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1
Structured Finance: A Primer

1.1 INTRODUCTION

In this chapter we introduce the main, and first, concepts that one has to grasp in order to
build, evaluate, purchase and sell financial structured products. Structured finance denotes
the art (and science) of designing financial products to satisfy the different needs of investors
and borrowers as closely as possible. In this sense, it represents a specific technique and
operation of the financial intermediation business. In fact, the traditional banking activity,
i.e. designing loans to provide firms with funds and deposits to attract funds from retail
investors, along with managing the risk of a gap in their payoffs, was nothing but the most
primitive example of a structuring process. Nowadays, the structured finance term has been
provided with a more specialized meaning, i.e. that of a set of products involving the presence
of derivatives, but most of the basic concepts of the old-fashioned intermediation business
carry over to this new paradigm. Building on this basic picture, we will make it more and
more involved, in this chapter and throughout the book, adding to these basic demands and
needs the questions that professionals in the modern structured finance business address to
make the products more and more attractive to investors and borrowers.

The very reason of existence of the structured finance market, as it is conceived today,
rests on the same arguments as the old-fashioned banking business. That was motivated
as the only way for investors to provide funds to borrowers, just in the same way as any
sophisticated structured finance product is nowadays constructed to enable someone to do
something that could not be done in any other way (or in a cheaper way) under the regulation.
In this sense, massive use of derivatives and financial engineering appears as the most natural
development of the old intermediation business.

To explain, take the simplest financial product you may imagine, a zero coupon bond, i.e.
a product paying interest and principal in a single shot at the end of the investment. The
investor’s question is obviously whether it is worth giving up some consumption today for
some more at the end of the investment, given the risk that may be involved. The borrower’s
question is whether it is worth using this instrument as an effective funding solution for
his projects. What if the return is too low for the investors or so high that the borrower
cannot afford it? That leads straight to the questions typically addressed by the structurer:
what’s wrong with that structure? Maybe the maturity is too long, so what about designing a
different coupon structure? Or maybe investors would prefer a higher expected return, even
at the cost of higher risk, so why not make the investment contingent on some risky asset,
perhaps the payoff of the project itself? If the borrower finds the promised return too high,
what about making the project less risky by asking investors to provide some protection?
All of these questions would lead to the definition of a “structure” for the bond as close as
possible to those needs, and this structure will probably be much more sophisticated than
any traditional banking product.
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The production process of a structured finance tool involves individuation of a business
idea and the design of the product, the determination and analysis of pricing, and the defini-
tion of risk measurement and management procedures. Going back again to the commercial
banking example, the basic principles were already there: design of attractive investment and
funding products, determination of interest rates consistent with the market, management of
the misalignment between asset and liabilities (or asset liability management, ALM). Mostly
the same principles apply to modern structured finance products: how should we assemble
derivatives and standard products together, how should we price them and manage risk?

The hard part of the job would then be to explain the structure, as effectively as possible,
to the investors and borrowers involved, and convince them that it is made up to satisfy their
own needs. The difficulty of this task is something we are going to share in this book. What
are you actually selling or buying? What are the risks? Could you do any better? We will see
that asking the right questions will lead to an answer that will be found to be straightforward,
almost self-evident: why did not I get it before? It is the replicating portfolio. The bad and
good news is that many structured products have their own replicating portfolios, peculiar
to them and different from those of any other. Bad news because this makes the design of a
taxonomy of these products an impossible task; good news because the analysis of any new
product is as surprising and thrilling as a police story.

1.2 ARBITRAGE-FREE VALUATION AND REPLICATING
PORTFOLIOS

All of the actors involved in the production process described above, i.e. the structurer, the
pricer and the risk manager, share the same working tools: arbitrage-free valuation and the
identification of replicating strategies for every product. Each and every product has to be
associated to a replicating portfolio, or a dynamic strategy, well suited to deliver the same
payoff at some future date, and its value has to be equal to that of its replicating portfolio.
The argument goes that, if it were not so, unbounded arbitrage profits could be earned by
going long in the cheaper portfolio and going short in the dearer one. This concept is the
common fabric of work for structurers, pricers and risk managers. The structurer assembles
securities in a replicating portfolio to design the product, the pricer evaluates the products
as the sum of the prices of the securities in the replicating portfolio, and the risk manager
uses the replicating portfolio to identify the risk factors involved and make the appropriate
hedging decisions. Here we will elaborate on this subject to provide a bird’s-eye review of
the most basic concepts in finance, developed along the replicating portfolio idea. This would
require the reader to be well acquainted with them. For intermediate readers, mandatory
references for a broad introduction to finance are reported at the end of the chapter.

Under a standard finance textbook model the production process of a structured product
would be actually deterministic. In fact, the basic assumption is that each product is endowed
with an “exact” replicating strategy (the payoff of each product is “attainable”): this is what
we call the “market completeness” hypothesis. Everybody knows that this assumption is miles
away from reality. Markets are inherently “incomplete”, meaning that no “exact” replicating
portfolio exists for many products, and it is particularly so for the complex products in
the structured finance business. Actually, market incompleteness makes life particularly
difficult in structured finance. In fact, the natural effect is that the production process of
these securities involves a set of decisions over stochastic outcomes. The structurer would
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compare the product being constructed against the cheapest alternative directly available
to the customers on the market. The pricer has to select the “closest” replicating portfolio
to come up with a reasonable price from both the buyer’s and the seller’s point of view.
Finally, the risk manager has to face the problem of the “hedging error” he would bear under
alternative hedging strategies.

1.3 REPLICATING PORTFOLIOS FOR DERIVATIVES

Broadly speaking, designing a structured product means defining a set of payments and
a set of rules determining each one of them. These rules define the derivative contracts
embedded in the product, and the no-arbitrage argument requires that the overall value of
the product has to be equal to the sum of the plain and the derivative part. But we may push
our replicating portfolio argument even further. In principle, a derivative may be considered
as a structure including a long or short position in a risk factor against debt or investment
in the risk-free asset. This is the standard leverage feature that is the distinctive mark of a
derivative contract.

1.3.1 Linear derivatives

As the simplest example, take a forward contract CF(S, t; F (0), T�, that is the value at time
t of a contract, stipulated at time 0, for delivery at time T of one unit of the underlying S at
the price F (0). The payoff to be settled at time T is linear: S�T� – F (0). By a straightforward
no-arbitrage argument, it is easy to check that the same payoff can be attained by buying
spot a unit of the underlying and issuing debt with maturity T and nominal value F (0).
No-arbitrage requires that the value of the contract has to be equal to that of the replicating
portfolio

CF�S� t�F�0��T� = S�t� − v�t�T�F�0� (1.1)

where v�t, T� is the discount factor function – that is, the value, at time t, of a unit of
currency to be due at time T . By market convention, the delivery price is the forward price
observed at time 0, when the contract is originated. The forward price is technically defined
as F�0� ≡ S�0�/v�0� T�, so that CF�S� 0�F�0��T� = 0 and the value of the forward contract
is zero at origin. Notice that the price of a linear contract does not depend on the distribution
of the underlying asset. Furthermore, the replicating strategy does not call for a rebalancing
of the portfolio as time elapses and the value of the underlying asset changes: it is a static
replication strategy.

1.3.2 Nonlinear derivatives

Nonlinear products, i.e. options, can be provided with a replicating portfolio by the same
line of reasoning. Take a European call contract, payoff max(S�T� – K, 0), with a K strike
price for an exercise time T . By the same argument, we look for a replicating portfolio
including a spot position in �c units of the underlying and a debt position for a nominal
value Wc. The price of the call option at time t is

CALL �S� t�K�T� = �cS �t� − v �t�T�Wc (1.2)
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Notice that replicating portfolio can be equivalently represented in terms of two other
elementary financial products. These two products are digital, meaning they yield a fixed
payoff is the event of S�T�≥K, and 0 otherwise. The fixed payoff may be defined in terms
of units of the asset or in units of currency. In the former case the digital option is called
asset-or-nothing (AoN), and in the latter case, cash-or-nothing (CoN). It is easy to check
that going long an AoN(S, t; K, T ) for one unit of the underlying and going short CoN(S, t;
K, T ) options for K units of currency yields a payoff max(S�T� – K, 0). We then have (see
Figure 1.1)

CALL �S� t�K�T� = AoN �S� t�K�T� − KCoN �S� t�K�T� (1.3)
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Figure 1.1 Call option payoff decomposition in terms of digital options

Nonlinearity of the payoff implies that the value of the product depends on the probability
distribution of S�T�. Without getting into the specification of such distribution, notice that
for scenarios under which the event S�T� ≥ K has measure 0 we have that both the AoN
and the CoN products have zero value. For scenarios under which the event has measure 1,
the AoN product will have a value of S�t� and the CoN option (with payoff of one unit of
currency) will be worth v�t, T�. This amounts to stating that 0 ≤ �c ≤ 1 and 0 ≤ Wc ≤ K.
Accordingly,

0 ≤ CALL �S� t�K�T� ≤ CF �S� t�K�T� (1.4)

and the value of the call option has to be between zero and the value of a long position in
a forward contract. This is the most elementary example of an incomplete market problem.
Without further comment on the probability distribution of S�T�, beyond the scenarios with
probability 0 and 1, all we can state are the pricing bounds of the product, and the corre-
sponding replicating portfolios that are technically called its super-replicating portfolios. The
choice of a specific price then calls for the specification of a particular stochastic dynamic
of the underlying asset and a corresponding dynamic replication strategy.
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Once a specific price is obtained for the call option, the replicating portfolio of the
corresponding put option [payoff: max(K – S�T�, 0)] can be obtained from the well-known
put–call parity relationship

CALL �S� t�K�T� − PUT �S� t�K�T� = CF �S� t�K�T� (1.5)

which can be immediately obtained by looking at the payoffs. Notice that by using the
replicating portfolios of the forward contract and the call option above, we have

CALL �S� t�K�T� − PUT �S� t�K�T� = ��c − 1� S �t� + v �t�T� �K − Wc� (1.6)

Recalling the bounds for the delta and leverage of the call option, it is essential to check
that a put option amounts to a short position in the underlying asset and a long position in
the risk-free bond. The corresponding pricing bounds will then be zero and the value of a
short position in a forward contract.

1.4 NO-ARBITRAGE AND PRICING

Selecting a price within the pricing bound calls for the specification of the stochastic dynam-
ics of the underlying asset. A world famous choice is that of a geometric Brownian motion.

dS �t� = �S �t� dt + �S �t� dz �t� (1.7)

where dz�t� ∼ 	�0� dt� is defined a Wiener process and � and � are constant parameters
(drift and diffusion, respectively). Technically speaking, the stochastic process is defined with
respect to a filtered probability space {
����t� P�. The filtration determines the dynamics
of the information set in the economy, and the probability measure P describes its stochastic
dynamics. It is very easy to check that the transition probability of S at any time T > t,
conditional on the value S�t� observed at time t, is log-normal. Assuming a constant volatility
� then amounts to assuming Gaussian log-returns.

1.4.1 Univariate claims

To understand how the no-arbitrage argument enters into the picture just remember that the
standard arbitrage pricing theory (APT) framework requires

E

(
dS �t�

S �t�

)
= � dt = �r + ��� dt (1.8)

where r is the instantaneous interest rate intensity and � is the market price of risk for the
risk factor considered in the economy (the analysis can of course be easily extended to other
risk factors). The key point is that the market price of risk (for any source of risk) must be
the same across all the financial products. Financial products then differ from one another
only in their sensitivity to the risk factors. Based on this basic concept, one can use the
Girsanov theorem to derive

dS �t� = �r + ���S �t� dt + �S �t� dz �t� = rS �t� dt + �S �t� dz∗�t� (1.9)
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where dz∗�t� ≡ dz�t� + �dt is a Wiener process in the probability space {
����t� Q�. The
new Q measure is such that any financial product or contract yields an instantaneous interest
rate intensity, without any risk premium. For this reason it is called the risk-adjusted measure.
To illustrate, consider the call option written on S, described above. We have

d CALL �S� t�K�T� = CALL �S� t�K�T� �rdt + �Calldz∗ �t�� (1.10)

where �Call is the instantaneous volatility that can be immediately obtained by Ito’s lemma.
Notice that Ito’s lemma also yields

EQ �d Call� =
(


 Call

t

+ 
 Call

S

rS �t� + 1
2


2 Call

S2

�2S �t�2

)
dt = r Call dt (1.11)

from which it is immediate to recover the Black–Scholes fundamental PDE:


 Call

t

+ 
 Call

S

rS �t� + 1
2


2 Call

S2

�2S �t�2 − r Call = 0 (1.12)

Derivative products must solve the fundamental PDE in order to rule out arbitrage oppor-
tunities. The price of specific derivative products (in our case a European call) requires
specification of particular boundary solutions (in our case Call(T) = max(S�T� – K, 0)).

Alternatively the solution may be recovered by computing an expected value under the
measure Q. Remember that under such a measure all the financial products yield a risk-free
instantaneous rate of return. Assume that in the economy there exists a money market fund
B�t� yielding the instantaneous rate of return r�t�:

dB �t� = rB �t� (1.13)

It is important to check that the special property of the measure Q can be represented as
a martingale property for the prices of assets computed using the money market fund as
the numeraire:

EQ

[
S �T�

B �T�

]
= S �t�

B �t�
⇒ EQ

[
CALL �T�

B �T�

]
= CALL �t�

B �t�
(1.14)

For this reason, the measure Q is also called an equivalent martingale measure (EMM),
where the term equivalent refers to the technical requirement that the two measures must
assign probability zero to the same events (complying with the super-replication bounds
described above).

An alternative way of stating the martingale property is to say that under measure Q the
expected value of each and every product at any future date T has to be equal to its forward
price for delivery at time T . So, for example, for our call option under examination we have

Call �t� = EQ

[
Call �T�

B �t�

B �T�

]
= EQ

⎡
⎣exp

⎛
⎝−

T∫
t

r �u� du

⎞
⎠max �S �T� − K� 0�

⎤
⎦

= v �t�T�EQ �max �S �T� − K� 0��

(1.15)
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where we have assumed r�t� to be non-stochastic or independent on the underlying asset S�t�.
It is well known that the same result applies to cases in which this requirement is violated,
apart for a further change of measure from the EMM measure Q to the forward martingale
measure (FMM) Q(T�: the latter is obtained by directly requiring the forward prices to be
martingales, using the risk-free discount bond maturing at time T �v�t�T�) instead of the
money market fund as the numeraire.

Under the log-normal distribution assumption in the Black–Scholes model we recover a
specific solution for the call option price:

CALL �S� t�K�T� = �cS �t� − v �t�T�Wc (1.16)

with

�c = 	 �d1� Wc = K	 �d2�

d1 = ln�F �t� /K� + �2/2 �T − t�

�
√

T − t

d2 = d1 − �
√

T − t

F �t� ≡ S �t�

v �t�T�

where 	(.) denotes the standard normal cumulative distribution and F�t� is the forward price
of S�t� for delivery at time T .

While the standard Black and Scholes approach is based on the assumption of constant
volatility, there is vastly documented evidence that volatility, measured by whatever statistics,
is far from constant. Non-constant volatility gives rise to different implied volatilities for
different strikes (smile effect) and different exercise dates (term structure of volatility).
Option traders “ride” the volatility surface betting on changes in skewness and kurtosis
much in a same way as fixed income traders try to exploit changes in the interest rate term
structure. Allowing for volatility risk paves the way to the need to design a reliable model
for the stochastic dynamics of volatility. Unfortunately, no general consensus has as yet been
reached on such a model. Alternatively, one could say that asset returns are not normally
distributed, but the question of which other distribution could be a good candidate to replace
the log-normal distribution of prices (and the corresponding geometric Brownian motion)
has not yet found a definite satisfactory answer. This argument brings the concept of model
risk as a paramount risk management issue for nonlinear derivative and structured products.

1.4.2 Multivariate claims

Evaluation problems are compounded in cases in which a derivative product is exposed to
more than one risk factor. Take, for example, a derivative contract whose underlying asset
is a function f�S1� S2� � � � � SN �. We may again assume a log-normal multivariate process for
each risk factor Si:

dSi �t� = �iSi �t� dt + �iSi �t� dzi �t� (1.17)

where we assume the shocks to be correlated E�dzi�t�� dzj�t�� = �ij dt. The correlation
structure among the risk factors then enters into the picture.
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Parallel to the Black–Scholes model in a univariate world, constant volatilities and cor-
relations lead to the assumption of normality of returns in a multivariate setting. Extending
the analysis beyond the Black–Scholes framework calls for a different multivariate proba-
bility distribution for the returns. The problem is even more compounded because the joint
distribution must be such that the marginal distribution be consistent with the stochastic
volatility behaviour analysed for every single risk factor. A particular tool, which will be
used extensively throughout this book, enables us to break down the problem of identifying
a joint distribution into that of identifying the marginals and the dependence structure inde-
pendently. The methodology is known as the copula function approach. A copula function
enables us to write

Pr �S1 ≤ K1� S2 ≤ K2� � � � � Sn ≤ Kn� = C �Pr �S1 ≤ K1�� Pr �S2 ≤ K2� � � � � � Pr �Sn ≤ Kn��
(1.18)

where C�u1, u2, � � � , uN � is a function satisfying particular requirements.
Alternatively – particularly for derivatives with a limited number of underlying assets –

a possibility is to resort to the change of numeraire technique. This could apply to bivariate
claims, such as, for example, the option to exchange (OEX), which gives the holder the
right to exchange one unit of asset S1 against K units of asset S2 at time T . The payoff is
then OEX�T� = max�S1�T� − KS2�T�� 0�. In this case, using S2 as the numeraire, we may
use the Girsanov theorem to show that the prices of both S1 and S2, computed using S2�T�
as numeraire, are martingale. We then have

OEX �t� = S2 �t�EM

[
max

(
S1 �T�

S2 �T�
− K� 0

)]
(1.19)

with M a new martingale measure such that EM�S1�T�/S2�T�� = S1�t�/S2�t�. It is easy
to check that if S1 and S2 are log-normal, it yields the famous Margrabe formula for
exchange options.

As a further special case, consider S2�t�≡ v�t�T�, that is, the discount factor function. As
we obviously have v�T� T� = 1, we get

OEX �t� = v �t�T�EM �max �S1 �T� − K� 0�� (1.20)

and measure M is nothing but the forward martingale measure (FMM) Q�T� quoted above.
Furthermore, if Q�T� is log-normal, we recover Black’s formula

CALL �S� t�K�T� = v �t�T� ��cF �S� t�T� − Wc� (1.21)

where the delta �c and leverage Wc are defined as above.

1.5 THE STRUCTURING PROCESS

We are now in a position to provide a general view of the structuring process, with the
main choices to be made in the design phase and the issues involved for the pricing and
risk management functions. In a nutshell, the decision boils down to the selection of a set of
maturities. For each maturity one has then to design the exposure to the risk factors. Choices
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are to be made concerning both the nature of the risk factors to be selected (interest rate risk,
equity, credit or others) and the specific kind of exposure (linear or nonlinear, long or short).
In other words, designing a structure product amounts to assembling derivative contracts to
design a specific payoff structure contingent on different realizations of selected risk factors.

1.5.1 The basic objects

Let us start with an abstract description of what structuring a financial product is all about.
It seems that it all boils down to the design of three objects. The first is a set of maturity
dates representing the due date of cash flow payments:

�t1� t2� � � � � ti� � � � � tn�

The second is a set of cash flows representing the interest payments on the capital

�c1� c2� � � � � ci� � � � � cn�

The third is the repayment plan of the capital

�k1� k2� � � � � ki� � � � � kn�

or (the same concept stated in a different way) a residual debt plan

�w1�w2� � � � �wi� � � � �wn�

Building up a structured finance product amounts to setting rules allowing univocal definition
of each one of these objects. Note that all the objects may in principle be deterministic or
stochastic. Repayment of capital may be decided deterministically at the beginning of the
contract, according to standard amortizing schedules on a predefined set of maturities, and
with a fixed coupon payment (as a percentage of residual debt): alternatively, a flat, and
again deterministic, payment schedule can be designed to be split into interest and capital
payments. Fixed rate bonds, such as the so-called bullet bonds, are the most standard and
widespread examples of such structures. It is, however, in the design of the rules for the
definition of stochastic payments that most of the creative nature of the structurer function
comes into play. Coupon payments may be made contingent on different risk factors, ranging
from interest rates to equity and credit indexes, and may be defined in different currencies.
The repayment plan may instead feature rules to enable us to postpone (extendible bonds)
or anticipate (retractable bonds) the repayment of capital, or to allow for the repayment to
be made in terms of other assets, rather than cash (convertible bonds). These choices may
be assigned to either the borrower or the lender, and may be made at one, or several dates:
notice that this feature also contributes towards making the choice of the set of payment
dates stochastic (early exercise feature). As one can glean directly from the jargon used,
structuring a product means that we introduce derivative contracts in the definition of the
coupon and the repayment plans.

1.5.2 Risk factors, moments and dimensions

The core of the structuring process consists of selecting the particular kind of risk exposure
characterizing the financial product. With respect to such exposure, a structurer addresses
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three basic questions. Which are the technical features of the product, or, in other words,
which is the risk profile of the product? Is there some class of investors or borrowers that
may be interested in such risk profile; that is, which is the demand side for this product?
Finally, one should address the question whether investors and borrowers can achieve the
same risk profile in an alternative, cheaper way – that is, which are the main competitors of
the product?

In this book we are mainly concerned with the first question, i.e. that of the produc-
tion technology of the structuring process, which is of course a mandatory prerequisite to
addressing the other two, which instead are more related to the demand and supply schedules
of the structured finance market.

In the definition of the risk profile of the product one has to address three main questions:

• Which kind of risk factors?
• Which moments of risk factors?
• Which dimension of risk factors?

Which kind of risk factors?

One has to decide the very nature of the risk exposure provided in the product. Standard
examples are

• interest rates/term structure risk;
• equity risk;
• inflation risk/commodity risk;
• credit risk/country risk;
• foreign exchange risk.

Very often, or should we say always, a single product includes more than one risk factor.
For example, interest rate risk is always present in the very nature of the product to provide
exchange of funds at different times, and credit risk is almost always present as the issuer
of the product often is a defaultable entity. Foreign exchange risk enters whenever the risk
factor is referred to a different country with respect to that of the investor or borrower.
Of course, these kinds of risk are, so to speak, “built-in to” the product, and are, loosely
speaking, inherited from standard contractual specification of the product such as the issuer,
the currency in which payoffs and risk factors are denominated. Apart from this, of course,
some risk factor characterizes the very nature, or the dominant risk exposure of the product, so
that, for example, we denote one product equity linked and another one credit linked. More
recent products, known as hybrids, include two sources of risk as the main feature of the
product (such as forex and credit risk in the so-called “currency risk swap”).

Which moments of risk factors?

The second feature to address is the kind of sensitivity one wants to provide to the risk
factors. The usual distinction in this respect is between linear and nonlinear products.
Allowing for linear sensitivity to the risk factor enables us to limit the effect to the first
moment. The inclusion of option-like features in the structure introduces a second dimension
into the picture: dependence on volatility. In the post-Black and Scholes era, volatility is far
from constant, and represents an important attribute of every risk factor. This means that
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when evaluating a structured product that includes a nonlinear derivative, one should take
into account the possibility that the value of the product could be affected by a change in
volatility, even though the first moment of the risk factor stays unchanged.

Which dimension of risk factor?

The model risk problem is severely compounded in structured products in which the risk
factor is made up of a “basket” of many individual risk factors. These products are the very
frontier of structured finance and are widespread both in the equity and the credit-linked
segments of the market. Using a basket rather than a single source of risk in a structured
product is motivated on the obvious ground of providing diversification to the product,
splitting the risk factor into systematic (or market) and idiosyncratic (or specific) parts.
From standard finance textbooks we know that the amount of systematic risk in a product
is determined by the covariance, or by the correlation between each individual risk factor
and the market. But we should also note that, in that approach, volatilities and correlation
of asset returns are assumed constant, and this is again clearly at odds with the evidence in
financial market data. Correlation then is not constant, and the value of a financial product
may be affected by a change in correlation even though neither the value of the risk factor
nor its volatility has changed. Again, this paves the way to the need to devise a model for
correlation dynamics, a question that has not yet found a unique satisfactory answer.

1.5.3 Risk management

The development of a structured finance market has posed a relevant challenge to the financial
risk management practice and spurred the development of new risk measurement techniques.
The increasing weight of structured financial products has brought into the balance sheet
of the financial intermediaries – both those involved on the buy and the sell side – greater
exposure to contingent claims and derivative contracts. Most of these exposures were new
to the traditional financial intermediation business, not only for the nature of risk involved
(well far beyond term structure risk) but also for the nonlinearity or exotic nature of the
payoffs involved.

Optionality

The increased weight of nonlinear payoffs has raised the problem of accuracy of the paramet-
ric risk measurement techniques, in favour of simulation-based techniques. The development
of exotic products, in particular, has given risk managers a two-fold problem: on the one
hand, the need to analyse the pricing process in depth to unravel the risks nested in the
product; on the other hand, the need to resort to acceptable pricing approximations in closed
form, or at least light enough to be called in simulation routines as many times as necessary.
Nonlinear payoffs have also raised the problem of evaluating the sensitivity of the market
value of a position to changes in volatility and correlation, as well as the shape of the
probability distribution representing the pricing kernel.

Measurement risk

Coping with a specification of volatility and correlation immediately leads to other risks
that are brought into the picture. One kind of risk has to do with volatility and correlation
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estimation. This measurement risk problem is common to every statistical application and
has to do with how a particular sample may be considered representative of the universe of
the events from a statistical inference point of view. Some technical methods can be used to
reduce such estimation risk. In financial applications, however, this problem is compounded
by the need to choose the proper information source – a choice that is more a matter of
art than science and calls for good operating knowledge of the market. What is typical of
financial applications is in fact the joint presence of “implied ” and “historical ” information
and the need to choose between them. So, what is the true volatility figure? Is it the implied
volatility backed out from a cross-section analysis of option prices, or is it to be estimated
from the time series of prices of the underlying assets? Or do both cross-section prices and
time series data include part of the information? And what about correlation?

Model risk

A different kind of risk has to do with the possible misspecification of the statistical model
used. Apart from the information source used and the technique applied, the shape of the
probability distribution we are using may not be the same as that generating the data. This
model risk takes us back to the discussion above on possible statistical specifications for
volatility and correlation dynamics in a post-Black and Scholes world. As we stated previ-
ously, no alternative model has been successful in replacing the Black–Scholes framework.
Apart from choosing a specific model, however, one can cope with model risk by asking
which is the sign of the position with respect to volatility and correlation and performing
stress testing analysis using alternative scenarios.

Long-term risk

A particular feature of many structured finance products that compounds the problems of
both measurement and model risk is that typically the contingent claims involved are referred
to maturities that are very far in the future. It is not unusual to find embedded options to
be exercised in five years or more. The question is then: Which is a reasonable volatility
figure for the distribution of the underlying asset in five years? There is no easy way out
from this long-term risk feature, other than sticking to the standard Black–Scholes constant
volatility assumption, or sophisticated models to predict persistent changes in volatility.
Again, a robust solution is to resort to extreme scenarios for volatility and correlation.

Counterparty risk

Last, but not least, structured finance has brought to the centre of the scene counterparty risk.
Not only do these products expose the investor and/or the borrower to the possibility that the
counterparty could not face its obligation, but very often these products are hedged, resorting
to a back-to-back strategy on the over-the-counter (OTC) market. This is particularly so for
products, including complex exotic derivatives, that may be particularly difficult to delta–
gamma hedge on organized markets. So, to take the example of a very common product, if
one is issuing an equity-linked note whose payoff is designed as a basket Asian option, he
can consider hedging the embedded option position directly on the market, or can hedge it
on the OTC market by buying an option with the same exact features from an investment
bank. The cost of the former choice is the need to have sophisticated human resources, and
some unavoidable degree of basis risk and/or hedging risk. The risk with the latter choice is
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default of the counterparty selling the option, in which case one has to look for a different
counterparty and to pay a new premium to keep the position hedged (substitution cost).
Allowing for counterparty risk causes weird effects on the risk management of derivative
products. Not only is it dangerous to overlook this source of risk per se, but it may also
interfere with market risk inasmuch as counterparty risk is not taken into account in the
pricing and hedging activity.

1.6 A TALE OF TWO BONDS

In the spirit of introducing the reader to the methodology of structured products, rather
than to a classification, we now provide an example involving two of the easiest cases: an
equity-linked and a reverse convertible bond. While these products are probably very well
known even to non-professional readers, we think that following them in a sort of “parallel
slalom”, rather than one by one, would help to summarize and highlight some of the basic
methodological aspects discussed above, which are of general interest for the analysis of
any other product.

Take a zero coupon bond by which investors provide funding to some borrower. The
maturity of the zero coupon bond is T and the nominal amount of principal is L. Define
S�T� the value of a risky asset at the date of maturity of the bond.

Consider the two following structures:

• Equity-linked note: At time T the note will pay:

(i) the principal L;
(ii) a coupon equal to the greater between a guaranteed return rg (typically low and

unattractive) and the rate of appreciation of the risky asset with respect to a given
value K: max�rg, S�T�/K − 1�.

• Reverse convertible note: At time T the note will pay:

(i) the principal L if the value of S�T� is greater than some value K, and an amount of
stocks equal to n = L/Kotherwise: min�L�nS�T�);

(ii) a coupon equal to rg (typically pretty high and attractive).

We will now provide a comparative analysis of these two products, asking which are the
similarities and the differences.

1.6.1 Contingent coupons and repayment plans

At a glance, it is immediately clear that both products include nonlinearities, and option-like
derivatives. A first difference that emerges from mere description of the payoffs is that in
the equity-linked note case the nonlinearity is introduced in the coupon payment, while in
the reverse convertible case the derivative component is in the repayment plan.

We may be more precise and discover by straightforward manipulation that the coupon
rate of the equity-linked note is given by

Coupon = rg + max
[
0� S �T� − (1 + rg

)
K
]
/K (1.22)
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that is, a constant part plus the payoff of a call option. The repayment of the principal L is
guaranteed.

In the reverse convertible the coupon payment is guaranteed while it is the repayment of
principal that is contingent on the risky asset S�T�. We have

Repayment = L − max �0�L − nS �T�� = L − n max �0�K − S �T��

= L − L max �0�K − S �T�� /K (1.23)

and the principal repaid will consist of the principal minus the payoff of a put option.

1.6.2 Exposure to the risky asset

The two products above include a part of the payoff contingent on the value of the risky
asset S. The question that immediately follows is their sensitivity to changes in the value of
that asset. Does the investor have a long or short position in the asset S? It may be surprising
to discover that from this point of view the two products are similar.

Let us start with the equity note. We saw that this product includes a long position in a
call option. It is well known that buying a call option is a way to take a long position on
the underlying asset for a delta ( 0 ≤ �c ≤ 1) quantity funded by leverage (0 ≤Wc ≤ strike).
The value of the equity-linked note (ELN) is then

ELN = v �t�T�
(
1 + rg

)+ CALL
(
S� t�

(
1 + rg

)
K�T

)
K

= v �t�T�
(
1 + rg

)+ �c

S �t�

K
− v �t�T�

Wp

K
(1.24)

On the contrary, we know that a put option represents a short position for a delta �p =
�c − 1�−1 ≤ �p ≤ 1� and a long position in the risk-free asset, such that Wp = K − Wc.
Notice, however, that the reverse convertible note (RCN) includes a short position in a put
option. Assuming L = 1 we then have

RCN = v �t�T�
(
1 + rg

)− PUT �S� t�K�T� /K

= v �t�T�
(
1 + rg

)+ �1 − �c�
S �t�

K
− v �t�T�

K − Wc

K
(1.25)

We may then check that both the equity-linked and the reverse convertible products share
the same feature of a long position in the risky asset funded by a leverage position.

1.6.3 Exposure to volatility

An increase in the value of the underlying asset would then have a positive effect on both of
the structured products. What about a change in volatility? Standard option pricing theory
suggests that response of the two products should now be opposite. The equity-linked note
in fact embeds a long position in an option, and, unless the option itself is endowed with
complex exotic features, that causes the value of the product to be positively affected by a
volatility increase. An increase in volatility would also increase the value of the put option
in the reverse convertible product, but as in this case the option is sold by the investor to the
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issuer, that would subtract value from the product. So, recognizing a long or short position
in volatility is another question that any investor has to address. Notice that in this case –
where we have plain vanilla options – it coincides with being long or short in an option,
but that is not a general result. If, for example, as often happens in real world cases, barrier
option were used, the sign of exposure to volatility should be measured case by case.

1.6.4 Hedging

The difference between the two products also emerges, in quite a neat form, in a dynamic
hedging perspective. Consider a hedging policy in discrete time for both of the products.
In both cases, delta hedging would require us to take a short position in the underlying
asset. From standard option pricing theory we know that delta hedging is effective against
infinitely small changes of the underlying asset, but what about the impact of finite changes
in the underlying? This question may be relevant if the hedging portfolio is not frequently
rebalanced or the underlying moves a lot between the rebalance dates. It is easy to see
that this second-order effect, called gamma exposure, has different sign in the two cases.
In the equity-linked note case changes of the underlying increase the value of the product,
while they correspondingly decrease the value of the reverse convertible note. It should be
remembered that as this is a second-order effect, the impact is due to the absolute change
in the underlying, rather than its direction: so, a delta-hedged investment position in a
reverse convertible note leaves the investor exposed to losses from finite changes of the
underlying no matter what their directions, and a gamma-hedging strategy would be strongly
recommended.

1.7 STRUCTURED FINANCE AND OBJECT-ORIENTED
PROGRAMMING

As we saw above, the job of every participant in the structured finance business is to
assemble objects. Every product can be decomposed in a stream of cash flows and every
cash flow in a set of long and short positions. The term “object” introduces another function
that is particularly relevant in the structured finance team, and that is central in this book:
IT design and software engineering.

Object-Oriented Programming (OOP) denotes a particular programming technique that is
based on the idea of partitioning the programming tasks in elementary units that are then
linked together to perform the overall task. The main advantage in favour of OOP is in
reusability of the code and updating. In case some adjustment is needed, one has to focus
only on the interested part without rewriting the entire code from scratch. Furthermore, the
objects are black boxes, including methods and attributes, that can be used without in-depth
knowledge of their content. So, when one takes an object called “option”, for example, he
would take something that would have some methods to compute prices, deltas, leverage,
and the like, without any need to know anything about the model used to compute them.

The software engineer and the financial engineer look at the concept of “object” with
different attitudes. For software engineers, an object is something in which to hide attributes
and methods; it is something to forget about. For financial engineers, an object is something
to unbundle in order to understand more about its working; it is something to learn from.
But, curiously enough, in structured finance the objects are the same: they are the basic
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components of the replicating portfolio. For this reason, both the software and financial
engineers very often find themselves designing a system of objects to represent and manage
structured products. The result must be consistent with the aims of both of them:

• It must carry the information content with respect to the risk factors as required by the
financial engineer.

• It must allow re-usability of code and code update as required by the software engineer.

Complying with the two targets is beneficial for the financial intermediary as a whole, and
the benefits are particularly relevant for the risk management process. A well-built object
oriented system

• would be able to speak out on the risks involved, the kind of risk, volatility and correlation;
• would allow a consistent update of prices and sensitivities of all the objects involved in

the structured products: changes of models are consistently “inherited” by all the products
in the portfolio;

• if the structure of the objects is finally shared with the counterparties, that could speed up
the transmission of information and could enable automated execution of the deal. This
source of execution risk is currently causing much concern to people in the market and
to the regulators.

The aim of this book is to reach both the financial engineer and the software engineer, and
to lay down a common set of tools for both of them. Our ambition is to make them meet
and work together sharing language and concepts. For this reason, we have attempted to
address every topic within the common language of the replicating portfolio, and the objects
involved, spelled out in the jargon of both the software engineer (OOP) and the financial
engineer (building block approach). Every topic would be discussed in an object-oriented
framework, paying attention to: (i) the global structure of relationships among the objects;
(ii) availability of data structures shared by people in the market in that specific instance of
XML language called FpML.

Chapter 2 introduces the main concepts of object-oriented programming, and the layout
of the basic language that the software engineer would share with the financial engineer.
The latter would in turn look for analogies between this language and that of the replicating
portfolio that is natural to him. Chapter 3 addresses the main concepts used by the financial
engineer to analyse the joint distribution of the risk factors, namely volatility and correlation,
both implied and historical.

Chapter 4 moves into the building of a structured financial product: here the software
engineer would disclose the problems involved in the construction of a schedule of payments,
and these arguments would be merged with the alternatives available to the structurer to
design a stream of cash flows (a leg, to borrow the wording from swaps) to meet the need
of a set of clients. Chapter 5 would address the use of derivative contracts to modify the
repayment plan of the product: these are mainly convertible and reverse convertible bonds.
Chapter 6 will investigate in detail the construction of coupon plans indexed to equity
products, both univariate and multivariate. Chapter 7 will introduce credit-linked structured
products, limiting the analysis to univariate risks. Multivariate credit-linked products, which
represent the bulk of the structured finance market, will be addressed in Chapter 8.

Chapter 9 will finally address what is different about the structured finance business, as
far as risk management is concerned. In particular, historical filtered simulation and scenario
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analysis techniques will be addressed in detail, as well as counterparty risk in derivatives,
which is one of the main reasons of concern in the finance world today.
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2
Object-Oriented Programming

2.1 INTRODUCTION

In this chapter we shall introduce the reader to the main ideas of Object-Oriented
Programming showing also some tools we can use for software design. It is important to
remember, however, that this is not a book about IT details or deep programming techniques,
so our main aim is to introduce the reader to a new way of thinking. Many good books are
available to those readers who want to go deeper into this fascinating subject.

We have decided to use, as a general programming environment, some tools that are
strongly based on the Java world but generally you should be able to read and understand
the arguments in this chapter even if you do not have a strong background in the Java
programming language.

What you should learn reading this chapter can be summarized as follows:

• The object-oriented way of thinking.
• The benefits of object-oriented software development.
• The basic concept of object orientation.
• Main ideas about UML and object-oriented analysis and design.

2.2 WHAT IS OOP (OBJECT-ORIENTED PROGRAMMING)?

Object-oriented programming (OOP for short) is a particular way of programming that
focuses on the responsibility of various tasks. The idea behind object-oriented programming
is that a computer program is composed of a collection of individual units, or objects, as
opposed to a traditional view in which a program is a list of instructions to the computer.
Each object is capable of receiving messages, processing data, and sending messages to
other objects and should be responsible only for a particular task. To give you some idea of
what an object is, you can think of it as data and functionality packaged together in some
way to form a single unit of well-identified code (examples will be given below).

The peculiar feature of this approach is that special attention is given to creating the
appropriate objects as opposed to focusing solely on solving the problem. For this reason
OOP is often called a paradigm rather than a style or type of programming, to emphasize
that OOP can alter the way software is developed by changing the way programmers think
about it. A programming paradigm provides (and determines) the view the programmer has
of the execution of the program. On the one hand, for instance, in functional programming
a program can be thought of as a simple sequence of function evaluations. On the other
hand, in object-oriented programming programmers can think of a program as a collection
of interacting objects. Therefore the paradigm of OOP is essentially one of design and the
challenge in OOP is to design a well-defined object system.
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OOP is particularly helpful in coping with complexity and building reusable computer
code. By breaking problems down into groups of smaller tasks performed by various objects,
complex problems can be managed and solved. This approach emphasizes code reusability,
which is extremely valuable to financial quants that are usually under time pressure. The
ability to cut and paste objects into new problems dramatically speeds up the development
process. This is a particularly important, probably the most important, point when we are
dealing with developing computational algorithms for structured finance. As a matter of
fact, as we have already introduced in Chapter 1, structurers, pricers and risk managers are
already accustomed to thinking in terms of objects because of the no-arbitrage/replicating
portfolio arguments.

2.3 ANALYSIS AND DESIGN

Any OOP problem-solving process can be broken down into three main categories: analysis,
design and implementation. Analysis refers to identifying the appropriate objects responsible
for the various tasks and the way they relate to each other: this exercise is often known as
data modelling. Once one has identified an object, it is generalized as a class of objects (for
the time being just think of Plato’s concept of the “ideal” horse that stands for all horses)
and defined by the kind of data it contains. Any elaboration of data is performed by means
of functions called methods. Design refers to the structuring of the solution in terms of
appropriate classes. Finally, the design is converted into code in the implementation phase.

2.3.1 A simple example

The best way to explain the methodological approach we are talking about is to give a
practical example. We have seen that people in the structured finance market think of
financial products in terms of a collection of elementary objects. In a sense they think
in an objected-oriented way, even though they may not be aware of it. It is typically in
the interaction with a software engineer that they discover they are thinking in the OOP
approach: it is like a “maieutica” process that one can find in Plato’s classical dialogues. For
this reason the most effective way to get the ideas across is a dialogue between a software
architect (Giovanni) and a financial expert (Umberto) who are building a computer program
for structured finance: needless to say, every reference to facts, things or persons is purely
casual and involuntary. For the time being, the reader should not worry about understanding
every single detail of the conversation since each concept will be defined and described
more appropriately in the following paragraphs.

Giovanni: “Mate, you look puzzled, can I help you in any way?”
Umberto: “I am just thinking about this software for structured products. You know, the

only way you can define a structured product is as collections of other financial products.
It must be something similar to the concept of ‘object’ you IT guys are using, but I do not
know much more about that. Why don’t we try to fix ideas on a very simple product, say
a zero-coupon bond and an option? Let us focus on the representation of the option, you
know, they may be call or put, giving the right to buy or sell some underlying asset at a
certain price (strike or exercise price) at a certain date (exercise date).”

Giovanni: “Ok, we have an object which we call “option” and another one which is called
“underlying asset”. The underlying has the following properties: price, a real number,



Object-Oriented Programming 21

and volatility, a real number too. The attributes of an option are: a reference to its
underling asset and a flag to specify its payoff (call or put), the exercise price (strike)
and the expiry date. Moreover, an option should also have a method in order to compute
its fair value. This method will be named “Pricing”. According to UML standard we can
describe our data in this way � � � ”

Umberto: “So, in general what describes an object? Could you explain this formalism in
more detail?”

Giovanni: “Option and Asset are two classes. A class is simply a prototype that defines the
variables and the methods common to all objects of a certain kind. As you can see in
this picture (Figure 2.1), the rectangles are divided into three sections: in the first one I
write only the name of the class; the second one contains the list of variables (for each
variable a data type and multiplicity are defined) which describe the behaviour of every
object of this type; finally in the last section we find the list of methods or operations.
The evaluation of an option, for example, is the result of a computational process that I
named ‘Pricing’. During the implementation of this class, the ‘Pricing’ method will be
designed in order to calculate the option price.”

Option

–  Expiry : long [1]
–  Payoff : int [1]
–  Strike : double [1]

–  Volatility : double [1]
–  Price : double [1]

+  getVolatility : double
+  getPrice : double
+  setPrice : boolean
+  setVolatility : boolean

+  Pricing : double

+  setPayoff : boolean

+  setExpiry : boolean

+  setStrike : boolean

Asset

Figure 2.1 Option and Asset classes

Class name

Attribute name 

Attribute type

Multiplicity

Operations –  Volatility : double [1]
–  Price : double [1]

+  getVolatility : double
+  getPrice : double
+  setPrice : boolean
+  setVolatility : boolean

Asset

Figure 2.2 Notation elements for classes
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Giovanni: “Now, we introduce the association between the two classes. This is simply a
relationship between different objects of the two classes; in our case the relationship is
due to the fact that each option has an underlying asset. We represent this association by
a single line between the classes, I’ll also write a name and a numerical specification,
which is called multiplicity, describing how many objects of one side of the association
are connected to how many object on the other side. For the time being we may stop to
consider univariate options, so this number is one.”

Option

–  Expiry : long [1]

1 1has as underlying

–  Payoff : int [1]
–  Strike : double [1]

–  Volatility : double [1]
–  Price : double [1]

+  getVolatility : double
+  getPrice : double
+  setPrice : boolean
+  setVolatility : boolean

+  Pricing : double

+  setPayoff : boolean

+  setExpiry : boolean

+  setStrike : boolean

Asset

Figure 2.3 Option and Asset classes with their relationship

Option

–  Expiry : long [1]

1 1has as underlying

1 1country market is

Country

–  Payoff : int [1]

–  Strike : double [1]

–  Volatility : double [1]

–  Price : double [1]

–  RiskFreeRate : double [1]
–  Currency : String [1]

+  setCurrency : boolean
+  setRiskFreeRate : boolean
+  getRiskFreeRate : double
+  getCurrency : String

+  getVolatility : double

+  getPrice : double

+  setPrice : boolean

+  setVolatility : boolean

+  Pricing : double

+  setPayoff : boolean

+  setExpiry : boolean

+  setStrike : boolean

Asset

Figure 2.4 Option, Asset and Country classes
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Umberto: “Uhm � � � let me think � � � actually I may need more data in order to price an
option. I need to know the return volatility of the underlying and the risk-free interest rate
over the option life time.”

Giovanni: “You mean that the risk-free rate is not precisely a property of the option?”
Umberto: “No, I would say it is a feature of the particular currency area to which the option

belongs.”
Giovanni: “Wow � � � finally we have correctly structured data.”
Umberto: “For the particular application we are looking at, that is fine, but remember

that I want to use this class to price and simulate options. � � � So, for example, I did
not mention that in some structured finance product we will encounter the so-called
‘early exercise feature’. Options may be European if they don’t allow early exercise or
Bermudan/American if they do so.”

Giovanni (just a bit angrier): “Ok, so we need to add another property which we
call ExerciseType that can assume two different values, European and Early-
Exercise � � � ”

Umberto: “Uhm… of course you are surely aware that we must also allow for barriers, they
are present in many, many structured products � � � ”

Giovanni: “AAArghhhhh � � � .”

Option

–  Expiry : long [1]
1 1has as underlying

1 1country market is

Country

–  Payoff : int [1]

–  Strike : double [1]

–  Exercise : Integer [1]

–  Volatility : double [1]

–  Price : double [1]

–  RiskFreeRate : double [1]
–  Currency : String [1]

+  setCurrency : boolean
+  setRiskFreeRate : boolean
+  getRiskFreeRate : double
+  getCurrency : String

+  getVolatility : double

+  getPrice : double

+  setPrice : boolean

+  setVolatility : boolean

+  Pricing : double

+  setPayoff : boolean

+  setExpiry : boolean

+  setStrike : boolean

+  setExercise : boolean

Asset

Figure 2.5 The definitive (?) data model
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Introduction of barriers must be delayed to a later chapter because of a (hopefully) temporary
nervous breakdown of the software engineer. At this point of the process, however, we will
have a set of classes which, coded in (simplified) Java looks as follows:

public class Asset {
public double getVolatility(){}
public double getPrice(){}
public boolean setPrice(double newPrice){}
public boolean setVolatility(double newVolatility){}

private double Volatility;
private double Price;

}

public class Country {
public boolean setCurrency(String newCurrency){}
public boolean setRiskFreeRate(double newRiskFreeRate){}
public double getRiskFreeRate(){}
public String getCurrency(){}

private double RiskFreeRate;
private String Currency;

}

public class Option {
public double Pricing(){}
public boolean setPayoff(Integer newPayoff){}
public boolean setExpiry(long newExpiry){}
public boolean setStrike(double newStrike){}

private long Expiry;
private int Payoff;
private double Strike;
private Asset lnkAttribute1;
private Country lnkAttribute2;

}

public class European_Option extends Option {
public double BlackScholes(){}

}

public class American_Option extends Option {
public double BinomialTree(){}

}

As we define different classes, we are digging deeper and deeper into the problem domain
of the business we are modelling. The more a system analyst interacts with the business he
is modelling, the more he discovers information belonging to different entities. This is how
the process works. We should not be afraid to create new classes. In the analysis phase we
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need not be concerned about it; the analysis phase is where we test ideas, new questions
and eventually evolve towards a solution that is sound, correct and shows the business as
it really is (or as we would like it to be). Let us not forget that design time is when it is
easiest to structure an application as a collection of self-contained modules or components
and this will in turn enable you to reuse code for different applications. Keep in mind that
this is the main task: when another application needs the same functionality, the designer
should quickly import it. Reusability and modularity of software code are two of the main
concepts of modelling, which we will begin to address in the next session.

2.4 MODELLING

In our case, with the word “modelling” we refer to the designing of software applications
before coding. Modelling is an essential part of large software projects, and is also helpful to
medium and even small projects. In software development, a model plays the analogous role
that blueprints and other plans (site maps, elevations, physical models) play in the building
of a skyscraper. Using a model, people responsible for a software development project can
make sure that business functionality is complete and correct, end-user needs are met, and
program design meets the requirements of scalability, robustness, security, extendibility and
other characteristics. All of this can be done before the implementation in code renders
changes difficult and expensive to make.

There are many different methods to describe the modelling process: one is by means of a
modelling language. The UML (Unified Modelling Language) is probably the most widely
used language, at least in the field of software engineering. In this book this language will
be used extensively, even though it will not be at a professional level, so we need to get at
least the flavour of this standard.

2.4.1 The Unified Modelling Language (UML)

The Unified Modelling Language (UML) is the final step of a set of object-oriented analysis
and design (OOAD) methods that appeared in the late 1980s and early 1990s. It most directly
unifies the methods of Boock, Rumbaugh (OMT) and Jacobson, but its reach is wider than
that. The UML went through a standardization process with the OMG (Object Management
Group) and is now an OMG standard.

The UML is called a modelling language, not a method. Most methods consist, at least in
principle, of both a modelling language and a process. The modelling language is the (mainly
graphical) notation that methods use to express designs. In many ways the modelling language
is the most important part of the method and is certainly the key part for communication.
If you want to discuss your design with someone, it is the modelling language that both of
you need to understand, not the process you used to get to that design.

What can you model with UML? UML defines 12 types of diagram, divided into three
categories: four diagram types represent static application structures; five represent dif-
ferent aspects of dynamic behaviour; three represent ways you can organize and manage
your application modules. Structural Diagrams include the Class Diagram, Object Diagram,
Component Diagram, and Deployment Diagram. Behaviour Diagrams include the Use Case
Diagram (used by some methodologies during requirements gathering); Sequence Diagram,
Activity Diagram, Collaboration Diagram, and State Chart Diagram. Model Management
Diagrams include Packages, Subsystems and Models.
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A deep understanding of UML constructions in all their varieties requires quite some
effort and is beyond the scope of this book. Our treatment will stick to the basic elements.
If the reader is interested in further technical details, he is advised to download the UML
specification from the OMG website (http://www.omg.org/uml/). It is free, of course, but it
is also highly technical, terse and very difficult for beginners to understand. In the following
sections we will use, and of course explain, the UML notation as we describe the main ideas
of object orientation.

