) with L= ) 1 s,—5 27
Max(D) with L= 3 log(p(s, =5,.,) (27)

The tractability of the approach has been previously demonstrated, and
the more data is available, the more the MLE estimators are close to the
“true” parameters (i.e., there is a high confidence level).

More Advanced Calibration

A relatively recent trend in spread calibration has been to calibrate spread
movements as the combination of a jump-diffusion process and a correlated
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migration process. This type of process can be seen as an advanced version
of the CreditMetrics setup where instead of relying on deterministic
spreads, we would add pure spread uncertainty. Such a framework has
been considered in Kiesel et al. (2001) and Jobst and Zenios (2005), where
the relative contribution of spread, (interest rate) and transition/default
risk is explored for various bond portfolios.

The calibration of the two processes does not represent a serious
issue as long as they are considered as independent from each other. The
challenge becomes obvious when dealing with dependence between
these two processes and when suggesting cocalibration. This topic seems
to be open for research, See for example, Bielecki et al. (2005) who try to
tackle the problem formally.

STRUCTURAL MODELS

Structural models have received some renewed consideration recently, as
market participants investigate more thoroughly hybrid products as well
as debt equity arbitrage, e.g., through credit default swap and equity
default swap carry trades. In addition as the equity market is more com-
plete than the credit market, credit pricing, and hedging solutions based
on equity products receives ongoing market interest.*

The Merton Model

The Merton (1974) model is the first example of an application of contin-
gent claims analysis to corporate security pricing. Using simplifying
assumptions about the firm value dynamics and the capital structure of
the firm, the author is able to give pricing formulae for corporate bonds
and equities in the familiar Black and Scholes (1973) paradigm.

In the Merton model a firm with value V is assumed to be financed
through equity (with value S) and pure discount bonds (with value P) and
maturity T. The principal of the debt is K, and the value of the firm is
given by the sum of the values of its securities: V,=S,+P,. In the Merton
model, it is assumed that bondholders cannot force the firm into bank-
ruptcy before the maturity of the debt. At the maturity date T, the firm is

*Such models allow in particular to provide a “fair value” spread estimation on loans related
to listed companies.
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FIGURE 3.1

Payoff of Equity and Corporate Bond at Maturity T.

Payoff to Payoff to
A shareholders A bondholders

P(T,T)

v
v

considered solvent if its value is sufficient to repay the principal of the
debt. Otherwise, the firm defaults.

The value of the firm V is assumed to follow a geometric Brownian
motion* such that' dV=uVdt + 6,V dZ. Default happens if the value of the
firm is insufficient to repay the debt principal: V., .<K. In that case, bond-
holders have priority over shareholders and seize the entire value of the
firm V.. Otherwise (if V.>K), bondholders receive what they are due: the
principal K. Thus, their payoff is P(T, T)=min(K, V,)=K-max(K-V, 0)
(see Figure 3.1).

Equity holders receive nothing if the firm defaults, but profit from
all the upside when the firm is solvent, i.e., the entire value of the firm
net of the repayment of the debt (V,—K) falls in the hands of share-
holders. The payoff to equity holders is therefore max(V,—K, 0) (see
Figure 3.1).

Readers familiar with options will recognize that the payoff to equity
holders is similar to the payoff of a call on the value of the firm struck at
X. Similarly, the payoff received by corporate bond holders can be seen as
the payoff of a risk-less bond minus a put on the value of the firm.

*A geometric Brownian motion is a stochastic process with log-normal distribution. u is the
growth rate while o, is the volatility of the process. Z is a standard Brownian motion whose
increments dZ have mean zero and variance equal to time. The term uVdt is the determin-
istic drift of the process and the other term ¢,V dZ is the random volatility component. See
Hull (2002) for a simple introduction to geometric Brownian motion.

*We drop the time subscripts to simplify notations.
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Merton (1974) makes the same assumptions as Black and Scholes
(1973), and the call and the put can be priced using option prices derived
in Black-Scholes.

For example, the call (equity) is immediately obtained as:

S,=V.N(k+0c NT —t)— KeTIN(k), (28)

with k= (In(V, / X)+(r—=502)T - t)) / (c,vT —t) and N(:) denoting the
cumulative normal distribution and r the constant risk-less interest rate.

From Risk-Neutral Probabilities to Spreads

The firm value approach suffers from several theoretical shortcomings
like the fact that the evolution of the value of the firm usually follows a
diffusion process that does not allow for unexpected default.

What is more important from the point of view of practitioners is
to evaluate whether a structural model can help them to derive prices
for credit instruments such as defaultable debt or credit default swaps
(CDSs). A particular area of focus is short-term credit spreads, as in the
traditional structural setup the probability of a firm to default in the
short term is zero, leading to zero initial credit spreads. We review var-
ious approaches and assess whether they can provide realistic results.

The Capital Asset Pricing Model (CAPM) Approach

In Chapter 2, we have mainly focused on historical probabilities of default,
i.e., probabilities estimated on historical data. However, for pricing pur-
poses (for the calculation of spreads), one needs to estimate risk-neutral
probabilities. Here, we show a customary way to obtain spreads from his-
torical probabilities: a similar calculation is used by the firm MKMV
(Moody’s KMV) and many banks (see, e.g., McNulty and Levin, 2000).

Recall that the cumulative default probability (historical probability)
for a firm i (HP') is defined as the probability of default at the horizon ¢
under the historical measure P. In the MKMYV (model, this corresponds to
their expected default frequency.

We now introduce the risk-neutral probability, RNP’,, which is the
equivalent probability under the risk-neutral measure Q (see Appendix 1).
Under Q, all assets drift at the risk-free rate and therefore one should sub-
stitute  for y, in the dynamics of the value of the firm.*

*That is, we have dA,=rA, dt+ A, dW, under Q and dA,=uA, dt+cA, dW;under P.
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The formulas for the two cumulative default probabilities are there-
fore:

api - | - 0V5) ~InX) +(w; — 0 / Z)t)J/ .
t o'iﬁ
rNp < N - (%) ~In(X) +(r -0 / 2)t)}’ (29)
t o'iﬁ

with:

N(') = the cumulative standard normal distribution
Vi = the firm’s asset value at time 0
X. = the default point (value of liabilities)
o, = the volatility of asset values
u, = the expected return (growth rate) on asset values
r = the risk-less rate

The expected return on an asset includes a risk premium, leading to u, >,
and hence:

RNP, >HP/.

Writing the risk-neutral probability of default as a function of HP!, we
obtain:

RN N[_ (In(A]) ~ In(X,) + (1, — 02 / )t = (1, — r)t)]

ot

_ N[N‘l(Hl’ti) ¥ (“fo . r]ﬁ ] (30)

According to the CAPM (see, e.g., Sharpe et al., 1999), the risk premium
on an asset should depend only on its systematic risk measured as the
covariance of its returns with the returns on the market index.
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More precisely for a given firm i with expected asset return u, we
have:

w=r+p; (E(r,)-7)
=r+fm,

with E(r, ) the expected return on the market index and 7, the market risk

premium. =0, /0% =p, 0,/0, is the measure of systemic risk of the

firm’s assets, where ¢, , 0, , and p, are, respectively, the volatility of the

market, the covariance, and correlation of asset returns with the market.
Using these notations, the quasi probability becomes:

RNP/ = N[N‘l (HP))+p, [:—f]ﬁ ) (31)

m

Corporate spreads are the difference between the yield on a corporate
bond Y(t, T) and the yield on an identical but (default) risk-less secu-
rity R(t, T). T denotes the maturity date while ¢ stands for the current
date.*

The spread is therefore: S(t, T) =Y(t, T)—R(t, T). Recall that the price
P(t, T) at time t of a risky zero-coupon bond maturing at T can be obtained

by:
P(t, T)=exp(=Y(t, T)x (T—t))
Similarly, for the risk-less bond B(t, T):
B(t, T)=exp(~R(t, T)x(T—t)).
Therefore,
S(t, T)=1/T—1) log(B(t, T)/P(t, T)). (32)

Thus, all else being equal, the spread widens when the risky bond price
falls.

For the sake of simplicity, assume for now that investors are risk
neutral. In a risk-neutral world, an investor is indifferent between receiv-
ing $1 for sure and receiving $1 in expectation.

*We drop the superscript i in the probabilities for notational convenience.
P P P P
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Then: B(t, T)=P(t, T)/(1-RNP,_* L), where L is the loss in default (1
minus the recovery rate) and RNP, the probability of default. Therefore,
we get: 5(t, T)=—1AT—t) In(1-RNP,._, * L).

The risk-neutral spread reflects both the probability of default and
the recovery risk. In reality of course, investors exhibit risk aversion that
will also be translated into spreads.

We now want to calculate the price of a defaultable bond using risk-
neutral probabilities of default. Let PS(t, T) be the value at time t of a
T-maturity risky coupon bond paying a coupon C (there are n coupon
dates spaced by At years). We assume that the principal of the bond is
1 and that the value recovered in case of default is constant and equal to R.

We have:
PE(t,T) =Y B(t,t + kAL C x (1~ RNP, )+ Rx (RNP,, ~RNP, | )|
k=1
+B(t, T)x (1~ RNP, _,) (33)

An important point to notice is that this approach does not prove really
satisfactory to cope with nonzero short-term credit spreads.

The Market Implied Volatility Approach
In a Merton setup, the value of the equity at time ¢ is immediately
obtained as:

S,= V.N(k +0,NT —t) - Ke T-DN(k),

with k=(n(V, / X)+(r =307 (T =1)) / (6,~NT = t) and N() denoting the
cumulative normal distribution and r the risk-less interest rate.
It can be rewritten at =0 as:

S, = (P, +S,)N(k +0,JT) - Ke"™N(k) and
In((P, +S,) / X) + (r - %oé )(T)
k = .
o T

If we assume that an implied volatility o;, can be derived from the mar-
ket, we can obtain P, as a function of S;: P =F(S). For small ¢, we can
assume: P,=F(S)).

We also would like to infer the density of P, from that of S,. A stan-
dard assumption for the distribution of the equity is log-normality.
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Let us call ¢(-) the density function of S:

(S) = —1_ exp| - L UnSo) = In) +(u, - 02/2)t)?
P e sV T 2 pe (34)

where u and o, are, respectively, drift and the volatility of the equity
under the empirical measures.

The density function of P, can now be inferred numerically from that
of S, as:

Probability (P,) e [P; P +dP]= &P)dP = o(F-(S))d(F-1(S))

The expected return of the zero-coupon bond price can be written as:

R,(t) = El% 1{%}} - %UO In(P)E(P)dP — In(P, )) (35)
and the bond spread can be derived as §(t) = \Rp(t) —r\.

This type of analysis is typically used in the market by the financial
institutions that want to obtain some indication of whether a bond is
“cheap” or “expensive,” based on a relative value assessment between the
observed spread and the corresponding fair-value spread.

Obviously, the fair-value of the bond spread will depend on the
specification of the dynamics of the equity price. As we have considered
log-normal dynamics for the value of the firm V(-) over the period [0, T],
we cannot consider an arbitrary density for S over the corresponding
period. As we are focusing on a very short time horizon, we could how-
ever consider a more complex pattern generating an implied volatility
skew. There is a large range of possibilities based, for instance, on the
use of standard CEV diffusion processes. One can even think of jumps in
order to generate very steep volatility skews.

So far, we have not referred to a term structure of spreads, but only to
an assessment of what the market value of the spread could be in the very
short term. The way to obtain a term structure of spreads would be to rely
on forward prices for the equity, the equity and the asset volatilities, the
equity drift, and the risk-free rate, as well as on a specification of the for-
ward density of the equity price. In the end, it is probably fair to say that the
result will correspond to an art as much as to a scientific piece of work.
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Extensions of the Merton Framework

First-Passage-Time Models

An important extension of the original Merton model consists of the
“first-passage-time approach.” The idea is introduced in Black and Cox
(1976). It allows for default to occur prior to the maturity of the debt. This
approach consists in including an early default time-dependent barrier as
can be seen in Figure 3.2. Depending on the authors, the dynamics of the
barrier (the barrier process) can be specified either endogenously or
exogenously. For example, for a simple constant barrier K, the probability
of default (“first passage time”) is given in closed form:

P(min, ., V, <K)

[0,7]

=1- @(ln(%j/(ovﬁ) +(, — 0.563,)«/?/6‘/)

2u,, -0.50%)/0%
+ [VE] q)[ln(vﬁj/ (0, NT) + (1, —0503)VT /o, J
0

0

In addition, the recovery upon default can be defined in various ways.

FIGURE 3.2

Introduction of a Time-Dependent Default Barrier.
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The Effect of Incomplete Information Duffie and Lando (2001) lay
stress on the fact that first-passage structural models are based on account-
ing information. This information to investors can be somewhat opaque
and sometimes insufficient, as we have observed recently with Enron,
Worldcom, Parmalat, and others. In addition, accounting practices lead to
the release of data with a time lag and in a discrete way. For all these rea-
sons, part of the information used as an input in structural model (e.g.,
asset value and default boundary) can be imperfect.

Duffie and Lando (2001) suggest that if the information available to
investors was perfect, observed credit spreads would be closer to theoret-
ical ones, as predicted by the Merton models. However, as the informa-
tion available in the financial markets is not complete, observed spreads
exhibit significant differences (see Figure 3.3).

To summarize, the driving forces behind the dynamics of the Merton
approach, we can say that the risk on the debt of the firm, reflected in its
spread, largely depends on three key factors: the debt equity leverage, the
asset volatility, and the dynamics of the default barrier.

The Dynamic Barrier Approach

This class of model builds on the first-passage-time approach, where
default can happen before the maturity of the debt when the value of the
firm hits a time varying barrier. The problem with such models is to

FIGURE 3.3

Credit Spreads and Information.
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define a specification for the time-dependent barrier that allows for
tractable pricing solutions.

The CreditGrades Approach Finger et al. (2002) propose a fair value
spread estimator (CreditGrades) more refined than the MKMV one. In
order to allow for non-zero spreads at the beginning of the life of a CDS, the
model assumes a stochastic barrier driven by a log-normally distributed
stochastic recovery rate.

Assuming zero drift, the authors show that it is then possible to
derive the risk-neutral probability of default of the obligor in a simple way:

(1n(v )—In(X, ))

RNP! = N R a— Jvar, /2

vi (1n(v ) - In(X, ))

S S R

i

with X; being the mean value of the new barrier depending on the mean
recovery value and var, a time-dependent element derived from the vari-
ance term of the Brownian component of the geometric Brownian motion
characterizing the asset value of the firm, complemented with the variance
of the recovery. As a result, initially as time is zero or close to zero, the var;
term differs from zero and the risk-neutral probability remains strictly pos-
itive. This in turn justifies the existence of a nonzero initial spread.

The spread can be derived as in the previous paragraph. The authors
describe a closed form solution in the case of a continuously compounded
spread.

This model has become a market standard in particular because of
its tractability. It however relies on an ad hoc hypothesis on recovery that
is difficult to validate empirically and that positions the model at the
boundary of structural models.

The Safety Barrier Approach Brigo and Tarenghi (2005) suggest to
consider a “safety barrier” that is defined as the product of the barrier at
the maturity of the debt and a discount factor derived from an adjusted
drift extracted from the geometric Brownian motion corresponding to the
asset return of the firm. The risk-neutral drift is adjusted in the sense that
it includes a parameter 8 whose main role is to vary the steepness of the
safety barrier by reinforcing the effect of the volatility. Based on this choice,
they derive analytically the risk-neutral survival probability of the firm. By
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assuming a deterministic risk-free rate and an equivalence between the
equity and the firm value volatilities, they can ultimately infer in a
straightforward manner the price of a CDS at time 0.

To start with, the authors assume a diffusion process for the dynam-
ics of the value of the firm under the risk-neutral measure, with time-
dependent risk-free rate, payout ratio, and asset volatility.

v,
7 = (T’t —qt)dt+0'tth

t

The expression of the “safety barrier” H (#) is related to the default thresh-

old H
2
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The survival probability is given in a closed form way:
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Under deterministic interest rates, the value at time 0 of a CDS between
times T, and T, corresponding to two payment date of the installments,
with a fixed running amount per period R and fixed LGD can easily be
inferred as:

b
CDS, . (0,R,LGD) = -R Y, PO, T)Qz = T)

i=a+1

_LGD _[:b P(0,H)dQ(z > t)

with P(0, t) the zero-coupon bond at time 0 for maturity .

As can be seen, the pricing of the CDS will depend on the definition
of V/H, the asset volatility that is approximated by the equity volatility
and the barrier curvature parameter 8.
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The authors calibrate* their model with V/H=2 and =0.5. With
this calibration, they show that they are able to provide a calibration of the
CDS on Vodafone with results quite close to those derived from an inten-
sity model.

This paper looks quite promising in the sense that it leads to
tractable results while providing some intuition in terms of rational eco-
nomic interpretation.

The Structural Approach Blended with a
Jump-Diffusion Process to Model the

Evolution of the Firm

The pioneer article related to jump-diffusion structural models is Zhou
(2001).

We can write the evolution of the value of the firm as the sum of a
diffusion process and a compound Poisson jump process Z. c is the
product of the arrival intensity of the Poisson process by the mean jump
size.

av,
==y -odt+o AW, +dz, (38)

t

Zhou (2001) is able to derive a closed form expression of the risk-neutral
probability of default.
There are some technical difficulties to calibrate such a model:

¢ Asset returns are not observable

¢ A proxy is to rely on equity return or on an index return, but
this calibration needs to be transformed from the real to the risk-
neutral probability measure and as the market is not complete,
there is no unique solution to the problem.

Huang and Huang (2003) go through the process of calibrating a
jump-diffusion process in a structural framework. Their finding is that
even when introducing a jump term, pure credit risk cannot account for
the observed level of credit spread. The only way to reach such level

*Brigo and Tarenghi (2005) suggest to link the ratio of the initial value of the firm to the bar-
rier to expected recovery. Le., we have dA,=rA, dt+0A, dW, under Q and dA,=uA,+ cA dW;
under P.
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would be by forcing parameters into the model that lack empirical
support.

Hybrid Models: A Discussion Around

the Equity-to-Credit Paradigm

In this section, we discuss new approaches to the pricing of credit instru-
ment based on the cocalibration with equity products. This is summarized
as the “equity-to-credit paradigm” that attempts to grasp the complexity
of the full spectrum of securities issued by or related to a single name in a
consistent framework. It results from the need to price consistently equity
products such as options, credit instruments such as bonds and CDSs, and
hybrid securities such as convertible bonds. The intuitive idea is simple.
The prices of out-of-the-money put must say something about the proba-
bility of default of the issuer, and reciprocally the credit standing revealed
by the term structure of CDS spreads should impact the implied volatility
smile. The joint calibration of different classes of assets related to a single
name is often viewed as a complex and distant challenge. We argue instead
that a large set of available market data provides a great opportunity
to extract precise information on a single name. This nice feature of single
name modeling is in sharp contrast with multiname problems such as
CDO pricing, where there is less hope of finding enough instruments to cal-
ibrate precisely a correlation structure for hundreds of names. As a result,
multiname pricing is limited to educated guesses and statistical inference
from past data. The calibration of single name models has the luxury to rely
on a large set of forward looking derivative prices. The challenge is to pro-
pose models that are capable of handling this rich source of information.
We review why both standard structural models and simple reduced-form
models fail and propose a new class of regime-based models, versatile
enough to handle most situations in a numerically tractable way.

Structural Models

As we have seen earlier, structural models attempt to explain the price
dynamics of the instruments related to a single name, the so-called equity-
to-credit universe, by making use of the available information on the capital
structure of the firm. Default is triggered when the assets of the company fall
below some critical threshold. The value of the company’s assets is the only
state variable, and the price of every security is derived from its process and
its relation to the critical threshold. From their introduction by Merton in
1974, these models have been continuously refined but have kept the same
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philosophy. The most advanced refinements introduce complex joint
dynamics for the value of the assets and the critical default threshold. Jumps
for instance, either in the asset value or in the threshold itself, make it pos-
sible for a firm to fall into default at every instant. This is a much-needed fea-
ture as otherwise default would always be predictable and short-term CDS
spread should consequently be close to zero, a clear empirical contradiction.

The main problem with structural models is their inability to repro-
duce the observed prices of the equity-to-credit instruments. By tweaking
the volatility parameter of the asset value process, for instance, it is possi-
ble to account for the observed term structure of CDS spreads. Such cali-
bration exercise is however limited to a single asset class. The tweaked
model will, in general, fail to reproduce the observed term structure of at-
the-money implied volatilities, let alone the entire smile across strikes and
maturities or the prices of critical exotic derivatives such as barrier or for-
ward starting options.

It is important to understand why the shortcoming of the struc-
tural model is not marginal. Its inability to calibrate the equity-to-credit
universe is fundamental and cannot be dealt with by a few adjustments
on the underlying process. The reason is rather obvious: corporate life is
a complex process that cannot be summarized in a one-dimensional pro-
cess. A trader with equity and credit exposures knows intuitively that
the stock price is not the only variable which affects his P&L (Profit and
Loss). At the minimum, he is equally concerned with the volatility and
the evolution of the spread. These risk dimensions, although clearly cor-
related with the stock price, cannot be reduced to a one-dimensional
problem. The critical weakness of structural models is to assume that the
value of every security linked to an issuer is a function of the assets of
the company alone. The empirical reality presents a much more complex
picture.

Simple scatter plots of CDS spread or implied volatility against stock
price show the gap that often exists between the structural theory and the
empirical evidence. Figures 3.4 and 3.5 show, respectively, the five-year
CDS spread and the one-year ATM implied volatility as a function of spot
for the firm Accor from April 2003 to December 2005. Structural theory
predicts that both the spread and the implied volatility should be decreas-
ing functions of the spot price.

Not only is it clear that in many situations the price dynamics of
equity-to-credit securities cannot be reduced to a one-dimensional manifold,
but in some critical cases the structural models fail to grasp the sign of the
correlations. Structural models view the equity as a call written on the assets
of the company whose value decreases with the value of the assets. As the
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FIGURE 3.4

CDS Spread vs Equity Spot Price.

CDS Spread vs. Spot

140
130 -

.o .
120 Jo—o> L

e 0 o 3‘. -

o *.

110 AASEPOvEY . v"
’: \ xR R

100 ’ .g,."

48
FIGURE 3.5
Implied ATM Volatility vs Equity Spot Price.
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stock price falls with the value of the assets, leverage increases and the com-
pany becomes more risky resulting in larger spreads and higher stock price
volatility levels. This intuitive behavior often fails to grasp the rich dynam-
ics of the equity-to-credit universe.

Figure 3.6 examines in more detail a subset of the data presented ear-
lier for Accor, from June 1, 2005 to December 8, 2005. It can be decomposed
into three subperiods that correspond to three distinct regimes. Period 1
runs from June 1 to July 7 and is characterized by a low level of volatility.
On July 8, the volatility suddenly increases and this regime lasts until
August 10 (Period 2). On August 11, the volatility jumps again to a third
regime until the end of the sample (Period 3). At each juncture, the spot
price barely moves. The CDS spread scatter plot for the same period (see
Figure 3.7) fails to reveal any clear regime or any correlation with the spot
price. The regimes can therefore best be described as volatility regimes.
They correspond to very real events affecting the life of the company or the
business environment. The first regime change on July 7, 2005 was most
probably triggered by the terrorist attacks in London, which ushered in a
period of perceived instability, reflected in a larger implied volatility. The
second regime switch corresponded to rumours in the press of manage-

FIGURE 3.6

Implied ATM Volatility vs Equity Spot Price: June
2005-December 2005.
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FIGURE 3.7

CDS Spread vs Equity Spot Price: June
2005-December 2005.
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ment shakeout and potential buyout of Accor by the real estate fund Colony
Capital together with the company Starwood Hotels & Resorts Worldwide
Inc. The stock price increased first from 41.78 to 43.69 euros on Friday
August 5, and the implied volatility then jumped on August 11 from 18.4 to
21.9 percent. Needless to say that none of these changes of regime can be
accounted for by standard structural models. The potential buyout has log-
ically a positive impact on both the stock price and the implied volatility
while the structural model would imply a smaller risk as the price increases.
It could be argued however that the structural model remains a good
candidate within each regime in order to describe the day-to-day behavior
of the Equity-to-Credit universe. Figure 3.7 has already shown that it is dif-
ficult to believe that the CDS spread is a function of the spot price, even
within each regime. Figure 3.8 describes the joint behavior of the CDS
spread and the implied volatility over a small period of time from May 4 to
June 3, 2005 while Figure 3.9 tracks the spot price over the same period.
During that period, the stock remained virtually constant until May 18
at around 36 euros while both the spread and the implied volatility were
increasing significantly. The stock then jumped to around 37.5 euros while



FIGURE 3.8

Implied ATM Volatility (Left Axis) vs CDS Spread (Right
AXis).
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both the spread and the implied volatility went back to their original values.
Traders who would have hedged their credits or volatility position on Accor
in the first two weeks of May 2005 with the underlying alone according to
a structural model would have been widely off the mark.

Reduced-form Equity to Credit Models

A reduced-form model is sometimes seen as an attempt to alleviate the
most striking shortcoming of the structural model: the fact that the default
event itself is triggered by the stock price. In its standard formulation, a typ-
ical reduced-form model often keeps the stock price as the only explanatory
variable for the entire equity-to-credit universe but for one event, which is
the time of default. Default is seen as an exogenous and unexplained event
that may occur anytime according to a Poisson process. The intensity of this
process, just like the instantaneous volatility of the stock price, may itself be
a function of time and spot. The state space is therefore expanded from the
stock price alone (as in structural models) to the stock price and the default
event in the reduced-form model. The stock price S follows a stochastic dif-
ferential equation under the risk-neutral probability:

ds,/ S,=(r,+ A(S,, t)) dt+o(S,, t) AW, —dN,

where 7, is the short-term risk-free rate at time ¢ and N, is a Poisson process
with instantaneous intensity A(S,, t), which triggers default. We assume here
for simplicity that the stock price jumps to zero upon default. Notice that the
drift is adjusted to make sure that the stock price follows a discounted mar-
tingale in the risk-neutral probability measure, as required by the absence of
arbitrage opportunity. Any derivative instrument should also earn the risk-
free rate on average under the risk-neutral measure and from this we derive
the value V of any derivative security:

E[dV]/dt=rV=0V/d+(r,+ XS, ))SIV/IS+1025202V / 952+ A(S,, HAV

The term AV describes the jump in value on the derivative caused by a
jump to default of the underlying. Contrary to structural models, reduced-
form models do not impose any a priori structure on the local default
intensity and volatility parameters. In practice, one seeks to calibrate these
functions to market data such as vanilla options and CDS.

The structural model setup fails to grasp the rich behavior of the
equity-to-credit universe, because the spot price alone is too crudely a state
variable. Adding the default event to the state space is certainly welcome but
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is unlikely to be sufficient. Standard reduced-form models are still unable to
grasp regime changes, except in the most extreme case of default. As a result,
even if they manage to reproduce a smile of vanilla options and a term struc-
ture of CDS at a given time, they will not properly account for the rich
dynamics of these objects. This in turn implies that they will produce wrong
hedges and that they will fail to correctly price exotic instruments.

Regime-Switching Models

The models that we have reviewed so far share the same drawback. They
rely on a state space that is too restrictive to correctly handle the complex
situations that are common in the corporate life of a firm. Expanding the
state space from the stock price alone in the structural model to an addi-
tional default state variable in the standard reduced-form model goes in
the right direction but is still too limited. Our choice of additional dimen-
sions for the state space will be guided by two complementary sources,
asset pricing theory on the one hand and corporate finance on the other
hand.

From advanced asset pricing theory, we know that robust pricing
and hedging of equity and credit derivatives require complex models for
the stock price process with jumps, stochastic volatility with possibly
jumps on the volatility, and finally a stochastic credit dimension with a rich
correlation structure between these risk factors. This means that we need
to keep track of at least two or more processes, in addition to the stock
price and the default status: a process for the instantaneous volatility and
another one for the instantaneous default intensity. A full-fledged three or
more dimensional state variable is however extremely cumbersome to
work with and such complex models have so far been confined to aca-
demic studies. Their calibration time is often too important to be of any
value for practitioners, which explains the popularity of simpler models
where the state space is essentially limited to the stock price. We face a dis-
turbing contradiction. Asset pricing theory requires a rich state space while
numerical tractability demands a limited number of risk dimensions.

Discrete regimes offer a nice way to solve this contradiction. We con-
sider here a small number of abstract regimes: in practice, two are
often enough and three is plenty. In each regime, the stock price follows a
geometric jump-diffusion process with constant parameters. Each regime
is defined by a distinct volatility, a distinct hazard rate, and distinct stock
price jumps. The switch between regimes is driven by a Markov chain in
continuous time. Default can be seen as an additional regime from which
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the firm does not recover. Formally, the state space is described by the
stock price and an additional discrete variable that tracks the regime and
default status. Finally, the much needed correlation between stock price,
volatility, and default risk is obtained by allowing stock price jumps of
various sizes when changes of regime occur. The proposed state space is
both coarse enough to remain numerically tractable and rich enough to
capture the risk dimensions called for by advanced pricing theory. It is
crucial to remark that, contrary to the stock price or the default status, the
volatility and the hazard rate are abstract variables, which are not directly
observed. An elementary Markov chain is the simplest framework where
these variables are stochastic with potentially rich correlation patterns.

One drawback of any regime-switching model is the absence of any
closed form solution, which means that a calibration exercise must rely
on fast numerical procedures. Luckily, the regime-switching model lends
itself to fast numerical analysis through the use of coupled partial differ-
ential equations. We need to solve one backward one-dimensional grid
per regime, which means that the pricing of an option with three regimes
is only three times as costly as in the case of a standard jump diffusion, a
far cry from the time needed to solve a full three-dimensional grid. In
each regime i, the underlying price follows a jump-diffusion process in
the risk-neutral probability with Brownian volatility ¢, and some jumps of
percentage size i, and intensity /ll./:

ds,/s, =(rt—2j lijyij) dt+o, thJrZ]. Y, le.jt

We distinguish three kinds of jumps: simple price jumps within each
regime, a jump to default with a regime-dependent intensity or hazard
rate, and jumps that occur together with a regime switch. The value V, of
a derivative in regime i is a solution to a one-dimensional evolution equa-
tion which results from the fact that in the absence of arbitrage every secu-
rity must earn the risk-free rate in the risk-neutral probability:

ELAV,1/dt = 1V, =V, /0t+(, — 5, 2,Y,)S0V,/05 + 07 5%V, /05"
+2, A,AV,

The last term AV, measures the jump on the value of the instrument
implied by the corresponding jump of the underlying. For the jump to
default, we need to input here the residual value of the instrument after
default. In the case of a switch between regimes, AVi], involves the value
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of the instrument in the new regime. This coupling jump term explains
how the values of the derivative in the different regimes are interrelated.

Although apparently simple, the regime-switching model is quite
versatile. Even with two regimes, it may give rise to very different inter-
pretations depending on the values of its parameters. It can, for instance,
reproduce the features of a stochastic volatility model or the ones of a
credit migration model. Most interestingly, and unlike structural models,
it can accommodate correlations of any sign and size between the stock
price, the credit quality, and the volatility.

As predicted by asset pricing theory, the regime-switching model can
successfully reproduce an entire smile of vanilla options and a term struc-
ture of CDS. We consider here the case of Tyco as of April 13, 2005 when its
shares traded at US $33.64. We used a simple two-regime model. There are
three sorts of jumps. First, the stock price jumps to zero upon default and
this can occur in each regime with a different intensity. Second, the stock
price jumps when the regime changes. And finally, we allow an additional
stock price jump in the first regime only, which helps capture the options of
very short maturities. Figure 3.10 describes the calibrated parameters while
Figures 3.11 to 3.13 compare the market data with the option prices and
CDS spreads produced by the model. The two regimes are solved by two-
coupled one-dimensional PDE (Partial Differential Equation), essentially
doubling the numerical effort needed to solve a standard jump-diffusion
model. Calibration was obtained on a normal laptop in a few minutes.

The two regimes differ widely in terms of volatility or default intensity.
The first regime has low volatility and no possibility of default while the sec-
ond regime has a large volatility and a positive hazard rate. Switching from
the first regime to the second is accompanied by a negative jump while
reverting to the first regime occurs with a positive jump. This reproduces the

FIGURE 3.10

Model Calibration: A 2 State Regime Switching
Approach.

Brownian Volatility Default Intensity
Regime 1 16.09% 0.000
Regime 2 66.17% 0.041
Size Jump Intensity
Regime 1 -15.96% 0.986
Regime 1-> 2 -44.58% 0.078
Regime 2 ->1 21.29% 0.020
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FIGURE 3.11

Model Fit vs Market Data: Credit Spreads.
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familiar correlation pattern of the structural model, where the volatility and
the hazard rate increase as the price goes down. Notice, however, that the

relation here is not functional but only probabilistic.

These regimes are not only a convenient way to tackle the asset pric-
ing challenge of the Equity-to-Credit universe. They also offer a unique
corporate finance perspective on the underlying firm. This is a second
important source of inspiration for expanding the state space, this time

FIGURE 3.12

Model Fit vs Market Data: Implied Equity Options by

Strike and Maturity.

Market Time Value

Strike / Maturity 15 20 225 25 275 30 325 35 375 40 425 45 50
21/05/05 0.12 0.19 0.25 0.68 0.56 0.18
16/07/05 0.14 0.23 0.30 0.63 1.23 1.14 0.37 0.12
22/10/05 0.19 0.40 0.67 1.15 1.90 2.02 1.05 0.43 0.22 0.13
21/01/06 0.15 0.25 0.33 0.56 0.96 1.54 2.59 0.85 0.18 0.14
20/01/07 0.74 1.58 2.91 4.55 3.10 1.84 1.10

Model Time Value

Strike / Maturity 15 20 225 25 275 30 325 35 375 40 425 45 50
21/05/05 0.06 0.10 0.24 0.59 0.41 0.03
16/07/05 0.09 0.16 0.29 0.58 1.18 1.07 0.34 0.07
22/10/05 0.23 0.38 0.65 1.11 1.86 2.00 1.07 0.50 0.21 0.08
21/01/06 0.08 0.24 0.38 0.61 0.97 1.52 2.69 1.01 0.29 0.07
20/01/07 0.75 1.50 2.82 4.85 3.05 1.78 1.00
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FIGURE 3.13

Model Fit vs Market Data: Implied Equity Options by
Strike (Oct 2005).
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corporate finance point of view. While asset pricing theory views the
regimes as a cheap and abstract expedient to produce stochastic volatility
and stochastic hazard rate, corporate finance would want to name the
regimes and to relate regime changes with the life of the firm.

This naming exercise is rather obvious in our example. The change of
regime describes a likely deterioration in the credit standing of the com-
pany, and regimes can simply be interpreted here as proxy for credit rat-
ing. A downgrading is then associated with higher volatility and a large
negative jump of —44 percent. Recovery from this bad state is possible and
would be associated with a positive jump of 21 percent. It is interesting to
note that these two regimes are enough to recover the entire term structure
of CDS spreads quite accurately. This could certainly also be obtained in a
model where the hazard rate is an increasing function of time but we
would then have lost the underlying probabilistic interpretation.

The versatile nature of the regime-switching model means that it can
morph to correspond to very different corporate finance stories. A com-
pany faced with the prospect of an LBO (Leveraged Buyout) will typically
be described with a second regime with higher volatility and higher haz-
ard rate, and reaching this regime will occur with a positive jump if the
market sees the transaction as a creating value. This correlation pattern is
at odds with the leverage story of the standard structural model.

Corporate restructuring may be another situation outside the reach of
traditional models. The second regime would correspond to a successful
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restructuring of the balance sheet of the company. It would typically be
associated with a smaller hazard rate and a smaller volatility. The stock
price direction is unclear since it depends on the outcome of the negotiation
between the various stakeholders.

Larger hazard rate should not automatically be associated with
higher volatility. A company that is the target of an acquisition could see
its shares swapped and the acquiring company may be less risky in terms
of default, but more risky in terms of share price volatility. This would
typically be associated with a positive jump for the target company, but
this is certainly not a rule and no scenario should be a priori rejected.

In conclusion, the regime-switching model proposes an elegant
answer to three apparently contradictory requests:

¢ Asset pricing theory needs a model complex enough to grasp
the securities of the equity-to-credit universe

¢ Traders want quick numerical solutions

¢ Finally, corporate finance seeks to capture the significant events
of the life of the company.

No doubt that in addition to its flexibility, this type model will gen-
erate heated debates between the derivatives experts and the capital
structure specialists.

APPENDIX 1

Fundamental Theorems of Asset Pricing
(FTAP) and Risk Neutral Measure

In many occasions in this book, we encounter the concept of risk-neutral
measure and of pricing by discounted expectation. We will now summa-
rize briefly the key results in this area. A more detailed and rigorous expo-
sition can be found, for example, in Duffie (1996).

Intuitively, the price of a security should be related to its possible
payoffs, to the likelihood of such payoffs, and to discount factors reflect-
ing both the time value of money and investors risk aversion.

Standard pricing models such as the Dividend Discount Models use
this approach to determine the value of stocks. For derivatives, or securities
with complex payoffs in general, there are two fundamental difficulties
with this approach:

1. To determine the actual probability of a given payoff
2. To calculate the appropriate discount factor.
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The seminal papers of Harrisson and Kreps (1979) and Harrisson and
Pliska (1981) have provided ways to circumvent these difficulties and
have led to the so-called FTAP.

1st FTAP: markets are arbitrage free if and only if there exists a mea-
sure Q equivalent* to the historical measure P under which asset prices
discounted at the risk-less rate are martingales.

2nd FTAP: this measure Q is unique if and only if markets are com-
plete.

A complete market is a market in which all assets are replicable. This
means that you can fully hedge a position in any asset by creating a port-
folio of other traded assets.

The first fundamental theorem provides a generic option pricing for-
mula that does not rely either on a risk-adjusted discount factor or on
finding out the actual probability of future payoffs. Assume that we want
to price a security at time t whose random payoff g(T) is paid at T>t. By
no arbitrage, we know that at maturity the price of the security should be
equal to the payoff P.=¢(T). By the 1st FTAP, we immediately get the
price:

P,=EQ[eT-0 P_IP] = EQe"T-9g(T)IP].

The probability Q can typically be inferred from traded securities. It is
called the risk-neutral measure or the martingale measure.

The second theorem says that the measure Q (and therefore also
security prices calculated as earlier) will be unique if and only if markets
are complete. This is a very strong assumption, particularly in credit mar-
kets which are often illiquid.
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CHAPTER 4

Modeling Credit
Dependency

Arnaud de Servigny

INTRODUCTION

In this chapter,* we introduce multivariate effects, i.e., interactions between
credit instruments or obligors.

The analysis of credit risk in a portfolio requires measures of depend-
ency across assets. Individual spreads in the pricing world, probabilities of
default (PDs) and loss-given-default in the risk universe, management world,
are important but insufficient to determine the price/risk of multiname prod-
ucts and their entire distribution of losses. Because the diversification effects
are related to dependency, neither the price of a portfolio can be defined as
a linear combination of the price of its underlying components, nor its loss
distribution can be the sum of the distributions of individual losses.