2.4.2 An object-oriented programming language: Java

We have chosen Java as our reference language due to its extremely large diffusion and
to the availability of many free tools. As the reader probably already knows, Java is an
object-oriented programming language developed by Sun Microsystems in the early 1990s.
The main characteristic of Java is that, unlike conventional languages which are generally
either designed to be compiled to machine code (like C/C++ for example), or interpreted
from source code at runtime (like Microsoft Visual Basic for Application), Java is intended
to be compiled to a byte code which is then run by a Java virtual machine. Java is an
object-oriented language, this means that the language syntax (largely derived from C++)
all the various concept supports that we will find in this chapter. However, unlike C++,
which combines the syntax for structured, generic and object oriented programming, Java
was built from the ground up to be virtually fully object-oriented: everything in Java is an
object with the exceptions of atomic data types (ordinal and real numbers, boolean values,
and characters) and everything in Java is written inside a class.

Java Runtime Environment

The Java Runtime Environment (JRE) is the software required to run any application
deployed on the Java Platform. End-users commonly use a JRE in software packages and
web browser plug-ins. Sun also distributes a superset of the JRE called the Java 2 SDK
(more commonly known as the JDK), which includes development tools such as the Java
compiler, Javadoc, and debugger.

Sun has defined three platforms targeting different application environments and seg-
mented many of its APIs so that they belong to one of the platforms. The platforms are:

• Java Platform, Micro Edition (Java ME) — targeting environments with limited resources,
• Java Platform, Standard Edition (Java SE) — targeting workstation environments, and
• Java Platform, Enterprise Edition (Java EE) — targeting large distributed enterprise or

Internet environments.

If you have not already installed a JRE on your computer you can find it at
http://java.sun.com/ (actually you can find here almost everything you need - at least for
Java beginners). For our needs the Standard Edition is required.

Components

One of the most important characteristics of Java is the enormous quantity of libraries
developed. Java libraries are compiled byte codes of source code developed by the JRE
implementer to support application development in Java. Many of these are becoming a
standard. Examples of these libraries are:
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• The core libraries, which include:

– Collection libraries which implement data structures such as lists, dictionaries, trees
and sets

– XML Parsing libraries.

• The integration libraries, which allow the application writer to communicate with external
systems.

• User Interface libraries, which include:

– The Abstract Windowing Toolkit (AWT), which provides GUI components, the means
for laying out those components and the means for handling events from those com-
ponents

– The Swing libraries, which are built on AWT but provide (non-native) implementations
of AWT widgets.

We will not discuss further details about Java syntax and its architecture, but the reader is
referred to a very good tutorial material which can be found at

http://java.sun.com/docs/books/tutorial/index.html.

2.5 MAIN IDEAS ABOUT OOP

2.5.1 Abstraction

Object orientation is a method that represents things that are part of the real world as objects.
A computer is an object in the same way as a car or a financial asset. These objects are
in turn composed of other objects, and so on. Real-world objects can have a very complex
structure. Obviously in general we do not need to take into consideration every single details
of a real-world object; actually one of the main goals of the modelling process is to select
only essential aspects of the problem under consideration, neglecting useless information.
This particular process is called ‘Abstraction’.

Abstraction indicates the ability of a program to ignore some aspects of the information
that it is manipulating, i.e. the ability to focus on the essential. Abstraction is implicitly
present in everyday life. In a nutshell it means that we work with models of reality. One
of the authors is a railroad model fan and is used to playing with railroads, but not with a
real railroad of course (that will remain his unreachable dream). Engines, wagons, tracks,
crossings and buildings are scaled down representations of reality: it is a model railroad.
Software development does essentially the same: objects occurring in reality are reduced to
a few features that are relevant in the current situation.

Getting closer to our main application, an exact replicating portfolio for a structured
product or a derivative contract is something that emerges from a model of the market
in which many other features (e.g., transaction costs, institutional features, micro-structure
features, and so on) may bring about the final outcome. Instead of real objects we work with
symbols. It could happen that the same object, such as a financial option, could have different
representations in different projects. For example, let us think of two different applications,
the first oriented to pricing, the other to account management. It is very probable that the
two systems require different kind of information and this will be reflected directly on the
modelling of our options.
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2.5.2 Classes

A class describes the structure and behaviour of a set of similar objects. An object is an
instance that is present at runtime, allocates memory for its instance variables and behaves
according to the protocol of its class.

In this book classes and objects are represented following the UML notation of rectangles
(see Figure 2.2). To differentiate between classes and objects, the names of the objects have
been underlined in the figure. If we want to represent the object–class relationship (instance
relationship), we draw a dashed arrow from an object in the direction of its class (Figure 2.6)

Class

Instance Of

Equity_Index

Object

S&P500

Figure 2.6 Notation of class and object and an example of an instance relationship

2.5.3 Attributes and operations: the Encapsulation principle

The most important properties of a class are attributes and operations (or methods) which
are combined make up a single unit (the class itself). Attributes describe the structure of
the objects, their components and the information or data contained therein. Methods or
operations describe the behaviour of the objects. Attributes are only accessible indirectly via
the operations of the class.

Let’s get a closer look at the Java-like code produced for the Asset class

public class Asset {

// methods
public double getVolatility(){}
public double getPrice(){}
public boolean setPrice(double newPrice){}
public boolean setVolatility(double newVolatility){}

// attributes
private double Volatility;
private double Price;

}

As you can see, the word private is written before the definition of attributes; this is called
a “modifier”. Another modifier in the class declaration is public. These modifiers affect the
way in which other objects can access attributes and method of our class. Since the modifier
of attributes is private this means that no other object can access the data contained in
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these properties. The only way to get access to these values is by means of the methods
getVolatility() and getPrice() which, on the other hand, are defined as public.

For readers who know just a bit of computer programming, this means that the attempt
to read/write data from/in our attributes directly with a code like

Asset myAsset
myAsset.Volatility = 9.8;

or

double price = myAsset.Price;

will produce an error condition. The correct instructions are instead

myAsset.setVolatility(9.8);
double price = myAsset.getPrice();

The concept of hiding the inner structure of an object, and that the only way to access the
values is by means of well-defined methods, is often called Encapsulation or Hiding.

2.5.4 Responsibilities

Each class should be responsible for precisely one logical aspect of the total system. The
properties located in this area of responsibility should be grouped into a single class and
not divided over various classes. Moreover, a class should not contain properties that do
not belong to its area of responsibility. This is a very important principle in object-oriented
software development. Each responsibility is assigned to a single class. Each class is respon-
sible for one aspect of the total system. This, by the way, is a principle that has already been
implemented in previous programming paradigms. It is a sort of modularity requirement:
if you have, for example, a general program for computation of option pricing you should
design well-separated modules (or classes in our case) to handle data input, computation,
output and so on. In turn each of these classes should be divided into further subclasses to
handle single operations as elementary as possible.

2.5.5 Inheritance

Classes may represent specializations of other classes, i.e. classes can be arranged hier-
archically and assume (“inherit”) the properties of the class above them; if required they
can specialize (“overwrite”) them, but not eliminate them. Subclasses derived from a class
automatically have all properties of the superior class: thus, properties are inherited. This
principle is the cornerstone of reusability in the contest of OOP. The inheritance relation is
represented by an arrow with the subclass always pointing to the superclass. For example
it is possible to specialize the option class in order to manage the different exercise type
(Figure 2.7).

As we have already stated, in the generalization or specialization process of classes, a
subclass inherits the properties of its superclass, but it must also assume its responsibilities
and task, at least in principle. Particular features may be specialized – i.e. further developed –
and new features may be added. Existing properties, however, should be neither suppressed
nor restricted.
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Figure 2.7 Example of inheritance

But how are properties arranged inside an inheritance hierarchy? Fundamentally, properties
are situated precisely in those classes where, according to the responsibility assigned to
them, they are effectively a property of the class. Conversely classes contain precisely those
properties for which they are responsible. Consider, for example, the class COption and its
subclasses COption_European and COption_American (see Figure 2.7). A simplified Java
code is reported below (for the complete source code see the Java project Ch02_Example_01
on the CD enclosed).

// Class declaration
public class COption {
// Variables Declaration

protected double expiry;
protected double strike;
protected int payoff;
protected double asset_Price;
protected double asset_Volatility;
protected String country_Currency = "";
protected double country_RiskFreeRate;

// Class Constructor

public COption(){
expiry = 0;
strike = 0;
payoff = -1;
asset_Price = -1;
asset_Volatility = -1;
country_Currency = ‘‘???’’;
country_RiskFreeRate = -1;

}
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// Methods

public double getExpiry() {
return expiry;

}
public double getStrike() {
return strike;

}
public int getPayoff() {
return payoff;

}
public double getAsset_Price() {
return asset_Price;

}
public double getAsset_Volatility() {
return asset_Volatility;

}
public String getCountry_Currency() {
return country_Currency;

}
public double getCountry_RiskFreeRate() {
return country_RiskFreeRate;

}
public void setExpiry(double expiry) {
this.expiry = expiry;

}
public void setStrike(double strike) {
this.strike = strike;

}
public void setPayoff(int payoff) {
this.payoff = payoff;

}
public void setAsset_Price(double asset_Price) {
this.asset_Price = asset_Price;

}
public void setAsset_Volatility(double asset_Volatility) {
this.asset_Volatility = asset_Volatility;

}
public void setCountry_Currency(String country_Currency) {
this.country_Currency = country_Currency;

}
public void setCountry_RiskFreeRate(double country_
RiskFreeRate) { this.country_RiskFreeRate = country_
RiskFreeRate;

}

public Value()



32 Structured Finance

{
return 0;

}
}

The class body (the area between the curly brackets) contains all the code that provides for
the life cycle of the objects created from the class.

The COption class declares seven instance variables:

• expiry contains the option expiration in years from evaluation date;
• strike contains the option strike price;
• payoff an integer variable which identifies the type of option payoff (0 stand for a call,

1 for a put);
• asset_Price and asset_Volatility contain the price and volatility of the under-

lying asset;
• country_Currency is a string indicator for the currency;
• country_RiskFreeRate is a double variable that contains the risk-free spot rate

used for the option pricing.

The modifier protected, written before each declaration, means that subclasses of
COption can access directly the value of these variables. Though this is not completely
accurate from the point of view of a pure object-oriented way of programming, this choice
allows us to write a less complicated code. Of course it is always possible to declare these
variables as private and use the appropriate methods to set and get their values.

The COption class also declares a constructor – a subroutine used to initialize new
objects created from the class. You can recognize a constructor because it has the same
name as the class. The COption constructor initializes all seven of the object’s variables.
Some variables are set to -1, indicating that a generic object COption is not usable when
the application starts up.

Finally the class declares 14 methods that provide ways for other objects to read and
change the value of instance variables without giving other objects access to the actual
variables (this is an application of the encapsulation principle mentioned in section 2.5.3)
and a method Value().

Let us now consider the two subclasses: COption_European and
COption_American.

// Class Declaration

public class COption_European extends COption
{

public double Value()
{

System.out.println("Pricing European Option...");
return 0;

}
public COption_European(double s,

double k,
double r,
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double t,
double sigma,
int type)

{
asset_Price = s;
asset_Volatility = sigma;
country_RiskFreeRate = r;
expiry = t;
strike = k;
payoff = type;

}
}

// Class Declaration

public class COption_American extends COption
{

public double Value()
{

System.out.println("Pricing American Option...");
return 0;

}

public COption_American(double s,
double k,
double r,
double t,
double sigma,
int type)

{
asset_Price = s;
asset_Volatility = sigma;
country_RiskFreeRate = r;
expiry = t;
strike = k;
payoff = type;

}
}

Since they are subclasses of COption, we do not need to define any variable, they simply
inherit every variable and every method from their superclass. The extends clause iden-
tifies COption as the superclass of the class, thereby setting this class on top of the class
hierarchy. Since all the variables were defined as protected, we can assign them directly
a new value in the constructor without calling the appropriate “get” methods. Notice that
constructors are not members and so are not inherited by subclasses.

An instance method in a subclass with the same signature and return type as an instance
method in a superclass overrides the superclass’s method; in our case the method Value()
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overrides the original method of COption. As we will see in the next section, a subclass
must always override methods that are declared abstract in the superclass, or the subclass
itself must be abstract.

2.5.6 Abstract classes

Classes for which no concrete instances may be created, i.e. which will never become an
object, are called abstract classes. In our example, there will be objects from the class
Option_European, or from the class Option_American, but none from the Option
class because Option is merely an abstraction (there are no options without exercise
specification!). The class is only included in the model to sensibly abstract the (common)
properties of the other classes.

Abstract classes are marked by the property value abstract below the class name or by
the class name itself in italics. An abstract class can only be subclassed and cannot be
instantiated. To declare that your class is an abstract class, use the keyword abstract
before the class keyword in your class declaration:

abstract class COption
{

...
}

If you attempt to instantiate an abstract class, the compiler will display an error message. An
abstract class can contain abstract methods – methods with no implementation. In this way,
an abstract class can define a complete programming interface for its subclasses, referring to
the subclasses for a complete and detailed implementation of those methods. As an example,
the class COption declares a method Value() but the implementation of this method is
specialized in the subclasses since different valuation methods are required for European
and American options.

2.5.7 Associations

An association is a relationship between different objects of one or more classes. A simple
example of association is the relationship between an option and its underlying asset.

Portfolio
– has_asset Asset

1..*

Figure 2.8 Example of an association

In the simplest case an association is represented by a single line between two classes.
Usually, however, associations are described in as much detail as possible. The association
receives a name and a numerical specification (multiplicity indication) of the number of
objects on one side of the association that are connected with a number of objects on the
other side. Furthermore, names are added which describe in more detail the meaning of the
class involved or their objects.
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A particular variation of association is aggregation. This is again a relationship between
two classes, but with the peculiarity that the classes relate to each other as a whole relates
to its parts. Aggregation is the composition of an object out of a set of parts. A portfolio,
for example, is an aggregation of assets. Aggregation is a has relationship (we say that a
portfolio has different assets).

A special form of aggregation is when the individual parts depend on the aggregate (the
whole) for their own existence: this is called a composition. With composition any “part”
object may belong to only one “whole”; further, the parts are usually expected to live and
die with the whole. Usually any deletion of the whole is considered to cascade to the parts.

In an aggregation, the side of the whole is marked by a lozenge, to identify the relationship
as an aggregation. Associations are marked with white lozenges while composition are
marked by solid lozenges and have always a multiplicity of 1 (or 0 � � � 1) on the side of the
aggregate, i.e. where the lozenge is located.

The distinction between aggregation and composition is highly relevant for financial
applications, because it intervenes in the relationship between a financial product and its
replicating portfolio. Take the simplest example of a plain vanilla European option. We know
that its payoff is financially equivalent to a composite position in asset-or-nothing digital
and cash-or-nothing digital options. So, a way to synthetically construct an option would
be to take a suitable position in these digital options. The synthetically constructed option
would then be an aggregation of digital options: as a result, we could drop a part of the
replicating portfolio without closing down the entire position because there is no contractual
agreement linking the two obligations together. What about a plain, non-synthetic, option
contract? This is a composition of digital options, meaning that the contracts in the replicating
portfolio disappear as soon as the option contract itself disappears; therefore, in this case,
the two obligations are wrapped together in the same contract. The IT representation then
makes a fine distinction between the two contracts, synthetic and non-synthetic, that we
often overlook in finance. This distinction, however, is of utmost practical relevance, as will
be discussed in detail in the chapter on counterparty risk. For the time being, we sketch out
the problem by a simple example.

Example 2.1 Assume that you want to buy a call option on 10 000 Generali stocks for the
strike price of 20 euros, for three months from now. You can achieve the same result in two
different ways:

(a) Buy 10 000 call options on Generali on the Italian derivatives market (IDEM) for a
strike of 20 and exercise in three months. According to the organization of the market,
the counterparty is going to be the clearing house of the Italian stock exchange (Cassa
di Compensazione e Garanzia, CCG).

(b) Buy 10 000 asset-or-nothing call options on Generali for strike 20 while selling a cash-or-
nothing option for a nominal value of 200 000 euros, with the same strike and exercise.
The products will be bought and sold on the over-the-counter (OTC) market – that is,
in a bilateral relationship.

Are the products and strategies (a) and (b) the same? No, it is clear that they are markedly
different. In the first case, default risk is very low and, if default occurs, all of the option
value will be lost. In the second case, default will only affect the asset-or-nothing option
that was bought from the counterparty. The difference between these two products of course
is expected to show up in a difference in price, and in the chapter on counterparty risk we
will see that this is actually the case.
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In Figure 2.9 we have described a plain vanilla European option as a combination of a
cash-or-nothing binary option and an asset-or-nothing binary option. From a general point of
view, aggregate objects can consist of objects of the same class. For example, let us consider
the aggregation depicted in Figure 2.9. The plain vanilla European option is described as an
aggregate object composed by two different options. However, it is very plausible that all
the three objects are subclasses of a superclass called COption, so the correct class diagram
should be that shown in Figure 2.10.

PVEuropeanOption

BinCoN_Option BinAoN_Option

has

Figure 2.9 A simple example of aggregation

COption

PVEuropeanOption

has

has

BincoN_Option

BinAoN_Option

Figure 2.10 Composite objects: combining inheritance and aggregation
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2.5.8 Message exchanging

Objects are independent units that cooperate and interact by means of messages they send to
each other. These messages lead to the operations, which means that an object may precisely
understand those messages for which it has operations. In contrast to conventional programs,
operations and data build a unit. An object contains all operations needed for processing
its data contents and all of its further behaviour. Facts that are related to each other by
their contents are concentrated inside the object. In an object-oriented solution, operations
or messages can only be accessed via the object:

object.message(arguments)

For example, in order to evaluate the price of an option we have to call the method Value(),
which is defined inside the class COption

COption myOption;
myOption.Value();

Moreover, as has already been stated, object attributes are usually encapsulated and accessible
from outside only via appropriate operations (such as Volatility of an asset which can
only be accessed via the setVolatility and getVolatility operations).

2.5.9 Collections

Collection classes are usually defined in a standard class library and have in common that
they collect and manage sets of objects. Collections are also called container classes. They
have all the operations for adding and removing objects, checking whether a given object is
contained in the set and determining how many objects are currently contained in the set.

A main distinction can be made between sequential collections and associative collections.
In sequential collections, objects are collected in a sequential structure; the best-known
example is an array. Associative collections store not only objects but also an additional key
for each object through which it can be identified. An example of this is a dictionary.

2.5.10 Polymorphism

Object-oriented programming languages offer a rich set of constructs for modelling runtime1

behaviour. Understanding polymorphism is key to designing scalable, plug-and-play architec-
tures. Polymorphism means that an operation may behave differently in different instances.
This is actually one of the cornerstones that has made object-orientation so powerful.

From a general point of view, polymorphism shows up in multiple methods having the
same name.

• In some cases, multiple methods have the same name, but different formal argument lists
(overloaded methods).

• In other cases, multiple methods have the same name, same return type and same formal
argument list (overridden methods).

1 Runtime is when a program is running (or being executable) – that is, when you start a program running in a computer, it is the
runtime for that program. Programmers distinguish between what happens in a program when it is compiled (compile time) and
what happens when it used or at runtime.
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Some authors refer to method overloading as a form of compile-time or static polymorphism,
as distinguished from runtime or dynamic polymorphism. This distinction comes from the
fact that, for the invocation of each method, the compiler determines which method (from a
group of overloaded methods) will be executed, and this decision is made when the program
is compiled. In contrast, the determination of which overridden method to execute is not
made until runtime.

Overloading

Let us start our discussion from the polymorphism with method overloading (static), which
is the simpler of the two. Static polymorphism is already known from the procedural world,
namely in the form of operators such as + or −. These (generic) operators can be applied
to both integer and real numbers. Object-oriented programming languages also offer the
possibility of using these operators for user-defined data types or classes. Precisely speaking,
operators are nothing more than operations with special names. Therefore the same effect
can also be achieved for normal operations.

A further aspect of static polymorphism consists in interface variations of operations with
the same name (here is a Java example).

public class CDate
{

public void setDate(int year, int month, int day)
{

//....
}

public void setDate(String date)
{

//...
}

public void setDate(int serial)
{

//...
}

}
...
CDate aDate;

aDate.setDate(2006,2,14);
aDate.setDate(‘‘2/14/2006’’);
aDate.setDate(38762);

In this example there are three operations with the same name but each must be provided
with different parameters. Depending on which parameters are specified (year–month–day,
date in string format or serial number) one of the operations will be activated.
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Overriding

A precondition for dynamic polymorphism is the so-called late binding. From a physical
point of view, binding is the point in the life of a program at which the caller of an operation
is given the memory address of that operation. Usually this happens when the program is
compiled and linked. Most of the traditional programming languages have exclusively this
form of binding, which is called early binding. In late binding the precise memory location
of an operation is determined only when the call takes place, i.e. when the corresponding
message is sent to the object. Thus the association between message and receiving operation
does not occur at compile time but dynamically at runtime of the program. The way in which
this kind of polymorphism is implemented in most OO languages is through inheritance and
method overriding.

As we have already mentioned, inheritance means that a class inherits all the properties
of its superclass. Thus, without having to define its own attributes and operations, it can
have inherited some. It is, however, free to redefine an inherited operation and to overwrite
it with the new definition. Which of these operations is to be used at runtime in response
to a corresponding message – i.e. which class the called operation comes from – is only
decided at runtime.

Figure 2.11 Simple example of dynamic polymorphism

Figure 2.11 shows an example in which the classes COption_European and
COption_American are both derived from the virtual superclass COption. A feature
shared by all the options is that they can be priced according to a precisely defined numeri-
cal method. Therefore the superclass already contains a method named Value() although
this is abstract and can only be invoked by derived classes. The CMonteCarlo class has
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a method, Simulation(), in which a set of different scenarios are generated and, for
each of them, a value of the option has to be calculated. Although the CMonteCarlo
class cannot know how a particular option must be priced it can nevertheless include this
function. When the program is launched (runtime), there is then a point in time in which the
Value() message (called from the Simulation() method) encounters an object. At that
moment it will be decided which concrete operation must be called. This is possible because
with runtime polymorphism based on method overriding, the decision of which version of a
method will be executed is based on the actual type of object whose reference is stored in
the reference variable, and not on the type of the reference variable on which the method is
invoked. As this is a key point that is worth describing more precisely, let us consider the
code fragments of interest in the CMonteCarlo class and those in the CApplication
class in which the main function is written.

Here is an operational description of the code:

• We have defined a class named COption which defines a method named Value().

public abstract class COption
{

public COption()
{
}

public abstract double Value();

//...
}

• Two classes named COption_American and COption_European extend
COption and override the method named Value()(in this very simple example the
two methods do not do anything, but simply write what they are expected to do).

public class COption_American extends COption
{

public COption_American()
{
}
}
public double Simulation(COption anOption)
{

for(int i = 0; i < nScenarios; i++)
{

// Generate scenario variables
//...

// for each scenario call the method value
// of the generic option
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double price = anOption.Value();
}

}
}

Note that the object anOption is declared as an instance of the virtual class COption
so at compile time the Simulation() method does not know which concrete Value()
method must be called. This is a very important point to grasp. When we write code for the
Monte Carlo method we are not concerned with the particular derivative that will be priced
with this method; more to the point, our efforts must be concentrated in designing a method
that is as general as possible.

• Now assume that in the main procedure a reference to an object of the class named
COption_European (subclass) is assigned to a reference variable named anOption
of type COption (superclass).

// the reference variable anOption is declared of type COption
COption anOption;

// the invocation of new operator produces the instantiation of an
// object of type COption_European whose reference is stored

into the
// variable anOption

anOption = new COption_European();
• This object is then passed as parameter to the Simulation() method of the

CMonteCarlo class

CMonteCarlo monte_carlo = new CMonteCarlo();
monte_carlo.Simulation(anOption);

• Take a minute to résumé the situation! At this point:

– we have a reference variable (anOption) whose type is COption;
– in this variable we include reference to an object whose type is COption_European

(also remember that this object is created by the new operator);

so the type of reference variable and the type of object whose reference is stored in the
reference variable are different but (and this is a very important point) the type of the object
(COption_European) is a subclass of the type of reference variable(COption).

• Within the Simulation() method we find the following line of code:

double price = genericOption.Value();

the version of the method named Value() that will actually be executed is the overridden
version in the class named COption_European because the decision of which version of
the method to execute is based on the actual type of object whose reference is stored in the
reference variable, not on the type of reference variable on which the method is invoked.
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• Assume that, after the first call to the Monte Carlo simulation, we write the following code:

anOption = new COption_American();
monte_carlo.Simulation(anOption);

Now the reference variable anOption contains a reference to an object of type
COption_American. In this case the instruction

double price = genericOption.Value();

within the Simulation() method will result in a call to the Value() method of an
American option. The same instruction produces two different behaviours!

OK, that’s all for the moment! If you have not understood everything, do not worry. We
will try to recall as much as possible of this concept in the following chapters. Let us close
this chapter with a few references about some useful tools for software programming.
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On the Unified Modeling Language

The UML bible is:
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3
Volatility and Correlation

3.1 INTRODUCTION

In this chapter we introduce two paramount concepts in structured finance: volatility and
correlation. The presence of nonlinear derivatives in almost all the structured finance products
induces a second level issue in the valuation of a product. In fact, the value of a product
can change even though the underlying risk factors do not change, but simply because the
volatility of each risk factor and its co-movements change. Actually a structured finance
product could be considered to be synonymous with “volatility product” and “correlation
product”. Both the structurer and the client pay a lot of attention to the volatility of the
risk factors and the way they are wrapped together in a product from an overall point of
view, and very often a deal may be directed at exploiting expected changes in volatility
and correlation, rather than the direction of the risk factor. When appraising a structured
product, then, gauging its sensitivity to each source of risk it is not the end of the story,
even though it is a mandatory step. What may be really relevant is to assess the behaviour
of the product in scenarios of hectic and very slow movements in the markets and in which
the different sources of risk move jointly. The relevant questions are then: Is this product
long or short volatility? Is it long or short correlation? To address these questions, a required
tool for professionals working in the structured finance market is a broad knowledge of
the techniques for modelling and predicting volatility and correlation. Unfortunately, this is
not an easy task, particularly because volatility and correlation are not directly observable
quantities. A treatment of the subject would certainly require much more space. Here we
provide a bird’s-eye view over the literature on this subject, the target being to give a broad
idea of the issues involved and the strategies available. The reader interested in details is
referred to many outstanding books on the subject, such as Rebonato (2000) and Taylor
(2005), as well as to the main contribution surveyed here and reported in the “References
and Further Reading” section.

3.2 VOLATILITY AND CORRELATION: MODELS AND
MEASURES

Volatility and correlation are non-observable quantities. We are interested in these quantities
in order to model and understand the structure of another quantity, which represents our
final target of interest: the joint probability distribution of future asset returns and risk
factor movements in general. Once this problem is solved, simulating scenarios from this
distribution would enable us to price the product, to investigate its sensitivity to different
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events, and to provide a guideline to gauge whether the product is consistent with the “views”
of the investor.

This very general issue immediately raises three basic questions. Many of the approaches
that will be surveyed in this chapter could be categorized depending on the answers they
provide to these questions. Of course, the effectiveness of the answers must be evaluated
and confronted with data availability for each market.

• Question 1: Is it more efficient to directly investigate the shape of the distribution or
to focus on the specification of its moments? On the one hand, investigating the shape
of the distribution is a particularly demanding choice in terms of the amount of data
required: a famous example is the “curse of dimension” phenomenon in the non-parametric
estimation of multivariate distributions. On the other hand, working on moments amounts
to imposing more structure in the data generating process (DGP) that is assumed to
drive the data: at one extreme, if one is willing to accept that returns are normally
distributed, working on the first two moments is exactly analogous to directly working
on the probability distribution (technically, the first two moments are sufficient statistics
for the distribution).

• Question 2: Where can we collect the necessary information? We are of course interested
in the future distribution of asset returns conditional on current information. Differently
from any other application in statistics, the world of finance provides two different
sources of information: (1) historical information recovered from time series of the
prices of assets; (2) implied information that may be backed out from cross-section
prices of derivative contracts written on the same assets and traded in liquid markets.
On one hand, working with historical information is a backward-looking choice, and
runs into the problem that history rarely repeats itself, and never repeats itself in the
same way: structural breaks and “peso problem” effects (major regime changes perceived
by the market) represent the major limits to the effectiveness of historical informa-
tion. On the other hand, working with implied information is a forward-looking choice,
but runs into the problem that the price formation mechanism may not be fully effi-
cient and may reflect the market risk-aversion along with market expectations: market
liquidity and risk premia represent the major limits to the effectiveness of implied
information.

• Question 3: How much structure should we impose in the representation of the probability
distribution, or volatility and correlation? A famous concept in econometrics and artificial
intelligence is that of parsimony. The use of an excessive number of parameters and
flexible functional forms may induce overfitting and a noisy picture of the distribution
with low representative power of the future distribution (estimation risk), whereas the
choice of a model that is too severely specified may easily induce model misspecification
and a systematic failure to represent the future distribution (model risk).

Based on these questions, one should evaluate different methods to specify the future asset
returns distribution. The choice must, of course, be gauged under the constraint of data
availability. Broadly speaking, three choices are available:

• Implied information
• Parametric models
• Realized (cross) moments.
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3.2.1 Implied information

Implied information is nowadays available for many assets. Depending on the liquidity of
the corresponding market, one can choose the amount of structure to be imposed in the
estimation procedure, and the amount of parameters involved in the model. In principle, one
can choose to estimate

• Implied probability and implied binomial or trinomial trees
• Implied volatility for different strikes (“smile”) and exercise dates (“term structure”)
• Implied correlation among exchange rates, stocks and credit risks.

In principle, as we will briefly show, implied probability could be estimated directly in a
ideal world in which perfectly liquid option markets would be active for every strike and
every maturity on the asset. If this is not the case, we could settle for interpolation of implied
volatility and correlation, backing out the probability distribution from that information.

3.2.2 Parametric models

If derivative markets for some assets are not so developed one would have no choice other
than to introduce a more structured parametric model. For example, one could postulate the
following stochastic process for asset Si

dSi�t� = �r + ���t��Si�t� dt + ��t�Si�t� dz1

dh�t� = ��h − h�t�� dt + �h��t� dz2

(3.1)

with h�t� ≡ �2�t� and E�dz1	 dz2� = 
. The parameter � denotes the risk premium. The
variance process is assumed to be mean-reverting and may also embed a risk premium,
resulting in changes in the drift parameters (that is the mean reversion coefficient � and the
long-run value mean h). We could introduce other assets, such as Sj , and specify a dynamic
model for their instantaneous correlation 
ij , such as

d
ij �t� = �
(

ij − 
ij �t�

)
dt + �

(
1 − 
ij �t�

)

ij �t� dz3 (3.2)

where again the drift parameters may be affected by risk adjustment. Notice that these
models can be either estimated from time series data or calibrated from derivative market
prices. In principle, the two sources of information could also be used together.

While this choice enables us to save something on the amount of data required, it may
raise the problem of systematic model misspecification. For example, assume that the data
is generated by a switching regime model, so that both the variance and the correlation con-
ditional distributions could be specified as bimodal quartic-exponential processes. Sticking
to the above specification could lead to large misrepresentation of the price of a structured
product and its sensitivity to volatility and correlation. The same would happen if either the
risk factors or the volatilities were subject to jump components.

3.2.3 Realized (cross)moments

As a third option one could resort to the so-called “realized ” figures. Thus, for example, the
realized figure corresponding to a distribution refers to a histogram that may be estimated
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with non-parametric or semi-parametric techniques. We will see below that non-parametric
techniques, which are well known for historical data applications, may also be usefully
applied to implied information.

Realized cross(moments) – that is, realized variance and realized correlation – are at the
centre of attention in the most recent financial econometrics literature. The idea is very
simple. Realized variance is defined as

�̂2
T = 1

T − 1

T∑
i=1

�ri − r�2 (3.3)

Similarly, realized covariance is defined as

�̂jk	T = 1
T

T∑
i=1

(
rij − rj

)
�rik − rk� (3.4)

Most of the current research is on the frequency of sampling needed to obtain the best esti-
mates. If the data was purely generated by diffusive processes, it would be efficient to sample
the data as frequently as possible. The main principle is that while one would have to rely
on a very long time series of data to estimate the drift of a process, one would have to rely
on a time series sampled at a very high frequency to provide a good estimate of the diffusion
parameter. This has spurred research on high-frequency data – that is, intraday transactions
data sampled at very short time intervals (5 minutes or less). This also comes at a cost,
however. In fact, on the one hand, this requires a huge amount of data; on the other, as we get
closer and closer to tick-by-tick data, we may run into problems raised by the microstructure
features of the market. A typical example is the bid–ask bounce effect, that is, a spurious auto-
correlation induced into the estimate by the sampling of bid and ask quotes. Another typical
example, particularly relevant for indices, is the non-synchronous trading effect, for which
spurious autocorrelation is induced by the fact that not all the constituents of the index are
repriced within the sampling frequency. This trade-off has spurred research on the determi-
nation of the optimal sampling frequency – a line of research that is still under development.

3.3 IMPLIED PROBABILITY

In an ideal world in which call and put options were traded for each and every strike price,
we could extract information about the probability distribution directly from option prices,
without any further need to specify the data-generating process of the underlying asset. The
idea goes back to Breeden and Litzenberger (1978) and consists in approximating digital
option prices by call spreads. We have in fact

lim
h→0

Call �S	 t
K − h	T� − Call �S	 t
K	T�

h
= −� Call �S	 t
K	T�

�K

= v �t	T�Q�S �T� > K� (3.5)

for call options and

lim
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Put �S	 t
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h
= � Put �S	 t
K	T�

�K

= v �t	T�Q�S �T� ≤ K� (3.6)
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for put options. In other words, if, in the limit, we could observe the prices of options for
a continuum of strikes, we could actually compute the probability distribution Q�S�T� ≤ K�
for every K. The probability density is obviously obtained by derivation again with respect
to the strike. We have then

lim
h→0

Call �S	 t
K − h	T� − 2 Call �S	 t
K	T� + Call �S	 t
K + h	T�

h2

= −�2 Call �S	 t
K	T�

�K2
= v �t	T�q �K� (3.7)

where q�K� is the probability density function.
Of course, in real applications a good approximation of the derivative requires the avail-

ability of prices for a wide range of strike prices. This is the case in very few markets for
which the corresponding option market is particularly well developed and liquid. For exam-
ple, in Figure 3.1 we report the probability distribution of the dollar/euro exchange rates
recovered from a whole range of options with many strikes. Data was collected on 3 October
2006 for a contract expiring in one month. Of course a problem with this methodology is
that the probability distribution is by construction centred around the forward exchange rate.
If the analysis is carried out for the purpose of pricing, this would actually be an advantage,
while for other applications the distribution ought to be further elaborated to get rid of the
risk adjustment.

If the option market is particularly rich, one could also move one step forward to recover
the stochastic discrete dynamics over the period. These techniques are known as implied
trees; the main idea is to build binomial or trinomial trees that could reproduce the prices of
a set of actively traded option as accurately as possible. Two main techniques are available:
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Figure 3.1 The implied probability distribution of the dollar/euro exchange rate (3/10/2006)
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• The Rubinstein model: Starting from the specification of the implied probability distribu-
tion, this model uses backward induction to recover the tree.

• The Derman and Kani model: Starting from the at-the-money option, this model uses
forward induction to build the tree in a recursive way: for each node the call or put option
with the strike on the preceding node is used.

3.4 VOLATILITY MEASURES

3.4.1 Implied volatility

In cases in which the whole spectrum of prices is not available one must resort to some
interpolation. A possibility is to interpolate the volatility “smile”. The smile is the graph
of implied volatility plotted against different strike prices. If market data was generated by
a geometric Brownian motion, as assumed by Black–Scholes, the plot would be a scatter
around the same level, across the whole spectrum of strikes. This is not the case in many
markets. In Figure 3.2 we reported the smile observed on the dollar/euro exchange rate
option market in 3 October 2006 for the contract expiring in one month. The parabolic shape
typical of the Forex markets spots excess kurtosis on both sides of the distribution. Other
markets, such as the equity option market, are characterized by other typical shapes, such
as a decreasing relationship, meaning negative skew: downside movements are considered
more likely than upside movements of the same size. Thus, modelling and understanding the
shape of the smile amounts to modelling and understanding the non-normality of returns.

If the number of actively traded options is limited, or if one needs a better definition of
the probability distribution, one can resort to interpolation techniques. Three main tools are
available:

• Quadratic interpolation of the smile (Shimko, 1994). The smile is interpolated with a
quadratic regression and the fitted smile is substituted in the Black and Scholes formula.
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The probability distribution is then recovered by taking derivatives with respect to the
strike.

• Polynomial expansion (Jarrow and Rudd, 1982). The probability distribution is approxi-
mated by a fourth-degree Hermite polynomial expansion around the Gaussian distribution.
The model can be proved to be equivalent to a maximum entropy estimate of the implied
probability distribution with constraints on the first four moments.

• Mixtures of shifted log-normal distributions (Marris, 1999; Brigo and Mercurio, 2001).
The probability distribution is specified as a weighted geometric average of shifted log-
normal distributions in such a way as to fit the smile. The shift term is needed to yield
the volatility skew.

The dynamics of the volatility could be investigated along a second dimension, which
refers to different exercise dates. This is the so-called volatility term structure. The plot of
volatility against a set of strikes and maturities is called volatility surface. Dupire (1993,
1994) proposed a method to back out the volatility surface from market implied volatilities.
In a sense, Dupire’s idea is to move beyond the representation of the implied volatility smile
at a given future time into the dynamics of the volatility smile up to that time. This very
closely parallels the way in which implied trees techniques provide dynamics to the implied
probability concept.

3.4.2 Parametric volatility models

In many cases, derivative markets for a risk factor may be very illiquid or may fail to exist
at all. In this case, the inclusion of more structure in the model can help to exploit the few
data available, and to bridge together cross-section and time series estimation. Of course,
this comes at the cost of possible model misspecification.

GARCH Models

The pioneering model in volatility analysis is the AutoRegressive Conditional Heteroskedas-
ticity (ARCH) model, due to Engle (1982) and the Generalize version (GARCH), due to
Bollerslev (1986). The idea is to specify the volatility dynamics in discrete time with a
standard AutoRegressive Moving Average (ARMA) specification. For example, the model

rt = �t �t ∼ � �0	 �t�
�2

t = � + �1�
2
t−1 + �1�

2
t−1

(3.8)

is read as the GARCH(1, 1), corresponding to the ARMA(1, 1) specification assumed
for the variance. The idea is that, conditionally on the volatility observed at time t, the
distribution of returns is normal. Volatility, however, depends on past returns, so that the
unconditional distribution of returns is not normally distributed. Actually, it may be proved
that the dynamics of volatility induces excess kurtosis in the unconditional distribution of
returns. The GARCH model has been extensively applied to the modelling of financial time
series (see Bollerslev et al., 1992, for a review). It has not been widely used in option pricing
(even though Duan, 1995, provides an important exception).

The GARCH family of models has been extended along different lines to enhance the
ability of the approach to capture different features of the stochastic behaviour of different
markets. Among the main lines of the developments we recall:
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• Volatility asymmetry: Model specifications have been proposed to generate different
volatility impacts of positive and negative shocks to the returns process (GJR model,
Glosten et al., 1993; exponential GARCH model, Nelson, 1991).

• Non-normal conditional distribution: Sometimes, assuming that conditional returns are
normally distributed is not enough to explain the excess kurtosis in the return time series.
Model specifications have been proposed in order to allow fat-tails in the conditional
distribution as well. Bollerslev (1987) proposes to use a Student-t distribution specification
for the conditional distribution. Nelson (1991) proposes the Generalized Error Distribution
(GED) alternative.

• Persistence: The GARCH(1, 1) model is stationary in covariance if the sum �1 +�1 < 1,
meaning that after a shock volatility tends to drift back to a time-independent long
run value. Actually, there is evidence that shocks to volatility are more persistent. A
straightforward modification would be to set �1 + �1 = 1, so that variance is specified
as an integrated process (IGARCH, Engle and Bollerslev, 1986). This model can be
proved to be equivalent to the Exponentially Weighted Moving Average (EWMA) used
by RiskMetrics™ and very well known in the market. Integrated variance means that
following a shock in the returns the volatility change lasts forever. Even though the
model is very simple to work with, it may be the case that the degree of persistence
could look excessive. An alternative is to model volatility as a fractionally integrated
process (FIEGARCH, Bollerslev and Mikkelsen, 1996): this provides volatility with a
long-memory process, so that shocks to the returns decay very slowly in time.

Stochastic volatility models

Even though the GARCH approach to volatility modelling has been largely successful, a
quick look at the structure of the model shows that it could be enriched with much further
flexibility. In the GARCH family specification, the same shock plays two different roles:
it changes the period t return and it changes period t + 1 volatility. It could be useful to
increase the flexibility of the model by introducing a new shock to the variance that may be
independent of the shock to the returns. For example, we could specify the model

�2
t = � + �1�

2
t−1 + �1�

2
t−1 + �t (3.9)

Models like these are called stochastic volatility models, meaning that there is a source of
randomness affecting the variance independently of the shocks to the returns. Stochastic
volatility models have been much more developed in continuous time for pricing purposes.
The first idea that could actually come to mind is to model the instantaneous variance as a
geometric Brownian motion independent of the stochastic process followed by the returns.
This leads to the Hull & White (1987) model

dSi �t� = �r + �� �t�� Si �t� dt + � �t�Si �t� dz1

d� �t� = �� �t� dt + �� �t� dz2

(3.10)

with E�dz1	 dz2� = 0. This model is very easy to use for pricing purposes. Conditional on
volatility, in fact, the pricing formula used is that of Black and Scholes. The unconditional
price of an option is then simply obtained by integrating over the volatility scenarios and
noticing that by construction these scenarios are generated by a log-normal distribution.
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An alternative specification that is widely used in the market, and is the most promising
substitute for the Black–Scholes model, is due to Heston (1993):

dSi �t� = �r + �� �t�� Si �t� dt + � �t�Si �t� dz1

dh�t� = �
(
h − h�t�

)
dt + �

√
h�t� dz2

(3.11)

with h�t� ≡ �2�t� and E�dz1	 dz2� = 
. The instantaneous variance is modelled as a square
root process. This model is very familiar to the market because it reminds of the Cox,
Ingersoll and Ross model of the term structure of interest rates. The nature of the process
makes sure that volatility cannot be negative and, for some configuration of the parameters,
cannot even reach the zero barrier. The conditional volatility distribution is modelled as a
non-central chi-squared distribution, and the stationary distribution is gamma.

Local volatility models

Another class of models, called local volatility models, are based on the following specifi-
cation:

dSi �t� = �r + �� �t�� Si �t� dt + � �Si	 t� Si �t� dz (3.12)

The diffusion term is specified as a deterministic function of the asset an time. The traditional
model in this class is the Constant Elasticity of Variance (CEV) model (Cox, 1975). These
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models can be reconstructed to the interpolation techniques of the volatility surface discussed
above. (See, e.g., Brigo and Mercurio (2001) for the functional form of the volatility function
corresponding to the shifted log-normal distribution model.)

3.4.3 Realized volatility

Recent attention has been devoted to realized volatility. The basic idea is that instead of
postulating a model for the dynamics of the returns and their volatility we focus attention on
samples of squared returns as representative of the variance. The specification of variance
is then model-free, and model risk is avoided. The reduction in model risk is at the expense
of an increase in measurement risk. In very liquid markets, one could actually increase the
precision of the estimate by increasing the sampling, even at the intraday level (Andersen
et al., 2001, 2003). This, however, would encounter the problem that, at the intraday level,
market microstructure features and seasonality patterns may eventually increase the noise in
the estimates. As an alternative, a long-standing literature suggests the use of information
about prices at the beginning and end of the period (open and close) as well as high and low
quotes to enhance the efficiency of the estimator. This literature is based on the assumption
that the price follows a geometric Brownian motion. As an example of these proposals, we
report here the estimator proposed by Parkinson (1980). Under his model, realized variance
would be defined as
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�̂2
P = 1

T

T∑
i=1

[
�Hi − Li�

2

4 ln 2

]
(3.13)

where H and L represent the intra-period highest and lowest prices. Further contributions in
this field have been given by Garman & Klass (1980), Rogers & Satchell (1991), Yang &
Zhang (2000).

The relative explanatory power of implied and historical volatility remains an important
open issue. Figures 3.3 and 3.4 compare implied volatility with realized volatility (monthly
average) and RiskMetrics™ volatility. It is the at-the-money volatility of the dollar/euro
forex option which is a particularly liquid and efficient market. Notice that implied volatility
is very volatile, even with respect to the RiskMetrics™ volatility, which, as an integrated
process, is much more reactive to market movements.

3.5 IMPLIED CORRELATION

A peculiar feature of financial applications is the distinction between historical and
implied information. This duality, which we introduced in the univariate statistics section
(section 3.4.2), also shows up, of course, in the multivariate setting. On the one hand,
standard time series data from the market enable us to gauge the relevance of market
co-movements for investment strategies and risk management issues. On the other hand,
some derivative prices are dependent on market correlation: by inverting the prices of such
derivatives it is possible to recover the degree of co-movement that investors and financial
intermediaries credit to the markets. Of course, recovering implied information is subject to
the same flaws the we encountered in the univariate case. First, the possibility of backing
out this information in a neat way is limited by the market incompleteness problem, which
introduces noise in market prices. Second, the distribution backed out is the risk-neutral one
and a market price of risk could be charged by the market to the possibility that correlation
could move around. These problems are indeed compounded and, in a sense, magnified in
the multivariate setting, in which the uncertainty of the dependence structure among the
markets adds to that of the shape of marginal probabilities.

3.5.1 Forex markets implied correlation

The most straightforward case in which implied correlation can be extracted from the market
is provided in the Forex market because of the so-called “triangular arbitrage” relationship.
Consider the dollar/euro (e$	 E�, the euro/yen (eE	 Y� dollar/yen (e$	 Y� exchange rates.
Triangular arbitrage requires that

e$	 E = eE	 Ye$	 Y (3.14)

taking the logs and denoting �$	 E, �E	Y and �$	 Y the corresponding implied volatilities,
we have that

�2
$	 E

= �2
E	 Y + �2

$	 Y + 2
�E	 Y�$	 Y (3.15)
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from which


$	E = �2
$	E

− �2
E	 Y − �2

$	 Y

2�E	 Y�$	 Y

(3.16)

is the implied correlation between the euro/yen and the dollar/yen priced by the market.

3.5.2 Equity “average” implied correlation

A market practice is to recover an “average” measure of correlation from equity market
data. Consider the relationship between a market index volatility �M, and the corresponding
volatility of the constituent assets �i, and their correlations 
i	 j	 j	 i = 1	 2	 � � � 	 N .

�2
M =

N∑
i=1

wi�
2
i +

N∑
i=1

∑
j �=i


i	 jwiwj�i�j (3.17)

Notice that, under the assumption that assets are log-normally distributed, the relationship
is exact only if the market index is computed using the geometric average. In the standard
arithmetic average case, the above relationship postulated by the market can only be consid-
ered as an approximation. The market defines the “average correlation” as a number 
 such
that

�2
M =

N∑
i=1

wi�
2
i + 


N∑
i=1

∑
j �=i

wiwj�i�j (3.18)

Using implied volatility one can compute the “implied average correlation” as


 =
�2

M − N∑
i=1

wi�
2
i

N∑
i=1

∑
j �=i

wiwj�i�j

(3.19)

For sufficiently large N , we have


 =

⎡
⎢⎢⎣ �M

N∑
i=1

wi�i

⎤
⎥⎥⎦

2

(3.20)

3.5.3 Credit implied correlation

The most relevant application of implied correlation stems from the credit markets. From the
year 2003 a well-known international investment bank launched standard credit derivative
contracts referred to the aggregate credit losses (on a given notional amount) out of a set of
obligors representative of different markets. Postponing a full discussion of these products
to a later chapter of the book, it suffices to say that, by these contracts, agents may buy and
sell insurance on “tranches” of these losses (such as losses from 3% to 7% of the notional).
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As the value of such insurance for each obligor in the index is quoted and known from the
market of univariate credit derivatives (credit default swaps, CDSs), the value of insurance
on the aggregated losses is a function of correlation among the losses.

In order to grasp the point without getting into the details, assume that for any default in
the basket the loss insurance pays 1000 dollars. The expected payment for n losses is then
proportional to the joint probability of n defaults, that we denote by Q�n�. Denote by Qi the
default probability of each obligor. If default events were independent we would have

Q�n� =
n∏

i=0

Qi (3.21)

On the other hand, if defaults were perfectly dependent we would have instead Q�n� =
min�Q1	 Q2	 � � � 	 QN �, which is the upper Fréchet bound of joint probability. The valuation
of this insurance is linked to the dependence structure among the defaults of the obligors
in the set, and this clearly emerges if we express such dependence in a measure ranging
between −1 and +1, such as


 =
n∑

i=1
Q�i� − n∑

i=1

i∏
i=0

Qj

n∑
i=1

min �Q1	Q2	 � � � 	Qi� − n∑
i=1

i∏
i=0

Qj

(3.22)

which is a rank correlation figure.

3.6 HISTORICAL CORRELATION

3.6.1 Multivariate GARCH

Just as in the univariate case, a possible choice to model the non-normal joint distribution
of returns is to assume that they could be conditionally normal. A major problem with this
approach is that the number of parameters to be estimated can become huge very soon.
Furthermore, restrictions are to imposed to ensure that the covariance matrix be symmetric
and positive definite. Imposing the latter restriction in particular is not very easy. The most
general model of the covariance matrix dynamics is specified by arranging all the coefficients
in the matrix in a vector. The most well-known specification is, however, that called BEKK
(from the authors). Calling Vt the covariance matrix at time t, this specification reads

Vt = �′� + A′�t−1�t−1A + B′Vt−1B (3.23)

where �, A and B and are n-dimensional matrices of coefficients. Very often special
restrictions are imposed to the matrices in order to reduce the dimension of the estimation
problem. For example, typical restrictions are to assume that the matrices A and B are either
scalar or diagonal, thus limiting the flexibility of the representation to the estimation of the
steady-state covariance matrix.

In order to reduce the dimensionality of the problem, the typical recipe used in statistics
uses data compression methods: principal component analysis and factor analysis. Both
these approaches have been applied to the multivariate GARCH problem.
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Alexander (2001) proposes the so-called orthogonal GARCH model. The idea is to use
principal component analysis to diagonalize the covariance matrix and estimate a GARCH
model on the diagonalized model. Eigen vectors are then used to reconstruct the variance
matrix. The maintained assumption under this model is, of course, that the same linear trans-
formation diagonalizes not only the unconditional variance matrix but also the conditional
one.

Engle et al. (1990) resort instead to a factor GARCH representation of the kind

ri = ai +
N∑

j=1

�ijfj + �i (3.24)

where the dynamics of the common factors fj are modelled as a multivariate factor model.
In this way the dimension of the estimation problem is drastically reduced. Of course, again
some risk is left in model misspecification. An alternative computationally effective way to
solve the problem would be to separate the specification of the marginal distribution from
the dependence structure. This is typically done by means of copula functions, but a similar
proposal, within the GARCH family of models, was put forward by Engle. It is the model
surveyed below.

3.6.2 Dynamic correlation model

Consider a set of returns generated by univariate GARCH models. The standardized returns
�j	 t are distributed according to the standard normal distribution

�j	 t ≡
rj	 t

�j	 t

≈ � �0	 1� (3.25)

Notice that the pairwise conditional correlation of asset j with asset k is


jk	 t =
Et

(
rj	 trk	 t

)
√

E
(
r2
j	 t

)
E
(
r2
k	 t

) = Et

(
�j	 t�k	 t

)
(3.26)

Engle (2002) proposes to model such conditional correlations in an autoregressive framework

�jk	 t = 
jk + �


(
�j	 t−1�k	 t−1 − 
jk

)+ �


(
�jk	 t−1 − 
jk

)
(3.27)

which may be rewritten as

�jk	 t = 
jk

1 − �
 − �


1 − �


+ �



∑
i=1

�i−1

 �j	 t−i�k	 t−i (3.28)

It may be verified that the unconditional expectation yields
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The estimator proposed for conditional correlation is


̂jk	 t =
Et

(
�j�t�k	 t

)
√

E
(
�2

j	 t

)
E
(
�2

k	 t

) (3.30)

To express the procedure in matrix form, denote by Xt the matrix whose element in the jth
row and kth column is �jk	 t and denote by �t the vector of standardized residuals. We have

Xt = R
(
1 − �
 − �


)+ �
��t−1�
′
t−1 + �
Xt−1 (3.31)

The model is called Dynamic Conditional Correlation (DCC) and generalizes a framework
introduced in Bollerslev (1990) in which the correlation was kept constant (CCC). A very
appealing feature of the model is that the maximum likelihood estimation enables the use
of a two-stage procedure in which the univariate GARCH models are estimated for each
univariate series in the first stage and the correlation structure is estimated in the second
stage. This feature provides the model with great flexibility and casts a bridge between the
family of the parametrically structured multivariate GARCH models and another technique –
copula functions – that is widely used in modern finance, and which we are going to address
in the following section.

3.7 COPULA FUNCTIONS

Here we give a brief reference to a statistical concept that has been intensively applied to
multivariate problems in finance: copula functions. The reader interested in the details of
this subject with applications to finance is referred to the book by Cherubini et al. (2004)
and to the books by Nelsen (1999) and Joe (1997) for an in-depth treatment, albeit limited
to the mathematical and statistical formalization. Throughout this book, we will build on
these contributions to explore more and further frontier applications in the structured finance
field.

3.7.1 Copula functions: the basics

Actually, even at a first sight inspection, copula functions look like tools purposely designed
for structured finance applications. Copula functions represent in fact a flexible way to specify
marginal distributions and the dependence structure in a separate manner; in structured
finance, then they may enable us to neatly disentangle the sensitivity of a product to each
risk factor from the sensitivity to the co-movements among them. Typical structured finance
questions, such as ‘Are we long or short volatility or correlation?’ can be answered by in
turn assessing the sign of the position with respect to each risk factor and its volatility, and
then with respect to risk factors and their co-movements.

The basic technical idea that enables us to disentangle marginal distributions and their
dependence structures is the probability integral transformation. Given a random variable X
with distribution Hx(.), the integral transform u = Hx�X� is uniformly distributed in the unit
interval. This principle is used, for example, in Monte Carlo simulation to generate samples of
random variables from the Hx(.) distribution: one generates a uniformly distributed variable
u and then computes H−1

X �u� (the inverse is defined in a generalized sense, but we skip
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such technicalities here). Our task of representing a joint distribution of two variables X
and Y in terms of their marginal distributions boils down to the problem of specifying the
relationship

H�X	Y� = H�H−1
X �u�	H−1

Y �z�� = C�u	 z� (3.32)

The function C(.,.) is called the copula function and fully describes the dependence structure
between X and Y . Of course, not every arbitrary function can be well suited to play this
role. The requirements that have to met are, however, very easy to explain and absolutely
intuitive to grasp.

First of all, the function maps marginal distributions into the joint one, so that the range
of the function has to be the unit interval. We must then have

C�u	 z� � �0	 1�2 → �0	 1� (3.33)

The second requirement is that if one of the two events has probability 0, the joint has to be
0 (groundedness) and if one of the events has probability 1 the joint probability has to be
equal to the marginal probability of the other event.

C�u	 0� = C�0	 v� = 0 (3.34)

C�u	 1� = u C�1	 z� = z (3.35)

The third requirement is that a positive volume cannot have a negative measure (N -increasing
property). So, in dimension 2, given that u1 > u2 and v1 > v2

C�u1	 v1� − C�u1	 v2� − C�u2	 v1� + C�u2	 v2� ≥ 0 (3.36)

Alternatively, one could say, to a good degree of approximation, that a joint probability
has to be non-decreasing in the marginal probability: if the probability of one of the events
increases, the joint probability of the events cannot decrease.

The relationship between copula functions and joint distributions was formally proved by
Sklar (1959): every joint distribution can be written as a copula function taking the marginal
distributions as arguments and, conversely, a copula function taking marginal distributions
as arguments yields a joint distribution. It is this result that makes copula functions so
useful: they can be used to separately specify marginal distributions and their dependence
structure.

3.7.2 Copula functions: examples

As the first exercise in copula function theory, one may easily verify that the product function
uv satisfies the above requirements and qualifies as a copula function, the product copula
C⊥�u	 z�. The function min(u	 z) is also a copula, and the maximum value a copula function
can achieve. The minimum copula is instead max(u+v−1	 0). By taking these basic copulas
as building blocks one may prove that their weighted average is again a copula function,

C�u	 z� = �Cmin�u	 z� + �1 − � − ��C⊥�u	 z� + �Cmax�u	 z� (3.37)
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with 0 ≤ �	 � ≤ 1 and � + � = 1. This set of copula functions is called the Fréchet
family.

Extending this family to a general multivariate setting with dimension greater than 2
may be involved, as the number of possible combinations of perfect positive and negative
correlation increases exponentially.

Other multivariate copula functions are very easy to recover and are widely used even
for large dimension problems. Elliptical distributions are the most famous. Begin with the
multivariate normal distribution and simply define

C�u1	 u2	 � � � 	 uN � = ���−1�u1�	 �−1�u2�	 � � � 	 �−1�uN �
 R� (3.38)

where R is a correlation matrix. This is known as the Gaussian copula, and is one of the few
formulas ever recognized as tools to express quotes alternative to prices. As an extension,
one may substitute the multivariate Student t distribution to obtain

C�u1	 u2	 � � � 	 uN � = T�T−1�u1�	 T−1�u2�	 � � � 	 T−1�uN �
 R	 v� (3.39)

where v is the degree of freedom parameter.
Another well-known family of copulas is that of the so-called Archimedean class. These

are recovered from a decreasing generating function ���� satisfying some conditions, from
which one computes

C�u1	 u2	 � � � 	 uN � = �−1���u1� + ��u2�	 � � � 	 +��uN �� (3.40)

As an example, take ��t� = �t−a − 1�/a, which generates the famous Clayton copula

C�u1	 u2	 � � � 	 uN � = max��u−a
1 + u−a

2 + · · · + u−a
N − N + 1	 0�−1/a (3.41)

3.7.3 Copulas and survival copulas

Copula functions describing joint distributions of events are uniquely linked to copula
functions describing the joint distribution of the complement events. The latter are called
survival copulas (from the use in actuarial science). Take the bivariate case for simplicity:
assume that the joint distribution of two events may be represented by C�u	 z�. Then the
joint distribution that neither of the two events takes place has to be

C �1 − u	 1 − z� = 1 − u − z + C �u	 z� (3.42)

and C �u	 z� is called the survival copula of C�u	 z�.

Example 3.1 Bivariate digital options. Assume a digital put option paying one unit of
cash if both two stock market indexes S1 and S2 are below some given strike levels K1 and
K2 at exercise time T . Denote by Q1 and Q2 the marginal risk-neutral probabilities of S1

and S2. Then, the value of the option is

DP�S1	 S2	 t
 K1	 K2	 T� = v�t	 T�C�Q1�S1 ≤ K1�	 Q2�S2 ≤ K2�� (3.43)
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where v�t	 T� is the discount factor from time t to T . The value of the corresponding digital
call option – that is, the option paying one unit of cash if both the events S1 >K1 and S2 >K2

take place – will be

DC�S1	 S2	 t
 K1	 K2	 T� = v�t	 T� − DP�S1	 t
 K1	 T� − DP�S2	 t
 K2	 T�

+ DP�S1	 S2	 t
 K1	 K2	 T�

= v�t	 T�C�Q1�S1 > K1�	 Q2�S2 > K2�� (3.44)

where

DP�Si	 t
 Ki	 T� = v�t	 T�Qi�Si �Ki� i = 1	 2 (3.45)

is the value of the univariate digital put option written on asset Si. It may be easily verified
that the relationship between copulas and survival copulas enforce no-arbitrage relationships
between call and put options. Further examples of multivariate put call parities are reported
in Chapter 8 of Cherubini et al. (2004).

3.7.4 Copula dualities

Given a survival copula function C�u	 z�, the function

CC�u	 z� = 1 − C�1 − u	 1 − z� (3.46)

is called the co-copula function of C�u	 z�. Notice that using the relationship between a
copula and the corresponding survival one we obtain

CC�u	 z� = 1 − C�1 − u	 1 − z� = u + z − C�u	 z� (3.47)

which is called the dual of copula function C�u	 z�.
While copula functions spot the probability of both event A AND event B taking place,

the dual of the copula, or the co-copula determine the probability that either one event OR
the other takes place. Notice that since copulas are increasing in correlation, both co-copulas
and the dual of copulas are decreasing.

Example 3.2 First to default swap. Consider a contingent claim paying one unit of cash
if one of a basket of reference obligors defaults by a given time T . The price of this product
is clearly a co-copula, and the value is

FTD = v�t	T��1 − C�u1	 u2	 � � � 	 uN �� (3.48)

Notice that as the correlation among the risks increases, the value of the long position in the
FTD decreases.
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Example 3.3 Rainbow options. Consider an option written on the minimum of two under-
lying assets with strike price K. This option will be exercised if both assets S1 and S2 are
above the strike at the date of exercise. The payoff of this option is

max�min��S1	 S2� − K	 0� (3.49)

The probability of exercise under the risk-neutral measure is then

Pr�min�S1	 S2� > K� = Pr�S1 > K ∩ S2 > K� = C�Q1�S1 > K�	Q2�S2 > K�� (3.50)

An increase in correlation increases the probability of exercise of the option and raises its
value. A call option on the minimum is long correlation.

Consider now an option written on the maximum of the two underlying assets. The payoff
may be decomposed (see Stulz, 1987) as

max�min��S1	 S2� − K	 0� =max�S1 − K	 0� + max�S2 − K	 0�

− max�min��S1	 S2� − K	 0� (3.51)

The probability of exercise is then

Pr�max�S1	 S2� > K� = Pr�S1 > K� + Pr�S2 > K� − Pr�S1 > K ∩ S2 > K�

= Q1�S1 > K� + Q2�S2 > K� − C�Q1�S1 > K�	 Q2�S2 > K�� (3.52)

An increase in correlation now causes a decrease of the probability of exercise of the option
and its value. A call option on the maximum is short correlation.

An interesting question for the reader: Is the sign in the correlation position now due to
the use of max(.) or min(.) functions in the payoffs? The answer is a resounding no. As a
counterexample, the reader may verify that a put option on the maximum is long correlation,
while a put on the minimum is short. What is instead relevant, and this result will be used
repeatedly throughout the book, is the presence of AND rather than OR operators in the
payoff functions.

3.8 CONDITIONAL PROBABILITIES

As copula functions represent joint distributions, it is very easy to use them to express
conditional probabilities. In fact, using Bayes’ theorem it is immediate to prove, for example

Pr �HY ≤ z �HX ≤ u� = C �u	 z�

u
(3.53)

that is, the probability of observing an event in the lower tail for the first variable, given that
we also observe a lower tail event for the second variable. The corresponding conditional
probability in the upper tail can be accordingly derived using the survival copula defined
above

Pr �HY > z �HX > u� = 1 − u − z + C �u	 z�

1 − u
(3.54)
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It is also easy to prove that

Pr �HY ≤ z �HX = u� = �C �u	 z�

�u
(3.55)

Conditional distributions like these are extensively used in pricing. Particularly useful will
be the conditional Gaussian copula

Pr �HY ≤ z �HX = u� = �

(
�−1 �z� − √


 �−1 �u�√
1 − 


)
(3.56)

and the conditional Student t one

Pr �HY ≤ z �HX = u� = tv+1

(√
v + 1

t + t−1
v �u�2

t−1
v �z� − √


 t−1
v �u�√

1 − 


)
(3.57)

3.9 NON-PARAMETRIC MEASURES

Copula functions naturally lead to non-parametric measures of dependence or association.
The first straightforward idea is to compute correlation among the probability integral
transforms above. From the uniform distributions and copula results above we get


S =
∫ 1

0

∫ 1
0 �C �u	 z� − uz� du dz√∫ 1

0 u2 du −
(∫ 1

0 u du
)2
√∫ 1

0 z2 dz −
(∫ 1

0 z dz
)2

=
∫ 1

0

∫ 1
0 C �u	 z� du dz −

(
1
2

)2

√
1

12

√
1

12

= 12

1∫
0

1∫
0

C �u	 z� du dz − 3 (3.58)

where 
S is known as the rank correlation or Spearman’s rho. It may be verified that
C�u	 z� = min�u	 z� yields 
S = 1 and C�u	 z� = max�u + z − 1	 0� leads to 
S = −1. The
same results is true for other non-parametric measures such as Kendall’s �. The latter is
linked to copula from the relationship

� = 4

1∫
0

1∫
0

C �u	 z� dC �u	 z� − 1 (3.59)

Copula can then be specified in such as way as to fit a particular non-parametric figure. The
Fréchet family is the simplest example. Take the Spearman 
S figure and recover


S = � − � (3.60)

while for the Kendall’s tau figure the relationship is just a little more involved

� = �� − ���2 + � + ��/3 (3.61)
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For the Gaussian copula we have instead


S = �6/��arcsin�
/2� � = �2/��arcsin
 (3.62)

where 
 is the correlation parameter.

3.10 TAIL DEPENDENCE

Copula functions enable us to model non-normality in a multidimensional setting, by sepa-
rately addressing the aspects of non-normality. The first has to do with skewness and “fat
tails” in the marginal distributions. Market return distributions can be modelled by fitting
smile effects with the standard techniques, or by specifying appropriate time series models.
The second aspect has to do with the structure of dependence across the distribution, and
for extreme events. In particular, it is relevant whether extreme negative or positive move-
ments in one market are associated to extreme movements in the others. A measure of this
co-movement structure is the so-called tail dependence index. The tail dependence index
is a conditional distribution and it is directly linked to the copula function. Using Bayes’
theorem, the probability that a market experienced an event with probability z, conditional
on a second market experiencing an event with the same probability, is

Pr �HX �x� ≤ z �HY �y� ≤ z� = C �z	 z�

z
(3.63)

The lower tail dependence index is the limit of this conditional distribution for very extreme
events, that is for z approaching 0 from above. The lower tail dependence index is then:

�L = lim
v→0+

C �z	 z�

z
(3.64)

By the same token, the upper tail dependence index is linked to the survival copula, with z
approaching 1 from below:

�U = lim
v→1−

1 − 2z + C �z	 z�

1 − z
(3.65)

As an exercise it is easy to check that, for the product copula, both the upper and lower tail
dependence indexes are 0, and for the maximum copula they are both equal to 1. This is
obvious: if two risks are orthogonal they remain so in the tails, and if two risks are perfectly
dependent, such perfect dependence is preserved in the tails.

In cases of imperfect dependence it is not obvious whether such dependence fades away
in the tails or not. As the simplest case, take the Fréchet family of copula above and check,
simply using the linearity property of limits, that

�L = �U = � (3.66)

In other cases checking the tail index may not be so straightforward. However, it may
be easily proved that for the Gaussian copula we have �L = �U = 0, provided that the
correlation parameter 
 is different from 1, and extreme events are independent. A positive
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tail index indicates departure from the Gaussian behaviour. For the Student t copula, the
tail dependence parameter � (the same for upper and lower tails, due to symmetry of the
Student t distribution) is instead

� = 2tv+1

(√
v + 1

√
1 − 
√

1 + 


)
(3.67)

with tv+1 the tail of a univariate Student t distribution. So, Student t copula provides tail
dependence, except in the case 
 = −1.

3.11 CORRELATION ASYMMETRY

Dependence structure may also deviate from normality because of asymmetry. Technically,
we may denote symmetry, or radial symmetry, as the case in which a copula function is
equal to the corresponding survival copula, that is C�u	 z�=C �u	 z�. Elliptical distributions
display this symmetry relationship.

3.11.1 Correlation asymmetry: finance

Correlation asymmetry leads to the so-called phenomena of correlation smile or skew in
finance. The price of bivariate put and call options is consistent with correlation figures that
change across claims with different probabilities of exercise (that is different moneyness).

Example 3.4 Bivariate digital options. Consider the bivariate digital options in Exam-
ple 3.1 above. Assume that value of the univariate digital put option is 20% for each of the
underlying assets S1 and S2. For the sake of simplicity, we assume the risk-free discount
factor to be equal to 1 (v�t	 T� = 1). Consider a dependence structure represented by a
Gaussian copula with a correlation parameter equal to 30%. The value of a bivariate digital
call option is equal to

DP�S1	 S2	 t
K1	K2	 T� = ���−1�0�2�	�−1�0�2�
 0�3� = 0�06614

Consider now the value of a bivariate digital call option with the same strikes. By arbitrage,
the bivariate digital call is worth

DC�S1	 S2	 t
K1	K2	 T� = v�t	T� − DP�S1	 t
K1	 T�

− DP�S2	 t
K2	 T� + DP�S1	 S2	 t
K1	K2	 T�

= 1 − 0�2 − 0�2 + 0�06614 = 0�66614

Of course, by arbitrage the univariate call options have to be equal to 80% for both assets.
One may now verify that

DC�S1	 S2	 t
K1	K2	 T� = ���−1�0�8�	�−1�0�8�
 0�3� = 0�66614

and the price is consistent with the same copula function with same correlation parame-
ter 30%.
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Assume now that the dependence structure is Clayton, with parameter 0.2792. It may be
verified that

DP�S1	 S2	 t
K1	K2	 T� = Clayton�0�2	 0�2
 0�2792� = 0�06614

but now

DC�S1	 S2	 t
K1	K2	 T� = Clayton�0�8	 0�8
 0�2792� = 0�6484 < 0�66614

Of course, the correct price is again 0.66614. If it were not so, in fact, one could exploit
arbitrage gains. But what’s wrong? It is the fact that both the bivariate put and call options
are represented by the same copula function. This is possible with the Gaussian copula,
because it is symmetric, but it is not possible with the Clayton one. In the latter case, we
must pay attention to whether we specify the copula or the survival one – that is, whether
we calibrate bivariate put or call options.

An important corollary of the asymmetry problem is that copula functions that are not
symmetric provide asymmetric evaluations of call and put claims, given the same marginal
probabilities. Alternatively, one could say that call and put options price different implied
correlations.

Example 3.5 Bivariate digital options (continued). Take the same bivariate put option as
in the previous example:

DP�S1	 S2	 t
K1	K2	 T� = ���−1�0�2�	�−1�0�2�
 0�3� = 0�06614

Now compute the bivariate call options with the same marginals. Symmetry of the copula
function implies that

DC�S1	 S2	 t
K1	K2	 T� = ���−1�0�2�	�−1�0�2�
 0�3� = 0�06614

and that call and put options with the same marginals have the same value.
Now take the Clayton copula case with parameter

DP�S1	 S2	 t
K1	K2	 T� = Clayton�0�2	 0�2
 0�2792� = 0�06614

But now we have

DC�S1	 S2	 t
K1	K2	 T� = 1 − 0�8 − 0�8 + Clayton�0�8	 0�8
 0�2792� = 0�0484

and the bivariate call option is worth less than the corresponding put. As the price of both
the bivariate call and put is increasing in correlation, this means that put options, represented
using the Clayton copula, imply more correlation for downward movements than for upward
movements.
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3.11.2 Correlation asymmetry: econometrics

The question is now whether a correlation asymmetry phenomenon is borne out by the data.
While there is no wide evidence on implied information, apart for some markets, there is
a developed stream of literature pointing to a robust evidence of asymmetric correlation
in the equity market. In particular, correlation is found to be higher in periods of worse
performance of the stock market.

The evidence provided (see Longin and Solnik, 2001 and Ang and Chen, 2002, among the
first contributions) use the technique of the so-called exceedance correlation. Correlation
is computed for subsamples including observations at least � standard deviations above the
mean value and compared with that measured with observations at least � standard deviations
below the mean. For symmetric distributions the correlation measures obtained should be
equal. The typical finding is that the correlation in the below average sample is higher
than that in the corresponding above average sample. Correlation is also checked for non-
Gaussianity in the subsamples, showing in some cases (Ang and Chen, 2002) that departures
from normality are due to correlation in lower percentiles. The test is a quadratic distance
between the empirical exceedance figures and those of the normal distribution (which are
different from the correlation figure on the overall sample because of the conditioning bias).

A possible extension of analysis to non-parametric association measures, namely rank
correlation, is given by Dobric and Schmid (2005). They propose a measure, called condi-
tional rank correlation, that is in the same spirit as the exceedance correlation idea. They
observe that the Spearman rank correlation statistic can be written as


S =

1∫
0

1∫
0

C �u	 z� du dz −
1∫

0

1∫
0

uz du dz

1∫
0

1∫
0

min �u	 z� du dz −
1∫

0

1∫
0

uz du dz

(3.68)

From this representation one can easily devise a conditional rank correlation statistic


S �p
C �u	 z�� =

p∫
0

p∫
0

C �u	 z� du dz −
p∫

0

p∫
0

uz du dz

p∫
0

p∫
0

min �u	 z� du dz −
p∫

0

p∫
0

uz du dz

(3.69)

and for radial symmetric copulas


S �p
C �u	 z�� = 
S

(
p
C �u	 z�

)
(3.70)

which is exactly in the same spirit as exceedance correlation.

3.12 NON-EXCHANGEABLE COPULAS

A problem with the use of many copula functions is that they are exchangeable. The term
was first introduced in probability theory by De Finetti in the 1930s. A bivariate distribution
is deemed exchangeable if H�x	 y� = H�y	x�. It may easily be verified that all the copula
functions presented above are endowed with this “exchangeability” property.
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Is this a flaw or an advantage of copula functions? And, how can we extend the class
of copula functions to include some “non-exchangeable” ones? In order to answer the first
question, we have to investigate the economic meaning of exchangeability.

Consider two markets or currencies X and Y , with joint probability distribution H�X	Y �=
C�u	 z�. Non-exchangeability means that, for example

C�u	 z� > C�z	u� (3.71)

which implies that

Pr �HY ≤ z �HX ≤ u� = C �u	 z�

u
>

C �z	u�

u
= Pr �HX ≤ z �HY ≤ u� (3.72)

In plain terms, if we take u=0�5 and z=0�25, this says that the joint probability that market
Y falls below its lower quartile value, given that market X falls below its median value, is
higher than the probability that market X falls below its lower quartile, given that Y falls
below its median value.

In a sense, quoting a metaphorical statement that is sometimes used by analysts, one would
say: “when market X catches a cold, market Y takes pneumonia”. Non-exchangeability refers
then to a dominant role of a market or risk factor with respect to others. A somewhat close
concept is that of contagion: something that happens to a market propagates to the others
more than the other way around.

Example 3.6 German dominance. Before the euro, the German dominance phenomenon
was that whenever the German Deutschemark was weak against the dollar, peripheral cur-
rencies, such as the Italian lira, were weak against the Deutschemark and then even weaker
against the dollar. On the contrary, when peripheral currencies were weak against the dollar,
the stance of the Deutschemark was almost unaffected.

Example 3.7 Credit risk contagion. In contagion credit risk models default propagates
from one firm to the others because of commercial links from one to the other. Consider
a firm with many relationships with firms providing intermediate goods and services to it.
Assume the latter firms are not diversified and only provide goods to the leader company.
If the leader company defaults, all these firms will probably follow. If, instead, only one of
them is caught into a default, the impact on the leader firm may not be relevant.

We see that accounting for non-exchangeability enables us to catch empirical regular-
ities of markets and risk factors co-movements that are economically meaningful. Two
questions remain. How do we measure non-exchangeability? And how do we generate
non-exchangeable copulas?

In answer to the first question, a recent paper by Nelsen (2006) finds that the maximum
level of non-exchangeability is

0 ≤ sup �C�u	 z� − C�z	u�� ≤ 1/3 (3.73)

therefore, a natural measure of non-exchangeability is: 3 sup �C�u	 z� − C�z	u��.
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Techniques to generate non-exchangeable copulas have not been studied in detail. One,
due to Khoudraji (1995), is particularly useful. Given two exchangeable copula functions
C∗�u	 z� and C�u	 z�, the copula function

C∗�u�	 z��C�z1−�	 u1−�� (3.74)

is non-exchangeable.

3.13 ESTIMATION ISSUES

The dependence structure can be calibrated or estimated using time series data or a cross-
section of multivariate derivative prices, if available. Hybrid approaches combining implied
and historical information are also possible: one could in fact estimate the model by a
“historical simulation” approach by reconstructing a time series of implied probabilities and
estimating the dependence structure among them.

Whatever the data, two main approaches may be followed. We just touch upon them,
referring the reader to Cherubini et al. (2004) for details. The first approach is calibration.
Non-parametric dependence statistics (such as Spearman’s 
 or Kendall’s � quoted above)
are estimated on the data and the copula function is calibrated in such a way as to yield
the same parameter. The other approach is estimation and uses the maximum likelihood
methodology. In order to write the log-likelihood we define the copula density as the joint
density f�x	 y� that can be written as

c �u	 z� = �2C �u	 z�

�u�z
(3.75)

The joint density f�x	 y� can be written as

f �x	 y� = c �u	 z� fX �x� fY �y� (3.76)

where fi���	 i = X	Y , are the marginal density functions. Based on this result, the log-
likelihood from a sample of data Xj and Yj	 j = 1	 � � � 	N , can be written as

L =
N∑

j=1

c �u	 z� +
N∑

j=1

fX

(
Xj

)+ N∑
j=1

fY

(
Yj

)
(3.77)

Notice that the log-likelihood can be divided in two parts, the first involving the dependence
structure and the second involving the marginal densities. This feature makes available other
estimation procedures beyond standard MLE. In particular one can use:

(i) direct maximum likelihood estimation (MLE) of all the parameters of the model;
(ii) inference for the margin (IFM): the parameters of the marginal densities are estimated

in a first stage, and used to compute the marginal distributions and to estimate the
parameters of the copula density in the second stage;

(iii) canonical maximum likelihood (CML): ranks are used to estimate the copula function
parameters directly.
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3.14 LÉVY PROCESSES

In a paper dating back to 1973, Clark proposed the following model. Assume that you
sample the log-returns on an asset over intervals of length �. The returns you measure are
actually

ln

[
S
(
tj + �

)
S
(
tj

)
]

=
Nj∑
i=1

ri (3.78)

where Nj is the number of trades in the period [tj	 tj + �], and it is a random variable, while
ri are the log-returns of each transaction in the period, and are assumed i.i.d. Technically, the
�-period returns measured in this way are a subordinated stochastic process: more precisely,
the variable Nj is the subordinator. Clark showed that this structure actually destroys the
normality property of the returns (even though it is postulated at the transaction level),
inducing excess kurtosis in the distribution. The subordinator moves volatility and volumes
at the same time, so that in hectic phases of the market they both increase while they decrease
when the number of transactions is lower.

While the target of Clark’s approach was to jointly explain prices and volumes (see also
Epps and Epps, 1976), the main idea behind the approach has been rediscovered by the
most recent research on asset prices dynamics. The basic idea is that at some microscopic
level, so to speak, the price process is not continuous, but it is subject to jumps. Actually,
the genuine idea in Clark’s approach is that the price process evolves only by jumps (pure
jump process). This has led the recent research to propose a new dynamics for the prices of
financial assets of the kind

S �t� = S �0� exp

[
�t + �Z �t� +

N�t�∑
i=1

Xi

]
(3.79)

where N�t� is the number of jumps, represented by a Poisson process with intensity �. The
variables Xi represent jumps and are i.i.d. random variable with density f (.). For generality,
a diffusion part is also included in the process. The product of the intensity and the density
of the jumps (�f ) is defined as the Lévy density, and the dynamics of the log price defined
in this way is called a Lévy process. Actually, the rigorous definition of the Lévy process
is more involved, calling for the concept of infinitely divisible distribution and the Lévy–
Kintchine theorem (see Kyprianou et al., 2005, and Cont and Tankov, 2003 for a detailed
treatment). However, for all we need in this treatment, it is enough to say that a Lévy process
is a general process made up by diffusion and a jump part. Apart from the pioneering model
with jumps due to Merton (1976), the most well-known models among those that use jumps
are due to Madan and Seneta (1987) (the so-called variance gamma, VG, model) and to Carr
et al. (2002, 2003) (the so-called CGMY model). Finally, the most recent research in this
field has addressed an issue that remains open: how to address dependence among variables
driven by Lévy processes? An interesting result would be to identify the copula function that
links together the marginal Lévy processes in a joint distribution. This extension of Sklar’s
theorem to jump processes was addressed by Kallsen and Tankov (2006), who suggest the
adoption of Lévy copulas. Even though empirical applications are still on the way, this
extension appears to be an interesting direction to follow.
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4
Cash Flow Design

4.1 INTRODUCTION

The purpose of this chapter is to recall some elementary notions on structured bonds intro-
ducing, at the same time, some new notions concerning object-oriented programming. In
particular we will introduce a synthetic introduction to patterns and two new UML diagrams:
Activity diagrams and Sequence diagrams. Furthermore we will look in depth into the way
Java handles dates and time periods and will build a complete Java application for the
generation of a bond schedule. At the end of the chapter we will explain how to design a
cash flow generator for a coupon bond with indexed coupons.

Bond portfolio managers and other investors are faced with challenges when they consider
pricing and purchasing structured bonds: for example, the future cash flows generated by
structured bonds can be linked to unknown future interest rates or equity market level.
Moreover, structured bonds may include embedded options that allow the issuers to call
them in before maturity. What is a fair price for a structured bond? How can the risks of
a portfolio of structured bonds be managed? As we have already stated, these are the key
questions that should be addressed in this book. In order to find (or to suggest) an answer
to these questions we have, first of all, to address some more practical issues. Among these,
of special relevance for all practical purposes, are those related to the building of cash flows
and discounting factors. This, in turn, is related to the ability to manage calendar dates and
schedules, and this will be addressed immediately in the next section (and the bad news is
that this is not as simple as one would imagine) in which we also discuss some issue about
software design.

We will then take into consideration questions linked to the calculation of coupon cash
flows and nominal amounts. For educational purpose we can split both the coupon and the
repayment calculation into two main classes:

• known amounts (deterministic)
• unknown amounts (not deterministic).

As far as the coupon computation is concerned, this separation is equivalent to distinguish
fixed interest payment at known dates (deterministic cash flow) from floating coupon (includ-
ing in the latter options like caps and floors). Furthermore, many structured bonds provide
the issuers with the option to call in the bonds before maturity, at a set of prespecified times;
these times often correspond to the coupon dates of the bonds. Since options are contingent
claims, this kind of proviso transforms the principal amount into a stochastic variable mak-
ing it unpredictable. More precisely we will speak of callability when the issuer, as above,
has the right to repay the bond before the maturity date on the call dates. These bonds are
referred to as callable bonds. Most callable bonds allow the issuer to repay the bond at par.
In exchange for this, the issuer has to pay a premium, the so-called call premium. We will
speak of putability when the bond holder has the right to force the issuer to repay the bond
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before the maturity date on the put dates. From the point of view of exercise dates, we can
distinguish among three main categories:

• A Bermudan callable has several call dates, usually coinciding with coupon dates.
• A European callable has only one call date. This is a special case of a Bermudan callable.
• An American callable can be called at any time up to the maturity date.

The issuer’s decision whether or not to call in a given bond at a given time depends
critically upon the value of interest rates at that time. It is worth noting that, although it is
apparent that early exercise becomes more attractive to the issuer as interest rates decline,
computing the precise point at which early exercise is optimal requires, in general, intensive
numerical calculations. Other products contain different kinds of option (e.g. convertible
bonds) which give the owner the right to exchange the nominal repayment with a position
in equities according to a predefined conversion plan. Just to summarize some definitions,
we report a short list of the principal types of bond we will encounter throughout this book.

4.2 TYPES OF BONDS

4.2.1 Floaters and reverse floaters

Floaters and reverse floaters have a coupon that is not known at the time the bonds are
issued. Instead, the coupons depend on the movement of future interest rates. For both floater
and reverse floater bonds, coupons are determined by the prevailing LIBOR rate at the time
the previous coupon was paid. If interest rates go up, floater coupons go up and reverse
floater coupons go down. The coupon is reset periodically.

4.2.2 Convertible bonds

A convertible bond is the type of bond that can be converted into shares of stock in the
issuing company, usually at some pre-announced ratio. A convertible bond will typically
have a lower coupon rate for which the holder is compensated by the value of the holder’s
ability to convert the bond into shares of stock. In addition, the bond is usually convertible
into common stock at a substantial premium to its market value.

Other convertible securities include: exchangeable bonds – where the stock underlying the
bond is different from that of the issuer; convertible preferred stock (similar valuation-wise to
a bond, but lower in seniority in the capital structure); and mandatory convertible securities
(short duration securities, generally with high yields, that are obligatorily convertible upon
maturity into a variable number of common shares based on the stock price at maturity).

4.2.3 Equity-linked notes

An equity-linked note combines the characteristics of a zero or low coupon bond or note
with a return component based on the performance of a single equity security, a basket of
equity securities, or an equity index. In the latter case, the security would typically be called
an equity index-linked note. Equity-linked notes come in a variety of styles.
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Example 4.1 World Bank USD S&P 500® Equity Linked Bonds. In 10 November 2004,
The World Bank launched USD denominated bonds linked to the performance of the
S&P 500® Index. The bonds were placed with US investors, who would like to participate
in the upside of the performance of the equity index and want principal protection and a
minimum return. The bonds have an annual coupon of 1.15% and, at maturity, investors
receive 100% of the principal and a supplemental payment linked to the average annual
return of the S&P 500® Index as described in the terms of the notes. Deutsche Bank was
the sole underwriter for the bonds.

bond characteristics

Amount: USD 10 405 000
Settlement date: 26 November 2004
Maturity date: 26 November 2011
Coupon: 1.15%
Minimum redemption amount: 100%
Redemption amount: 100% plus a supplemental payment calculated based on the average
performance of the S&P 500® Index on annual fixing dates as described in the terms of the
notes
Denomination: USD 1000
Clearing system: DTC
ISIN Code: US459056HJ94

(Source: www.worldbank.org/debtsecurities).

4.2.4 Inflation-linked bonds

Inflation-linked bonds, in which either the principal amount or the coupon is indexed to
inflation. The interest rate is lower than for fixed rate bonds with comparable maturity.
However, as the principal amount grows, the payments increase with inflation. The gov-
ernment of the United Kingdom was the first to issue inflation-linked Gilts in the 1980s.
Treasury Inflation-Protected Securities (TIPS) and I-bonds are examples of inflation-linked
bonds issued by the US government.

4.2.5 Asset-backed securities

Asset-backed securities are bonds whose interest and principal payments are backed by
underlying cash flows from other assets. Examples of asset-backed securities are mortgage-
backed securities (MBS), collateralized mortgage obligations (CMOs) and collateralized debt
obligations (CDOs). A cash flow collateralized debt obligation, or cash flow CDO, is a
structured finance product that typically securitizes a diversified pool of debt assets. These
assets, corporate loans for instance, are transfered into different classes of bonds (known
as tranches) that pay investors from the cash flows they generate. Cash flow CDOs offer
investors access to a diversified and actively managed portfolio of credit risks in a single
investment that provides enhanced returns corresponding to each investor’s appetite for risk.
Investors in CDO senior and mezzanine bonds can earn high returns relative to similarly
rated asset-backed securities. CDO equity investors can earn leveraged returns. Cash flow
CDOs offer the asset managers and issuing institutions a range of benefits, depending on
the structure and motivation of each transaction. Asset managers can increase assets under
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management achieving some protection from market value volatility. Issuing institutions can
sell off portfolio credit risk, reduce regulatory capital requirements and lower funding costs.
Cash flow CDOs should be distinguished from market value CDOs, which are not discussed
in this chapter. Whereas market value CDOs are managed to payoff liabilities through the
trading and sale of collateral, cash flow CDOs are managed to payoff liabilities from the
interest and principal payments of collateral. This means that unlike market value CDOs,
cash flow CDOs focus primarily on managing the credit quality of the underlying portfolio
rather than the volatility of its market value.

4.3 TIME AND SCHEDULER ISSUES

When specifying payment dates and interest rates on swaps and bonds, it is very important
that both sides of the transaction agree on dates on which payments will occur and on how
the amounts payable will be calculated. In this context calendar and date manipulation issues
are of very special importance independently on the particular structured product you want
to trade. Handling the financial calendar is actually very complicated, so in this section we
briefly review only some of the more important aspects.

From a general point of view there are many different ways in which financial securities
require the generation of a time schedule from parametric data (first date, last date, time
interval between two consecutive dates, etc.) and the calculation of the number of days
between two dates. For example day count is used to compute the number of days in accrued
interest and the number of days in a coupon period. As we will see, the method of counting
days has an important influence on some derivatives securities. We have then two major
issues to be addressed in order to build a schedule:

• How to build schedule dates.
• How to calculate time interval between consecutive dates.

The first point should be very simple (if it were not for) holiday dates or, more generally,
non-business days. In this case we need to “adjust” the date, choosing an appropriate business
day as near as possible to the original date. How to do this is discussed below.

4.3.1 Payment date conventions

We refer to a “Business Day Convention” as a convention of adjusting dates specified
or determined in respect of a transaction, e.g. a payment or fixing date. As we said, the
adjustment is necessary because the date in question may fall on a day that is not a “business
day”.

Under the 2000 ISDA Definitions, a business day in relation to a particular place (e.g.
Tokyo) is a day on which commercial banks and foreign exchange markets settle payments
and are open for general business in that place (i.e. Tokyo). If place is not specified, the
business day will be determined by reference to the currency payable on the particular
payment date by reference to the financial centres indicated for such currency set out in the
2000 ISDA Definitions or the Annex. For example, if euro is the currency of payment, the
TARGET settlement day will be deemed to the business day in the absence of any other
agreement. If more than one currency is involved, the business day would be determined in
respect of each such currency.
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The relevant business day conventions are:

• Following business day convention, where the date will be the first following day that
is a Business Day.

• Modified following business day convention, where the date will be the first following
day that is a business day (i.e. same as following business day convention) unless the
first following business day is in the next calendar month, in which case that date will be
the first preceding day that is a business day. So if the date specified is “28 February”
and the first following business day is 1 March, the date will instead be 27 February (if
it is a business day).

• Preceding business day convention, where the date is the first preceding date that is a
business day.

• Modified preceding business day convention. The rationale of this convention is similar
to the modified following business day described above. In this case the date will be the
first preceding day that is a business day unless this day is in the previous month, in
which case that date will be the first following business day.

• End of month. Using the end of month convention would involve picking the last good
business day in the month.

• IMM. International Money Market or IMM days are the third Wednesday in March, June,
September and December.

Let us now discuss the other relevant aspect: how to count days between two dates.

4.3.2 Day count conventions and accrual factors

An accrual method or day count convention is used to calculate an accrual factor, which
represents the fraction of a year that relates to a given period. There are two components that
make up an accrual factor. The first component uses a day count convention to determine
how many days fall in the accrual period, which will be the numerator in the calculation
of the accrual factor. The second component is a day count convention to determine the
number of days that make up a full period, which will be the denominator in the calculation
of the accrual factor.

In Table 4.1 we report the description of some convention currently used. Please note that
this table is not complete, and for all operational purpose we strongly advise the reader to
consult ISDA papers for precise and up to date definitions.

Table 4.1 Some conventions currently in use

Accrual method Description

365/360 The number of accrued days is calculated on the basis of a year of 365 days.
The accrual factor is the number of accrued days divided by 360.

Actual/365 The number of accrued days is equal to the actual number of days between the
effective date and the terminating date. The accrual factor is the number of
accrued days divided by 365.

Actual/360 The number of accrued days is equal to the actual number of days between the
effective date and the terminating date. The accrual factor is the number of
accrued days divided by 360.

Actual/Actual The number of accrued days is equal to the actual number of days between
the effective date and the terminating date. Calculation of the accrual factor
assumes the year basis to be 365 days for non-leap years and 366 for leap years.



80 Structured Finance

Table 4.1 (Continued)

Accrual method Description

If a short stub period (<1 year) contains a leap day, the number of days is
divided by 366, otherwise the number of days is divided by 365.

30/360 (ISDA) The number of accrued days is calculated on the basis of a year of 360 days
with 12 30-day months with two exceptions. First, if the last date of the accrual
period falls on the 31st of a month, and the first date of the period falls on a
day other than the 30th or 31st of a month, then the month that includes the
last day will be considered to have 31 days. Second, if the last date of the
accrual period falls on the last day of February, the month of February will not
be extended to a 30-day month. The accrual factor is calculated as the number
of accrued days divided by 360.

30E/360 The number of accrued days is calculated on the basis of a year of 360 days
with 12 30-day months. If either the first date or last date of the accrual period
falls on the 31st of a month, that month will be shortened to a 30-day month. If
the last day of the accrual period falls on the last day of February, the month
of February will not be extended to a 30-day month. The accrual factor is
calculated as the number of accrued days divided by 360.

4.4 JSCHEDULER

In this section we describe a simple Java application designed to build a generic schedule
from initial data in parametric form. Our approach will be to follow as closely as possible a
correct object-oriented approach, so we will list all the classes we need to do our job. Since
we would like to provide the reader with concrete software tools we will describe, step by
step, the implementation of the code starting from the beginning: how Java handles calendar
and date.

4.4.1 Date handling in Java

The core language offers several classes for dealing with dates and times:

* java.util.GregorianCalendar (a subclass of the abstract Calendar class.)
* java.util.Date
* java.text.DateFormat and its subclass java.text.SimpleDateFormat

The GregorianCalendar can be used to represent a specific date according to the
Gregorian calendar (and the Julian calendar before that). Methods are provided to com-
pare calendar objects such as whether one date came before or after another. The
java.util.Calendar cbase class, which is abstract, holds static methods that give
information such as the current date and time. For example if you type

Calendar this_moment = Calendar.getInstance ();
System.out.println(this_moment);

you will get a string like this
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java.util.GregorianCalendar[time=1147876622875,areFieldsSet=
true,areAllFieldsSet=true, lenient=true,zone=sun.util.
calendar.ZoneInfo[id="Europe/Berlin",offset=3600000,
dstSavings=3600000,useDaylight=true,transitions=143,lastRule
=java.util.SimpleTimeZone[id=Europe/Berlin,offset=3600000,
dstSavings=3600000,useDaylight=true,startYear=0,startMode=2,
startMonth=2,startDay=-1,startDayOfWeek=1,startTime=3600000,
startTimeMode=2,endMode=2,endMonth=9,endDay=-1,endDayOfWeek
=1,endTime=3600000,endTimeMode=2]],firstDayOfWeek=2,
minimalDaysInFirstWeek=4,ERA=1,YEAR=2006,MONTH=4,
WEEK_OF_YEAR=20,WEEK_OF_MONTH=3,DAY_OF_MONTH=17,DAY_OF_YEAR
=137,DAY_OF_WEEK=4,DAY_OF_WEEK_IN_MONTH=3,AM_PM=1,HOUR=4,
HOUR_OF_DAY=16,MINUTE=37,SECOND=2,MILLISECOND=875,
ZONE_OFFSET=3600000,DST_OFFSET=3600000]

in which you can find (in a patient manner) everything you want to know about the present
time. To keep track of time, Java counts the number of milliseconds from the start of
1 January 1970. This means, for example, that 2 January 1970, began 86 400 000 milliseconds
later. Similarly, 31 December 1969, began 86 400 000 milliseconds before 1 January 1970.
The Java Date class keeps track of those milliseconds as a long value. Because long is
a signed number, dates can be expressed before and after the start of 1 January 1970. The
largest positive and negative values expressible by the long primitive can generate dates
forward and backward about 290 000 000 years, which suits most people’s schedules. The
Date class, found in the java.util package, encapsulates a long value representing a
specific moment in time. One useful constructor is Date(), which creates a Date object
representing the time the object was created. The getTime() method returns the long
value of a Date object.

The class DateFormat can generate several date and time strings. One purpose of the
DateFormat class is to create strings in ways that humans can easily deal with them.
However, because of language differences, not all people want to see a date in exactly the
same way. Someone in England may prefer to see “25 December 2000”, while someone
in the United States may be more accustomed to seeing “December 25, 2000”. So when
an instance of a DateFormat class is created, the object contains information concerning
the particular format in which the date is to be displayed. To use the default format of the
user’s computer, you can apply the getDateInstance method to create the appropriate
DateFormat object:

DateFormat df = DateFormat.getDateInstance();

The DateFormat class is found in the java.text package.
You can convert a Date object to a string with the format method. This is shown in the

following demonstration program:

import java.util.*;
import java.text.*;

public class NowString {
public static void main(String[] args) {
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Date now = new Date();
DateFormat df = DateFormat.getDateInstance();
String s = df.format(now);
System.out.println("Today is " + s);

}
}

The getDateInstance method shown in the code above, with no arguments, creates
an object in the default format or style. Java also provides some alternative styles for
dates, which you can obtain through the overloaded getDateInstance(int style).
DateFormat also provides some ready-made constants that you can use as arguments
in the getDateInstance method. Some examples are SHORT, MEDIUM, LONG and
FULL, which are demonstrated in the program below:

import java.util.*;
import java.text.*;

public class StyleDemo {
public static void main(String[] args) {

Date now = new Date();

DateFormat df = DateFormat.getDateInstance();
DateFormat df1 = DateFormat.getDateInstance

(DateFormat.SHORT);
DateFormat df2 = DateFormat.getDateInstance

(DateFormat.MEDIUM);
DateFormat df3 = DateFormat.getDateInstance

(DateFormat.LONG);
DateFormat df4 = DateFormat.getDateInstance

(DateFormat.FULL);
String s = df.format(now);
String s1 = df1.format(now);
String s2 = df2.format(now);
String s3 = df3.format(now);
String s4 = df4.format(now);

System.out.println("(Default) Today is " + s);
System.out.println("(SHORT) Today is " + s1);
System.out.println("(MEDIUM) Today is " + s2);
System.out.println("(LONG) Today is " + s3);
System.out.println("(FULL) Today is " + s4);

}
}

That program outputs the following:

(Default) Today is Nov 8, 2000
(SHORT) Today is 11/8/00
(MEDIUM) Today is Nov 8, 2000
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(LONG) Today is November 8, 2000
(FULL) Today is Wednesday, November 8, 2000

You can also use the DateFormat class to create Date objects from a String, via the
parse() method. This particular method can throw a ParseException error, so you
must use proper error-handling techniques. A sample program that turns a String into a
Date is shown below:

import java.util.*;
import java.text.*;

public class ParseExample {
public static void main(String[] args) {

String ds = "November 1, 2000";
DateFormat df = DateFormat.getDateInstance();
try {

Date d = df.parse(ds);
}
catch(ParseException e) {

System.out.println("Unable to parse " + ds);
}

}
}

The parse() method is a useful tool for creating arbitrary dates.
Another way to create an object representing an arbitrary date is to use the following

constructor of the GregorianCalendar class, found in the java.util package:

GregorianCalendar(int year, int month, int date)

Note that for the month, January is 0, February is 1, and so on, up to December, which
is 11. Since those are not the numbers most of us associate with the months of the year,
programs will probably be more readable if they use the constants of the parent Calendar
class: JANUARY, FEBRUARY and so on. For example, for

GregorianCalendar firstFlight = new GregorianCalendar(2006,
CalendarMAY, 17);

a shorter form is available

GregorianCalendar firstFlight = new GregorianCalendar
(2006, 05, 17);

Previously we explained how to turn Date objects into Strings. You will do the same
again; but first, you need to convert a GregorianCalendar object to a Date. To
do so, you will use the getTime() method, which GregorianCalendar inherits
from its parent Calendar class. The getTime() method returns a Date correspond-
ing to a GregorianCalendar object. You can put the whole process of creating a
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GregorianCalendar object, converting it to a Date, and getting and outputting the
corresponding String in the following program:

import java.util.*;
import java.text.*;

public class Flight {

public static void main(String[] args) {
GregorianCalendar firstFlight=new GregorianCalendar(1903,

Calendar.DECEMBER, 17);
Date d = firstFlight.getTime();
DateFormat df = DateFormat.getDateInstance();
String s = df.format(d);
System.out.println("First flight was " + s);

}
}

Sometimes it is useful to create an instance of the GregorianCalendar class represent-
ing the day the instance was created. To do so, simply use the GregorianCalendar
constructor taking no arguments, such as:

GregorianCalendar thisday = new GregorianCalendar();

Note the similarities between the Date() constructor and the GregorianCalendar()
constructor: both create an object, which in simple terms, represents today.

The GregorianCalendar class offers methods for manipulating dates. One useful
method is add(). With the add() method, you can add such time units as years, months
and days to a date. To use the add() method, you must supply the field being increased, and
the integer amount by which it will increase. Some useful constants for the fields are DATE,
MONTH, YEAR and WEEK_OF_YEAR. One important side effect of the add() method is
that it changes the original date. Sometimes it is important to have both the original date and
the modified date. Unfortunately, you cannot simply create a new GregorianCalendar
object set equal to the original. The reason is that the two variables have a reference to one
date. If the date is changed, both variables now refer to the changed date. Instead, a new
object should be created. The following example will demonstrate this:

import java.util.*;
import java.text.*;

public class ThreeDates {
public static void main(String[] args) {

GregorianCalendar gc1 = new GregorianCalendar(2000,
Calendar.JANUARY, 1);

GregorianCalendar gc2 = gc1;
GregorianCalendar gc3 = new GregorianCalendar(2000,

Calendar.JANUARY, 1);
//Three dates all equal to January 1, 2000
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gc1.add(Calendar.YEAR, 1);
//gc1 and gc2 are changed
DateFormat df = DateFormat.getDateInstance();

Date d1 = gc1.getTime();
Date d2 = gc2.getTime();
Date d3 = gc3.getTime();

String s1 = df.format(d1);
String s2 = df.format(d2);
String s3 = df.format(d3);

System.out.println("gc1 is " + s1);
System.out.println("gc2 is " + s2);
System.out.println("gc3 is " + s3);

}
}

After the program is run, gc1 and gc2 are changed to the year 2001 (because both objects
are pointing to the same underlying date representation, which has been changed). The
object gc3 is pointing to a separate underlying date representation, which has not been
changed.