The most common measure of dependency is linear correlation.
Figure 4.1 illustrates the impact of correlation on portfolio losses.” When
default correlation is zero, the probability of extreme events in the portfolio
(large number of defaults or zero default) is low. However, when correlation

*Some elements of this chapter have been extracted from “Measuring and Managing Credit
Risk” by Arnaud de Servigny and Olivier Renault, Mc Graw Hill, 2004.

fCorrelation here refers to factor correlation. This graph was created by using a factor model
of credit risk and assuming that there are 100 bonds in the portfolio and that the probability
of default of all bonds is 5 percent. Maturity is one year.
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FIGURE 4.1

Effect of Correlations on Portfolio Losses.
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is significant, the probability of very good or very bad events increases sub-
stantially. Given that market participants and risk managers focus on tail
measures of credit risk such as value at risk, correlation is of crucial impor-
tance. In addition, the constant development of derivative products that are
priced and hedged depending on the joint default or survival behavior of
portfolios, such as collateral debt obligation (CDOs), baskets, etc., has lead
to a specific emphasis on dependence modeling.

Dependency is a more general concept than linear correlation over a
predefined time period. For most marginal distributions, linear correlation
is only part of the dependence structure and is insufficient to construct the
joint distribution of losses. In addition, it is possible to construct a large set
of different joint distributions from identical marginal distributions.

In structured credit markets, default correlation has given way to a
more flexible approach in the form of the “time-to-default” survival cor-
relation introduced by Li (2000). In addition, the need to account better
for extreme joint events or comovements has led to focus on more
customized dependence structures called copulas.

The copula approach is not really dynamic, in the sense that, for
instance, there are no stochastic processes for the intensities or for the
copulas. In this respect, the need for a more dynamic analysis has re-ignited
the emphasis on joint intensity modeling.
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Dependency includes effects more complex than correlation, such as
the comovement of two variables with a time lag, or causality effects.
Some recent research tries to express dependency as the consequence of a
contagion of infectious events.

Sources of Dependencies

In this chapter, we will focus primarily on measuring default and spread
dependencies rather than on explaining them. Before doing so, it is worth
spending a little time on the sources of joint defaults and of joint price
movements.

Defaults occur for three main types of reasons:

¢+ Firm-specific reasons: bad management, fraud, large project fail-
ure, etc.

¢ Industry specific reasons: entire sectors sometimes get hit
by shocks such as overcapacity, a rise in the prices of raw
materials, etc.

¢ General macroeconomic conditions: growth and recession, inter-
est rate changes, and commodity prices affect all firms with var-
ious degrees.

Firm-specific causes do not lead to correlated defaults. Defaults triggered
by these idiosyncratic factors tend to occur independently. On the contrary,

FIGURE 4.2

US GDP Growth and Aggregate Default Rates.
(Source: S&P and Federal Reserve Board)
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macroeconomic and sector specific shocks lead to increases in the default
rates of entire segments of the economy and push up correlations.

Figure 4.2 depicts the link between macroeconomic growth (mea-
sured by the growth in gross domestic product) and the default rate of
noninvestment grade (NIG) issuers. The default rate appears to be almost
a mirror image of the growth rate. This implies that defaults tend to be
correlated as they depend on a common factor.

Figure 4.3 shows the impact of a sector crisis on default rates in the
energy and telecom sectors. The surge in oil prices in the mid-1980s and
the telecom debacle starting in 2000 are clearly visible.

Prices, i.e., credit spreads, can move simultaneously for at least as
many reasons:

¢ Default information that triggers prices on the basis of industry,
macroeconomic, or idiosyncratic changes

¢ Common changes in the risk aversion of market participants
due to changing economic conditions, such as the downgrade in
May 2005 of General Motors (GM) and Ford (see Figure 4.4%).

FIGURE 4.3

Default Rates in Telecom and Energy Sectors. (Source:
S&P CreditPro)
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*In Figure 4.4, we show the impact of the downgrade of Ford and GM on the CDO prices.
As a consequence, indicators such as spread and correlation level exhibit large movements
during the period.
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FIGURE 4.4

The Contagion Effect of General Motors and Ford
Downgrades. (Source: Citigroup 2005)
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The first part of this chapter (Part 1) reviews useful statistical concepts. We
start by introducing the most popular measures of dependence (covariance
and correlation) and show how to compute the variance of a portfolio from
individual risks.

We then illustrate on several examples that correlation is only a partial
and sometimes misleading measure of the comovement or dependence of
random variables. We review various other partial measures. We continue
and introduce default factor correlation and survival factor correlation
and copulas, which describe more accurately multivariate distributions. We
finally describe intensity-based correlation.

These statistical preliminaries are useful for the understanding of
following part (Part 2), which deals with credit-specific applications of
these dependence measures. Various methodologies have been proposed
to estimate default correlation. These can be extracted directly from
default data or derived from equity or spread information.
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PART 1: CORRELATION METHODOLOGY
Correlation and Other Dependence Measures

Definitions
The covariance between two random variables X and Y is defined as:

cov(X, Y)=E(XY)-E(X)E(Y), )

where E(-) denotes the expectation.
It measures how two random variables move together. The covari-
ance satisfies several useful properties, including:

¢+ cov(X, X)=var(X), where var(X) is the variance

¢ cov(aX, bY)=ab cov(X, Y)

¢ In the case X and Y are independent, E(XY)=E(X)E(Y), and the
covariance is 0.

The linear correlation coefficient, also called the Pearson’s correlation
measure, conveys the same information about the comovement of X and
Y but is scaled to lie between —1 and +1. It is defined as the ratio of their
covariance to the product of their standard deviations:

cov(X,Y)

Y std(X)std(X) @

corr(X,Y) = py

_ E(XY)—E(X)E(Y)
- 2y _ 2 2y _ 2 ®)
JEX?) - [ECOR)EX?) - [EY)P)

In the particular case of two binary (0, 1) variables A and B, taking value
1 with probability p, and p,, respectively, and 0 otherwise and given joint
probability p ,,., we can calculate:

E(A)=E(A%=p,, E(B)=E(B’)=p, and E(AB)=p,,.
The correlation is therefore:

Pag ~PAPs

A,B) = .
corr(A, B) \/PA(l P —p)

)

This formula will be particularly useful for default correlation, as defaults
are binary events. In Part 2, we will explain how to estimate the various
terms in Equation (4).
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Calculating Diversification Effect in a Portfolio

Two Asset Case Let us first consider a simple case of a portfolio with
two assets X and Y with proportions w and 1—-w, respectively. Their vari-
ance and covariance are 62, 62, and G,

The variance of the portfolio is given by

62=w’ci+ (1-w)* 62+ 2w(l —w)o,,. (5)

The minimum variance of the portfolio can be obtained by differentiating
Equation (5) and setting the derivative equal to 0:

Jo}
ow

=0=2wo} - 20, +2wo; +2(1-2w)o (6)

The optimal allocation w* is the solution to Equation (6):

2 _
O-Y pXYo-XO-Y

w* = .
2 a2 )
oy +oy pryaxoy

We thus find the optimal allocation in both assets that minimizes the total
variance of the portfolio. We can immediately see that the optimal alloca-
tion depends on the correlation between the two assets and that the
resulting variance is also affected by the correlation. Figures 4.5 and 4.6
illustrate how the optimal allocation and resulting minimum portfolio
variance change as a function of correlation. In this example, 6, =0.25 and
c,=0.15.

In Figure 4.5, we can see that the allocation of the portfolio between
X and Y is highly nonlinear in the correlation. If the two assets are highly
positively correlated, it becomes optimal to sell short the asset with high-
est variance (X in our example), hence W* is negative. If the correlation is
“perfect” between X and Y, that is, if p=1 or p=-1, it is possible to create
a risk-less portfolio (Figure 4.6). Otherwise, the optimal allocation w* will
lead to a low but positive variance.

Figure 4.7 shows the impact of correlation on the joint density of X and
Y, assuming that they are standard-normally distributed. It is a snapshot of
the bell-shaped density seen in this figure. In the case where the correlation
is zero (left-hand side), the joint density looks like concentric circles. When
nonzero correlation is introduced (positive in this example), the shape
becomes elliptical: it shows that high (low) values of X tend to be associated
with high (low) values of Y. Thus there is more probability in the top-right
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FIGURE 4.5
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FIGURE 4.7

The Impact of Correlation on the Shape
of the Distribution.
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and bottom-left regions than in the top-left and bottom-right areas. The
reverse would have been observed in the case of negative correlation.

Multiple Assets We can now apply the properties of covariance to cal-
culate the variance of a portfolio with multiple assets. Assume that we
have a portfolio of #n instruments with identical variance 6> and covari-
ance o; fori, j=1,...,n.

The variance of the portfolio is given by:

n

n n
2 22
S RIS O o

i=1 i=1 j=1
j#1
where X; is the weight of asset i in the portfolio.
Assuming that the portfolio is equally weighted: X,=1/n, for all i,
and that the variance of all assets is bounded, the variance of the portfo-
lio reduces to:

o rn-Ds ©)

2 _
o2 =
n n?

P

where the last term is the average covariance between assets.
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When the portfolio becomes more and more diversified, i.e., when
11— o, we have 67— cov. The variance of the portfolio converges to the
average covariance between assets. The variance term becomes negligible
compared to the joint variation.

For a portfolio of stocks, diversification benefits are obtained fairly
quickly: for a correlation of 30 percent between all stocks and a volatility
of 30 percent, one is within 10 percent of the minimum covariance with n
around 20. For a pure default model (i.e., when we ignore spread and
transition risk and assume 0 recovery) the number of assets necessary to
reach the same level of diversification is much larger. For example, if the
probability of default and the pair-wise correlations for all obligors are 2
percent, one needs around 450 counterparts to reach a variance that is
within 10 percent of its asymptotic minimum.

Deficiencies of Correlation

As mentioned earlier, correlation is by far the most used measure of
dependence in financial markets, and it is common to talk about correla-
tion as a generic term for comovement. We will use it a lot in Section 3 of
this chapter and in the following chapter on CDO pricing. In this section,
we want to review some properties of the linear correlation that make
it insufficient as a measure of dependence in general, and misleading in
some cases. This is best explained through examples.*

¢ Using Equation (2), we see immediately that correlation is not
defined if one of the variances is infinite. This is not a very fre-
quent occurrence in credit risk models, but some market risk
models exhibit this property in some cases.
Example: see the large financial literature on a-stable models
since Mandelbrot (1963), where the finiteness of the variance
depends on the value of the o parameter.

¢ When specifying a model, one cannot choose correlation arbi-
trarily over [-1; 1] as a degree of freedom. Depending on the
choice of distribution, the correlation may be bounded in a
narrower range [Q; /3], with -1<p<p<1
Example: if we have two normal random variable x and y, both
with mean 0 and with standard deviation 1 and o, respectively.
Then X = exp(x) and Y = exp(y) are lognormally distributed.
However, not all correlations between X and Y are attainable.

*Embrecht et al. (1999a,b) give a very clear analysis of the limitations of correlations.
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One can show that their correlation is restricted to lie between:

e—J_l —_
p=———— and p=—F——-—--—.
T \Je-D(Ee-1) (e —1)(e°’ -1

See Embrecht et al. (1999a) for a proof.

¢ Two perfectly functionally dependent random variables can
have zero correlation.

Example: Consider a normally distributed random variable X
with mean 0 and define Y'=X2. Although changes in X com-
pletely determine changes in Y, they have zero correlation. This
clearly shows that while independence implies zero correlation,
the reverse is not true!

¢ Linear correlation is not invariant under monotonic transforma-
tions.
Example: (X, Y) and (exp(X), exp(Y)) do not have the same
correlation.

¢ Many bivariate distributions share the same marginal distribu-
tions and the same correlation but are not identical.

Example: See section on copulas.

All these considerations should make clear that correlation is a partial and
insufficient measure of dependence in the general case. It only measures
linear dependence. This does not mean that correlation is useless. For the
class of elliptical distributions, correlation is sufficient to combine the
marginals into the bivariate distribution. For example, given two normal
marginal distributions for X and Y and a correlation coefficient p, one can
build a joint normal distribution for (X, Y).

Loosely speaking, this class of distribution is called elliptical because
when we project the multivariate density on a plane, we find elliptical
shapes (see Figure 4.6). The normal and the t-distribution, among others,
are part of this class.

Even for other nonelliptical distributions, covariances (and therefore
correlations) are second moments that need to be calibrated. While they are
insufficient to incorporate all dependence, they should not be neglected
when empirically fitting a distribution.

Other Dependence Measures: Rank Correlations
Many other measures have been proposed to tackle the problems of lin-
ear correlations mentioned earlier. We only mention two here, but there
are countless examples:
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Spearman’s Rho This is simply the linear correlation but applied to the
ranks of the variables rather than on the variables themselves.

Kendall’'s Tau Assume we have n observations for each of two random
variables, i.e., (X, Y)),i=1,...,n.

We start by counting the number of pairs of bivariate observations
whose components are concordant, i.e., pairs for which the two elements
are either both larger or both lower than the elements of another pair. Call
that number N_.

Then Kendall’s Tau is calculated as:

=(N.—Np)
(N ANp),

where N, is the number of discordant (nonconcordant) pairs.

Kendall’s Tau shares some properties with the linear correlation:
7€ [-1, 1] and 7 (X, Y)=0 for X, Y independent. However, it has some
distinguishing features that make it more appropriate than the linear
correlation in some cases. If X and Y are comonotonic,* then 7,(X, Y)=1;
whereas if they are counter-monotonic, 7, (X, Y)=-1. 7 is also invariant
under strictly monotonic transformations. To return to our earlier exam-
ple, 7 (X, Y) =1 (exp(X), exp(Y)).

An interesting feature of Kendall’s tau is that it gives the opportu-
nity to analyze comovement in a dynamic way (see Figure 4.8).

In the case of the normal distribution,’ the linear and rank correla-
tions can be linked analytically:

T (X,Y) = —arcsm(p(X Y)). (10)

These dependence measures have nice properties but tend to be less used
by finance practitioners. Again, they are insufficient to obtain the entire
bivariate distribution from the marginals. We are now going to focus on a
very important class of models that accounts for correlation: factor models.

Factor Models of Credit Risk

This approach underlies portfolio models based on a structural approach
of the firm. It is used in commercial portfolio credit risk models such as
those offered to the market by Risk Metrics, MKMYV, and Standard &

*X and Y are comonotonic if we can write Y =G(X) with G() an increasing function. They are
countermonotonic if G(-) is a decreasing function.
*More generally, this result holds for elliptical distributions.
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FIGURE 4.8

Comparing Defaults and Equity Default Swap Events
in the Compustat U.S. Universe.
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Poor’s (S&P) Risk Solutions. The main advantage of this setup is that it
reduces the dimensionality of the dependence problem for large portfolios.

In a factor model, a latent variable drives the default process: when
the value A of the latent variable is sufficiently low (below a threshold K),
default is triggered. It is customary to use the term “asset return” instead
of “latent variable,” as it relates to the familiar Merton-type models where
default arises when the value of the firm falls below the value of liabilities.

Asset returns for various obligors are assumed to be functions of
common state variables (the systematic factors, typically industry and
country factors) and of an idiosyncratic term &, that is specific to each firm
i and uncorrelated with the common factors. The systematic and idiosyn-
cratic factors are usually assumed to be normally distributed and are
scaled to have unit variance and zero mean. Therefore, the asset returns
are also standard normally distributed. In the case of a one-factor model
with systematic factor denoted as C, asset returns at a chosen horizon (say
one year), for obligors i and j, can be written as:

A =pC+1-p2e, (11)
— N2
Aj = p].C + /1 PiE (12)
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such that:
p;;= corr(A, A].) =p; Py (13)

In order to calculate default correlation using Equation (4), we need to
obtain the formulas for individual and joint default probabilities at the
one-year horizon. Given the assumption about the distribution of asset
returns, we have immediately:

pP=P(A .<K)
(14a)
=N(K),
and
p? =P(A J < K].)
(14b)

=N(K),

where N(:) is the cumulative standard normal distribution. Conversely,
the default thresholds can be determined from the probabilities of default
by inverting the Gaussian distribution: K=N ~I(p).

Figure 4.9 illustrates the asset return distribution and the default
zone (area where A <K). The probability of default corresponds to the area
below the density curve from —e to K.

FIGURE 4.9

The Asset Return Setup.

Asset return distribution

Default
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FIGURE 4.10

The Relationship Between Default Correlation
and Asset Correlation.
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Assuming further that asset returns for obligors i and j are bivari-
ate normally distributed,* the joint probability of default is obtained
using:

pil,:]‘)’D = NZ(K,‘I Kjr Pij)~ (15)

Equations (14) and (15) provide all the necessary building blocks to cal-
culate default correlation in a factor model of credit risk.

Figure 4.10 illustrates the relationship between asset correlation and
default correlation for various levels of default probabilities, using
Equations (15) and (4). The lines are calibrated such that they reflect the
one-year probabilities of default of firms within all rating categories.

It is very clear from the picture that as default probability increases,
default correlation also increases for a given level of asset correlation.

It is now possible to compute the full loss distribution of a portfolio.

Correlation between obligors stems from the realization of the latent

*From the section on copulas we know that we could choose other bivariate distributions
while keeping Gaussian marginals.
*The AAA curve cannot be computed as there has never been a AAA default within a year.
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variable. It impacts asset values and therefore default probabilities.
Conditional on a specific realization of the factor C=c, the probability of
default of obligor i is:

[K.—p,c]
P(c)=P(A<KIC=c)=N| —= | (16)

J1-p?

Furthermore, conditional on ¢, defaults become independent Bernouilli
events. This leads to simple computations of portfolio loss probabilities.

Assume that we have a portfolio of H obligors with same probabil-
ity of default and same factor loading p. Out of these obligors, we may
observe X=0, 1, 2 or up to H defaults before the horizon T. Using the law
of iterated expectations, the probability of observing exactly /1 defaults
can be written as the expectation of the conditional probability:

P[X = h] = jw P[X = h|C = clé(c)dc, (17)

where ¢(-) is the standard normal density.

Given that defaults are conditionally independent, the probability of
observing h defaults conditional on a realization of the systematic factor
will be binomial such that:

H
PX=h|C=c]= [h j(P(C)’“(l = p(e)"h). (18)

Using Equations (17) and (18), we then obtain the cumulative probability
of observing less than m defaults:

I H-h
o (H) K- pc K - pc
P[IX<m]= N| —— 1-N| —— c)dc

(X < m] %(hjj[ [ e j] [ [ - D s@de (19

Figure 4.11 shows a plot of P[X=h] for various assumptions of factor cor-

relation from p=0 percent to p=10 percent. The probability of default is
assumed to be 5 percent for all H=100 obligors.

The mean number of defaults is 5 for all three scenarios but the

shape of the distribution is very different. For p=0 percent, we observe a

roughly bell-shaped curve centered on 5. When correlation increases, the
likelihood of joint bad events increase, implying a fat right-hand tail. The
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FIGURE 4.11

Impact of Correlation on Portfolio Loss Distribution.
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likelihood of joint good events (few or zero defaults) also increases and
there is a much larger chance of 0 defaults.
The main drawbacks associated with this approach are that:

¢ It tells if default happens before the predefined time horizon,
without specifying when.

¢ It can underestimate “tail dependence,” given the assumption of
normal asset returns.

From a Default Factor Model to A Survival
Factor Model
This approach, usually called the “Gaussian copula” default time approach,
has been introduced in Li (2000). It has become a market standard for the
pricing of CDOs and baskets of credit derivatives. The key innovation is to
question the fixed predefined time horizon described in the previous sec-
tion and to define the correlation between two entities as the correlation
between their survival times.

Let us define S(t) the cumulative survival time function for obligor
i, where 7, is the time-until-default.

S(=P(z,> 1)
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The related cumulative default probability for obligor i is expressed as:

F(t)=P(z.<1)
=1-5(p)

For two obligors i and j, with respective survival times T; and T, we then
define a survival time correlation:

B cov(T;,T))
O T “

The objective in this section is to obtain the cumulative survival distribu-
tion for a set of obligors included in an instrument such as a CDO, taking
into account their correlated survival times. As in the previous section in
Equation (11), we consider a factor model where the asset return of obligor
i is defined both by a systematic risk factor and an idiosyncratic one.

The next step is to compute credit curves, i.e., the evolution of the
probability of default or of survival of an obligor with time. We revert read-
ers to the Chapters 2 and 3 on “Univariate Risk and Univariate Pricing” and
give here a simplified view.

We first start with a simple stylized approach, using credit ratings.*
In this case instead of computing a specific default curve for each obligor,
we define standard ones per credit rating category. For a detailed method-
ology description of the estimation of cumulative rating curves (Figure
4.12), see Chapter 2.

Another way is to rely on market observable data as described in
Chapter 3 [asset swap spreads, credit default swap (CDS) spreads, etc.].
The methodology corresponds, for instance, to defining a credit event as
characterized by the first event of a Poisson process occurring at time ¢,
with 7being the default time and / the hazard rate:

Pr{t<t+dt 17> t]=h(t)dt 1)

We can then write and calibrate the survival probability over [0, f] as
t n
S(t) = exp(—JO h(u)d uj = exp[—z h(t - ti_l)] (22)
t=1

*It is also possible to obtain default curves using the Merton (1974) model and its exten-
sions.
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FIGURE 4.12

Cumulative Default Probabilities (AAA to B)
1981-2003. (Source: S&P'’s)
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assuming that & is constant piecewise per interval (¢, ,,t,). In fact, model-
ing the default or the survival curve properly is a source of competitive
advantage for market participants.

By considering here a constant intensity of the hazard rate / over the
life of the instrument, we can even simplify the equation to:

S(t)=e (23)

In the two instances, i.e., for a given rating or for a given obligor, there
exists a unique link between the survival probability or the probability of
default and a corresponding time. We can therefore obtain the default
time 7 for each obligor, depending on any selected random variable u on
the default curve.

;- log() 24)
h
Survival probabilities can now be aggregated using the normal multivari-
ate distribution also called “Gaussian copula” setup:
Based on an adjustment of Equation (16), using the copula map-
ping F(t)=N(K, that is performed on a “percentile per percentile”
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basis,* any marginal conditional probability of survival u,=(5(zIC)=
P(t<,IC) can be written as:

p.C~ N (E(H)
y1-p?

Because of conditional independence, the joint conditional survival prob-
ability can be written as:

P(t<t]|C)=N (25)

S(t,... 1 1C) = HSi(ti C) (26)
i=1
The joint unconditional survival probability can ultimately be expressed
as:

—c2/2

oo e
S(ty,...,t) = L S(t,,...t, |c) Ton dc (27)

The empirical mechanism to generate correlated survival default times
from Excel is articulated here and summarized in Figure 4.13. We consider
a portfolio of i obligors. Let us first consider A an i x j matrix of i uncor-
related uniform random variables of size ;.

¢ Step 1: Draw i random variables from a uniform [0, 1] distribu-
tion to obtain A.

¢ Step 2: Invert the cumulative standard normal distribution func-
tion to obtain a new matrix B of i uncorrelated random variables
from N(O, 1).

¢ Step 3: Impose the correlation structure by multiplying matrix
B by the Cholesky decomposition of the covariance matrix.
The new matrix C contains i correlated random variables from
N(O0, 1).

¢ Step 4: Use the cumulative standard normal distribution to
obtain the new matrix of uniform random variables.

¢+ Step 5: From the default/survival curve, infer for each obligor i
the series of j conditional survival times.

*This means that the closer the realization of the latent variable A, is from the default thresh-
old K, the sooner the default is going to occur.
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FIGURE 4.13

Obtaining Univariate Survival Times fromn Realizations
of the Latent Variable at a Given Horizon.
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A More Advanced Multivariate Distribution:
The Copula
A copula is a function that combines univariate density functions into
their joint distribution. We can in fact either extract copulas from multi-
variate distributions or create a new multivariate distribution by combin-
ing the marginal distributions with a selected copula. The interest with
copulas is that the marginal distributions and the dependence structure
can be modeled separately. An in-depth analysis of copulas can be found
in Nelsen (1999).

Applications of copulas to risk management and the pricing of
derivatives have soared over the past few years. An interesting feature of
copulas is the Sklar’s theorem.

Definition and Sklar’s Theorem Definition: A copula with dimension
n is an n-dimensional probability distribution function defined on [0, 1]
that has uniform marginal distributions U..

Cluy, ..., u)=PU <u,U,<u,..., U <u] (28a)

One of the most important and useful results about copulas is known as
Sklar’s theorem (Sklar, 1959). It states that any group of random variables
can be joined into their multivariate distribution using a copula. More
formally:
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FIGURE 4.14

The Marginal Distribution Function F,
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If X, i=1,...,n are random variables with respective marginal dis-
tributions F, i=1, ..., n, and multivariate probability distribution func-
tion F, then there exists an n-dimensional copula of F such that:

FX,...,X)=C(F(X),...,F (X)) forall(X,,...,X ) (28b)
and
Cuy, ..., u)=F(F; (uy), ..., F;u,)). (280)
With the pseudo-inverse F! defined as (see Figure 4.14):
x=F"1 (u) = sup{x/F(x)<u}

Furthermore, if the marginal distributions are continuous, then the copula
function is unique.

Looking at Equation (28c), we clearly see how to obtain the joint dis-
tribution from the data. The first step is to fit the marginal distributions F,,
i=1,...,n, individually on the data (realizations of X, i=1, ..., n). This
yields a set of uniformly distributed random variables u,=F,(x,), ...,
u,=F (u,).
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FIGURE 4.15

The Shape of a Bivariate Frank Copula.
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The second step is to find the copula function that appropriately
describes the joint behavior of the random variables. There is a plethora
of possible choices that make the use of copulas sometimes unpractical.
Their main appeal is that they allow us to separate the calibration of the
marginal distributions from that of the joint law. Figure 4.15 is a graph of
a bivariate Frank copula (see next paragraph for an explanation).

Properties of The Copula: Copulas satisfy a series of properties
including the four listed herewith. The first one states that for indepen-
dent random variables, the copula is just the product of the marginal dis-
tributions. The second property is that of invariance under monotonic
transformations.* The third property provides bounds on the values of
the copula: these bounds correspond to the values the copula would take
if the random variables were countermonotonic (lower bound) or co-
monotonic (upper bound). Finally, the fourth one states that a convex
combination of two copulas is also a copula.

*This property is important to account for nonlinear dependencies and different time hori-
zons. In particular, it is the reason why one-year correlation matrices can be used to derive
multiple year portfolio loss distribution.
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Using similar notations as earlier where X and Y denote random
variables and u and v stand for the uniformly distributed margins of the
copula, we have:

1. If X and Y are independent, then C(u, v) =uv.

2. Copulas are invariant under increasing and continuous trans-
formations of marginals.

3. For any copula C, we have max(u+v—-1, 0)<C(u, v) Smin(u, v).
4. If C, and C, are copulas, then C=a C,+(1-)C, for 0 <ax<1is
also a copula.

Survival Copulas As we have seen in the previous section, the CDO
world focuses on joint survival times.

We can define S(t) the cumulative survival time function for obligor
i, where 7, is the time until default.

S,(H=P(t.>t)
The related cumulative default probability for obligor i is expressed as:

F(H)=P(z,<t)
=1-5()

Let us now consider two obligors i and j. We call C as the copula that links
7.and 7. The joint survival function can be written as S (t,, t]) P(t,>t, >t )
and S(t, t)= C(S(t), S(£))=5(t)+S(t)—1+C(1-5(t), 1-5(t)), where Ci 1s
called the surv1val copula of 7, and T

We now briefly review three important classes of copulas which are
most frequently used in risk management applications: Elliptical (Gaussian

and Student-t) copulas, Archimedean copulas, and Marshall-Olkin copulas.

Important Classes of Copulas There exists a wide variety of possible
copulas. Many but not all are listed in Nelsen (1999). In what follows, we
introduce briefly elliptical, Archimedean, and Marshall-Olkin copulas.
Among elliptical copulas, Gaussian copulas are now commonly used to
generate dependent random vectors in applications requiring Monte-
Carlo simulations (see Bouyé et al., 1999, or Wang, 2000). The
Archimedean family is convenient as it is parsimonious and has a simple
additive structure. Applications of Archimedean copulas to risk manage-
ment can be found in Das and Geng (2002) or Schénburcher (2002), among
many others. The Marshall-Olkin copula has recently be used in the CDO
world as an alternative way to compensate for the weaknesses of the
Gaussian copula.
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Elliptical Copulas: Gaussian and t-Copulas
The Gaussian Copula As recalled earlier, copulas are multivariate
distribution functions. Obviously, the Gaussian copula will be a
multivariate Gaussian (normal) distribution.

Using the notations of Equation (28b), we can write Czca“, the n-
dimensional Gaussian copula with covariance matrix >

CE™ (uy, ..., u,)=Ng (N (uy), ..., N(u,), (29)

with Ny and N7 denoting, respectively, the n-dimensional cumulative
Gaussian distribution with covariance matrix, Y, and the inverse of the
cumulative univariate standard normal distribution.

In the bivariate case, assuming that the correlation between the two
random variables is p, Equation (29) boils down to:

CE™ (11,v) = N2(N-(u), N7 ()

N-1(u) pN-1(v) 2 _ 2
1 J‘ ox [_g 2pgh+h

" 2n(1-p?) - 21-p?) )dgdh 0

The t-Copula The t-copula (bivariate t-distribution) with v degrees
of freedom is obtained in a similar way. Using evident notations, we
have:

C., (u, 0)=t2, ()., (v)), (31)

The bivariate t-copula can be defined as an independent mixture of a
multivariate normal distribution N; and of scalar random S = %,
variable where W follows a chi-squared distribution with v degrees of

freedom, with p; =Gij/4/0ii*0 i and2=\_0'ijJ. Its usage for credit

modeling purposes has been suggested by different authors such as Frey
et al. (2001). t-Copulas generate “tail dependence,” i.e., more extreme
events than the Gaussian copulas.

*Also the correlation matrix in this case.
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More recently, Hull and White (2004) have referred to double ¢ cop-
ulas for the pricing of CDOs. In this case, the marginal probability distri-
butions are not derived from a latent variable following a Student-t
distribution but following a convolution of two Student-t distributions.
This convolution is not a Student-t distribution itself and the copula is not
a Student-t copula either.

Archimedean Copulas The family of Archimedean copulas is the class
of multivariate distributions on [0,1]" that can be written as

CAh (oo, u ) =GN G(u) + - - +G(u,)), (32)

where G is a suitable continuous monotonic function from [0, 1] to R sat-
isfying G(1)=0. G(-) is called the generator of the copula.

Three examples of Archimedean copulas used in the finance litera-
ture are the Gumbel, the Frank, and the Clayton copulas, for which we
provide the functional form now. They can easily be built by specifying
their generator (see Marshall and Olkin, 1988, or Nelsen, 1999).

¢ Example 1: The Gumbel copula (multivariate exponential)
The generator for the Gumbel copula is:

Go(t)=(~In 1P (33)

with inverse: GLU(s) = exp(—s?) and 6>1.
Therefore using Equation (29), the copula function in the bivari-
ate case is:

CO(u,0) = exp(—[(— Inu)? +(~In v)@]%) (34)

¢ Example 2: The Frank copula
The generator is:

-6t _ 1
G, () = —ln(zg_ . j (35)

with inverse GI(s) = %ln[l —-es(1-e%)], and 6-0.

The bivariate copula function is therefore:

(36)

Cou,v) = %1{1 L @ =D -1) j

(e?-1)
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¢ Example 3: The Clayton copula
The generator is:

Gelh) = (0 =), 37

with inverse: GEY(s) = (1+65)™/¢, and 6>0.

The bivariate copula function is therefore:

C& (u, v)=max([u?+v9-1]"9,0). (38)

Calculating a Joint Cumulative Probability Using an
Archimedean Copula Assume we want to calculate the joint
cumulative probability of two random variables X and Y P(X <x, Y <y).
Both X and Y are standard-normally distributed. We are interested in
looking at the joint probability depending on the choice of copula and on
the parameter 6.

The first step is to calculate the margins of the copula distribution:
v=P(Y<y)=N(y) and u=P(X<x)=N(x). For our numerical example, we
assume x =-0.1 and y=0.3. Hence 1#=0.460 and v =0.618.

The joint cumulative probability is then obtained by plugging these
values into the chosen copula function [Equations (34), (36), and (38)].
Figure 4.16 illustrates how the joint probabilities change as a function of 6
for the three Archimedean copulas presented earlier. The graph shows
that different choices of copulas and theta parameters lead to very differ-
ent results in terms of joint probability.

The Marshall-Olkin Copula This type of copula has been promoted
recently by several authors such as Elouerkhaoui (2003a,b) and Giesecke
(2003). It can be useful to describe intensity-based models for correlated
defaults in which unpredictable default arrival times are jointly exponen-
tially distributed.

The bivariate survival copula is expressed as:

Cf/}gz (u,v) = uomin(u=%,v7%) (39)

where 6, and 6, are the controls for the degree of dependence between the
default times of firms 1 and 2, respectively.
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FIGURE 4.16

Examples of Joint Cumulative Probabilities Using
Archimedean Copulas.
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The “Functional Copula” The definition of the “functional copula” is
introduced by Hull and White (2005).

The “functional copula” approach is derived from the section “Factor
Models of Credit Risk” described earlier.

The underlying idea is that in a factor model, what is simulated, is a
distribution of adjusted probabilities of default [Equation (16)] conditional
on the realization of the systematic factor c. Typically, because of an adverse
realization of the common factor (e.g., a recession), the adjusted probability
of default will be higher than the empirically estimated one. We can there-
fore consider that the distribution of the latent variable C corresponds to the
description of the various static default environments until the horizon.

Moving from a default factor model to a survival factor model, and
in the case of a constant hazard rate model, we can write the probability
of default as:

F(H=P(t,<t)=1-5()=1—e™ (40)

the conditional survival probability for obligor i being Equation (25), we
can infer a conditional hazard rate, depending on the realization of the
common factor C:

1, p.C— N(F(t))
he =7 InN ——— (41)

1-p,
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The distribution of C, leads to a distribution of static pseudo-hazard rates
h. These conditional hazard rates represent the range of possible expected
hazard rates, depending on different realizations of the macroeconomic
environment. Such conditional average hazard rates during the life of the
instrument are not, however, currently observable.

Hull and White (2005) suggest that there is no reason to assume a
normal distribution for the common factor C and the idiosyncratic term ..
Equation (41) can therefore be written in a more general way as:

1 p,.C -G (E(t)

h :——*lnHl. m

<t
where H, is the cumulative probability distribution of & and G, the
cumulative probability distribution of the latent variable A,. In addition,
of course, the conditional hazard rates can be considered as time-
dependent.

The idea of the authors is in fact not to specify the parametric form
for any variable, but to extract from empirical CDO pricing observations
the empirical distribution of conditional hazard rates.

The empirical distribution can be inferred from a three-step process:

(42)

¢ Step 1: Assume a series of possible default rates at the horizon of
the instrument and extract the corresponding pseudo-hazard
rates.

¢ Step 2: Compute the cash inflows and outflows of the various
market instruments (CDO tranches) for each pseudo-hazard rate
extracted from step 1.

¢ Step 3: Write the unconditional expected value of the instru-
ments as a linear combination of weighted step 2 conditional
expected values. Estimate the weights by considering that the
unconditional expected values of each instrument should be
Zero.

There is no single set of values, given the fact that there are usually more
possible default rates than credit instruments, but results are stable when
a regularization term is added in the optimization problem to maximize
the smoothness of the distribution of conditional hazard rates.

Thanks to this approach, the fit with the observation is almost per-
fect at the time the distribution of pseudo-hazard rates is computed. This
distribution is time-dependent and reflects the changes in the market
expectation related to this multiple regime-switching pattern.



166 CHAPTER 4

Copulas and Other Dependence Measures Recall that we introduced
earlier Spearman’s Rho and Kendall’s Tau as two alternatives to linear cor-
relation. We mentioned that they could be expressed in terms of the copula.
The formulas linking these dependence measures to the copula are:

¢ Spearman’s rho:
111
ps=12 IO JO (C(u, v)—uv) du dv (43)
¢+ Kendall’s tau:
111
T, =4 JO jo C(u, v)dC(u, v)-1 (44)

Thus, once the copula is defined analytically, one can immediately calcu-
late rank correlations from it. Copulas also incorporate tail dependence.
Intuitively, tail dependence will exist when there is a significant probabil-
ity of joint extreme events. Lower (upper) tail dependence captures joint
negative (positive) outliers.

If we consider two random variables X, and X, with respective mar-
ginal distributions F, and F,, the coefficients of lower (LTD) and upper tail
dependence (UTD) are*:

UTD = lim Pr| X, > ;' ()] X, >F" (2)] (45)

and
LTD = lim Pr| X,<F;'(2)|X,<F'(2)| (46)

Figure 4.17 illustrates the asymptotic dependence of variables in the
upper tail, using t-copulas. The tail dependence coefficient shown in the
Figure 4.17 corresponds to UTD. As can be observed, Gaussian copulas
exhibit no tail dependence.

Statistical Techniques Used to Select and
Calibrate Copulas
In this section, we mainly focus on two sensitive issues related to the use
of copulas: how to select the most appropriate copula and how to cali-
brate any selected copula.

In summary, copula estimation is still in its infancy, and so far there
has not been any real way to define and estimate the “optimal parametric

*The UTD and the LTD depend only on the copula and not on the margins.
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FIGURE 4.17

A Comparison of the Coefficient of Upper Tail
Dependence for the Gaussian and t-Copulas.
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copula” from a multivariate set of observations. There are different rea-
sons to account for such a situation:

¢ A copula summarizes in a stable way the dependencies between
the margins. The existence of temporal dependencies in time
series does not facilitate the identification of stable patterns.
Longin and Solnik (2001), for instance, identify different
dependencies during periods with large movements in returns
and more stable periods.

¢ There is a large set of copula classes, with little evidence on how
to select one class rather than another. A common market prac-
tice is to retain only those copulas that are widely spread or eas-
ily tractable (see earlier for a description).

¢ Once selected, a copula function is usually not easy to calibrate.
Does a copula provide a good fit when it accounts for tail events
or when it replicates reasonably well most joint observations?

The selection of an appropriate copula is usually dictated by the identifi-
cation of some key features, such as:

¢+ No asymptotic dependence (no fat tail) in the case of Gaussian
copulas, except in the case of perfect correlation
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¢+ Symmetric asymptotic dependence both for t-copulas and Frank
copulas

¢ Higher dependence in bear conditions when using Clayton cop-
ulas

¢ Higher dependence in bull conditions with Gumbel copulas

Based on the selection of a class of copulas, we review how to calibrate
and to measure subsequently the goodness-of-fit.

In terms of calibration, there is a first choice between parametric and
nonparametric estimations.

We are presenting here the three most common parametric
approaches: Full Maximum Likelihood (FML, a one-step parametric
approach), Inference Functions for Margins (IFM, a two-step paramet-
ric approach) and Conditional Maximum Likelihood (CML, a two-step
semiparametric approach). Fermanian and Scaillet (2004) show that there
can be pitfalls attached to these different estimation techniques, either due
to a misspecification of the margins or to a loss of efficiency when the mar-
gins do not require explicit specification.

We then introduce nonparametric estimation, based on the calcula-
tion of the “Empirical copula” defined in Deheuvels (1979).

Mapping the empirical copula to a well-known parametric one
becomes a problem of goodness-of-fit in a multivariate environment.
Classical statistical tests, such as the Kolmogorov-Smirnov, the Chi-square,
or the Anderson-Darling tests, usually cannot be used in a straightforward
manner.

There are mainly two types of approaches that are usually consid-
ered to obtain the best fit:

¢ An approach based on a visual comparison, as suggested by
Genest and Rivest (1993).

¢ The selection of the copula that minimizes the distance with the
empirical copula. Obviously, results will depend on the choice
of such a distance. Scaillet (2000), Fermanian (2003), and Chen
et al. (2004), among others, suggest the use of Kernels to smooth
the empirical copula before fitting in order to obtain an explicit
limiting law for the test statistic.