4.4.2 Data models

JScheduler will be a very simple application that will produce a generic schedule composed
by a vector of dates. The input data should be as simple as possible, in particular we want
to produce the schedule starting from a reduced set of parameters which are:

• First date
• First regular date
• Last date
• Last regular date
• Interval
• Day count
• Market
• Day convention.

The appearance of the control panel is shown in Figure 4.1.
The reason you must distinguish between the first date and first regular date (and the same

for last) is due to the possibility of handling one or two stub periods. By default, values of
the first date and the first regular date will be the same (and the same is true for the last date).
The first regular date and the last regular date identify the period with regular frequency (in
which the interval between two consecutive dates is the same). If there is a stub period at
the beginning of our schedule, one has to put the value of the first date different from that
of the first regular date, the interval between these two dates is the initial stub period. The
same can be done if one wants to put a final stub period, in this case values of the last date
and the last regular date should be different from each other. The parameter Interval refers
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Figure 4.1 The JScheduler panel control

to the periodicity of the regular section of the scheduler; it is a parameter with a predefined
set of possible values which are identified by the following constant:

public static final int daily = 0;
public static final int weekly = 1;
public static final int biweekly = 2;
public static final int monthly = 3;
public static final int quarterly = 4;
public static final int fourmonthly = 5;
public static final int semiannual = 6;
public static final int annual = 7;
public static final int expiry = 9;

These must be defined in a particular class, as we will soon see. The parameter “Day count”
refers to the convention followed for day counting as described in Section 4.3.2. Possible
values for this parameter are:

public static final int _actact = 0;
public static final int _365act = 1;
public static final int _act365 = 2;



Cash Flow Design 87

public static final int _act360 = 3;
public static final int _a30360 = 4;
public static final int _e30360 = 5;
public static final int _365360 = 6;
public static final int _365365 = 7;

Market parameter is related to the market calendar of bank holidays, but for the moment we
can neglect this constant since we will not use it. Finally, the field “Day convention” will
permit the user to define the particular convention followed by the calculation engine for
those days that are not business days. Possible values for this parameter are:

public static final int unadjusted = 0;
public static final int preceding = 1;
public static final int following = 2;
public static final int modpreceding = 3;
public static final int modfollowing = 4;

The calculation engine should be able to produce schedules for any combination of values
of these parameters, but what if we want to write a code which, in addition, could be
easily modified if one or more of the possible values for the previous parameters undergo a
change? Let us suppose, for example, that we are delivering the engine when we suddenly
discover that our customers wish to handle a new bond that is characterized by a two-month
periodicity (this always happens the day before delivery!). In this case we should modify
the range of possible values for the parameter Interval and, in addition, we should modify
the calculation engine in order to take into account this new possible value. From a general
point of view this could be a complicated matter! The essence of good coding is reusability;
this means that when we design our code we should always keep in mind the possibility
that in future our code might need to be extended. If we have designed it well, then we will
simply have to add features; on the other hand, if we have designed it badly, then we will
have to rewrite the existing code. So the problem is: How should we design our procedures
in order to maximize reusability or, in other words, to minimize the rewriting of existing
code?

A very powerful answer to this problem consists in the use of abstract classes which, in
Java, are called “interface”. The advantage in using interfaces is that we can write multiple
classes that implement the same interface and use them without rewriting all the interface
routines. This is, beyond any doubt, one of the most important advantages of object-oriented
design.

Let us see how to implement this in practice. We will define a class CPeriod which
contains all the methods we need to generate a schedule. First, let us look at the properties
and the constructor of the class:

public class CPeriod {

/* properties *
private GregorianCalendar firstDate;
private GregorianCalendar lastDate;
private GregorianCalendar firstRegularDate;
private GregorianCalendar lastRegularDate;
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private int codDayCount = -1;
private int codAdjustment = -1;
private int codFrequency = -1;

private ArrayList unadjustedDates;
private ArrayList adjustedDates;
private double intervalBetweenDates[];

public CPeriod(String firstDate,
String lastDate,
String firstRegularDate,
String lastRegularDate,
int codDayCount,
int codAdjustment,
int codFrequency)

{
DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);
try
{

System.out.println("");

Date _firstDate = df.parse(firstDate);
Date _lastDate = df.parse(lastDate);
Date _firstRegularDate = df.parse(firstRegularDate);
Date _lastRegularDate = df.parse(lastRegularDate);

this.firstDate = new GregorianCalendar();
this.lastDate = new GregorianCalendar();
this.firstRegularDate = new GregorianCalendar();
this.lastRegularDate = new GregorianCalendar();

unadjustedDates = new ArrayList();
adjustedDates = new ArrayList();

this.firstDate.setTime(_firstDate);
this.lastDate.setTime(_lastDate);
this.firstRegularDate.setTime(_firstRegularDate);
this.lastRegularDate.setTime(_lastRegularDate);

this.codFrequency = codFrequency;
this.codDayCount = codDayCount;
this.codAdjustment = codAdjustment;

}
catch(ParseException e)
{

System.out.println("Unable to parse String Date");
}

}
...

}
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CPeriod has 10 properties

private GregorianCalendar firstDate;
private GregorianCalendar lastDate;
private GregorianCalendar firstRegularDate;
private GregorianCalendar lastRegularDate;

private int codDayCount = -1;
private int codAdjustment = -1;
private int codFrequency = -1;

private ArrayList unadjustedDates;
private ArrayList adjustedDates;
private double intervalBetweenDates[];

We have already described the first four parameters (we note only the use of the
GregorianCalendar type). codDayCount, codAdjustment and codFrequency
are three integer values which contain the information about the particular conventions fol-
lowed in the building of schedule; finally we have two ArrayList which contain the set
of dates (unadjusted and adjusted) produced by the calculation engine and a double array
whose elements are time intervals between consecutive dates (the time unit is the year).

The createSchedule method is the most important procedure of our class. In this imple-
mentation we use the interface concept in order to write a method that can build a schedule
without knowing the periodicity of the schedule itself. This can be done using an interface –
a class in which all methods are defined as abstract.

public interface IInterval
{

public abstract int period();
public abstract int periodMultiplier();
public abstract String periodCode();

}

This interface has three methods, the first, period(), should return an integer that spec-
ifies the time unit of the interval (defined in the class GregorianCalendar in the
java.util package), periodMultiplier() specifies the number of time units of the
interval and, finally, periodCode() returns a string code. Note that none of the previous
methods returns a specific value since they are all abstract. The concrete implementation
is demanded to other classes which are specialization of IInterval. For example a
semi-annual periodicity is implemented with the following class:

public class CInterval_Semiannual implements IInterval
{

public int period() {
// TODO Auto-generated method stub
return GregorianCalendar.MONTH;

}
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public int periodMultiplier() {
// TODO Auto-generated method stub
return 6;

}

public String periodCode() {
return "6M";

}
}

Note that, in this case, in place of the keyword extends we will find implements. We
can build a set of classes each implementing a particular time interval, and the complete
hierarchy is shown in Figure 4.2.

CInterval_Daily

IInterval

CInterval_Quarterly

CInterval_Semiannual

period()

period()

period()

interface

day : int

month : int
year : int

period()

period()

period()

periodCode()

periodCode()

periodCode()

periodCode()

periodCode()

periodCode()

periodMultiplier()

periodMultiplier()

periodMultiplier()
periodMultiplier()

periodMultiplier()

periodMultiplier()

CInterval_Monthly

CInterval_Annual

Figure 4.2 CInterval class strucuture



Cash Flow Design 91

Let’s go a step forward and define a class that can be used to build a generic object of
type Interval, we refer to this class as a “factory”. This is the implementation of the class
CInterval_Factory:

public class CInterval_Factory {

public static final int daily = 0;
public static final int monthly = 1;
public static final int quarterly = 2;
public static final int semiannual= 3;
public static final int annual = 4;

public IInterval createInstance(int code)
{
switch(code)
{
case daily:

return new CInterval_Daily();
case monthly:

return new CInterval_Monthly();
case quarterly:

return new CInterval_Quarterly();
case semiannual:

return new CInterval_Semiannual();
case annual:

return new CInterval_Annual();
}
return null;

}
}

The reason for this apparent complication should soon be clear; for the moment we ask the
reader to note that this class is actually very simple. We define a set of constant for the most
important kind of periodicity and we then insert a single method: createInstance().
This method simply takes an integer value as input which codifies the particular time interval
and returns the corresponding class. Please note that the signature of this method

public IInterval createInstance(int code)

declares that the type of the object returned is IInterval (the interface class previously
described). If you remember our discussion about abstraction in Chapter 2, you should not
be surprised to find that the method itself actually returns objects of different types. In fact
all these objects are derived from the interface IInterval and one of the most important
consequences of inheritance is the complete compatibility among a class and its subclasses.

The Factory class is used by the createSchedule() method in which we create an
object of type CInterval_Factory

CInterval_Factory factoryInterval = new CInterval_Factory();
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Figure 4.3 CInterval Factory pattern

this object is then used to create an instance of the appropriate class for periodicity handling

IInterval freq = factoryInterval.createInstance(codFrequency);

Note that the “freq” object is defined to be of type IInterval, and codFrequency
is the parameter that specifies what is the particular object we need. The complete code of
the createSchedule() method is then

public ArrayList createSchedule()
{

GregorianCalendar currentDate = (GregorianCalendar)
firstRegularDate.clone();
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/* create an object of type Interval */
CInterval_Factory factoryInterval
= new CInterval_Factory();
IInterval freq = factoryInterval.createInstance
(codFrequency);

if(firstDate.before(firstRegularDate))
unadjustedDates.add(firstDate);

while(currentDate.before(lastRegularDate))
{

unadjustedDates.add(currentDate.clone());
currentDate.add(freq.period(),freq.period
Multiplier());

}
unadjustedDates.add(currentDate.clone());

if(lastDate.after(lastRegularDate))
unadjustedDates.add(lastDate);

return unadjustedDates;
}

The method produces a schedule by means of the method add() of the class
GregorianCalendar, note that in this method period and periodMultiplier are
return values of the object freq. What is the advantage of this apparently cumbersome
design? Let’s suppose that we need to extend our program in order to consider a two-month
periodicity. In this case we have simply to perform two operations:

1. Add a new class:

public class CInterval_Bimonthly implements IInterval {

public int period() {
// TODO Auto-generated method stub
return GregorianCalendar.MONTH;

}

public int periodMultiplier() {
// TODO Auto-generated method stub
return 2;

}

public String periodCode() {
// TODO Auto-generated method stub
return "2M";

}
}

which implements the same interface of the other classes.
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2. Update the Factory class, including a new branch for the switch statement and a new
constant for the identification of the chosen periodicity:

public class CInterval_Factory {
public static final int daily = 0;
public static final int monthly = 1;
public static final int quarterly = 2;
public static final int semiannual = 3;
public static final int annual = 4;
public static final int bimonthly = 5;

public IInterval createInstance(int code)
{

switch(code)
{
case daily:

return new CInterval_Daily();
case monthly:

return new CInterval_Monthly();
case quarterly:

return new CInterval_Quarterly();
case semiannual:

return new CInterval_Semiannual();
case annual:

return new CInterval_Annual();
case bimonthly:

return new CInterval_Bimonthly();
}
return null;

}
}

We do not need to modify any other part of the code, in particular we do not touch class
CPeriod or other classes not connected with the periodicity. The new structure of interval
classes is shown in Figure 4.4.

The same pattern can be followed implementing the adjustSchedule() method
which, as the name itself suggests, perform all the calculations needed to adjust a holiday
date into a working day according to a specified convention. The source code of the method
is reported below:

public ArrayList adjustSchedule()
{

GregorianCalendar date = null;
CDateUtility dateUtility = new CDateUtility();

Iterator i = unadjustedDates.iterator();

if(codAdjustment > 0)
{
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Figure 4.4 The new strucuture of Interval classes

/* create an object of type Day Adjustment */
CDayAdjustment_FactoryfactoryDayAdj =
new CDayAdjustment_Factory();
IDayAdjustment adj =
factoryDayAdj.createInstance(codAdjustment);

while(i.hasNext())
{
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date = (GregorianCalendar)
((GregorianCalendar)i.next()).clone();
if(dateUtility.IsHoliday(date))

adj.modify(date);
adjustedDates.add(date);

}
}
else
{

System.out.println("Code not valid!");
}
return adjustedDates;

}

and the structure of the day adjustment classes is reported in Figure 4.5.

import

CDayAdjustment_Factory

CDayAdjustment_Preceding

CDayAdjustment_Following
IDayAdjustment

CDayAdjustment_ModPreceding

CDayAdjustment_ModFollowing

Modify()

Modify()

Modify()

Modify()

Modify()
instantiate

instantiate

instantiate

instantiate

following : int
modfollowing : int
modpreceding : int
preceding : int
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createInstance()
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Figure 4.5 Day adjustment classes

The interface is very simple

public interface IDayAdjustment
{

public abstract void modify(GregorianCalendar
unadjustedDate);
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public CDateUtility dateUtility = new CDateUtility();
}

The method “modify” takes as input an object of type GregorianCalendar which rep-
resents the unadjusted date. The class CDayAdjustment_Factory contains the methods
createInstance() that builds the correct object according to the input parameter code:

public class CDayAdjustment_Factory {

public static final int unadjusted = 0;
public static final int preceding = 1;
public static final int following = 2;
public static final int modpreceding = 3;
public static final int modfollowing = 4;

/**
*/
public static IDayAdjustment createInstance
(int code)
{

switch(code)
{
case preceding:

return new CDayAdjustment_Preceding();
case following:

return new CDayAdjustment_Following();
case modpreceding:

return new CDayAdjustment_ModPreceding();
case modfollowing:

return new CDayAdjustment_ModFollowing();
default:

return null;
}

}
}

Finally, the last method of CPeriod class is createIntervals() which calculates
intervals between consecutive dates according to a specified day count convention. The
source code is reported below, in this case the pattern previously discussed involves the
CDayCount class, the interface IDayCount and its subclasses.

public double[] createIntervals()
{

GregorianCalendar begin = null;
GregorianCalendar end = null;
/* create an object of type CDayCount_Factory */
CDayCount_Factory dayCountFactory = new CDayCount_Factory();
/* create an instance of the appropriate Day Count object */



98 Structured Finance

IDayCount dayCount = dayCountFactory.createInstance
(codDayCount);

intervalBetweenDates = new double[adjustedDates.size()];
for(int i = 0;i < adjustedDates.size() - 1;i++)
{

begin = (GregorianCalendar)((GregorianCalendar)
adjustedDates.get(i)).clone();
end = (GregorianCalendar)((GregorianCalendar)
adjustedDates.get(i+1)).clone();

double delta = dayCount.Calculate(begin,end);
intervalBetweenDates[i] = delta;

}
return intervalBetweenDates;

}

4.4.3 Design patterns

This example is a particular case of a more general way of programming design which is
called “Design Patterns”. Design patterns are recurring solutions to software design problems
you find again and again in real-world application development. Patterns are about design
and interaction of objects, as well as providing a communication platform concerning elegant,
reusable solutions to commonly encountered programming challenges. More precisely, a
design pattern is a general repeatable solution to a usually occurring problem in software
design; a design pattern isn’t a finished design that can be transformed directly into code, but
is a description or template for how to solve a problem that can be used in many different
situations. Design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Design
patterns gained popularity in computer science after the book Design Patterns: Elements of
Reusable Object-Oriented Software was published in 1994 (Gamma et al.). That same year,
the first Pattern Languages of Programs conference was held, and the following year the
Portland Pattern Repository was set up for the documentation of design patterns.

Design patterns can be classified on the basis of multiple criteria, the most common of
which is the basic underlying problem they solve. According to this criterion, design patterns
can be placed into various classes, some of which are:

• Fundamental patterns
• Creational patterns
• Structural patterns
• Behavioural patterns
• Concurrency patterns
• Architectural patterns.

For the moment we will take into consideration creational patterns. These are design patterns
that deal with object creation mechanisms, trying to create objects in a manner suitable to the
situation. The basic form of object creation could result in design problems or add complexity
to the design. Creational design patterns solve this problem by somehow controlling this
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object creation. One of this pattern is the so-called Factory Method pattern which we have
previously used for the schedule generation.

4.4.4 The Factory Method pattern

The Factory Method pattern, like other creational patterns, deals with the problem of creating
objects (products) without specifying the exact class of object that will be created.

The main classes in the Factory Method pattern are the creator and the product. The
creator needs to create instances of products, but the concrete type of product should not be
hard coded in the creator – subclasses of the creator should be able to specify the subclasses
of product to use. To achieve this an abstract method (the Factory Method) is defined on
the creator. This method is defined to return a product. Subclasses of creator can override
this method to return instances of appropriate subclasses of product.

In our previous program we have implemented a parametric version of the Factory Method,
the creator was the class Factory (i.e. CInterval_Factory), the product is one of the
Concrete classes which are subclasses of the Interface class (i.e. CInterval_Annual
which implements IInterval).

4.5 CASH FLOW GENERATOR DESIGN

From the point of view of the coupon design, the most important features of a bond are:

• Nominal, principal or face amount: The amount over which the issuer pays interest, and
which has to be repaid.

• Issue price: The price at which investors buy the bonds when they are first issued. The
net proceeds that the issuer receives are calculated as the issue price, less the fees for the
underwriters, times the nominal amount.

• Maturity date: The date by which the issuer has to repay the nominal amount. As long
as all payments have been made, the issuer has no more obligations to the bond holders
after the maturity date. The length of time until the maturity date is often referred to as
the term or simply maturity of a bond. The maturity can be any length of time, although
debt securities with a term of less than one year are generally designated money market
instruments rather than bonds. Most bonds have a term of up to 30 years. Some bonds
have been issued with maturities of up to 100 years, and some even do not mature at all.
These are called perpetuities. In early 2005, a market developed in euro for bonds with
a maturity of 50 years. For example, in the market for US Treasury securities, there are
three groups of bond maturities:

– short term (Bills): maturities up to one year
– medium term (Notes): maturities between one and 10 years
– long term (Bonds): maturities greater than 10 years.

• Coupon: The interest rate that the issuer pays to the bond holders. Usually this rate is
fixed throughout the life of the bond. It can also vary with a money market index, such as
LIBOR, or it can be more exotic. The name “coupon” originates from the fact that in the
past, physical bonds were issued which had coupons attached to them. On coupon dates
the bond holder would give the coupon to a bank in exchange for the interest payment.
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• Coupon dates: The dates on which the issuer pays the coupon to the bond holders. In
the USA, most bonds are semi-annual, which means that they pay a coupon every six
months.

In the following sections we will sketch an object-oriented analysis for a cash flow generator
in the case of a generic interest rate product but first of all let us introduce a new UML
tools: the activity diagram.

4.5.1 UML’s activity diagram

In many ways UML activity diagrams are the object-oriented equivalent of flow charts and
data-flow diagrams (DFDs). They are used to explore the logic of:

• a complex operation
• a complex business rule
• a single use case
• several use cases
• a business process
• software processes.

In UML there are, as usual, more things to say. For practical purpose we will use these
types of diagram as a sort of flow chart, ignoring many of the most advanced aspects;
nevertheless, we will give a glance at the general characteristics of these diagram.

An activity diagram consists of the following behavioural elements:

Initial activity
This shows the starting point or
first activity of the flow. It is
denoted by a solid circle.

Activity
The activity is represented by a
rectangle with rounded (almost
oval) edges. Similar activities can
be picked up into a partition.

Activity

Decisions
Similar to flow charts, a logic
where a decision is to be made is
depicted by a diamond, with the
options written on either side of
the arrows emerging from the
diamond, within box brackets.

Option 2Option 1

Action 1 Action 2
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Signal
When an activity sends or receives a
message, that activity is called a
signal. Signals are of two types:
input signal (message receiving
activity) shown by a concave
polygon and output signal (message
sending activity) shown by a convex
polygon.

Input Signal

Output Signal

Concurrent activities
Some activities occur
simultaneously or in parallel.
Such activities are called
concurrent activities. For
example, listening to the lecturer
and looking at the blackboard is a
parallel activity. This is
represented by a horizontal split
(thick dark line) and the two
concurrent activities next to each
other, and the horizontal line
again to show the end of the
parallel activity.

Activity 1 Activity 2

Final activity
The end of the activity diagram is
shown by a bull’s eye symbol,
also known as a final activity.

In Figure 4.6 we show the diagram that describes the generation of a generic cash flow.
This diagram represents little more than a draft, but nevertheless it is useful to give a global
vision of the various activities that contribute to the building of the cash flow. Various
activities are in general self-explanatory although it is worth while to describe each of them
briefly, since this will help us in the next step: the definition of the data model. Let us start
from the Date Computation block, which contains four activities:

• Calculation Date Generation: Its presence is optional and contains a schedule composed
by useful dates for the calculation of the coupon besides fixing or payment dates. This is
used, for example, in some structured product in which coupons are calculated by a sum
of the values reached by an index in a certain time interval.

• Payment Date Generation: This is simply the schedule of payment.
• Fixing Date Generation: The schedule containing dates in which the index is fixed.
• Repayment Date Generation: For an amortizing bond it contains the dates at which we

have the notional repayment, while, for a bullet bond, it contains only the expiration date.
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Input Data
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Figure 4.6 Generation of a generic cash flow

All these schedules do not necessarily have to be calculated inside the same computational
procedure. This is only a conceptual scheme; the implementation in a software program can
be different – for example, our cash flow generator could read these schedules from an exter-
nal file or they could be passed by another routine, etc. After this block we find a decision, we
have to decide if the bond is a bullet bond or not. If we have an amortizing bond we have to
calculate the notional amount for each payment date and eventually the repayment. This last
calculation is not necessary in all those cases in which the notional is used only for coupon
calculation and is not exchanged during the life of the structured product, as in a plain vanilla
swap.

The other activities are self-explanatory except, perhaps, the “Known Amount Handling”.
With this name we want to refer to the computation of known coupon or, in general, some
other known contribution to the current coupon.

With this diagram in mind we can face the next step of the project phase: the data
model.
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4.5.2 An important guideline to the data model for derivatives: FpML

An approach to be avoided in the planning of a software project is to reinvent the wheel. In
the definition of a data model for an interest rate product we have an important guideline,
which is the FpML standard (see Appendix B for a short introduction). Since the best way
to introduce a new argument is to proceed with a practical example, let us see how FpML
can model some trades based on a simple swap. This example is based on documentation
that is freely available on the website http://www.fpml.org/.

Example 4.2 On 12 December 2005 Bank 1 and Bank 2 enter into an ISDA swap agreement
with each other. The terms of the contract are:

• Effective date: 14 December 2005
• Termination date: 14 December 2010
• Notional amount: EUR 50 000 000
• Bank 1 pays the floating rate every six months, based on six-month LIBOR, on an

ACT/360 basis
• Bank 2 pays the 6% fixed rate every year on a 30E/360 basis
• The swap is non-compounding, non-amortizing and there are no stub periods. There is

no averaging of rates. The business day convention for adjusting the calculation dates is
the same as that used for payment date adjustments.

The complete XML file is reported in Appendix B for reference. In this paragraph we will
analyse it component by component. To the higher level, according to the FpML standard,
a trade concerning a swap can be represented in this way:

<?xml version="1.0" ?>
- <!--

== Copyright (c) 2002-2003. All rights reserved.
== Financial Products Markup Language is subject to the FpML

public license.
== A copy of this license is available at http://www.fpml.

org/documents/license
-->
- <FpML version="4-0" xsi: type="DataDocument"

xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xsi:schemaLocation="http://www.fpml.org/2003/FpML-4-0 ../
fpml-main-4-0.xsd"
xmlns="http://www.fpml.org/2003/FpML-4-0">

+<trade>
+<party id="BANK 1">
+<party id="BANK 2">
</FpML>

As we can see, the document is formed by three blocks: trade and two parties. The trade
block is in turn composed by a tradeHeader and a swap. The tradeHeader contains general
information about the trade itself, such as Bank Id, Effective date of trade, and so on. For
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our purposes the most interesting part of the document is the swap component. Let us look
at this part.

-<swap>
<!-- Bank 1 pays the floating rate every 6 months, based on 6M
LIBOR, on an ACT/360 basis -->

-<swapStream>
<payerPartyReference href="BANK 1" />
<receiverPartyReference href="BANK 2" />

+ <calculationPeriodDates id="floatingCalcPeriodDates">
+ <paymentDates>
+ <resetDates id="resetDates">
+ <calculationPeriodAmount>
</swapStream>
<!--Bank 2 pays the 6%fixed rate every year on a 30E/360

basis-->
-<swapStream>

<payerPartyReference href="BANK 1" />
<receiverPartyReference href="BANK 2" />

+ <calculationPeriodDates id="fixedCalcPeriodDates">
+ <paymentDates>
+ <calculationPeriodAmount>
</swapStream>

</swap>

The swap is clearly composed of two legs which are modelled by the entity swapStream
(which in turn is a particular case of the entity InterestRateStream). Each swapStream is
composed of the following entities:

• calculationPeriodDates: This is a global complex type defining the parameters used to
generate the calculation period dates schedule, including the specification of any initial
or final stub calculation periods. A calculation period schedule consists of an optional
initial stub calculation period, one or more regular calculation periods and an optional
final stub calculation period. In the absence of any initial or final stub calculation peri-
ods, the regular part of the calculation period schedule is assumed to be between the
effective date and the termination date. No implicit stubs are allowed, i.e. stubs must be
explicitly specified using an appropriate combination of firstPeriodStateDate,
firstRegularPeriodStartDate and lastRegularPeriodEndDate. This
complex type contains the following types:

– effectiveDate: The first day of the term of the trade. This day may be subject to
adjustment in accordance with a business day convention.

– terminationDate: The last day of the term of the trade. This day may be subject to
adjustment in accordance with a business day convention.

– calculationPeriodDatesAdjustments: The business day convention to apply to each
calculation period end date if it would otherwise fall on a day that is not a business
day in the specified financial business centres.
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– firstPeriodStartDate: The start date of the calculation period if the date falls before
the effective date. It must only be specified if it is not equal to the effective date. This
date may be subject to adjustment in accordance with a business day convention.

– firstRegularPeriodStartDate: The start date of the regular part of the calculation period
schedule. It must only be specified if there is an initial stub calculation period.

– lastRegularPeriodEndDate: The end date of the regular part of the calculation period
schedule. It must only be specified if there is a final stub calculation period.

– calculationPeriodFrequency: The frequency at which calculation period end dates
occur with the regular part of the calculation period schedule and their roll date
convention.

Each type may, in turn, be a complex type, and as the complete description of the FpML
structure is clearly out of the scope of this book, we refer the interested reader to the
original documentation that is easily available at the website cited above. In our case the
calculationPeriodDates fragment is the following:

<calculationPeriodDates
id="floatingCalcPeriodDates">
<effectiveDate>
<unadjustedDate>2005-12-14</unadjustedDate>
<dateAdjustments>
<businessDayConvention>NONE</businessDayConvention>

</dateAdjustments>
</effectiveDate>
<terminationDate>
<unadjustedDate>2010-12-14</unadjustedDate>

<dateAdjustments>
<businessDayConvention>MODFOLLOWING</businessDayConvention>
<businessCenters
id="primaryBusinessCenters">
<businessCenter>DEFR</businessCenter>

</businessCenters>
</dateAdjustments>

</terminationDate>
<calculationPeriodDatesAdjustments>

<businessDayConvention>MODFOLLOWING
</businessDayConvention>

<businessCentersReference
href="primaryBusinessCenters" />

</calculationPeriodDatesAdjustments>
<calculationPeriodFrequency>

<periodMultiplier>6</periodMultiplier>
<period>M</period>
<rollConvention>14</rollConvention>

</calculationPeriodFrequency>
</calculationPeriodDates>

• paymentDates: A type defining parameters used to generate the payment dates schedule,
including the specification of early or delayed payments. It contains either a reference to
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the associated calculation period dates component defined elsewhere in the document or
a list of parameters in the case the calculation dates are different from the payment dates.
The list of parameters in the last case is the following:

– paymentFrequency: The frequency at which regular payment dates occur. If the pay-
ment frequency is equal to the frequency defined in the calculation period dates
component, then one calculation period contributes to each payment amount. If the
payment frequency is less frequent than the frequency defined in the calculation period
dates component, then more than one calculation period will contribute to a payment
amount. A payment frequency more frequent than the calculation period frequency, or
one that is not a multiple of the calculation period frequency, is invalid.

– firstPaymentDate: This is the first unadjusted payment date. This element must only
be included if there is an initial stub.

– lastRegularPaymentDate: This is the last regular unadjusted payment date. This ele-
ment must only be included if there is a final stub. All calculation periods after this
date contribute to the final payment.

– payRelativeTo: This specifies whether the payments occur relative to each adjusted
calculation period start date, adjusted calculation period end date or each reset date.

– paymentDaysOffset: If early payment or delayed payment is required, this specifies
the number of days offset when the payment occurs relative to what would otherwise
be the unadjusted payment date.

– paymentDatesAdjustments: This is the business day convention to apply to each pay-
ment date if it would otherwise fall on a day that is not a business day in the specified
financial business centres.

The following is the fragment of code for our case

<paymentDates>
<calculationPeriodDatesReference
href="floatingCalcPeriodDates" />

<paymentFrequency>
<periodMultiplier>6</periodMultiplier>
<period>M</period>

</paymentFrequency>
<payRelativeTo>CalculationPeriodEndDate</payRelativeTo>
<paymentDatesAdjustments>
<businessDayConvention>MODFOLLOWING</businessDayConvention>
<businessCentersReference
href="primaryBusinessCenters" />

</paymentDatesAdjustments>
</paymentDates>

• resetDates: A type defining the parameters used to generate the reset dates schedule and
associated fixing dates. The reset dates are determined relative to the calculation periods
schedules dates. For the complete description, see the FpML documentation.

• calculationPeriodAmount: A type defining the parameters used in the calculation of
fixed or floating rate period amounts or for specifying a known calculation period amount
or known amount schedule. The contents of this complex type are
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either

– calculation: The parameters used in the calculation of fixed or floaring rate period
amounts.

or
– knownAmountSchedule: The known calculation period amount or a known amount

schedule expressed as explicit known amounts and dates.

The related fragment in our example is

<calculationPeriodAmount>
<calculation>

<notionalSchedule>
<notionalStepSchedule>

<initialValue>50000000.00</initialValue>
<currencycurrencyScheme="http://www.fpml.org/ext/
iso4217">EUR</currency>

</notionalStepSchedule>
</notionalSchedule>
<floatingRateCalculation>

<floatingRateIndex>LIBOR</floatingRateIndex>
<indexTenor>

<periodMultiplier>6</periodMultiplier>
<period>M</period>

</indexTenor>
</floatingRateCalculation>
<dayCountFraction>ACT/360</dayCountFraction>

</calculation>
</calculationPeriodAmount>

Many other features, such as like amortizing, in arrears coupon, etc., can be handled by
this powerful data model. To build a complete set of classes to reproduce the complexity
of FpML is clearly beyond the objectives of this text. Instead we will take inspiration for
a minimal set of classes which can help us to design the process roughly described in
Figure 3.6. The first classes we draw are:

• CCalculation: This class contains all the information needed to perform coupon calcula-
tion; it contains reference to other classes, precisely:

– IDayCount: This is the interface for day count calculation previously described;
– ICompoundingMethod: This is an interface to handle the generic compounding method.

Remember that by the use of interfaces we avoid the need to define each implementation
in complete detail at design time;

– CDiscounting: This is the class that contains methods to perform cash flow discount.
From a correct object-oriented point of view, this class should also be used like an
interface;

– CNotional: This class should handle all the calculations concerning the notional. It
refers to other classes (CNotionalStepRule and CAmountSchedule).
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– CFloatingRate: This class contains all the information for the computation of the
coupon stochastic component.

The UML class diagram is depicted in Figure 4.7. Note that the CFloatingRate class in the
figure has a reference to the interface IIndex which contains information about the coupon
index. The UML diagram for the interface IIndex, together with some additional classes, is
shown in Figure 4.8.

CCalucationjexcalibur.scheduler.IDaycount

ICompoundingMethod

CDiscounting

CNotional

CFloatingRate

compoundingMethod : ICompoundingMethod

notionalStepParameters : CNationalStepRule

capRate : CSchedule
floatingRateIndex : IIndex
floatingRateMultiplier : CSchedule
floorRate : CSchedule
spread : CSchedule

notionalStepSchedule : CAmountSchedule

dayCountFraction : IDayCount

discounting : CDiscounting
fixedRateSchedule : CSchedule
floatingRateCalculation : CFloatingRate
notionalSchedule : CNotional

CCalculation()

interface

interface

Calculate()

discountCurveReference : CInterestRateCurve

CNotional()

CFloatingRate()

Figure 4.7 CCalculation class

CIndexFactory

CIndexFactory()
createInstance()

import

import import

instantiate

instantiate

instantiate

interface
IIndex

CIndex_Inflation()

CIndex_EquityLinked()

indexCurveReference : CInterestRateCurve

currency : CCurrency
market : int
rates : CSchedule
settlementDate : int
valueType : int

indexTenor : CTimeInterval

CIndex_InterestRate()

periodCode : int
periodMultiplier : double

CIndex_Inflation

CIndex_EquityLinked

CIndex_InterestRate

jexcalibur.shared.CTimeInterval CInterestRateCurve

CInterestRateCurve()

Figure 4.8 CIndexFactory and related classes



Cash Flow Design 109

Finally, the Notional Amount and the Calculation information are collected into a single
class, CCalculationPeriodAmount, which, in turn, is included in our main class CInterestRat-
eStream. The UML diagram is show in Figure 4.9

CInterestRateStream

CCalculationPeriodAmount

CNotional

CNotionalStepRule

jexcalibur.shared.CTimeInterval

jexcalibur.shared.CAmountSchedule

calculationPeriodAmount : CCalcualtionPeriodAmount

calculation : CCalculation

currency : CCurrencynotionalStepParameters : CNotionalStepRule

notionalStepSchedule : CAmountSchedule

calculationPeriodDatesRef : int

firstNotionalStepDate : int

lastNotionalStepDate : int

notionalStepAmount : double

notionalStepRate : double

stepFrequency : CTimeInterval

periodCode : int

periodMultiplier : double

CNotional()

initialValue : double

steps : CSteps

CAmountSchedule()

CCalculationPeriodAmount()

import

import

import

import

import

knownAmountSchedule : CAmountSchedule

calculationPeriodDates : CPeriods

cashFlow : CSchedule

paymentDates : CPeriods

principalExchange : CSchedule

resetDates : CPeriods

CInterestRateStream()

Figure 4.9 CInterestRateStream and related classes

Once you define the classes that describe your problem, you will find it very useful to
describe the interaction of the objects with each other. In the UML context this can be easily
done by using the so-called “sequence diagram”.

4.5.3 UML’s sequence diagram

UML sequence diagrams model the flow of logic within your system in a visual manner,
enabling you to document and validate your logic, and are commonly used for analysis
and design purposes. The invocation of methods in each object, and the order in which
the invocation occurs, is captured in this kind of diagram. A sequence diagram is two-
dimensional in nature. On the horizontal axis, it shows the life of the objects it represents,
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Object 1 Object 2

Figure 4.10 Sequence diagram

while on the vertical axis it shows the sequence of the creation or invocation of these objects.
Because it uses class name and object name references, the sequence diagram is very useful
in elaborating and detailing the dynamic design, the sequence and origin of invocation of
objects. Hence, the sequence diagram is one of the most widely used diagrams in UML.

A sequence diagram is made up of objects and messages. Objects are represented exactly
as they have been represented in all UML diagrams – as rectangles with the underlined class
name within the rectangle itself.

The reason why they are called sequence diagrams should be obvious: the sequential
nature of the logic is shown via the ordering of the messages (the horizontal arrows). The
first message starts in the top left corner, the next message appears just below that one,
and so on. The dashed lines hanging from the boxes are called object lifelines, representing
the life span of the object during the scenario being modelled. The long, thin boxes on
the lifelines are activation boxes, also called method-invocation boxes, which indicate that
processing is being performed by the target object/class to fulfil a message. Messages are
indicated on UML sequence diagrams as labelled arrows; when the source and target of a
message is an object or class, the label is the signature of the method invoked in response
to the message. Return values are optionally indicated using a dashed arrow with a label
indicating the return value. A strongly related argument is that of a Collaboration diagram
for which we suggest the interested reader should consult the link reported in the reference
section.

4.6 THE CLEG CLASS

We can now design the last class: CLeg. As the name suggests, this class refers to a generic
interest rate leg. It contains a reference to an instance of the CInterestRateStream, which
contains all we need to compute schedule, floating rate and so on, and a reference to an
interface for a generic coupon payoff. The UML diagram is shown in Figure 4.11. For the
sake of simplicity we have designed only two payoffs: a plain vanilla cap-floor coupon and
a floater coupon.



Cash Flow Design 111

CLeg

CCoupon Payoff_Factory

CInterestRateStream
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CCouponPayoff_Floater

ICouponPayoff

CCouponPayoff_CapPV

couponPayoff : ICouponPayoff

interestRateStream : CInterestRateStream
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reverse : int
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import
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calculationPeriodAmount : CCalculationPeriodAmount
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Count : int

Dates : int

Times : double

calculation : CCalculation

CCalculationPeriodAmount()

equityLinked : int

inflation : int

interestRate : int

CIndexFactory()

interface

getValue()

getValue()

getValue()

getValue()

CreateInstance()

knownAmountSchedule : CAmountSchedule

periods : CPeriod

CPeriods()

calculationPeriodDates : CPeriods

cashFlow : CSchedule

paymentDates : CPeriods

principleExchange : CSchedule

resetDates : CPeriods

CInterestRateStream()

Figure 4.11 CLeg and related classes
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5
Convertible Bonds

5.1 INTRODUCTION

We begin our study of structured products by examining equity-linked securities. These
products are conceived to make an investment contingent on the performance of a stock or
a market index.

In this, as in the following chapters, we will organize our discussion along three main lines,
corresponding to the three basic questions one has to address to understand and evaluate a
structured product.

• The first question is whether the derivative product in the structure is used to modify the
coupon plan or the repayment plan: in other terms, we ask whether only the interest flow
is at risk or is repayment of the principal also stochastic. In this chapter, the focus will
be on cases in which the derivative contract is exclusively used to modify the repayment
schedule of the principal.

• The second question is about the sensitivity to equity risk: its shape, sign and magnitude.
As for the shape, we must first recognize whether exposure to equity risk is linear or
not. In the typical case of nonlinear option-like exposures, further questions arise about
the sign of the exposure to equity directional movements (delta effect), the impact of
convexity (gamma effect) and the effects of changes in volatility (vega effect). In jargon,
we must understand whether we are long/short the underlying and long/short volatility.

• The third question is which derivative products represent the “main course” of the structure
and what are instead ancillary features. In a different metaphor, we must understand the
type of car we are driving before focusing on its “optional” features. Of course, optional
features are part of the cost, but they generally make little difference whether you are
driving an Aston Martin or a Ferrari.

5.2 OBJECT-ORIENTED STRUCTURING PROCESS

We will strive to follow and describe structuring process and IT implementation jointly.
After all, building a structured product actually amounts to conceiving an aggregation of
financial objects, such as:

• a standard debt contract, with fixed or floating payments, called the “host contract” under
the International Accounting Standard – in the setting above, this is the bond;

• one or more nonlinear derivative contracts, determining the main mission of the contract:
being long or short on some equity risk factor and/or the corresponding volatility;

• one or more derivative contracts that are “ancillary” to the products and are used to
modify and modulate the overall risk and value of the structure.



114 Structured Finance

As usual we may take as our reference point the data model according to FpML. We choose
to model an option as an entity, which is composed by:

• a set of underlying financial assets;
• a payoff function;
• an exercise period;
• a discount function.

Furthermore, it can contain a reference to a generic interface defining a pricing algorithm.
The objects above will be specified in classes that will be discussed in detail when it is

required by the structuring process. The first requirement is, of course, the determination of
“financial asset”.

5.2.1 Financial asset class

This class is simply an abstract class which defines a generic financial asset. For the time
being it is sufficient to model this class with two attributes: a double number, level, which
specifies the value of the asset in a generic measure unit, and another double, volatility,
which specifies the standard deviation of the log-return of level. For our purpose it is
not important how volatility is calculated, it can be historical or implied. Since this class is
an abstract, one needs to have one or more subclasses. For the time being we define two
subclasses: CEquity and COption. COption, in turn, has as an attribute a reference
to CFinancialAsset in order to store information about its underlying asset. Using the
CLeg class defined in Chapter 4, we can form more complex types of products.

5.3 CONTINGENT REPAYMENT PLANS

Consider P�t�T � c) the value of the bond with coupon payment c and repayment in a single
sum at maturity T : we make the latter assumption because it is very commonly used in the
market. A more general notation, which would not change the discussion below, would be
P�t� T � c� k) with k a deterministic repayment plan.

Assume we want to make the repayment plan stochastic in this structure. In a very general
setting, designing a contingent repayment plan implies the definition of a set of objects:

• A set of securities, Si, objects of the CFinancialAsset class, that will be eligible for
delivery to repay the loan.

• A physical amount of each security ni that will be eligible for delivery for each asset in
the set.

• A set of dates tj ≤ T in which the loan could be repaid.
• A function f�P�tj� T � c�� ni Si�tj�� designing the possible repayment options.

The function chosen will typically identify the party that will benefit from the optionality –
that is, the party that has the right to exercise the option. On the one hand, if we set

max
[
P
(
tj� T � c

)
� niSi

(
tj

)]
(5.1)
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it is clear that the option will be at the disposal of the party who lends the money, that is
investor, or the holder of the bond: it is in fact in his interest to be repaid with the most
valuable asset. On the other hand, setting

min
[
P
(
tj� T � c

)
� niSi

(
tj

)]
(5.2)

gives the repayment option to the borrower: it is in the interest of the issuer to repay the
obligation by the least valuable asset.

The choice of asset to be exchanged denotes the kind of product. Notice that, in principle,
the asset can be cash, say a unit �n = 1 + rg�, in which case we would have

max
[
P
(
tj� T � c

)
� 1 + rg

]
(5.3)

and the bond contains an option at the disposal of the investor. The investor then holds the
right to redeem the bond at par plus a premium of rg (that is, to sell it for the face value of
1 + rg� at time tj . The bond is putable. In fact, the payoff function can be rewritten as

max
[
P
(
tj� T � c

)
� 1 + rg

]= P
(
tj� T � c

)+ max
((

1 + rg

)− P
(
tj� T � c

)
� 0
)

(5.4)

that is, as a position in the bond plus a put option. On the contrary, the function

min
[
P
(
tj� T � c

)
� 1 + rg

]
(5.5)

identifies the prepayment option in favour of the issuer. The bond is callable, and can be
written as

max
[
P
(
tj� T � c

)
� 1 + rg

]= P
(
tj� T � c

)− max
(
P
(
tj� T � c

)− (1 + rg

)
� 0
)

(5.6)

So, in this very introductory treatment, the contingent repayment clause amounts to a
position in an option written on the bond itself. The callability/putability property can be
jointly represented in the form

P
(
tj� T � c

)− � max
(
�
(
P
(
tj� T � c

)− (1 + rg

))
� 0
)

(5.7)

with � = 1 denoting callability and � = −1 representing putability.
In more general applications, the terms of the repayment can be changed, allowing us

to switch either to a different repayment schedule or to a different security, representing a
totally different risk factor. In particular, debt repayment can be substituted by the delivery
of equity stocks. It is the case of convertible and reverse convertible bonds that we address
here. In terms of our object-oriented approach this calls for the definition of a CPayoff
class. The definition of this class will accompany most of our work from now on. We start
by the simplest one.

5.3.1 Payoff class

The CPayoff class contains all we need to compute the payoff of our option. In principle
we can think of it as an abstract container in which we find information about
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• contractual features (the strike price, in our simple example);
• the algorithm which defines the payoff for every market scenario.

The CPayoff class is an abstract class, a sort of interface to decouple the computational
section of the program from the specific payoff with which we are dealing. Each specific
payoff must be implemented as a concrete class. In the example given in the UML diagram
in Figure 5.2, we have designed only two different payoffs for the most common type of
options: a call and a put plain vanilla without path dependency. In these cases the methods
value() are simply defined as:

public double value(double[] s)

{
double payoff = 0.0;
if(s[s.length - 1] > strike)
payoff = s[s.length - 1] - strike;

return payoff;

}

for the plain vanilla call and

public double value(double[] s)

{

double payoff = 0.0;
if(s[s.length - 1] < strike)
payoff = strike - s[s.length - 1];

return payoff;

}

for the put. It is worth noting that in both cases we consider the payoff as a function of a
vector of values: in fact, the value of the underlying asset at the exercise date is represented
as s[s. length - 1] where s. length is the dimension of the vector. It simply means
that it takes the last element of the array. This structure, however, makes the class fully
flexible to accommodate more sophisticated path dependent payoffs, as we will see below.

In order to specify the option, the underlying asset s has to be defined. In the callabil-
ity/putability setting above the underlying asset s is simply the forward price of the bond
P�t� T � c�. In the more general setting below, denoting convertible bonds, it can be either a
stock or an equity index.



Convertible Bonds 117

5.4 CONVERTIBLE BONDS

Assume a convertible bond with coupon plan c. Assume that at time � the investor has the
option to convert, that is to exchange, the product against n units of the asset S. Analytically,
this means that at time � the value of the convertible bond (PC) will be

PC ���T� c� = max �PC ���T� c� � nS ���� (5.8)

where P���T � c� is the value of the bond in case it is not converted, and S��� is the unit price
of the asset. The function max(.) makes it clear that the option is in favour of the investor,
and the value of the product at time � can be written as

PC���T� c� = max�PC���T� c�� nS���� = P���T� c� + n max
[
S��� − P���T� c�

n
� 0
]

(5.9)

and the product includes n call options with a strike equal to P���T � c�/n. No arbitrage
requires the value of the product to be equal to its replicating portfolio:

PC �t� T� c� = P �t�T� c� + n CALL
(

S� t�
P ���T� c�

n
� �

)
(5.10)

Of course, if the bond can be converted only at maturity, then P�T� T � c�/n = 1/n. If
the conversion option can, instead, be exercised before maturity at time � < T , the options
embedded in the product are “exchange options” between the stock and the bond. Standard
martingale pricing arguments suggest that these n options should be priced as call options
struck at the forward price of the bond. If one has reason to think of the stock as being
significantly correlated with the term structure, the risk-adjusted drift of the stock should
be adjusted for such correlation, and the evaluation should be carried out under the forward
martingale measure.

Example 5.1 LYONs. In 1985 Merrill Lynch launched the so-called Liquid Yield Option
Notes (LYONs) for two clients. LYONs are zero-coupon-bonds that are callable, putable or
convertible at a set of dates.

5.4.1 Exercise class

In many instances convertible bonds allow the conversion choice to be made at several
points in time over the life of the contract. This choice, while granting more flexibility to
the investor, makes life more difficult for quantitative analysts. The “convertibility” option
is in fact represented by a set of n Bermudan or American call options with time-varying
strikes. In fact, the contract will include a set of conversion dates tj ≤T . At each conversion
date tj , the value of the product will be

PC
(
tj� T� c

)= P
(
tj� T� c

)+ n max

[
S
(
tj

)− P
(
tj� T� c

)
n

� 0

]
(5.11)

conditional on the fact that conversion has not been done up to time tj−1. The early exercise
feature of course increases the value of the product. This is an example of the ancillary
options described in the introduction.
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The exercise period is described through a hierarchy of classes which has, at the higher
level, an abstract class named CExercise.
CExercise is the abstract base class defining the way in which options may be exercised.

It has the following attributes:

• expirationDate: An object of type GregorianCalendar. The last day within an
exercise period for an American style option. For a European style option it is the only
day within the exercise period.

• expirationTime: The latest time (in years from valuation date) for exercise on
expirationDate.

• expirationTimeUnit: This is an integer number which specifies the time unit
of the field expirationTime. Possible values are GregorianCalendar.DAY_
OF_MONTH, GregorianCalendar.MONTH and GregorianCalendar.YEAR.

Among its methods, one is of utmost importance: earlyExerciseValue(). This method
is used to calculate the option value in the case of early exercise and is used by some of
the pricing algorithms we will discuss subsequently. We overload this method with three
different signatures:

public abstract double earlyExerciseValue(double
intrinsicValue, double continuationValue);

public abstract double earlyExerciseValue(double
intrinsicValue, double continuationValue,
double exerciseTime);

public abstract double earlyExerciseValue(double intrinsicValue,
double continuationValue,
GregorianCalendar
exerciseDate);

The method takes the intrinsicValue of an option and the continuationValue
as input, and returns the appropriate value according to exercise type. The implementation
of this method varies, of course, for the different kinds of exercise.

• CEuropeanExercise

– Superclass: CExercise

© This class has no proper methods or parameters. Despite this, it must be defined
in order to have a concrete class for European exercise. In this case the
earlyExerciseValue() method simply ignores the intrinsicValue and
return always the continuationValue.

• CAmericanExercise

– Superclass: CExercise

© commencementDate: The first day of the exercise period for an American style
option.
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© For this class, the earlyExerciseValue() method returns the maximum value
between intrinsicValue and continuationValue:

public double earlyExerciseValue(double intrinsicValue,
double continuationValue)

{
return Math.max(intrinsicValue, continuationValue);

}

• CBermudaExercise

– Superclass: CExercise

© exerciseDates: The dates define the Bermudan option exercise times and the
expiration date. The last specified date is assumed to be the expiration date.

© exerciseTimes: The same information as above expressed in years.

When dealing with Bermuda exercise we need first of all to understand if we are
inside an exercise period or not. For this reason, the method takes the evaluation
time as input (both in the form of date or of time measured in years). For the
sake of simplicity we suppose that the exercise dates are a discrete set. The best
way to store this information in a Java structure is to use a Hashtable. For a com-
plete definition of the characteristic and use of Hashtable in Java the reader is invited
to consult the Sun website http://java.sun.com/j2se – in particular the page
http://java.sun.com/j2se/1.3/docs/api/java/util/Hashtable.html
(valid, of course, at the time of writing this book). In extreme synthesis a Hashtable is a
structure which maps keys to values as a dictionary. The advantage of using this structure,
instead of a simple vector for example, is that this class has a certain number of efficient
methods to search for a particular value. In this case we will use a Hashtable to store the
exercise data for Bermuda exercise. In the main application we define the exercise dates
using the exercise times as keys in the following way1

Hashtable exerciseTimes = new Hashtable(50,0.75f);

exerciseTimes.put(new Double(1.0),"15/06/2006");
exerciseTimes.put(new Double(2.0),"15/06/2007");
exerciseTimes.put(new Double(3.0),"15/06/2008");
exerciseTimes.put(new Double(4.0),"15/06/2009");
exerciseTimes.put(new Double(5.0),"15/06/2010");

We have set five exercise dates (including expiration) equally spaced in
time. The earlyExerciseValue() method for this option type returns the

1 The parameters in the constructor of a Java Hashtable are the capacity and the load factor. We do not get into details about the
value of these parameters, we limit ourselves to remind that the capacity of the table has to be somewhat larger than the number
of elements you plan to look up. The more spare capacity you give, the faster the lookup. There are of course diminishing returns.
Typically, you specify about 25% more capacity than you have elements and a load factor of 0.75 which controls automatic growth
of the lookup table when it gets too full. More details on that in the references about Java language.
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continuationValue except in those cases in which calendar time coincides with an
exercise date. The Java implementation can be something like this:

public double earlyExerciseValue(double intrinsicValue,

double continuationValue,

double exerciseTime)

{

if(exercisePeriod.containsKey(new Double(exerciseTime)))
return Math.max(intrinsicValue,continuationValue);

else

return continuationValue;
}

Having used a Hashtable as container we can easily check if the exerciseTime is
valid by simply recalling the containsKey method of Hashtable class.

The complete UML diagram for the Exercise classes is reported in Figure 5.1.
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Figure 5.1 Exercise period classes
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5.5 REVERSE CONVERTIBLE BONDS

Assume a product in which the choice to repay the debt in terms of equity instead of cash
is left to the borrower. Of course, one would settle for the cheapest repayment method. The
payoff will be

PC ���T� c� = min �PC ���T� c� � nS ���� (5.12)

The product embeds a put option at the disposal of the issuer:

PC ���T� c� = P ���T� c� − n max
[

P ���T� c�

n
− S ��� � 0

]
(5.13)

By arbitrage, then, the value of the product consists of two parts:

PC �t� T� c� = P �t�T� c� − n PUT
[
S� t�

P ���T� c�

n
� �

]
(5.14)

i.e. a long position in a zero-coupon bond and a short position in n put options.
These products, known as reverse convertible bonds, are particularly risky. Of course,

being short an option is a particularly risky business. First, it enables us to earn little money
if nothing happens and to lose a lot if the market moves against the short end of the contract.
Second, selling an option implies a negative gamma and vega position: if one hedges against
the event of a drop in the market, he remains exposed to losses from movements of the
market in both directions as well as to increases in volatility. It is for these reasons that
typically these products include a more stringent condition for the exercise of the option,
conditioning the exercise of the option to a second event. The usual choice is to include a
barrier in the option.

5.6 BARRIERS

Barriers represent a very common provision in convertible bonds. We show below examples
of applications to both convertibles and reverse. Barrier options are derivative products
whose exercise is conditional on the price of the underlying asset reaching a barrier level
h in a given time period (typically the lifetime of the option itself). Barrier options may be
classified as: (i) down and up depending on whether the barrier is lower or higher than the
price of the underlying asset; or (ii) in and out depending on whether the option is activated
or made void when the barrier is reached.

5.6.1 Contingent convertibles: Co.Cos

Take a normal convertible bond and assume that an investor can choose to be repaid in
terms of stocks as opposed to cash if the following events take place:

1. The value of the stock is above a strike price.
2. The company’s stock has reached an upper level set above the strike price itself before

the option has to be exercised.
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The second event is what gives the name “contingent” to the convertible bond (technically,
upside contingency), and actually amounts to the inclusion of a barrier in the product. The
conversion option is then an up-and-in call option. The value of the security would be

PC �t� T� c� = P �t�T� c� + n UIC
[
S� t�

P ���T� c�

n
� ��h

]
(5.15)

where UIC denotes the value of the up-and-in call.
An obvious symmetry relationship between barrier options enables us to identify the value

added to the product by the barrier. In fact, it is intuitive that buying an in and an out option
amounts to buying a plain vanilla option. In our example

UIC
[
S� t�

P ���T� c�

n
� ��h

]
+ UOC

[
S� t�

P 	��T� c�

n
� ��h

]
= CALL

[
S� t�

P 	��T� c�

n
� �

]

(5.16)

where UOC denotes an up-and-out option. We may than compute

PC �t� T� c� = P �t�T� c� + n CALL
[
S� t�

P ���T� c�

n
� �

]
− UOC

[
S� t�

P ���T� c�

n
� ��h

]

(5.17)

and the value of the up-and-out call represents the value of the upside contingency included
in the product.

5.6.2 Contingent reverse convertibles

Assume a contract under which the issuer may repay its debt in terms of equity stock if the
following events take place:

1. The value of the stock is below some strike level k at time �.
2. The value of the stock has decreased below some barrier h by time �.

In this case the product could be broken down into a plain bond and a short position in a
barrier option. The derivative product embedded in the reverse convertible is a down-and-in
put option (DIP). The value of the product will then be

PC �t� T� c� = P �t�T� c� − n DIP
(

S� t�
P ���T� c�

n
� ��h

)
(5.18)

As in the previous case, the value of the barrier can be singled out. So, the value of the
product can be divided into three parts:

PC �t� T� c� = P �t�T� c� − n PUT
[
S� t�

P ���T� c�

n
� �

]
+ DOP

[
S� t�

P ���T� c�

n
� ��h

]

(5.19)

where DOP denotes the down-and-out put option, representing the value of the barrier added
to the product.
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exerciseType : int

lowerLevel : double

rebate : double

rebateType : int

upperLevel : double

barrier : CBarrier
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strike : double

strikes : double[]
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Figure 5.2 The payoff model

5.6.3 Introducing barriers in the Payoff class

In Figure 5.2 we introduce the barrier in the class CPayoff and in the following we will
see how to introduce a more interesting payoff, and in doing that we would test the validity
of our class structure.

5.6.4 Parisian option: a short description

A problem with standard barrier options is that they can be easily manipulated, particularly
if the underlying asset is illiquid. A financial engineering solution to this problem is offered
by the so-called Parisian option. Parisian options are essentially a crossover between barrier
options and Asian options. They have predominant barrier option features in that they can
be knocked in or out depending on hitting a barrier from below or above; and they differ
from standard barrier options in that extreme outlier asset movements will not trigger the
Parisian – to activate or extinguish the trigger, the asset must lie outside or inside the
barrier for a predetermined time period t. For example, an up-and-out Parisian call option
becomes extinguished if the underlying asset remains above a predetermined barrier level for
a prescribed length of time. Compared to standard barrier options, it can be more beneficial
for the holder of a Parisian option on a volatile asset.

Because of its highly path-dependent nature, Parisian options cannot be solved via a
closed form method and common methods involve the consideration of the PDE, the use
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of a Laplace transform, and finite difference methods. The classic paper on pricing Parisian
options under continuous monitoring is that of Chesney et al. (1997) who show the evaluation
of the Laplace transform followed by a rapid inversion via the Euler method.

Like many other path-dependent exotics, solving the PDE on a lattice using finite
differences is generally the most reliable method, and in the case of Parisians and barriers,
this is even more so. For these options, there are 16 differential equations governing the
various cases. Considering all the combinations of down, up, in-and-out Parisian calls and
puts, and then assessing whether the asset price is below or above the strike price, we are
able to determine the equations. By considering a three-dimensional problem (time, price
and duration of out/in), one can solve the PDE via finite differences on a lattice. Referring
to Figure 5.3, we can see that, in general, the barrier divides the integration region into
two subregions. Let us consider a simple model using the Black and Scholes assumptions
of constant volatility and take, for example, an up-and-out option. When the underlying is
under the barrier, the PDE is simply that of an ordinary option:
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Figure 5.3 Integration region for Parisian option pricing

When the underlying is above the barrier, the option value is a function not only of S
(underlying level) and t (expiration time) but also of a new variable, �, which is the time
the underlying lies outside the barrier itself. The PDE becomes
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Example 5.2 Consider the following LYONs contract. It was issued by General Mills, and
is a debt issue convertible into 13.0259 shares of common stock for any $1000 of principal
amount. Conversion is conditional on the event that the closing price of General Mills is
greater than a barrier level for 20 days out of a set of 30 consecutive days in a quarter. As
we see, exercise of conversion is in this case conditional on a Parisian-like feature.



Convertible Bonds 125

5.7 PRICING ISSUES

We now turn to the pricing issues involved in a structured product. The replicating portfolio
approach immediately delivers the price as the sum of the financial assets involved. Once the
“host contract” has been defined and the derivative contracts have been described, the price
of the structured product clearly has to be equal to the algebraic sum of the two. Arguments
of disagreement about the price can then emerge mainly about the pricing algorithms of the
single components of the replicating portfolio.

The price of the “host contract” is obtained by applying the appropriate discount factor
curve to the cash flows. In this case most of the argument about the price may be due to
the discount factor that one prefers to use. Is it more reasonable to use the zero coupon
curve “bootstrapped” from the swap rates, or some other curve? Should we take into account
the default probability of the issuer? Some of these issues are standard and are left to the
“knowledge of the market” of the structurer, some others will be covered in later chapters.

Here we focus on the pricing complexity coming from the derivative part of the product.
This may actually raise most of the arguments about the “fair price” of a contract and may
occur for two reasons:

(a) the statistical model used for the underlying assets
(b) the complexity of the structure of derivative contracts.

If we have plain vanilla European options we could first use the celebrated standard Black and
Scholes formulas, and then try to refine the model by accounting for volatility smiles and term
structures. Many choices can be made. One could use, among the others, (i) stochastic volatility
models; (ii) local volatility models; (iii) implied trees. Other models that are on the research
frontier today, or have not yet been written, may well become the market standard tomorrow.

The problem is compounded in cases in which the derivative involved is exotic. Different
exotic products would call for numerical procedures, rather than closed form approximations.
And again, it may be the case that new methods, or new refinements of old methods, would
gather momentum in the market practice. For all of these reasons we would not like to
redesign our software at any change of fashion in the market. So what we need, as usual, is
a way to implement things in order to maximize code reusability and maintenance. As we
will see, we need the Strategy Pattern to accomplish that.

5.7.1 Valuation methods for barrier options: a primer

Evaluating a barrier option amounts to solving a bivariate problem involving two events:
(i) the contract ends in the money; (ii) the barrier is hit or is not hit. Notice that the second
event is path-dependent, and for this reason, barrier options are also called quasi-path-
dependent. This suggests a standard classification of barrier options models.

• The first strategy exploits the dynamic structure of the underlying asset. A solution is
obtained either by an explicit solution to the corresponding PDE equation or by application
of the reflection principle.

• The second strategy exploits static replication techniques using plain vanilla options.
Plain vanilla options are set at a discrete sequence of dates in such a way as to replicate
the value of the payoff as time elapses.
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The second strategy is best understood if one considers that in real-world applications barriers
are monitored at discrete times. This implies, for example, that the value of a down-and-out
call (put) option could be computed as the joint probability that the option is above the
barrier at all monitoring dates and above (below) the strike at the final date.

5.7.2 The Strategy Pattern

The Strategy Pattern (Figure 5.4) basically consists of decoupling an algorithm from its
host, and encapsulating the algorithm into a separate class. More simply put, an object and
its behaviour are separated and put into two different classes. This allows us to switch the
algorithm we are using at any time.

This has several advantages. First, if you have several different behaviours that you want
an object to perform, it is much simpler to keep track of them if each behaviour is a separate
class, and not buried in the body of some method. Should you ever want to add, remove,
or change any of the behaviours, it is a much simpler task, since each one is its own class.
Each such behaviour or algorithm encapsulated into its own class is called a Strategy.

When you have several objects that are basically the same, and differ only in their
behaviour, it can be beneficial to make use of the Strategy Pattern. Using Strategies, you can
reduce these several objects to one class that uses several Strategies. The use of Strategies
also provides a nice alternative to subclassing an object to achieve different behaviours.
When you subclass an object to change its behaviour, the behaviour it executes is static. If
you wished to change what it does, you would need to create a new instance of a different
subclass and replace that object with your new creation. With Strategies, however, all you
need to do is switch the object’s strategy, and it will immediately alter its behaviour. Using
Strategies also eliminates the need for many conditional statements. When you have several
behaviours together in one class, it is difficult to choose among them without resorting to
conditional statements. If you use Strategies, you do not need to check for anything, since
the current strategy just executes without asking questions.

In this chapter we shall use three different approaches to price an option (Figure 5.5):

• analytical, based on the Black and Scholes formula or some modification;
• binomial tree;
• Monte Carlo simulation.

Context

+ContextInterface()

Strategy

+AlgorithmInterface()

ConcreteStrategyA

+AlgorithmInterface()

ConcreteStrategyB

+AlgorithmInterface()

ConcreteStrategyC

+AlgorithmInterface()

strategy

Figure 5.4 The Strategy pattern UML diagram
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Figure 5.5 Our pricing algorithm UML diagram

Each algorithm has a method called Execute() which takes the object to price as input.
We will see soon how this is going to perform.

5.7.3 The Option class

We have finally reached at the end of our process, and in Figure 5.6 we can find the
UML diagram of the COption class. All of the subclasses constituting this class have been
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Figure 5.6 COption class
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presented and discussed above, with the exception of the class CDiscounting, which is
straightforward and can now be covered briefly.

Discounting class

This class defines discounting information. We can model this class, including the following
attributes:

• discountingType: The discounting method that is applicable.
• discountRate: A discount rate, expressed as a decimal, to be used in the calculation of a

discounted amount. A discount amount of 5% would be represented as 0.05.
• discountRateDayCountFraction: A discount day count fraction to be used in the calcula-

tion of a discounted amount.

The COption class is very simple. Below we show the complete implementation code:

public class COption extends CFinancialActivity {

/* properties */

private CFinancialActivity underlying = null;
private CExercise exercise = null;
private CPayoff payoff = null;
private CDiscounting discounting = null;
private IPricing pricingModel = null;

/* inspectors */

public CFinancialActivity getUnderlying(){return underlying;}
public CExercise getExercise() {return exercise;}
public CPayoff getPayoff() {return payoff;}
public CDiscounting getDiscounting() {return discounting;}

/* constructors */

public COption(CDiscounting discounting,
CFinancialActivity underlying,
CExercise exercise,
CPayoff payoff,
IPricing pricingModel)

{
this.discounting = discounting;
this.underlying = underlying;
this.exercise = exercise;
this.payoff = payoff;
this.pricingModel = pricingModel;

}

/* methods */
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public double Pricing()
{

return pricingModel.Execute(this);
}

public void printOut()
{
System.out.println("\n");
payoff.printOut();
exercise.printOut();
underlying.printOut();
discounting.printOut();
System.out.println("");

}
}

5.7.4 Option pricing: a Lego-like approach

Let us suppose we want to price a simple plain vanilla European call option. First, we
have to build the fundamental blocks, i.e. payoff, exercise, underlying activity and pricing
method. In this case, in a professional setting, it is of utmost importance to use the factory
pattern described in the previous chapter, but for the sake of simplicity we will not use that
approach in this chapter. As we have already discussed, our “Lego bricks” are implemented
by the following classes:

• CPayoff;
• CExercise;
• CDiscounting;
• IPricing.

We can instantiate the corresponding objects using the following instructions:

double S = 32000.0; // level of underlying asset
double sigma = 0.15000; // standard deviation of log ret
double K = 31500.0; // exercise price
double T = 0.25000; // expiry (years)
double r = 0.02500; // interest rate
CPayoff payoff = new CPayoff_CallPV(K);
CExercise exercise = new CExercise_European(T,

GregorianCalendar.YEAR);
CDiscounting discounting = new CDiscounting(r);
CFinancialActivity equity = new CEquity(S, sigma);
IPricing priceModel = new CBlackScholes();

We have chosen to valuate the option using a simple Black–Scholes procedure. Now we
can instantiate an object called anEuropeanOption using one of the constructors of the
COption class:
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COption anEuropeanOption = new COption(discounting,
equity,
exercise,
payoff,
priceModel);

Finally we can calculate the option price by invoking the Pricing() method which, in
turn, simply returns the result of the Execute() method of the price model passed in
input.

double price = anEuropeanOption.Pricing();

If you run the program in the CD, this is the result you should obtain in the Eclipse console:

Running Black & Scholes Algorithm

Payoff type : Call Plain Vanilla
Exercise price = 31500.0
Exercise type : European
Expiration = 0.25 years
Underlying value = 32000.0
Underlying volatility = 0.15(15.0%)
Discounting rate = 0.025(2.5%)

Fair Value = 1335.3716477670241

To price the put option on the same underlying we simply change the payoff, writing

payoff = new CPayoff_PutPV(K);

and the output of the program will be

Running Black & Scholes Algorithm

Payoff type : Put Plain Vanilla
Exercise price = 31500.0
Exercise type : European
Expiration = 0.25 years
Underlying value = 32000.0
Underlying volatility = 0.15(15.0%)
Discounting rate = 0.025(2.5%)
Fair Value = 639.1106024039582

In the same simple way we can price different kinds of option with different algorithms. For
example, let us assume that we wish to price the same put as above, but with an early exercise.
We only have to build an appropriate algorithm, for example a binomial tree, with 1000 steps:

priceModel = new CBinomialTree(1000);
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and define a new exercise type

exercise = new CExercise_American(0,T, GregorianCalendar.
YEAR);

Now create a new object

COption anAmericanOption = new COption(discounting,
equity,
exercise,
payoff,
priceModel);

and a call to the Pricing() method will produce the following output:

Running Binomial Tree...
Number of levels = 1000

Payoff type : Put Plain Vanilla
Exercise price = 31500.0
Exercise type : American
First Exercise Time = 0.0 years
Last Exercise Time = 0.25 years
Underlying value = 32000.0
Underlying volatility = 0.15(15.0%)
Discounting rate = 0.025(2.5%)

Fair Value = 649.6099105839411

We can easily extend the Black–Scholes pricing class in order to include the computation
of a simple plain vanilla barrier option. Let us define

H : barrier level
Rout : “out” option Rebate
Rin : “in” option Rebate
1 H > K = 1 if H > K, 0 otherwise
� = T − t
v = r − d − �2/2
� = 1 for call option and −1 for put option
� = 1 for “down” option and −1 for “in” option

and

max��� = � max��H� �K�

B&S�y�K� �� r�d����� = �y exp	−d�T − t�
N��d1� − � exp	−r�T − t�
KN��d2�

The formalism is that of Zhang (1998) to which the interested reader is referred for the
theoretical background and further details.
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Down-and-in call / Up-and-in put

Consider the following function:

DCUP =
(

H

y

)2v/�2 {
B&S

[(
H2

y

)
� max ��� ��

]}
+ � 	max ��� − K
 exp �−r��N

{
�d2

[(
H2

y

)
� max ���

]}
+ 1�H>�K �B&S �y�K�−�� − B&S �y�H�−��

+ � �H − K� exp �−r �T − t��N 	−�d2 �y�H�
� (5.20)

then

Down-and-in call = DCUP�� = 1� � = 1�

Up-and-in put = DCUP�� = −1� � = −1�

Down-and-in put / Up-and-in call

UCDP =
(

H

y

)2v/�2 {
B&S

(
H2

y
�K��

)
− B&S

(
H2

y
�H��

)

+ ��H − K� exp �−r�� N 	�d2 �H�y�


}
1H>K + �B&S 	y� max ��� �−�


+ 	max ��� − K
 exp �−r��N 	�d2 �y� max ����
� (5.21)

Down-and-in put =UCDP�� = −1� � = 1�

Up-and-in call =UCDP�� = 1� � = −1�

Down-and-out call / Up-and-out put

DCUPOT = B&S	y� max���� �
 −
(

H

y

)2v/�2

B&S
[

H2

y
� max ��� � �

]

+� 	max ��� − K
 exp �−r��

[
N ��d2 �y� max ����� −

(
H

y

)2v/�2

N

(
�d2

(
H2

y
� max ���

))]
(5.22)

Down-and-out call =DCUPOT�� = 1� � = 1� max�1��

Up-and-out put =DCUPOT�� = −1� � = −1� max�−1��
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Up-and-out call / Down-and-out put

UCDPOT = 1H>K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

	B&S �y�K��� − B&S �y�H��� + � �H − K� exp �−r��

N ��d2 �y�H��
 −
(

H2

y

)2v/�2[
B&S

(
H2

y
�K��

)

− B&S
(

H2

y
�H��

)

+� �H − K� exp �−r��N ��d2 �H�y��

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.23)

Up-and-out call = UCDPOT�� = 1� � = −1�

Down-and-out put = UCDPOT�� = −1� � = 1�

Rebate

For a barrier option of the type “in”, a rebate is paid at option expiry if the option itself ends
without activation. If the amount of rebate is Rin, its value is computed as

RBIN = exp �−r��Rin

{
N 	�d2 �y�H�
 −

(
H

y

)2v/�2

N 	�d2 �H�y�


}
(5.24)

For a barrier option of the type “out”, two possible situations are usually considered:

(i) the value Rout is paid at expiry;
(ii) Rout is paid when the barrier is reached.

In the first case the actual value of rebate is given by

ROUT = exp �−r��Rout

{
N 	−�d2 �y�H�
 +

(
H

y

)2v/�2

N 	�d2 �H�y�


}
(5.25)

In the second case we have

ROUT = Rout

{(
H

y

)q1�r−��

N 	�Q1 �r − ��
 +
(

H

y

)q−1�r−��

N 	�Q−1 �r − ��


}
(5.26)

where

� �s� =
√

v2 + 2s�2

Qi = ln�H/y� + i�� �s�

�
√

�
� i = 1�−1

qi = v + i� �s�

�2
� i = −1� 1
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We add this formula to the CBlackScholes class. For the sake of code reusability it is
necessary for the interface of this class to remain unchanged. For this reason we keep the
Execute()method as the main method of the class, and the only change occurs inside
this method, but this is not directly connected to other classes that will continue to use the
CBlackScholes class in the same way. Let us have a look to the new implementation of
the Execute() method:

public double Execute(COption option)
{

if(option.getPayoff().getBarrier() == null){
return BS_PlainVanilla(option);

}
else{
return BS_Barrier(option);

}
}

Note that a necessary condition for this method to work is that we have correctly initialized
to null the attribute barrier in the constructor of the CPayoff class. Below we show
the source code of the constructor:

public abstract class CPayoff
{

/* attributes */

protected String description = "";
protected double strike = 0;
protected double[] strikes = null;
protected CBarrier barrier = null;

/* inspectors */

public double getStrike() {return strike;}
public double[] getStrikes() {return strikes;}
public String getDescription(){return description;}
public CBarrier getBarrier() {return barrier;}

/* methods */

public abstract double value(double s);
public abstract double value(double[] s);
public abstract void printOut();

}

We can price a barrier option by simply putting together all the “Lego” bricks in this way

CBarrier barrier = new CBarrier(30000,30000);
exercise = new CExercise_European(T, GregorianCalendar.YEAR);
payoff = new CPayoff_CallDownOut(K, barrier);
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priceModel = new CBlackScholes();

COption aBarrierOption = new COption(discounting,
equity,
exercise,
payoff,
priceModel);

price = aBarrierOption.Pricing();
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6
Equity-Linked Notes

6.1 INTRODUCTION

Structured products in which the derivative is included in the repayment plan may be very
risky, particularly if they entail a short position in the option. In fact, the investor remains
exposed to the risk that the exercise of the option could erode most, if not all, of the principal
invested. It is for this reason that derivatives are included in the coupon plan of many
structured products.

In this chapter we will present a review of the main choices available to structure a coupon
plan. We will touch upon the main techniques used to structure single coupon products.
Again, one would have to differentiate the main risk involved in the products – that is, the
stock or the index to which the coupon is linked – from optionalities included to adjust the
price and the riskiness of the product. We will see that these targets would quite naturally
lead us to use exotic options, such as barrier, Asian and multivariate (basket and rainbow)
options.

6.2 SINGLE COUPON PRODUCTS

The simplest example of a structured coupon plan is provided by equity-linked notes (ELNs)
with a single coupon payment. In their simplest form, they promise full repayment of
principal, and interest payment at maturity, based on the performance of a stock or an equity
index. The coupon is typically written as

Coupon = max
[

S�T� − S�0�

S�0�
� rg

]
(6.1)

where T is the maturity date of the bond, 0 is the issuance date, and rg is the guaranteed
return. As S(0) is known and fixed from the origin all through the lifetime of the contract,
it may be considered as a constant, and we may rescale the value of the underlying asset by
this value. The coupon payoff is then

Coupon = max
(
s�T� − 1� rg

)= rg + max
(
s�T� − �1 + rg�� 0

)
(6.2)

with s�T� ≡ S�T�/S(0). The coupon is then made up by a deterministic component rg and a
call option. The value of the product at any time t is then

ELN�t� = v�t�T��1 + rg� + Call
[
s�t�� t� 1 + rg� T

]
(6.3)

The leverage feature, and the value of the derivative component of the contract, are tuned
by the strike price of the option, and thus by the guaranteed return rg. In order to understand
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the nature of the contract, recall that the call option corresponds to a long position in the
underlying asset funded with debt. Moreover, the amount of debt embedded in the call option
is equal to the product of the strike times the risk-neutral probability that the option ends in
the money: that is, (1 + rg�Q�s�T� > 1 + rg�. Then, the equity-linked product corresponds to
the replicating portfolio

ELN�t� = v�t�T��1 + rg��1 − Q�s�T� > 1 + rg�� + �cs�t� (6.4)

From this point of view, the product supplies a dynamic capital-protected trading strategy.
The main task of this product is then to provide exposure to equity risk. Of course, the
product itself is less flexible than a freely managed dynamic trading strategy. In order to
improve the product, a structurer would ask what could go wrong as the market moves in
one direction or the other, and what ancillary options could be introduced to ease these
problems.

In particular, the options are easy to see:

• As the underlying asset moves down, the equity content of the investment vanishes.
Following a huge decrease in the market, the investor may remain locked into a zero-
coupon bond for a very long maturity.

• As the underlying asset moves up, the interest cost suffered by the issuer increases, owing
to the increase of both leverage and equity returns. In principle, following a sharp increase
in the market the prospects of interest costs can become exhorbitant and foreshadow
liquidity problems for the borrower.

Enhancing the flexibility of the product would then call for contractual provisions directed
to

• reset the strike in case of a massive decrease in the equity market;
• reduce the participation of the interest payments to equity return;
• condition the indexation scheme on an upper barrier;
• allow either the issuer or the investor to put an end to the contract before maturity.

6.2.1 Crash protection

As pointed out previously, a problem with the standard equity-linked note is that following
a huge decrease in the market the investor participation in the equity market may vanish.
If the investor cannot get out of the contract or sell the note on the secondary market, he
may remain locked into an unwanted zero-coupon bond investment. A natural way to solve
this problem is to include a clause stating that if the market falls down to a barrier h, with
respect to the initial value, the strike is automatically reset down to that value. This clause
is called “crash protection”.

From the point of view of the replicating portfolio, an equity-linked note ELN featuring
a crash protection clause can be represented as a position in two barrier options. Formally,
the replicating portfolio is

ELN�t� = v�t�T��1 + rg� + DOC
[
s�t�� t� 1 + rg� T�h

]+ DIC �s�t�� t� h�T�h� (6.5)

and includes a down-and-out call with the original strike and barrier h, and a down-and-in
call with the same barrier and strike h. In plain words, if the barrier h is reached, the initial
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call option embedded in the product vanishes and is substituted by another one with strike
h. Recalling again the symmetry between “out” and “in” options we get

ELN�t� =v�t�T��1 + rg� + Call
[
s�t�� t� 1 + rg� T

]+ DIC �s�t�� t� h�T�h�

− DIC
[
s�t�� t� 1 + rg� T�h

]
(6.6)

It is then possible to disentangle the value of the crash protection clause in the product as

Crash protection = DIC �s�t�� t� h�T�h� − DIC
[
s�t�� t� 1 + rg� T�h

]
(6.7)

Notice that as the value of call options is decreasing in the strike price, the value of the crash
protection is positive, and increases the value of the product. This comes as no surprise, of
course, as the option to reset the strike downward is in favour of the investor.

Structuring the crash protection clause: setting the strike

Consider an equity-linked note indexed at the Italian stock market. The structurer may be
willing to grant a “crash protection” to increase the value of the product. Which choice
variables can he adjust to set up the product and tune up the value of the crash protection
itself? One such variable is of course the level of the barrier. The value of the crash protection
clause is not a monotone function of the barrier. Of course, it is very close to zero if the
barrier is very high and close to 1 + rg, but it also tends to zero as the barrier tends to zero.
In fact, decreasing the barrier has a negative impact on the value of the second down-and-in
option, i.e. the one with strike 1 + rg. On the other hand, this downward effect on the first
down-and-in call is mitigated by the upward impact associated to a reduction of the strike
down to the barrier level.

Structuring the crash protection clause: outside barrier options

An alternative choice is to link the downward revision of the strike to a decrease in another
market. In our case, the equity-linked note is indexed to the Italian stock market, while
the crash protection is triggered by a decline of a global market index (the MSCI global
index, for example). This structure is reasonable because it stresses the role of the “crash
protection” as a tool by which to address the impact of systematic risk on the value of the
structure: an investor is interested in a long position exposure to the Italian equity risk factor,
but wants to be protected from global equity risk.

In the above framework, the crash protection clause would entail an “outside” barrier
option. An outside barrier option is an option in which the underlying asset and the barrier
trigger are different variables. Of course, the value of the barrier option, and consequently
of the crash protection clause, would increase with the dependence structure of the two
assets: the underlying and the trigger. Outside barrier options have not been exaustively
studied.

The closed form solution in the standard Black–Scholes setting was provided by Heynen
and Kat (1994) and Carr (1995). A recent paper by Cherubini and Romagnoli (2006), that we
briefly review here, proposes a link between the dependence structure of the two variables
and that of the events connected to them. Assume that there is a specific dependence
structure between the two markets; in our case, the Italian stock index and the MSCI global



140 Structured Finance

index, represented by the copula function C�Q1, Q2�. The question is: What is the consistent
(compatible, would be the correct term in statistics) dependence structure of the Italian stock
index and the running minimum of the MSCI global index? Cherubini and Romagnoli found
that

C
(
Q1�QM2

)= C
(
Q1�QM2�Q2

)= C
(
Q1� min

(
QM2�Q2

))
(6.8)

where C
(
Q1�Q2

)
denotes the survival copula of the two markets, Qi the survival marginals

and QM2 the survival marginal of the running maximum of the second variable (the MSCI
index in our case). In plain words, we have recovered the dependence structure of the joint
event that the option on the Italian index ends in the money and the MSCI remains above
the barrier until expiration of the contract. Using this pricing kernel, the price of the outside
barrier option can be easily computed by numerical integration.

Exploiting the dependence structure between the underlying asset and the barrier variable
enables the structurer to adjust the value of the crash protection clause in a very flexible
way. Figure 6.1 shows the difference in value of the cash protection clause under different
copula functions.

Note that the value is higher with the Clayton copula than with the Gaussian one. The
reason for that rests on the impact of tail dependence on the value of outside barrier options.
As it is intuitive, higher tail dependence decreases the value of knock-out options in favour of
knock-in options because it increases the probability that an extreme event in the underlying
asset may be associated with an extreme event in the trigger variable.
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Figure 6.1 Outside crash protection with different dependence structures: Gaussian vs Clayton copula
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6.2.2 Reducing funding cost

From the point of view of the issuer, a problem with this kind of product is that it may raise
the cost of funding to extremely high levels if the equity market booms. In such a case,
the increase in debt service costs may endanger the soundness of the borrower. We briefly
review here three straightforward solutions to this problem that are usually implemented in
the market.

Participation rate

A very easy way to curb this possibility is to index the interest payment to a percentage
of the performance of the equity market. The percentage is called participation rate. In this
case the coupon is

Coupon = max
[
	

S�T� − S�0�

S�0�
� rg

]
(6.9)

where 	 is the participation rate. The value of the product will then be

ELN�t� = v�t�T��1 + rg� + 	 Call
[
s�t�� t� 1 + rg� T

]
(6.10)

Call spreads

A more radical approach to reduce the cost of funding to a fixed amount, if the market
performs above a given level, is to use either a call spread or a barrier option. In the first
case the payoff will be

Coupon = min
{

max
[

S �T� − S �0�

S �0�
� rg

]
� rcap

}
(6.11)

where obviously rcap > rg. Considering that min�a� b� = a − max�a − b� 0� we obtain that

Coupon = max
[

S �T� − S �0�

S �0�
� rg

]
− max

{
max

[
S �T� − S �0�

S �0�
� rg

]
− rcap� 0

}
(6.12)

from which

Coupon = max
(

S �T� − S �0�

S �0�
� rg

)
− max

(
S �T� − S �0�

S �0�
− rcap� 0

)
(6.13)

Up-and-out option

An alternative way to reduce the cost of funding is to make the indexed payment conditional
on the underlying variable growing beyond a given threshold over the life of the contract.
Of course, this amounts to the inclusion of a barrier in the call option. The type of barrier
is clearly up-and-out.
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6.2.3 Callability/putability: compound options

A more radical way of addressing the problem in which the value of the embedded option
could move in either direction during the life of the contract, is to terminate the contract
before its natural maturity.

Consider the problem in which the underlying asset may decrease, leaving the investor
locked into a financial product that yields much less than expected. This problem could be
addressed by granting the investor the opportunity to get out of the contract as soon as its
value falls below a given threshold. Consider a structured product with payoff

ELN �T� = 1 + rg + max
(
S �T� − (

1 + rg

)
� 0

)
(6.14)

and assume that the investor may terminate the contract at time 
, and retrieve his principal.
Then, the value of the product at the time of exercise of the option would be

ELN�
� =max
[
1� v�
�T��1 + rg� + CALL�s� 
� 1 + rg� T�� 0

]
=v�
�T��1 + rg� + CALL�s� 
� 1 + rg� T� + max�1 − v�
�T��1 + rg�

− CALL�s� 
� 1 + rg� T�� 0� (6.15)

The value of the early termination of the contract is then a put option held by the investor
against the issuer. The strike price of the option is

1 − v�t�T��1 + rg� (6.16)

and the underlying asset is represented by the call option CALL�s
� 
� 1 + rg� T�. An option
taking another option as its underlying asset is called a compound option. Allowing for
putability introduces a compound option into the contract.

If one allows for stochastic interest rates, the pricing problem becomes even more involved.
In fact, notice that the strike can be written as

1 − v�
�T��1 + rg� = v�
�T��r�
�T� + rg� (6.17)

where r�
�T� is the interest rate return on the risk-free asset for an investment stating at
time 
 and maturing at time T . From this point of view, putability can be viewed as a spread
option. Its payoff would be in fact

max
[
�v�
�T�rg + v�
�T�r�
�T� − CALL�s� 
� 1 + rg� T�� 0

]
(6.18)

It is evident that a change of numeraire (namely, using the discount factor v�t, T� as
numeraire) may simplify the pricing formula. Under the Q�T� forward martingale measure
we have in fact

v�t�T�EQ�t� max

[
rg + r�
�T� − CALL

(
s� 
� 1 + rg� T

)
v�
�T�

� 0

]
(6.19)

By the same token, consider the case in which the underlying asset may increase by a
substantial rise in the cost of funds. The problem can be addressed by granting the issuer the
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right to get out of the contract as soon as its cost rises above a given threshold. The value
of the product at the time of exercise of the option would then be

ELN�
� =min
[
1� v�
�T��1 + rg� + CALL

(
s� 
� 1 + rg� T

)
� 0

]
=v�
�T��1 + rg� + CALL

(
s� 
� 1 + rg� T

)− max
[
CALL

(
s� 
� 1 + rg� T

)
−�1 − v�
�T��1 + rg��� 0

]
(6.20)

and it is easy to see that this is a call type of option. Callability – which is a very standard
feature in fixed income products – becomes quite complex even in very simply structured
product such this example. In fact, exactly as in the putability example above, callability
becomes a compound spread option with payoff

max�CALL
(
s� 
� 1 + rg� T

)− v�
�T�r�
�T� − v�
�T�rg� (6.21)

In general, putability and callability can be represented in the same formula by writing

ELN �
� = v �
�T�
(
1 + rg

)+ CALL
(
s� 
� 1 + rg� T

)
− � max

[
� CALL

(
s� 
� 1 + rg� T

)− �
(
1 − v�
�T�

(
1 + rg

))
� 0

]
(6.22)

with � = 1 for callable notes and � = −1 for putable bonds.

Compound option: pricing issues

Considering a Black–Scholes environment, the payoff for a European compound option is
given by:

max 
0��PVt �max �0��S∗ − �Xu�T � − �X� (6.23)

where S∗ is the value of the stock underlying the underlying option, Xu is the underlying
strike price and X is the compound strike. 
 is the expiry date of the compound and T is
the expiry date of the underlying option. The parameters � and � are binary variables that
take values of v or 1. The value −1 is given as 1 when the underlying option is a call, and
−1 when the underlying option is a put. Parameter � is v of m 1 when the compound is a
call and −1 when the compound is a put.

This application of compound options was first considered by Geske (1977), followed
similarly by Geske (1979), Selby & Hodges (1987). The variables considered when valuing
a compound option are:

• price of the underlying asset of the underlying option (S);
• exercise prices of underlying option and the compound option (X1 and X2);
• dividend payments (if any) on the underlying asset (q);
• risk-free rate �r�;
• expiry dates for the underlying option �T1� and the compound option �T2�.
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The four formulas for pricing the options are:

(1) call on call:

CALLCall = S e−qT2M �a1� b1� �� − X2e−rT2M �a2� b2� �� − e−rT1X1N�a2� (6.24)

(2) call on put:

CALLput = −S e−qT2M �−a1�−b1� �� + X2 e−rT2M �−a2�−b2� �� − e−rT1X1N�−a2�
(6.25)

(3) put on call:

Putcall = X2 e−rT2M �−a2� b2�−�� − S e−qT2M �−a1� b1�−�� + e−rT1X1N�−a2� (6.26)

(4) put on put:

PutPut = −X2 e−rT2M �a2�−b2�−�� + S e−qT2M �a1�−b1�−�� + e−rT1X1N�a2� (6.27)

where the variables are defined as:

a1 = ln �S/S∗� + (
r − D + 0�5 · �2

)



�
√

T
1

(6.28)

a2 = a1 − �
√

T
1 (6.29)

b1 = ln �S/X2� + (
r − D + 0�5 · �2

)



�
√

T
2

(6.30)

b2 = b1 − �
√

T
2 (6.31)

and S∗ is the critical stock price for which the following criteria holds:

CALL �S∗� X1� D� r� �� T2 − T1� = X2 (6.32)

This can be solved iteratively using the Newton–Rhapson method.
For overlapping Brownian increments, we can denote the correlation of the compound and

underlying options as �=√

/T . Also note that, in the equations, M�a�b��� is the bivariate

cumulative distribution function.

Pricing of a compound option using the Option class

The pricing of a compound option in our Java framework is very simple. First we have to
define a new pricing model implementing the previously discussed formulas. It is very natural
to build a new class which is a subclass of the CBlackScholes class (see Figure 6.2)

We shall also define the CNormBivariate class which contains methods for the com-
putation of the cumulative binormal distribution. The algorithm used is described in the
classic work Options, Futures and Other Derivatives (Hull, 2003).
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«interface»
IPricing

Execute()

CMonteCarlo

numberOfSimulations : int

numberOfSteps: int

numberofLevels : int

CMonteCarlo()
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PUT : int
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Figure 6.2 The CBlackScholes_Compound class

package pricing_algorithm;

public class CNormBivariate {
/**
*-----------------------------------------------------
*/
public double Cum( double a,

double b,
double rho)

{
CNormST N = new CNormST();
double AA[] = {0.325303, 0.4211071, 0.1334425,

0.006374323};
double BB[] = {0.1337764, 0.6243247, 1.3425378,

2.2626645};

double d = 0;
double somma = 0;
double rho1 = 0;
double rho2 = 0;
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double delta = 0;
double NA = 0;
double NB = 0;

int i = 0;
int j = 0;

if(rho == 1) rho = 0.999999999;
if(rho == -1) rho = -0.999999999;

NA = N.Cum(a);
NB = N.Cum(b);

if(a <= 0 && b <= 0 && rho <= 0)
{

somma = 0;
for(i = 1; i <= 4; i++)
{

for(j = 1; j <= 4; j++)
{

somma = somma + AA[i - 1] * AA[j - 1] *
f(BB[i - 1], BB[j - 1], a, b, rho);

}
}
return Math.sqrt(1 - rho * rho) * somma /
Math.PI;

}
else
{

if(a * b * rho <= 0)
{

if(a <= 0)
{
return NA - Cum(a, -b, -rho);
}
else if(b <= 0)
{
return NB - Cum(-a, b, -rho);
}
else if(rho <= 0)
{
return NA + NB - 1 + Cum(-a, -b, rho);
}

}
else
{

d = Math.sqrt(a * a - 2 * rho * a * b + b * b);
rho1 = (rho * a - b) * Math.signum(a) / d;
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rho2 = (rho * b - a) * Math.signum(b) / d;
delta = 0.25 * (1 - Math.signum(a) * Math.signum(b));
return Cum(a, 0, rho1) + Cum(b, 0, rho2) - delta;

}
}
return 0;

}
/**
*-----------------------------------------------------
*/
private double f( double x,

double y,
double a,
double b,
double rho,)
{

double a_prime = 0;
double b_prime = 0;
double f = 0;
double d = 0;

d = Math.sqrt(2 * (1 - rho * rho));
a_prime = a / d;
b_prime = b / d;

f = a_prime * (2 * x - a_prime) + b_prime *
(2 * y - b_prime) +
2 * rho * (x - a_prime) * (y - b_prime);

return Math.exp(f);
}

This is the code for the CBlackScholes_Compound class:

package pricing_algorithm;

import finobject.COption;

public class CBlackScholes_Compound extends CBlackScholes {

/**
* note: this method overwrite the Execute method of the super
class

* CBlackScholes
*/

public double Execute(COption option){
return BS_Compound(option);

}
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/**
*-----------------------------------------------------------
* Function Name
* @author Giovanni Della Lunga
* @param option the option to be evaluated
* @return option fair value
*/
private double BS_Compound(COption option)
{

System.out.println("Running Black & Scholes Algorithm for
Compound Option");
option.printOut();

CNormST N = new CNormST();
CNormBivariate M = new CNormBivariate();

double price = 0;

/* gathering information about the compound and underlying
option */

double T1 = option.getExercise().getExpirationTime();
double K1 = option.getPayoff().getStrike();
double r = (option.getDiscounting()).

getDiscountRate();
double q = 0;
int theta1 = 0;

if((option.getPayoff()).value(K1 + 1) > 0 )
theta1 = 1;

else
theta1 = -1;

COption underOption = new COption();
underOption = (COption)option.getUnderlying();

double T2 = underOption.getExercise().
getExpirationTime();

double K2 = underOption.getPayoff().getStrike();
double S0 = underOption.getUnderlying().getLevel();
double sigma = underOption.getUnderlying()

.getVolatility();
int theta2 = 0;

if((underOption.getPayoff()).value(K2 + 1) > 0 )
theta2 = 1;

else
theta2 = -1;

/* first of all we search for the asset price at time T1
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for which the underlying option value at time T1 equals K1
where T1 is the exercise time of the compound option and
K1 its strike value. The computation of this value is
performed with a simple Newton-Rapson algorithm. For
a more robust procedure we strongly suggest to replace
with the secant method.

*/

double zero = 0;
double optionPrice = 0;
double delta = 0;
double correction = 0;
double S = S0;
double ERROR = 1e-6;

do{
optionPrice = BS_Formula(theta2,S, K2, T1, r,q,sigma);
zero = K1 - optionPrice;
delta = BS_Delta(theta2,S, K2, T1, r,q,sigma);
correction = zero/delta;
S = S + correction;

}while(Math.abs(correction) > ERROR);

double a1 = (Math.log(S0/S) + (r - q +0.5*sigma*sigma)*T1)/
(sigma*Math.sqrt(T1));

double a2 = a1 - sigma*Math.sqrt(T1);

double b1 = (Math.log(S0/K2) + (r - q +0.5*sigma*sigma)*T2)/
(sigma*Math.sqrt(T2));

double b2 = b1 - sigma*Math.sqrt(T2);

double ert1 = Math.exp(-r*T1);
double ert2 = Math.exp(-r*T2);
double eqt2 = Math.exp(-q*T1);
double rtt = Math.sqrt(T1/T2);

if(theta1 == CALL && theta2 == CALL){
price = S0 * eqt2 * M.Cum( a1, b1, rtt) - K2*ert2 *
M.Cum( a2, b2, rtt)- ert1 * K1 * N.Cum( a2);

}
else if(theta1 == CALL && theta2 == PUT){

price = K2 * ert2 * M.Cum(-a2,-b2, rtt) - S0 * eqt2 *
M.Cum(-a1,-b1, rtt)- ert1 * K1 * N.Cum(-a2);

}
else if(theta1 == PUT && theta2 == CALL){

price = K2 * ert2 * M.Cum(-a2, b2,-rtt) - S0 * eqt2 *
M.Cum(-a1, b1,-rtt)+ ert1 * K1 * N.Cum(-a2);

}
else if(theta1 == PUT && theta2 == PUT){

price = S0 * eqt2 * M.Cum( a1,-b1,-rtt) - K2 * ert2 *
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M.Cum( a2,-b2,-rtt)+ ert1 * K1 * N.Cum( a2);
}
return price;

}
}

Now we can simply generalize the previously discussed code in order to price a Compound
Option. It is worth noting that we only have to define a simple Option as an underlying of
the compound option. The code is:

//----------------------------------------------------------
// Compound Option

exercise = new CExercise_European(T, GregorianCalendar.YEAR);
payoff = new CPayoff_PutPV(K);

COption simpleOption = new COption(discounting,
equity,
exercise,
payoff,
null);

exercise = new CExercise_European(0.5 * T,
GregorianCalendar.YEAR);

payoff = new CPayoff_CallPV(900.0);
priceModel = new CBlackScholes_Compound();

COption compoundOption = new COption(discounting,
simpleOption,
exercise,
payoff,
priceModel);

price = compoundOption.Pricing();

6.3 SMOOTHING THE PAYOFF: ASIAN OPTIONS

A possible problem with the kind of product we have just described is that the payoff is
linked to a realization of the performance of the index in the very distant future. A typical
maturity for these products is five years. So, in order to evaluate the product, one has to
figure out the risk-neutral distribution of the underlying asset five year from now. This raises
two problems. The first, which we will not discuss here, is that five-year options are not
traded on the market, and we do not have a unique and precise market price for the derivative
contract at hand. The second – even assuming that a market for five-year options existed –
is that their price would probably be very high. Intuitively, this is due to the obvious fact
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that the degree of uncertainty about the performance of the underlying asset is growing with
the length of its horizon. Who can know what the stock market values will be in five years?

There are two obvious ways to solve this problem. The first is to index the coupon to
some average value sampled over a period rather than at a point in time. The second is to
abandon the single coupon structure and switch to the design of an indexed coupon stream.
Here we discuss the first solution, i.e. that of smoothing the payoff.

In terms of payoff notation, we have

Coupon = max

⎡
⎢⎢⎣

n∑
i=1

S�ti�/n − S�0�

S�0�
� rg

⎤
⎥⎥⎦ (6.33)

where {t1, t2, …, tn} is a set of dates.
The coupon is then decomposed as

Coupon = max

[
n∑

i=1

s�ti�/n − 1� rg

]
= rg + max

[
n∑

i=1

s�ti�/n − �1 + rg�� 0

]
(6.34)

and the option involved is an Asian option. More exactly, it is an “arithmetic average Asian
option”.

6.3.1 Price approximation by “moment matching”

The arithmetic average option is one of the few pricing problems that do not have a
closed form solution under the Black–Scholes model. The reason is that linear combi-
nations of log-normal variables are not log-normally distributed, and their distribution is
unknown. The most effective pricing solution is to resort to simulation, as we will dis-
cuss below. For the time being, we illustrate here an approximation technique, based on
“moment matching”. The typical algorithm used is that proposed by Turnbull and Wake-
man (1991). The basic assumption is that under the risk-neutral probability measure Q the
underlying asset follows the geometric Brownian motion, as in the standard Black–Scholes
framework

dS�t� = �r − q�S�t� dt + �S�t� dZ�t� (6.35)

where q is the instantaneous dividend yield.
The idea is to compute the first two moments of the distribution of the average price,

denoted A�tn�, and imagine an “auxiliary” geometric Brownian motion yielding the same
moments. The price is obtained by applying the Black–Scholes formula on this “auxiliary”
process. Assume that the sample of dates is {t1, t2, � � � , tn}. Then the algorithm consists of
the following steps:

• Compute the forward price at each reference date ti: Fi = exp��r − q��ti − t�S�t��
• Compute the first moment of forward prices: S�t��F1 +F2 + � � � Fi + � � � Fn�/n≡S�t�M1.

This represents the first moment of the risk-neutral distribution: EQ (A�tn�� = S�t�M1.
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• Compute the second moment of forward prices. To this purpose, define a matrix M of
dimension n such that the diagonal elements are

mii = S2�t� exp
[(

2�r − q� + �2
)
�ti − t�

]
(6.36)

and the off-diagonal elements are

mij = S2�t�mii exp
[
�r − q��tj − t�

]
(6.37)

with tj > ti. Then, define e′Me = S2�t�M2, with e the unit vector. Then, under the risk-
neutral measure the second moment from the origin of the average price is EQ (A2�tn�� =
S2�t�M2.

• Assume an “auxiliary” process A∗�t� with dynamics

dA�t� = �r − qA�A∗�t� dt + �AA∗�t� dz�t� (6.38)

and a starting value A∗�t� = S�t�. Obviously the distribution of the A∗�tn� would be
log-normal with moments

EQ�A∗�tn�� = S�t� exp��r − qA��tn − t��

EQ�A∗2�tn�� = S2�t� exp��2�r − qA� + �A
2��tn − t��

(6.39)

• we calibrate qA and �A, computing by “moment matching”

M1 = exp��r − qA��tn − t��

M2 = exp��2�r − qA� + �A
2��tn − t��

(6.40)

• Compute the value of the Asian option using the Black–Scholes formula with parameters
qA and �A.