Full Maximum Likelihood Also Called Exact Maximum Likelihood
In this approach, the parameters of the copula and of the marginal distri-
butions are estimated simultaneously. It is worth noting that both the
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univariate and multivariate distributions are assumed to correspond to
some preselected parametric forms, hence the classification of FML in the
parametric estimation category.

The density c of a copula C is defined as:

oC(uy, ty,..tt))  fl2x),Xy,000,%,)
R aulauz...au =f Hl ﬂzf(X)
1 2 n . .
17N

and x,=F'(u,)

where f is the density of the joint distribution F and f, the density of the
margin F;

Let us define 0 the vector of parameters to be estimated and /,(8) the
log-likelihood for the 1 observations (x!), with i=1 to n, at time t. For the
density function f, the canonical expression of the log-likelihood can be
written as:

(47)

T T n
1) = Y Inc(F(xh), ..., F,(x\) + 3, D Inf(x!) (48)
t=1

t=1 t=1

In the case of the Gaussian copula, the parameters that need to be esti-
mated correspond the covariance matrix 3.: They can be obtained easily as

the solution of the equation w =0, with 6:2.

00
In the case of the t-copula, the solution is more complex to obtain as

both ¥ and v have to be estimated simultaneously.
Under the appropriate regularity assumptions, we know that the
maximum likelihood estimator exists and that it is asymptotically efficient.

Inference Functions for Margins The IFM approach, initiated by Joe
and Xu (1996), takes advantage of the property of copulas via Sklar’s
representation: the disconnection between univariate margins and the
multivariate dependence structure. It is worth noting that both the uni-
variate and multivariate distributions are assumed to correspond to pres-
elected parametric forms—hence the classification of IFM in the parametric
estimation category.

The first step is to estimate the parameters for the univariate mar-
gins and then only to calibrate the copula parameters, using the estima-
tors of the univariate margins.
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Let us call 6=(9,, . . ., 6,, @), with 6, the parameters related to the
marginal distributions and o the vector of the copula parameters. The log-
likelihood expression [Equation (48)] can be written as:

T T n
1) =Y Inc(F(x},8,),...,F,(x!,6,),0)+ > > Inf(x,6)  (49)
t=1

t=1 t=1

The two-step maximization process follows:

T
él. = arg malenfi(xf,ei) (50)
6; =1
and subsequently
T ~ ~
G =arg malen c[F (x,6)),...,F (x!,6 ),a] (51)
o t=1

It is worth mentioning that the IFM estimation is computationally easier
to obtain than the FML/exact maximum likelihood one.

Conditional Maximum Likelihood or Canonical Maximum Likelihood
With this approach presented inter alia in Mashal and Zeevi (2002), there is
no parametric assumption related to the distribution of the margins.

The dataset of n sequences of observations X=(X{, . . . , XHI_ is
transformed into discrete variates i=(!, . . ., u!)L, through empirical
distribution functions F . () defined as:

AT IR N A T
E(;)=;§1[ngxﬂf and i, = (E(X)L, 2)

This transformation is referred to as the “empirical marginal transfor-
mation.” See Figure 4.18 for an example corresponding to two quarterly
time series of default rates over 20 years corresponding to two groups of
industry. Data has been retrieved from CreditPro.

In a second step, the copula parameters, corresponding to the para-
metric family that has been selected, can be estimated in a straightforward
way as:

T
ﬁc:argmalenc(ﬁ{,...,ﬁ;,a) (53)

o t-1
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FIGURE 4.18

Plotting Two Times Series of Quarterly Default Rate
Corresponding to Two Industry Groups, Using the
Empirical Marginal Transformation Technique.
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Definition of the Empirical Copula With this approach, there is no
parametric assumption neither on the marginal distributions, nor on the
copula function itself. It has been introduced by Deheuvels (1979).
Appropriate assumptions are summarized in Durrleman et al. (2000).

As in the precedent paragraph, let us consider the dataset of 7 i.i.d.
sequences of T observations X=(X,.. .,an)f:l, on which an empirical mar-
ginal transformation is performed.

Instead of selecting a parametric copula function, the next step is to
observe the new uniform variates 1= (!,...,u!)I_ and to define an associ-
ated empirical copula C:

T
A (T, T T 1
Col 22,2 =21

T T T) T& xisxx<x2,..x<x7) (54)

The introduction of T in the notation éT defines the order of the copula,
i.e., the dimension of the sample/time series used.

Deheuvels (1981) shows that the empirical copula converges uni-
formly to the underlying copula.
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The empirical copula can be expressed based on its empirical fre-
quency ¢, (Nelsen, 1999):
T T
(T, T T . - kot t
Col =22 =) o D=2 2 55
AT )T Ll 3)

t=1 t,=1

n

where

% if(Xi1 ,X;z,. .., X!n)are below the values
= defined by (XITT,X;Z,. o, X

0 otherwise

A practical example is provided in Figure 4.19.

FIGURE 4.19

Plotting the Corresponding Empirical Copula.
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Goodness-of-Fit and Visual Comparison Genest and Rivest (1993)
propose a graphical technique to compare and fit a copula belonging to a
parametric class C, like the class of Archimedean copulas, to the empiri-
cal one.

Let us define K (y)=P{C(U,, U,, ..., U )<y}, with (U, U, ..., U)
being a random vector of uniform variables with copula C. A nonpara-
metric estimate of K, KT, can be written as a cumulative distribution func-
tion allocating a weight of 1/T to each pseudo observation.

5 1w .
K, (y)= _Z(Vﬂ <y), withye[0,1]and (56)
T =1
1L
Var = f;l{xgsx{,xgsxg,m,qusX;} (57)

If we introduce R! as the rank of X! among X!, X2,..., X7, then

1 T

V,.== E 1
2 T {R{<Rf,RE<RE,..,RL<RT}
t=1

(58)

Figure 4.20 gives an example of I%T in the case described previously.

The graphical procedure for model selection is based on a visual
comparison of the nonparametric estimate KT to the parametric one K,
(see Figure 4.21)

A way to evaluate how close the graphs are is to measure the dis-
tance between them (see Figure 4.22). One distance can be defined as the
sum of the weighted quadratic differences: D}’ = ze[Ky (y)- KT(y)]Z W,

There is of course, no unique definition of distance and no unique way to
allocate weights. In particular, it could be tempting to attribute higher
weights to extreme events rather than to equally split between observa-
tions and, in fact, calibrate the copula based on the bulk of the
distribution. Ultimately, 6= argmin(Dy").

0

One of the weaknesses of this approach, however, is that the defini-
tion of the univariate function IZT corresponds to the reduction of the n-
dimensional copula problem. There cannot be any certitude that the
choice of this KT is optimal, leading to the selection of the most appropri-
ate parametric copula.
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FIGURE 4.20

A Visual Presentation of the Genest and Rivest (1993)
Estimator in the Case of the Two Default Rate Series.

The Genest and Rivest (1993) estimator of the empirical copula
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Goodness-Of-Fit and Distribution-Free Distance Minimization
One of the additional possible problems with the previous approach is
that the shape of the empirical copula can be far from smooth. As a con-
sequence, goodness-of-fit results will depend very much on the set of
observations on which they are computed. By using a kernel-smoothed
estimator of the empirical copula density, Fermanian (2005) suggests that
the goodness-of-fit tests behave in a more stable manner with nice distri-
bution asymptotic properties.

In what follows, the presentation is derived from Fermanian and
Scaillet (2004). Getting back to initial steps, a goodness-of-fit test is
designed to test a null hypothesis that in this case can be:

H,: CeC against H_: Ce C,

where C is the copula function to be tested and C={C,, 6 O} represents
the parametric class of copulas.
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FIGURE 4.21

A Comparison Between the Two Estimates (t-Copula,
Empirical).

Parametric versus non parametric estimates K

0.9+

0.7

0.6

0.4r

Bivariate student-t
Empirical

0.2 J

0.1 B

0 10 20 30 40 50 60 70 80 90 100

Let us define some p disjoint subsets of dimension n: A,,..., A

a=(@@t, ..., a), and

P’

e Ti [Cliie A) - C, (i A)] , 59)
1=1

C,(iieA)

with T representing the size of the sample. Under the null hypothesis, x>
tends in law toward a chi-squared distribution.

In order to obtain a tractable solution, let us consider the empirical
copula and smooth it using a classic kernel estimator. Let us call g its den-
sity at point u:

T Y
§y(u)= %ZK(” - ) (60)
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FIGURE 4.22

Distance (Quadratic Difference) Between Parametric
and Nonparametric Estimates of K Case of the Two
Default Rate Data Series Described Earlier.
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where K() is an n-dimensional kernel, with h(T) being the bandwidth and
vector u'=(il],..., u') being defined on the basis of the empirical marginal
transformation Equation (52).

As usual, ,[K(-): 1and lim,  _KT)=0.

Based on the definition of this kernel, we can now revert to the y?-
test that can be written as:

CTh &8 (@) - g, (@)
NS ; g,;(@)

x* (61)
where g () corresponds to the parametric copula density, 8 to the esti-
mated parameter vector, and the p vectors (1,)}_, to some arbitrary choice
defined by where the tester wants to assess the quality of the fit.

Discussing the Estimation of Copulas for Time Series Copula esti-
mation has been presented so far under the assumption of an environment
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of ii.d. observable samples or time series. When dealing with partially
autocorrelated time series displaying varying heteroscedasticity, we need
to revisit the previous copula estimation techniques and to assess their
robustness. This point is of particular importance, for instance, in the syn-
thetic CDO world where samples typically correspond to spread prices.

Some initial transformation of the data at the univariate level may be
needed in order to be able to rely on the ii.d. assumption. Some tech-
niques are available. Serial autocorrelation, nonstationarity, heteroscedas-
ticity of the time series can be filtered through GARCH and ARMA
processes.

Based on this transformation, we can focus on the residuals, as it is
much more likely to be i.i.d. Parametric copulas can then be typically fit-
ted on these residuals.

We revert readers to Scaillet and Fermanian (2003), Fermanian et al.
(2004), Doukhan et al. (2005), and Chen and Fan (2006) on this topic of
estimation of copulas on time series and of time-dependent copulas.

Correlation as a Result of Joint Intensity Modeling

In May 2005, the downgrade of Ford and GM by S&P lead to a widen-
ing of the spreads of almost all the components of the CDS indices. In a
Credit Metrics setup, we could imagine that a shock on the automotive
sector would lead to some rating actions on other corporate firms in the
same industry and to a lesser extent on other firms in different sectors.
In this case, no other significant rating change has occurred as a conse-
quence. Thereby, the Credit Metrics approach proved unable to account
for the changes in the prices of CDO tranches. The period was surpris-
ing in the sense that two investors holding exactly the same tranche of
a CDO in their portfolio (assuming it did not include Ford and GM)
could have completely different views about the quality of their asset,
whether they would consider it from a market-to-market or from a
traditional pure default risk perspective. The general trend, over the
recent period, has been to take into account both default dependency
and market price risk.

As Schonbucher and Schubert (2001) point out, the joint risk-neutral
survival function of two obligors A and B will depend dramatically on a
default event on any of them. Typically, the default probability of B will
increase as soon as obligor A defaults. If we focus on the period bounded
by the time just before default and the time of obligor A’s default, we will
observe a jump in the default intensity of B. Any substantial jump like the
downgrade to a NIG level of some obligors can have the same effect as a



178 CHAPTER 4

default and entail price contagion for other obligors, which could not be eas-
ily explained by Gaussian copulas. The GM and Ford examples stand as a
good illustration of the phenomenon.

All these classes of joint-intensity models start by focusing heavily
on the estimation of the price or the creditworthiness (hazard rate) of each
obligor considered separately. These approaches do not preclude then the
use of copulas but tend to encourage the selection of a multivariate model
based on some explicit rationale. One of the main reasons why these
approaches have not been widely used by practitioners so far is probably
because the estimation problems that arise are generally more complex
than with the traditional Gaussian copula setup. There seems, however,
to be growing interest for these types of models as they can represent
observed prices quite accurately.

In this context, it is important to refer to intensity-based models
when dealing with dependence. In order to summarize the evolution in
this field, we can identify four parallel classes of joint intensity models:

¢ The most traditional class initially corresponded to the introduc-
tion of some correlation in the dynamics of the default intensity
of obligors. This approach had been widely used in the context
of interest rates and FX modeling and has then been introduced
in credit. These initial models are usually considered to underes-
timate observed correlation. Duffie (1998) and Duffie and
Singleton (1999) have suggested that higher default dependen-
cies could be obtained by increasing the likelihood of joint
default events. In their model, when an obligor defaults, an
enhancement in the intensity of the jump of the other obligors is
observed. Obviously, with a large sample, calibration of intensi-
ties can be a problem. Since then, other models presenting jump-
intensity correlation have been developed, allowing for
idiosyncratic as well as systematic jumps, like Giesecke (2003)
and dealing with calibration thanks to an exponential copula
framework.

¢ Another area of investigation has been in the direction of
frailty models. These models are used in other fields like biol-
ogy and medicine. In such a setup, individuals within different
groups can be affected by common frailties. In credit, this
translates into an extra stress factor due to unobserved risk
factors (see Yashin and lachine, 1995). In this case, a particular
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specification of the intensity for a Gamma frailty model can be
expressed as:

At X, Z2)=(Zy+Z)A(Hexp(B'X,) (62)

With Z an unobservable gamma random variable common to
all obligors (the shared frailty component), Z; an unobservable
gamma random variable that is specific to obligor i, and the rest
of the specifications corresponding to a classic proportional haz-
ard rate model*; i.e., a combination of a simple time-dependent
hazard rate function and of a multifactor model of additional
explanatory variables. Fermanian and Sbai (2005) show that this
class of models can provide realistic levels of dependence.

¢ Another class corresponds to default infection models. The orig-
inal papers in this area are Davis and Lo (1999a,b, 2000) and
Jarrow and Yu (2001). In this approach the default of an obligor
will impact the default intensities of other obligors through a
jump. Let us consider n obligors. The default intensity of obligor
i at time t can be written as:

LB =0+ Y B0, (63)
j=1

Calibration of this class of models may not prove straightforward.

¢ The last class we will mention here is the threshold copula
approach presented by Schonbucher and Schubert (2001). A
detailed description of the model is provided in Appendix A.
It focuses particularly on the dynamic specification of the survival
probabilities and hazard rates. The concept is that any default in a
portfolio will create a threshold effect through a modified specifi-
cation of the survival copula, due to additional information
gained over time on the default status of the obligors in the port-
folio. This threshold information can also be seen as modifying
the individual pseudo-intensities over time. Though the equations
in the model look complex, the intuition remains simple. The
major constraint resides with its implementation, as it seems to be
tractable mainly with Archimedean copulas.

*Also called Cox regression model.
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Discussion on the Evolution of
Dependency Modeling

This section completes our introduction to correlation, copulas, and other
dependence measures. Looking backwards, we can see that dependence
measurement has considerably gained inaccuracy but also in complexity
in a short time span. From the initial linear correlation approach, the
credit world has quickly moved toward static factor models at the end of
the 1990s, with the Credit Metrics setup. The subsequent leap has been
from default correlation toward survival correlation with Li (2000). It has
enabled us to adopt a more flexible view of correlation, taking into con-
sideration the timing of default. With an almost simultaneous access to
various forms of copulas, market participants have also been able to
account for dependence in a more refined way. Surprisingly, many practi-
tioners have however not fully adopted these innovative solutions so far
for several reasons. The most reasonable cause accounting for it is that the
selection of an appropriate copula is not a fully objective process and its
calibration is not immediate. A second one corresponds to the very prac-
tical fact that no common language, other than the Gaussian copula, has
emerged among practitioners so far. A point to mention at this stage is
that there seems to be an increasing view on credit markets that the cop-
ula approach has shown some limitations and that there may not exist any
perfect solution or “the Perfect Copula” as Hull and White (2005) put it.
Such limitations are to be related, among other things, to the incomplete
treatment by copulas of dynamic aspects. The next frontier for depend-
ence models would indeed be to account not only for the default dynam-
ics but also for the price dynamics, following, for instance, credit event
or credit contagion. Possible paths for the future could be to introduce
regime-switching patterns associated with copulas in order to account
better for temporal dependencies or to focus on the joint modeling of
intensity-based models, and on finding, among other issues, new solu-
tions to the inherent dimensionality problem related to this approach.

PART 2: EMPIRICAL RESULTS
ON CORRELATION

Calculating Empirical Asset Implied Correlations

In order to compute the loss distribution of a portfolio, a traditional
approach has been to assume that the general correlation process is driven
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by latent variables that partially drive the movement to default or the
time to default of the corporate obligors in that portfolio. Such models
belong to the category of factor models described in the section “Factor
Models of Credit Risk” of the previous part. This class of models ulti-
mately relies on an interpretation within the structural Merton frame-
work. In this context, default correlation is derived indirectly from asset
correlation, as the comovement of the asset value of different obligors, to
a default threshold.

The usual approach in CDO pricing and risk management is to con-
sider equity or credit spread correlation as proxies for asset correlation. In
what follows, we focus on extracting asset correlation from empirical
default observations. This will enable us later on to understand properly
the arbitrage between ratings and prices of structures.

We describe three ways to estimate implied asset correlation. The
first way in called the joint default probability approach (JPD). The sec-
ond corresponds to a maximum likelihood approach (MLE). The third
one is based on a Bayesian inference technique generalized linear mixed
model (GLMM).

The Joint Default Probability Approach

In Equation (4) of the previous part, we have derived the correlation
formula for two binary events A and B. These two events can be joint
defaults or joint downgrades, for example. Consider two firms originally
rated 7 and j, respectively, and let D denotes the default category. The mar-
ginal probabilities of default are PP and PP, while P/" denotes the joint
probability of the two firms defaulting over a chosen horizon. Equation
(4) can thus be rewritten as:

D,D _ ,D,,D
D,D Pij PiP

prP =
T PPa=pPpP-pP)

(64)

Obtaining individual probabilities of default per rating class is straight-
forward. These statistics can be read off transition matrices. The only
unknown term that has to be estimated in Equation (64) is the joint
probability.

Estimating the Joint Probability ~Consider the joint migration of two
obligors from the same class i (say, a BB rating) to default D. The default
correlation formula is given by Equation (64) with j=i, and we want to
estimate p/°.
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Assume that at the beginning of a year t, we have N firms rated i.
From a given set with N! elements, one can create (N! (N}-1))/2 different
pairs. Denoting by T, the number of bonds migrating from this group to
default D, one can create (T}, (T}, —1))/2 defaulting pairs. Taking the ratio
of the number of pairs that defaulted to the number of pairs that could have
defaulted, one obtains a natural estimator of the joint probability.
Considering that we have n years of data and not only one, the estimator is:

L T (T! 1)
DD =Y gt LD 1D 7
P = 2 e (65)
where w are weights representing the relative importance of a given year.
Among possible choices for the weighting schemes, one can find:

w=—, (66a)
n
Nt
w! = ———"—, or (66b)
2N
s=1
NI(N!-1)

w: =

i iN;(N;‘ ) (66)

Equation (65) is the formula used by Lucas (1995) and Bahar and Nagpal
(2001) to calculate the joint probability of default. Similar formulae can be
derived for transitions to and from different classes. Both papers rely on
Equation (66¢) as weighting system.

Although intuitive, the estimator in Equation (65) has the drawback
that it can generate spurious negative correlation when defaults are rare.
Taking a specific year, we can indeed check that when there is only one
default, T(T—1)=0. This leads to a zero probability of joint default. However,
the probability of an individual default is 1/N. Therefore, Equation (64)
immediately generates a negative correlation as the joint probability is 0 and
the product of marginal probabilities is (1/N)>.

de Servigny and Renault (2002) therefore propose to replace the
Equation (2) with:

D,D — . t (TifD)Z
pii _zwi (N2 ’ (67)
t=1 i
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This estimator of joint probability follows the same intuition of compar-
ing pairs of defaulting firms to the total number of pairs of firms. The dif-
ference lies in the assumption of drawing pairs with replacement. de
Servigny and Renault (2002) use the weights in Equation (66b). On a sim-
ulation experiment, they show that formula (65) has better finite sample
properties than (65), that is, for small samples (small N) using Equation (67)
provides an estimate that is on average closer to the true correlation than
using Equation (65).

Empirical Default Correlation Using the S&P’s CreditPro 6.20 data-
base that contains about 10,000 firms and 22 years of data (from 1981 to
2002), we can apply formulas (4) and (1) to compute empirical default cor-
relations. Results are shown in Table 4.1.

The highest correlations can be observed on the diagonal, i.e., within
the same industry. Most industry correlations are in the range of 1 to 3 per-
cent. Real estate and, above all, Telecoms stand out as exhibiting particu-
larly high correlations. Out-of-diagonal correlations tend to be fairly low.

Table 4.2 illustrates pairwise default correlations per class of rating.*
From these results we can see that default correlation tends to increase sub-
stantially as the rating deteriorates. This is in line with results from various
studies of structural models and intensity-based models of credit risk.

We will return to this issue later on when we investigate default cor-
relation in the context of intensity models of credit risk.

From Default Correlation to Asset-Implied Correlation The estimated
joint default probabilities can be used to back out the latent variable corre-
lation Y= [pij] within the factor model setup described in the previous part.

Let us consider two companies (or two industries) i and j. Their joint
default probability P, is given by

P=®(Z,Z, p,), (68)

where Z; and Z; correspond to the default thresholds for each of these
companies (or the average default threshold for each industrial sector).

The asset correlation between the two companies (or between the
two sectors) can be derived by solving:

p;=®"1 (P, Z,2) (69)

*One-year default correlation involving AAA issuers cannot be calculated, as there has never
been any AAA-rated company defaulting within a year.
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TABLE 4.1

One-Year Default Correlations, All Countries, All Ratings, 1981-2002 (%)

High Real Transpor-
Automobile Construction Energy Finanance Build Chemical tech Insurance Leisure estate Telecom  tation Utility
Automobile 2.44 0.87 0.68 0.40 1.31 1.15 1.55 0.17 0.93 0.71 2.90 1.08 1.03
Construction 0.87 1.40 -0.42 0.44 1.45 0.96 1.07 0.27 0.79 1.93 0.34 0.95 0.20
Energy 0.68 -0.42 2.44 -0.37 0.01 0.19 0.27 0.26 -0.37 -0.27 -0.11 0.17 0.29
Finanance 0.40 0.44 -0.37 0.60 0.55 0.22 0.30 -0.05 0.52 1.95 0.30 0.23 0.23
Build 1.31 1.45 0.01 0.55 2.42 0.95 1.45 0.31 1.54 1.92 2.27 1.65 1.12
Chemical 1.15 0.96 0.19 0.22 0.95 1.44 0.84 0.12 067 -0.15 1.03 0.78 0.23
High tech 1.55 1.07 0.27 0.30 1.45 0.84 1.92 -0.03 0.94 1.27 1.25 0.89 0.20
Insurance 0.17 0.27 0.26 -0.05 0.31 0.12 -0.03 0.91 0.28 0.47 0.28 0.72 0.48
Leisure 0.93 0.79 -0.37 0.52 1.54 0.67 0.94 0.28 1.74 2.87 1.61 1.49 0.85
Real estate 0.71 1.93 -0.27 1.95 1.92 -0.15 1.27 0.47 2.87 5.15 -0.24 1.38 0.71
Telecom 2.90 0.34 -0.11 0.30 2.27 1.03 1.25 0.28 1.61 -0.24 9.59 2.36 3.97
Transportation 1.08 0.95 0.17 0.23 1.65 0.78 0.89 0.72 1.49 1.38 2.36 1.85 1.40
Utility 1.03 0.20 0.29 0.23 1.12 0.23 0.20 0.48 0.85 0.71 3.97 1.40 2.65

Source: S&P’s CreditPro 6.20.
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TABLE 4.2

One-Year Default Correlations, All Countries,
All Industries, 1981-2002 (%)

Rating AAA AA A BBB BB B CcccC
AAA NA NA NA NA NA NA NA
AA NA 0.16 0.02 —0.03 0.00 0.10 0.06
A NA 0.02 0.12 0.03 0.19 0.22 0.26
BBB NA —0.03 0.03 0.33 0.35 0.30 0.89
BB NA 0.00 0.19 0.35 0.94 0.84 1.45
B NA 0.10 0.22 0.30 0.84 1.55 1.67
CCC NA 0.06 0.26 0.89 1.45 1.67 8.97

Source: S&P’s CreditPro 6.20.

In this particular context, as we compute pairwise industry default corre-
lation, we are able to generate the corresponding pairwise industry asset
correlation.

The Maximum Likelihood Approach

The estimation of implied asset correlation can also be extracted directly
through a maximum likelihood procedure, as described originally in Gordy
and Heitfield (2002). Given the default data scarcity, the numerical tractabil-
ity of this approach is however the major constraint. Demey et al. (2004)
suggest a simplified version of the previous estimation technique, where all
inter industry correlation parameters are assumed equal. Thanks to this
additional constraint, for each company or sector, the number of parame-
ters to estimate is in fact limited to two.

In order to describe precisely the estimation technique, we first start
by displaying the latent variable (the asset value) for each obligor i in the
portfolio as the linear combination of a reduced number of independent
factors. Given the assumption of a unique correlation intensity across all
industries (p_,= p for all industries c#d), the asset value of any company i in
industry c can be written as a function of two independent common factors
Cand C_ as:

A =pC+Jp.—pC, +1-pe, iec (69)
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C can be considered as a factor common to the whole economy, whereas
C. is a more industry specific common factor and €, is the idiosyncratic
term corresponding to obligor j.

The resulting asset correlation matrix can be written as:

oy P P
p P,
e = P
p
P PP

Assuming that the idiosyncratic factor ¢ is Gaussian, and that Z_ corre-
sponds to the average, time invariant, default threshold of all companies
in industry ¢, we can write the probability of default within industry c,
conditional on the realization (f, f) of factors (F, F ) as:

P g = q)(zc - ﬁ\)/i:wp/pc - PJZ]

where @ is the normal c.d.f.

Conditional on the realization of the factors, the number of defaults
in a given industrial sector ¢ has a binomial distribution, with parameters
N_, the number of firms in class c at time ¢, and D, the default number in
the same class.

(70)

N
Bin_(f,f) = (DCJPC( fif)Pe(=P.(f, f)NePe (71)

Due to the property of conditional independence, we can write the
unconditional log-likelihood as:

C
1,0) = log [HJBinc(f,ﬁ)m(ﬁ)]dCD(f) 72)

c=1 R

Demey et al. (2004) investigate the potential stability and bias problems in
several bootstrap experiments. They obtain reasonably good perfor-
mances, as the mean of the bootstrap distribution converges quickly to the
true correlation for class samples as small as 50.
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Computing the Asset-Implied Correlation Through JPD and MLE
de Servigny and Jobst (2005) use the S&P’s Credit Pro 6.60 database over
the period 1981 to 2003. It contains 66,536 annual observations and 1170
default events. On a yearly basis and for each of 13 industrial sectors c,
they compute N_and D..

The authors compare the value of the asset-implied correlation esti-
mated under the JPD and the MLE techniques (Table 4.3 and Figure 4.23).
They find a reasonably good match between the two approaches.

Regarding default based asset-implied correlation, it is worth men-
tioning that Gordy and Heitfield (2002) show that the slight positive rela-
tionship between credit quality and asset-implied correlation is not
statistically significant and that there is no real value in terms of accrual pre-
cision to reject the hypothesis of constant implied asset correlation derived
from default, across ratings.

TABLE 4.3

Comparison of Asset-Implied Correlation Using JPD
and MLE

Implied asset

Industrial Average Average Implied asset correlation
sector N PD correlation JPD MLE
Automobile 297 217 11.80 10.84
Construction 354 2.48 6.80 7.63
Energy 149 2.20 12.60 19.06
Finance 530 0.60 9.40 15.93
Chemical 113 2.04 13.40 6.55
Health 149 1.25 10.00 8.44
High tech 97 1.84 9.60 6.55
Insurance 260 0.65 14.60 13.32
Leisure 169 3.07 8.60 9.16
Real estate 60 1.11 34.20 33.02
Telecom 119 1.97 27.80 30.32
Transportation 134 2.07 9.70 6.55
Utility 352 3.52 21.90 21.30
Average intra 14.65 14.51
industry

Average inter 4.70 6.45
industry

Abbreviations: JPD =joint default probability approach; MLE =maximum likelihood; PD =probability of default.
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FIGURE 4.23

Quality of the Intra-Industry Estimation Match Using
Maximum Likelihood Approach and Joint Default
Probability Approach.
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The Bayesian Estimation Approach—GLMM

This approach has been proposed recently by Mc Neil and Wendin
(2005). The authors assume a multi time-step econometric model condi-
tional on time varying predictive covariates. This model belongs to the
class of GLMMs. In this setup, probabilities of default rely on some usual
fixed covariates that are used in scoring,* but they also include one unob-
servable vector of random dynamic factors. Serial correlation is assumed
for this vector, i.e., its current realization is partially conditioned by its
past realizations through a serial dependence AR(1) specification.

The aggregation of the probabilities of default in a portfolio is per-
formed assuming independence conditional on the realization of the
paths of the common vector of random covariates. In order to resolve this
dynamic estimation problem, the authors use a Bayesian computational
technique.

The authors test their approach in an empirical study, using the rat-
ing database from S&P’s Credit Pro 6.60 and selecting observations in the
United States and Canada from 1981 to 2000.

*Typically company specific or macroeconomic covariates.
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For an obligor i, at time t, the probability of default conditional on
the realization of this systematic, unobserved, risk factor F; is therefore:

P(Yi=1/F,) = logit(u+BX,+7, F,)

where X, corresponds to a vector of explainable common macroeconomic
effects,* 1! to the intercept,” and B! and 7! to related weights. The AR(1)
process for the vector of latent systematic unobserved Gaussian random
risk factors F, can be written as: F,= oF | + ¢¢,.

At the portfolio level, the usual assumption of conditional indepen-
dence leads to the calculation of the loss distribution in a straightforward
manner.

In a first analysis, the authors assume that there is no fixed common
variable X,, but only one random unobservable variable F,. Using the
Bayesian technique, they observe that the hypothesis of an independent
simulation of the factor at each step, i.e., o= 0, is strongly rejected empir-
ically. The estimation of o gives a mean value of around 0.65 with a stan-
dard deviation representing around 25 percent of the mean. In addition,
the expected value of the implied asset correlation can be estimated.
Practically it comes to 7.6 percent.

In a second step, the authors incorporate a fixed macroeconomic vari-
able X, corresponding to the Chicago Fed National Activity Index, pub-
lished on a monthly basis. They also consider six broad industrial sectors:

Aerospace, automotive, capital goods, and metal
Consumer and service sector

Leisure time and media

Utility

Health care and chemicals

* & & o oo o

High tech, computers, office equipment, and Telecom

They show that the mean realization of the common random factor is
depending very clearly on the economic cycle, as can be seen on Figure 4.24.

Results show that both the introduction of industrial sectors and of
a macroeconomic factor reinforces the quality of the estimation. With this
specification, average inter-industry asset-implied correlation comes to 6
percent and intra-industry correlation to 10.5 percent. These results are in
line in terms of magnitude with the results provided by the previous MLE

*Let us think of the typical credit factors used in credit scoring models.
*Possibly derived from company specific factors and a true intercept.
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FIGURE 4.24

A Clear Correlation of the Common Factor with the
Economic Cycle. (McNeil and Wendin, 2005)
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and JPD estimators, especially given the fact that we are now talking
about a less granular industry specification. We also note that asset corre-
lation follows a cycle-dependent pattern.

Are Equity Correlations Good Proxies

for Asset Correlations?

We have just seen that the formula for pairwise default correlation is quite
simple but relies on asset correlation, which is not directly observable. It has
become market practice to use equity correlation as a proxy for asset corre-
lation. The underlying assumption is that equity returns should reflect the
value of the underlying firms and, therefore, that two firms with highly cor-
related asset values should also have high equity correlations.

To test the validity of this assumption, de Servigny and Renault (2002)
have gathered a sample of over 1100 firms for which they had at least five
years of data on the ratings, equity prices, and industry classification. They
then computed average equity correlations across and within industries.

These scaled equity correlations were inserted in Equation (68) to
obtain a series of default correlations extracted from equity prices. They
then proceeded to compare default correlations calculated in this way to
default correlations calculated empirically using Equation (69).

Figure 4.25A summarizes their findings. Equity-driven default corre-
lations and empirical correlations appear to be only weakly related or, in
other words, equity correlations provide at best a noisy indicator of default
correlations. This casts some doubt on the robustness of the market standard
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FIGURE 4.25A

The match between Default Correlation Derived from
Equity and Empirical Default Correlation.
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assumption and also on the possibility of hedging credit products using the
equity of their issuer.

Although disappointing, this result may not be surprising: equity
returns incorporate a lot of noise (bubbles, etc.) and are affected by supply
and demand effects (liquidity crunches) that are not related to the firms’ fun-
damentals. Therefore, although the relevant fundamental correlation infor-
mation may be incorporated in equity returns, it is blended with many other
types of information and cannot easily be extracted. Figure 4.25B confirms

FIGURE 4.258B

Two Proxies for Asset Correlation: Implied Asset
Correlation from Default Events or Equity Correlation.
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this fact in the sense that it shows that there is half of the equity correlation
that is not coming from joint default events.

Describing the Behavior of Implied
Asset Correlation
So far, we have observed that different default based asset-implied corre-
lation estimators do give comparable results. In the light of the difference
observed between asset-implied correlation and equity correlation, we
would however like to reach a more in depth understanding of the issue.
In this respect, we are testing for the stability of this asset-implied corre-
lation based on different “default” events.

In this paragraph, we therefore compute implied asset correlation,
using MLE, in two cases:

¢ We define an event as breaching an equity value barrier in the
case of EDSs.*

¢ We can also consider pure credit event triggers that are different
from default. We, for instance, consider rating based events like
the joint downgrade to a predefined rating level (from CCC to
BBB).

By backing out the implied asset correlation from different events like
joint defaults, joint EDSs triggers, or joint downgrades, we would expect
to obtain similar results. Whatever the instrument or event we consider,
the underlying reference asset value is indeed unique for any obligor.

Extracting Asset-Implied Correlation from EDSs Based on EDS
events at different barrier levels, Jobst and de Servigny (2006) measure
asset-implied correlation using JPD and MLE. The universe they work on
represents 2,200 companies for which they have collected monthly equity
time series, the corresponding ratings, and financial information from
1981 to 2003.

As can be observed in Figures 4.26 and 4.27, asset-implied correla-
tion is far from being stable across barrier levels.

A correlation skew can be observed, whichever estimator is
retained. Note that below the 50 percent barrier, EDSs can be considered
more like debt products as shown in de Servigny and Jobst (2005). On the

*An EDS is a credit hybrid derivative, and more precisely a deep “out-of-the-money” long
dated digital American put with regular installments. A barrier level such as 30 percent cor-
responds to a loss in value of 70 percent of the related equity share.
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FIGURE 4.26

Intra-industry Implied Asset Correlation Backed out of
Equity Default Swaps with Different Barrier Level from
10 to 90 Percent.
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FIGURE 4.27

Inter-Industry Implied Asset Correlation Backed Out
of Equity Default Swaps with Different Barrier Level
from 10 to 90 Percent.
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contrary, above the 50 percent barrier, EDSs typically look more like
equity products.

To summarize the situation, we can observe distinctly three correla-
tion states:

1. Pure default: (average intra-industry asset-implied correlation,
average inter-industry asset-implied correlation)=(14.5, 5.5).

2. EDS below 50 percent barrier: (Average intra-industry asset-
implied correlation, Average inter-industry asset-implied corre-
lation)=(26.5, 15.5).

3. EDS above 50 percent barrier: (Average intra-industry asset-
implied correlation, average inter-industry asset-implied corre-
lation)=(31, 22.5)

Correlation in state (2) and to some extent in state (3) looks quite compa-
rable with typical equity correlation. It differs significantly from the lower
default levels observed in state (1).

In the next paragraph, we consider different credit event triggers
rather than EDS barriers. By going this way, we will be able to assess
whether asset-implied correlation extracted from default constitutes a sin-
gular, doubtful situation or a confirmed and robust observation.

Extracting Asset-Implied Correlation from Different Credit Events
de Servigny et al. (2005) now consider different credit triggers.* Instead of
picking default as the only relevant event, they back out asset-implied
correlation from different downward migrations toward a predefined rat-
ing level. They start by identifying all firms that move to default, as well
as the firms that are downgraded to a rating level ranging from CCC to
BBB during a given period of time, typically one year.

Using the JPD approach, we can obtain the joint probability of
comovement to a rating level K from an adjustment of Equation (4):

n

plk =Y Wi ) (73)
CTET

With K being defined as the credit event ranging from BBB to D. In addi-

tion, we introduce the condition i>K, in order to insure that we are cap-

turing downgrades only." We can then easily extract the asset-implied

correlation using Equations (68) and (69).

*Using Credit Pro 6.60 between 1990 and 2003.
*When using both downgrades and upgrades, we obtain significantly lower asset-implied
correlation levels.
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Using the MLE approach, we derive the conditional probability of
default from an adjustment of Equation (8):

ZX—\pf=\p. - pf,
N

with ZF being the credit event threshold associated with rating K. We then
proceed with Equations (72) and (73).

The results are summarized in Figure 4.28. Interestingly, unlike what
we would have expected from the experience derived from EDSs, here we
cannot identify a clear skew effect.

To summarize, though the asset-implied correlation figures obtained
from default events look significantly lower than those extracted from
EDS events or equity prices, they do not correspond to any anomaly
among credit events.

In reality, the latent variable we refer to as the asset-implied value for
a given obligor is not unique whether we refer to credit events, to equity,
or to EDS events. Unlike in the pure default/migration environment, the
last two approaches contain a market component in the valuation of the

PX(f.f) =@ (74)

FIGURE 4.28

Assessing the Level of Asset Implied Correlation
based on Different Credit Events: Not Only Joint
Default, But Also Joint Down Grades (Intra=Intra-
Industry Correlation, Inter=Inter-industry Correlation)
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asset. This is the reason why in the pure credit situation asset-implied cor-
relation is lower.

A similar conclusion applies when we compare CDO compound
correlation with default implied asset correlation.

Correlations in an Intensity Framework

We have seen earlier in this book (in Chapter 3) that intensity-based mod-
els of credit risk are very popular among practitioners to price defaultable
bonds and credit derivatives. This class of model, where default occurs as
the first jump of a stochastic process, can also be used to analyze default
correlations.

In an intensity model, the probability of default over [0, ] for a firm
iis:

PD,(t) = B[z, <] =1- Eo[exp(—-[: A ds)} (75)

Al is the intensity of the default process and 7, the default time for firm
i. Linear default correlation [Equation (23)] can thus be written as:

_ E(y,y;) - EW)E®W?)
JE@H(A-E()EW?)(1- E(y?))

p(t) (76)

with

vi=exp(] A ds) fori=1,2. (77)

In the remainder of this section, we show the findings that we have
obtained in the previous section.

Testing Conditionally Independent Intensity Models
Yu (2005) implements several intensity specifications belonging to the
class of conditionally independent models including those of Driessen
(2002) and Duffee (1999), using empirically derived parameters.