6.3.2 Variable frequency sampling and seasoning process

In typical Asian option applications to equity-linked notes, the sampling frequency is often
scheduled to change over the life to the contract. In a typical contract, say on a five-
year maturity, the final reference value for the computation of the coupon would be a
combination of

• monthly frequency samples for the first and second years
• quarterly frequency samples for the third and four years
• half-year frequency samples for the fifth year.

Of course, this structure is conceived to modulate the smoothing effect over the life span of
the product. In particular, such a smoothing effect would decrease as time elapses.

Another effect linked to the passage of time is due to the fact that the option undergoes a
“seasoning process”. At a given point in time 
, the value of the option would in fact depend
on the accrued average process A(
). However, the value of a seasoned Asian option can be
easily transformed into that of an unseasoned one, provided we have a rescaling factor and
a suitable change of the strike. Given the original strike k and a number p of observations
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already collected over the life of the option (out of the total number of n�, the strike is reset
to the value

k∗ = �p/�n − p���k − Ap� + k

where Ap is the average value of the p observations collected. The value of the seasoned
Asian option is then

SAsian = ��n − p�/p��Asian�s�
�� 
� k∗� tn��

6.4 DIGITAL AND CLIQUET NOTES

We pointed out above that the long maturity of a single equity-linked coupon may be a
problem, but smoothing the payoff function may help to address it. A more radical solution,
however, would be to move beyond the single coupon structure. One would design a stream
of coupons whose values are totally or partially determined by the performance of some
stock or market index. Here we review some basic choices that the structurer may consider.

6.4.1 Digital notes

The first choice is that of a fixed payment if the market index is above some given strike level
at some reference date. For the sake of simplicity assume the reference dates 
t1� t2� � � � � tn�.
The description of the coupon is in this case digital

Coupon�ti� =
{

c S�ti� > �S�t0�

0 S�ti� ≤ �S�t0�
(6.41)

where � is a barrier parameter that sets the strike of the option. This structure is particularly
used in a multivariate setting, and will be discussed below. It is also known as an “altiplano”
note. The coupon plan is represented by a stream of digital options.

The price of a digital option (DC) is particularly easy to recover. From Breeden and
Litzebenberger (1978) we have that the price of a digital call, with strike K and exercise T ,
is given by

DC �S� t�K�T� = −� Call �S� t�K�T�

�K
(6.42)

This representation is valid for all pricing models, and only rests on the assumption of
absence of arbitrage. It may easily be verified that in the Black–Scholes setting we have

DC �S� t�K�T� = v�t�T��

[
ln�F�S�T�/K� − �2�T − t�

�
√

T − t

]
(6.43)

where F�S�T� ≡ S�t�/v�t�T� is the forward price of S for delivery at time T .
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6.4.2 Cliquet notes

Consider the following coupon plan. Coupons are paid at dates {t1, t2, …, tn}. In each period
the coupon, or part of it, is determined on the basis of the performance of the reference
stock or equity index in the same period. That is, the coupon paid at time ti is given by

Coupon�ti� = max
[

S�ti� − S�ti−1�

S�ti−1�
� 0

]
(6.44)

The coupons are given by a sequence of at-the-money options struck at the beginning of the
coupon period and paid at the end of it. Products like these are called forward start options.
A sequence of forward start options are called cliquet options (or ratchet options). For these
reasons such structured products are called cliquet notes.

It is easy to see how to modify the payoff in order to set bounds to interest payments. For
example, to set a cap rcap to the coupon, it is easy to resort to a call spread:

Coupon�ti� = max
[

S�ti� − S�ti−1�

S�ti−1�
� 0

]
− max

[
S�ti� − �1 + rcap�S�ti−1�

S�ti−1�
� 0

]
(6.45)

and the interest payment is capped. This option is sold by the investor to the issuer, thus
reducing the value of both the coupon stream and the product.

6.4.3 Forward start options

In most models the price of forward start options is obtained by the property of linear
homogeneity of the price in the underlying asset and the strike. Explicitly, we have

CALL �cS�t� � cK�T� = v�t�T�EQ �max �cS�T� − cK� 0�� =
= v�t�T� cEQ �max �S�T� − K� 0�� = c CALL �S�t� �K�T� (6.46)

Assume one wants to price, at time t, an option starting at time 
 with strike 	S�
�. At time

 the value of the option will be Call(S�
�, 
; 	S�
�; T ). Using linear homogeneity we have

CALL �S�
� � 	S�
� � T − 
� = c CALL
[

S�
�

c
�

	S�
�

c
� T − 


]
(6.47)

If we define: c ≡ S(
)/S�t� we can compute

CALL �S�
� �	S�
� �T − 
� = S�
�
CALL �S�t� �	S�t� �T − 
�

S�t�
(6.48)

This defines a static replicating portfolio for the option. Actually, the value of the forward
start option at time t with 
 amounts to N stocks, with N given by

N = CALL �S�t� �	S�t� �T − 
�

S�t�
(6.49)
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Computing the expected value under the risk-neutral measure Q and discounting back to
time t we get

v �t� 
�EQ �S�
��N = N
v�t� 
� q �t� 
�S�t�

v �t� 
�
= Nq �t� 
�S�t� (6.50)

where q�t� 
� is the cumulated flow of dividends from time t to 
. Using the definition of
N we get

FSCALL �S�t� � t� 
�	S�
� �T� = q �t� 
� CALL �S�t� � t� �	S�t� �T − 
� (6.51)

The analysis may be carried over to time varying volatility by simply substituting the forward
volatility in the equation above. Accounting for stochastic volatility makes life more difficult
as the pricing formula requires a change in measure (see Musiela and Rutkowski, 2005,
quoted in Chapter 1.)

6.4.4 Reverse cliquet notes

Consider a product like the following. Coupon is paid as a lump sum at maturity of the note,
time tn. The coupon is determined according to the function

Coupon = max

[
D −

n∑
i=1

min
[

S�ti� − S�ti−1�

S�ti−1�
� 0

]
� 0

]
(6.52)

where D is a percentage sum and the set of reference dates is 
t0� t1� � � � � tn−1� tn��. The
rationale of the product is very simple. The investor is initially endowed with a large coupon
D (typically around 50%). In each period the performance of the stock or market index S is
recorded. Positive performances leave the coupon unaffected, while negative performances
are progressively subtracted from the coupon.

Intuitively, the product is long the underlying asset. In fact, interest income is progressively
lowered by decreases of the stock. If the market goes up, then it is good news. It is less
intuitive to understand what happens with changes in volatility. Some glance on the sign on
this sensitivity can be obtained if we understand the kind of derivative product embedded in
the structure. The answer is evident if we rewrite the payoff in a slightly different way

Coupon = max

[
D −

n∑
i=1

max
[

1 − S�ti�

S�ti−1�
� 0

]
� 0

]
(6.53)

The coupon is then a put option with strike D. The underlying asset is a sum of forward
start put options, that is a cliquet put option. The investor is then selling a cliquet put option
to the issuer. An increase in volatility would then increase the value of the option, and the
value of the product for the investor would decrease. By the same token, an increase in the
underlying asset would decrease the value of the option, raising the value of the product
for the investor. The product is then long in the underlying asset and short in volatility, just
like in the reverse convertible case in the previous chapter. The underlying asset is a cliquet
option. It is then not surprising that these products are known as reverse cliquet notes.
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Remark 6.1 Why not use the cumulative decrease of the stock rather than a sum of decreases
over the subperiods? That would have been an alternative. In this case the product would be

Coupon = max
[
D − max

(
1 − S�tn�

S�t0�
� 0

)
� 0

]
(6.54)

The difference between the two products of course hinges on the difference between a cliquet
option and the corresponding European option. We leave the reader to analyse the structure.

6.5 MULTIVARIATE NOTES

We saw above that smoothing was a tool to modulate the risk of a product by a reduction of
volatility. Another tool to achieve the same task is diversification. Selling a product whose
coupon is linked to a basket of underlying assets instead of a single asset enables us to
change the risk structure of the product. This also brings another dimension into the picture,
that of correlation. The analysis of these products should then account for this new feature
and should be conducted on two levels. First, one should ask how the dependence structure is
actually changing the risk/return nature of the product: in other words, the question is whether
the product is providing diversification or concentration of risks. Second, as correlation is
bound to change, one should ask how correlation changes may impact on the value of the
product: the question is whether a position is long or short in correlation.

In a very general way, multivariate notes can be written as

Coupon�tj� = f
(
Si�tj�� i = 1� 2� � � � � p� i = 1� 2� � � � � n

)
(6.55)

As for univariate notes, one may both conceive either a single coupon at maturity or a stream
of coupons paid at dates {t1, t2, …, tn}. The difference is that now the payoffs are functions
of the {S1, S2, …, Sp} stocks according to a multivariate function f (.). The shape of the
function determines whether the product is long or short in correlation. From the shape
of the function itself it is not easy to give a straight answer to this question. We provide,
however, a rule of thumb that may be very helpful to get an answer.

6.5.1 The AND/OR rule

Consider a product with some payoff function f�S1, S2, � � � , Sp�. The following is a simple
rule of thumb to determine the sign of the position with respect to correlation. If the function
involves logical AND operators (∩), the product is long in correlation. If the function
involves OR operators (∪), then the product is short in correlation.

In other words, one should look through the contract and search statements of the kind:
“The coupon is paid if both event A AND B take place”, and in such case the value of
the contract will increase with dependence between A and B. Alternatively, if one runs into
statements like: “The coupon is paid if event A OR B takes place” the value of the contract
will decrease with correlation.

Going back to the chapter on correlation, we know that AND operators are linked to joint
distributions and copula functions. So, the probability attached to the statement “� � � both
events A AND B take place” would be

Q�A ∩ B� = C�QA�QB� (6.56)
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where C�u, z� is a copula function and QA and QB are the marginal distributions. Copula
functions increase with dependence. The probability that both events would take place also
increases and so does the price of the payoff attached to it under the contract.

Notice that if the coupon were linked to the complement sets, it would also increase with
correlation. Consider in fact the statement “� � � if NEITHER A OR B takes place”. Despite
how it may looks at first sight, this is an AND statement, involving the complement sets
(“A does not take place AND B does not take place”). The probability attached to it is

Q�A ∩ B� = C�QA�QB� = QA + QB − 1 + C
(
1 − QA� 1 − QB

)
(6.57)

where QA =1−QA�QB =1−QB and C �u� z� is the survival copula. Notice that the survival
copula also increases with dependence.

Contrary to that, it is easy to see that the probability attached to the statement “� � � if
event A OR B take place takes place” would be represented by

Q�A ∪ B� = 1 − Q�A AND B�

= 1 − C�QA� QB� = 1 − QA − QB + 1 − C
(
1 − QA� 1 − QB

)
= QA + QB − C�QA� QB� (6.58)

Notice that the probability now decreases with the value of the copula function, and also
with the dependence between events A and B.

6.5.2 Altiplanos

Consider a digital product indexed to a set of events. Typically each event in the set is
defined by

Ai�tj� ≡ Si�tj� ≤ BSi�t0� (6.59)

where B is a barrier value. The event takes place if the value of a stock Si at time tj is below
some strike level BSi�t0�. We can observe such events for a basket of i = 1, 2, …, p stocks.

Actually one could define the event in a more sophisticated way in, for example, the
following structure which is very common in many contracts. Consider a set of dates
tj1 < tj2 <…,< tjk, where tj−1 < tj1 and tjk = tj . Define the event

Ai�tj� ≡
k⋃

q=1

Si�tjq� ≤ BSi�t0� (6.60)

More explicitly, the period of time ranging from tj−1 to tj is partitioned in subintervals. The
event is defined as the case in which the value of a stock falls below the strike level BSi�t0�
at the end of at least one of the subintervals. In plain words, the event is defined as the case
in which the stock breaches the barrier in the period from tj−1 to tj .

An Altiplano is a structured product paying a fixed coupon at time tj if none of the events
described above has taken place. Formally, consider the following characteristic function

�j =

⎧⎪⎨
⎪⎩

0
p⋃

i=1
Ai�tj�

1
p⋂

i=1
Ai�tj�

(6.61)
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where A i

(
tj

)
is the complement of Ai

(
tj

)
. The payoff of an Altiplano is given by

Coupon�tj� ≡ c �j

where c is a fixed coupon. In other words, an Altiplano pays a fixed coupon at time tj if no
asset has breached the barrier in the period, or, analogously, if all the stocks have remained
above the barrier. It is easy to check that this product is long in correlation. In fact, the value
of the coupon is

cv�t� tj�Q��j� = cv�t� tj�Q

[
p⋂

i=1

Ai�tj�

]
= cv�t� tj�Cj

[
Q1�tj�� Q2�tj�� � � � �Qp�tj�

]
(6.62)

where Qi

(
tj

)
is the marginal probability attached to the event A i

(
tj

)
, and Cj ��� is the

corresponding survival copula.
In some of these products the relationship between dependence and value can be more

complex than this. Some products in fact include the so-called “memory” feature. When the
event takes place in an Altiplano with memory, the coupon is paid for the corresponding
maturity and for all of the previous maturities for which the event has not occurred. Formally,
the coupon is defined as

Coupon�tj� = c�j + c
j−1∑
m=1

�1 − �m� (6.63)

The price may be written as

cv�t� tj�Q

[
p⋂

i=1

Ai�tj�

]
+ cv�t� tj�

j−1∑
m=1

Q

[
p⋃

i=1

Ai�tm�

]
(6.64)

It is clear that the memory part is decreasing with correlation. In fact, for each time tm we
have

Q

[
p⋃

i=1

Ai�tm�

]
= 1 − Cm

[
Q1�tm��Q2�tm�� � � � �Qp�tm�

]
(6.65)

So, whether the product is long or short in correlation is an empirical question related to the
relative weight of the two parts in the payoff: the Altiplano part and memory. Obviously,
the longer the time to maturity of the note, the more the memory part is likely to be relevant,
and the product could well be short in correlation.

6.5.3 Everest

An alternative to a digital payoff is to index the amount of payment – and not only if
the payment would take place – to the performance of a set of stocks or markets. So, for
example, assume a single coupon paid at maturity T , generally defined as

Coupon�T� = max
[
f

(
S1�T�

S1�0�
�

S2�T�

S2�0�
� � � � �

Sn�T�

Sn�0�

)
− �1 + rg�� 0

]
(6.66)
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A usual choice is

Coupon�T� = max
[

min
(

S1�T�

S1�0�
�

S2�T�

S2�0�
� � � � �

Sn�T�

Sn�0�

)
− �1 + rg�� 0

]
(6.67)

This choice defines the so-called Everest note. In this product, the coupon is given by a
rainbow option, namely a call option on the minimum out of a set of assets.

The intuitive AND/OR rule suggests that the product is long in correlation. Actually,
the option would be exercised if the worst performance in the basket is greater than the
strike. But this implies that all performances should be above the strike. This is a clear
AND statement, and the Everest note is long in correlation. The statement may be proved
formally. While referring the reader to Chapter 8 in Cherubini et al. (2004) for a more
extensive treatment, we provide here the basic steps of the proof. The idea is that, according
to Breeden and Litzenberger (1978), we may write

−� CallMin �s1� s2� � � � � sn� t���T�

��
= v�t�T�Q�s1�T� > �� s2�T� > �� � � � � sn�T� > ��

(6.68)
for every strike � (remember the definition si�T�≡Si�T�/Si�0��. Integrating both sides from
�1 + rg� to infinity we get

CallMin
(
s1� s2� � � � � sn� t� 1 + rg� T

)= v�t�T�

�∫
1+rg

Q�s1�T� > �� s2�T� > �� � � � � sn�T� > �� d�

(6.69)
Using copula functions we get

CallMin
(
s1� s2� � � � � sn� t� 1 + rg� T

)= v�t�T�

�∫
1+rg

CT

[
Q1����Q2��� � � � Qn���

]
d� (6.70)

where Qn ��� ≡ Q�sn �T� > ��. The value of the product is then an increasing function of
copulas and is therefore increasing with dependence, as we wanted to prove.

Remark 6.2 Consider a coupon indexed to the maximum performance in the set. Formally,

Coupon�T� = max
[

max
(

S1�T�

S1�0�
�

S2�T�

S2�0�
� � � � �

Sn�T�

Sn�0�

)
− �1 + rg�� 0

]
(6.71)

The AND/OR rule in this case predicts that the product is short in correlation. In fact, the
coupon pays more than the guaranteed return if at least one of the stocks in the basket records
a better performance. This is a clear OR statement that points to a inverse relationship
between dependence and the value of the product. Again, intuition may be rigorously verified.
Without loss of generality, let us take the bivariate case. It is immediate to verify (see also
Stultz, 1982), that
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max
[

max
(

S1�T�

S1�0�
�

S2�T�

S2�0�

)
− �1 + rg�� 0

]
=max

[
S1�T�

S1�0�
− �1 + rg�� 0

]

+ max
[

S2�T�

S2�0�
− �1 + rg�� 0

]

− max
[

min
(

S1�T�

S1�0�
�

S2�T�

S2�0�

)
− �1 + rg�� 0

]

(6.72)

By arbitrage, the product is equivalent to a long position in two univariate call options and a
short position in an Everest – that is, a call on the minimum of the two assets. Since, as we
proved above, the call on the minimum is long in correlation, the call on the maximum is short.

6.5.4 Basket notes

Let us finally come to the most standard among the multivariate structured products, the
so called basket note. In these notes the function used to define the underlying asset is an
average, typically an arithmetic average. So the coupon is defined as

Coupon�T� = max

[
1
n

n∑
i=1

Si�T�

Si�0�
− �1 + rg�� 0

]
(6.73)

To be more precise, this kind of structure is typically used when the underlying assets are
stock indexes rather than individual stocks. In case of individual stocks, it is more usual to
find a structure like

Coupon�T� = max

⎡
⎢⎢⎣

n∑
i=1

niSi�T�

n∑
i=1

niSi�0�
− �1 + rg�� 0

⎤
⎥⎥⎦ (6.74)

where ni denotes the physical units of the ith stock in the basket. In both cases, there is
no need to resort to the AND/OR rule to determine the sign of the position with respect
to correlation (even though it is quite straightforward). The products are clearly long in
correlation.

A basket option is obviously more expensive than an Everest. In fact, whenever the
Everest pays a coupon, the basket option pays more. Furthermore, the basket option may
pay in cases in which the Everest does not. We leave the reader to prove that the basket
coupon has to be cheaper than a coupon paying the maximum performance.

If we want to be more precise about the price, however, this simple product raises complex
problems. The reason is that linear combinations of log-normal variables are not log-normally
distributed. The problem is actually the same as the one we encountered to evaluate arithmetic
average Asian options. Exactly as in that problem one could approximate the price by a
moment-matching algorithm. The natural alternative is simulation, which is usually preferred
because the curse of pricers is that it is very common to run into both problems in the same
contract. A typical payoff in fact is that of a basket Asian note, written as

Coupon�T� = max

[
1
p

p∑
j=1

n∑
i=1

Si�tj�

Si�0�
− �1 + rg�� 0

]
(6.75)



Equity-Linked Notes 161

where tj are dates at which the reference portfolio is evaluated. In cases like this, there is
not much one can do to produce an accurate price, and Monte Carlo simulation emerges
like the mandatory solution.

6.6 MONTE CARLO METHOD

Numerical methods that are known as Monte Carlo methods can be loosely described as
statistical simulation systems, where statistical simulation is defined in quite general terms
to be any method that utilizes sequences of random numbers to perform the simulation.
Monte Carlo methods have been used for centuries, but only in the past several decades has
the technique gained the status of a full-fledged numerical method capable of addressing the
most complex applications. The name “Monte Carlo” was coined by Metropolis (inspired by
Ulam’s interest in poker) during the Manhattan Project of Second World War, because of the
similarity of statistical simulation to games of chance, and because the capital of Monaco was
a centre for gambling and similar pursuits. Statistical simulation methods may be contrasted
to conventional numerical discretization methods, which typically are applied to ordinary
or partial differential equations that describe some underlying physical or mathematical
system. In many applications of Monte Carlo, the underlying dynamic process is simulated
directly, and there is no need to even write down the differential equations that describe
the behaviour of the system. The only requirement is that the system can be described by
probability distribution functions (p.d.f.’s). Once the p.d.f.’s are known, the Monte Carlo
simulation can proceed by random sampling from the p.d.f.’s. Many simulations are then
performed (multiple “trials” or “histories”) and the desired result is taken as an average
over the number of observations (which may be perhaps millions of observations). In many
practical applications, one can predict the statistical error (the “variance”) in this average
result, and hence an estimate of the number of Monte Carlo trials that are needed to achieve
a given error.

Although it is natural to think that Monte Carlo methods are used to simulate random,
or stochastic, processes, since these can be described by p.d.f.’s, this coupling is actually
too restrictive because many Monte Carlo applications have no apparent stochastic content,
such as the evaluation of a definite integral or the inversion of a system of linear equations.
However, in these cases and others, one can pose the desired solution in terms of p.d.f.’s,
and while this transformation may seem artificial, this step allows the system to be treated
as a stochastic process for the purpose of simulation and hence Monte Carlo methods can
be applied to simulate the system.

6.6.1 Major components of a Monte Carlo algorithm

Let us now describe briefly the major components of a Monte Carlo method. The primary
components of a Monte Carlo simulation method include the following:

• Probability distribution functions (p.d.f.’s): The mathematical system must be described
by a set of p.d.f.’s.

• Random number generator: A source of random numbers uniformly distributed on the
unit interval must be available.

• Sampling rule: A prescription for sampling from the specified p.d.f.’s, assuming the
availability of random numbers on the unit interval, must be given.
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• Scoring (or tallying): The outcomes must be accumulated into overall tallies or scores
for the quantities of interest.

• Error estimation: An estimate of the statistical error (variance) as a function of the number
of trials and other quantities must be determined.

• Variance reduction techniques: Methods for reducing the variance in the estimated solu-
tion to reduce the computational time for Monte Carlo simulation.

6.6.2 Monte Carlo integration

We would like to evaluate the following definite integral:

I =
b∫

a

g�x� dx (6.76)

where we assume that g�x� is real valued (r.v.) on �−�� +��. The idea is to manipulate
the definite integral into a form that can be solved by the Monte Carlo method. To do this,
we define the following function on [a� b],

f�x� =
{

1/�b − a�� a ≤ x ≤ b

0� otherwise
(6.77)

and insert (6.76) into (6.77) to obtain the following expression for the integral I:

I = 1
b − a

+�∫
−�

g�x�f�x� dx (6.78)

Note that f�x� can be viewed as a uniform p.d.f. on the interval [a�b]. Given that f�x� is a
p.d.f., we observe that the integral on the right-hand side of (6.78) is simply the expectation
value for g�x�:

I = 1
b − a

+�∫
−�

g�x�f�x� dx = 1
b − a


g� (6.79)

We now draw samples {xn} from the p.d.f. f�x�, and for each {xn} we will evaluate g�xn�and
form the average G,

G = 1
N

N∑
n=1

g�xn� (6.80)

But (6.80) states that the expectation value for the average of N samples is the expectation
value for g�x�, G = 
g�, hence

I ≈ Î = 1
b − a

[
1
N

N∑
i=1

g�xn�

]
(6.81)
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Thus we can estimate the true value of the integral I on [a�b] by taking the average
of N observations of the integrand, with the r.v. x sampled uniformly over the interval
[a�b].

Recall that (6.80) related the true variance in the average G to the true variance in g,

var�G� = 1
N

var�g� (6.82)

Although we do not know var(G), since it is a property of the p.d.f. f�x� and the real
function g�x�, it is a constant. Furthermore, if we associate the error in our estimate of the
integral I with the standard deviation, then we might expect the error in the estimate of I to
decrease by the factor N−1/2.

We call (6.81) the crude Monte Carlo estimator. Formula (6.82) for its standard error is
important for two reasons. First, it tells us that the standard error of a Monte Carlo analysis
decreases with the square root of the sample size. If we quadruple the number of realizations
used, we will half the standard error. Second, standard error does not depend upon the
dimensionality of the integral (6.76). Most techniques of numerical integration – such as
the trapezoidal rule or Simpson’s method – suffer from the curse of dimensionality. When
generalized to multiple dimensions, the number of computations required to apply them
increases exponentially with the dimensionality of the integral. For this reason, such methods
cannot be applied to integrals of more than a few dimensions. The Monte Carlo method
does not suffer from the curse of dimensionality. It is as applicable to a 1000-dimensional
integral as it is to a one-dimensional integral.

While increasing the sample size is one technique for reducing the standard error of
a Monte Carlo analysis, doing so can be computationally expensive. A better solution
is to employ some technique of variance reduction. These techniques incorporate addi-
tional information about the analysis directly into the estimator. This allows them to
make the Monte Carlo estimator more deterministic, and hence have a lower standard
error.

6.6.3 Sampling from probability distribution functions

Transformation of p.d.f.’s

In order to give a complete discussion of sampling, we need to explain transformation
rules. Given a p.d.f. f�x�, one defines a new variable y = y�x�, and the goal is to find
the p.d.f. g�y� that describes the probability that the r.v. y occurs. First of all, we need to
restrict the transformation y = y�x� to be unique, because there must be 1-to-1 relation-
ship between x and y in order to be able to state that a given value of x unambiguously
corresponds to a value of y. Given that y�x� is 1-to-1, then it must either be monotone increas-
ing or monotone decreasing, since any other behaviour would result in a multiple-valued
function y�x�.

Let us first assume that the transformation y�x� is monotone increasing, which results in
dy/dx > 0 for all x. The transformation must conserve probability, i.e. the probability of the
r.v. x′ occurring in dx about x must be the same as the probability of the r.v. y′ occurring
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in dy about y, since if x occurs, the 1-to-1 relationship between x and y requires, that y
takes place. But by definition of the p.d.f.’s f�x� and g�y�,

f�x� dx = prob�x ≤ x′ ≤ x + dx�

g�y� dy = prob�y ≤ y′ ≤ y + dy�
(6.83)

The transformation implies that these probabilities must be equal. Equality of these differ-
ential probabilities yields

f�x� dx = g�y� dy (6.84)

and one can then solve for g�y�:

g�y� = f�x�/�dy/dx� (6.85)

This holds for the monotone increasing function y�x�. It is easy to show that for a monotone
decreasing function y�x�, where dy/dx < 0 for all x, the fact that g�y� must be positive (by
definition of probability) leads to the following expression for g�y�:

g�y� = f�x�/�−dy/dx� (6.86)

Combining the two cases leads to the following simple rule for transforming p.d.f.’s:

g�y� = f�x�/�dy/dx� (6.87)

For multidimensional p.d.f.’s, the derivative �dy/dx� is replaced by the Jacobian of the trans-
formation, which will be described later when we discuss sampling from the Gaussian p.d.f.

Sampling via inversion of the c.d.f.

Since the r.v. x and the c.d.f. F�x� are 1-to-1, one can sample x by first sampling y = F�x�
and then solving for x by inverting F�x�, or x = F−1�y�. The c.d.f. is uniformly distributed
on [0, 1], which is denoted U�0� 1�. Therefore, we simply use a random number generator
(RNG) that generates U�0� 1� numbers, to generate a sample � from the c.d.f. F�x�. Then
the value of x is determined by inversion, x =F−1���. The inversion is not always possible,
but in many important cases the inverse is readily obtained.

We summarize below the steps for sampling by inversion of the c.d.f.:

• Step 1: Sample a random number � from U [0� 1]
• Step 2: Equate � with the c.d.f.: F�x� = �
• Step 3: Invert the c.d.f. and solve for x: x = F−1���

6.6.4 Error estimates

For finite but at least moderately large n, we can supplement the estimate of our integral Î
with a confidence interval. For this purpose, let

� =
√

1
N − 1

N∑
i=1

(
Ii − Î

)2
(6.88)
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denote the sample standard deviation of our estimation and let 	� denote the 1 − � quantile
of the standard normal distribution, then

Î ± 	�/2

�√
N

is an asymptotically valid 1 − � confidence interval for Î .

6.6.5 Variance reduction techniques

Many practitioners have some intuitive familiarity with the Monte Carlo method from their
work. At an elementary level, it is a surprisingly simple concept, but it can be computationally
expensive to use. It is easy to code Monte Carlo analyses that take hours or even days to
run. To speed up analyses – to make them run in minutes as opposed to days – users need to
employ techniques such as variance reduction. These techniques are easy to learn, but they
are NOT intuitive. To use them, users need a sophisticated understanding of how and why
the Monte Carlo method works.

Standard techniques of variance reduction include:

• common random numbers
• antithetic variates
• control variates
• importance sampling, and
• stratified sampling.

For a general description of these methods we refer the interested readers to Jäckel (2002)
and Glasserman (2003). In this section we shall briefly describe common random numbers
(in connection with the problem of sensitivities estimates), antithetic variates and control
variates.

Common random numbers

In practice, the evaluation of price sensitivities is often as important as the evaluation of
prices. For hedging purposes, when managing a lot of derivatives, it is also important to
know the risk exposure. Whereas prices for some derivatives can be observed in the market,
their sensitivities to parameter changes typically cannot, and must therefore be computed.
Sensitivity measures of derivatives for which closed-form formulas do not exist have to be
computed numerically. However, highly precise estimates with the brute force method can
take a long time to be achieved. Variance reduction techniques reduce the mean standard
error and can be used to speed up simulations by achieving a specified level of precision
with a smaller number of trials. In this section we will discuss a very simple approach
to estimating price sensitivities, especially delta with finite difference approximation. The
reader is referred to Glasserman (2003) for a complete discussion on this important subject.

Consider the problem of computing the delta of the Black–Scholes price of a European
call:

� = �C

�S0

(6.89)
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where C is the option price and S0 is the current stock price. A crude estimate of delta could
be obtained by generating a terminal stock price

S�T� = S�0� exp
[(

r − 1
2

�2

)
T + �

√
T Z

]
(6.90)

from the current stock price S�0�, and a second, independent terminal stock price

S��T� = �S�0� + �� exp
[(

r − 1
2

�2

)
T + �

√
T Z′

]
(6.91)

from the perturbed initial price �S�0� + �� with Z and Z′ independent. For each terminal
price, a discounted payoff can be computed

C�S0� = e−rT max�0� S�T� − K� (6.92)

C�S0 + �� = e−rT max�0� S��T� − K� (6.93)

A crude estimation of delta is then provided by the finite difference approximation

�̃ = C�S0 + �� − C�S0�

�
(6.94)

By generating n independent replications of S�T� and S��T� we can calculate the sample
mean of n independent copies of �̃. As n→� this sample mean converges to the true finite
difference ratio. At this point one could think that to get an accurate estimate of � we should
make � as small as possible. However, since we generate S�T� and S��T� independently of
each other, we have

Var��̃� = �−2
Var�C�S0 + ��� + Var�C�S0��� = O��−2� (6.95)

so the variance of �̃ becomes very large if we make � small! To get an estimator that
converges to � we must let � decrease slowly as n increases, resulting in slow overall
convergence. Better estimators can generally be improved using the method of common
random numbers which, in this context, simply uses the same random number Z in the
estimation of both S�T� and S��T�. If we denote by �∗ the finite difference approximation
thus obtained, we have that, for fixed �, the sample mean of independent replications of
�∗ also converges to the true value of �. However, the variance of this estimator is now
given by

Var��̂� = �−2
Var�C�S0�� + Var�C�S0 + ��� − 2 Cov�C�S0�� C�S0 + ���� (6.96)

because C�S0� and C�S0 + �� are no longer independent. In particular, if they are positively
correlated, then �∗ has smaller variance than �̃. It is possible to demonstrate that this is indeed
the fact due to monotonicity of the function mapping Z to C� Thus the use of common
random numbers reduces the variance of the estimate of delta.
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Antithetic variates

The antithetic variate method is one of the most widely used variance reduction techniques.
Let

Y = g �x1� x2� · · · � xn� (6.97)

be generated from a random sample

�x1� x2� · · · � xn� (6.98)

of independent standard normal numbers. Now generate a second variable

Y ∗ = g�−x1� −x2� · · · � −xn� (6.99)

from the random sample

�−x1� −x2� · · · � −xn� (6.100)

which is also a standard normal distribution. Then

E

[
Y + Y ∗

2

]
= E�Y� + E�Y ∗�

2
= E�Y� (6.101)

is also an unbiased estimator with

Var
[

Y + Y ∗

2

]
= Var�Y�

2
+ Cov�Y� Y ∗�

2
(6.102)

If Cov�Y� Y ∗� < Var �Y � then Var
[

Y + Y ∗

2

]
< Var �Y �.

As E

[
Y + Y ∗

2

]
uses twice as many replications as E �Y �, we must account for differences

in computational requirements. Thus, for antithetics to increase efficiency, we require

2 · Var
[

Y + Y ∗

2

]
< Var�Y� (6.103)

which means

Cov�Y� Y∗� < 0 (6.104)

As in the previous discussion about common random numbers, it is possible to prove that
this is the case if the relationship between the random number set and the pricing function
is monotonic. This argument can be adapted to show that the method of antithetic variates
increases efficiency in pricing a European put and other options that monotonically depend
on inputs. Caution must be used in other cases where this assumption is questionable (e.g.
some kind of barrier options).
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Control variates

Consider a crude Monte Carlo estimator:

1
N

N∑
k=1

f�U �k�� (6.105)

Let � be a real-valued function for which the mean

�� = E���U�� (6.106)

is known. We shall refer to the random variable ��U� as a control variate. Consider the
random variable f ∗�U� based on this control variate:

f ∗�U� = f�U� − c
(
��U� − ��

)
(6.107)

for some constant c. By construction, � = E�f ∗ �U��, so we can estimate � with the Monte
Carlo estimator

1
N

N∑
k=1

f ∗�U �k�� = 1
N

N∑
k=1

�f ∗�U �k�� − c���U �k�� − ���� (6.108)

This will have a lower standard error than the crude estimator (6.105) if the standard deviation
�* of f ∗�U� is smaller than the standard deviation � of f�U�. This will happen if ��U� has a
high correlation � with the random variable f�U�, in which case random variables c��U� and
f�U� will tend to offset each other in (6.107). We formalize this observation by calculating

�∗ = stdev�f�U� − c���U� − ���� = stdev �f�U� − c��U��

=
√

�2 + c2�2
� − 2c���� (6.109)

where �� is the standard deviation of ��U�. Obviously, �* will be smaller than � if

� >
c��

2�
(6.110)

It can be shown that �* is minimized by setting

c = ��

��

(6.111)

in which case

�∗ = �
√

1 − �2 (6.112)

Often, � and �� are unknown, which makes determining the optimal value for c problematic.
We can estimate � and �� with a separate Monte Carlo analysis. Alternatively, if � closely
approximates f , c might simply be set equal to 1. As the above description indicates, the
key to the method of control variates is finding a function � that closely approximates f ,
and for which E���U�� is easy to calculate. A well-known case of this type of relationship is
that of an arithmetic average Asian option and the corresponding geometric average option.
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6.6.6 Pricing an Asian option with JMC program

As we have discussed in the previous section, the method of control variates replaces the
evaluation of an unknown expected value with the evaluation of the difference between the
unknown quantity and a related quantity whose expected value is known. Here, the unknown
quantity of interest is the value CA of an average-price Asian call option whose payout at
expiration is max�A−K� 0�, where A is the arithmetic average of the underlying asset prices
during the holding period. The related quantity with known expectation is the value CG of an
Asian option whose payout is max�G − K� 0�, where CG is the geometric average. Because
of the log-normality of the stock price model, an analytic expression is available for CG but
not for CA. In particular, if

G =
(

m∏
j=1

Stj

)1/m

(6.113)

then

CG = exp�−rT�

[
exp

(
�G + 1

2
�2

G

)
N�d1� − KN�d2�

]
(6.114)

where

�G = ln �S0� +
(

r − q − 1
2

�2

)
T + h

2
h = T/m

�2
G = �2h

�2m + 1��m + 1�

6m

d1 = �G − ln�K� + �2
G

�G

d2 = d1 − �G

and m is the number of point used to estimate the average. We have included these
formulas in a new class derived from the CBlackScholes class that we named
CBlackScholes_GeometricAsian (see Figure 6.3).

The code of the Execute() method is shown below.

package pricing_algorithm;

import finobject.COption;

public class CBlackScholes_GeometricAsian extends
CBlackScholes {
/**
* note: this method overwrite the Execute method
of the super class

* CBlackScholes
*/

public double Execute(COption option){



170 Structured Finance

CPathGenerator

CNormST

CNormBivariate

CBlackScholes_Compound CBlackScholes_GeometricAsian

IPricing

finobject.COption

CBlackScholes

«interface»

«access»

«instantiate»

«instantiate»

«instantiate»

«instantiate» «instantiate»

«instantiate»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

CPathGenerator

CNormInvCum()

CNormST()

Cum()

Cum()

Dist()

gbmUnivariate()

gbmUnivariate()

gbmUnivariate()

I

+

+

+

+
C

C

C

C

C

C

C

C

C

C

C

S,F

S,FS

Execute()

discounting : CDiscounting

exercise : CExercise

payoff : CPayoff

underlying : CFinancialActivity

COption()

COption()

Pricing()

getDiscounting()

getExercise()

getPayoff()

getUnderlying()

printOut()

Execute()

Execute() Execute()

CALL : int

PUT : int

Figure 6.3 The complete CBlackScholes class and its subclasses

return BS_GeometricAsian(option);
}
private double BS_GeometricAsian(COption option)
{

System.out.println("Running Black & Scholes Algorithm for
Geometric Asian Option");
option.printOut();

CNormST N = new CNormST();

double price = 0;

double S = (option.getUnderlying()).getLevel();
double sigma = (option.getUnderlying()).

getVolatility();
double K = (option.getPayoff()).getStrike();
double r = (option.getDiscounting()).

getDiscountRate();
double T = (option.getExercise()).

getExpirationTime();

int m_ave =(option.getPayoff()).getNrFixing();

double h = T / (double)m_ave;
double mg = Math.log(S) + (r - sigma * sigma / 2) *

(T + h) / 2.0;
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double sg = Math.sqrt((sigma * sigma) * h * (2 * m_ave + 1)
*(m_ave + 1) / (6 * m_ave));

double d1 = (mg - Math.log(K) + sg * sg) / sg;
double d2 = d1 - sg;

price = Math.exp(-r * T) * (Math.exp(mg + sg * sg / 2) *
N.Cum(d1) - K * N.Cum(d2));

return price;
}

}

To price an Asian option with a crude Monte Carlo we have extended the pricing classes,
adding a new class named CMonteCarlo which, as usual, implements the IPricing
interface.

public class CMonteCarlo implements IPricing {

/* parameters */
private int numberOfSimulations;
private int numberOfSteps;

/* inspectors */

public int getNumberOfSimulations()
{return numberOfSimulations;}
public int getNumberOfSteps() {return numberOfSteps;}

/* constructors */

public CMonteCarlo(){}

public CMonteCarlo(int numberOfSimulations,
int numberOfSteps)
{

this.numberOfSimulations = numberOfSimulations;
this.numberOfSteps = numberOfSteps;

}

public CMonteCarlo(int numberOfSimulations)
{

this.numberOfSimulations = numberOfSimulations;
this.numberOfSteps = 1;

}

/* methods */

public double Execute(COption option)
{

System.out.println("Running Monte Carlo Simulation...");
System.out.println("Number of Simulations = " +

numberOfSimulations);
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option.printOut();

numberOfSteps++;
int i = 0;
double price = 0;
double T = (option.getExercise()).

getExpirationTime();
double r = (option.getDiscounting()).

getDiscountRate();
double stdev = (option.getUnderlying()).

getVolatility();
double S = (option.getUnderlying()).getLevel();

double riskNeutralDrift = r - 0.5*stdev*stdev;
double sqrtDeltaT = Math.sqrt(T/(numberOfSteps-1));
double discount = Math.exp(-r*T);

double[] y = new double[numberOfSteps];

CPathGenerator generator = new CPathGenerator(numberOf
Steps, numberOfSimulations);

price = 0;
for(i = 0; i < numberOfSimulations; i++)
{

generator.gbmUnivariate(S,
stdev,
sqrtDeltaT,
riskNeutralDrift,
y);

price += (option.getPayoff()).value(y);
}
price *= discount/numberOfSimulations;

return price;
}

}

The CMonteCarlo class uses the CPathGenerator class to generate the log-normal
path for the underlying. This class could be easily generalized to include a more complicated
stochastic process.

public class CPathGenerator
{

private int nStep = 0;
private int nPath = 0;

public CPathGenerator(int nStep, int nPath)
{
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this.nStep = nStep;
this.nPath = nPath;

}

public boolean gbmUnivariate(double iniValue,
double stdev,
double sqrDt,
double drift,
double[][] path)

{
double z = 0;

Random gen = new Random();

for (int i = 0; i < nPath; i++){
path[i][0]= iniValue;
for (int j = 1; j < nStep; j++){

z = CNormST.CNormInvCum(gen.nextDouble());
path[i][j] = path[i][j-1] * Math.exp((drift

* sqrDt + stdev*z)*sqrDt);
}

}
return true;

}

public boolean gbmUnivariate(double iniValue,
double stdev,
double sqrDt,
double drift,
double[] path)

{
double z = 0;

Random gen = new Random();

path[0] = iniValue;
for (int j = 1; j < nStep; j++){

z = CNormST.CNormInvCum(gen.nextDouble());
path[j]= path[j-1] * Math.exp((drift * sqrDt +

stdev*z)*sqrDt);
}
return true;
}

}

Using a crude Monte Carlo simulation to estimate the arithmetic average Asian option is
equivalent to considering the estimator CA = E

[
Ci

A

]
, where Ci

A is the simulated value for
the ith path. In this case, the control variates technique is equivalent to using the estimator.
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Figure 6.4 Variance reduction with respect to the underiying volatility
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CA = E�Ci
A + CG − Ci

G� = E�Ci
A� + CG − E�Ci

G� = E�Ci
A�

Using CG as a control variate reduces the variance because it “steers” the estimate towards
the correct value. Running the program in the CD you can find that the decrease in variance
is impressive. In Figures 6.4 and 6.5 we report the Monte Carlo variance for different times
to expiration and different values for the underlying volatility. As we can see, the effect of
reduction is much more pronounced than that obtained with more standard techniques as
antithetic variates.
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7
Credit-Linked Notes

7.1 INTRODUCTION

Defaultable bonds are debt instruments issued by entities that are subject to default risk –
that is, the risk that they may be unable to fully repay interest and principal. Typical issuers
subject to the risk of default are corporate entities (think of Enron, WorldCom, Parmalat,
Cirio), municipal entities (think of Orange county) or countries (think of Mexico, Russia, or
Argentina).

Strictly speaking, standard defaultable bonds may not be considered proper structured
products. However, it is clear that they carry at least two sources of risk. The first has to
do with the structure of the product and how its value may change with term structure. The
second has to do with the characteristics of the issuer and how the value of the products can
change while its credit standing changes. Nowadays it is possible to separate these sources
of risk by using new instruments, called credit derivatives. For this reason, it is natural
to include these securities among the structured products. They may in fact be thought to
be made up of a plain product and some credit derivative contracts. Actually, financial
engineering can be used to modify the mix of market risk and credit risk in a product, and
one could also synthetically build a corporate bond independently from the fact that the
issuer has actually issued debt.

7.2 DEFAULTABLE BONDS AS STRUCTURED PRODUCTS

To see why defaultable bonds may be considered structured products, assume that the credit
risk can be sold to some other party. Formally, define DP�t� T � c� the value at time t of the
bond with coupon payment c and repayment in a single sum at maturity T . Denote instead
P�t�T � c� the value of the contract if it were issued by a default-free issuer (the US Treasury,
for example). We have

DP�t� T � c� = P�t�T � c� − default risk premium + � (7.1)

The value of the defaultable contract will be lower than the corresponding default-free
contract, apart from the friction factors accounted for by �. The friction factors could be
due to differences in liquidity or fiscal treatment, institutional and contractual features, etc.
Assume that one could purchase insurance on the value of the bond at maturity � ≤ T . We
know that a standard could be to buy a put with a given strike price k, with payoff

max�k − DP���T � c�� 0� (7.2)

In this case one ensures the value of the investment with respect to a stop loss value equal
to k. Actually, this insurance covers two main sources of risk: (i) the risk of a term structure
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increase and a decrease of P�t�T � c�; (ii) the risk of an increase in the default risk premium.
Of course, frictions may also play a role.

7.2.1 Expected loss

If one buys insurance for repayment of the principal in full by time T , he would buy the
payoff

1 − DP�T�T � c� (7.3)

This product provides protection against default. It is called default put option. In fact,
two things can happen with bond DP�T�T � c� at maturity. The firm has not defaulted by
time T , and the bond is worth the principal �DP�T�T � c� = 1�. Alternatively, the firm may
have defaulted and the bond is worth less than the principal, the so-called recovery rate
�DP�T�T � c� = RR�, Defining 1� ≤T the indicator function spotting the default event, the
value of the defaultable bond would be

DP�T�T � c� = �1 − 1� ≤T � + 1� ≤T RR = 1 − 1� ≤T �1 − RR� = 1 − 1� ≤T LGD (7.4)

where LGD ≡ 1 − RR is called loss given default. The payoff of the option providing
insurance against default is then

1 − DP�T�T � c� = 1� ≤T LGD (7.5)

The value of the default put option at time t would then be

DefPut�t� T � = v�t�T �EQ�max�1 − DP�T�T � c�� 0�	 = v�t�T �EQ�1� ≤T LGD	 = v�t�T �EL
(7.6)

where EL is the expected loss.
A defaultable bond is then a structured product consisting of a default-free bond and a

default put option.

DP�t� T � c� = P�t�T � c� − DefPut�t� T� (7.7)

In fact, at time T it will be exactly: DP�T�T � c� = 1 − 1� ≤T LGD.
Ways to provide insurance against default, technically called “selling protection”, are

offered by credit derivatives. Credit derivatives are just institutional ways to buy and sell
the options described above.

7.2.2 Credit spreads

Defaultable bonds issued by a particular entity may just be considered as another fixed
income asset class. As for all other fixed income classes, the bonds in this class can be
represented by a discount factor curve. The discount factor v∗�t� �� gives the value at time
t of 1 unit of currency paid at time � by a defaultable entity. The corresponding discount
factor of the default-free entity is denoted by v�t� ��. The value of the defaultable bond can
then be expressed as

DP�t� T
 c� =
n∑

i=1

cv∗�t� ti� + v∗�t� tn� (7.8)
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The discount factor curve can be expressed in terms of a yield curve. Depending on the
compounding regime, we may denote the term structure i∗�t� T� defined from

i∗�t� T � =
(

1
v∗�t� T �

)1/��−T �

− 1 (7.9)

By the same token we compute i�t� T� from

i�t� T � =
(

1
v�t�T �

)1/�T−t �

− 1 (7.10)

Alternatively, we could use continuous compounding

r∗�t� T � = − ln�v∗�t� T ��

T − t
r�t� T � = − ln�v�t�T ��

T − t
(7.11)

The difference in value can then be expressed in terms of yield spreads. This is the so-called
credit spread term structure

cs�t� T � = r∗�t� T � − r�t� T � (7.12)

The credit spread (cs) term structure refers to the difference between the default-
able and the default-free zero-coupon curves. The value of a defaultable zero-coupon
bond is

DP�t� T � 0� = v∗�t� T � = v�t�T ��1 − EQ�1� ≤T LGD�	 (7.13)

From this, the credit spread term structure can be written as

cs �t� T� = − ln �v∗ �t� T� /v �t�T�	

T − t
= − ln

[
1 − EQ

(
1� ≤T LGD

)]
T − t

(7.14)

and credit spreads convey the same information content as prices.

7.3 CREDIT DERIVATIVES

Credit derivatives were introduced at the beginning of the 1990s to enable financial institu-
tions to transfer credit risk, just like IRS were traditionally used to transfer interest rate risk.
For this reason the main technical tool used is that of the swap contract, even though spread
options have recently gathered momentum.

Before illustrating the technical features of the main contracts used in the market, we
review the basic choices that have to be made in the financial engineering of “credit
protection”. The first feature is the design of the payoff, that may be:

• linked to a specific reference obligation or to a set of obligations;
• determined by a credit event or a price;
• referred to the expected loss or the credit spreads.
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The second feature is the design of the payment that may be

• fixed payment (up-front premium);
• periodic fixed payments (running basis premium);
• periodic floating payments plus spread (running basis spread).

7.3.1 Asset swap spread

The asset swap (ASW) is a product which, properly speaking, is not a credit derivative but
is extensively used in the evaluation of credit risk. An asset swap can be seen as a package
of two products: a bond, which in principle may be defaultable or not, and a plain vanilla
interest rate swap. Under an asset swap two parties exchange the flows of a bond, plus
up-front payment if the bond price is below par against floating payments, plus a spread and
up-front payment if the bond quotes above par.

Without loss of generality, assume that the bond DP���T � c� quotes below par. Two parties
engage in an asset swap on this product. Payments are scheduled at times �t� t1� t2� � � � � tn =T
.
Date t is the evaluation period. The party paying the fixed leg would pay 1 − DP�t� T � c� at
time t and will pay the coupon c on all the following dates. The present value of the fixed leg
would then be

1 − DP�t� T
 c� + c
n∑

j=1

v�t� tj� (7.15)

The party paying the floating leg would pay coupons indexed to the default-free curve plus
a spread s. Apart from convexity and timing adjustments that we rule out for simplicity, the
present value of the floating leg would be, as in standard IRS deals,

1 − v�t�T � + s
n∑

j=1

v�t� tj� (7.16)

An important point to notice is that the payments of the fixed and the floating legs have
been discounted using the default-free term structure. This means that we rule out the event
of default of either of the two parties in the swap contract. Of course, this may not be the case
(actually, it is not) in the real world. Namely, three sources of credit risk are involved in this
transaction: default of the issuer of the underlying security, default of the party providing
protection, and default of the party purchasing protection. Our analysis here is limited to
the first credit risk source. The other sources, known under the name of “counterparty risk”,
will be discussed in a later chapter.

As is well known, swap contracts are structured in such a way that the floating and
fixed legs have the same value at the origin of the contract. So, the asset swap spread s is
determined from the equality

1 − DP�t� T
 c� + c
n∑

j=1

v�t� tj� = 1 − v�t�T � + s
n∑

j=1

v�t� tj� (7.17)

Recalling the definition of swap rate ‘sr’

sr = 1 − v�t�T �
n∑

j=1
v�t� tj�

(7.18)
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we can compute

s = c − sr + 1 − DP�t� T
 c�
n∑

j=1
v�t� tj�

(7.19)

So, the spread is made up of two components. The first is the difference between the coupon
and the swap rate. The second is the up-front payment divided by the sum of the discount
factors. It is particularly on the latter component that the spread carries information. To see
this, consider what would happen to the asset swap on the corresponding default-free bond
P�t�T � c�. Remember that the present value of this bond is

P�t�T
 c� =
n∑

j=1

cv�t� tj� + v�t�T� (7.20)

Substituting in the asset swap spread formula we get

s = c − sr + 1 − P�t�T
 c�
n∑

j=1
v�t� tj�

= c − sr +
1 − n∑

j=1
cv�t� tj� − v�t�T�

n∑
j=1

v�t� tj�
= c − sr − c + 1 − v�t� T�

n∑
j=1

v�t� tj�
= 0 (7.21)

from the definition of swap rate. So, any positive spread is a measure of the underlying
bond being below par by more than it should be if it had been evaluated using the discount
factor curve v�t� ��. Of course, credit risk could be just one of the possible explanations for
this underpricing. Others could be liquidity, tax effects, and the like.

7.3.2 Total rate of return swap

A total return swap (TRS), or a total rate of return swap (TRORS), is simply a swap of the
“total return” on a security against a sequence of payments. The total return is defined as
the sum of coupon payments and capital gains or losses over the period.

Securities may be equities (equity swaps), corporate bonds, tranches, commodities and
so on. To stick to our problem, consider our defaultable bond DP�t� T � c�. For the sake of
simplicity, assume that the product is a zero-coupon bond �c = 0�, and that we have a total
return swap providing protection of the investment up to time tj . Payments are assumed to
be scheduled on the dates �t1� t2� � � � � tj≤ T} The party providing insurance pays

DP�ti� T
 0� − DP�ti−1� T
 0�

DP�ti−1� T
 0�
(7.22)

and the party purchasing insurance pays a spread s over LIBOR.

1
v�ti−1� ti�

− 1 + s = i�ti−1� ti� + s (7.23)
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Notice that

DP�ti� T
 0� − DP�ti−1� T
 0�

DP�ti−1� T
 0�
= 1

v∗�ti−1� ti�
− 1 = i∗�ti−1� ti� (7.24)

As typically the value at origin is assumed to be zero, we have

n∑
i=1

v�t� ti�EQ�ti�
�i∗�ti−1� ti�� =

n∑
i=1

v�t� ti�EQ�ti�
�i�ti−1� ti�� +

j∑
i=1

v�t� ti�s (7.25)

where Q�ti� denotes the forward martingale measure for payments to be made at time ti.
The spread of the total return swap is then

s =
n∑

i=1
v�t� ti�EQ�ti�

�i∗�ti−1� ti� − i�ti−1� ti��

n∑
i=1

v�t� ti�
(7.26)

As for the ASW contract above, it is immediate to check that if the underlying asset of the
total return swap is default-free, we have s = 0.

We may now discuss the basic properties of a total return swap, in view of the payoff
features pointed out in the previous section. We may make some remarks.

• The payoff is linked to a specific security. Actually, the set of securities allowed is much
larger than the defaultable securities. Any investment may be the underlying of a total
return swap.

• Payments are not contingent to a specific event, but are only determined by realizations
of the underlying asset. These can be determined either by changes of the credit quality
or by other factors.

• The underlying is typically a rate of return on a security.

From these arguments it emerges that total return swaps may not be properly defined as
“credit derivatives”. Actually, the value of the premium is linked to the credit standing of
the issuer, and may be severely affected by deterioration of its credit quality. However,
many other events and risk factors may impact on it. On one hand, institutional and liquidity
features specific to a given security may be priced in the premium. On the other hand, the
premium may respond to changes in the shape of the term structure, irrespective of what
happens to the credit spread.

7.3.3 Credit default swap

A credit default swap (CDS) is a proper credit derivative product. Its structure closely
resembles an insurance product and the events against which it is meant to provide insurance
are defaults or similar “credit events”.

The typical CDS structure is that of a swap. One party buys protection against some
default event (“protection buyer”) and pays a premium, typically on a running basis. The
stream of payments due by the protection buyer is called the “premium leg” of the swap.
The other party, the protection seller, faces the obligation, until maturity of the swap, to
pay the losses incurred by the protection buyer as a result of a certified “credit event”. The
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losses are referred to a principal amount determined in the contract. This insurance service
is called the “protection leg”.

Unlike the total return swap, the CDS is a standardized product. The underlying asset is
not a specific issue, but rather a “name”, denoting an issuer. When a credit event occurs, the
protection seller makes up for losses on general exposures to the “name” under the contract.
Depending on the type of contract, it can be settled in cash: in some “digital” contracts the
obligation is a fixed sum, in other cases the loss-given default to be refunded is determined
by experts. The most usual settlement agreement remains, however, a physical delivery.
The protection buyer is then allowed to deliver whatever debt obligation was issued by
the “name”, receiving the nominal value. Of course, the natural choice would be to deliver
those instruments that are worth less. In other words, the protection buyer holds a “quality
option” or “delivery option”, like that typical of the futures markets. It is this feature that
provides the CDS market with the same product standardization and liquidity as that of
the futures markets themselves. So, everybody holding an exposure with respect to a given
“name” will be interested in trading a CDS on that name; also, everybody interested in
structuring products linked to the credit quality of a name would use a CDS as a way to
provide “synthetic” credit risk.

The credit event is also standardized under the ISDA agreement. Eligible credit events
are:

• Bankruptcy
• Obligation acceleration
• Obligation default
• Failure to pay
• Moratorium/Repudiation
• Restructuring.

Different credit events may have impact on the value of the contract. This certainly applies to
contracts selecting the “restructuring” credit event. In this case in fact, there may be a clear
“moral hazard” problem with the party purchasing protection. The party holding insurance
against default on some exposure may have a strong incentive to force debt restructuring
with the issuer to collect the payment from the protection seller. It is for this reason that
protection premia for a CDS with this “restructuring” clause are typically higher.

In order to describe the payments expected for the two legs we make the simplifying
assumption that payments occur at the end of the coupon period. The payment from the
protection seller at the end of any coupon period (time ti� can be represented as

1ti−1 <� ≤ ti
LGD (7.27)

where 1ti−1 <� ≤ ti
is the indicator function taking value 1 if default occurs between time ti−1

and time ti. At time ti the protection buyer will pay instead

1ti−1<�s (7.28)

where now the indicator function 1ti−1<� spots that the issuer has survived up to time ti−1.
The term s is the fixed premium paid on a running basis. It is in fact assumed that if the
“name” defaults in a period, the contract ends in that period.
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We will now address the problem of evaluating the payments of the two legs. Denote
by Q�t� = Pr �1t<�� the survival probability of the issuer up time t under the risk-neutral
measure. The present value of each payment of the protection leg is then

v�t� ti��Q�ti−1� − Q�ti�	 LGD (7.29)

that is the discounted value of the probability of observing default between time ti−1 and time
ti�Q�ti−1� − Q�ti�	, times the payment to be done (LGD). By the same token, the present
value of each payment in the premium leg is given by

v�t� ti�Q�ti−1�s (7.30)

that is, the discounted value of the premium times the probability that the “name” had
survived up to the period. As in the previous case of total return swaps, notice that the
payments are discounted by the default-free discount factor, meaning that we do not take
into account the default risk of the two parties involved in the swap.

Credit default swaps, together with all other swap contracts, share the feature that no
capital is exchanged at the origin of the contract. So, the value of a CDS at inception is
zero. Assuming that the swap consists of n payments, we have at the origin

n∑
i=1

v�t� ti�Q�ti−1�sn =
n∑

i=1

v�t� t�
[
Q�ti−1� − Q�ti�

]
LGD (7.31)

where sn is the premium charged for an n period protection.
So, to comment on the general differences between CDS and other credit derivatives, we

can use the bullet points of the section above:

• The payoff is not linked to a specific security, but to all of the obligations issued by the
“name” .

• Payments are contingent to a specific event, defined and specified under a standard ISDA
template.

• The underlying is a “name”, an abstract term to denote the credit standing of an issuer.

These features have made the CDS market the most liquid tool to hedge credit risk, very
much in the same way as the IRS market has been the ideal tool to transfer interest rate risk
without unbundling fixed income portfolios.

7.3.4 The FpML representation of a CDS

The XML schema for a CDS, developed by the International Swaps and Derivatives Associa-
tion (ISDA), contains nearly 400 required or optional information components, whose com-
position is dependent on numerous contingencies. As usual we present a general overview
of the relevant data structure, the interested reader is referred to the original documentation
(FpML 4.0 – Credit Derivative Component DefinitionsRecommendation 2 April 2004). The
XML schema contains a complex type called CreditDefaultSwap which is composed
of the following elements:

• generalTerms: This element contains all the data that appears in the section entitled “1.
General Terms” in the 2003 ISDA Credit Derivatives Confirmation.
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• feeLeg: This element contains all the terms relevant to defining the fixed amounts/
payments per the applicable ISDA definitions.

• protectionTerms: This element contains all the terms relevant to defining the applica-
ble floating rate payer calculation amount, credit events and associated conditions to
settlement, and reference obligations.

• Either

– cashSettlementTerms: This element contains all the ISDA terms relevant to cash set-
tlement for when cash settlement is applicable. ISDA 2003 Term: Cash Settlement.

Or

– physicalSettlementTerms: This element contains all the ISDA terms relevant to physical
settlement for when physical settlement is applicable. ISDA 2003 Term: Physical
Settlement.

Each of these elements is in turn defined appropriately by a particular complex type. From
the FpML internet site you can also download a very interesting set of ISDA confirma-
tion documents which refer to CDS transactions. For each transaction you can find the
corresponding FpML file.

The following is the schema fragment for CDS extracted from file fpml-cd-4-0.xsd:

<xsd:complexType name = "CreditDefaultSwap">
<xsd:complexContent>
<xsd:extension base = "Product">
<xsd:sequence>
<xsd:element name = "generalTerms" type
= "GeneralTerms">
<xsd:annotation>
<xsd:documentation xml:lang
= "en">This element contains
all the data that appears in the
section entitled "1.
General Terms" in the 2003 ISDA
Credit Derivatives Confirmation.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name = "feeLeg" type = "FeeLeg">
<xsd:annotation>
<xsd:documentation xml:lang = "en">
This element contains all the
terms relevant to defining
the fixed amounts/payments per the
applicable ISDA definitions.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
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<xsd:element name = "protectionTerms" type
= "ProtectionTerms">
<xsd:annotation>
<xsd:documentation xml:lang = "en">
This element contains all the
terms relevant to defining
the applicable floating
rate payer calculation amount,
credit events and associated
conditions to settlement,
and reference obligations.
</xsd: documentation>

</xsd:annotation>
</xsd:element>
<xsd:choice minOccurs = "0">
<xsd:element name = "cashSettlementTerms"
type ="CashSettlementTerms">
<xsd:annotation>
<xsd: documentation xml:lang = "en">
This element contains all the
ISDA terms relevant to
cash settlement for when
cash settlement is applicable.
ISDA 2003 Term: Cash
Settlement.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name =
"physicalSettlementTerms" type =
"PhysicalSettlementTerms">
<xsd:annotation>
<xsd:documentation xml:lang
= "en">This element contains
all the ISDA terms relevant to
physical settlement for when
physical settlement is
applicable. ISDA 2003 Term:
Physical Settlement.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

</xsd:choice>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
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This structure could be used as a guide to design an object-oriented description of this type
of derivative. From a general point of view, as the reader should have understood, there is
no unique solution to the problem of building a hierarchy of classes. For example, we should
use classes from Chapter 4 (particularly CInterestRateStream and related classes) to
build a generic Swap class from which we could inherit a CreditDefaultSwap adding
specific attributes of this type of derivative. These attributes can be designed, keeping in
mind the previously discussed FpML scheme. Of course this crucially depends on the kind
of application we are thinking of. For example, if pricing is our main concern, then, to
information of the Swap class, we should add a list of default probability for each payment
date. Nevertheless, strictly speaking, default probabilities are not attributes of a CDS so
it should be a better approach to build a class that includes the pricing model used. This
model should calculate default probabilities from the general information contained in the
CreditDefaultSwap class. According to this last approach we should define a generic
class which we should call (following FpML schema) ProtectionTerm, designed to
collect all information about the underlying financial asset of our CDS.

7.3.5 Credit spread options

We have seen that the market refers to the swap technique to transfer credit risk in very
much the same way as it does for interest risk. It seems that these markets are destined
to develop in a similar way. The natural development is that of introducing products that
enable us to enter these swap transactions, just as the Swaptions market allows us to do for
IRS. Actually, this development is on the way, and markets have been developed for:

• Asset swap spread options: They allow us to enter an asset swap spread at a future date for
a given spread. Actually, these are nothing but spread options on the difference between
the yield to maturity of the asset and the swap rate for the corresponding maturity.

• Credit default swap options: They allow us to enter a credit default swap at a future date
for a given premium. In concept, they are very similar to Swaptions (in fact they are also
called CDSwaptions), and the pricing techniques are very similar to those used for the
default-free corresponding product (see Hull and White, 2003; Jamshidian, 2004; Brigo
and Morini, 2005).

7.4 CREDIT-LINKED NOTES

Credit derivatives, and credit default swaps in particular, represent important tools with which
to set up structured products. Credit-linked notes are the most straightforward example. The
idea is to synthetically provide investors with exposure to the default risk of a “name”, in
exchange for a higher return.

Let us describe the deal. A trust engages in the following operations:

• It raises funds for an amount LP�t� T � c� by issuing a note with maturity T .
• It buys L nominal of the default-free asset P�t�T � c�.
• It enters a CDS contract with a dealer, selling protection on “name” X for a nominal

amount equal to L.
• In exchange for the protection service, the trust earns a premium equal to sn paid on a

running basis.
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• If the “name” of the CDS contract survives to the end of the investment horizon T , the
trust would pay c + sn interest on a running basis.

• If the “name” of the CDS defaults at time � ≤ T , the trust uses the collateral amount
LP���T � c� to face its protection obligation, paying L × LGD to the CDS counterparty
and reducing the principal of the note issued by the same amount.

In analytical terms, the structure of the credit-linked note (CLN) can be summarized as
follows:

CLN = P�t�T � c� − CDS�t� T � s� (7.32)

A credit-linked noted is then the sum of a long position in a default-free security and a short
position in a CDS (selling protection). The deal is summarized in the scheme below.

c + snsn

TrustCDS DEALER INVESTORS

COLLATERAL

F
u
n
d
s

c

Protection Funds

Figure 7.1 A credit-linked note

7.5 CREDIT PROTECTION

Under a general perspective, credit risk is not only, or directly, connected with the event
of default of an entity. Credit risk is also the change in value of an obligation due to the
modified perception in the market that default could occur at some time in the future. Many
events can bring about this change of perception, but the most relevant are decisions from
the rating agencies. Changes in rating or in the outlook from S&P, Moody’s or Fitch have
relevant impact on the market evaluation of bonds.

In some cases, one may find clauses aimed at protecting the value of the investments
from these events. These clauses are sometimes referred to as “credit protection”. Consider
a product with coupons paid at dates �t0� t1� t2� � � � � tn
. The typical definition of a coupon
with credit protection is

c�tj−1� tj� ≡ c +
m∑

i=1

si1i�tj−1� (7.33)

where i denotes the credit rating scale (for example AAA = 1, AA = 2� � � � � C = m). 1i�t�
denotes the indicator function taking value 1 if the credit rating class of the issuer is i at
time t. The spread si represents the value to be added to the coupon corresponding to the
rating class.
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The value of the product would then be

DP�t� tn
 c� =
n∑

i=1

v∗�t� ti�c + v∗�t� tn� +
n∑

j=1

m∑
i=1

v∗�t� tj�siQ�1i�tj−1�� (7.34)

The price of the product then involves the evaluation of a stream of digital options in
which the underlying asset is the rating class of the issuer. The idea is that if the issuer is
downgraded, the negative impact on the present value of the cash flows is mitigated by an
increase in the nominal value of the coupon. The ideal tool used to price the credit protection
clause is of course the credit transition matrix, giving the probability that the obligor could
move from rating class i to rating class j in the unit of time. Transition matrices are supplied
by the rating agencies, even though it must be remembered that, in pricing applications
like this, they should be converted under the risk-neutral measure (see Jarrow et al., 1997).
Assume that you have a risk-neutral credit transition matrix

Q ≡

⎡
⎢⎢⎢⎢⎣

q11 q21 · · · q1k

q21 q22 · · · ���
���

���
���

qk1 qk2 · · · qkk

⎤
⎥⎥⎥⎥⎦ (7.35)

with qij is the joint probability that the issuer is in the rating class i at time t and in rating
class j at time t + 1. Assuming that the transition matrix is constant, the probability of
moving from rating class i at time t and in rating class j at time t + n is given by the
elements of the matrix Qn. Denote qn

i the ith row of this matrix. If we assume that, at the
evaluation time t, the issuer belonged to class i, the price of the defaultable bond with credit
protection can then be expressed in compact form as

DP�t� tn
 c� =
n∑

j=1

v∗�t� ti�c + v∗�t� tn� + siv
∗�t� t1� +

n∑
j=1

v∗�t� tj� qj−1
i s (7.36)

where s is an m-dimension vector with elements si.

Example 7.1 A bond issued by Telecom Italy on 30 July 1999 for maturity in 10 years
was paying a fixed 6.125% coupon plus credit protection, as described in Table 7.1.

Table 7.1 Credit protection example

Moody’s Standard and Poor’s Spread

Baa1 BBB + 15 bp
Baa2 BBB 45 bp
Baa3 BBB − 95 bp
Ba1 or lower BB + or lower 195 bp

In case of disagreement between the rating agencies, the worst rating would be selected.
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7.6 CALLABLE AND PUTABLE BONDS

The problem of pricing callability and putability features is obviously much more involved in
the case of defaultable bonds, because the exercise of the corresponding option depends on two
sources of risk: interest rate and credit risk.

To highlight the greater complexity, consider a problem that would not actually make
sense for default-free bonds: a callable/putable floating rate note. Denote by DFRN�t� T �
a floating rate note issued by a defaultable entity. Coupons are reset and paid at dates
�t0� t1� t2� � � � � tn = T
. For the sake of simplicity, let us assume a “natural lag” scheme of
indexation. Coupon is reset at time tj−1 and paid at time tj . The coupon is indexed to the
default-free term structure and is formally defined as

c
(
tj−1� tj

)= 1
v�tj−1� tj�

− 1 (7.37)

The value of the coupon at the reset date is then

v∗�tj−1� tj�c�tj−1� tj� = v∗�tj−1� tj�

[
1

v�tj−1� tj�
− 1

]
= v∗�tj−1� tj�

v�tj−1� tj�
− v∗�tj−1� tj� (7.38)

Adding and subtracting 1, we get

v∗�tj−1� tj�c�tj−1� tj� = v∗�tj−1� tj�

v�tj−1� tj�
− 1 + �1 − v∗�tj−1� tj�� (7.39)

So, the coupon of a defaultable floater can be broken down into two parts. The first part
depends on the ratio v∗�tj−1� tj�/v�tj−1� tj�, and so on the credit spread. The second part,
1 − v∗�tj−1� tj�, is a typical floating rate coupon, with the peculiarity that it is indexed to the
defaultable interest rate. As in all the standard floating rate notes, if one adds the discounted
value of the coupons and the principal, one gets the value of a short-term note. In particular,
the note will quote at par at any coupon reset date. At any reset time ti we have then

DFRN�ti� tn� =
n∑

j=i+1

EQ�v∗�ti� tj−1�v
∗�tj−1� tj�c�tj−1� tj�	

=
n∑

j=i+1

EQ

[
v∗�ti� tj−1�

(
v∗�tj−1� tj�

v�tj−1� tj�
− 1

)]
+ 1 (7.40)

Computing the value requires determining the dynamics of the credit spread and its depen-
dence with the term structure of the defaultable issuer. Notice that the term that keeps the
value of the floating rate note away from par is very similar to the discounted present value
of a protection leg in a CDS contract, the counterparty of this contract being the issuer of
the bond. To see this, recall that

v∗�tj−1� tj�

v�tj−1� tj�
− 1 = 1tj−1 ≤ �<tj

LGD (7.41)

which is actually the promised payment of a protection seller on a CDS swap. The only
problem here is that the issuer is providing insurance against himself. So, counterparty risk
cannot be reasonably ignored.
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Assume now that the product is callable at time ti for a value equal to 1 + k. We have

min�DFRN�ti� tn�� 1 + k� = DFRN�ti� tn� − max�DFRN�ti� tn� − �1 + k�� 0�

= DFRN�ti� tn� − max

[
EQ

[
n∑

j=i+1

v∗�ti� tj−1�

×
(

v∗�tj−1� tj�

v�tj−1� tj�
− 1

)]
− k� 0

]
(7.42)

Notice that the value of the call option depends on the credit spreads. The underlying asset
of the call option is a stream of payments. The pricing problem is very similar to that of an
option on a credit default swap.

7.7 CREDIT RISK VALUATION

We now give a brief account of valuation issues of credit risk. Our review will be necessarily
synthetic and selective. The readers interested in a more detailed treatment are referred to
many excellent books available: among others, we quote Cossin and Pirrotte (2000), Bielecki
and Rutkowski (2001), Duffie and Singleton (2003), Lando (2004). What is common to
all the pricing models is the goal to provide a satisfactory representation of the two main
figures involved in credit risk evaluation: the probability of default (or the complement,
the survival probability) and the recovery rate (or the complement, the loss-given default
figure). Given a model for these two figures, we can compute their product, the expected
loss, which is the main ingredient to recover a price for all the products surveyed above. The
main difference in the approach to this problem is in the pricing tool used. The general and
well-known taxonomy of credit risk models denote as structural models those using option-
pricing theory to evaluate credit risk, and as reduced form models those using term structure
theory to explain credit spread behaviour. Apart from borderline cases, this taxonomy is
quite satisfactory and we follow it here.

7.7.1 Structural models

In structural models, corporate liabilities are evaluated by decomposing their payoffs in
linear and nonlinear products, and using standard option-pricing theory to price them. The
seminal paper in this literature is due to Merton (1974), even though the world famous Black
and Scholes (1973) was already targeted at the pricing of corporate liabilities. The basic idea
is the following. Assume that a bond is issued to fund an entrepreneurial project that will
give its payoff at time T . The payoff is denoted V�T �. Assume that this project is funded
using a zero-coupon bond whose face value is B and has a maturity matching the end of the
project T . At maturity, the value of debt will be

D�T�T
 0� = min�B�V�T �	 (7.43)

In order to isolate the nonlinearity due to default risk, notice that we have

D�T�T
 0� = B − max�B − V�T �� 0	 (7.44)
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Default risk is measured as a short position in a put option written on the value of assets for
a strike price equal to the face value of debt. By the same token, using the decomposition

D�T�T
 0� = V�T � − max�V�T � − B� 0	 (7.45)

it is easy to see that what is left after repayment of debt, that is equity, is a call option with
the same underlying, strike price and exercise dates.

Assuming that the value of the project follows a geometric Brownian motion, one may
use the Black–Scholes formula to price both equity and debt. In particular, debt is valued as

D�t�T
 0� = V�t���−d1� + v�t�T �B��d2�

d1 = ln�V�t�/�Bv�t�T ��	 + �2
V�T − t�

�V

√
T − t

d2 = d1 − �V

√
T − t

(7.46)

where �V is the volatility of the value of the firm. Adding and subtracting v�t�T�B we get

D�t�T
 0� = v�t�T�B + V�t���−d1� − v�t�T�B��−d2�

= v�t�T�B − �−V�t���−d1� + v�t�T �B��−d2�	 (7.47)

and the part in square brackets represent the short position in the put option measuring credit
risk. Notice that we could further write

D�t�T
 0� = v�t�T �B

[
1 − ��−d2� + V�t�

v�t�T �B
��−d1�

]

= v�t�T�B

[
1 − ��−d2�

(
1 − V�t�

v�t�T �B

��−d1�

��−d2�

)]
(7.48)

By standard option-pricing theory we know that the probability exercise of a put option
under the Black–Scholes model is ��−d2�. In this model, exercise of the put option means
default of the bond, so we can write DP = ��−d2�. We can then recognize

D�t�T
 0� = v�t�T �B�1 − DP�1 − RR�	 (7.49)

where the formula for the recovery rate (RR) can be easily extracted by comparison. This
way of representing the formula is particularly suggestive of the basic principle and idea
behind structural models. Both the default probability and the loss-given default figures are
determined by a single state variable, which is the value of the firm. This idea is responsible
for both the elegance and the lack of flexibility of such models.

This lack of flexibility does not have to do with the stylized structure of the model. In fact,
while in the seminal Merton’s paper the structure of the bond is kept very simple, assuming a
zero-coupon bond and the possibility of default only at maturity, successive extensions have
been proposed to account for coupon bonds (Geske, 1977), covenants and seniority structures
(Black and Cox, 1976), warrants and convertible debt (Bensoussan et al., 1995a, 1995b).

While representing an elegant and informative approach to the evaluation of corporate
securities, structural models do not generally provide a good fit to the real market data. This
poor fit shows up in three empirical regularities:
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• Typically, reasonable values for leverage of the firm and volatility of assets produce
credit spreads which are too low with respect to those observed in the market.

• Undervaluation is particularly relevant for short-term maturities: a typical credit spread
term structure in the Merton model shows a hump and zero intercept.

• Undervaluation is particularly relevant for high credit standing obligors.

Several answers have been proposed as possible solutions to these problems. Anderson and
Sundaresan (1996) suggest that the owner of the firm may engage in a strategic rescheduling
process to exploit the bankruptcy costs at the expense of bondholders. Along the same lines,
Leland (1994) and Leland and Toft (1996) allow the owner of the firm to terminate the
process in such a way as to optimize the value of equity, again at the expense of debt. An
alternative explanation for the failure of structural models to fit the data stems from the
fact that the value of the firm is not directly observed and this lack of transparency may
affect the prices in the market. In this spirit Cherubini and Della Lunga (2001) propose a
conservative assessment of the probability of default by using a default probability interval,
in line with the MaxMin–Expected–Utility framework in Gilboa and Schmeidler (1989).
However, this approach is not able to account for the strong undervaluation of credit spreads
for short maturities. This is due to the main assumption on which the model was built –
that is, the representation of the value of the firm as an adapted diffusion process. The
need to account for higher credit spreads for shorter maturities can be achieved either
by allowing for a jump process in the value of the firm (Zhou, 2001), so dropping the
diffusion process assumption, or by relaxing the adapted process hypothesis. The latter route
was first followed by Duffie and Lando (2001), who propose a model with endogenous
bankruptcy in which the market is assumed to observe a noisy signal of the value of
the firm at discrete times. Recently, several extensions of this model have been provided.
Baglioni and Cherubini (2006) model a bias in the signal showing that such bias could
be responsible for the undervaluation of high credit standing obligors. Herkommer (2006)
introduces correlation between the value of the firm and noise, and finds evidence of
negative correlation. Other approaches based on imperfect information, concerning both
the value of the firm and the default thresholds, have been proposed (Giesecke, 2001;
CreditGrades™, 2001).

7.7.2 Reduced form models

The reason for the elegance of structural models, that the dynamics of the value of the firm
determines both the default probability and the loss-given default, is also their main reason
for flaw. The value of the firm is not a sufficient statistic for the event of default, and in
some cases, like sovereign risk, may also not even be defined. Moreover, even if it were a
sufficient statistic for the default event, it could definitely not be so for the recovery rate.
What one can recover on debt, in fact, is often the outcome of a complex and time-consuming
process. If the default case is brought before the court, the time to recovery may be very
lengthy and difficult to predict, particular under some jurisdictions (e.g. the Italian one). If,
as happens most often, the case is handled by rescheduling renegotiations among the parties,
the outcome itself is unpredictable, as it comes from a complex game under which many
optimal strategies bring to absolute priority violations. This phenomenon points to the fact
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that, in the end, the natural priority in the repayment of funds in case of crisis (such as pay
all the debt before paying equity) may be violated. The Anderson and Sundaresan strategic
debt service model is the first and simplest example. Many more cases of absolute priority
violations do occur in the real world, particularly in cases (most of them) in which many
lender are involved, with different exposures. These situations provide the natural recipe for
blackmail behaviour that is very difficult to model and predict. All of these arguments have
convinced some of the scholars in credit risk to give up the economics of the problem in
favour of a more statistically oriented approach. The basic idea is to come up with reasonable
statistical models for the two quantities involved: default and recovery rate.

Default risk

Concerning the modelling of default probability, the first idea that may come to mind is to
model the default event as a Poisson process. The parameter describing the process is called
intensity and defines the instantaneous probability of observing an event. In this application,
of course, we are interested in the default event. The probability of observing n default
events in a time span from t to T is

exp�−��T − t��
���T − t��n

n! (7.50)

The probability of observing 0 events is the survival probability beyond time T , and is as
simple as

exp�−��T − t�� (7.51)

Assume, for the sake of simplicity and for a conservative assessment, a zero recovery rate.
The price of a defaultable zero-coupon bond maturing at T is then

D�t�T
 0� = v�t�T �Q�� > T � = v�t�T � exp�−��T − t�� (7.52)

The credit spread is

− ln
[

D�t�T
 0�

v�t�T �

]
/�T − t� = − ln�exp�−��T − t��	/�T − t� = � (7.53)

The credit spread structure is then flat at the same level as the default intensity. If one
may not consider a flat term structure realistic, the model can be extended by making the
instantaneous intensity process stochastic. In this case the survival probability would be

Q�� > T� = EQ

[
exp

(
−
∫ T

��u� du

)]
(7.54)

A natural choice would be to resort to mean-reversion diffusive process

d��t� = k�� − ��t�� dt + ����t� dz∗�t� (7.55)

The instantaneous probability converges towards a long run mean value �. Notice that for
�=0 and �=0�5 the stationary distribution is known: it is normal and gamma, respectively.
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The survival probability has closed form solutions, and are given in classical factor models
of the term structure models, namely Vasicek (1977) and CIR (Cox et al., 1985).

Q�� > T� =
⎡
⎣exp

⎛
⎝−

T∫
��u� du

⎞
⎠
⎤
⎦= exp �A �T − t� − B �T − t�� �t�	

The value of the defaultable zero coupon under the assumption of zero recovery rate is then

D�t�T
 0� = EQ�v�t�T �Q�� > T �	 = v�t�T�QT �� > T� (7.56)

where QT is the T -time forward martingale measure: QT �� > T� = EQ�T� �Q�� > T�	.

Recovery risk

Models taking into account recovery risk are more recent. In most models, in which recovery
is assumed constant, the extension of the analysis above is immediate. Actually, a defaultable
zero-coupon bond can be considered as a portfolio of two bonds: the default-free bond and a
fictitious bond with same default probability and recovery rate equal to zero. In other terms,
it is easy to see that

D�t�T � 0� = v�t�T ��RR − �1 − RR�QT �� ≤ T �	 (7.57)

The recovery rate can be either defined on the “Treasury equivalent value” of the bond
(Jarrow and Turnbull, 1995) or on the “market value” of the bond (Duffie and Singleton,
1999). If one assumes the recovery rate to be stochastic, but orthogonal to the other risk
factors (that is, interest rate risk and default probability), the extension of this formula
is immediate by substitution of the expected value of the recovery rate for the value RR
above. Distributions with finite support, such as the Beta, are typically used to estimate the
expected recovery rate. In some cases, both the default intensity and the recovery rate are
not distinguished in the credit spread figure. In the Duffie and Singleton model, in fact,
we have

D�t�T � 0� = EQ

⎡
⎣exp

⎛
⎝−

T∫
t

�r�u� + ��u��1 − RR� du	

⎞
⎠
⎤
⎦ (7.58)

where r�u� is the instantaneous default-free rate and RR is the “recovery of market value”.
If one is interested in disentangling the recovery rate and the default event, it may

be relevant to investigate whether they may be correlated. Actually, in structural models
recovery rates and default probabilities can be shown to be negatively correlated. Evidence
of such negative correlation has been confirmed in many empirical applications (Frye, 2000
and Altman et al., 2004). On economic grounds, this evidence is explained with the co-
movement of these variables across the business cycle. When the trend of the economy
is strong, default is less likely, the value of firms is higher, and the amount that can be
recovered in case of default is correspondingly higher. When the economy is in a recession,
many defaults are likely to occur and for each of them one expects to recover a lower value.
Consistent with this evidence, one would like to separately model these two sources of risk,
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breaking down credit risk into default risk and recovery risk: furthermore, recovery should
be modelled under the risk-neutral measure. The literature on this issue is not yet very
extensive. Madan and Unal (1998) propose a model to back out recovery risk from junior
and senior debt. Jarrow (2000) proposes a model to accomplish the same task using equity
and debt. Finally Guo et al. (2005) model the recovery process in a structural-like approach
distinguishing between a default intensity and a bankruptcy intensity: in some sense, models
like these try to bridge the gap from reduced form models to structural models in a way
similar to that of “strategic debt service” models.

7.8 MARKET INFORMATION ON CREDIT RISK

From the above bird’s-eye review of the main credit risk models, it emerges that there are
many sources of information from which to recover a consistent estimate of default risk. If
one were to make a classification, one could first distinguish between historical and implied
credit risk measures. Historical measures are mainly supplied by the rating agencies, as
well as private databases of banks and other financial intermediaries. Implied information
is instead extracted from market quotes of securities issued from or on some obligor.
Among these sources providing implied information we may further distinguish between
security-specific or issuer-specific information. Typical example of security-specific source
of information is the asset swap spread. Typical examples of issuer-specific information are
stock prices and CDS quotes. At the time of writing, it would seem that most of the debate,
both among practitioners and in the academic literature, is about the relative information
content of equity and CDS.

7.8.1 Security-specific information: asset swap spreads

We saw that asset swap spreads convey information about the undervaluation of an asset.
So, if one is interested in measuring the specific risk of a single bond, a look at the ASW
spread could give a global view of how the market prices the issue.

The best way to illustrate the procedure and the problems is by an example. Consider that
one has to evaluate the risk of a bond issued by Nippon Telecom. The bond pays a fixed
coupon equal to 6% of the nominal value, and promises repayment of principal at maturity,
on 25 March 2008. On 20 February 2001 the market was quoting an asset swap spread of
38.3 basis points. The market typically uses this information as an estimate of the default
intensity of the issue. Of course, on rigorous grounds the only information that is possible to
recover from this figure is the degree of undervaluation of the bond. Credit risk can be just
one of many other possible explanations: liquidity issues, fiscal features, left alone outright
mis-pricing.

If the issue has been assigned a rating, one can check how much specific information
is embedded in the asset swap rate by simply comparing the spread with those quoted for
similar issues of the same rating class. At that time, the NTT issue above was rated A −
from Standard and Poor’s. Figure 7.2 shows the comparison between the asset swap spread
and the credit spread of the closest rating classes (A and BBB). The picture shows that
around the seven-year maturity, corresponding to the maturity of the bond, the asset swap
spread is actually included in the range between the BBB and A spreads. More precisely,
the BBB spread was 43 bp against 26 bp for the A spread.
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Figure 7.2 Asset swap and rating spread curve information. NTT, 6%, 25/3/2008, evaluations,
20/02/2001

7.8.2 Obligor-specific information: equity and CDS

In the analysis above, we saw that one can actually resort to extreme choices between
information specific to a given security and specific to a rating class. In the first choice,
the significance of the results can be affected by the specific features of the security under
analysis, while in the second it can be noisy for the many different obligors and securities
represented in the rating class. A good compromise between a security-specific and rating-
specific default probability information is offered by the equity market and/or by the CDS
market. Thanks to their liquidity, these markets represent the most preferred source of
information about the credit standing of obligors.

As an example of these sources of information, Figure 7.3 reports the time series of stock
prices and CDS quotes for Parmalat in the year preceding the default event that took place
in December 2003. It can be seen that, particularly in periods of crisis, the stock and CDS
quotes behave as in a mirror image. In February 2003, for example, Parmalat proposed a
new large bond issue to the market. Since Parmalat was also reporting a large liquidity, this
issue came as a surprise to the market. As Figure 7.3 shows, when the issue was withdrawn
the stock price tumbled suddenly, and at the same time the CDS quotes spiked up.

Equity information

Structural models suggest equity as a natural choice of obligor-specific information. As a
matter of fact, if equity is a call option on the asset value of the firm, the probability that
this option will expire worthless at the end of the business project, or that it would reach
zero before the end of it, corresponds to the probability of default of the obligor. Notice
that using equity also solves the problem of distinguishing default probability and loss-given
default in the expected loss figure. In fact, apart from absolute priority violations or strategic
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Figure 7.3 Parmalat story: CDS and common stock

debt service behaviour, the residual claim nature of equity ensures that its value has to be
zero under the default scenario.

Moody’s KMV approach: Building upon this idea the Moody’s KMV model extracts from
equity data expected default frequencies. The target is to use such information to extract
two unknown key variables: the value of the firm, V , and its volatility, �V. These values are
recovered by solving a nonlinear system of two equations. The first is the Black–Scholes
formula yielding the value of the stock S�t�

S�t� = V�t���d1� − v�t�T�B��d2� (7.59)

The second equation enables us to fit the volatility of the stock. From Ito’s lemma we have

�sS�t� = �VV�t���d1� (7.60)

The system is solved by an iterative procedure and from the estimates of V and �V one
computes the so called distance to default (DD) figure

DD�t� = ln�V�t�/B�� + �� − 0�5�2
V�

�V

(7.61)

where � is the estimated rate of growth of assets (meaning that we are under the objective
probability measure). This figure is finally used to recover the empirical frequency of default
from a database.

Maximum likelihood approach: An alternative to the above algorithm is to resort to maxi-
mum likelihood estimation of the parameters. The idea stems from the distribution

ln
(

V�t�

V�t − ��

)
∼ �

(
�� − 1/2�2

V����V

√
�
)

(7.62)
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Assuming one could observe V�t�, a possible way to estimate the parameters would be by
maximizing the log-likelihood

L�V�ti�� i = 1� 2� � � � � n����V� =− n − 1
2

ln�2�� − ln �2
V −

n∑
i=2

ln V�ti�

− 1
2

n∑
i=2

[
ln
(

V�ti�

V�tt−1�

)
− ��ti − ti−1�

]
(7.63)

Duan (1994, 2000) shows how to modify the likelihood in order to account for the fact
that the value of assets V�t� cannot be directly observed. Assuming that one observes a
derivative g�V�t�� instead of V�t�, with a delta equal to �g, one can write a log-likelihood
on transformed data

L�g�V�ti��� i = 1� 2� � � � � n����V� =− n − 1
2

ln�2�� − ln �2
V −

n∑
i=2

ln V ∗�ti��V�

−
n∑

i=2

ln
∣∣�g�ti��V �

∣∣− 1
2

n∑
i=2

[
ln
(

V ∗�ti��V�

V ∗�ti−1��V�

)

− ��ti − ti−1�

]
(7.64)

At any iteration, the values of V ∗�t� and the corresponding deltas are computed on the basis
of the volatility value �V. Further elaborations on this subject were provided by Ericsson
and Reneby (2003), Brockman and Turtle (2003), Duan et al. (2004), and Bruche (2004).

CDS information

A CDS market competes with equity for obligor-specific information. Credit default swap
is in fact a very liquid market, at least for the most important “names”, and the underlying
of the contract is not a single bond, but the whole set of debt obligations of the “name”.
Looking at CDS also helps us to investigate the term structure of the default probability, and
this is made possible for obligors for which CDS contracts are quoted for several maturities.
In this case, it is possible to “bootstrap” the term structure of the default probability in a
very similar manner to that by which we usually back out the zero-coupon factor curve from
swap rates.

More specifically, let us assume that a CDS spread s1 is quoted for protection over a
one-year horizon. For the sake of simplicity, assume that the spread is paid in one instance
at the end of the year, and is paid even if the name has defaulted. By the definition of a
CDS spread we have

v�t� t1�s1 = v�t� t1�
[
1 − Q�t1�

]
LGD (7.65)

from which it is immediate to recover

1 − s1

LGD
= Q�t1� (7.66)
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This can be substituted in the two-year CDS

2∑
i=1

v�t� ti�Q�ti−1�s2 =
2∑

i=1

v�t� t1�
[
Q�ti−1� − Q�ti�

]
LGD (7.67)

to recover Q�t2�, and so on.

Example 7.2 In Table 7.2 we report the market bid–ask quotes for protection on FIAT on
December 2002.

Using the above bootstrap procedure, we compute the default probability depicted in
Figure 7.4.

Table 7.2 CDS on Fiat – 25 December 2002

Maturity Bid Ask

1 year 145 155
3 years 170 175
5 years 180 183
10 years 195 215

Data is given in basis points.
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Figure 7.4 Default probability
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Integrating rating and market information: Moody’s Market Implied Ratings
(MIR)

Moody’s has recently proposed a model to bridge together qualitative information – that is,
information contained in the rating assigned to an issuer – with quantitative information – that
is, information implicit in credit products and equity. This technology has been given the name
of Market Implied Ratings (MIR). The idea is to monitor the distance between the median spread
of the rating to which the issuer belongs and its own rating, estimated from market data. The
idea is to spot cases in which the spread departs from the levels typical of the corresponding
rating class, as early warnings of future credit events. It is the latest development of the
attention the rating agencies have devoted to the signals emerging from the markets.
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8
Basket Credit Derivatives and CDOs

8.1 INTRODUCTION

In this chapter we extend the review of credit-linked notes, introducing the kinds of prod-
ucts that have made up most of the structured finance market since the 1990s. Since then,
structured finance has been mostly synonymous with basket (or multi-name) credit prod-
ucts that mainly originated from the securitization business. The term securitization means
changing into “security” – that is, a tradable asset, something that would have not been
tradable otherwise. On the “buy” side, the counterparties interested in this business are actu-
ally investors that would like to acquire exposure to a wider variety of risk factors, which
could not be achieved otherwise under the regulation. On the “sell” side, the market is made
up by financial intermediaries that are interested in getting rid of exposures to some risk
factors. Of course, setting up a securitization factor requires the selection of: (i) the kind
of risk factor to be transferred; (ii) the distribution of this risk; and (iii) the allocation of
risk to different categories of investors. On point (i), examples of kinds of risk transferred
are greatly differentiated (credit, real estate, commodities, and others) even though most
of the examples are related to credit risk exposures. On point (ii), choosing a “basket” of
risk exposures, rather than a single one, enables one to model the distribution of the price
of the security that is created. As for the third point, determining a particular “priority”
structure enables a change in both the quantity and the quality of the exposures for each of
the classes of securities issued. The new kind of securities issued constitutes a new kind of
product, denoted as a “tranche”. For the valuation of these products, a central role is played
by the choice of the risk factors in the basket, and particularly how they interact and fit
together as a single risk factor. For this reason, the dependence structure among the risk
factors is the key feature of the products in this market. Tranches are in fact also called
“correlation products”. As a result of these developments, financial innovation has created
new techniques and new markets to hedge and transfer the risk involved in these products.
As single-name credit derivatives has paved the way to turn defaultable bonds into a set
of structured finance products, and to synthetically create credit risk exposures, multi-name
(or “basket”) credit derivatives have spurred the development of the transfer of credit risk
portfolios and to synthetically create exposures to correlation.

8.2 BASKET CREDIT DERIVATIVES

Consider a default swap defined in much the same way as that described in Chapter 7,
except for a feature. It is going to provide protection against a subset of default events in a
basket, say the first or the nth default, or the first n defaults of the names in the basket. As
for standard CDS contracts, the protection seller may face either the obligation to deliver a
fixed sum for any of the defaults or can accept physical delivery of debt contracts of the
“name” under default.
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Of course, the value of products like these are largely affected by the dependence structure
of the credit quality of “names” of the basket. Assume one buys protection on the event of
the first default in a “basket”. For the sake of simplicity, let us assume that the LGD of the
names are roughly the same. Let us also assume that the protection extends over to time T ,
and, in case of default, is paid at that time. On the other hand, the premium payment from
the protection buyer is assumed to be done up-front at the origin of the contract – that is, at
time t. The value of the first-to-default will then be

FTD = v�t�T �LGD�1 − Q��1 > T��2 > T� � � � � �n > T �� (8.1)

where �i are the default times of the i = 1� 2� � � � � n names in the basket. If one recalls the
AND/OR rule, it is evident that the product is short in correlation. In fact, the product yields
a positive payoff if at least one of the names in the basket defaults by time T . If the default
times are orthogonal, we have in fact

FTD = v�t�T �LGD�1 − Q��1 > T �Q��2 > T � � � � Q��n > T �� (8.2)

while, in the case of perfect dependence, we have

FTD = v�t�T �LGD�1 − min�Q��1 > T ��Q��2 > T �� � � � Q��n > T �� (8.3)

and the value is lower.

8.3 PRICING ISSUES: MODELS

We saw before that most of the value of multivariate products is due to the dependence
structure. For this reason these products are called “correlation products”. The AND/OR rule
used above for first-to-default swaps or valuations performed under the extreme assumptions
of independence and perfect dependence can be used to gauge the sign of the exposure to
correlation.

8.3.1 Independent defaults

In the case of independence of the default times we may, for example, use the binomial
distribution to estimate, as q, the probability that a firm in the basket could default by time
T . Accordingly, the probability that x firms would default by time T is given by

Q�x� =
(

n
x

)
qx�1 − q�n−x (8.4)

The value of protection on the first x names is then given by

FTD�x� = LGD
x∑

k=1

k

(
n
k

)
qk�1 − q�n−k + x LGD

n∑
k=x+1

(
n
k

)
qk�1 − q�n−k (8.5)

Sticking to the case of orthogonal defaults, another natural choice is to extend the reduced
form model. So, for example, the joint survival probability of the n names is

Q��1 > T��2 > T� � � � � �n > T� = exp�−��1 + �2 + � � � �n��T − t�� (8.6)
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Actually, the instantaneous probability of experiencing one default is determined by a global
intensity given by the sum of the individual intensities

	 = �1 + �2 + � � � + �n (8.7)

Likewise, the formula can be extended to the first x defaults. We have

FTD�x�=LGD
x∑

k=1

k
exp�−	�T − t���	�T − t��k

k! +x LGD
n∑

k=x+1

exp�−	�T − t���	�T − t��k

k!
(8.8)

8.3.2 Dependent defaults: the Marshall–Olkin model

The most straightforward extension of the reduced form model to allow for dependent
defaults is provided by Marshall and Olkin (1967) multivariate extension of the Poisson
process. These models were introduced in credit risk modelling by Duffie and Singleton
(1998) and also discussed in Li (2000). Esposito (2001) showed that this approach leads
to closed form solutions or approximations for many basket derivative products. Here we
follow his exposition to illustrate the model. To keep things simple, consider a model with
two names, and assume that there are two idiosyncratic shocks that may lead to the default
of each name, and a common shock that may lead to the default of both names. Define by
�i� i = 1� 2, the intensity of the idiosyncratic shocks and by �12 that of the common shock.
According to the Marshall–Olkin model, the joint probability that name i will survive beyond
time Ti is

Q��1 > T1� �2 > T2� = exp�−�1�T1 − t� − �2�T2 − t� − �12�max�T1� T2� − t�� (8.9)

In pricing applications generally we will have T1 = T2 = T , so that

Q��1 > T��2 > T� = exp�− ��1 + �2 + �12� �T − t�� (8.10)

and the model provides an extension of the analysis of the previous section in which the
global intensity is

	 = �1 + �2 + �12 (8.11)

The marginal survival probability is

Q��i > T � = exp�−��i + �12��T − t�� (8.12)

The dependence between the default times is


��1� �2� = �12

�1 + �2 + �12

(8.13)

Based on the calibration of marginal survival probabilities and the correlation of default
times one can then evaluate the total default intensity 	 and the joint survival probability as

Q��1 > T��2 > T � = exp�− ��1 + �2 + �12� �T − t�� (8.14)
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The main problem with this model is that the number of shocks, and so the corresponding
number of intensity figures to be calibrated from the market, grows exponentially with the
dimension of the problem. To see this, consider the case with n = 3. In this case the system
would be exposed to seven shocks: three idiosyncratic shocks, three shocks common to each
couple and one shock common to all of the three names. The total intensity would be

	 = �1 + �2 + �3 + �12 + �13 + �23 + �123 (8.15)

and the joint survival probability would be

Q��1 > T��2 > T � = exp�−	�T − t�� (8.16)

The bivariate marginal survival probability for the first two variables, would be for example

Q��1 > T��2 > T � = exp�− ��1 + �2 + �12 + �13 + �23 + �123� �T − t�� (8.17)

and the marginal survival probability of the first name would be

Q��1 > T � = exp�− ��1 + �12 + �13 + �123� �T − t�� (8.18)

The default time correlation between the first two names would then become


��1� �2� = �12 + �123

�1 + �13 + �2 + �23 + �12 + �123

(8.19)

The problem becomes more and more complex as n gets larger. In general, the marginal
survival probability of the first name would be

Q��1 > T � = exp

[
−
(

�1 +
n∑

i=2

�1i +
n∑

i=3

�2i + � � � �12 � � � n

)
�T − t�

]
(8.20)

The model is then very flexible, and perhaps even too flexible. One could in principle design
shocks affecting subsets of “names” across the whole power set of 2n events (one of the
events being of course that of no shock). Esposito (2001) suggests that the model should be
restricted to n idiosyncratic shocks and a common shock affecting the whole system. The
global intensity would then be

	 =
n∑

i=1

�i + �123 � � � n (8.21)

The pairwise correlation would be equal across all the names


��i� �j� = �123 � � � n
n∑

i=1
�i + �123 � � � n

(8.22)

and the marginal survival probability would be

Q��i > T� = exp�−��i + �123 � � � n��T − t�� (8.23)
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as in the bivariate model. Under this restriction, the model is particularly easy to calibrate.
Of course, a promising feature of the model remains that it can be enhanced to design shocks
only affecting subsets of the names. This feature has attracted particular attention in recent
literature on credit risk, in the models called the contagion approach.

8.3.3 Dependent defaults: copula functions

An approach that enables us to account for default dependence, and is largely used in
basket credit derivatives pricing, is that of copula functions. The joint default probability is
represented as

Q��1 ≤ T� �2 ≤ T� � � � �n ≤ T� = C�Q1��1 ≤ T �� Q2��2 ≤ T �� � � � Qn��n ≤ T �� (8.24)

where Qi ��i ≤ T� is the marginal default probability of the ith name. Likewise, one can fit
the joint survival probabilities

Q��1 > T� �2 > T� � � � �n > T � = C�Q1��1 > T �� Q2��2 > T �� � � � Qn��n > T �� (8.25)

The typical copula function used is the Gaussian one,

C�Q1� Q2� � � � Qn� = �n��
−1�Q1���−1�Q2�� � � � � �−1�Qn���� (8.26)

where �n�
��� is the n-dimensional standard normal distribution with correlation matrix �.
In order to allow for tail dependence, and correlation among extreme financial crises, one
can resort to the so-called T -copula

C�Q1� Q2� � � � Qn� = Tn�T
−1�Q1�� T−1�Q2�� � � � � T−1�Qn�� �� �� (8.27)

where Tn�
����� is the n-dimensional standardized Student-t distribution with correlation
matrix � and � degrees of freedom. As is well known, a lower value of degrees of free-
dom generates tail dependence, while, as the degrees of freedom grow larger and larger,
the distribution approaches the multivariate normal. Actually, disentangling the effects of
correlation and tail dependence on the market co-movement of credit spreads remains an
open issue.