The intensities are functions of a set of k state variables X,=(X}, ..., X"
defined below. Conditional on a realization of X, the default intensities are
independent. Dependency therefore arises from the fact that all intensities
are functions of X,.
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Common choices for the state variables are term structure factors (level
of a specific Treasury rate, slope of the Treasury curve), other macro-
economic variables, firm-specific factors (leverage, book-to-market ratio),
etc. For example, the two state variables in Duffee (1999) are the two factors
of a risk-less affine term structure model (see Duffie and Kan, 1996).
Driessen (2002) also includes two term structure factors and adds two fur-
ther common factors to improve the empirical fit. In most papers, including
those mentioned earlier, the intensities l; are defined under the risk-neutral
measure and they therefore yield correlation measures under that specific
probability measure. These correlation estimates cannot be compared
directly to empirical default correlations as shown in Tables 4.1 to 4.3. The
latter are indeed calculated under the historical measure.

Yu (2005) relies on results from Jarrow et al. (2001), who prove that
asymptotically in a very large portfolio, average intensities under the risk-
neutral and historical measures coincide. Yu argues that given that the pa-
rameters of the papers by Driessen and Duffee are estimated over a large
and diversified sample, this asymptotic result should hold. He then com-
putes default parameters from the estimated average parameters of inten-
sities reported in Duffee (1999) and Driessen (2002), using Equations (77)
and (78).

These results are reported in Tables 4.4 and 4.5. The model by Duffee
(1999) tends to generate much too low default correlations compared to
other specifications.

Table 4.6. [empirical default correlations using Equation (64)] and
Table 4.7 (default correlations in the equity-based model of Zhou, 2001)
are presented for comparative purposes. Driessen (2002) yields results
that are comparable to those of Zhou (2001).

TABLE 4.4

Default Correlations Inferred from Duffee
(1999)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.05
A 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.08 0.04 0.03 0.06 0.06
Baa 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.04 0.06 0.05 0.06 0.09

Source: Yu (2005).
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TABLE 4.5

Default Correlations from Driessen (2002)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.04 0.05 0.08 0.17 0.19 0.31 0.93 1.04 1.68 3.16 3.48 5.67
A 0.05 0.06 0.10 0.19 0.32 0.35 1.04 1.17 1.89 348 3.85 6.27
Baa 0.08 0.10 0.15 0.31 035 0.56 1.68 1.89 3.05 5.67 6.27 10.23

Source: Yu (2005).

Both intensity-based models exhibit higher default correlations as
the probability of default increases and as the horizon is extended.

Yu (2005) notices that the asymptotic result by Jarrow et al.
(2001) may not hold for short bonds because of tax and liquidity effects
reflected in the spreads. He therefore proposes an ad hoc adjustment of
the intensity:

29 = ) __4
' "ob+t’
where t is time and a and b are constants obtained from Yu (2002).

Tables 4.9 and 4.10 report the liquidity-adjusted tables of default cor-
relations. The differences with Tables 4.4 and 4.5 are striking. First, the
level of correlations induced by the liquidity-adjusted models is much
higher. More surprisingly, the relationship between probability of default
and default correlation is inverted: the higher the default risk, the lower
is the correlation.

Modeling Intensities Under the Physical Measure

The modeling approach proposed by Yu (2005) relies critically on the
result by Jarrow et al. (2001) about the equality of risk-neutral and histor-
ical intensities that only holds asymptotically. If the assumption is valid,
then the risk-neutral intensity calibrated on market spreads can be used
to calculate default correlations for risk management purposes.

Das et al. (2006) consider a different approach and avoid extracting
information directly from market spreads. They gather a large sample of
historical default probabilities derived from the Moody’s RiskCalc™ model
for public companies from 1987 to 2000. Falkenstein (2000) describes this
model that provides one-year probabilities for a large sample of firms.
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TABLE 4.6

Average Empirical Default Correlations [Using Equation (26)]—In

Percent
1 year 2 years 5 years 10 years
AA A BBB AA A BBB AA A BBB AA A BBB
AA 0.16 0.02 -0.03 0.16 -0.03 -0.07 0.48 0.12 0.09 0.79 0.54 0.60
A 0.02 0.12 0.03 -0.08 0.20 0.23 0.12 0.32 0.23 054 0.54 0.61
BBB -0.038 0.03 0.33 -0.07 0.23 0.78 0.09 0.23 0.82 0.60 0.61 1.17

Source: S & P’s CreditPro 6.20—over 21 years.
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TABLE 4.7

Default Correlations from Zhou (2001)—In Percent

One year Two years Five years Ten years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.00 0.00 0.00 0.00 0.00 0.01 0.59 0.92 124 466 584 6.76
A 0.00 0.00 0.00 0.00 0.02 0.05 0.92 1.65 2.60 5.84 7.75 9.63
Baa 0.00 0.00 0.00 0.01 0.05 0.25 124 2.60 5.01 6.76 9.63 13.12

The authors show that in the Merton setup, the two drivers to the
variation of PDs and to PD correlation changes are the debt ratio and the
equity volatility of companies. In addition, they outline that volatility
seems to be the dominant factor, having the largest impact on PDs.

They start by transforming the default probabilities into average
intensities over one-year periods. Using Equation (76) and an estimate
of default probabilities, they obtain a monthly estimate of default inten-
sity by:

Al=—In(1-PD)). (78)

The time series of intensities can be filtered for autocorrelation by being
either derived from a mean value (Model 1) or modeled as a discrete
AR(1) process (Model 2).

TABLE 4.8

Liquidity-Adjusted Default Correlations Inferred from
Duffee (1999)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.08 0.07 0.05 0.17 0.14 0.11 0.29 0.23 0.20 0.30 0.22 0.23
A 0.07 0.08 0.05 0.14 0.15 0.10 0.23 0.24 0.17 0.22 0.30 0.18
Baa 0.05 0.05 0.03 0.10 0.11 0.07 0.20 0.17 0.14 0.23 0.18 0.17

Source: Yu (2005).
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TABLE 4.9

Liquidity-Adjusted Default Correlations from Driessen
(2002)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 1.00 1.12 0.63 3.11 2.98 1.90 11.78 9.58 7.48 28.95 21.92 20.03
A 1.12 129 0.72 298 290 1.84 958 7.87 6.12 21.92 16.68 15.22
Baa 0.63 0.72 0.40 1.90 1.84 1.17 7.48 6.12 4.77 20.03 15.22 13.91

Source: Yu (2005).

Ko=A vel =2+ (79)

/11 = +ﬁ1 ot ~’ (80)

The objective is to study the correlations between e;' and e{, as well as
between & and & for two firms i and j.

In the case of the AR(1) model, B, ranges from 0.90 to 0.94.

Table 4.11. reports results for various time periods and rating classes.
As can be seen in Figure 4.29, correlation of the residuals of default inten-
sities appears to be less stable for high PDs than for low PDs.

In the case of low PDs, we can approximate: ei=A/—A! ,~PD!-~PD!™.
This means that measuring the correlation of the change in intensities is
close to measuring the correlation of the change in one-year PDs. Under
the Merton assumption, the key driver for PD changes is equity volatility.
These results cannot be directly compared with that related to rating
based default correlation, as they clearly include a market component in
addition to pure default event correlation.

Duration Models

The discussion about how much systematic and company specific covari-
ates contribute to explain either spread, PD, or rating movements has
gained some traction over the past five years. In the early 2000, Collin-
Dufresne et al. (2001), Elton et al. (2001), and Huang and Huang (2003)
reported that only a small fraction of corporate yield spreads could be
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TABLE 4.10

Average Correlations Between Residuals of Default Intensities

January 87 to July 90 to January 94 to July 97 to
June 90 December 93 June 97 October 2000
Group Model 1/Model 2 Model 1/Model 2 Model 1/Model 2 Model 1/Model 2
HIGH GRADE 0.36 0.37 0.10 0.10 0.02 0.01 0.37 0.38
Above A
MEDIUM GRADE 0.22 0.23 0.10 0.10 0.03 0.02 0.24 0.25
Ba and Baa
LOW GRADE 0.16 0.16 0.06 0.07 0.02 0.02 0.17 0.17
Single B and C

Source: Das et al. (2006).
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FIGURE 4.29

The evolution of Correlation of Delta Default Intensities
through Time using Model 1.

Delta Default intensity correlation (Das et al. 2005)
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explained by default information.* Based on these findings, systematic
risk components, such as common factors, liquidity effects, and risk
aversion, can be considered as very important drivers to account for
spread changes. From an opposite perspective a legitimate question can
be: how much company specific are default intensities under the empir-
ical measure?

In the research community, the first step has been to move from a
discontinuous rating based approach to a time continuous intensity one.
In the wake of Lando and Skodeberg (2002), Jafry and Schuermann (2003),
Jobst and Gilkes (2003), and several authors like Couderc and Renault
(2005) or Duffie et al. (2005), the model default intensity as a parametric
or semiparametric factor model derived from the Cox proportional haz-
ard methodology (Cox, 1972 and 1975)" as follows:

i(t)=2°(t) exp (B'X(t)),

where Xi(t) corresponds to the vector of covariates.

In Table 4.11, we draw a comparison between the categories of fac-
tors that have been tested, in order to explain default intensity changes.
Interestingly, at a rating category level, Couderc and Renault (2005) show
that contemporaneous financial market factors as well as past financial,

*Less than 25 percent Collin-Dufresne et al. (2001) and Elton et al. (2001).
*The former estimates the default intensity at a company level, the latter per rating category.
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TABLE 4.11

The Table contains All Covariates that were Reviewed

. In Italic, the Selected Covariates

Bangia et al. Koopman and Lucas Couderc and Renault Duffie et al.
Data source (2002) (2005) (2005) (2005)
Noncompany Credit market Spread of the LT Baa Spread of LT BBB bonds
specific bond yields over LT U.S. over treasuries
Government bonds Spread of LT BBB bonds
U.S. business failure rate over AAA bonds
Net issues of treasury
securities
M2-M1
Business NBER growth/ GDP Index Real GDP growth
cycle recession Industrial production growth
monthly clas- Personal income growth
sification CPI growth
Financial Return on S&P’s 500 U.S. 3-month
market Volatility of S&P’s 500 returns Treasury bill rate
10-year treasury yield one-year return
Slope of the term structure S&P’s is 500
of interest rates
Default IG and NIG upgrade rates
Cycle IG and NIG downgrade rates
Lag effects Mainly Financial Market series
Company Company Distance to default
Specific specific 1 year stock return
Abbreviations: LT =long term; NBER= ; GDP =gross domestic product; CPI= ; IG=investment grade; NIG =noninvestment grade.
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credit market, and business cycle factors provide valuable explanatory
power jointly. They find, based on principal component analysis, that the
first five eigenvectors related to the above factors can explain 71 percent
of the variance in the data. Figure 4.30, illustrates very clearly the impact
of macroeconomic events on the default intensity.

Intensity models are usually undershooting the level of correlation
generated by factor models, both under the empirical and the risk-neutral
measure. Fermanian and Sbai (2005) try to reconcile the loss distribution
of the portfolio models constructed based on a traditional factor model
approach with intensity-based portfolio modeling. In order to reach sim-
ilar levels of magnitude in the distribution of portfolio losses, they need
to add to the Cox model defined earlier an unobservable random frailty
term Z, common to all obligors.

A (=22 (t) exp(B X (£))

FIGURE 4.30

Changes in the Default Rate Intensity Over Time
Based on S&P’s Credit Pro 6.6 Database. A New Pool
is Considered Each Quarter, Corresponding to the
Incremental Rated Universe of the Year. (Couderc and
Renault, 2005)
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The calibration of this frailty term (typically a gamma distributed variable)
enables us to obtain even more skewed loss distributions and thereby to
avoid the underestimation problem that factor models usually face, due to
the assumption of a Gaussian distribution of the common factors.*

Das et al. (2006) tend to provide some rationale for the use of a frailty
term. They look at the same problem from a different perspective and esti-
mate a default intensity model for each of the 2770 firms in their sample,
according to the specification detailed in Duffie et al. (2005). Because some
of the covariates in the estimation are common to all obligors, they ini-
tially assume that it is possible to aggregate losses in the portfolio condi-
tional on the realization of these factors. Based on the different tests they
perform, they find that their model fails to fully match the tail of the true
loss distribution of the portfolio. This could be because their intensity
model is not capturing all the relevant common macrofactors at play.
They focus on one extra covariate in particular: “the growth rate of the
industrial production.” It could also well be that more fundamentally, the
assumption of conditional independence does not hold due to contagion
(i.e., the presence of an unobservable variable common to all firms). As we
know, contagion cannot be accounted for in a proper manner under the
conditional independence assumption.

Implications for CDOs

Identifying How Sensitive CDO Tranches are to
Empirical Correlation
In order to investigate the impact of correlation on CDO tranches, we con-
sider the simple case of a well-diversified portfolio of 100 BB (or BBB)
bonds with a nominal exposure of 1$ each. During growth periods we
consider that the average default rate at a five-year horizon Q corre-
sponds to P¥, and during recession periods the average default rate
jumps to Pp;,. In terms of correlation, we assume a one-factor model com-
mon to all obligors. Based on empirical work, we consider that the aver-
age asset-implied correlation p in a portfolio is in the range of p#" during
growth periods and moves up to p™ during recessions.

We focus on four scenarios:

¢ A growth scenario where the default rate and the correlation
levels are, respectively, P%; and ps*

*The point is to calibrate the frailty term properly.
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¢ A recession scenario where the default rate and the correlation
levels are Pj and pr

¢ A hybrid scenario with a default rate corresponding to the reces-
sion period (Pg,) and a correlation applicable to the growth
period (p#")

¢ An average scenario with a default rate corresponding to an
average period (Py;) and a correlation applicable to growth peri-
ods (p™)

The next step is to define the loss distribution of the portfolio in four dif-
ferent cases: growth, recession, hybrid, and average (i.e., one single aver-
age state of the world).

The probability of default conditional to the realization f of the com-
mon factor can be written as:

(@ Q)-pf
P(f "“’[—m J

The function ® typically corresponds to the Gaussian c.d.f.

The computation of the loss distribution of the portfolio is per-
formed by drawing N=100 binary variables (default or no default) from a
binomial distribution, conditional on the realization f of the latent vari-
able.

N
P(X =D/f)=Bin,(f) = (DJP(f)D(l— P(f)NP

where D corresponds to the number of defaulters.

In order to obtain the unconditional loss distribution of the portfo-
lio, we integrate on the density of the latent variable f. In this exercise, we
assume that the law of the density of the latent variable corresponds to
that of the PD.

D
PIX<D]=Y [Bin,(f)do(f)
d=0

Depending on the values we input for Q and p, we obtain one of the four
loss distributions mentioned earlier.

An increase in portfolio losses from the growth scenario to the hybrid
scenario is therefore purely due to the increase in default probability. The
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TABLE 4.12

Default Rates Conditional on the Economic Cycle

BB BBB

Default

rate Growth (%) Recession (%) Growth (%) Recession (%)
1 Year 1.026 2.35 0.289 0.44

2 Years 2.51 5.93 0.69 1.17

3 Years 4.33 10.27 1.19 2.15

4 Years 6.37 15.01 1.78 3.79

5 Years 8.55 19.90 2.47 4.78

further increase in loss associated to the move from the hybrid scenario to
the recession case is purely attributable to correlation.

Identifying the Impact of Cycles on the Tranching

of Rated Transactions

Based on the work that has been performed in the past, we know from
Bangia et al. (2002) that it is relevant to extract cumulative growth and
recession default rates per rating category based on the approximation of
first order Markovian transition matrices (see Table 4.12).

Based on empirical findings, on an average, default based asset-
implied correlation during growth periods is found equal to 4.15 percent,
correlation during recession periods amounts to 9.22 percent, and overall
average correlation is 7.05 percent.

Based on the information related to the average PD and average
correlation in the portfolio, we can define the initial tranching of the
pool. We therefore obtain Scenario Loss Rates (SLR)* defining the attach-
ment points related to the tranching, based on targeted ratings. For
instance, in the average view of the world, a AAA tranche scenario can
sustain D, , , defaults and a BBB tranche scenario, D, defaults. We then
consider that we move to a world with three different states: growth,
hybrid, and recession. We look at the new loss distribution of the pool
depending on which state we are in and derive how many defaults we
can now sustain with the initial SLR, given the fact that we are in a given
state of the world.

*See Chapter 10.
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FIGURE 4.3 1

Relative Sensitivity of Rated Tranches to Univariate and
Multivariate Changes in the Cycle.

Relative sensitivity of 5-year CDO tranches to
correlation and PD changes (growth <=> recession)
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The increase in portfolio losses from the growth scenario to the
hybrid scenario is therefore purely due to the increase in default prob-
ability. The further increase in loss associated to the move from the
hybrid scenario to the recession case is purely attributable to corre-
lation.

In a first step, we consider an underlying homogeneous BBB pool. In
the growth and recession cases, the loss distribution of the portfolio is
impacted by a change in PDs and a change in correlation. Based on the
methodology described earlier, we know for each rated tranche what is
the relative contribution of univariate (PD) and multivariate (correlation)
changes. In Figure 4.31 we see that the more senior a tranche is, the more
correlation matters.

In a second step, we use the earlier methodology. Practically, we
consider two underlying portfolios constituted of BB and BBB bonds. We
analyze the impact on the structured tranches of having one to five years
of recession or growth after the deal is rated. We can observe in Figure
4.32 that the quality of the underlying pool makes a significant difference
during the first year of recession: the lower the quality of the pool, the
more sensitive to the cycle it is. When recession periods last more than
one year, the quality of the underlying pool does not seem to matter any-
more in a clear way.
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FIGURE 4.32

Comparison of the Level of the Addition Enhancement
Theoretically Relieved or Required to the Initial Level of
Scenario Loss Rates, in Order to Keep an Identical
Level of Risk in a Rated Tranches as a Result of One
to Five Years of Recession (dark) or Growth (light),
Following the Initial Tranching.
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Identifying the Sources of the CDO Arbitrage
Between Ratings and Prices

In this section, we investigate the impact of arbitrage between risk-neutral
pricing and tranche ratings in a simple setup. We consider an underlying
portfolio of 100 BBB bonds equally weighted in a five-year CDO.

In a layman’s term, market prices include risk aversion and pure
spread risk that the rating model doesn’t consider. As a consequence,
market quotes are typically higher than if prices were compared to prices
made on a pure rating basis. In what follows we “project” the risk-neutral
components in the empirical setup and analyze the change of enhance-
ment levels that would be suggested by the change of measure, in order
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to match the empirical default rates per tranche. We then investigate
whether this change in enhancement levels would be caused primarily by
the multivariate or the univariate adjustment.

The model we use is the one described in the previous paragraphs.
In addition, we consider a flat compound correlation of 14 percent that
corresponds to the average level on the iTraxx on February 28, 2006. The
average BBB bond spread that day was 67bps, and we assume a 50 per-
cent recovery rate.

We consider three scenarios:

¢ An Empirical scenario, where the default rate and correlation
levels are historical ones.

¢ A Risk Neutral scenario, where the default rate and correlation
levels are market ones

¢ A Hybrid scenario with a risk-neutral default rate and an empir-
ical correlation.

The increase in portfolio losses from the first scenario to the hybrid
scenario is therefore purely due to the change in default probability mea-
sure. The further increase in loss associated to the move from the hybrid

FIGURE 4.33

What is the Source of Arbitrage, Depending on the
Rating of a CDO Tranche?

Relative sensitivity of 5-year CDO tranches to
correlation and PD changes (Empirical <=> Risk Neutral)
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scenario to the risk-neutral case is purely attributable to a change in mea-
sure for correlation.

As can be seen in Figure 4.33, for investment grade tranches, it is the
change from an average 7 percent correlation level to an average 14 per-
cent, which explains the majority of the arbitrage. On the opposite, in the
case of subinvestment grade tranches, it is the change, at a name level,
from the empirical measure to the risk-neutral one, which explains the
majority of the arbitrage.

When we run a similar exercise with a subinvestment grade under-
lying pool, we observe an increased contribution of the univariate com-
ponent (change from the empirical to the risk-neutral measure) with
respect to that of the change in correlation.

Of course, some precaution is required with all these results, as they
do not factor in the correlation skew observed in the market.

CONCLUSION

Dependency is a vast and complex topic. A lot of progress has been made
as the size of this chapter shows. There are still many problems to be
solved in this field. An important area of investigation is undoubtedly
around the dynamic dimension of comovements. Copulas have shown
some limit in this respect.
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CHAPTER 5

Rating Migration and
Asset Correlation:
Structured versus
Corporate Portfolios*

Astrid Van Landschoot and Norbert Jobst

INTRODUCTION

This chapter investigates the differences in rating migration behavior of
structured finance (SF) tranches and corporates and analyzes asset cor-
relation within and between these groups. Although the market size of
SF products such as asset-backed securities (ABS), collateralized debt
obligations (CDO), residential-mortgage backed securities (RMBS), etc.
has grown enormously over the past decade, only little is known about
their behavior in terms of rating migration, especially default, com-
pared to corporates. Credit risk portfolio models generally rely on
the estimation of rating migration and/or default probabilities and
asset correlation between exposures.' The latter significantly affects the
portfolio loss distribution and in particular the tails of the distribu-
tion. Therefore, the accuracy of these parameter estimates is of vital
importance.

*We would like to thank Arnaud de Servigny, Kai Gilkes, and André Lucas for very helpful
comments and suggestions.
*The loss distribution also requires information on the recovery rate. However, the latter is
not the focus of this chapter.
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We use Standard & Poor’s rating migration data to perform the
analysis. Rating transition matrices are estimated using the cohort method,
which corresponds to the industry standard, and the time-homogeneous
duration method. For SF tranches, we focus on portfolios based on ratings
and/or collateral types, whereas for corporates, we focus on portfolios
based on ratings and/or industry classification. We then estimate asset
correlation within and between portfolios using two methods. The first
method derives implied asset correlation from joint default probabilities
using historical transition data. [see, e.g., Bahar and Nagpal (2001) and de
Servigny and Renault (2002)]. The second method uses a two-factor credit
risk model to estimate asset correlation applying a maximum likelihood
approach similar to Gordy and Heitfield (2002) and Demey et al. (2004).

DATA DESCRIPTION

We use Standard & Poor’s rating performance data for SF and corporate
tranches and the Standard & Poor’s CreditPro dataset for corporates. The
sample covers the period December 1989-December 2005. Since the SF
market is much less mature than the corporate bond market. The reason
for using this period is simply the availability of data. The SF (corporate)
dataset consists of 71,646 tranches from 26,256 deals (11,436 corporate
issuers, respectively) with at least one long-term Standard & Poor’s rat-
ing during the sample period. Both datasets include U.S.-denominated
as well as non-U.S.-denominated assets and only cover the assets with a
long-term Standard & Poor’s rating. For the SF tranches, similarly rated
credit classes in the same deal are collapsed into a single tranche.*

As shown in Panels A and B of Table 5.1, the majority of SF tranches
(83 percent) and corporates (69 percent) are issued in North America, espe-
cially in the United States. For corporates, the regional distribution of the
financial sector is somewhat different from the other sectors. On average, 33
percent of the financials have their main office in Europe, which is high rel-
ative to the corporate average of 14 percent. For SF tranches, the regional
distribution of CDOs is somewhat different from ABS, CMBS, and RMBS.
An important percentage (39 percent) of CDOs is issued in Europe. Making
a distinction between different types of CDOs, namely cash flow (CF)
or synthetic (Synt), shows that the majority of U.S. CDOs are CF deals,
whereas the majority of European CDOs are synthetic deals (see Panel B of

*Notice that corporate issuer ratings are based on senior bond ratings.
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61C

Regional Distribution for SF Tranches and Corporates

United States/ Australia/New Latin America/
Total Canada (%) Europe (%) Asia/Japan (%) Zealand (%) Africa (%)

Panel A: SF tranches

ABS 12,856 79 12 5 2 2
CDO 11,134 56 39 3 2 0
CMBS 8,657 84 9 5 2 0
RMBS 38,999 92 5 1 2 0
Total 71,646 83 12 2 2 0
Panel B: Corporates

Auto 1,350 71 13 10 2 4
Cons 1,481 78 9 5 3 5
Energy 645 77 11 5 2 5
Fin 2,068 38 33 16 4 10
Home 465 73 11 5 3 9
Health 732 78 13 6 1 3
HiTech 462 82 6 10 1 1
Ins 921 66 17 7 3 6
Leis 922 83 9 3 2 3
Estate 351 70 10 9 8 3
Telecom 553 63 18 7 1 11
Trans 496 60 17 9 7 7
Utility 990 62 18 5 6 8
Total 11,436 69 14 7 3 6

Note: This table presents the number of SF tranches (Panel A) and corporates (Panel B) with at least one long-term Standard & Poor’s rating between December 1989 and December
2005. SF tranches are classified by collateral type, whereas corporates are classified by industry.
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FIGURE 5.1

Different Types of ABS and CDOs (Sample period:
December 1989-December 2005)
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Note: Panel A and B give an overview of the different types of ABS and CDOs, respectively. The percentages are cal-
culated as the total number observations for a specific subgroup of ABS and CDOs between December
1989-December 2005 divided by the total number of ABS and CDOs, respectively, between December
1989-December 2005. In Panel B, CF stands for cash-flow CDOs, whereas Synt stands for synthetic CDOs.

Figure 5.1). Panel A of Figure 5.1 shows the most common types of ABS
included in the sample: auto loans or lease (18 percent), credit cards (20 per-
cent), synthetic ABS (15 percent), student loans (10 percent), equipment
(6 percent), and manufactured housing (MH) (5 percent). Even though the
MH sector is relatively small compared to other sectors, it can significantly
affect the results be discussing.

Making a distinction between different rating categories shows
that the majority of SF tranches rated by Standard & Poor’s between
December 1989 and December 2005 are high quality, often AAA. Over
the last decade, the number of rated SF tranches has grown enormously.
To get an indication of the growth rate, we split the sample in two sub-
periods 1990-1997 and 1998-2005 (see Table 2). From the results, it is
clear that the total number of observations between December 1997 and
December 2005 is significantly higher than the number of observations
between December 1989 and December 1997. For corporates, the most
important rating categories in terms of number of observations are A
and BBB. While the number of corporates has grown as shown in Table
5.2, the growth rate is much smaller relative to SF tranches.
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TABLE 5.2

Average Number of SF Tranches and Corporates
by Rating

AAA AA A BBB BB B CCcC/C

SF tranches

1990-2005 3,241 1,509 1,283 920 422 300 55
1990-1997 1,714 984 524 188 76 70 13
1998-2005 4,986 2,109 2,151 1,756 819 563 102
Corporates

1990-2005 156 496 927 808 554 540 70
1990-1997 177 476 772 515 351 335 37
1998-2005 133 519 1103 1142 786 775 107

Note: This table presents the average number of observations between December 1989 and December 2005 for SF
tranches and corporates by rating.

MIGRATION PROBABILITIES

In this section, we focus on the cohort and the time-homogenous dura-
tion method to estimate migration probabilities (see Chapter 2 of this
book for more details). Using the cohort method, the average one-year
unconditional migration probability from rating k to rating / can be writ-
ten as follows

(t t+1)
P w, fork,I=1,...,K

and 2:01 w, () =1

where N, (t, t+1) denotes the number of rating changes from rating k in
year t to rating [ in year t+1 and N,(t) the number of observations in rat-
ing k in year t. T represents the maximum number of years and w,(t) the
weight for rating k at time ¢. For each rating, the weights sum to one. The
unconditional migration probabilities (p,) are weighted averages of
yearly migration probabilities, with the weights being the relative size
N, ()

LN

While the cohort method has become the industry standard,
it ignores some potentially valuable information such as the timing of

in terms of observations, that is w, () =
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transition taking place during the calendar year and the number of
changes that have led to a given rating at the end of the year. Furthermore,
the cohort method is affected by the choice of observation times (See for
example Lando and Skodeberg (2002), Schuermann and Jafry (2003)). An
alternative approach that takes these issues into account is the time-
homogeneous duration method, hereafter referred to as the duration
method. The latter assumes that the transition probabilities follow a
Markov process. Under the assumption of time-homogeneity, the transi-
tion probabilities can be described via a continuous time generator or
matrix of transition intensities A.

P(m)=exp(Am) and m=0,

with P(m) the matrix of probabilities, A the generator, m the maturity (in
years), and

N (T
= % fork #1

0k
with N,, the number of rating migrations from rating k to rating / over the
interval [0, T], Y, the number of “firm years” spent in rating k. A is called
a generator if A, >0 for k#/ and 4, =-% _,, 4, In the case of a homoge-
neous Markov chain, intensities are assumed to be constant. The denomi-
nator sums the number of “firm years” each tranche has spent in rating k.

While Table 5.3 presents the transition matrices for all SF tranches
and corporates, Table 5.4 shows the transition matrices for ABS, CDO,
CMBS, and RMBS.* Migration probabilities are estimated using the cohort
method and are weighted averages of yearly probabilities from December
1989 until December 2005. Rating categories CC, C, and D are collapsed
into one rating category D, which is absorbing. Migration probabilities are
adjusted for transitions to NR.

*The transition matrices for ABS, CDO, CMBS, and RMBS are in line with the transition
matrices in Erturk and Gillis (2006). Notice that the latter have another approach for han-
dling NR, which might cause slightly different results.

NR stands for NonRated. Migration probabilities are adjusted as follows:

¢ atransition to NR is removed from the sample unless it is followed by a transi-
tion to a (nondefault) rating.
— if a transition to NR is followed by a transition to the last rating before NR
within three months, the transition to NR is assumed to be driven by noncredit
related issues and therefore ignored.
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TABLE 5.3

Transition Matrix for SF Tranches and Corporates Using
Cohort Methods (NR Adjusted)

AAA AA A BBB BB B CcccC D

Panel A: SF tranches

AAA 99.2 0.65 0.11 0.06 0.01 0.01 0.01 0.005
AA 6.84 91.0 1.62 0.34 0.10 0.07 0.02 0.003
A 1.85 468 90.3 2.46 0.35 0.16 0.13 0.09
BBB 0.72 1.97 3.65 90.0 1.81 1.08 0.50 0.27
BB 0.17 0.27 1.73 513 87.4 2.56 1.67 1.09
B 0.05 0.09 0.11 1.13 4.05 87.3 4.00 3.24
CCC 0 0.10 0.20 0.10 0.51 295 64.8 314
Panel B: Corporates

AAA 92.3 7.23 0.43 0.09 0 0 0 0

AA 0.43 90.7 8.36 0.43 0.01 0.05 0.01 0.01
A 0.04 1.68 92.2 5.65 0.27 0.07 0.01 0.08
BBB 0.01 0.14 350 91.2 4.09 0.60 0.14 0.35
BB 0.05 0.03 0.17 540 84.6 7.50 0.87 1.41
B 0 0.05 0.16 0.35 6.45 81.6 4.37 7.02
CCC 0 0 0.11 0.33 1.32 138 51.2 33.1

Note: Transition probabilities are weighted average probabilities over the period December 1989-December 2005. The
weights are the number of observations in a particular rating category at time t divided by the total number of obser-
vations in that rating category over the sample period. The probabilities are presented in percent. Rating categories
CC, C, and D are collapsed in one rating category D.

The estimates using the cohort and duration methods (not shown)
allow us to draw the following main conclusions: Firstly, the one-year prob-
ability of staying in the same rating category is significantly higher for AAA
SF tranches than for AAA corporates, 99 versus 92 percent. As shown in
Table 5.4, this holds for all collateral types, especially CMBS and RMBS.
Notice that the results for AAA CDOs are somewhat different from the other
collateral types. The AAA CDO downgrade probability is high relative to

- if a transition to NR is followed by a transition to a (nondefault) rating after
three months or another rating than the rating just before NR within three
months, the transition to NR is removed. However, later transitions are again
taken into account.

¢ if a transition to NR is followed by a transition to default, the transition to NR
and default are removed from the sample.



714

TABLE 5.4

Transition Matrix for Structured Products Using the Cohort
Methods (NR adjusted)

AAA AA A BBB BB B CcCcC D

Panel A: Pure ABS

AAA 98.6 1.08 0.21 0.08 0.01 0.01 0.01 0.02
AA 1.94 93.29 3.18 1.00 0.38 0.19 0 0.02
A 1.09 1.58 91.5 4.71 0.41 0.31 0.15 0.23
BBB 1.56 0.66 1.64 88.2 3.65 2.45 1.07 0.77
BB 0.29 0.38 2.58 2.96 74.8 9.16 6.20 3.63
B 0.23 0 0 0.23 3.42 59.7 18.0 18.5
CCC 0 0 0 0 0 4.41 61.0 34.6
Panel B: CDO

AAA 97.6 1.69 0.38 0.28 0.03 0.03 0.03 0
AA 2.72 92.5 3.12 1.19 0.37 0.09 0.06 0
A 0.56 2.92 91.2 3.28 1.29 0.43 0.27 0.07
BBB 0.27 0.43 1.93 91.6 3.19 1.36 1.16 0.07
BB 0 0 0.06 1.68 90.4 3.07 3.59 1.22
B 0 0 0 1.11 2.77 79.8 10.6 5.82

CCcC 0 0 0.41 0 0.41 2.48 73.6 23.1
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Panel C: CMBS

AAA 99.6 0.33 0.03 0 0 0 0 0
AA 11.1 87.8 0.75 0.29 0 0.07 0 0
A 3.07 6.52 88.0 2.13 0.19 0.04 0.04 0.02
BBB 0.86 2.65 5.40 88.3 1.99 0.58 0.08 0.16
BB 0.25 0.22 0.57 4.77 90.4 2.51 0.60 0.72
B 0.04 0 0.04 0.30 3.16 90.8 3.75 1.94
CCC 0 0 0.40 0.40 1.61 4.42 75.9 17.3
Panel D: RMBS

AAA 99.8 0.18 0.01 0.01 0 0 0 0
AA 7.81 90.9 1.18 0.06 0.02 0.037 0.03 0
A 2.32 6.88 89.9 0.61 0.13 0.031 0.12 0.01
BBB 0.38 2.69 4.29 91.1 0.52 0.587 0.25 0.15
BB 0.15 0.38 2.94 710 87.1 0.95 0.69 0.71
B 0.05 0.17 0.17 1.69 4.74 88.9 212 217
CCC 0 0.457 0 0 0 0 47.0 52.5

Note: Transition probabilities are weighted average probabilities over the period December 1989-December 2005. The weights are the number of observations
in a particular rating category at time t divided by the total number of observations in that rating category over the sample period. The probabilities are presented
in percent. Rating categories CC, C, and D are collapsed in one rating category D.
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CMBS, RMBS, and even ABS. This might be due to the relatively short rat-
ing history for CDOs and a higher downgrade probability at the end of our
sample. Furthermore, the fact that there is a high degree of portfolio overlap
between synthetic CDOs might cause higher downgrade probabilities (see,
for example, South, 2005). For rating categories below AAA, the diagonal
probabilities are very similar for SF tranches and corporates. Similarly to
Schuermann and Jafry (2003), we estimate a mobility index (MI) or metric,
which is the average of the singular values of the mobility matrix. The higher
probability of staying in AAA for SF tranches is also reflected in a lower MI
for SF tranches than corporates, 0.17 versus 0.12.

Secondly, the off-diagonal downgrade probabilities are significantly
higher for corporates than for SF tranches. This holds for all rating cate-
gories, except for B and CCC. Thirdly, the upgrade probability for invest-
ment grade SF tranches, especially AA and A, is significantly higher than
for corporates. As shown in Table 5.4, this is mainly driven by the results for
CMBS and RMBS. Over the last few years, the MBS market could have ben-
efited from a strong mortgage credit environment, including rapid industry
wide prepayments, generally rising home prices and low interest rates.

Finally, the results using the cohort method seem to indicate that
the default probabilities are higher for corporates than for SF tranches.
However, using the duration method, the differences are much less pro-
nounced and no clear conclusion can be drawn. Regarding the difference
between the cohort and the duration methods, we find that default prob-
abilities for high quality ratings (AAA and AA) are higher using the dura-
tion method, whereas for the below A rating assets, the probabilities are
higher using the cohort method.

In Panels A and B of Figure 5.2, we present the distribution of
notch-level rating migrations for SF tranches and corporates. For each
product, we analyze the rating at the end of each year and compare it
to the rating at the end of the previous year. The maximum notch-level
downgrade is —19 (from AAA to D) and the maximum notch-level
upgrade is 18 (from CCC-to AAA). The distributions are adjusted for
migrations to NR (see footnote * on page 222). The following conclu-
sions can be drawn from Figure 5.2: Firstly, for SF tranches, the number
of rating migrations is clearly dominated by upgrades (64 percent),
whereas for corporates, it is dominated by downgrades (63 percent).*

*This is even more pronounced when we focus on investment grade rating migrations (not
shown).
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FIGURE 5.2

Rating Migrations in Notches.

Panel A: SF Tranches Panel B: Corporates
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Note: This figure presents the percentage of rating migrations in notches. The maximum notch-level downgrade is
—19 (from AAA to D) and the maximum notch-level upgrade is 18 (from CCC- to AAA). The distributions are adjusted

for migrations to NR.

Given that the SF sample is clearly dominated by AAA tranches, the
upgrade probability for SF tranches is likely to be even biased down-
wards. Secondly, for corporates, one- or two-notch-level rating migra-
tions (up- or downgrades) represent 81 percent of all rating migrations.
For SF tranches, however, the number of up-to-two notch-level rating
migrations is significantly lower, 58 percent. As a result, the distribu-
tion of notch-level rating migrations is concentrated around the mean
for corporates and more spread around the mean for SF tranches.
Thirdly, the maximum notch-level downgrade is higher for SF tranches
than for corporates, —19 and —16, respectively. Furthermore, on average
1.4 percent of the yearly rating migrations for SF tranches is a more
than 10 notches (say from AAA to BB+) compared to 0.6 percent for
corporates.

A general conclusion that can be drawn from Table 5.3 and Figure 5.2
is that there are less rating migrations for SF tranches than for corporates,
but that the migrations are more significant in terms of notches for SF
tranches.

So far, we have mainly focused on average probabilities over a
period of 11 years. In what follows, we will briefly discuss the time-
varying behavior of the downgrade probabilities for SF tranches and
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FIGURE 5.3

Time-Varying Rating Downgrade Probabilities for
Investment and Speculative Grade Ratings
(NR adjusted)

Panel A: SF Tranches Panel B: Corporates
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Note: This figure presents the downgrade probability (in percentage) for investment grade (pink line) and speculative
(blue line) grade ratings from December 1995 until December 2005. The probabilities are calculated as the number
downgrades at the end of each year divided by the total number of observations at the end of the previous year.

Probabilities are adjusted for migrations to NR.

corporates. As shown in Panels A and B of Figure 5.3, the downgrade
probabilities for investment grade (IG) and speculative grade (SG)
SF tranches and corporates vary substantially over time. The pro-
bability for corporates reaches a peak at the end of 2001 and remains
high for almost a year. This peak moment coincides with a very low
growth rate of the OECD U.S. leading indicator. For SF tranches, the
peak is reached mid-2003, which is somewhat later than for corporates.
Notice that the SG downgrade probability for SF tranches was high in

1995. This is mainly due to a very small number of SG observations for
SF tranches.

ASSET CORRELATION

An important input parameter for credit risk models is the correlation
between assets in the underlying portfolio (see Chapter 4 of this book
for more details on dependence). We use a non parametric and a para-
metric method to derive the (asset) correlation within and between
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portfolios of assets from time series of default probabilities.** The non-
parametric method, which will hereafter be referred to as the joint default
probabilities (JDP) approach, estimates JDP using historical transition
data. Implied asset correlation is derived from JDP (see, for example,
Bahar and Nagpal, 2001 and de Servigny and Renault, 2002). In the para-
metric approach, asset correlation is derived from a credit risk model. As
suggested by Gordy and Heitfield (2002) and similar to Frey and McNeil
(2003), Demey et al. (2004), Tasche (2005), Jobst and de Servigny (2006),
and others, we use a two-factor model. The latter assumes that correlation
between firm asset values is driven by two systematic risk factors, which
could be thought of as an economic and a sector-specific factor. In the
remainder of this chapter, we will create portfolios of assets based on sec-
tor classification, which implicitly assumes that sectors can be seen as
homogeneous risk classes that are driven by similar factors.

Joint Default Probabilities (JDP) Approach

Based on the number of transitions to the default state D for sector i and
j (ML and M}, respectively) and the total number of assets in sector i
and j (N and N/, respectively), the average JDP can be estimated as
follows

Po Ni(t) Ni(b) @

t=0

T-1 ; .
5 =3 i [MD(t,t+1) M) (¢ +1)

with T the maximum number of years and w(t) the weight at time t.
To analyze the impact of the strong growth of the SF market, we
estimate equally-weighted (that is, w(t)=1/T) and size-weighted (that is,
w(t) = VNi(t)Ni(t)/ ZEIVNi(t)Ni(t)) average JDP.

Implied asset correlation, which is the correlation needed in a typi-
cal credit risk model to recover or match the joint default events that have

*In this chapter, we focus on asset correlation derived from rating migrations to default.
Alternatively, we could use credit spread data or equity data to obtain asset correlation. See
Schénbucher (2003) (p. 297) for a detailed discussion of the advantages and disadvantages
of the three approaches.

*See Van Landschoot (2006) for a detailed analysis of asset correlation estimates derived
from default probabilities and rating transitions (including default) for SF tranches and cor-
porates and a discussion of confidence intervals for correlation estimates based on a simu-
lation analysis.
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been observed, is derived from JDP. We start from a structural credit risk
model, initiated by Merton (1974), and assume that default occurs when
the firm’s asset value falls below a threshold Z,,. The threshold is cali-
brated such that the default probability corresponds to the observed prob-
ability

ph=P(Z})

with Z)=®7}(p]) and @ the standard Gaussian cumulative distribution
function (CDF).
The joint default probability for sector i and j is given by

Py=®,Z), Z p,) ()

with @, the bivariate standard Gaussian CDF. The implied asset correlation,
p;» can be derived by solving Equation (3). Estimating asset correlation
between [ sectors results in the following estimator of the correlation matrix

P Py e Py

S Pai Py - Py

2]DP: : : : : 4)
/31,1 [)1,2 /31

with the elements being the intra (within sectors) and inter (between sec-
tors) asset correlation. In what follows, we will only present the intra asset
correlation (diagonals) and the average inter asset correlation (average of
off-diagonal elements). The correlation structure ﬁ]DP is the result of
I(I-1)/2 pairwise estimations.

Two-Factor Model

In a two-factor model, the asset value V, is driven by two common, stan-
dard normally distributed factors Y and Y; and an idiosyncratic standard
normal noise component g,

Vi=\pY+p -pY,+1-pe, forns<N (5)

Y can be seen as a common (or economywide) factor that affects all assets
at the same time and Y; as a sector-specific factor. The asset values are cor-
related with correlation coefficients p and p,. Default occurs when the



Rating Migration and Asset Correlation 231

asset value hits a threshold. An interesting feature of this model is that
default events are independent conditional on the two common factors.
The conditional default probability of sector i can be written as follows

Zy =Py =p,~ Py,

i(y,y)=®
Po(Y.¥;) =

with Zi= ¢! (7)) the default threshold for sector i, i/ the average (uncon-
ditional) default probability for sector i, and @ the standard Gaussian
CDE. This two-factor model implies the following correlation structure

p, P p
- p P p
S E 52 Do
bbb

with p the inter asset correlation (or the correlation between I sectors) and
P, the intra asset correlation (or the correlation within the ith sector). This
two-factor model approach differs from the JDP approach in that the
correlation structure (ﬁMLE) is the result of one joint estimation. Default

information for all sectors is considered at the same time. Similar to
Demey et al. (2004), we apply the asymptotic maximum likelihood
(ML) method to estimate the factor loadings and thus asset correlation.

Empirical Results: SF Tranches
versus Corporates

In this section, we present the asset correlation estimates for different sec-
tors defined by collateral type for SF and industries for corporates. We
apply the JDP and the two-factor model approach. For each approach, we
estimate asset correlation based on equally and size weighted default
probabilities. We use time series of 3-monthly default probabilities for dif-
ferent sectors from December 1994 until December 2005.* In this chapter,
we do not analyze the impact of country and/or regional differences.

*The reason for using a shorter sample period for asset correlation than for the transition
matrices is because of a lack of default observations before December 1994.
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In Table 5.5, we present the average yearly default probabilities
based on historical data and the inter and intra asset correlation estimates
for SF tranches. As shown in Panel A of Table 5.5, the intra asset correla-
tion estimates are quite different for different collateral types, varying
from on average 4 percent for RMBS to on average 17 percent for CDOs.
To analyze the impact of regional differences on the estimations, we
exclude all non-U.S. SF tranches from the sample. Although not reported
the results are very similar. Again, we find that intra asset correlation esti-
mates for CMBS and RMBS are somewhat below the estimates for ABS
and especially CDOs. One could argue that the average intra asset corre-
lation estimates, which are between 7 and 15 percent, are relatively low.
However, one should bear in mind that SF rating performance histories

TABLE 5.5

Asset Correlation Estimates for SF Tranches

B JDP Two-factor model
Size Equal Size Equal Size Equal
Panel A: SF tranches
Inter correlation (p) 4.5 4.9 1.6 1.8
Intra correlation (p,)
ABS 0.74% 0.57% 9.1 11.6 12.4 19.7
CDO 0.19% 0.19% 15.0 20.2 16.9 17.6
CMBS 0.54% 0.43% 8.3 10.5 5.2 7.3
RMBS 0.32% 0.35% 5.0 5.0 3.2 3.5
9.3 11.8 9.4 11.8
Panel B: SF tranches
Inter correlation (p) 4.7 4.7 15 1.7
Intra correlation (p,)
ABS, excl MH 0.40%  0.34% 10.1 12.1 12.9 13.5
MH 3.88% 2.78% 20.7 241 26.7 37.5
CDO 0.19%  0.19% 15.0 20.2 13.1 13.5
CMBS 0.54%  0.43% 8.3 10.5 6.4 6.7
RMBS 0.32%  0.35% 5.0 5.0 4.4 5.2
7.5 9.0 12.7 15.3

Note: This table presents average default probabilities (p,) and asset correlation estimates (p and p) for SF tranches. The latter
are estimated using two methods: (1) Joint default probability (JDP) approach, and (2) a two-factor model approach. The latter is
estimated using an asymptotic maximum likelihood (ML) technique. “Equal” refers to equally weighted results, whereas “Size”
refers to size weighted results, with the weights in year t being the number of assets in year t relative to the number of assets over
the total sample period (adjusted for NR).
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are very short and only include one recession period.* As a result, the
effect of (severe) several recession periods on rating transitions and
default behavior has not been tested. Asset correlation is likely to be lower
during economic growth periods.

The inter asset correlation estimates are always below 5 percent.
However, they are significantly higher using the JDP approach than the
two-factor model. An analysis of one-by-one inter asset correlation esti-
mates using the JDP approach [see p,; in Equation (4)] shows that this is
mainly driven by the inter asset correlation estimates with CDOs.
Excluding CDOs from the sample (not shown) results in average inter
asset correlation estimates just below 2 percent, which is very similar to
the results based on a two-factor model. This shows that ABS, CMBS, and
RMBS are very different and react differently to changes in a common fac-
tor, which could be seen as the business cycle.

Comparing equally- and size-weighted results indicates that the
estimates for ABS and CDOs are most affected by the enormous growth
in the SF market. However, when we split the ABS sector into two sepa-
rate sectors, namely MH and ABS excluding MH, we find that the intra
asset correlation estimates for ABS are much less affected by the method-
ology (see Panel B of Table 5.5). At the same time, it shows that the MH-
sector is different from other ABS subsectors. In general, MH seems to be
a risky sector in a sense that the behavior of MH tranches is substantially
affected by sector-specific events, which results in a high intra asset cor-
relation estimate. The average default probabilities are also substantially
higher for MH than for other sectors. This is mainly due to an increasing
trend in the delinquency rate for MH loans and the level of losses for MH
pools over the last decade. As a result, the majority of MH issuers were
affected by high levels of cumulative repossessions and losses.

In Table 5.6, we present the average annual default probabilities and
asset correlation estimates for corporates. Similarly to the results for SF
tranches, we find that intra asset correlation estimates differ substantially
between sectors. However, average intra asset correlation estimates for SF
tranches and corporates have more or less the same order of magnitude.
This is somewhat surprising given the substantial differences between
these markets. Comparing the default probabilities for SF tranches and cor-
porates shows that the average default probability for ABS (excluding MH),
CDO, CMBS, and RMBS are significantly below the average for corporates.

*A recession period is defined according to the NBER definition of a recession.



234 CHAPTER 5

TABLE 5.6

Asset Correlation Estimates for Corporates

P, JDP Two-factor model

Size Equal Size Equal Size Equal

Inter correlation (p) 5.9 6.3 3.2 3.2

Intra correlation (p,)
Auto 3.45% 3.14% 9.8 10.6 8.6 8.7
Cons 3.35% 3.34% 5.1 4.9 6.7 6.8
Energy 1.70% 1.63% 14.4 14.7 9.7 9.6
Fin 0.51% 0.52% 18.0 17.6 10.0 9.9
Home 2.14% 2.07% 12.2 12.6 6.9 6.8
Health 2.08% 2.03% 9.6 9.9 7.1 7.3
HiTech 1.77% 1.66% 13.4 13.8 7.4 7.6
Ins 0.35% 0.36% 14.0 14.0 10.3 9.8
Leis 3.11% 2.92% 9.6 10.0 9.1 8.9
Estate 0.14% 0.13% 31.0 33.0 25.9 27.7
Telecom 5.87% 4.79% 17.0 18.7 18.4 16.7
Trans 2.94% 2.84% 8.5 8.9 7.0 6.9
Utility 0.83% 0.70% 21.1 22.3 10.8 10.3
141 14.7 10.6 10.5

Note: This table presents average probabilities of default (p,) and asset correlation estimates (p and p,) for corporates.
The latter are estimated using two methods: (1) Joint default probability (JDP) approach. (2) Asymptotic maximum likeli-
hood (ML). “Equal” refers to equally weighted results, whereas “Size” refers to size weighted results, with the weights
in year t being the number of assets in year t divided by the number of assets over the total sample period (minus NR).
The estimates are given in percent.

However, notice that the averages are calculated for the same short period
(December 1994-December 2005).

The corporate bond market is more mature than the market for SF
tranches, resulting in very similar results for size-weighted and equally-
weighted estimates. Furthermore, when reestimating correlation for corpo-
rates using default probabilities from December 1981 until December 2005,
we find that the average intra asset correlation estimates are between 13 and
16 percent for the two methods. Average inter asset correlation is between 4
and 6 percent. This is in line with the results in Jobst and de Servigny (2006).

In a final step, we combine the SF and corporate data and estimate
inter and intra asset correlation for 13 corporate industries and 4 SF collat-
eral types. Using a two-factor model, we assume that there is one factor
that drives the results for SF tranches and corporates and a second factor
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that is specific for each sector/collateral type. Table 5.7 shows that adding
SF data to the corporate dataset results in lower inter asset correlation and
very similar average intra asset correlation. A few changes are worth men-
tioning. Firstly, intra asset correlation for ABS and RMBS is significantly
higher once corporate default information is added. Secondly, intra asset
correlation for automotive and consumer sector have gone up significantly,
whereas the intra asset correlation for real estate and telecom has come
down significantly. A possible explanation for these differences might be

TABLE 5.7

Asset Correlation Estimates for SF Assets
and Corporates

[ JDP Two-factor model

Size Equal Size Equal Size Equal

Inter correlation (p) 4.3 4.69 2.37 2.41
Intra correlation (p,)

Auto 3.45% 3.14% 10.8 12.1 16.6 20.0
Cons 3.35% 3.34% 41 3.8 11.8 15.0
Energy 1.70% 1.63% 11.0 11.5 9.9 10.9
Fin 0.51% 0.52% 9.6 9.4 5.9 71
Home 2.14% 2.07% 9.5 10.0 7.2 8.4
Health 2.08% 2.03% 8.1 8.4 71 6.6
HiTech 1.77% 1.66% 13.7 13.9 8.2 8.9
Ins 0.35% 0.36% 10.0 9.7 8.9 9.5
Leis 3.11% 2.92% 8.5 8.8 6.3 6.0
Estate 0.14% 0.13% 17.8 18.6 6.0 6.8
Telecom 5.87% 4.79% 21.3 241 6.5 71
Trans 2.94% 2.84% 6.6 71 9.0 9.2
Utility 0.83% 0.70% 20.4 22.1 9.8 8.6
ABS 0.74% 0.57% 8.5 11.5 271 28.7
CDO 0.19% 0.19% 13.4 14.8 19.2 16.1
CMBS 0.54% 0.43% 5.4 7.8 5.7 5.6
RMBS 0.32% 0.35% 1.9 1.6 8.3 9.1
10.6 11.5 10.2 10.8

Note: This table presents average probabilities of default (p,) and asset correlation estimates (p and p,) for corporates
and SF tranches. The latter are estimated using two methods: (1) Joint default probability (JDP) approach. (2) Asymptotic
maximum likelihood (ML). “Equal” refers to equally weighted results, whereas “Size” refers to size weighted results, with
the weights in year t being the number of assets in year divided by the number of assets over the total sample period
(minus NR). The estimates are given in percent.
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TABLE 5.8

Abbreviations for Corporate Sectors

Corporate Sectors Abbreviations
Aerospace/automotive/capital goods/metal Auto
Consumer/service sector Cons
Energy and natural resources Energy
Financial Institutions Fin
Forest and building products/homebuilders Home
Health care/chemicals Health
High technology/computers/office equipment HiTech
Insurance Ins
Leisure time/media Leis
Real estate Estate
Telecommunications Telecom
Transportation Trans
Utility Utility

For an overview of the different corporate industries, see Table 5.8.

that SF tranches and corporates are very different, in which case the sector
and collateral specific factor partially captures the corporate common risk
for corporate sector and the SF common risk for SF tranches. A possible
solution, which has not been explored in this chapter, would be to use
multi-factor extensions.

CONCLUSIONS

In this chapter, we investigate and compare transition probabilities and asset
correlation estimates for SF tranches and corporates. We use Standard &
Poor’s rating transition data from December 1989 until December 2005 to
perform the analysis. Rating transition probabilities are estimated using the
cohort method, which is the industry standard, and the time-homogeneous
duration method. Asset correlation within and between sectors of SF
tranches and corporates are estimated using two methods. The first method,
referred to as the joint default probability approach, derives implied asset
correlation from joint default probabilities using historical transition data.
The second method uses a two-factor credit risk model to estimate asset cor-
relation. The latter is estimated using a asymptotic maximum likelihood.
The following main conclusions can be drawn from the empirical analysis:
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¢ Over the past decade, AAA SF tranches show much higher rat-
ing stability than AAA corporates.

¢ For SF tranches, the number of rating migrations is clearly
dominated by upgrades (64 percent), whereas for corporates,
it is dominated by downgrades (63 percent). This is even
more pronounced when we focus on investment grade rating
migrations.

¢ One and two notch downgrades and upgrades represent a much
higher percentage of the total number of migrations for corpo-
rates (81 percent) than for SF tranches (58 percent). This means
that the distribution of notch-level rating migrations is concen-
trated around the mean, whereas for SF tranches, the distribu-
tion is more spread around the mean.

¢ The distribution of notch-level rating migrations is also fatter
tailed for SF tranches than for corporates. On average, 1.4 per-
cent of the yearly rating migrations for SF tranches is more than
10 notches (say from AAA to BB+) compared to 0.6 percent for
corporates.

¢ Even though the SF and corporate markets are very different, the
average intra asset correlation estimates within and between
groups of SF tranches and corporates are comparable. Individual
intra asset correlation estimates, however, can differ substantially.

¢ The results seem to indicate that asset correlation within portfo-
lios of CDOs and manufactured housing (MH) is higher than for
other collateral types such as RMBS and CMBS.
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CHAPTER 6

Collateral Debt
Obligation Pricing

Arnaud de Servigny

INTRODUCTION

In this chapter, we present pricing techniques for Collateral Debt
Obligation (CDO) tranches. As we will see, a very comprehensive toolbox
has been recently developed, which enables us to quickly price standard-
ized tranches. Prices in this market depend not only on pure credit and
default risk but also significantly on market risk (spread movements and
co-movements).

The first impression of the existence of a mature corpus of pricing
techniques applicable to liquid synthetic CDO transactions is however
somewhat deceiving. During the May 2005 crisis period, these models did
not succeed in providing fully reliable pricing results and, in addition, the
related hedging strategies did not prove very robust. The concept of corre-
lation extracted from copulas,* on which these prices are typically based,
has found some limitations. The main challenge for copulas is to account
for a dynamic spread co-movement structure as well as to harness a robust
hedging strategy.

The above mixed statement can look quite surprising as an intro-
duction. In our view, it only reflects the fact that the segment of marked-
to-market structured credit products corresponds to a very recent activity.

*See Chapter 4 for a definition of copulas.
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The tools that have been developed so far are not perfect, but certainly
facilitate the expansion of that market. In equity and fixed income pricing,
it is agreed that the market standard Black and Scholes (1973) approach
has a rather weak performance, everybody still uses it as the market stan-
dard. In a similar way, we have recently seen that copulas are not fully
accurate in the fast growing credit space, but almost everybody keeps on
using the paradigm for the sake of consolidating a common language.

In parallel to this liquid and traded market, there exists an important
but less liquid bespoke synthetic market. The appropriate word used to
describe these instruments is single tranche CDO (STCDO). The challenge
here is to harness a pricing technique to an illiquid market.

In what follows, we focus at first on the synthetic CDO market, with
some particular emphasis on “correlation trading” related to indices. We
then discuss briefly the pricing techniques used for the more bespoke
synthetic tranches.

The second type of instruments we will focus on in this chapter are
cash CDOs. Pricing such instruments is not straightforward, especially
when, on the asset side, there is no market price for the loans in the under-
lying pool. On the liability side, we need to be aware that the waterfall
structure of cashflows has an effect on the value of tranches.

TYPOLOGIES OF CDOS

It is customary to classify CDOs depending on their function. In this case,
usually consider CDOs are in balance sheets and arbitrage deals. The for-
mer type of transactions is typically used by financial institutions in order
to rebalance their portfolio, whereas the latter focuses on the excess
spread generated in the securitized pools because of diversification (see
Chapter 10 for further details).

In the current analysis we focus on a different perspective, i.e.,
pricing techniques. As a consequence, it is more relevant to concentrate
primarily on the way CDO instruments are structured. What really
matters in order to differentiate CDO prices is the nature and the source
of repayment of the collateral pool. We distinguish here between the two
main categories of CDOs: synthetic and cashflow CDOs.

¢ Synthetic CDOs: These are based on a portfolio of Credit Default
Swaps (CDSs) and constitute an alternative to the actual transfer
of assets to the SPV, see Figure 6.1. These structures benefit from
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FIGURE 6.1
Structure of a Synthetic CDO.
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advances in credit derivatives and transfer the credit risk associ-
ated to a pool of assets to the SPV while not moving assets
physically.* The SPV sells credit protection to the bank via credit
default swaps.

Synthetic deals may be fully funded, through the recourse to
CLNs (credit-linked notes), partially funded or totally
unfunded. In the cases where the deals are partially funded or
unfunded, counterparty risk needs to be mitigated.

Single tranches can be issued on their own, without the full CDO
being placed in the market (STCDO). The issuing bank then per-
forms the appropriate hedging of these tranches on its books.

¢ Cashflow CDOs: A simple cashflow CDO structure is described in
Figure 6.2. The issuer (special purpose vehicle) purchases a pool
of collateral (bonds, loans, etc.), which will generate a stream of
future cash flows (coupon or other interest payment and repay-
ment of principal). Standard cashflow CDOs involve the physi-
cal transfer of the assets.” This purchase is funded through the
issuance of a variety of notes with different levels of seniority.

*The typical maturity for a synthetic CDO is five years, but has moved recently to longer
ones like 7 and 10 years.

*The ramp up period can be quite lengthy and costly. In addition, loan terms vary. The lack
of uniformity in the manner in which rights and obligations are transferred results in a lack
of standardized documentation for these transactions.
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FIGURE 6.2

The Structure of a Cashflow CDO.
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The collateral is managed by an external party (the collateral /
asset manager) who deals with the purchases of assets in the
pool and the redemption of the notes. The manager also takes
care of the collection of the cash flows and of their transfer to
the note holders via the issuer. The risk of a cashflow CDO
stems primarily from the number of defaults in the pool: the
more and the quicker obligors default, the thinner the stream of
cash flows available to pay interest and principal on the notes.
The cash flows generated by the assets are used to payback
investors in sequential order from senior investors (class A), to
equity investors that bear the first-loss risk (class D). The par
value of the securities at maturity is used to pay the notional
amounts of CDO notes.

PRICING SYNTHETIC CDOS

In

this section, we focus on unfunded CDO transactions and articulate

the pricing techniques used in this market. We do not spend any time on
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the related discussion on hedging, as this important topic will be dealt
with in Chapters 7 and 8. In addition, it is one of the peculiarities of this
somewhat incomplete market that the price of a tranche cannot always
be related with the cost of hedging or a replicating portfolio.

There are many papers in the market to explain the most established
pricing techniques, and we refer to a very pedagogical discussion by
Gibson (2004).

Pricing a CDO tranche means being able to define the spread on the
regular installments paid by the protection buyer to the protection seller.
The central constituent necessary to define this spread on a tranche is the
tranche-expected loss derived from the loss distribution of the underlying
portfolio, as summarized in Figure 6.3. In this section, we detail succes-
sively all the building blocks necessary to compute a price.

We explain how to get to the tranche “Expected Loss,” i.e., the aver-
age loss unconditional on systematic risk constituents. With this key input,
we can move to the proper pricing of CDO tranches. We then focus more
specifically on the traded market of tranches based on the CDS indices,
also called “correlation trading.” We ultimately focus on the new theoreti-
cal developments in this market, based on a more dynamic modeling of
the portfolio loss and show how this may pave the way for advanced
derivatives written on CDO tranches.

FIGURE 6.3
Main Steps to Price a CDO Tranche.

Survival Monte-carlo
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Generating the Loss Distribution
of the Portfolio

In the previous chapters, we have discussed in great detail how to esti-
mate univariate survival probabilities (Chapters 2 and 3) as well as recov-
ery rates (Chapter 3) and correlation (Chapter 4). Based on these three
constituents, we can generate the loss distribution of the portfolio at a
defined horizon. The loss distribution in the CDO portfolio is a key input
to obtain the tranche loss distribution and, subsequently, the expected loss
per tranche.

More generally, what we would like to generate is the continuum of
loss distributions in the portfolio at any point in time until the maturity of
the CDO. In order to reach this point, Li (2000) and Gregory and Laurent
(2003) have really been instrumental to orientate the market approach
towards the concepts of a default survival approach, copulas and condi-
tional independence.

Basically, in order to obtain the portfolio loss distribution at any hori-
zon, we need to know the survival probability of each obligor in the pool at
the corresponding time (step 1), as well as the nature of the dependence of
these probabilities on systematic risk factors (step 2). On the basis of these
constituents, we can identify the joint survival probability in the portfolio
conditional on the systematic risk factors (step 3). By blending it with recov-
ery at default and simulating the behavior of the systemic risk factors, we
will be in a position to extract the portfolio loss distribution at the various
horizons (step 4) and the related term structure of expected losses per
tranche.

Step 1: Let us define 7,, . . ., 7, the default times of the n obligors in
the CDO portfolio.

For each obligor 7, a risk-neutral survival probability function
S(t)=Q(r.>t) is defined and extracted from spreads as a result
from/credit curves.* It does not assume any dependence between
obligors.

Step 2: The joint probability cannot be computed directly. We need
to introduce a dependence structure. This joint survival probability
function is therefore written as a (survival) copula

Sy, ..., t)=Q(t,>t, ..., T,>t)

*See Chapter 3 for a description of different methodologies.
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In order to avoid dimensionality issues, dependence across oblig-
ors is typically modeled through a vector of latent factors V that is
common to all obligors. The usual approach in the CDO world is
to consider a single latent factor for ease of computation, but there
is no theoretical restriction on the number.

Step 3: This step consists of expressing the joint survival probability
conditional on the realization of the latent factor.

Let us denote the survival probability for obligor i, at time ¢, condi-
tional on the factor V as:

§7()=Q(1>1 V). ()

Based on the property of conditional independence, we can write
the conditional joint survival probability in a simple way as:

St .t 1V) :qu(ti) @)

Step 4: The unconditional joint survival probability distribution can
then be obtained by integrating the conditional joint survival prob-
ability on the density of the common latent factor. In addition, by
assuming a constant recovery level such as 40 percent, we obtain
the portfolio loss distribution.

From this “recipe,” it is clear that the key building block necessary
to obtain the portfolio loss distribution, apart from the distribution of the
latent factor V, is the conditional survival probability for each obligor
[Equation (1)].*

We review different approaches based on copulas that have been
used in the market.

Possible Candidates for Conditional

Survival Probability

Gregory and Laurent (2003) and Burtschell et al. (2005) provide a taxon-
omy of possible candidates for conditional probabilities based on the
choice of different copulas. Each of the options presented in this section
are derived from the assumption of a deterministic asset correlation

*Or the univariate conditional risk neutral default probability for each obligor p¥(t)=1-4%¢).
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structure. The selection of any one of them is usually driven by how well
it can fit empirical evidence.*

We start with the Gaussian copula that corresponds by far to the
market standard.

Gaussian Copula The most established setup is the one factor
Gaussian copula. That has been presented in the previous chapter on cor-
relation. It can be interpreted as the asset value of the firm i being driven
by a latent common factor and an independent idiosyncratic factor, both
normally distributed:

Ai=piv+'\1_p,‘2§i (3)

If we define the cumulative default probability p(t)=Q(7, < t), p, the factor
loading corresponding to asset i and @, the normal c.d.f., the conditional
default probability can be written as (Vasicek, 1987):

@ (p,(1) - p,V

= "

Student-t Copula The Student-t copula is a natural extension of
the Gaussian copula suggested by several authors, such as O’Kane and
Schloegl (2001) and Frey and McNeil (2003). It is supposed to account for
fat tails better than the Gaussian copula, but the drawback is its symme-
try, leading to a high probability of zero losses, too.

The asset value of the firm i follows a Student-t distribution. It is,
however, driven by a latent common factor and an independent idiosyn-
cratic factor, both normally distributed:

A,‘ = \/W(p,‘v'i_'\ 1 _pi2§i),

p!(H) =@

where W is an inverse Gamma distribution with parameter equal to (v/2),
independent from the Gaussian factors.
The conditional default probability becomes:

*As a caveat though, we have seen in the previous chapter on correlation that a determinis-
tic approach to correlation, whatever the circumstances, may not correspond to a fully
appropriate representation of the reality.
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W2t (p (1) - p,V

J1-p7

Double-t Copula This approach has been suggested in Hull and
White (2004) in order to partially decouple the size and shape of the upper
and lower tail of the loss distribution.

The asset value of the firm i does not follow a Student-t distribution,
but is a convolution of a latent common factor and an independent idio-
syncratic factor, both Student-t distributed, with respectively v and v
degrees of freedom:

v-2)" v-2\"? ——
Al‘:[ v J PiV‘i‘( v ] 1_p,'2€i/ (6)

In this situation, the conditional default probability can be expressed as:

-2
= H(p(0)-p,y* "V
— i @)

-2 1-p?

pI(H = ® )

p,'v(t):tv v

where H(A,)=p/t) corresponds to the distribution function of A, that has
to be computed numerically as it is not a Student-t.

Normal Inverse Gaussian (NIG) Copulas There are
two rationales for using NIG Gaussian distributions:

¢ Fat tails: the fact that asset returns tend to exhibit more asym-
metric, as well as fatter, tails than a Gaussian distribution sup-
ports the use of a NIG distribution.

¢ Tractability reasons: the point that a convolution of NIG distri-
butions is a NIG distribution facilitates the computation of the
pricing of tranches.

In Kalemanova et al. (2005), the asset value of the firm i is driven by a
latent common factor and an independent idiosyncratic factor, both NIG
distributed:

A =pV+1-pf¢
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If we define the NIG c.d.f. as:

op
FNIG(s)(x) = FNIG[X;SOC, Sﬂ, - SW,SO(}

With s, ¢, and B the parameters of the NIG. The first one is related to cor-
relation, whereas the next two are related to the mean and the variance.

Kalemanova et al. (2005) show that the conditional probability of
default can be written as:

1

FN;G[J (p,()-pV

Y)=F ,,
pz () Nlc{l—piz] \/1_p12

i

®)

Archimedean Copulas Archimedean copulas have been pro-
posed in particular by Schonbucher and Schubert (2001) in the context of
contagion models.

In the case of the Clayton copula, the conditional default probability
can be expressed as:

pl(t)=exp(V(1-p,(t))), )

where 0 is the parameter of the copula.

Marshall-Olkin Copula Multivariate exponential spread mod-
eling associated with the Marshall-Olkin copula is also called a “Poisson
shock” model. It allows for simultaneous defaults and fat tails, as the
default intensity for each obligor is split between a systematic and an idio-
syncratic component. Several authors like Duffie and Singleton (1998),
Lindskog and McNeil (2003), Elouerkhaoui (2003a,b), and Giesecke (2003)
have suggested its use. Practical calibration can be challenging, as many
parameters need to be calibrated. Figure 6.4 shows how this copula gives
significant modeling flexibility.

In order to obtain a one factor representation of this approach, let us
consider one latent common variable V and n obligor specific random
variables V, all independent and exponentially distributed with respec-
tive parameters o and 1-o and o € [0, 1].* For each obligor i, we can

*ashould be seen as describing the intensity of co-movement to default, =1, meaning total
comonotonicity.
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FIGURE 6.4

The Flexibility Provided by the Marshall-Olkin
Copula—A Normalized Loss Distribution.
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define V. = min(V, 171.) and S(t)=1-p(t), the marginal survival function.

We can then express the corresponding default time as: 7,=Sexp(-V).
Conditionally on V, 7, are independent and the conditional default prob-
ability for obligor i can be expressed as:

PIO=1=1y, -y (1PN (10)

The Functional Copula The functional copula has been intro-
duced by Hull and White (2005) and has been described in Chapter 4.

1 PZV_Gl_l(p,(t))

Vi) =-——*H. , 1
pi(#) PRREY m (11)

where H, is the cumulative probability distribution of the idiosyncratic
term ¢, and G, is the cumulative probability distribution of the latent
variable A,.

The idea of the authors is to eliminate the need for a parametric
form, but to extract the empirical distribution of conditional hazard rates
from empirical CDO pricing observations.
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To date, the market standard remains the Gaussian copula.
However, this Gaussian set-up does not prove very effective in pricing
tranches. As an illustration of this problem, market participants have
noted that a strong correlation skew is empirically observed based on
market prices. This skew cannot be matched in a simple way with the
Gaussian copula. As a result, finding a more accurate model has become
the new frontier. In addition to the alternative copulae described previ-
ously, market practitioners have also tried to provide some extensions of
the Gaussian copula in order to better match observed prices.

Possible Extensions of the Gaussian Copula:
Relaxing Deterministic Assumptions

Gaussian copulas have such a footprint in the CDO market that it would
be nice to be able to keep this framework while gaining accuracy in the
valuation of tranches. Two related extensions have been suggested. They
consist of either modifying the dependence structure of the asset value
depending on different states of the world,* or considering that Loss
Given Default is correlated to the realization of the common systematic
factor.

Random Factor Loadings The idea is that it is possible to
approximate the apparently non-Gaussian behavior of an asset value as a
convolution of Gaussian distributions.

In the correlation Chapter 4, it was noted that under the empirical
measure there was evidence supporting a two-regime-switching approach
depending on growth and recession periods in the economy. Andersen
and Sidenius (2005) head towards this direction with “random factor load-
ings.” Practically in their simplest setup, factor loadings depend on the
realization of the common factor with respect to a barrier that can be seen
as describing the state of the economy.

Burtschell et al. (2005) present the approach in a generic way under
the wording of “stochastic correlation.” Like in the simple Gaussian case,
the asset value of the firm i is still driven by a latent common factor and
an independent idiosyncratic factor, both normally distributed, but there
are two possible states that come to play. In this respect, B. is the Bernouilli
distributed weight associated with the case where the factor-loading
corresponding to company i is p,, and a weight (1-B,) corresponds to a
correlation of p,. As a result, the asset value of the firm can be written as:

*Also, sometimes referred to as “local correlation.”
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A; = (Bp,+(1=B)p)V+1-(Bp, +(1-B)p)*E,

Let us define the probability b,=Q(B,=1), the conditional default proba-
bility can be written as:

el (p, () -p,V ol (p,()-p,V
y1-p? J1-p7

Random Recovery The principle here is to have not only the
asset value to be dependent on a vector of common factors, but also to
have the recovery rate dependent on the same factors.

pY(t)=b® +(1-b)® (12)

R=C(u;+b,V;+¢), (13)

where C is a function on [0, 1], such as a beta distribution function.

Increasing the dependency of the recovery on the common factors
generates a fatter tail and therefore can account for some of the correlation
skew observed for senior tranches. However, Andersen (2005) notes that
when realistically calibrated, random recovery does not seem to be suffi-
cient to explain the equity and the super senior correlation skews.

Assuming Homogeneity in the Portfolio

In an active market, traders require fast models and simple ways to com-
municate. Speed of computation and communication are often obtained
at the expense of accuracy. Will a stylized model be sufficiently rich and
robust to price and hedge transactions? This question represents a key
challenge for the industry to date.

In addition to the assumption of the single factor copula framework,
we mention below some other simplifications that are sometimes consid-
ered by market participants. Simplification can be obtained by assuming
obligor homogeneity in the CDO portfolio. This leads to two simplifications:

¢ Factor loadings (i.e., the weight on the common factor, p,) are
independent from the obligors in the CDO portfolio. This
means that we move from multiple, obligor dependent, factor
loadings to a single one for the pool, p.

¢ Obligors can be considered as reasonably close in terms of
creditworthiness and prices and as a result an average spread or
probability of default is supposed to characterize the portfolio
of obligors well. Practically, in all previous formulas, this
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assumption means that p(t) can be turned into an average p(t),
independent from any name in particular. As shown in Figure
6.5, this assumption of homogeneity in the credit quality can
prove hard to defend when dealing with the liquid indices.

Under these approximations, knowing factor loading (corresponding to
the square root of what is defined in the market as the implied correlation)
and given the corresponding average default probability is sufficient to
obtain the loss distribution of the pool.

In addition to these approximations, some banks like JP Morgan have
at some stage promoted the large pool approximation that facilitates the
use of a limiting closed-form distribution described in Vasicek (1987, 1997).

P(L(t) < o) = d)[%( 1-p?@Y(a) - ‘D"l(P(f))j (14)

with o a defined loss level, L(t) the unconditional portfolio loss, and p(t)
the average probability of default of obligors in the pool.
As McGinty, Bernstein et al. (2004) from JP Morgan put it:

“The model we (JPM) use to imply correlations in tranches is known
as the homogeneous large pool gaussian copula (the ‘large pool
model’, or 'HLPGC’), which is a simplified version of the Gaussian
copula widely used in the market.

FIGURE 6.5

Five-year CDS Spread-Based Distribution
of the CDX.NA.IG.4.

Distribution of spreads in the CDX.NA.IG.4
March 31, 2005
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... The model is based on three major assumptions. First, default
of a reference entity is triggered when its asset value falls below
a barrier. Second, asset value of the portfolio is driven by a common,
standard normally distributed factor M, which is often referred to as
the ‘Market,” and can be taken to imply the state of the overall busi-
ness cycle. Finally, the portfolio consists of a very large number of
credits of uniform size, which effectively cancels the effect of a sin-
gle name’s performance on tranche loss and is why the portfolio can
be considered homogenous.

We believe that the fundamental benefits of the large pool model
are transparency and replicability—we can provide our specific
implementation of the model. The model also has the advantage
that it requires few inputs—only the average level of market spreads
and average recovery rate (which we define as 40%), rather than
individual spreads for all of the credits in the portfolio, which
would be impossible for a user to reproduce at any instant. The
downside of course, is that the model does not consider single
name blow-ups correctly. This manifests itself in two main ways:
one, the model cannot differentiate between a single name widen-
ing by 10,000 bp and 100 names widening by 100 bp, and two, there
is a discontinuity as credit spreads widen towards default. The
model is unlikely to produce spreads consistent with market
observations in these scenarios. . . .”

Such an approximation facilitates immensely the calculation of correla-
tion and ultimately of prices. However, it can be very misleading when
applied to a portfolio characterized by a low number of names and/or
different profiles in terms of creditworthiness.

This fully granular model assumes full diversification of the idio-
syncratic risk, but empirical evidence shows that full diversification in
a credit portfolio is typically obtained with a minimum of 400-500
obligors. Indices like CDX, I-Traxx only contain up to 125 names. It can
be therefore quite risky to apply the large pool model to index based
correlation trading.

Pre-May 2005, Finger (2005) reported that the JP Morgan model had
performed well for investment grade index tranches. This set-up is, how-
ever, no longer used by market participants, and other ways to reduce
computational time are investigated next.



254 CHAPTER 6

Getting to the Loss Distribution of the Portfolio:
Monte-Carlo and Semi-analytical Techniques

Option 1: The Full Monte-Carlo Calculation* The
Monte-Carlo approach is based on the random draw of realizations of the
common systematic factor and for each realization, a portfolio loss can
be computed as the sum of individual losses. The unconditional portfolio
loss corresponds to the integration of the conditional losses on the distri-
bution of the common factor.

This “brute force” approach is usually not selected by market par-
ticipants, as it is time consuming." Some techniques, often based on vari-
ance reduction, can help to speed-up the computation time.

Option 2: The Recursive Approach This approach has
been suggested almost simultaneously by Andersen et al. (2003) and by
Hull and White (2003). The principle is integration over a discretely
approximated portfolio loss distribution.

In a portfolio of j names, the probability of observing exactly h
defaults (with /1 <j) by time ¢, conditional on the realization of the common
factor V can be written as p/(h,t). Furthermore, pﬁl(t) is the condi-
tional default probability of name j-1:

p}/ﬂ(hr t) :P}/(h/ t)(l —P}il(t)) +p]V(h_ 1/ t)pyH(t)

where, of course,

P}{H (Or t) ZP)/(O/ t)(l _Pﬁl(t))

PG+, D=pY G D P ()
Based on the above recursion, we can obtain the unconditional probabil-

ity of observing h defaults in a portfolio of 7 names by time t by integrat-
ing over the common factor with distribution function f(V):

p 0= prn nfv)dv (15)

*See Rott and Fries (2005) regarding the use of variance reduction techniques.
*It is particularly cumbersome for CDO squared.
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Option 3: Using Fourier Transform Techniques*
We consider the total accumulated loss of the reference pool at time ¢, and
d is the recovery fraction at default on each name. The default time for
obligor j is 7. Once the nominal on each name j, N, is defined, we can
write the accumulated loss attime t, L(f) = ].:1 ],(1 5) Xi’ by calling the
indicator function: 11 =X

The Fourier transform of the accumulated loss function can be
expressed as:

0y(1) = Elexp(-iuL ()] = E[E(exp(-iuL(t) | V)],

where V is the common systematic factor.
We can then introduce the expression of the Fourier transform of the
loss

)(1/[) — E[e—iu(Nl(l—(S)X1+N2(1—5)X2+<~+Nn(1—5)Xn)]
t

n
-F He-mNj(ya)x,. (16)

j=1

The Fourier transform of the conditional loss is more tractable, due to
the possibility to permute the expectation under conditional indepen-
dence. Based on the Bernoulli distribution of the indicator function X].,
we obtain:

=1

n
N ;(1-8)X; 1V ~iuN;(1-8)X;1V
1) = E[ e ™ HE[ ]
n

= [tg7 @ +py e "1

j=1

In turn, this can be written as

Vo) = [ Tlay 0+ p) () 0, (0]
j=1

*We revert readers to the presentation on Fourier Transform techniques, by Debuysscher
and Szego (2003). There are other possible convolution techniques, such as Laplace trans-
forms and Moment Generating functions.
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where (pv(l_ 5)(N ; u) is derived from the Fourier transform of the Loss Given
Default on asset j.

The unconditional Fourier transform is then obtained numerically
by integrating on the distribution of the common systematic factor:

0,0 = [ TTla"®+p7®) 0, 5N wIf(V)dV 17)
j=1

In a final step, the unconditional loss can be computed using the inverse
Fourier transform by practically applying standard Fast Fourier trans-
form algorithms.

Option 4: Proxy Integration Proxy integration, presented in
Shelton (2004), has gained traction in the market because of its simplicity.

The central limit theorem states that the sum of independent
random variables with finite variance and arbitrary probability
distribution converges to a normal distribution as the number of vari-
ables increases.

Shelton’s approach is based on the idea that the convergence to a
normal distribution might take place sufficiently quickly to allow for the
approximation.

In the case of CDO pricing, we cannot consider the survival proba-
bility variables for each obligor to be independent, as obligor losses are
typically correlated. We have seen though that conditional on a vector of
latent risk factors, the portfolio loss distribution can be expressed as the
weighted sum of conditionally independent random variables.

Let us consider again the total accumulated loss of the reference pool
at time t, with 0 the recovery fraction at default on each name. The default
time for obligor j is 7. Once the nominal on each name j, N, is defined, we

can write the accumulated loss at time horizon ¢, L(t) = 27=1 N ; 1-0)X i
by calling the indicator function: 1, _,=X..

We then consider various realizations of the common systematic
latent factor V. Under the assumption of conditional independence, we
can now easily compute the conditional loss distribution in the portfo-
lio based on Equation (2). According to the Proxy integration approach,
we assume that conditional on each realization of V, the joint distribu-
tion of losses in the portfolio converges to a normal distribution as
shown in Figure 6.6. For each realization of the systematic factor, we
can compute the mean and the variance of the approximated normal
distribution.
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FIGURE 6.6

Loss Distribution for Correlated Defaults. (Citigroup)

Loss Distribution on a Portfolio of 100 names wish correlation of 25%, survival
Probability = 90%, conditional on N(0,1) variable Y
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Its mean is:

wy (LH) = E[ILH 1 V] = Y N, (1-8) pY (1

j=1
And, its variance is:
VAR, (L(#)) = E[(L(t) = u,, (L(1)))* | V]

The unconditional portfolio distribution can be computed as a weighted
mixture of Gaussian distributions, where the weights correspond to the
distribution of the latent variable. This numerical integration problem can
be solved by a simple algorithm like the trapezium rule.

For pools like the index pools, the degree of convergence proves sat-
isfactory and the method typically delivers good results.

This approach is more straightforward than the option 2 (the recursive
approach), in the sense that each conditional loss distribution is approxi-
mately characterized by only two parameters: the mean and the variance.

For CDO? trades, the proxy integration approach mentioned earlier
can be generalized to a similar problem with a dimension corresponding to
that of the number of underlying pools. Instead of computing a univariate
normal integral, we now have to estimate a multivariate normal integral.
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Pricing a CDO Tranche Once the Unconditional
Portfolio Loss Distribution is Obtained

A synthetic CDO tranche can be valued like any other swap contract.
There are two parties involved: the issuer who typically is the protec-
tion buyer and the investor, the protection seller. The investor receives
from the issuer a regular “fee” or “premium.” When default impacts
the tranche, the investor has to pay a “contingent” amount, correspon-
ding to the “contingent” or “default” leg. For the investor holding a
tranche, there is a need to be compensated appropriately for bearing
potential losses (the expected losses). The higher the seniority, the
lower the fees.

Let us introduce the following notations:

In the CDO we consider, there are n different names withi={1, ..., n}.
A default time 7, is associated to each name i.

We can now define N(f) = 2?:11%- .;» the counting process of the

number of defaults at time ¢, T the maturity of the CDO, and ¢ the stan-
dard recovery fraction at default on each name. When conditioned on the
common factor, these Bernouilli variables become independent and the
conditional loss distribution at time ¢ can be obtained easily. As a result,
once the nominal on each name i, N, is defined, we can write the
accumulated unconditional losses at time t, also called expected loss, as
EL(t) = E[X!, N,(1-0)1__,1V], where V corresponds to the common sys-

T;<t

tematic factor. Its practical computation has been described previously.

Computing the Value of the “Contingent Leg”™

We initially start with a three-tranche CDO with equity, mezzanine, and
senior pieces, but nothing precludes us to consider more tranches in the
remainder of this section. The subordination priority rule means that
losses will be allocated first to the equity piece, then to the mezzanine,
and the remainder to the senior tranche. The equity tranche corresponds
to [A,=0, A,=A], the mezzanine to [A, A,=B], and the senior to

[B, A, =X N,], where A; are agreed upon thresholds. Accumulated

losses will therefore be successively absorbed by each of the tranches.
The next step is to measure explicitly overtime the unconditional
average accumulated loss in each of the tranches [A]., A]. -

*Also called “protection leg” or “loss leg.”
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EL (t)=E(max[min((L(t) - A), (4,,,~A)), 0]) (18)

The discounted payout corresponding to contingent losses in
tranche j during the life of the CDO can be written as:

K
C(t=0)= Y D(K)[EL(k +1) - EL (k)] (19)

k=1

where D(k) is the discount factor term. We consider here the time series of
the premium payment dates k={1, . . ., K}.

More rigorously, this contingent leg can be written as an integral and
can be integrated by parts:

C,(0) = D(T) EL(T) + jOT EL (1) dD()

=D(T) EL],(T) + J;T ELj(t) D(t) f(t) dt (20)
where f(t)=—(1/D(t))(dD(t)/dt) is the spot forward rate.

Computing the Value of the “Fee Leg”*

The expected present value of the fee leg on each tranche corresponds to
the payment of regular installments at a predefined spread S; applied
to the principal exposure of the tranche outstanding at the date of pay-
ment of the premium.

K
F(0) = sj;[mm — A) = EL (k)] D(K) (21)

The initial mark-to-market value of the tranche is C j(O) —-F /.(O). In the
case that the CDO tranche is unfunded and fairly priced, this initial
marked-to-market value is 0.

The value of the spread can be deducted in a straightforward way as:

S - @)
a 22
] Z;[(Am —A.) = EL,()]D(k)

*Also called “premium leg.” For ease of presentation, we assume here that tranches are
priced using spreads only, with no upfront payment.
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During the life of a CDO, the balance between the value of the fee leg
and that of the contingent leg usually vanishes. The marked-to-market value
of a tranche is defined as the value difference between the two legs. One way
to measure this value consists of defining the factor loading contributing to
the expected loss as the unknown parameter. The factor loading corresponds
to the square root of the correlation value that makes the fee leg break even
with the contingent leg gives an equivalent of the price of the corresponding
tranche. It is usually called the implied “compound correlation.”

A Practical Example
We consider a synthetic CDO on a portfolio of 100 equally weighted
names (Figure 6.7).

We assume that the size of the CDO is $100 million. The equity
tranche corresponds to the usual 0percent to 3 percent bucket. In addi-
tion, we consider a risk-neutral hazard rate of 100 bps for the CDSs on
each underlying name, a factor-loading p, equal to the square root of 0.2
and a standard recovery of 40 percent.

The premium fee for the equity tranche is 40 percent upfront pay-
ment plus a running fee of 500 bps.

In Table 6.1 we first look at the implication of the loss mechanism on
the equity tranche for the protection seller.

In a second step, we consider the traditional one-factor approach.

; — [ 2
We can write the asset return as A; = p,V +,/1-p?&..

FIGURE 6.7
A Stylized Synthetic CDO Structure.
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TABLE 6.1

192

Implication for the Protection Seller of Losses in the Portfolio Pool*

Cumulative Premium perceived
Contingent contingent by the protection seller
Number of Notional of the Detachment payment by payment by (during 1 year assuming
defaulted pool Attachment point protection protection no additional default
names ($M) point ($M) ($M) seller seller and without upfront fee)
0 100 0 3 0 0 0.15
1 99 0 2.4 0.6 0.6 0.12
2 98 0 1.8 0.6 1.2 0.09
3 97 0 1.2 0.6 1.8 0.06
4 96 0 0.6 0.6 2.4 0
5 95 0 0 0.6 3 0
6 94 0 0 0 3 0
7 93 0 0 0 3 0
8 92 0 0 0 3 0
9 91 0 0 0 3 0
10 90 0 0 0 3 0
100 0 0 0 0 3 0

*The recovery on the defaulted name is allocated to the most senior tranche holder as an early repayment.
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We use the recursive methodology presented earlier in order
to define the probability distribution of the number of defaults in the port-
folio, given the distribution of the common factor, and then compute the
unconditional default distribution. Results are summarized in Table 6.2.

By combining columns (A) and (B), we obtain the expected loss of
the equity tranche at time K=5 years.

TABLE 6.2

Defining the Unconditional Loss Distribution of the
Portfolio at any Time Horizon (in this case five years)

Unconditional

default
Number h of Default distribution distribution at a
defaulted conditional on the 5-year
names realization of horizon p,.(h, 5)
(A) common factor V (B)
V=... V=-1 V=0 V=1 V=...
0 1.85x10° 0.007 0.210 0.109
1 2.6x10°° 0.035 0.330 0.103
2 1.8x10* 0.088 0.257 0.093
3 8.4x10% 0.147 0.132 0.081
4 2.9x10° 0.183 0.051 0.070
5 7.8x10° 0.180 0.015 0.061
6 0.017 0.146 0.004 0.052
7 0.033 0.100 0.001 0.045
8 0.054 0.060 1.5x10* 0.039
9 0.078 0.031 2.4x10° 0.034
10 0.100 0.015 3.4x10°®
100 1.6x10° 6.5x107'2 1.1 x 10718 4.83x10°18
Probability
attached
to each
celziten 0.24% 0.39% 0.24% 100%
of the

common factor
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EL(5) = i P10, 5) max(min((k * 0.4), 3), 0)

h=0

The last necessary step in order to be able to obtain the value of the
equity tranche is to compute the expected loss at all the time steps we are
interested in. On the basis of this time series of expected losses, we can
infer the contingent and the fee legs and easily deduct the par-spread
from the computations.

Detailing Implied Correlation

Defining the Indices
The market of standardized tranches based on credit indices has grown
tremendously over the past years. The market has benefited from the
merger of the leading U.S. and European CDS indices in 2004. There are
now the CDX indices in the United States and the iTraxx in Europe. The
most important indices are the investment grade indices that include 125
CDS contracts corresponding to the most liquid names in each region.
The standardized tranches on the CDX.NA.IG* correspond to the
equity tranche (0 to 3 percent), the junior mezzanine (3 to 7 percent), the
mezzanine (7 to 10 percent), the senior (10 to 15 percent), and the junior
super senior tranche (15 to 30 percent). On the European iTraxx index,
attachment points differ slightly, with attachment points for the intermedi-
ary tranches at 6 percent, 9 percent, 12 percent, and 22 percent, respectively.

Implied Correlation
The idea behind the concept of an “implied correlation” is based on an
analogy with the Black and Scholes formula for the valuation of options,
where there is an equivalence between option prices and the definition of
the corresponding “implied volatility.” Similarly, in the case of CDO
tranches, the knowledge of the price of a tranche as well as of the spread
levels on the names of the underlying portfolio leaves only one degree of
freedom, using a Gaussian copula: the value of the factor loading, called
implied compound correlation. Given our past notations, corr=p?.

Note that if the model was correct we should observe a flat level of cor-
relation for all tranches, given that the asset value of the underlying pool we

*The CDX.NA.IG index corresponds to the Dow Jones North American Investment Grade
index.
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refer to is identical whatever the tranche. In general, however, implied com-
pound correlation is higher for the equity and the more senior tranches than
for the mezzanine tranche (Figure 6.8). This phenomenon is known as the
“correlation smile.” There are basically two ways to account for this smile:

¢ The first one focuses on market inefficiencies and segmentation.

The market for junior tranches differs from that related to senior
ones due to different investor preferences, with little “cross
tranches” arbitrage.

The second way to explain the skew is by considering that it
corresponds to some model misspecification. According to this
view, the true level of correlation cannot be captured in a stable
way by the Gaussian copula due in particular to underestima-
tion of the probability of extreme loss scenarios. This analysis
explains why alternative copulas, or other extensions capturing
random factor loadings and recoveries, have been introduced in
the previous sections.

The use of compound correlation to quote tranches was the industry stan-
dard until spring 2004, but has been abandoned for three reasons. First, in

FIGURE 6.8

The Correlation Smile, 07/10/2004, Five-Year
iTraxx Europe.
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mezzanine tranches, there can be two solutions for the implied compound
correlation.* In addition, for some spread levels (e.g., very high spreads on
the mezzanine tranche), there can be no solution at all to the correlation
problem using a Gaussian copula. Lastly, as compound correlation gives a
“U-shaped” distribution, it is very difficult to infer from the correlation curve
the interpolated prices on tranches that have nonstandard attachment points.

Since 2004, the market has moved to the quotation of equity tranches
with different detachment points (0 percent to 3 percent, 0 percent to 7 per-
cent, 0 percent to 10 percent, and so on). This is equivalent to pricing call
options on the cumulative losses of the underlying portfolio up to a
defined level (Figure 6.9). Such equity correlations are also called “base
correlations.” They are often (not always though) monotonically increas-
ing with the level of detachment point. The price on a 3 to 6 percent
tranche can be computed knowing the 0 to 3 percent and the 0 to 6 percent
base correlations and considering that it corresponds to the combination of
a long 0 to 6 percent tranche with a short 0 to 3 percent. Compared with
compound correlation, base correlation offers the advantage of bringing a

FIGURE 6.9

Base Correlation, 07/10/2004, Five-Year iTraxx Europe.
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* Mezzanine tranche premiums are not monotonic in the compound correlation.
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TABLE 6.3

Typical Market Quote on 28/02/06. Spreads are in bps,

Except for the O to 3 Percent Equity Piece that is
Defined as a % of the Notional Plus 500 bps.

Spread Delta Base Corr Impld Corr
iTraxx 5 year (index 35 Mid)
0-3%* 25.625/26.2 22.5% 10.9% 10.9%
3-6% 70/72 5.5x 22.0% 3.9%
6-9% 21/23 2.0x 29.9% 11.7%
9-12% 10/13 1.0x 36.3% 17.2%
12-22% 3.875/5.125 0.5x 53.6% 23.7%
iTraxx 7 year (48 Mid) Delta Base Corr Impld Corr
0-3%* 47.625/48.25 14.5x 7.2% 7.2%
3-6% 198/203 8.0x 19.9% 92.5%
6-9% 46/50 2.5% 30.3% 5.0%
9-12% 27/30 1.5% 38.2% 11.9%
12-22% 10.5/12.5 0.7x 59.1% 19.6%
iTraxx 10 year (60 Mid) Delta Base Corr Impld Corr
0-3% 58/58.75 8.0x 7.7% 7.7%
3-6% 590/610 11.0x 12.1% 19.0%
6-9% 126/131 4.25% 22.2% na
9-12% 55/59 2.0x 30.8% 4.8%
12-22% 22/26 1.0x 53.0% 13.9%

unique solution to the pricing of Mezzanine tranches.* Some problem can
however remain for the calibration of the most senior tranches, as reported
in St-Pierre et al. (2004). Pricing tranches with bespoke attachment points
is reasonably straightforward, by interpolation of the base correlation
curve.” A practical example of market prices is provided in Table 6.3.

Base correlation can be seen as a way to represent the market per-
ception relative to the underlying risk-neutral loss distribution of the col-
lateral portfolio (Figure 6.10). Low-level losses and very high losses tend
to exhibit higher probability in reality than anticipated by the Gaussian
copula. This translates into the probability of losses in the equity and se-
nior tranches being higher than expected and that in the mezzanine

*3 to 6 percent implied correlation for iTraxx 7 year in the table above illustrates the problem.
fOne point to mention is that the pricing of equity tranchelets below the 3 percent detach-
ment level is not possible by interpolation.
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FIGURE 6.10

The c.d.f. of Conditional Portfolio Losses.
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being lower. This phenomenon in turn accounts for the “correlation

skew.”

We can clearly see on Figure 6.10 why the Gaussian copula is not
fully appropriate for pricing and leads to a correlation skew. Market
participants have tried to find out if any of the other copulas introduced
beforehand would perform better. We use for this comparison the results
obtained by Burtschell et al. (2005), related to both compound (Figure
6.11) and base correlation (Figure 6.12).

FIGURE 6.1 1

Quality of the Fit Using Various Copulas Based
on Compound Correlation.
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FIGURE 6.12

Quality of Fit of Various Copulas Based
on Base Correlation.
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What we can see is that by trying to fit each copula* to the empirical
conditional losses in the portfolio, we obtain very different results. In par-
ticular, we can observe on Figure 6.11 that neither of the Gaussian, Student-
t, and Clayton copulas pick-up the skew and that only the Double-t and
the stochastic Gaussian copulas seem to be reasonably close in matching
the market skew. The picture looks identical when focusing on base cor-
relation (Figure 6.9), with the Double-t being the closest to reality. Overall,
it is obvious that some of the copulas are doing a better job than others,
but that none of them can fully match market prices.

Practical Calibration of Base Correlation
From a practical perspective, base correlation can be derived from the
market quotes on the standardized tranches using a standard bootstrap-
ping technique.

We want to price a 0 to 7 percent (T) tranche. This non-standard equity
tranche can be incorporated as the combination of two standard tranches
quoted in the market: the 0 to 3 percent (T}) and the 3 to 7 percent (T).

C0,7 - Co,s =(F, 07" F 0,3)' (23)

where the premium leg components F,, and F, are computed using the
spread corresponding to tranche T,.

*With one set of parameters only for all tranches. The Market correlation is using a Gaussian
copula with parameters adjusted for each tranche.
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Let us decompose the process in three steps:

Step 1: We price T, and T, using the premium/fee (S,) correspon-
ding to T,. We in fact only have to price T, given the fact that the
price of T, given s, is zero. The price we compute for T, uses s, as
the premium but the T, base correlation. It will always be positive,
given the fact that the more senior the tranche, the lower the price.
We can price tranche T, using s,=s,,

K
= 2 D(K)[ELy (k +1) -~ EL,% (k)] (24)
X P
=5,, > [(A, - A))— ELy (k)] D(k) (25)
k=1
P, :Co,3_Fo,3

1

Step 2: All what we need is to price T, given the knowledge of T,
computed in step 1. A rescaling operation has to take place at

this stage, given the respective notional width of the two tranches
T,and T

b= PT1 [((A,-A)/(A,-A)] (26)

Step 3: Once the value of tranche T is computed, the 0 to 7 percent
base correlation can be inferred using the Gaussian copula

approach.
Py, ,=Arg(P=C, 7—F0, 7) 27)
With
K
= Y DUELY] (k+1) - ELY7 (K)]
k=1

K
=5, , D [(A, = A)—ELY (k)] D(k)

Pain et al. (2005) suggest that the estimation of base correla-
tions can be further refined by the use of quotes at different
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horizons, typically 5, 7, and 10 years, hence moving from a
single correlation term over the pricing period towards a term
structure of correlations.

Massaging the Correlation Skew: Towards

a Term Structure of Base Correlations

Many people have pointed out that the Gaussian copula model is not a
dynamic model in the sense that spreads and correlation levels do not
evolve through time. In addition it can be observed in the market that cor-
relation is maturity dependent. This explains the attempt to build a more-
time-dependent term structure of correlation. The principle of this more
refined calibration is that the pricing of CDO tranches at different hori-
zons gives some information about the dynamics of the expected loss over
time, i.e., about the timing of defaults.

So far we have considered a unique premium payment date K, usu-
ally based on quarterly instalment over 5, 7, or 10 years and we have
derived a unique base correlation over the life of the instrument. What we
can do is to compute the term structure of base correlation over 10 years as
a three-step process. We consider that from years zero to five we can rely
on the price of the five-year tranche, from years five to seven we rely on
the zero to five base correlation and on the price of the seven-year tranche,
from years 7 to 10 we rely on the zero to five base correlation, on the five
to seven adjusted base correlation, and on the price of the 10-year tranche.

Step 1: computing the five-year base correlation

We can rewrite the base correlation formula for a five-year tranche:
Py, =Arg(Pr=Cj ,— Fy, 7) (28)

With
K5

= DOEL] > (k+1)  ELL 2 (k)]
=1

K5
F3, =53, 3 [(A,~ Ay~ ELY Y (k)] D(K)

Step 2: computing the base correlation between years five and
seven
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p3/]=Arg(P,=C] ,~F ) (29)

With

K5
=y D(k)[EL’D" 7(k+1) - [ELP 07 (k)]

Ky 57
+ Y, DIELYY (k+1) - ELP‘”(k)]
k:K5+1

K5
E7, =743 [(A, - A) — ELZ (k)] D(K)

K7
+ )14, -4,) EL"“ (k)] D(k)

k=K5+1

A more refined way to compute the base correlation between year
five and year seven suggested by Pain et al. (2005) is to consider
an interpolation, for instance, linear, for all the intermediary time
steps.

Step 3: computing the base correlation between years 7 and 10.

The process is following the approach outlined in step 2.

Discussion on Implied Correlation

The CDO business had initially emerged as an illiquid activity helping in
particular financial institutions to hedge their portfolio from a perspective
of credit and default risk.

Little attention was paid at the time to the evolution of the price of a
CDO tranche with respect to the movement of the credit spreads in the
underlying pool. Factor models, whether they translate into a Gaussian
copula or any more refined approach, provided results in terms of correla-
tion or price without really integrating the dynamics of spread move-
ments. The Gaussian copula model with the large portfolio approximation
should be seen as the most extreme case of poor integration of the sensi-
tivity to the dynamics of spreads.

With active trading on secondary markets, the focus has now changed
dramatically towards an integration of market risk. Banks and investors are
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increasingly exposed to market risk in a way that is difficult to hedge. They
are left with the traditional hedging techniques based on what is commonly
called the “greeks,”* with the losses it may lead to when market shocks surge
(see Chapter 8) translating into P&L damaging spread widening and conta-
gion. Due to this problem, implied correlation, unlike implied equity volatil-
ity, looks like a poor instrument to work with. It offers limited security with
existing instruments and is not the relevant parameter in order to price more
complex instruments, such as options on tranches, or forward-starting CDOs
that depend on the dynamics of the loss distributions of the CDO pool.

Currently, we observe a shift in the market, with banks keeping
correlation as a pricing tool mainly for spot transactions and possibly
gradually moving to a more robust framework for both, hedging and
new CDO-related instruments. In this respect, two interesting theoreti-
cal papers have emerged in the second half of 2005: Sidenius et al.
(2005) and Schénbucher (2005) suggesting the adoption of the whole
loss distribution of the CDO portfolio and its dynamics as the underly-
ing process to price CDO-based instruments. In what follows, we
describe the methodology related to this change of paradigm and
discuss related implications.

Dynamic Portfolio Loss Modeling

The idea behind this approach is to model the dynamics of portfolio losses
directly and ensure an initial calibration to tranche prices for different
seniorities and maturities (i.e., a calibration to a curve of tranche spreads).
This is different to the Gaussian copula approach that focuses on correlated
default times on a name-by-name basis and is not able to integrate the evo-
lution of the univariate and multivariate parameters to future time under
changing market conditions. Essentially, this is a result the static credit
spread curve and constant correlation setup that is usually assumed. Here,
we focus on a more macroscopic approach by specifying the dynamics of
portfolio losses directly, motivated by the need to value advanced (hybrid)
derivatives written on CDO tranches (e.g., options on tranches).

The SPA (Sidenius, Piterbarg, and Andersen) Model
The idea of Sidenius et al. (2005) is to consider the portfolio loss distribu-
tion corresponding to the underlying pool as the relevant variable. This

*Typically, “delta hedging,” see Chapter 7 for a detailed introduction.
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variable is considered in a dynamic way. The authors use a classical mod-
eling technique that consists of splitting the modeling effort in two steps:
the first one corresponding to the modeling of a diffusion process for the
“smooth” portfolio loss probabilities (or forward rates), whereas the sec-
ond focuses on the actual loss process consistent with, or conditional on,
the loss probability or forward process.

In the first step, the authors define the variable they want to model
as a diffusion. For any given level of loss considered in the portfolio ini-
tially, they consider the term structure of forward portfolio losses, in an
analogy with the Heath, Jarrow, and Morton (HJM) approach for interest
rates. The dynamics of the initial portfolio loss distribution can be inferred
from the aggregation of the dynamics of the probability of portfolio losses*
considered for any initial level of portfolio loss. The level of loss is
assumed to remain stable over time in each forward process. From a tech-
nical perspective, as this first layer of modeling does not include any infor-
mation about the dynamics of losses in the portfolio, they say that it is
related to the “background filtration.”

In a second step, the authors focus more precisely on the dynamics of
defaults in the pool, thanks to a second layer of modeling based on proper
information on default (i.e., under the loss filtration). The typical model con-
sidered is a one-step Markov chain. Transition probabilities are defined
exclusively from the knowledge of the background forward loss rate at that
time. Forward loss rates can in fact be seen as a way to describe the state of
the market. In other words, the dynamics of losses in the portfolio at any
time ¢ will only depend on the situation in the market at that time, hence the
view that we now have a much more dynamic set-up to assess CDO prices.

Portfolio Loss Probabilities and Forward Dynamics
In step 1, let us define first the loss probability

p(t, T)=P(z,>TIM)=P[(T)<xIM],

where [(t) denotes the (nondecreasing) loss fraction at time ¢, and P is a
martingale that corresponds to the risk-neutral measure with respect to the
background filtration {M,}, x€ [0, 1] is a possible loss level in the portfolio
and 7, the corresponding stopping time. T corresponds to the horizon.

We can think of this stopping time as the first jump of a Cox process
with intensity A (t), and we can write the loss probability as:

*Or from the forward loss rates defined from the probability of portfolio losses.
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T ¢
p.(tT)= E(exp(—jo A, (s)dsj | Mtj = exp(—j0 A, (s)dsj

T
X E[exp[—_[ /lx(s)ds) I Mt]

By defining the compounded forward rates as:

(00T, (t, T)

,T)=
SO =T

, (30)

we can express the loss probability as:

p.(t,T)= exp(—J;fx(u,u)duj eXp(_J;fo(t’u) du)

with £, (t, ) =2(¢) (D)
Given the fact that p_ (., T) is a martingale, and that we consider a
diffusion process, we can write the process of the portfolio loss as:

dp,(t, T)/p(t, T)=2(t, T) dW (), (32)

where Z (t, T) denotes a general stochastic process (in t) indexed by x, and
T, and W (t) is a Brownian Motion for each loss level x.

SPA outline a number of conditions a general loss process has to sat-
isfy. For example, the probability of losses should be decreasing in matu-
rity, and increasing in loss fraction, i.e., P[I(T) <x]<P[I(T) <y], for all x<y.
Essentially, this means that the probability of portfolio losses being lower
than x has to be lower than the probability of losses being lower than y, and
is denoted as “spatial order preservation” condition. Instead of working
with portfolio loss probabilities, the first condition can be easily satisfied
in terms of the forward loss rates, i.e., f_ (t, T)>0. These forward loss rates
f, (t, T) can naturally be derived from Equation (32) using the Ito’s lemma.

Given this framework, SPA derive conditions for the dynamics of
the processes to satisfy the necessary conditions (e.g., spatial ordering)
under a dynamic loss probability, or instantaneous forward rate (HJM), or
forward Libor (BGM) modeling framework. The advantage of the full
modeling of a forward curve for each loss level (as in the HIM or BGM
setup) is that it is very flexible and able to capture the full loss curve
dynamics, whereas the “short-rate” loss probability modeling is less
flexible but needs to propagate fewer variables.
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Practically, this still means that in a portfolio of say 125 names like
an index and assuming, homogenous recoveries across all names, we
would need to calibrate up to 125 such diffusion processes for the loss
probabilities in order to characterize all the realizations of x and be able to
obtain the dynamics of the entire loss distribution. If idiosyncratic recov-
eries are assumed, the state space of x would further increase, which fur-
ther increases the number of processes (and their interaction) to be
considered. The only way to get there is to restrict the volatility process
2 (t, T) to be a deterministic function of time ¢ and of loss probabilities
{p.(t, s), s=t}. The SPA provide several examples of such functions, some
of which are computationally challenging, while more tractable ones may
lead to a violation of some of the conditions discussed beforehand.

Portfolio Loss Process Assuming that the dynamics of the
loss probabilities is properly specified under the background filtration
{M,}, we can move to the second step, i.e., the calibration of the loss pro-
cess under a broader filtration {L }, called the loss filtration.

We can now consider the intensity of the jump from the loss level x,

to the loss level x,, |, conditional on the background filtration {M,} as:

K, (t, T) dT=P[(T+dT)=x,,|(T)=x, M]

or

(-0/0T)p, (¢, T)
pxi+1 (t/ T) - le_ (t/ T)

K, (tT)= (33)

The main contribution here is that SPA have constructed a one-step
Markov chain (“one-step” as it is assumed that losses can take values on
a finite grid (0=x,<x,<---<x,) and that loses can actually shift only by
one step), i.e., a discrete one-step loss process on {x N that is consistent
with the loss probability process (32).

While the previous derivation is useful when a homogeneous port-
folio (i.e., same recoveries) is considered, for idiosyncratic or stochastic
recoveries, the state space needs to be extended to a much thin discretisa-
tion or to a continuous setup x<[0, 1], respectively.

In a more general setup using Markov processes, we can define a
jump survival function: m_ (¢, T):

m, (t T)AT=P[(T+dT)>x|(T)=z, M]]
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and write, assuming that I(t) is a nondecreasing pure-jump conditional
Markov process on [0, 1]:

d * d
Sep D == on, (6, D p, (0, T) (34)

It remains to define the actual dynamics of the loss process, given
the knowledge of p (t, T). This corresponds to the estimation of the jump
survival process m_ . (t, T) itself.

In order to be able to estimate the latter process with sparse data, the
only way is to specify more precisely a corresponding parametric func-
tion, and SPA motivate functions of the formm, (¢, T)=60(T, x—z)- v(t, T).
Note that for 6(T, y)zl[yE[O,1 /Ny @ single one-step Markov chain is recov-
ered. Then, even a more general setup where 6(') is given externally, v (¢, T)
can be estimated from Equation (32).

Tranche Valuation Assuming that the loss process is properly
calibrated, we can reconsider the Equations (19) and (21) driving the price
of any tranche j and write it for any starting time anterior to the first
coupon date as:

C,(H= ;D(t, REL,((k +1)IL,) - EL ((0)IL,)]

K
F(t) = s].kZ[(A],+1 ~ A))=EL,((K)IL,)] D(, k)
=1

Note that EL(kIL, satisfies the following form EL(kIL,)=
E[f(I(k)) | M,, I()], and it can be shown that this expectation can be decom-
posed into a linear combination of conditional loss probabilities:

p, At H)=PlIK)<x|M, I(t)=y] (35)

In other words, p, (t, T) provides an average default loss probability,
and p, (¢, T), is the loss probability conditional on a particular loss level
y at time t* It can be obtained by solving the following forward
Kolmogorov equations in T and in x, with proper initial conditions (see
SPA).

*Note that Py« (t, T) is not observable from the background filtration.
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d X 0
= T)=- t, T)— T
o7 P, T) L (m, (t,T) > p.,(t, T)dz (36)

This model is undoubtedly conceptually very attractive. In terms
of tractability and practical implementation, it requires simplifying
assumptions related to the volatility of the loss probability process. It
also requires assumptions on the loss process through a tight character-
ization of the Markov chain (or Markov process). In order to be able to
apply it for practical pricing purposes, three to four calibrations need to
be undertaken with little data:

1. calibration of the loss probability processes (or?);
2. calibration of the compound forward rates;
3. calibration of the jump survival functions; and

4. calibration of the conditional loss probability processes.

The number of calibration steps involved requires a good understanding
of the model behaviour, stability of parameterization and estimation, and
the development of hedging strategies in order to mitigage the possibility
of model risk and over fitting. If these issues can be addressed successfully,
and if more market data becomes available, the model is capable of pric-
ing options on tranches, forward starting tranches, and tranches with
dynamic (loss dependent) attachment points, consistently.

Schénbucher’'s Model

Schoénbucher’s model does not differ very much from the SPA model. It
does not go through a two-step model but models the loss distribution via
time-inhomogeneous Markov chains.

Schonbucher calls P(t, T) the transition probability matrix with a
dimension corresponding to the number N of obligors in the underlying
pool. P(t, T) can be retrieved from a Kolmogorov equation with appropri-
ate initial conditions:

d
aP(t, T)=P(t, T) A(T),

with A(T) being a generator function constituted of N- (N +1)/2 elements
a, (T).

As with the previous model, the dynamic calibration of the genera-
tor function corresponds to the key challenge. Restrictions are required to
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be able to come with some tractable results. In our view, the SPA model
might give more accurate results as it leads to a better understanding of the
underlying processes and consequently perhaps to more realism regarding
the simplifying assumptions required to be able to calibrate the model.

Pricing Based on a Dynamic Modeling of the
Underlying Obligors

Given the tractability problems we think the dynamic loss distribution
modelling approach might encounter, we believe it is important to men-
tion alternative dynamic set-ups.

The most noticeable alternative is to simulate directly the dynamics
of each exposure in the CDO pool. Duffie and Garleanu (2001) suggested
to analyze the risk and valuation of CDOs in an intensity model where
the issuers’ hazard rates are assumed to follow correlated jump diffusion
processes.

More recent approaches focus on less cumbersome solutions.
Instead of describing the survival probability for a given obligor i over
[0, ] as Si(t)zexp(—fé A(u)du) and of thinking independently of correla-
tion, di Graziano and Rogers (2005)* or Joshi and Stacey (2005) suggest
to describe the survival probability as S i(t)=exp(—fé/”ti( f(u))du). For the
former authors, the intensity is a deterministic function of a time con-
tinuous market chain common to all obligors, for the latter f(u) is a
Gamma process common to all obligors. In the two instances, the idea
is to represent the dynamic time as a stochastic variable depending on
market situations such as the state of the economy. With these spec-
ifications, correlation across the survival times of the obligors in the
pool is coming naturally from the dependency on the state of the
chain or from the calibration of the Gamma process and is not to
be “forced” thanks to the use of a copula or by the calibration of a
variance—covariance matrix.

In principle, the calibration of such processes looks reasonably
tractable due to the recourse to conditional independence. Speed of com-
putational calculation is most likely to be an issue as pointed out in the
relevant papers.

*These authors suggest to add some jump terms too.
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Pricing Bespoke CDO Tranches

Throughout this section, we consider two different types of “bespoke”
tranches: first, bespoke tranches on traded indices and bespoke tranches
based on a bespoke pool.

In the first case, we are typically talking about an investor who is
considering, for example, a 5 to 8 percent five-year tranche on, say the
iTraxx, for which there is no market price. Market practice is to use the
levels of correlation at the bespoke attachment points from the interpo-
lated base correlation curve to derive the price of the tranche. Recent prac-
tice has been to compute “centi-tranches” (1 percent tranchelets) as a
building block to the pricing of bespoke tranches.

In the second case, the approach is cruder in the sense that banks
tend to use internal recipes in order to get a sense of what the appropriate
level of “market correlation” should be for the bespoke transaction, given
correlation trends in the related index-based market.

Prince (2006) provides a review of three different valuation method-
ologies used in the industry and suggests to use a blend of them:

¢ Net asset value: The first one is the liquidation value (NAV). In
this method, the first step is to measure the net market value of
a CDO as the market value of the asset pool plus the value of
the hedges minus all the liabilities. When the net market value is
divided by the notional amount of the Equity, we have the liqui-
dation value of the equity.

¢ Cashflow analysis: This approach is more forward looking, as it is
based on the dynamics of the CDO collateral over time. It is in
fact very close to what is presented in the following section of
this chapter when dealing with cash CDOs.

¢ Comparables: This approach typically involves deriving prices
from liquid tranches on indices.

PRICING CASH CDOS

In a cash CDO, loans and bonds in the asset pool are usually not traded
actively. Price indications are therefore mainly related to ratings or to
probabilities of default extracted from, e.g., a Merton type model. They
will incorporate default risk, migration risk, and a component related to
some average risk premium per rating category. However, these fair value
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prices cannot integrate idiosyncratic spread movements, as there is no
market reference on which to rely.

In order to price a cash CDO, three constituents are necessary: a risk-
neutral transition matrix, a risk-neutral asset correlation structure, and
the knowledge of the waterfall structure. With these ingredients, it helps
to have a multi-period rating-based portfolio model in order to be able to
capture the dynamics of the waterfall structure that is conditioned by the
performance of the asset pool, on the liability side.

Once these elements are defined, we detail various ways to obtain
the fair value prices of the CDO tranches.

The numerical methodology presented next consists of simulating
realizations of the value of the collateral pool and calculating the price of the
CDO tranches by a technique similar to least square Monte-Carlo approach
proposed by Longstaff and Schwartz (2001). The algorithm starts by calcu-
lating the payoff of each tranche at the maturity of the CDO and rolls back-
wards until the issuance of the notes by estimating the payoff of each tranche
conditional on the performance of the pool of assets at each time step.

On the Asset Side

From Historical to Risk-Neutral Transition Matrices*
For pricing purposes, one requires “risk-neutral” probabilities. A risk-
neutral transition matrix can be extracted from the historical matrix and a
set of corporate bond prices.

%11,1 q;,Z . q;,K+1
Q) =/ : ,

qé(,l q}Il(,Z . q}II(,KJrl

0 0 1

All g probabilities take the same interpretation as the empirical transition
matrix below, but are under the risk-neutral measure.

pit pl2 . pLKs
P(h) = K1 K2 K, K+1

ph h . ph

0 0 1

*Some parts of the section are taken from de Servigny and Renault (2004).
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Time Nonhomogeneous Markov Chain In the origi-
nal Jarrow-Lando-Turnbull (1997) (JLT) paper, the authors impose the fol-
lowing specification for the risk premium adjustment, allowing to compute
risk-neutral probabilities from historical ones:

m(t) p* fori#j,

7D = {1 ~m(H(A-p¥)  fori=]. 7

Note that the risk premium adjustments 7(t) are deterministic and do not
depend on the terminal rating but only on the initial one. This assumption
enables JLT to obtain a nonhomogenous Markov chain for the transition
process under the risk-neutral measure.

The calculation of risk-neutral matrices on real data can be per-
formed as described below. Assuming that the recovery in default is a
fraction 6 of a treasury bond with same maturity, the price of a risky zero
coupon bond at time ¢ with maturity T is

Pi(t, T)=B(t, T)x (1 —-g"*+1(1-9)).
Thus, we have

B(t, T)- Pi(t, T)
B(t, T)(1- )

i, K+1 _—

7

and thus the one-year risk premium is

_ B(t, t+1)—-Pi(t, t+1)
7 1) = B(t, t+1)(1-§) gk (38)

The JLT specification is easy to implement, but often leads to numerical
problems because of the very low probability of default of investment
grade bonds at short horizons. In order to preclude arbitrage, the risk-
neutral probabilities must indeed be non-negative. This constrains the
risk premium adjustments to be in the interval:

O<77:l.(t)S1 11.1., for all i.

As noticed above, the historical probability of an AAA bond defaulting
over a one-year horizon is zero. Therefore, the risk-neutral probability of
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the same event is also zero.* This would however imply that the spreads
on short-dated AAA bond should be zero (why have a spread on default
risk-less bonds?). To tackle this numerical problem, JLT assume that the
historical one-year probability of default for an AAA bond is actually 1
basis point. The risk premium for the AAA row adjustment is therefore
bounded above. This bound is, as will be shown later, frequently violated
on actual data.

Kijima and Komoribayashi (1998) propose another risk premium
adjustment that guarantees the positivity of the risk-neutral probabilities
in practical implementations.

Tci].(t):ll.(t) for jzK+1

L(t)p" fori#K+1,

1-1L(H(A-p") fori=K+1. (39)

gt t+1) = {

where [(t) are deterministic functions of time. Thanks to this adjustment,
“negative prices” can be avoided.

Time-Homogeneous Markov Chain Unlike the prece-
dent authors, Lamb et al. (2005) propose to compute a time-homogeneous
Markovian risk-adjusted transition matrix. They rely on bond spreads,
thanks to the term structure of spreads per rating category.

exp(=5;(1)=(8-g; (1)) + (L—gF (D)) (40)

where t corresponds to integer-year maturities.
In order to obtain the matrix, they minimize®

n K
Min Y D' [S,() - (8- g5 (1) + (1 - g5 )P (41)

QR

Knowing that gk+1(¢) is a function of the g/(-)
A minor weakness of this approach is that it does not ensure that
spreads are matching market prices for all maturities.

*Recall that two equivalent probability measures share the same null sets.
*Attaching penalties if entries in the transition matrix become negative in the course of the
minimization.
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Correlation
In a previous chapter, we have discussed correlation. An important ques-
tion to answer here, in order to price tranches of a cash CDO, is what type
of correlation to use.

There are basically three different options:

1. Using default implied asset correlation
2. Using equity correlation

3. Using correlation levels extracted from averaging the com-
pound correlation on index tranches.

In option 1, the correlation we refer to only relates to credit events in the
real world (rating downgrades and defaults). In option 2, we are captur-
ing some market co-movement via equity price co-movements. What we
can observe in Figure 6.13, however, is that equity correlation may be
lower than average compound implied correlation retrieved from syn-
thetic CDO index references. Equity correlation is commonly applied in
software products comparable to Credit Metrics portfolio tool. This
means that there could be some pricing mismatch between cash CDO and
synthetic CDO pricing when equity correlation is used.

FIGURE 6.13

A Comparison between Different Asset Correlation
Measures. Default-Based Asset Correlation is Based
on Data from 1981 to 2005, Equity Correlation is
Based on Data from 1998 to 2005, Compound
Correlation Level is Based on Typical Recent History.
(iTraxx 28/02/006).
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A related point to mention is that CPM* teams in commercial banks
tend to rely primarily on models based on equity correlation, while the
reference in the CDO market' may be closer to compound correlation lev-
els. As a consequence, offloading exposures from the balance sheet of
banks may turn out to be a costly exercise if the market grants less bene-
fit to diversification than banks expect. The interest of obtaining a rating,
from the perspective of a bank, is to counterbalance this mismatch with
investors. Rating agencies, by using models that rely on default-based
asset correlation, typically grant a higher benefit of diversification to
offloaded tranches compared to the underlying assets staying on the port-
folio of the bank. This situation, while it gives confidence to investors
with respect to the risk/return of their structured investment, creates suf-
ficient excess spread to facilitate disintermediation.

In what follows, we show how, in a portfolio model, correlation
impacts the migration process. As we are considering a ratings-based
model, the primary purpose of the simulation engine is precisely to gen-
erate migration events with the appropriate correlation structure.

Figure 6.14 illustrates the impact of asset correlations on the joint
migration of obligors, assuming that there are two nondefault states
(investment grade IG and noninvestment grade NIG) and an absorbing
default state D.

The experiment uses a one-factor model. Similar results would be
obtained in the multifactor setup. The tables are bivariate transition matri-
ces for various levels of asset correlation under the assumption of joint nor-
mality of assets returns and using aggregate probabilities of transition
extracted from CreditPro®.F In order to reduce the size of the tables, we
have assumed that the pair IG/NIG is identical from a portfolio point of
view to the pair NIG/IG. Thus, each bivariate matrix is 6 x 6 instead of 9 x9.

Taking, e.g., the case of two noninvestment grade obligors (row
NIG/NIG) one can observe that, as the correlation increases, the joint
default probability (as well as the joint probability of upgrades) increases
significantly.

Multivariate transition probabilities cannot be computed for portfo-
lios with reasonable numbers of lines. In a standard rating system with
eight categories, a portfolio with N counterparts would imply an 8N x 8N
transition matrix that soon becomes intractable.

*Credit Portfolio Management.

*For instance, when investors try to assess the fair value of their investment on the basis of
correlation trading-based prices.

A database from Standard & Poor’s Risk Solutions.
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FIGURE 6.14

Comparison of the Probability of Joint Migrations
for Different Levels of Asset Correlation p.

IG /1G | IG /NG IG/D | NG /NG NIG / D D/D

IG / IG 95.9% 3.9% 0.2% 0.0% 0.0% 0.0%

IG / NIG 3.6% 89.2% 5.2% 1.8% 0.2% 0.0%

_ IG /D 00% 0.0% 97.9% 0.0% 20% 01%
p= NIG /_NIG 0.1% 6.7% 0.4% 82.8% 9.7% 0.3%
NIG / D 0.0% 0.0% 3.7% 0.0% 91.0% 5.3%

D /D 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

IG /IG IG /NG IG/D NG/ NIG NIG / D D /D

IG / IG 96.0% 3.7% 0.2% 0.1% 0.0% 0.0%

IG / NIG 3.7% 89.2% 5.1% 1.7% 0.3% 0.0%

p=20% HG LD 0.0% 0.0% 97.9% 0.0% 2.0% 0.1%
NIG / NIG 0.3% 6.7% 0.1% 83.0% 9.3% 0.6%

NIG / D 0.0% 0.0% 3.7% 0.0% 91.0% 5.3%

D/D 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

IG/1G IG/ NG IG/D NG /NG NIG / D D/D

IG / IG 96.2% 3.3% 0.1% 0.3% 0.1% 0.0%

IG / NIG 3.7% 89.6% 4.7% 1.4% 0.7% 0.1%

p=50% |G / D 0.0% 0.0% 97.9% 0.0% 2.0% 01%
NIG / NIG 0.8% 5.8% 0.0% 84.1% 8.0% 1.3%

NIG / D 0.0% 0.0% 3.7% 0.0% 91.0% 5.3%

D /D 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

In a CreditMetrics type model, the process consists of simulating
realizations of the systematic factors and the idiosyncratic components.
As a consequence, given that firms all depend on the same factors, their
asset returns are correlated and their migration events also exhibit co-
movement. Joint downgrades for two obligors 1 and 2 will occur when
the simulations return a low realization for both asset returns A, and A,.
This will be more likely when these asset returns are highly correlated
than in the independent case.

Unlike the Gaussian copula model, based on survival probabilities,
a CreditMetrics type model requires the specification of a targeted hori-
zon. In risk management, the one-year horizon usually corresponds to the
standard. However, it is an insufficient period to analyze CDO tranches
with a five-year maturity. Two possibilities exist. The first one is to con-
sider a single period model covering the five years. The issue with such a
set-up is that it does not give sufficient visibility to assess the dynamics of
cashflow allocation on the liability side (e.g., no collateralization test is
possible during the life of the transaction). The second possibility is to rely
on a multistep dynamic model. This latter type of model is obviously
more relevant for cash CDO pricing.
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However, one aspect related to multiple time-step models needs to
be highlighted. A multi-period model with independence between the
periods and a correlation level of p at each period will undershoot the cor-
responding single period model with a similar correlation level p. The dif-
ference can be explained intuitively, as in the case of a single period
model, some autocorrelation prevails, whereas in a multi-period model,
the assumption of independence between periods, there is essentially cor-
responds to no autocorrelation.

Computing the Price of Each Line in the Portfolio
Depending on its Rating

In the previous paragraph, we have intuitively described how a
CreditMetrics type model simulates all the ratings up to the horizon of inter-
est t for any of the obligors in the portfolio.* The next step is to calculate the
profits or losses arising from these risk-neutral migrations including defaults.

For “surviving” obligors, the value of the assets at time ¢ is calcu-
lated using the risk free rate as observed at the time of calculation.

Let us consider a defaultable fixed rate bond with je{l,..., N}
coupons c beyond the horizon ¢ and with principal P. Its rating at the sim-
ulation horizon is i, its price V(t), the spread level defined in Equation
(40) from the risk neutral transition matrices is S(j), and the forward risk

free interest rate corresponding to the period [t; t+/]is 7, , .

N

V.(t) = 2 exp[—(rt’H],j +S.()]+P- exp[—(rtlHNN +S.(N))] (42)

j=1

The Monte Carlo simulation of the common and the idiosyncratic factors
to which the latent variable (the asset value) of each exposure in the port-
folio is tied enables us to draw many realizations of rating paths for each
obligor at each future sub-period before the horizon. It ultimately allows
us to price each of the exposures based on Equation (42).

On the Liability Side

A Brief Description of the Waterfall Structure
In this section, we describe briefly how the cashflows generated on the asset
side are distributed on the liability side, thereby influencing the pricing of

*For a more refined description, see Chapter 4.
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each tranche. Figure 6.15 provides an example of what a tranching exercise
can look like.

The allocation of the proceeds from the asset side usually requires a
relatively complex bespoke cashflow model. This type of model is
designed to accurately reflect:

The transaction capital structure
The priority of payments
Hedges

The fee structures

The coverage tests

The collateral coupon spread

* & & ¢ o oo o

The scheduled principal payments.

The Waterfall or priority of payments describes the flow of proceeds
through the Special Purpose Vehicle to the note holders, hedge counter-
parties, and other agents participating in the CDO.

FIGURE 6.15
A Typical CDO Tranching.

Classes % of SPV

liabilities
A
Rating: AAA 65%
B
15%
Rating: A
10%
Rating: BBB- °
O,
Rating: B 6%
Unrated Equity 4%
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¢ Money flows into the CDO as asset interest proceeds and principal
amortizations and hedge receipts.

¢+ Money flows out of the CDO as fees, expenses, hedge payments
and interests, and principal payments to the rated notes and
preferred shares.

Coverage tests are ratios calculated in a CDO structure that alter the dis-
tribution priority of collateral proceeds by delevering the notes when the
required ratio level is breached. There are two main tests:

¢ The over collateralization (OC) test. It is a ratio that tests the
ability of the collateral balance (net of defaults and recoveries) to
support the current liability balance (including deferred interest
on the notes).

¢ The interest coverage (IC) test. It is a ratio that tests the ability of
the collateral interest proceeds to support the current liability
interest payouts (i.e., tests excess spread).

The dynamics of the waterfall structure is described in Figure 6.16 in a
generic manner.

Impact on the Pricing of CDO Tranches

The payoff of a structured exposure depends in a complex way on the
cashflows generated by the exposures on the asset side as well as on the
way these cashflows are allocated to the tranches on the liability side,
given the waterfall structure of the deal.

In practice, there are as many pricing models as there are different
structures. Due to the Monte-Carlo approach, computational times are
usually substantial.

Lamb et al. (2005) suggest an interesting shortcut consisting of the
estimation of a pricing function by applying scoring techniques. More pre-
cisely, they show that it is possible to fit a regression-type function for each
tranche that will give a price at the maturity of the CDO as a function of
the realization of the vector of latent variables corresponding to the oblig-
ors in the CDO pool. As a result, any price of a tranche before maturity of
the pool is easily obtainable by proper discounting. In terms of speed of
calculation, the pricing functions for each deal typically require less than
10,000 Monte Carlo replications to provide accurate results. The tests per-
formed by Lamb et al. (2005) show that this class of model performs well
in terms of first moments, Value at Risk and Expected Shortfall. In terms of
hedging, this model provides interesting and accurate strategies.



FIGURE 6.16

W

The Waterfall Structure Including Tests Extracted from

Garcia et al. (2005).

| Hedge Receipts

v

Hedge receipts are added to the interest
amount received from the collateral

Collateral Interest Account

| Collateral Interest + Collateral Principal

v

Money coming from Interest and Principal are
used to pay 1), 2), and 3) in that order.

1) Admnistrative Expenses
2) Hedge Costs
3) Management Fees

| Col. (Interest + Principal)

Money coming from Interest and Principal are
used to pay1), and 2) in that order.

1) Note A Interest + Deffered Interest
2) Note B Interest + Deffered Interest

Tests
1) A/B O/C Ratio
2) A/BI/C Ratio

O/C and I/C tests on that order are made for notes A and B. If the
tests fail Collateral Interest and Principal are used to pay Principal
of notes A and B in this order.

¢ Fail

1) Note A Principal
2) Note B Principal

| Col. (Interest + Principal)

v

Money coming from Interest and Principal are
used to pay 1), and 2) in that order.

| 1) Note C Interest + 2) C Deffered Interest |

Tests
1) C O/C Ratio
2) C I/C Ratio

¢ Fail

O/C and I/C tests on that order are made for
notes C. If the tests fail Collateral Interest and
Principal are used to pay Principal of notes

A, B and C in this order.

1) Note A Principal
2) Note B Principal
3) Note C Principal

Col. (Interest + Principal)

v

Note D1 Interest
Note D1 Deffered Interest (*)
Note D2 Interest
Note D2 Deffered Interest (*)

onpz

Money coming from Interest and Principal are
used to pay 1), 2), 3) and 4) on that order. (*)
In case of deferred interest only the interest
is used.

Tests
) D O/C Ratio
2) DI/C Ratio

v Fai

1) Note A Principal
2) Note B Principal
3) Note C Principal
4) Note D Principal

O/C and I/C tests on that order are made for
notes D. If the tests fail Collateral Interest and
Principal are used to pay Principal of notes A, B,
C and D in this order.
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FIGURE 6.16 (Continued)

9a | Col. Principal | Before the end of the reinvestment period
¢ money coming from Principal is used to

| reinvest in new collateral following

| Reinvest in new collateral certain guidelines.

b | Col. Principal | After reinvestment period Money coming from
¢ Principal is used to redeem (pay principal) the
notes from 1) to 4) in that order.

1)  Note A Principal
2) Note B Principal
3) Note C Principal
4)  Note D Principal

10 Col Interest Money coming from Interest and Principal are
* used to pay 1), 2) on that order.

1) Note E Interest
2) Note E Interest Deferred

11 | Excess Interest | | Excess interest is given to the Equity holders. ‘

!

| Note E Interest |

12 | Col. Principal | | Money coming from principal is paid to the equity holders. ‘
| Note E Principal |
CONCLUSION

In this chapter, we have tried to provide some insight into the most promi-
nent pricing techniques used in the synthetic and cash CDO markets. It is
very difficult to offer a full coverage given the amount of academic as well
as applied research that is continuously generated in this area.

The driving force in the efforts that we have reported is focused on
generating accurate results while using data in a parsimonious way. We can
see that the most recent techniques tend to be less parsimonious though.
One question we might ask ourselves is: what is the appropriate minimum
level of information (factors, and parameters) that is required to match mar-
ket prices? In this respect, Longstaff and Rajan (2006) suggest that single
factor models are too simplistic to price CDO tranches accurately. They
advocate that the ideal number of common factors to consider should be 2
in order to allow for firm specific, industry, and economy-wide events to be
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explained. On the basis of this specification, they are able to identify three
loss regimes on the CDX index. These regimes correspond to 0.4 percent, 6
percent, and 35 percent loss levels and take place respectively every 1.2,
41.5, and 763 years on average. The first firm-specific regime typically dom-
inates 65 percent of the time, the second industry-specific regime is at play
27 percent of the time and the third regime, corresponding to catastrophic
risk, accounts for the remaining 8 percent. The authors may not have a suf-
ficiently large data sample yet to be too assertive on these results, with only
two years of daily observations of the CDX index. There is, however, cer-
tainly an interesting aspect to these first statistical results.
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CHAPTER 7

An Introduction to the
Risk Management of
Collateral Debt Obligations

Norbert Jobst

INTRODUCTION

In recent years, the market for collateral debt obligations (CDOs) and,
in particular, the development of the synthetic CDO market and corre-
lation trading has resulted in significant developments in valuation and
risk management for such products. The market has been dominated by
developments around the static Gaussian copula model, the introduc-
tion of base correlation as an alternative to the compound correlation,
and extensions to better capture the observed correlation smile/skew,
only recently more dynamic models that incorporate credit spreads—or
other major modeling parameters—have been introduced by practition-
ers and academics (see Chapter 6). All valuation approaches are based on
risk-neutral pricing principles and little focus has been given to
replication-based arguments that would also lead to developments for
practical hedging and risk management. Currently, risk management
often focuses on static risk measures that address the likelihood of
a CDO investor receiving full notional and actual interest in a timely
manner (ratings perspective), or on mark-to-market (MtM) sensitivities
and “the greeks” frequently employed by correlation investors and
traders.

This chapter focuses on a MtM-based risk assessment. A brief and
concise overview of static risk measures frequently employed by rating
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agencies or “buy-and-hold” investors is given in the next section. This
chapter is complemented by Chapter 8, where many of the theoretical
concepts introduced here are put into practice. Hence, whereas the
focus in this chapter is on introducing “the greeks” conceptually and
providing guidelines for practical implementation, the next chapter
provides a critical discussion based on a number of popular synthetic
CDO trading strategies. As with the chapter on valuation, many deri-
vations evolve around the Gaussian copula model, and we provide
implementation details on simulation-based and semianalytical
techniques.

RISK MEASUREMENT I: A CREDIT RISK
AND RATINGS PERSPECTIVE

Rating agencies (RAs), such as Standard & Poor’s, Moody’s, Fitch, or
DRBS, are typically interested in the risk a CDO investor is facing, and
base their opinions partly on model-based statistics. For example, Moody’s
rating is a so-called “expected loss” rating and, as a result, the expected
loss on a CDO tranche is assessed and benchmarked to various rating-
specific targets. Standard & Poor’s, on the other hand, applies a “probabil-
ity of default” (PD) or “first dollar of loss” rating and estimates the
likelihood of an investor facing any loss at all.

Underlying such approaches is an assessment, in one form or
another, of the (likelihood of) losses a CDO tranche investor may face
over the life of the transaction. Traditionally, the definition of losses is
restricted to a buy-and-hold perspective and hence to losses from default
events only, but recently, RAs moved towards an assessment of the preva-
lent MtM risk (see Chapter 11 for a brief discussion). For now, we focus
on potential losses from defaults that may occur until maturity T of a
transaction.

More specifically, we consider a portfolio of N different names/oblig-
ors (i=1, ..., N) referenced by a CDO, and default times 7, associated with
each name. If 7, is less than the maturity T of the CDO transaction, the loss
L, is determined as L,=N,x(1-0,), where N, and §, are the exposure-at-
default and recovery,* respectively for the ith asset. We can therefore write
the portfolio loss up to time T, L(T), as

*The recovery can either be assumed to be constant, or drawn from a distribution.
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LU)z}EN}Xﬂ—S)xHﬁg} 1)

where 1 {21} is the default indicator for the ith asset.*

In practice, the distribution of portfolio losses can be determined
with high accuracy, and various approaches capturing dependence in dif-
ferent ways have been discussed in Chapters 4 and 6.

Most rating agencies employ simulation-based approaches that gen-
erate correlated default times 7, in which case the distribution of portfolio
losses [Equation (1)] can be readily determined. Standard & Poor’s simula-
tion model, the CDO Evaluator, is outlined in Chapter 10 in further detail.

CDO Risk Measures and Rating Assignment

From now onwards, we assume that a model computing the loss distri-
bution, FL(T)(Z)=P(L(T)S [), and/or default times 7. is available, and we
introduce a few popular risk measures employed by “buy-and-hold”
investors or RAs.

Tranche Default Probability
Given a CDO tranche T, with attachment point A; and detachment point D,
(i-e., a tranche thickness equal to D ; —A].), the tranche default probability (PD)
is the probability that portfolio losses at maturity T exceed A,. This is given by
PDW=1—F n(A) = PILT) > A) = EL ) 4 ] 2
where E[] denotes the expectation. This measure forms the basis for assign-
ing a rating to a synthetic CDO tranche for a PD-based rating, as provided
for example by Standard & Poor’s (see Chapters 10 and 11 for further details).

Expected Tranche Loss

Rather than focusing only on whether or not a single tranche (ST)
CDO investor is facing a loss, we should also focus on the size of the
losses. The cumulative loss on tranche T, at time T, L'i(T), is given by

(T)—(L(T) A. )1 D]+(D A) Then, the expected

(4;<L(D)< (L(T)2D;y

tranche loss is given by

*The default indicator equals 1 if the expression within parentheses is true, and 0 if it is false.
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ELY = E[L(T) | = E[(L(T) SAN, (D= A

<um)<;!

{L(T)sz}J

which can be easily computed through Monte-carlo (MC) simulation.
If the attachment probabilities QL(T)(Z):l_FLm(l) can be computed effi-
ciently through (semi) analytic methods, we can show that integration by
parts and —QL(T)(I)/dleLm(l)/dl enables us to rewrite Equation (3) as an
integral over the attachment probabilities:

ELY = f’ QDL @)

An expected loss rating assigned by rating agencies such as Moody’s
is partly based on this measure of tranche risk.

Tranche Loss-Given-Default
From the expected tranche loss and the tranche PD, the tranche loss-
given-default (LGD)—assuming that LGD and PD are uncorrelated—is

simply given by LGD"i = E(L"i(t)) / PD".

As discussed earlier, the typical RA assessment is based around
a probabilistic view of tranche losses and is, as such, sensitive to the
assumptions made in the underlying credit portfolio model (such as the
Gaussian copula model). These assumptions are typically estimated from
historic ratings and default data, and the probabilities and expectations
considered are therefore taken under the “real world” or “historic” measure,
whereas the assumptions throughout the next section are often denoted as
“market implied” or “risk neutral.” For corporate credit, for example, risk
neutral default probabilities are on average two to five times observed
default rates, thus embedding a risk premium taken by investors (see Berndt
et al. (2005) for a empirical discussion on the credit risk premia). A good
introduction to CDO risk management is also given in Gibson (2004).

RISK MEASUREMENT II: MARKET RISK,
SENSITIVITY MEASURES, AND HEDGING

Correlation investors and traders are typically not only concerned with the
pure credit or default risk of correlation products, but also with MtM risks
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such as spread, convexity, and correlation sensitivity, as well as volatility
and relative value (risk/return) considerations. In addition, buy-and-hold
investors, traditionally interested in the risk throughout the life of the
transaction, also estimate their MtM exposures for internal risk reporting.
Correlation traders, on the other hand, structure adequate hedging strate-
gies and look for cheap convexity, volatility, and/or correlation from a rel-
ative value perspective. The sensitivity measures provide some insight
into how the value of a CDO tranche may change when market factors,
and therefore the valuation parameters, are changing. This is particularly
important for CDO tranches, where the impact of such changes can be very
different across tranches depending on tranche parameters such as seni-
ority and thickness. Table 7.1 provides an overview of the measures that
will be discussed throughout this section.

In the remainder of this section, we introduce these sensitivity mea-
sures from a conceptual perspective and discuss some computationally
efficient approaches for practical implementation. In order to establish such

TABLE 7.1

MtM Sensitivity Measures (“Greeks”).

Sensitivity

Measure

Description

Spread sensitivity:

Delta

Tranche Leverage:

Lambda

Spread Convexity:

Gamma

Time decay:
Theta

Correlation
sensitivity: Rho

Default sensitivity:
Omega

Tranche price sensitivity to (small) changes in credit spreads.
Frequently, the sensitivity to spread changes on individual
names and/or to wider market movements (all names) is of
interest.

Leverage effectively scales the DELTA of a tranche by the
tranche notional and gives an indication of how the total spread
risk is split across different tranches.

Tranche price sensitivity to larger changes in credit spreads.
Gamma is very important when considering delta-neutral posi-
tions as it gives some insight into the MtM changes when indi-
vidual spreads or the market move significantly.

Change in tranche value due to the passage of time. It is
important as delta-neutral positions may become spread sen-
sitive as time passes and no other parameters change.

Change in tranche value resulting from a change in
“implied” compound or base correlation.

Change in tranche value resulting from an instantaneous
default of one or more names in the portfolio. Omega is also
denoted as “Value on Default” (VOD) or “Jump to default” (JTD),
and is particularly interesting for delta-hedged positions.
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sensitivities, a consistent valuation framework, as outlined in Chapter 6 on
pricing, needs to be in place.

First Order Spread Sensitivity: Delta

In practice, the spread risk of a CDO tranche is managed by buying and
selling single name CDS protection as an offsetting hedge. This, of course,
is not addressing all risks inherent in ST CDOs and provides only a partial
hedge (a spread hedge), compared to entering an offsetting but identical
trade. Such an offsetting trade, however, is rarely possible due to the
bespoke nature of many ST CDOs. With the recent growth in standardized
index tranches—ST CDOs referencing the CDX indices in the United States
and/or the ITraxx ones in Europe—such offsetting hedges are possible.
Depending on how similar a bespoke tranche portfolio is to the composi-
tion of a CDS index, liquid tranches on that index can provide a good
approximate hedge. In practice, instead of single name CDS, liquid indices
can be used directly (in unlevered form) to manage spread sensitivity. We
denote the sensitivity to single name spread movements by individual or
microspread sensitivity (CS01), while the sensitivity to a broad move in the
portfolio spread will be denoted by market or macrosensitivity (Credit01).*

Defining Single Name/Individual Delta

A widening in credit spreads (keeping everything else equal) leads to an
increase in expected portfolio loss and, correspondingly, to the expected
loss of all tranches. Hence, ST positions are subject to MtM movements as
credit spreads in the underlying portfolio change. To hedge a long (short)
position in a tranche requires buying (selling) protection on each of the

underlying names according to the delta. We therefore define the delta A?
of a credit j in the underlying portfolio as the amount of protection the
dealer sells (buys) on that name to hedge the MtM risk of a short (long)
tranche position, denoted by T}, due to credit spread change of name i. In
practice, such a change in spreads will lead to MtM gains or losses on the

T.
tranche position (AMtM,’) as well as on the single name CDS or hedge

T,
portfolio (AMtM,). Hence, holding A/ amount of CDS on name i will lead
to the same profit and loss (P&L) impact as holding the CDO tranche, if
the credit spread of name i changes slightly. Formally,

AT - AMEM (%) = AMEM (%),

*01” in CSO1 and Credit01 stands for a small, 1bp shift in credit spreads.
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and

) - AMM ) ©
' AMIM, (%)
where x denotes the parameters necessary for valuation and MtM calcula-
tion. In the context of the Gaussian copula framework and compound
correlations, ¥ would contain the valuation time ¢, maturity T, a vector of
credit spread curves S(H):= S (t):=(5,(b), . . ., S(t)) where S (t) denotes the term
structure of credit spreads of name i at time ¢, a vector of recovery rates
K3 =(6,(t), ..., 6,(t)), and the compound correlation (matrix) p. In the exam-
ples shown here, the maturity of the CDS position heding a CDO tranche
spread sensitivity are taken to be identical. We only state the parameters of
immediate interest in the remainder of this chapter, and assume that all
other parameters remain unchanged, unless otherwise noted. In order to
compute delta, the MtM of single name CDS and CDO tranches needs to be
derived next.

MtM of a Single Name CDS
We denote by Q(t, T, S(t)), the risk neutral survival probability for obligor i:

Q(t, T,5,(t) = exp (— [ as<5,.<t>>dsj,

where A(S(t)) denotes the hazard rate at time s bootstrapped from the
credit spread curve S,(t) as seen at time ¢ (see Chapter 3 for further details
and Appendix A on the computation or bootstrapping of hazard rates
from credit spread data).

The MtM of a default swap position, when the valuation date is on
a premium payment date—thereby simplifying notation, as accrued inter-
est and premium accrued can be ignored—is given for a long protection
position by

MEM(E,, T, S, (1,))=(S, (£,) =S, (t,)RiskyPVOL(t,, T, S, (1)),
where t  denotes the valuation and premium payment date, and
RiskyPVO1(¢,,T,S.(t)))
= i D(t, ,,t)B(t,t, )[Q(tv, t,S(t))+ 1‘PTA] (Q(tv it ,S(t))
n=1

-Qt,.t,,5,,))] (6)
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denotes the present value (PV) of one unit investment in a CDS written on
obligor i that matures at time T. Here, 1, =1 if premium accrued is taken
into consideration and 0 otherwise. B(t,T) denotes the Libor discount fac-
tor, D(t, _,, t,) the day count fraction between premium payment dates,
and t,,=T the deal maturity.

O’Kane and Turnbull (2003) show that Equation (6) provides a very
good approximation to

t"

N
RiskyPV01(t,,T,S,(t,)) = Z _[

t
n=1 n=

D(t, ,,9)B(t,,5)Q,,s,S.(t,)A(S,)ds,

where the premium accrued is modeled more accurately.

For the purpose of determining All/ , the change in MtM, AMtM,,
caused by a 1bp parallel shift in the credit spread of obligor i at the initial
time t=t, is given by

AMTM;:=AMTM(t,, T, S, (t,), S, (t,)+1bp)
—MTM(t,, T, S, (t,) + 1bp)~MTM., (t,, T, S(t,)
=MTM, (¢, T, S, (t,) +1bp)
=(S, (t;) +1bp—S, (t,)) RiskyPVO1(t,, T, S, (t,) +1 bp)
= (1bp) RiskyPVO1(t,, T, S. (t,)+1bp)

Note that the third equality stems from the fact that at time ¢=0, the
PV of protection leg and premium leg are equal if the CDO is fairly priced.
As a result, the MtM at that time is zero.

MtM of an ST CDO

In order to compute the delta of a tranche, we also need to derive the
change in MtM on a specific tranche of a synthetic CDO resulting from the
1bp parallel shift in credit spreads. At time ¢ =0, the PV of the protection
leg (PPV) of a synthetic CDO tranche Tj is given by

K
PPV (t,,T,5(t,)) = 3 BO, tk)(ELTf (t,)-ELi(t, )) @)
k=1

where EL'(t,):= ELV(t,, t,,5(t,)) = E(max[min(L(t,) - A;,D, = A,),0]) de-

notes the expected tranche loss cumulated until time ¢, computed at
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time t, by employing the spread information (curve) available at that
time (5(t,)). Here, S(t,) denotes the vector of credit spreads (curves) for
all names in the underlying portfolio. As before, the expected tranche
loss can be computed from an adequate model, such as the Gaussian
copula, and through various numerical techniques such as MC simula-
tion, Fast Fourier Transform Methods, recursive schemes, or the proxy
integration method. An overview of these approaches is provided in
Chapter 6.

Given an estimate of expected tranche losses through time, we can
also compute the PV of the fee or premium leg, that is,

K
PV, T,S(t,)) = " (t, T, S(t,) Y. [BO,EIDE 1)
k=1

« (D], - A -EL, ))] 8)

We also define the Tranche PV01 as the PV of 1bp (unit) invested in
tranche j as:

TrPV 017 (t,, T, S(t,)):= CSO1(t,, T, S(t,)):

K
=) B0, £)D(t, £, (D]. - A ~ELl(t,, T, S(to))).

k=1

Then, at time ¢=0, the MtM for tranche j is defined as the difference in
the fee and PPVs, which, assuming a fairly priced tranche, is zero at

inception of a trade (MtM(t,,T,S(t,)) = FPV'i(t,, T,S(t,)) — PPV'i(t,, T,
S(t,)) = 0. The fair tranche spread, STf'(tO,T,S(tO)), is therefore given by

PPV'i(t,, T,S(t,))

STt ,T,S(t)) = .
o T,5(p)) TrPV 017 (t,, T, S(t,))

At a later date, say a premium payment date ¢, (to keep the notation
simple), the MtM is given by
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MtMi(t,, T, S(t,)) = S"i(t,, T, S(t,)) TPV O1(t,, T, S(t,))
~-PPVi(t ,T,S(t,)),

which is unequal to zero as time passes, and spreads and other pricing pa-
rameters may have changed. Hence, with

.
PPV ' (t ,T,S(t
s'i(t,,T,S(t,) = 5 G
TrPVOL1i(t,,T,S(t,))

we obtain
MM (¢, T, S(t,)) = (sTf (t,, T,S(t,) - S"i(¢,, T,S(tv))) TePVOL(t,, T, S(t, ).

For the purpose of calculating A? , the change in tranche MtM for a
1bp parallel shift in the credit spread term structure of name i is given by

AMIM,:= AMEM, (¢, T, S(t,), S (£,))
=MtMi (¢, T,SO\(t,)) - MM (t,, T, S(t,)
=MtMi(t,, T, S\(t,))
=(S"(t,, T,S(t,) - S"(t,, T, S\(t,)) TrPV 01(t,, T, SP(t,))

where SO(t):=(S,(t), ..., S, (), S()+1bp, S, ,(t),..., S\(t)) denotes the
vector of credit spreads and where the term structure of name i is shifted
uniformly by 1bp while all other term structures remain unchanged.

The approach just outlined is frequently denoted as “brute force” or
“bumping,” and is fairly flexible and independent of the actual valuation
model employed. In order to compute the change in MtM, the expected
tranche loss needs to be derived at different points in time efficiently.
While simulation is in principle feasible, more efficient approaches are
preferable, especially as calculations need to be repeated for each under-
lying name. Although there are generally no explicit analytical expressions
for tranche deltas available, practitioners and academics have developed
various approaches for determining tranche sensitivities more efficiently
and accurately. These approaches are often developed for a specific
pricing model or numerical implementation of such models and employ
the exact definition aMtMTf'(tO,T, S(t,))/9S,(t,) rather than the approx-
imate relationship
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oMM (¢, T, S(t,))
3s,(t,)
=MtMi(t,, T, SO'(t,)) - MM 7 (t,, T, S(t,)).

(1bp) ~ AMEM,’

Closed form or semi-closed-form solutions for the partial integral are fre-
quently developed.

Appendix B outlines a semi-analytic computation of the sensitivity
of the tranche value to small changes in PDs (spreads) within the com-
monly used recursive scheme of Andersen et al. (2003) as outlined in
“Option 2: The recursive approach” of Chapter 6.

Appendix C reviews the LH+ model of Greenberg et al. (2004) where
spread hedges are computed in closed form. The model is based on the
large homogeneous portfolio (LHP) approximation with one additional
asset, for which sensitivities are computed.

Additional insights into efficient and accurate computation of CDO
and basket sensitivities, within a simulation framework can be found in
Joshi and Kainth (2003), Rott and Fries (2005), and Glasserman and Li
(2003). We provide some insight in appendix D on MC deltas, and also
refer to Brasch (2004) who revisits analytic and semianalytic methods
focusing on sensitivities for CDO and CDO2 structures.

Practical Hedging and Delta Sensitivity

By definition, delta hedging immunizes the tranche against small
changes in credit spreads. For larger spread movements, a significant
amount of spread risk (spread convexity) prevails, resulting in a need to
dynamically rebalance the hedges throughout the life of the transaction.
Such a process may incur a significant amount of transaction costs,
depending on the frequency of rebalancing actions and current bid—ask
spreads. Furthermore, liquidity in some of the underlying names may be
poor due to the bespoke nature of underlying assets in synthetic ST
CDOs. Nevertheless, tranche deltas provide significant insight into the
behavior of CDOs and are a major risk management tool. If the behavior
of deltas is well understood, it is possible to design trading strategies
with desired spread sensitivities over time. Similarly, strategies can be
constructed with an initial delta-mismatch that become delta neutral
when spreads move in line with one’s expectations. We will therefore
review the sensitivity of tranche deltas to various parameters that impact
CDO performance.
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Delta and the Capital Structure Generally speaking, the
delta of a single name increases as we move down the capital structure,
i.e,, the lower the level of subordination, the higher the tranche delta.

Delta and Credit Spread Levels Credits with a higher
spread are expected to default (in the risk neutral world) earlier than cred-
its trading at a lower spread. The earlier a credit is expected to default, the
higher the impact will be on the equity tranche, resulting in higher equity
tranche deltas for wider trading names and vice versa. Similarly, lower
spreads imply that the expected default time is later (than the average
default time in the portfolio) and those names are more likely to impact the
senior tranches. Hence, the delta for tight spread trading names is higher
than the delta for wider trading names for senior tranches, and the reverse
is true for junior positions (e.g., equity tranches). Figure 7.1 displays typical
credit spread deltas expressed in percent of the names notional.* As we con-

FIGURE 7.1

Delta (in Percent of Reference Name Notional)
as a Function of Credit Spread Level.

Deltas as a function of Credit Spreads
60%
55% =
509
/
45% _—
40% —
s ~
= aco, _ —= =Equit
8 5% / Miilz!;nine
30%+—+~ i
Senior
25%
20% — —
15% I —
10% ‘ ‘ ‘ ‘ ‘
20 40 60 80 100 120 140 160 180 200
Credit Spread (in bp)

*The practical examples illustrating spread sensitivities are based on a homogeneous port-
folio of 50 credits with a notional of 10m each, trading at a spread of 100bp under an
assumed recovery of 38 percent. Furthermore, the compound correlation is assumed flat at
25 percent. The equity, mezzanine, and senior tranches are trached at 0 to 4 percent, 4 to
8 percent, and 8 to 12 percent, respectively.
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sider a homogenous pool (same spreads, recoveries, and correlations), the
delta is the same for each name. Figure 7.1 reveals that mezzanine tranches
appear to have less directionality with respect to credit spread levels.

Deltas of individual credits will rise in time for the equity tranche if
the spread on that name widens (assuming little change in average port-
folio spread) as a result of an earlier expected default time for that name.
For senior tranches, however, deltas will reduce as spreads widen on a
single credit only, as this credit is expected to default earlier, impacting
the equity tranche more than the senior exposures.

Of course, in practice, credit spreads on more than one name may
widen, and one wants to consider how single name deltas change when
all (or some) credits in the portfolio widen. A cumulative widening of all
names in the portfolio leads to an increase in the chance of a high number
of defaults and reduces the probability of a small number of defaults.
Hence, the spread sensitivity of the value of an equity tranche reduces
while the spread sensitivity of a senior tranche increases, leading to an
increase in each individual senior tranche delta and a decrease in each
individual equity tranche delta. The reverse holds when all spreads
are tightening. A cumulative spread move also underlies the definition
of Credit01, and is frequently used to estimate hedge ratios when liquid
tranches are hedged with CDS indices, as further discussed in the section
“Delta hedging with a CDS index: Credit01 sensitivity.”

Delta as a Function of Time Assuming there are no losses
in the underlying portfolio, deltas will change due to the passage of time.
The delta of the equity tranche will increase to 100 percent as time to matu-
rity decreases. Mezzanine and senior tranches at the same time become
less risky compared to the equity tranche, resulting in a decrease in their
delta towards zero at maturity (see Figure 7.2 for a illustrative example).

Delta and Correlation The MtM or fair spread on a CDO tranche
within the usual Gaussian copula valuation framework depends on the
current (observable) term structure of credit spreads on each of the under-
lying names, the maturity of the transaction, a recovery assumption for each
name, and the correlation assumption (see Appendices B, C, and D for dif-
ferent numerical implementation techniques and Chapter 6 on pricing).
Assuming that the first two sets of parameters are observable, (or can be at
least implied from the single name CDS market) and a fixed maturity, the
only variable left unspecified is the correlation applied in the pricing model.
Then, given quoted tranche prices, one can compute the corresponding
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FIGURE 7.2

Delta (in % of Notional) as a Function
of Time to Maturity.
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“implied” or “compound” correlation that makes the model price consistent
with market quotes.

If our valuation model could perfectly address replication dynamics,
we could expect the same implied correlation for different tranches that
reference the same portfolio. In practice, however, a correlation skew/smile
is observed, where often implied correlations for equity and senior
tranches are higher than for (junior) mezzanine tranches. Figure 7.3 shows
the correlation smile for October 4, 2004 on standardized tranches on the
ITraxx index.

Changes in the underlying compound (or implied) correlation also
impacts tranche deltas. Typically, increased correlation leads to relatively
more risk for senior tranches and relative less risk for the equity tranche,
as large numbers of defaults are more likely for higher levels of correla-
tion among credits. Therefore, as the implied correlation increases, the
equity tranche deltas of credits decreases and the senior tranche deltas
increase. Equity tranche deltas, however, are almost always above (very)
senior tranche deltas independent of the actual level of correlation.

Delta and Upfront Payments Currently, the equity tranche
for the investment grade DJ CDX index and the first two tranches of the
high yield DJ CDX index trade with upfront payments. Upfront payments
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FIGURE 7.3

Correlation Smile on 5 year 1Traxx Tranches
on October 7, 2004.
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for tranches genuinely lowers their deltas compared to the same tranche
that is valued with only a running spread (and no upfront payment). The
reason is that if we have a significant amount of the tranche value paid up-
front, any spread move thereafter only impacts a small amount of the pre-
mium to be collected. On the contrary, upfront payments do not impact the
protection leg of the CDO tranche, as higher spreads imply higher expected
defaults. A tranche that has only running premium and no upfront pay-
ments will be impacted much more by a spread widening as, in addition to
more expected defaults, expected premium payments are also lower (as the
notional is reduced), making it more sensitive to a spread move.

Delta Hedging with a CDS Index:

CreditO1 Sensitivity

In practice, an alternative to hedging each individual name by delta-
amounts of single name CDS is to hedge by taking a position in a liquid
index (such as the CDX or ITraxx indices). The advantage of hedging with
an index is that liquidity is very high and bid-ask spreads (transaction
costs) are tight. However, the quality of the hedge depends on how similar
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the portfolio referenced by the CDO tranche is to the computation of the
index. Formally, we define the Credit01 as the change in MtM (dollar value)
for a 1bp parallel shift in credit spreads on all names in the portfolio. It can
therefore be seen as a cumulative or aggregate (market) spread sensitivity
measure:

Credit01:= AMtMI (t,, T, S(t,),S"\(t,))
=(§R%Jza%»—sﬁawTsma&ﬁnfvofx%szw%»

where SOt):=(S,()+1bp, ..., S, ,(H)+1bp,S(t)+1bp,S,,  ,(H+1bp, ...,
Sy(t)+1bp).

Credit01" can therefore be used to estimate a hedge ratio when a
standardized CDO tranche (e.g., ITraxx tranche) is hedged with the
underlying CDS index (e.g., ITraxx), that is,

M_Qdmﬂ@
AMIM, (X)

where - AMtM,x  corresponds to the change in MtM on the CDS index
for a 1bp spread widening on each of the underlying names (and hence
on the overall index).*

Unlike individual spread sensitivity CS01, Credit01 increases for se-
nior tranches as all spreads widen in parallel, whereas Credit01 of the
equity tranche decreases if all spreads widen in a parallel move. This results
from the fact that a widening in all spreads increases the risk of higher num-
bers of defaults shifting the risk from the equity to senior tranches.

Note, however, that an index hedge in practice provides only an
approximate (or average) delta hedge when the underlying names in the
portfolio are very dispersed, whereas it provides a perfect spread hedge if
all names trade at the same spread. As a result, for an equity tranche in the
index, a tighter name would be overhedged as the relative risk to the equity
tranche of a low spread name is lower than that of a name with a (higher)
average spread. Similarly, wider trading names would be underhedged as
the deltas of the equity tranche are lower if the credits trade at a lower
(average) level. The reverse behavior holds for hedging a senior tranche.

*In practice, an alternative way is to sum over all individual single name deltas and enter a
CDS index position according to the resulting notional. The reason why there is hardly a dif-
ference in bumping all spreads at once or summing over all hedges when one spread is
bumped at the time is that convexity is less of an issue for a small (typically 1bp) spread move.
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Tranche Leverage: Lambda

The leverage, or lambda, of a tranche is closely linked to tranche deltas
and provides useful information as it effectively scales the delta by the
tranche notional. Formally, we define leverage, or lambda, as

N T 7 NN
A'N. A N.
n=1 ! 1 n=1_ !

N(delta— hedge portfolio)

T.

Lambda’i =
ambda N7 N7 NG

4

where N Tf:Dj—Aj denotes the tranche notional and N; the notional of
name i in the underlying portfolio.

Practically, leverage gives an indication of how the total risk is dis-
tributed between different tranches. Hence, the higher the leverage, the
higher the spread risk in relation to the tranche notional. For example, con-
sider a 7 to 10percent tranche of a $1billion underlying portfolio with a
notional of $30 million. Assume an (average) hedge ratio of Al =15 per-
cent for this senior tranche resulting in a total notional of $150 million for
the hedge portfolio. The lambda, or leverage, for this tranche is therefore 5.

A super senior position (for example, 10 to 100 percent) usually
results in a higher delta portfolio, but also a significantly lower leverage.
Of course, given the leverage or lambda we can compute an average delta
for an index tranche (as discussed in the previous section). Given the
leverage and tranche size, the size of the underlying hedge portfolio can
be computed and the index can be bought accordingly.

Credit Spread Convexity: Gamma

While first order spread sensitivity is a very important measure of risk, the
sensitivity of credit product spread changes beyond 1bp also needs to be
considered. This is especially true when hedging instruments have different
leverage, i.e. hedging a tranche with an index, or an equity tranche with a
mezzanine or senior tranche. Spread convexity of credit products usually
refers to the MtM behavior as a function of the underlying level of credit
spreads. Spread convexity, or gamma, of various tranches can be very dif-
ferent, and particularly large compared to the convexity of single name CDS
or CDS indices. A detailed understanding is therefore required, particularly
when we want to implement various relative value or credit strategies.

As with first order sensitivity, we can differentiate between macro-
and microspread convexity, and it is particularly important to understand
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the behavior of (delta-hedged) tranche products when individual spreads
are moving (microconvexity), or when the overall market/portfolio
spread is moving (macroconvexity).

Macroconvexity: Gamma

More formally, we define the macro spread convexity, gamma, as the addi-
tional MtM change on a tranche over that obtained by multiplying the
Credit01 of that tranche by the parallel spread move for all of the underly-
ing single name CDSs. Put another way; it is the difference between the lin-
ear approximation and the actual movement in market value. For example,
assuming a 100bp spread widening, gamma is given by:

T; ;
Gamma, ), := AMtM1 (t,, T, S(t,), S'(t,))
~100Credit01" (t,, T, S(t,),S"\(t,)) )

where 5'9(t):=(S,(t)+100 bp, . . ., 5,(t) +100 bp).

In practice, a relative spread shift factor is frequently introduced and
gamma is calculated by bumping the underlying spreads uniformly by
varying amounts (for example, in the range of 50 to 150 percent depend-
ing on the actual level of spreads). We therefore require efficient algo-
rithms once again, as it requires a recalculation for various spread levels
in a brute-force computation.*

Microconvexity: iGamma

Single name, or idiosyncratic convexity, iGamma, is defined as the con-
vexity resulting from a single CDS spread moving independently of
the others, i.e., one spread moves while the other names remain
unchanged:

iGamma ) := AMtM (t,, T, S(t,), S (t,)) —100AMM (¢, T,S(t,), S (t,))
= AMIM(t, T,S(t,),S™™(t,)) — 100A7 RiskyPV 01(t , T, S'(t,))
(10)
where S10(t):=(S,(),. . ., S,,_,(£), S(£)+100bp, S, (B),. . ., S\(t)-
*While some of the efficient calculations of spread sensitivities outlined in the Appendix can

be extended to higher order sensitivities, we are focusing on the most generic implementa-
tion through “brute-force” or “bumping” in the remainder of this chapter.



An Introduction to the Risk Management of CDOs 313

Convexity of Delta-Hedged Tranches
In practice, one is mostly concerned with the convexity of delta-neutral
tranches, or portfolios of tranches, index, and single name positions when
specific trading strategies are being developed. While a more elaborate
discussion of specific strategies follows in the next chapter, we explore
important convexity issues for simple delta-hedged equity and senior
tranche positions next.

Similarly to the definitions in Equations (9) and (10), the convexity of
a single name CDS can be defined as the difference between the RiskyPV100
and 100 times the RiskyPVO01. For relatively simple credit exposures, multi-
plying the spread shift by the RiskyPV01 provides a good approximation of
the true MtM impact, and while some level of convexity is present, the sign
of the MtM impact is the same for various levels of spread widening. We
will show that such consistency is not guaranteed for CDO tranches, high-
lighting the need to compute such higher order spread sensitivities. We will
illustrate that the convexity of tranches can be very different to the convex-
ity of single name CDS (and across tranches), which therefore expose delta-
hedged or neutral portfolios to spread convexity. This not surprising, as the
delta itself is a function of spread level and changes when spreads move.
Again, in practice, the easiest way to observe convexity is to plot the P&L of
a delta-hedged transaction. In particular, the change in tranche MtM, the
change in hedge portfolio MtM, and the net P&L for a uniform and parallel
shift in all (or a single) credit spreads provide some valuable insight into the
likely MtM behavior of delta-neutral strategies.

Macroconvexity In order to understand spread convexity and
the resulting MtM of delta-hedged positions, we consider a delta-hedged
equity tranche (long correlation) and a delta-hedged senior tranche (short
correlation) when all spreads move together (macroconvexity/gamma)
next.*

Delta-Neutral Long Equity Tranche Selling protection on an equity
tranche and buying delta-amounts of single name CDS results in an
increase in expected tranche loss and a shift of the risk away from the

*A (delta-neutral) equity tranche is often denoted as a long correlation position as an
increase in implied correlation leads to a decrease in tranche value. Similarly, a (delta-
hedged) senior tranche is a short correlation as an increase in compound correlation implies
an increase in tranche value.
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TABLE 7.2

Delta-Neutral Portfolio MtM (Long Equity Tranche)
for a Change in ALL Spreads

All Spreads Widen All Spreads Tighten

Equity Tranche (protection sold) —-MtM +MtM
Delta notional of CDS +MtM -MtM
(protection bought)

Effective Hedge Overhedged Underhedged
Net MtM (net P&L) +MtM +MtM

equity tranche to mezzanine and senior tranches when all credit spreads
widen. Essentially, this means that we are overhedged, as discussed in the
previous section on first order sensitivity. Therefore, the MtM change on
the delta portfolio is greater than the MtM on the equity tranche. Since the
MtM on the hedge portfolio is positive, the net MtM, or P&L, is positive.
Table 7.2 summarizes the behavior for both spread widening and
tightening scenario, and Figure 7.4 shows a typical plot for such a long
correlation trade.

FIGURE 7.4

Gamma for a Long Correlation Equity Tranche.

Gamma: Delta neutral long equity tranche as a function of parallel shift in

all spreads
8000000

—= = Equity Tranche MtM
6000000 Delta-MtM

Net MtM (P&L)

4000000 ~

2000000 -~

50% -40% -30% -20% -10% 0% % 20% 80% 40% 50%
2000000 =

Change in MtM (in dollars)
o
/
/

~
-4000000 ~

N~

~

-6000000

Spread Shift Factor




An Introduction to the Risk Management of CDOs 315

From an investor’s perspective, in order to maintain a delta-neutral
position, single name CDS contracts need to be sold at higher spreads,
thus locking in a profit. However, if spreads are significantly tighter, the
equity tranche becomes relatively more risky, implying higher deltas, i.e.,
the portfolio is underhedged. Put another way, the change in equity
tranche position MtM is higher than the change in the current hedge port-
folio, which implies again a positive net position.

Delta-Neutral Long Senior Tranche For an investor who is short
correlation by selling protection on a senior tranche and buying
underlying CDS, the net MtM behaves the opposite. If all portfolio spreads
are widening, the risk shifts towards the senior tranche, which implies that
senior tranche deltas need to increase: the tranche is underhedged. With
the MtM of the tranche decreasing (the tranche is worth more, but we sold
protection) and the delta MtM increasing, further CDS contracts need to be
bought at a higher spread. This means a net loss to the portfolio. The
reverse holds for the tightening scenario and is further illustrated in Table
7.3 and Figure 7.5.

Microconvexity Perhaps counter-intuitive, the iGamma or micro-
convexity of a tranche is generally the opposite to macroconvexity. For
example, a spread widening on a single CDS implies, for the long equity
tranche, a positive MtM on the hedge portfolio and a negative MtM on the
equity tranche. The equity delta for that name increases as, relative to the
other credits, this name becomes more risky. Hence, the MtM of the hedge
portfolio increases as all other spreads remain unchanged, leading to an

TABLE 7.3

Delta-Neutral Portfolio MtM (Long Senior Tranche)
for a Change in ALL Spreads

All Spreads Widen All Spreads Tighten

Senior Tranche (protection sold) —-MtM +MtM
Delta notional of CDS +MtM -MtM
(protection bought)

Effective Hedge Underhedged Overhedged

Net MtM (net P&L) ~MtM ~MtM
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FIGURE 7.5

Gamma for a Long Senior Tranche.

Gamma: Delta neutral long equity tranche as a function of parallel shift in

all spreads
2500000
—~ 20000001 — —Delta-MtM B
» N )
] 1500000 ~ Senior Tranche MtM |
35 S Net MtM (P&L)
T 1000000 a~
£ N
= 500000 =N
=
= 0
c T T T T e —
= 50% 40% -30% -20% -10% OM 20% 30% 40% 50%
g -500000
[= \
f“; ~1000000 \
-1500000 ~ ~
~
-2000000 S
-2500000

Spread Shift Factor

MtM change on the hedge portfolio due to changes only in credit i’s spread
(despite changes in all other deltas). In such a situation, we need to buy
more CDS on name i at a higher spread (as we are underhedged), imply-
ing a negative net MtM or P&L.

For a delta-neutral senior tranche, a spread widening of only a sin-
gle credit implies that we are essentially overhedged, as this credit
becomes relatively more risky for the equity tranche and relative less
risky for the senior tranche. As a result, this CDS needs to be sold at a
higher spread, implying a positive net MtM. Table 7.4 illustrates the P&L
impact further for a long correlation hedged equity tranche and a short
correlation hedged senior tranche.

Figure 7.6 illustrates graphically iGamma for both hypothetical
trades, also highlighting the significant assymmetry (difference in absolute
MtM) for different delta-neutral CDO tranches. The difference in MtM
behavior of different tranches also provides opportunities for hedging
some tranches by shorting others. In order to do so, of course, the tranche
spread, correlation, and default sensitivity need to be well understood.

Realized Correlation
The previous examples and definitions of macro- and microconvexity are
of course not unique. One could also consider situations where a fraction
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TABLE 7.4
Delta-Neutral Portfolio MtM for a Change
in ONE Spread

One Spread One Spread

Widens Tightens

Equity Tranche (protection sold) -MtM +MtM
Delta notional of CDS (protection bought) +MtM —MtM
Effective Hedge Underhedged Overhedged
Net MtM (net P&L) —MtM —MtM
Senior Tranche (protection sold) —-MtM +MtM
Delta notional of CDS (protection bought) +MtM —MtM
Effective Hedge Overhedged Underhedged
Net MtM (net P&L) +MtM +MtM

of the portfolio (e.g., n obligors) spreads are moving, while the rest of the
portfolio spreads remain unchanged. Another way of describing these
spread movements is in terms of correlation. Clearly, the situation where
one spread blows out significantly while the others remain unchanged can
be seen as a low correlation environment, whereas all spreads widening

FIGURE 7.6

Delta-Neutral Long Equity or Senior Tranche.

iGamma: Delta neutral long equity and senior tranche as a function of
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together corresponds to very high correlation. Frequently, realized correla-
tion is defined as the observed spread correlation between the credits in
the portfolio relative to the assumed (or implied /compound) correlation.
Realized correlation can be positive or negative: positive if observed cor-
relation is above the compound correlation and negative if observed
correlation is lower.

Generally, a delta-hedged tranche that is a long correlation generates
a profit for a positive realized correlation and a loss for a negative realized
correlation (see, e.g., Kakodkar et al., 2003). For example, investors hold-
ing delta-hedged equity (that are long correlation) hold long gamma (pos-
itive MtM and positive realized correlation) and short iGamma positions
(negative MtM and negative realized correlation). Similarly a delta-
neutral tranche that is a short correlation will generate a loss for a positive
realized correlation and a profit for a negative realized correlation. For
example, a delta-hedged senior investor (who is short correlation) holds
short Gamma (negative MtM and positive realized correlation) and long
iGamma positions (positive MtM and negative realized correlation).

Time Decay: Theta

The value and spread on a CDS converges to zero with its maturity
approaching, but the rate of decline is determined by the slope of the
credit curve or spread term structure. For example, consider an upward
sloping (index) credit curve, where a significant amount of defaults is
expected towards, say, the last year of the transaction. If no defaults occur
during the first year of the transaction, the protection buyer faces a sub-
stantial MtM loss as a significant amount of losses “disappear,” leading to
a significantly lower valuation after a year. With junior tranches being lev-
ered investments on default, their value (to the protection buyer) declines
faster than the index value declines as time passes. Looking at the absolute
tranche value, tranches with index deltas higher than one lose value faster
than the index, whereas senior tranches with deltas lower than one lose
value much slower than the index or portfolio.

Formally, time decay is frequently defined as the change in MtM or
total return that a tranche position generates when time passes, all other
parameters remaining unchanged (i.e., credit spread term structure,
compound or base correlation, no defaults, etc.). Theta is usually com-
puted by simply valuing a tranche with different time horizons (matu-
rities) and taking the difference. For example, from a protection seller’s
viewpoint,
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FIGURE 7.7

Total Return of CDO Tranches for Different
Time Horizons.
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Theta'/ (v) = S"i(t,, T,S(t,)) TrPV 01"/ (t,, T, S(t,))
-8U(t,, T-v,S(t,) TrPV 01" (t,, T - v,S(t,)),

where v denotes the time that has passed since inception of the transaction.*

For a typical equity, mezzanine, and senior tranche backed by an
investment grade (IG) portfolio or index, the total return is shown for var-
ious tranches from the protection seller’s viewpoint in Figure 7.7. Theta
would therefore be the difference between the values at two points along
these curves.

It is also interesting to consider the speed of time decay, i.e., how
much of the total value is realized every year. It is not unusual for IG
tranches to observe that only the equity tranche value decays slower than
the index, whereas the other tranches decay faster. Looking at the expected
premium received and the expected tranche loss through the life of the
transaction gives further insight into the theta of different tranches. While
at inception of a trade, expected premium PVs and expected tranche loss
PVs are equal, as time evolves, the premium received will not exactly offset
tranche losses in each period.

*An alternative view of time decay can be obtained by rolling down the transaction on the
interest rate and credit spread forward curves.
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FIGURE 7.8

Expected Premium and Loss for Mezzanine Tranche.

Periodic expected premium and loss for a mezzanine tranche
600000
500000 — = -
— -
& - -
£ 400000 ~
- -
s Pl
g 300000 —
< Ve
200000 /
4
100000 / Expected Premium | |
// — — Expected Loss
0 ‘- ;
0 0.5 1 1.5 2 25 3 3.5 4 45 5
Period

Figure 7.8 plots the expected tranche loss and expected premium for
a typical IG mezzanine tranche.

We can observe that protection buyers pay more than required over
the first few month of the transaction and the relationship reverses at a
later point in time. From a protection seller’s viewpoint this implies a
negative theta (negative MtM).

For a senior tranche, expected premiums are flat in each period,
which reflects the small incremental loss over each period. Similar to the
mezzanine tranche, losses are initially significantly below periodic spread
or premium expectations.

Only equity tranches may have periodic losses exceeding the
expected premium received initially. Figure 7.9 illustrates this for a typical
tranche when all premium payments occur periodically, with no upfront
payments. Here, theta is initially positive from a protection seller’s view-
point, but negative thereafter.

Correlation Sensitivity: Rho

As previously discussed, different CDO tranches have different sensitivity
to changes in correlation. Junior tranches are typically long correlation as
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FIGURE 7.9

Expected Premium and Loss for Equity Tranche.
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the value of protection decreases (from a protection buyer’s perspective),
when correlation increases, causing the trance value to decrease corre-
spondingly. Senior tranches, on the other hand, are short correlation (value
increases in correlation) for investors who bought protection. Mezzanine
tranches are typically relatively insensitive to changes in correlation. In
today’s credit markets, compound or base correlations are quoted daily on
liquid index tranches and severe changes have been observed in the past.
Given the sensitivity of tranche positions to changes in implied correlation,
an understanding of the correlation sensitivity is essential in managing the
risk in ST CDOs. Over time, however, the sensitivity of various tranches
can change, particularly if credit spreads in the underlying CDOs move
significantly or if losses occur and diminish subordination.

Formally, we define Rho as the MtM change of a tranche for a small
(typically 1 percent) change in the compound correlation that is used to
price the tranche, that is:

Rho'/ = MtMi (t,, T, S(t,), p) - MtM 1 (t,, T, S(t,), p + 1%)
= (8T(ty, T, S(ty), P) = SV (8, T, S(ty), p +1%))
x TrPV 01" (t,, T, S(t, ), p +1%)
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In practice, Rho is once again computed by bumping the correlation
parameters and tranche revaluation.

In general, long equity or short senior tranches have positive Rho
(long correlation positions), while long senior or short equity postitions
have negative Rho (short correlation positions). For example, Figure 7.10
plots Rho as a percentage of the tranche size for a typical (and risky) CDO
portfolio with a fixed tranche size of 1 percent and varying attachment
points (or levels of subordination).

The figure reveals that Rho tends to zero for very high levels of sub-
ordination (senior positions) but there is also a correlation neutral point
between the senior and equity tranches. It is therefore possible to con-
struct a correlation neutral mezzanine tranche around this point. For
example, in a tight spread environment, junior mezzanine tranches tend
to be correlation neutral. Indeed, we can try to construct tranches (e.g.,
two mezzanine tranches, one at each side of the correlation neutral point)
such that the portfolio of tranches is correlation neutral, particularly as
the change in expected tranche loss due to a correlation move from p to p
can be derived as an integral over changes in the attachment probabilities:

T (P b; (P
AELI(T) = .Lj Qury,,(Ddl- JA], Qurp(Ddl _L/. AQyr) (DAl

FIGURE 7.10

Correlation Sensitivity as a Function of Subordination.

RHO as a function of subordination (fixed tranche size of 1%)
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In practice, of course, correlation may change by more than 1 per-
cent, which means that a “correlation hedged” tranche is still exposed to
possible losses from more severe correlation movements. Furthermore,
correlation may depend on spreads, which would also imply an imperfect
correlation hedge (see Chapter 8 for further details).

Base Correlation

The computations so far have considered only compound correlation, and
similar steps are required when base correlation is employed instead (refer
to the chapter on CDO pricing for further details). There, one assumes fre-
quently that the base correlation skew moves in parallel, i.e., for all tranches
the attachment and detachment point correlations change by the same
amount. In practice, of course, this base correlation skew may change. For
example, the skew tends to rise as spreads fall to very low levels, and flat-
ten as spreads widen. Similarly, the skew tends to steepen when correlation
increases and it tends to flatten with decreasing correlation.

Delta-Hedging and Rho

It is worth mentioning that a single name CDS, or a portfolio of CDS (and
hence a CDS index), is insensitive to correlation changes. As a result, a
delta-neutral tranche has the same correlation sensitivity as the tranche
itself. This allows us to combine tranches with CDS and index positions
without altering the correlation behavior of the credit strategy.

Default Sensitivity: Omega

Another very important risk factor in correlation products is the default
sensitivity, Omega, which we will define as the change in MtM of a
tranche position (hedged or unhedged) as a result of an instant default of
one underlying, keeping spreads on the surviving names unchanged.
Although default events occur relatively rarely, the impact of “the unex-
pected” should be measured. Furthermore, a default can be viewed as the
most severe form of iGamma where spreads widen unboundedly. We
define iOmega formally as:

iOmega'/:= AMtM/(t,, T, S(t,), S (t,)).

Omega is often also denoted as VOD (value on default) or JTD
(jump to default), and we will use these terms interchangeably. The impact
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of an instantaneous default is genuinely high for unhedged tranches,
whereas the level of risk for hedged strategies depends on the tranche
seniority and thickness. The impact of a sudden default on the perfor-
mance of credit strategies is important, particularly when comparing
different strategies with similar expected returns (or carries) at the out-
set. This section only provides some conceptual discussion, and a more
detailed insight into the performance/relative value of popular trading
strategies is given in Chapter 8.

Multiple Defaults (Omega)

In practice, it is not only interesting to consider the MtM change as a result
of a single default, but also as resulting from multiple defaults. We define
the default sensitivity, when the n-widest trading names are defaulting, as
Omegaflf * The n names with the highest credit spreads are chosen as these
are the most likely defaulters, but many different combinations of n default-
ers could be chosen. In reality, of course, a probabilistic view can be
imposed and a distribution of Omega, and tranche P&L more generally, can
be derived for different trading strategies (see Chapter 8).

iOmega and Omega for Hedged and Unhedged
Tranche Positions

Figures 7.11 and 7.12 show iOmega (VOD) and Omega (RVOD), respec-
tively, for a delta hedged equity and senior tranche. It is apparent that the
default sensitivity is significantly reduced for the delta-neutral strategy
up to a point where the sign of the sensitivity even reverses.

We can observe the maximum loss for six defaults in the case of
equity tranche and five defaults for the delta-neutral equity strategy.
Furthermore, Omega reduces for more than five defaults again and
becomes neutral around the breakeven scenario of eight defaults. Beyond
that, Omega is positive. It is also worth pointing out that due to upfront
payments (typical for equity tranches), losses amount to less than the total
tranche notional (<100 percent).

The (delta neutral) senior position reveals quite a different behavior.
The Omega of the delta-hedged position is significantly higher for the
hedge position for the first few defaults, compared to the senior tranche.
The hedged senior positions Omega is positive for the first 11 defaults,
and becomes negative thereafter.

*In Chapter 8, this measure will be denoted as Running VOD (RVOD).



An Introduction to the Risk Management of CDOs

325

FIGURE 7.11

Default Sensitivity for Delta Hedged Equity Tranche.
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FIGURE 7.12

Default Sensitivity for Delta Hedged Senior Tranche.
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By focusing once again on just a single default, i.e., iOmega, we can
say that a long correlation delta hedged tranche has a negative MtM as a
result of default, is short iGamma, and also short iOmega. A short correla-
tion delta-hedged tranche (e.g., delta-neutral senior tranche) has positive
MtM after a single default, positive MtM is long iGamma and long iOmega.

(i)Omega and Spread Widening

In practice, it is also interesting to consider situations where spreads on
the surviving names widen as a result of one or more defaults. For a delta
hedged equity tranche that is long correlation, a widening of spreads on
the surviving names implies that the realized correlation increases. This
has a positive MtM impact and would therefore reduce the level of default
sensitivity (iOmega). Similarly, a short correlation position suffers an
MtM loss if all spreads widen and hence, the positive iOmega reduces.

Omega behaves in a similar way, e.g., a delta hedged equity
tranche’s default sensitivity reduces if all surviving spreads in the portfo-
lio would widen.

Of course, this last example highlights the possibility of interaction
between various (pricing) variables or risk factors and, as a result, high-
lights the need for more advanced sensitivities. For example, time decay
in the “Time decay-Theta” section is simply computed as the difference in
MtM when we reduce maturity while keeping all the other parameters
unchanged. Essentially, we ignore the impact of the new, shorter maturity
on other inputs, most notably correlation. If the correlation skew is differ-
ent for different maturities, the MtM calculation for a one-year time decay
of a five-year tranche should use the four-year base correlation. Similarly,
if we calculate spread sensitivity (convexity) and bump spreads up sig-
nificantly, we should use the correlation assumption applied for a more
junior tranche. Essentially, these are all higher order effects that can be
quite significant and would need to be addressed in more advanced sen-
sitivity calculations. We address such issues in Chapter 8 by motivating a
more flexible (and computationally demanding) MC framework for CDO
risk management.

SUMMARY AND CONCLUSIONS

This chapter forms the first part of our discussion on CDO risk manage-
ment. After a very brief introduction of risk measures important to buy-
and-hold investors and rating agencies, we focus on popular MtM
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sensitivity measures. We start with first order spread sensitivity and delta
hedging, by capturing the conceptual paradigm as well as practical imple-
mentation. Delta hedging gained widespread acceptance in credit mar-
kets, partially because many (fixed-income) risk management systems
were initially designed for single name exposures such as corporate
bonds or single name CDSs. For such products, delta hedging has proven
adequate and at first sight it seems plausible to introduce synthetic CDOs
into such a risk management framework through their delta-exposures.
However, the nonlinearity inherent in tranched products necessitates a
closer look into the likely MtM sensitivity to additional risk factors. We
introduce micro- and macrospread convexity, and show that the sign of
the MtM impact changes when the overall market is moving instead of
one individual spread. Similarly, the concepts of correlation and instanta-
neous default sensitivity are introduced, highlighting—once again—that
synthetic tranche positions, even when delta-hedged, exhibit significant
MtM risk.

Furthermore, spread, correlation, and default risk between various
tranches on the same reference portfolio can vary substantially, providing
opportunities to create hedging strategies that immunize against some (or
all) of the risks prevailing. For example, equity tranches exhibit substan-
tial default risk as well as spread risk, whereas the default risk of senior
tranches is much smaller when some spread risk still prevails. A delta-
neural combination of equity and senior tranches (has positive carry and)
compensates investors for taking default risk without having spread
exposure (at least to first order). The resulting hedge is cheaper than buy-
ing protection on all single names; however, residual higher order spread
and correlation risk exist (in addition to the default risk). For example, the
straddle outlined above has significant correlation risk, as changes in cor-
relation have an impact on both the long equity and the short senior
exposure.

In the next chapter, the practical aspects of many of these concepts
are put into practice by analyzing several popular CDO strategies. By
investigating the performance of real trades, we shed some further light
onto the inadequacy of pure delta-hedging for synthetic tranche products.
In addition, we are take a detailed look at risk/return characteristics of
such trades.
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APPENDIX A

Building a Hazard Rate
Term Structure

The standard assumption in credit markets is to assume that the hazard
rate is a piecewise flat function of maturity, which is sensible given the
limited number of observable points on the term structure of credit
spreads.

Given 1-, 3-, 5-, 7-, and 10-year default swap spread values, we
would build a hazard rate term structure with five sections 4, 4,5, 4,
A, and A, where 4, is a short form of 4,(5(t)) in which ¢ denotes the
time when the credit spread curve is available. Bootstrapping the term
structure of hazard rates is an iterative process, where we start by taking
the shortest maturity contract and use it to calculate the first survival
probability. In this case, the one-year default swap has to be used to cal-
culate the value A;. Assuming quarterly premium payment frequency,
using a value of M=12 (monthly frequency), and assuming that premium
accrued is not paid, A, is found by solving:

S(t, b, +1y)

_)’ T”X
(1 — R) Z D(tm—S’ tm )B(tv’ fm)e 01

m=3,6,9,12

12
= z B(tv , tm )(e_l[)lrmfl — e_z'Ole )’

m=1

where a monthly discretization means 7,=0, 7,=0.0833, ..., 7,,=1 and R
denotes the assumed recovery rate.

This procedure is the repeated to solve for A ; and the other sections
of the hazard curve until final maturity. Beyond that, a flat hazard rate is
frequently assumed. Defining 7=T~t , we obtain the (risk neutral) sur-
vival probabilities implied from the term structure of credit spreads:

exp(-4,,7) 0<t<1
exp(—4, —4,,(t-1)) 1<7<3
Q,,T)= exp(=A, —24,, = 4,5(7 - 3)) 3<71<5

exp(—A, =24, =24, — A, (7 - 5)) 5<1<7
exp(—A, =24, =24, =24, -4, (1 =7)) T>7
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APPENDIX B

Efficient Computation of Tranche
Sensitivities within the Gaussian
Copula Recursive Scheme

The Gaussian copula model, as introduced in the chapters on correlation
and pricing, is most commonly implemented through a one-factor model,
and interpreted as the asset value of firm i, A, driven by a normally
distributed latent common factor V, and an normally distributed

independent idiosyncratic factor €;:A, = pV +/1-pZe.

In Andersen et al. (2003), quasi-analytical techniques are developed
for the computation of the conditional loss distribution over a time inter-
val [0, t] by simple recursion since defaults, when conditioned on the out-
come of the factors, are independent. In order to do so, an arbitrary loss
unit, u, is required such that loss amounts [; can be well approximated by
integer multiples of u, say [;=ku. Now let L , 1<n<N, be the loss mea-
sured in loss units in the subportfolio consisting of the first n obligors
(ordered arbitrarily). We then have the following recursive relationship
between the conditional distributions of L, and L, _ ;:

p7‘1/+1(Ln+1:K’ t):pl‘1/+1(t)px(Ln:K_kn+1’t)+(1_PX+1(t))p}1/(Ln:K’t) (11)

where pY(L =K,t)=Prob(L (t)=KIV) denotes the probability of L units of
loss at time ¢ conditional on factor V, and p/(t) denotes the PD for name 1
by time t conditional on the common factor outcome. This relationship
can then be used to compute the portfolio loss distribution starting from
an empty portfolio.

Andersen et al. (2003) show that sensitivities of expectations over
the loss distribution can be efficiently computed using the recursive rela-
tionship (10). Let F(L(t)) be some function of the portfolio loss. If we con-
sider the sensitivity of its expectation to PD p,, that is, 0E(F(L))/dP(t), it
can be shown that
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do(V)

do(V) (12)

where @ denotes the cumulative Gaussian distribution function and
c(t):==@7'(p,) denotes the default threshold of asset i.

The first two factors of the integrand can be easily computed ana-
lytically, and the last factor can be derived from the recursive relationship:

OE(F(L) 1 V) apy(Ly =K t)
— =) F(K) AN
THCRRD Y i

= ZF(K)[pI‘\/I—l(LiI\]—l = K-k, t)=pf_ Ly, = Ki’t)]'
K

Here, Li;_,is the loss of the portfolio with the ith obligor removed
and can be obtained from the recursive relationship very efficiently.

Within the context of the computation of spread sensitivities for CDO
tranches, we are interested in the computation of (9 MtMi (t,, T,5(t,))/
35, (t,))(1 bp).

Hence, E(F(L(t))) = MtMi(t,,t,S(t,)) = FPVi(t,, t, S(t,)) — PPVTi(t,t,5(t,),
where the fee PV and protection PV are functions of the expected
tranche loss ELTf(t) = E(max[min(L(t) — A],,D]. - A],),O]), and are given by
Equations (7) and (8). As a result, the sensitivity of the MtM with respect
to changes in the underlying PD, (@MtM(t,,T,S(t,))/ op,(T))(1 bp) of
name i requires the calculation of sensitivities of form Equation (12),
that is:

OMIM'i(t, T,S(t,))  9FPV'i(t,,T,S(t))) OPPV'i(t,,T,S(t,))
aop,(T) op,(T) ap,(T)

, with

IFPV'i(t,, T,S(t,) r K
(D) =S (tO,T,S(tO))kZ:fB(o,tk)D(tH,tk)

JEL'I(t,)
x|D -A ——* |, and
ol ap(T)
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IPPVi(t), T,S(t)) JEL'I(t,) OEL'i(t,_,)
2P S )

Clearly, the RHS of both equations contains expressions of type
Equation (12).

Hazard rate, or credit spread sensitivities, are related to these PD
sensitivities by simple Jacobian factors. For example, assuming a constant
hazard rate 4, p,=g(1)=1-exp{A.t}, therefore

aMtMi(t,, T, S(t,)) (Lbp) = aMtMi(t,, T, S(t,)) dp(T)
oA, P ap (T) di,
oMtMi (¢, T, S(t
- Wy T SU) 7 oia ).
ap,(T) :

Credit spread sensitivities can be computed similarly. Assuming that

S (¢t .
=1- _Zi%” | , we obtain
P, exp{ 1-R }

oMM (t,, T, S(t,)) oMMt T,S(t,)) dp,(T)

1b
25 (t) (1bp) ap(T) ds.
oMM i(t,, T,S(t,) T S.(t,)T
= cexpy ———2—".
op(T) 1-r TP T1-R

APPENDIX C

A Fast Analytical Model for CDO
Sensitivities (LH+)

While the approach in Appendix B outlines a computationally efficient
and exact way of computing spread sensitivities based on the commonly
used recursive scheme, this section outlines an alternative based on an
extension of the asymptotic LHP approach first introduced by Vasicek
(1987). The advantage of this approach, developed by Greenberg et al.
(2004), is ease of implementation and computational speed as, essen-
tially, a closed-form solution for spread hedges can be derived; however,
it only provides an approximate solution. The authors show, however,
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that the size of the error is small for realistic portfolios and recommend
this approach for those looking for a fast, simple, and suitably accurate
tool.

The main idea is to single out the credit for which we want to com-
pute a particular sensitivity, and to treat the remaining names in the port-
folio asymptotically, i.e., we consider an LHP plus one additional asset,
which allows us to address both idiosyncratic and market wide risks in a
tractable way.

Model Setup

The asset values or latent variables of the homogeneous part of the port-
folio are assumed to follow A.=p V+V1-p? g, where common factor and
idiosyncratic terms are defined as before. Because all factor loadings are
identical we can write the conditional default probability of an asset in the
homogeneous portfolio as: p¥(t)=®(C—pV)/N1-p?), where C:=d7}(p(t))
and p(t) corresponds to the average default probability of an obligor in the
homogeneous pool. Assuming a total notional N and a (average) recovery
rate of R, we can write the expected conditional loss on the homogeneous
part of the portfolio as

ELV. WHP(t) = (1 - R)NpV (#).

In addition we assume there is a single asset (with notional N, that
evolves as A =p, V+V1-pZ¢, and defaults when the latent variable falls
below C,:=®7(p,(t)). Then, the default probability of this single asset,
conditional on the market factor V is given by

Py () = @[—C° £ OV] :

J1-p2

The total portfolio loss is then given by

(1-R )N, +ELVHP  with probabilit V(t)
ELV-LHP with probability 1-pY(t)’
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PORTFOLIO LOSS DISTIRBUTION

Greenberg et al. (2004) show that the conditional loss distribution,
pY (L(t) = K)=Prob(L(t)>K|V),

is given by p¥ (L()