The flexibility of the copula function approach is that it allows us to separate the
specification of the marginal distribution of default times, so that samples of correlated
default times can be calibrated and simulated. Typically, the model is calibrated in two
steps:

1. A historical sample of marginal default probabilities is estimated from CDS quotes.
2. The dependence structure is calibrated on such samples by a canonical maximum likeli-

hood (CML) estimation.

The reader is referred to Cherubini et al. (2004) for a broader discussion of the subject.

8.3.4 Factor models: conditional independence

While standard copula models lead to the Monte Carlo simulation as the technique available
for pricing, the imposition of a more restrictive structure to the model enables us to exploit
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an alternative pricing tool. These models represent what is called the factor copula approach.
The approach is excellently surveyed in Burtshell et al. (2005), and we follow that review
here.

Gaussian Copula

The idea in some sense bridges together a structural approach and the construction of the
Marshall–Olkin model mentioned above. The data-generating process of the default of each
obligor i is driven by a state variable Vi, that may be thought of as the value of the firm or
the “distance to default” in a structural model. This variable is assumed to be a function of
a common factor M and an idiosyncratic shock �i.

Vi = 
iM +
√

1 − 
2
i �i (8.28)

Without any loss of generality, both the common factor and the idiosyncratic factor may
be rescaled in such a way as to have a variance equal to 1. This, of course, amounts to
rescaling the state variable in the same way. The covariance between the state variables
of two obligors is cov�Vi�Vj� = 
i
j . If we further assume that both the common and the
idiosyncratic shocks are normally distributed, it is clear that the set of state variables are
also normally distributed. This leads to a model for the default times that actually looks like
the Gaussian copula approach that we saw before

C�Q1� Q2� � � � Qn� = �n��
−1�Q1���−1�Q2�� � � � ��−1�Qn���� (8.29)

Yet, actually a factor model imposes a richer structure to the design of dependence. This
structure shows up in the particular shape of the correlation matrix. It is assumed that it may
be decomposed in a reduced rank matrix (the rank being 1 in the one-factor model), and a
diagonal matrix (as the idiosyncratic factors are assumed to be uncorrelated). This structure
allows for a relevant simplification of the pricing technique. As a matter of fact, under this
structure the conditional default probability distribution of each name with respect to the
common factor M is independent of default of the others. Furthermore, we know that such
conditional distribution corresponds to the partial derivative of the copula function. So,

Q�Vi ≤ vi�M = m� = �C�Qi�vi�� QM�m��

�QM�m�
(8.30)

In many cases, this formula is available in closed form. The most straightforward example
is that of the Gaussian copula for which

�C�Qi�vi�� QM�m��

�QM�m�
= �

(
�−1�Qi� − 
i�

−1�QM�√
1 − 
2

i

)
= �

(
�−1�Qi� − 
im√

1 − 
2
i

)
(8.31)

The joint conditional default distribution of the n names can then be written as

Q�V1 ≤ v1� V2 ≤ v2 � � � Vn ≤ vn�M = m� =
n∏

i=1

�C�Qi�vi�� QM�m��

�QM�m�
(8.32)
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The unconditional one is

Q�V1 ≤ v1� V2 ≤ v2 � � � Vn ≤ vn� =
�∫

−�

n∏
i=1

�C�Qi�vi�� QM�m��

�QM�m�
f�m� dm (8.33)

where f�m� is the probability density function of the common factor. In the Gaussian case
we have

Q�V1 ≤ v1� V2 ≤ v2 � � � Vn ≤ vn� =
�∫

−�

n∏
i=1

�

(
�−1�Qi� − 
im√

1 − 
2
i

)
��m� dm (8.34)

where ��
� denotes the density of the univariate standard normal distribution.

Stochastic correlation

An extension of the Gaussian model is suggested by Andersen and Sidenius (2005) and is
based on a switching regime structure for the correlation:

Vi = �1X
il + �1 − 1X�
ih�M +√1 − �1X
il + �1 − 1X�
ih�
2 �i (8.35)

where 
il and 
ih are the values of correlation in the low and high state respectively and
1X is a Bernoulli variable taking value 1 in the low-correlation state and zero otherwise.
This variable is assumed to be a function of a set of random variables X. The conditional
distribution is, of course, a mixture of Gaussian distributions

�C�Qi�vi�� QM�m��

�QM�m�
= p�

(
�−1�Qi� − 
ilm√

1 − 
2
il

)
+ �1 − p��

(
�−1�Qi� − 
ihm√

1 − 
2
ih

)
(8.36)

where p is the risk-neutral probability associated to 1X = 1. Of course, the structure of the
correlation could have been designed in a more complex way, including more than one
regime. In the limit, correlation could have been modelled as a continuous random variable,
in which case the conditional distribution would have been

�C�Qi�vi�� QM�m��

�QM�m�
=

1∫
0

�

(
�−1�Qi� − 
im√

1 − 
2
i

)
dP�
i� (8.37)

where P is the probability distribution of the correlation figure 
i.

Student t and double t copulas

The model can be very easily extended beyond the Gaussian copula. For example, one could
change the model in (8.28) to

√
X Vi = 
iM +

√
1 − 
2

i �i (8.38)

where X is a random variable independent of the common and idiosyncratic shock, and such
that v/X follows a �2

v (a chi-squared distribution with v degrees of freedom). As a result,
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the transformed state variables
√

X Vi would follow a Student t distribution. This model
was applied to credit risk issues by Frey and McNeil (2003) and Mashal et al. (2003). The
covariance between the ith and the jth state variables is equal to 
i
jv/�v − 2� (provided of
course (v > 2)).

A further extension, known as the “double t” model, was provided by Hull and White
(2004). The factor model is

Vi = 
i

√
v

v − 2
X M +

√
1 − 
2

i

√
v∗

v∗ − 2
Y �i (8.39)

In this model both the common and the idiosyncratic factors are modelled as Student t
variables with different degrees of freedom v and v∗.

Archimedean copulas

Archimedean copulas can also be considered as generated by a factor model. In this case,
the common factor M is assumed to be endowed with a density f�m�, endowed with Laplace
transform

��s� ≡
�∫

0

exp�−sm�f�m� dm (8.40)

Define latent variables

Vi = �

(
− ln Qi

m

)
(8.41)

where Qi are uniformly distributed random variables, independent of m. The conditional
distribution function is

�C�Qi� QM�m��

�QM�m�
= exp�−m�−1�Qi�� (8.42)

This can be verified, computing

�∫
0

�C�Qi� QM�m��

�QM�m�
f�m� dm =

�∫
0

exp�−m�−1�Qi��f�m� dm = ���−1�Qi�� = Qi (8.43)

where we have used the definition of a Laplace transform above.
Now, as conditional distributions are independent we get

Q�V1 ≤ v1� V2 ≤ v2 � � � Vn ≤ vn�M = m� =
n∏

i=1

�C�Qi�vi�� QM�m��

�QM�m�
= exp

(
−m

n∑
i=1

�−1�Qi�

)

(8.44)
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The unconditional distribution is obtained by integrating over the domain of the common
factor M . Recalling again the definition of a Laplace transform, we may write,

Q�V1 ≤ v1� V2 ≤ v2 � � � Vn ≤ vn� =
�∫

0

exp

(
−m

n∑
i=1

�−1�Qi�

)
f�m� dm = �

(
n∑

i=1

�−1�Qi�

)

(8.45)

and the joint distribution is a copula function of the Archimedean class. For example, taking
the common factor density f�m� to be the gamma distribution with parameter 1/�, we have
that ��s� = �1 + s�−1/�. So, �−1�u� = u1/� − 1. The joint distribution is

Q�V1 ≤ v1� V2 ≤ v2 � � � Vn ≤ vn� = �

(
n∑

i=1

�−1�Qi�

)
=
(

n∑
i=1

Q
1/�
i − n + 1

)−1/�

(8.46)

which is the Clayton copula. Notice that, by comparison with the treatment in Chapter 3,
the generating function of the copula is actually the inverse of the Laplace transform.

8.4 PRICING ISSUES: ALGORITHMS

8.4.1 Monte Carlo simulation

The most straightforward approach to pricing basket credit derivatives and CDOs is by
Monte Carlo simulation. Once the proper copula function has been estimated and tested,
the model may be simulated to recover samples of correlated default times. To keep the
approach at the most general level, we may describe the procedure in two steps.

1. Draw n uniform random variables from copula C�u1� u2� � � � un�.
2. Recover n times to default by inverting probability �i = Q−1�ui�.

In models endowed with more structure, other Monte Carlo solutions can be used. Con-
sider the copula factor models above: in general one could generate the systematic and the
idiosyncratic factors and simulate the state variables Vi. In linear factor models the construc-
tion is straightforward. In Archimedean models the solution is provided by the so-called
“Marshall–Olkin method”, which is based on the Laplace transform. Recalling the notation
used above, we may in full generality describe the simulation procedure as follows

1. Draw a random variable m with probability density f�m�.
2. Draw n uniform independent random variables from Q1, Q2� � � � �Qn.
3. Calculate the state variables

Vi = �

(
− ln Qi

m

)

Of course remember, in case, that as the LGD figures are stochastic, they must be simulated
as well.
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8.4.2 The generating function method

The method that is most widely used in basket credit pricing is based on conditional
independence. Once the proper copula factor model has been estimated, one knows, for each
and every name in the basket, the conditional probability Q�Vi ≤ vi �M = m�. We know that,
if the model is well specified, these probabilities are independent. The problem is then to
estimate

Q�V1 ≤ v1� V2 ≤ v2 � � � Vn ≤ vn�M = m� =
n∏

i=1

�C�Qi�vi�� QM�m��

�QM�m�
(8.47)

and to integrate the result over the common factor scenarios m.
A possible solution is to resort to generating functions. A natural choice, explored by

Gregory and Laurent (2003) is to resort to the generating function of the binomial distribution.
Sticking to the simplest case of homogeneous losses, the generating function of the number
of defaults is

gn�s� = E�sn �m� =
n∏

i=1

�qi�m�s + 1 − qi�m�� = snq�n�m� + sn−1q�n − 1 �m� + � � � q�0 �m�

(8.48)

So, estimating the conditional probability distribution of a number j of defaults in a set of
n names amounts to computing the q�j�m� coefficient. Actually, Laurent and Gregory also
show how to allow for different, although deterministic, loss-given default figures. Actually,
the loss process is defined on a discrete grid L�j�� j = 1� 2� � � � � n. Then, the appropriate
moment generating function is

gL�s� = E�sL �m� =
n∏

i=1

�qi�m�sL�i� + 1 − qi�m��

= sL�n�q�n �m� + sL�n−1�q�n − 1 �m� +� � �q�0 �m� (8.49)

The conditional probability of losing an amount L�j� is again given by the q�j�m�
coefficient. The coefficients of the polynomial can be computed by recursive formulas.
The unconditional distribution is then obtained by integrating over the common factor
scenarios

Q�L ≤ L�k�� =
�∫

−�
q�k�m�f�m� dm (8.50)

The above approach could also be easily modified to allow for stochastic loss-given default
figures, provided that they are independent of the number of default events and endowed with
a common generating function gLGD�s�. In fact, assume that the probability distribution of the
number of defaults n is endowed with a probability distribution with generating function gn�s�
above. We ask the probability distribution of the sum L = LGD1 + LGD2 + � � � + LGDn.
This can be proved to be gn�gLGD�s��. So, we have

gL�s� =
n∏

i=1

�qi�m�gLGD�s� + 1 − qi�m�� (8.51)
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8.5 COLLATERALIZED DEBT OBLIGATIONS

In Chapter 7 we showed that a corporate bond could actually be considered as a structured
product composed of a default-free bond and a credit derivative. Furthermore, we noticed
that a corporate bond could actually be created synthetically by structuring an equity-linked
note: an intermediary would issue notes against funds collected from investors, and would
invest the proceedings in default-free collateral while selling protection in a CDS contract
for the same notional amount. It does not come as a surprise, then that by the same token a
claim on a portfolio of credit exposures could be considered as a structured product involving
basket credit derivatives. And, as in the equity-linked note in the univariate case, such a
claim could probably be constructed synthetically by an intermediary selling protection on
a basket of “names”. Not only do these products exist in reality, but they also represent
the most developed market for structured products. It is the Collateralized Debt Obligation
(CDO) market. Exactly as in the univariate case, they may be cash or synthetic. Here we
give a general description of a CDO, before focusing on different instances of the product
in the following section.

8.5.1 CDO: general structure of the deal

In principle, a CDO is structured in much the same way as the credit-linked note discussed
in Chapter 7. To start, consider a standard, so-called “cash” CDO. The purpose of the deal
is to sell a basket of assets, namely in our case a set of debt instruments, to the general
public (mainly institutional investors), for reasons that may carry advantages for the seller
and the buyer. Sometimes, the deal is also referred to as “securitization”, because it is bound
to change into marketable “securities” whatever kind of asset the “originator” is willing to
get rid of. The formal structure of a CDO deal is reported below. On the selling side, the
originator sells a set of assets to an intermediary, called a special purpose vehicle (SPV).
The SPV collects funds to pay for the assets by issuing securities. These securities are
differentiated in a set of so-called “tranches”, defined by different degrees of seniority of
debt. By seniority hierarchy we mean a ranking according to which, in case of default events
or in general losses on the assets, the senior tranches are affected after junior tranches. So,
the income accruing from the assets sold from the originator to the SPV are passed through
from the SPV to the final investors. Losses incurred on the assets are also passed through
but they affect, and eventually may fully erode, junior tranches before the senior ones even
begin to be affected. The process by which losses on the asset side are transferred to the
tranches is called the waterfall. The first tranche to be affected by losses is the so-called
equity tranche (in standard corporate finance, in fact, equity is the residual claim). Mezzanine
is the tranche affected as soon as the equity tranche has been swept away. On the opposite
end of the spectrum, senior and supersenior tranches are made much safer (Figure 8.1),
because only massive losses can erode the principal invested in these tranches.

As an alternative structure, one could avoid the actual sale of the assets and only use
credit derivatives to provide protection against losses on the assets themselves. This kind of
product is called a synthetic CDO, and the structure is depicted in Figure 8.2. Differently
from the cash CDO, on the asset side the SPV is just selling protection, typically by means
of CDS. As at origin CDS are worth zero, the funds raised in exchange for the issuance of
bonds have to be invested in default-free collateral. The interest rate risk of this investment
is typically hedged by an interest rate swap. The proceedings from interest payments and
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Figure 8.1 A “cash” CDO

CDS spreads are passed over to final investors. In case of defaults, the SPV pays for the
losses by reducing the amount of collateral and the principal of the tranches accordingly. Of
course, the reduction of the principal is structured according to the tranching and waterfall
rules. Synthetic CDOs in which, on the liability side, the SPV raises funds are called funded.
On the contrary, unfunded CDOs are structures in which both the asset and the liability sides
of the SPV are represented by CDSs: in this case, typically the SPV is not even used in the
deal.

Synthetic deals have become very popular in recent years, especially in Europe where
over 90% of deals are synthetic. The rationale for such CDOs is to provide a flexible way
to manage the credit portfolios without the need to sell assets and loans. From the point of
view of the originators, CDOs have represented an opportunity to

• get rid of bad loans and reduce the amount of non-performing loans in the book;
• get rid of good loans providing very low spreads and absorbing, under the capital ratio

regulation, a substantial amount of capital (regulatory arbitrage).
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Figure 8.2 Synthetic CDO
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From the point of view of investors, typically institutional investors, CDOs have represented
an opportunity to

• invest in asset classes that otherwise would have not been permitted under the regulation;
• invest with the level of leverage and risk required;
• change the overall degree of diversification of the investor’s portfolio.

As is clear from this broad introduction, the art of structuring CDOs amounts to choosing:
(i) a tranching structure for the liability side and (ii) a degree of diversification for the asset
side.

8.5.2 The art of tranching

In order to focus on the technique of tranching, let us assume for the time being that the
asset side is made by a single exposure, whose value is V . To illustrate the setting, it is
useful to refer to a structural model. The overall face value of debt is B, and is made up
by a senior component whose face value is S and a junior component with face value J .
Maturity of debt is at time T . From standard structural models the value of equity is

EQ�v�t�T� max�V�T� − B� 0�� (8.52)

The overall market value of debt would be

v�t�T�B − EQ�v�t�T� max�B − V�T�� 0�� (8.53)

and that of senior debt

v�t�T�S − EQ�v�t�T� max�S − V�T�� 0�� (8.54)

The value of junior debt is obtained by subtracting senior debt from the overall debt

v�t�T��B − S� − �EQ�v�t�T� max�B − V�T�� 0�� − EQ�v�t�T� max�S − V�T�� 0���

= v�t�T� J − �EQ�v�t�T� max�B − V�T�� 0�� − EQ�v�t�T� max�S − V�T�� 0���
(8.55)

So, the credit risk of the junior debt amounts to a position in a spread with two put options
with strikes equal to the overall face value of debt and the face value of senior debt.

The jargon used in the CDO market is a little different from that used above, actually it
is exactly the opposite, but is based on the same principle. Just rephrase the above setting
defining losses instead of the value of assets as the state variable. So, for example, set
V�T� = 100 − L and define the face value of the global amount of debt to be B = 100 − La.
Notice that in this case the value of equity is a put option, instead of a call:

EQ�v�t�T� max�V�T� − B� 0�� = EQ�v�t�T� max�La − L� 0�� (8.56)
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and the underlying asset of the option is the amount of losses instead of the value of assets.
Given the probability distribution of losses, the general pricing formula for the equity tranche
would then be

EQ�v�t�T� max�La − L� 0�� = v�t�T�

La∫
0

Q�L ≤ u� du (8.57)

As for the two tranches of debt, define S = 100 −Ld as the face value of senior debt, so that
the face value of junior debt is J = B − S = Ld − La.

Again, the value of senior debt will be

v�t�T��100 − Ld� − EQ�v�t�T� max�L − Ld� 0�� (8.58)

and credit risk is represented as a call instead of a put. Likewise, the credit risk in junior debt

v�t�T��Ld − La� − �EQ�v�t�T� max�L − La� 0�� − EQ�v�t�T� max�L − Ld� 0��� (8.59)

is represented by a call spread.
We may now introduce some standard CDO jargon. We have introduced a new product,

which is called a tranche, whose value at maturity depends on the amount of losses on a
given asset. La is called the attachment point of the tranche, and denotes the level of losses
at which the tranche begins to be eroded; Ld is called the detachment point and it is the
level of losses at which the whole principal of the tranche is swept away. A tranche is called
equity tranche if the attachment point is zero.

Just to practice with the model, assume that L is log-normally distributed, that is L =
exp�x� where x is normally distributed with mean m and standard deviation s. In this case,
obviously, the tranches could be priced in closed form, with formulas very similar to those
in the Black and Scholes model. To illustrate very briefly, the overall expected loss (EL)
would be

EQ�L� = exp�m + 0
5s2� (8.60)

The probability of observing an amount of losses less than La is

Q�L ≤ La� = �

(
− ln�EQ�L�/La�

s
+ 0
5s

)
(8.61)

The expected loss truncated to La is instead

EQ�L�L ≤ La� = EQ�L��

(
− ln�EQ�L�/La�

s
− 0
5s

)
(8.62)

The value of the equity tranche with detachment level La would then be

EL�0�La� = v�t�T�La�

(
− ln�EQ�L�/La�

s
+0
5s

)

−v�t�T�EQ�L��

(
− ln�EQ�L�/La�

s
− 0
5s

)
(8.63)
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Of course a straightforward arbitrage restriction requires

EL�La�Ld� = EL�0�Ld� − EL�0�La� (8.64)

So, any intermediate tranche has to be equal to the difference of two equity tranches taking
the detachment and the attachment points of the intermediate tranche as strikes.

The very simple model sketched above already provides a tool for introducing in a simple
way arguments that will be at the centre of our discussion in the following paragraphs.

• First, the value of tranches depends on the overall expected loss and its volatility. As for
the sign of these effects, an increase in expected losses would decrease the value of all
the tranches. In fact, equity tranches would be affected as long positions in put options,
while senior tranches would be affected as short position in call options. Furthermore,
as put options with higher strikes would be affected more, intermediate tranches would
also decrease in value. The sign of a change in volatility would be instead opposite for
equity tranches and senior tranches, simply because equity amounts to a long position
in an option, while the senior tranche embeds a short position. The value of equity is
positively affected by an increase in volatility, at the expense of the senior tranche. The
impact on intermediate tranches, which are differences of two options, is not determined,
and in general the relationship is not monotone.

• Second, if one could trade these tranches in a liquid market, he could extract from their
prices information about the distribution of losses. Particularly, given the same value of
overall expected losses, the values of the different tranches could convey information
about losses in volatility. In this simple framework, this is the same concept as the implied
volatility that we know in the options markets. Of course, it would be incorrect to extract
implied volatility from the intermediate tranches, simply because they are call spreads
and are not monotone (and therefore invertible) functions of volatility. So, the correct
way to go would be to rely on implied volatility from the equity tranches and to compute
the intermediate tranches by difference.

• Third, the prices of such products can be expressed in different ways. Tranches can be
quoted in “up-front” terms, but more often they are quoted in terms of credit spreads. So,
the expected figures for losses for the tranches are often translated into the spread in an
asset swap transaction or a CDS fixed premium (for unfunded CDOs). Besides this, of
course, these products, which are inherently nonlinear, could be quoted in terms of the
“implied” parameter determining the distribution of losses: in this very simple treatment,
this parameter is the “implied volatility”, very much as in the options market. In the real
market, in which the degree of diversification is considered as the main parameter in the
distribution, the parameter quoted is the “implied correlation”.

8.5.3 The art of diversification

Securitization products are intrinsically multivariate. So, the above analysis carries over once
one has specified

L = L1 + L2 + · · · + Ln (8.65)

Moving one step forward from the very simple model presented above, the underlying asset
of the equity tranches involved in the product is now a sum of random variables, and the



218 Structured Finance

options embedded in the equity and senior tranches are basket options. Even without getting
any deeper into the pricing issues, we can state that: (i) the value of the option on a basket
cannot be higher than the value of a basket of options, so some diversification is provided
to the tranches; (ii) the value of the basket option increases with correlation – think of the
AND/OR rule.

Following these arguments, it is easy to see that the same lines of discussion above apply,
once the term “correlation” is substituted for the term “volatility”. So, the value of all the
tranches is negatively affected by an increase in expected losses, while changes in volatility
and correlation affect equity and senior tranches in different ways. As equity corresponds to
a put option on the basket of losses, its value is increased by an increase in correlation. As,
on the contrary, senior tranches involve a short position in a basket call option, it is clear that
it is negatively affected by an increase in correlation. There is another way of looking at this
argument, which highlights how tranching is enabled to reach different kinds of investors.
The equity tranche is mainly affected by idiosyncratic shocks, which are progressively less
relevant the more losses are generated by a systematic common factor. For the same reason,
the equity tranche is also negatively affected by cross-section variance and heterogeneity of
the exposures. For these reasons, the investors interested in equity tranches are funds that
are specialized in the “fundamental” analysis and have no regulatory constraint to invest
in non-rated assets. Most of them are hedge funds looking for “absolute return” deals. On
the opposite side, the senior tranche is negatively affected by very pervasive and systematic
phenomena, while it is almost immune to specific idiosyncratic default events: this kind of
product is designed for large institutional investors seeking safe investments.

Of course, diversification is not always sought by investors. It may in fact be the case
that some institutional investors are interested in more dependence, maybe even more than
can be offered using the assets and the “names” available on the market. Structurers in
this case may create correlation artificially using the so-called CDO2 deals. A CDO2 is a
securitization structure in which the products on the asset side of the SPV are also tranches.
The typical structure of a CDO2 is depicted in Figure 8.3. There is an external “layer” with
a set of “names”, and an intermediate “layer” with a set of tranches, typically with the same
attachment and detachment figures. Each basket in this intermediate layer constitutes what
is also called a set of “baby CDOs”. This set of CDO tranches represents the asset side
of the SPV in the “mother CDO”. Notice that each “name” may appear in more than one
“baby CDO”. This overlapping feature obviously increases the dependence structure among
the “baby CDOs”. Consider, for example, a large name whose default causes losses in the
intermediate CDOs, and assume that it is represented in the basket of many of them: this, of
course, gives rise to simultaneous losses in many intermediate CDOs, so artificially creating
correlation among them. So, the higher the degree of overlapping among the “names”, the
higher the level of correlation generated on the asset side of the SPV. Of course, tuning
the degree of overlapping enables the probability distribution of losses to be designed in a
customized way. Formally, the loss of the jth “baby CDO” tranche is given by

LCDOj = min

[
max

(
n∑

i=1

1ijLi − Laj� 0

)
� Ldj

]
(8.66)

where 1ij is an indicator function taking value 1 if the ith “name” is included in the jth
intermediate tranche and zero otherwise, and Laj and Ldj are its attachment and detachment
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points, respectively. The overall loss, which has to be shared by the tranches of the “mother
CDO”, is now

L = LCDO1 + LCDO2 + · · · + LCDOk (8.67)

where k is the number of “baby CDOs”. Typically, losses are added, even though in principle
a structurer could also think of different aggregation functions.

Name 1 

Name 2 

Name 3 

…

Name n 

3%–7%

3%–7%

3%–7%

Special
Purpose
Vehicle

Equity

Mezzanine 

…

Senior

Figure 8.3 A CDO2

Notice that the maximum amount of losses is given by the difference between detachment
and attachment times the number of “baby CDOs”. In the case shown in Figure 8.3, we
have 4% × 3 = 12% maximum loss. In the typical CDO2 transaction the remaining amount
of capital is invested in safe assets, represented by senior or supersenior tranches of large
CDOs. A large CDO is a securitization deal in which the number n of assets or names is
very large, so that it is not feasible to model the credit risk standing of each and every
obligor: it is also said that the asset side is not granular. So, to complete the picture of
the CDO2 deal in the figure, the remaining 88% of principal could be invested in a senior
tranche of a retail loan securitization, typically rated AAA.

To conclude, a feature that is often found in CDO2 deals is the so-called cross-
subordination clause. The rule gives an option to spread the losses across the entire set of
“baby CDOs”. So, if default of a name would overcome the attachment level of a “baby
CDO”, one would check whether the other “baby CDOs” have still room to absorb further
losses. From the point of view of computation, this is equivalent to modifying the attach-
ment and detachment levels of the “mother CDO”. The details would be spelled out in the
description of the pricing algorithm.

8.6 STANDARDIZED CDO CONTRACTS

Since 2003, some major global players introduced the idea of a market for standardized
CDO contracts. Just like futures contracts for cash commodities or assets, such contracts
would have been defined on a given notional description of the contract, representative of the
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major “names” in a market, with given maturities and tranches. Exactly as futures contracts,
standardized CDOs were meant to provide a liquid tool to (i) hedge exposures in tranches
in customized CDOs (bespoke CDOs) and (ii) take trading positions in the credit market,
to exploit both the developments of the credit standing of the major “names” in the market
and their co-movements (correlation trading). As finally happens with futures markets, the
price transparency of the contract would enable implied information concerning credit risk
correlation to be backed out. Nowadays, the standardized contracts traded in the market are
the so-called i-Traxx indexes in Europe and the CDX indexes for the US market.

8.6.1 CDX and i-Traxx

CDX and i-Traxx are synthetic unfunded CDOs based on the most representative 125
“names” for different markets. i-Traxx specialize in the European market, but indexes are
also available for the Australian and Asian markets. These indexes are produced by the
International Indices Company (IIC). At the time of writing three benchmark indexes are
produced: i-Traxx Europe, the main index, which consists of the main 125 European names;
i-Traxx Europe HiVol, which includes the 30 European names with the highest five-year
CDS spreads; and i-Traxx Europe crossover, which includes 45 sub-investment grade names.
Furthermore, IIC offers several sector indexes. On the other hand, CDXs are administered
by the CDS Index Company (CDSIndexCo) and marketed by Markit group.

We will focus on the two most standard indexes, that is the i-Traxx Europe and CDX US.
Both indexes include 125 constituent names. The names are revised, and the index rolled
over every six months. Maturities and tranches are also standardized. The standard maturities
are 5, 7 and 10 years. The overall notional is 250 million. The tranches are reported in
Table 8.1. We see that, apart from the equity tranches, the attachment and detachment points
of the other tranches are different.

Table 8.1 i-Traxx and CDX quotes, five-year maturity, 27 September 2005

i-Traxx CDX

Tranche Bid Ask Tranche Bid Ask

0–3% 23
5∗ 24
5∗ 0–3% 44
5∗ 45∗
3–6% 71 73 3–7% 113 117
6–9% 19 22 7–10% 25 30
9–12% 8.5 10.5 10–15% 13 16
12–22% 4.5 5.5 15–30% 4.5 5.5

∗ Amount to be paid “up-front” plus 500 bp on a running basis.
Source: Lehman Brothers, Correlation Monitor, 28 September 2005.

The quote convention is that prices are expressed in basis points, and refer to CDS premia
for selling and buying protection for the tranche. The important exception is the equity
tranche, which is priced in terms of “up-front” plus 500 basis points on a running basis. The
value of the tranches depends on: (i) the overall value of the relevant credit index; (ii) the
expected loss of every name in the index; and (iii) the correlation among losses. In particular,
as expected losses of the single names are priced in the market (and the availability of a
transparent price is a requirement for inclusion in the index), the focus of the price is on
correlation. Correlation is in fact an additional way of quoting standardized tranches.
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8.6.2 Implied correlation

Implied correlation is that level of correlation (assuming correlation to be the same across
all the names) which produces, using the standard pricing formula, the prices observed in the
market. The concept is very much the same as implied volatility in the options market. In
that case the standard pricing formula is that from the Black–Scholes model corresponding
to Gaussian returns. Parallel to that, the standard pricing model for tranches is also based on
the assumption of a Gaussian dependence structure, and it uses the Gaussian copula model.

What is strange, and breaks down the similarity between implied correlation and implied
volatility, is that, at least in the beginning, the implied correlation was applied to all the
tranches, including the intermediate ones. As we saw previously, this is incorrect. It would
actually be like retrieving implied volatility from call spread prices in the option market.
Call spread prices may well be non-monotone in volatility, just as intermediate tranches
are generally non-monotone in correlation. The implied correlation concept can instead be
correctly applied to equity tranches or senior tranches, which correspond to positions in
options and are proved to be monotone in correlation. For this reason, after some years
in which implied correlation had been applied to all the tranches, a new concept has been
introduced, called base correlation to distinguish it from the past practice. Base correlation
is the implied correlation that prices the equity tranches. So, for example, the base correlation
for the CDX index refers to the correlation of the 0–3% equity tranche, the 0–7% equity
tranche, and so on. The price of the mezzanine tranche is obtained by arbitrage, as specified
above, by computing

EL�3%� 7%� = EL�0� 7%� − EL�0� 3%�

To distinguish this concept of base correlation, the old-fashioned way of extracting implied
correlation from all the tranches has been called compound correlation, even though the use
of this concept, particularly in credit analysis, has considerably decreased. So, typically in
a report on the indexes we often find such information as that in Table 8.2. For example, a
trader looking at that table could conjecture the possibility of a cross-region trade. Notice,
in fact, that base correlation is markedly different between the US and the European market
for equity and senior tranches, and in opposite directions. Furthermore, this contrasts with
the other base correlations that are by and large similar in the two markets. An idea could
then be, for example, to sell protection on the CDX equity tranche and buy protection on the
corresponding i-Traxx equity tranche. One could actually have another idea, and assume that
either of the two markets would converge towards a common shape of the base correlation
curve. This could, for example, imply that the base correlation on the 0–3% equity tranche
could increase while that on the 0–30% equity tranche could decrease. Buying exposure on
the former and selling protection on the latter could be a promising business.

What we have introduced in the simple example above is a way of trading credit cor-
relation, trying to gauge the future movements of the base correlation structure. That
very closely recalls the activity of “riding” the yield curve in the fixed income mar-
ket or betting on the smile curve in the options market. Actually, the smile (or skew)
borrowed from the options market is nowadays largely used in the trading of standard-
ized credit derivatives and is called the “correlation smile” or the “correlation skew”.
Just as in the options market, where we have been searching for years for new mod-
els to help to produce, and then predict, the volatility smile, the same is happening
in the credit market. The quest is still open for models that enable us to understand
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Table 8.2 i-Traxx and CDX correlation, five-year maturity, 27 September 2005

i-Traxx CDX

Tranche Base correlation Tranche Base correlation

0–3% 12.3% 0–3% 6.6%
3–6% 23.5% 3–7% 22.6%
6–9% 31.8% 7–10% 31.1%
9–12% 38.8% 10–15% 41.0%
12–22% 55.5% 15–30% 66.3%

Source: Lehman Brothers, Correlation Monitor, 28 September 2005.
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Figure 8.4 Base correlation of the i-Traxx tranches

and predict the correlation smile. Most of the models proposed have been surveyed in the
first part of this chapter, but a full explanatory model has yet to be discovered.

In Figures 8.4 and 8.5 we report the base correlation skews for the same day as that in
the illustration above for the CDX and i-Traxx markets, respectively.

8.6.3 “Delta hedged equity” blues

One of the most debated topics in the management of CDO investments is that of hedging.
The issue has always been specially hot for lower tranches, and in particular for the equity
tranche. Traditionally, the equity tranche was kept with the originator of the deal because
it was too risky and unrated, and was used to send a signal to the market about the quality
of the assets. However, it was too risky to leave the tranche unhedged. Ever since then, the
problem of managing the risk of the equity tranche was a relevant issue. In these days, the
practice of keeping the equity tranche with the originator is no longer available, particu-
larly for regulatory reasons. Under the new regulatory framework, in fact, if the originator
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Figure 8.5 Base correlation of the CDX tranche

retains the equity tranche of a securitization deal, it is subject to capital requirement for
the whole pool of securitized assets. Mainly for these reasons, in addition to the fact that
it was a promising business opportunity, unregulated intermediaries, namely hedge funds,
have taken over the job of handling the toxic waste of equity tranches generated by CDO
deals. Of course, by the same token they have also taken over the practice and development
of those techniques called “delta hedged equity”. The financial crisis of May 2005, in which
many hedge funds lost huge amounts of capital in these deals, shows however that the quest
for good equity hedging strategies is by no means over. Here we provide a brief illustration
of the problem, by keeping an eye on the May 2005 event.

Hedging a derivative contract can obviously be done with the underlying asset or other
derivative contracts. Equity tranches make no difference and can be hedged

• buying protection on the whole index
• buying protection on other tranches.

As in standard derivatives, the quantity to be bought or sold to immunise a position is called
delta. The delta reported for each tranche denotes the nominal amount for which one has
to buy protection in order to hedge one unit of exposure to the tranche. To be explicit, in
Table 8.3 we report, for the same day and markets as in the previous tables, the deltas of
each tranche. So, for example, the delta of the equity tranche means that it is equivalent, in
terms of sensitivity to index movement, to sell protection on the equity tranche for a nominal
of 10m or on the whole index for a nominal amount of 190m.
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Table 8.3 i-Traxx and CDX deltas, five-year maturity, 27 September 2005

i-Traxx CDX

Tranche Delta Tranche Delta

0–3% 23
0 0–3% 19
0
3–6% 5
0 3–7% 5
5
6–9% 1
8 7–10% 1
8
9–12% 1
0 10–15% 1
0
12–22% 0
5 15–30% 0
5

Source: Lehman Brothers, Correlation Monitor, 28 September 2005.

So, in order to hedge a 10m exposure to the CDX equity tranche, one can

• buy protection on 190m of the whole index (index hedged equity)
• buy protection on about 34.5m (19.0/5.5) of the mezzanine trance (mezzanine hedged

equity).

Until the crisis of May 2005, most hedge funds would have chosen the second solution,
particularly because it was granting a much higher net margin (carry). Credit research of
the period reports that the latter strategy was granting about 1.4m per annum as opposed to
0.9m offered by the index hedge solution. Of course, stability of the deltas is a major matter
of concern. That was what actually happened in the weekend between Friday 6 May and
Monday 9 May 2005. In front of a 3-bp increase of the index, the equity tranche increased
substantially, with the up-front quote rising by 3.125%, but at the same time the mezzanine
actually decreased by 16 bp. As at the time the leverage used for the mezzanine hedge was
around 2.2, the decrease in the mezzanine spread contributed to a further 1.6% loss in the
deal (Bank of America Securities, Credit Research, 9 May 2005).

8.7 SIMULATION-BASED PRICING OF CDOS

Owing to the high dimensionality of many of the structures, Monte Carlo methods are widely
used to price credit derivatives and other credit structures such as CDOs. As we have already
discussed in Chapter 6, Monte Carlo methods are generally fast and easy to implement and
usually result in quite generic code implementation so that new structure can be introduced
without great effort. The resulting pricing engine is easy to maintain and extend.

In this section we will discuss a very simple pricing model which is based on the simulation
of default times for a series of names that represent the asset side of our CDO, the liability
component being modelled with the set of securities issued by the CDO. We will show
that the model can easily accommodate all the structures discussed here, including cash and
synthetic CDOs as well as CDOs squared with or without cross-subordination.

Names and tranches are in turn implementation of the abstract CFinancialActivity
class which we introduced in Chapter 5. The description of the two classes is shown in
Figure 8.6.
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oA cFinobject. CFinancialActivity

activityType : int
SF BOND : int
SF CDOTRANCHE : int
SF CDS : int
SF EQUITY : int
SF FOREX : int
SF FUTURES : int

SF OPTION : int

hazardRate : double

recoveryRate : double

seniority : String

c CName c CCDOTranche

attachmentLevel : double

detachmentLevel : double

issurer : String

schedule : CPeriod

CCDOTranche()

printOut()

level : doubleP

volatility : doublePP

P P

P

P

P

P

P

getActivityType()

adjustSchedule()

CPeriod()

jexcalibur.scheduler.CPeriod

printOut()

createIntervals()

createSchedule()
printOut()

printOut()A

CName()C

C

C

«import»

Figure 8.6 CName and CCDOTranche classes and their relationship with jExcalibur classes

8.7.1 The CABS (asset-backed security) class

In order to put together the CDO tranches with the names to which they refer, we will
introduce a new class called CABS. In our simple model this class has only three attributes: a
list of financial assets called asset; a second list of financial securities called liability;
and a boolean parameter that specifies the type of subordination to be used in the computation
of the tranche value. In the Java implementation we have used the ArrayList class for these
attributes (see Figure 8.7 and the code below).

O A finobject. CFinancialActivity

activity Type : int
SF BOND : int
SF CDOTRANCHE : int
SF CDS : int
SF EQUITY : int
SF FOREX : int
SF FUTURES : int

SF OPTION : int

– liability

– asset

c CABS

level : doubleP

volatility : doublePP

getActivityType()
printOut()A

P cdoLevel : int

P crossSubordination : Boolean

C
CABS()

*

*

«import»

Figure 8.7 CABS class (note the association link between the two classes)
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package CDOPricing;

import finobject.CFinancialActivity;
import java.util.*;

public class CABS {
/**
* Attributes
*/
private ArrayList<CFinancialActivity asset;
private ArrayList<CFinancialActivity liability;
private Boolean crossSubordination;
private int cdoLevel;

public ArrayList<CFinancialActivity> getAsset() {
return asset;

}
public void setAsset(ArrayList<CFinancialActivity> asset) {

this.asset = asset;
}

public ArrayList<CFinancialActivity> getLiability() {
return liability;

}

public void setLiability(ArrayList<CFinancialActivity>
liability) {

this.liability = liability;
}

public Boolean getCrossSubordination() {
return crossSubordination;

}

public void setCrossSubordination(Boolean crossSubordination) {
this.crossSubordination = crossSubordination;

}

public int getCdoLevel() {
return cdoLevel;

}

public void setCdoLevel(int cdoLevel) {
this.cdoLevel = cdoLevel;

}

/**
* Constructor
*/
public CABS(){

}
}
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Both the asset list and the liability list can contain every financial asset, in particular the
asset list can contain either names or tranches. The first case is the most straightforward
and corresponds to the simple CDO in which we have a pool of credits (whose principal
properties are described by the list of names) on the asset side and a set of tranches, which are
issued with different seniorities, constituting the list of liabilities. If, in the asset list, we have
CDO tranches, we obtain is a CDO Squared (CDO2) deal as described above. In this case,
which is obviously more difficult to handle than the previous one, we will have to specify
how the losses from the elementary CDO tranches would propagate through the principal of
the CDO2 liabilities. As we will see in the following sections, the cross-subordination flag
is meant to affect this propagation.

In short, the pricing process with Monte Carlo simulation can be decomposed in the
following subprocesses:

• Generate a scenario of possible default times for each name. We generate n times (where
n is the number of names) and for each value we check if this value is less than the
expiration of CDO. If this is true then the status of the corresponding name is set to
“defaulted”.

• Calculate the potential losses due to defaulted names.
• Propagate the losses computed in the previous step in order to calculate the principal

amount for each payment date of the tranche schedule (this was called the waterfall
mechanism).

• The principal value for each payment date is accumulated during the scenario generation
and a final average value is then calculated.

• Using the average nominal value and the coupon value of the tranche we can compute
the average cash flow. The sum of the discounted value is the value of the tranche.

Let us now describe each step in deeper detail.

8.7.2 Default time generator

We suppose that individual names default according to a Poisson process with a constant
default intensity � for each name; the recovery rate is also assumed to a be a known constant
value. The computation takes as input an exogenous correlation matrix, R, of dimension
n × n (where n is the number of names) and the vector of n hazard rates. Using the
covariance matrix we generate, for each Monte Carlo simulation, a vector of n correlated
uniformly distributed random variables. The generation of these variates is done using the
copula function technique. Finally, we compute default times by the inversion of exponential
distribution

�i = − ln�ui�

�i

where ui is the generic uniformly distributed variable and �i is the ith name hazard rate.
The generation of random variates is done following the algorithms described in Cherubini

et al. (2004). For the Gaussian copula we have

1. Find the Cholesky decomposition A of R.
2. Simulate n independent random variates z = �z1� � � � � zn�

′ from N�0� 1�
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3. Set x = Az.
4. Set ui = ��xi� with i = 1� 2� � � � � n where � denotes the univariate standard normal

distribution function.
5. (y1� � � � � yn�

′ = �F−1
1 �u1�� � � � � F−1

n �un�] where Fi denotes the ith marginal distribution.

Student t variates are generated according to

1. Find the Cholesky decomposition A of R.
2. Simulate n independent random variates z = �z1� � � � � zn�

′ from N�0� 1�
2. Simulate a random variate s from �2

� independent of z.
3. Set y = Az.
4. Set x = ��/s�1/2y.
5. Set ui = T��xi� with i = 1� 2� � � � � n, and where T� denotes the univariate Student t

distribution function
6. �y1� � � � � yn�

′ = �F−1
1 �u1�� � � � � F−1

n �un�� where Fi denotes the ith marginal distribution.

As far as the Java implementation is concerned, we will again use the factory pattern.
The generation of uniform distributions can be implemented using a generic interface named
IcopulaGenerator; for each new copula-based generator we would like to design, we
would have to add a standard class implementing this interface, as described in Figure 8.8.

«import»
c

ICopulaGeneratorI
CCopulaGeneratorFactory

c CCopulaGenerator_Gaussian c CCopulaGenerator_tStudent

C CCopulaGenerator_tStudent()C CCopulaGenerator_Gaussian()

Simulate() Simulate()

Simulate()
C CCopulaGeneratorFactory()

createInstance()

SF gaussian: int
SF tstudent: int

«instantiate» «instantiate»

«instantiate»

Figure 8.8 The CCopulaGenerator Factory Pattern

The uniform variates are used by the Simulate method of the CDefaultTimes
Generator class. As we have previously pointed out, the output of the copula algorithm
is compared with the expiration,of the CDO. If the value of the simulated default time is
less than the CDO expiration, this means that we have a default event during the life of the
product. In this case we set the status of the names to “defaulted”, the status is memorized
in an ArrayList called NameStatus.

8.7.3 The waterfall scheme

In order to compute the propagation of losses we have to distinguish two cases: simple CDO
and squared CDO.

In the first case we compute the loss due to the generic defaulted name simply by
multiplying the loss times the amount of the names in the pool of credits

Loss = �1 − RecoveryRate�∗Amount
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The loss is cumulated across all the names. In order to understand if the loss affects the
nominal value of the tranche we compare the value with the attachment and detachment
level of the tranche itself. The effective loss on the tranche is computed as

EL =
⎧⎨
⎩

0 if L < La

L − La if La < PL < Ld

Ld − La if L > Ld

where L is the loss simulated, EL is the effective loss on the tranches, La the attachment
level and Ld is the detachment level. Since we have information about the default time, we
can map each loss to the CDO schedule. At the end of this process we have a list of values
for the residual nominal at each payment date.

For a squared CDO the computation is just a little more complicated. Remember that in
this case the asset of CDO is formed by tranches too. If there is no cross-subordination,
the computation is simply a reiteration of the previous one. We compute the effective
loss for each tranche (“baby CDO”) in the asset, cumulate all these losses and then
propagate them to the “mother CDO” using the attachment and detachment levels of the
latter.

If there is cross-subordination, potential losses in the asset tranches are simply summed
up without tranching. The attachment and detachment levels of the squared CDO are also
modified. We sum all the attachment levels of the asset tranches and this value is added
to the attachment and the detachment levels of the CDO2. After this adjustment we can
compute effective losses with the usual tranching mechanism applied to the cumulated losses
of the asset tranches. The complete process is described in Figure 8.9.

Read Values Asset Tranche k

Extract Original CDO Information

Compute potential losses for the
k-th tranche

there is cross subordination

sum attachment level of the k-th asset tranche

there is no cross
subordination

Compute effective losses for the
k-th tranche

k = k + 1

k < number of asset tranches k > number of asset tranches

Cumulate asset tranches losses

Computation of effective losses
by tranching

Adjust attachment and detachment of square CDO

there is cross
subordination

there is no cross
subordination

In this step we recover information
about the issuer of the k-th tranche
that we are processing

Input  data

Figure 8.9 Squared CDO waterfall mechanism
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Remark 8.1 From an OOP point of view, the most important thing is the capacity to
build our application using a sort of iteration which permits us to consider each tranche
either as a liability (for simple CDO) or an asset (for higher order CDO). In our example
we have only partially developed this point of view. A very interesting alternative is the
method proposed by Rott and Fries (2005). In their work they propose the design pattern
of a stochastic iterator named “default time iterator”. With this pattern it is possible to
create a highly flexible product implementation framework in which any product may
become the underlying of any other product. The interested reader will also find in this
work an interesting discussion about efficient computation methods for the estimation of
sensitivities.
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9
Risk Management

9.1 INTRODUCTION

In this chapter we conclude our analysis of the structured finance market by addressing the
main issues that this line of business raises for the risk manager. We again assume that the
reader is well acquainted with the general framework and the main topics involved in risk
management. The reader without such a background is referred to excellent books such as
Jorion (2001), Crouhy et al. (2000) and Embrechts et al. (2005) for in-depth treatments of
the general framework of risk management.

The development of the structured finance market poses three main questions to risk
managers:

• The first question is: Are the prices right? Since most of the derivative contracts embedded
in structured products are not endowed with a sufficiently close replicating portfolio, the
first problem is to select a price that may be representative of the cost of unbundling
the position. The problem of liquidity, or its counterparty in financial mathematics –
which is market incompleteness – has been rather overlooked in broad risk management
applications, while it becomes a paramount feature in structured finance.

• The second question relates to nonlinearities in the portfolio: How is the value of the
product likely to respond to changes in the risk factors? And what about changes in
volatility and correlation? Nonlinearities make the task of measuring risk particularly
complex. In the first place, it is more difficult to represent risk exposures: standard
mapping techniques, designed to report the direction of the exposure to risk factors, must
be supplemented by reports of gamma or vega exposures, to illustrate the sensitivity of
the portfolio to changes in volatility and correlation. Beyond reporting, however, standard
parametric risk measurement techniques are very difficult to apply. The presence of
relevant second-order effects, gamma and vega, introduces chi-squared distributed sources
of risk, so that the resulting overall distribution of profit and losses is no longer available
in closed form. For this reason, historical simulation looks like a preferable strategy,
and it is the technique that is mostly used: a set of scenarios is sorted from past history
to simulate the distribution of future profits and losses. Furthermore, one would like to
check what could happen to the distribution of profits and losses in particularly extreme
market situations (stress testing).

• The third question refers to the management of risk. Which risk factors should be hedged
and how should they be hedged? Notice that a prerequirement to this answer is to have
a clear idea of the replicating portfolio of each structured product in the portfolio. As we
saw previously, because of the incomplete market problem this is seldom an easy task.
There is a trade-off, however, between two choices. A choice is to perform the hedging
“in-house” by using liquid instruments. In this case, of course, the incomplete market
problem materializes in the need to choose hedge ratios that are as close as possible to
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the positions to be hedged. The alternative is to buy and/or sell the derivative products
involved to a third party, which is a sort of re-insurance contract that raises the issue of
the credit risk of the re-insurer. This problem is called counterparty risk and is one of
the frontier issues in risk management practice.

9.2 OTC VERSUS FUTURES STYLE DERIVATIVES

A basic issue that is raised in the risk management analysis of a derivative contract is the
kind of market in which the contract is exchanged. Typically, a contract can be exchanged
in a bilateral transaction, in the so-called over-the-counter (OTC) market, or in a futures
style market. A substantial trade-off is involved in the choice between these two kinds of
markets.

In an OTC transaction, the contract is stipulated between two parties. Two disadvantages
immediately come to mind. (1) If one of the parties defaults, the other party may remain
with a net credit, in which case it would have lost money: this is what is called counterparty
risk. (2) If one of the parties wants to get out of the contract before its maturity, he will
have to write an offsetting contract, possibly with the same counterparty: this is what is
called liquidity risk. These disadvantages have to be balanced against an advantage: one may
write a contract on virtually any specific risk factor. So, in a structured finance application,
one could buy from the re-insurer exactly the same derivative contract that is sold in the
structured product.

Futures style markets are designed to reduce counterparty risk and liquidity risk as
effectively as possible. This is accomplished by three provisions:

• Marking-to-market: Checking the position and making settlement of profits and losses
every day.

• Margin requirements: Both parties deposit a percentage of the nominal value of the
contract that is meant to absorb intraday losses: in case of substantial losses, the party
losing money receives a margin call to reintegrate the margin.

• Clearinghouse: The relationship between buyer and seller is broken in two by the intro-
duction of the clearinghouse. In case of substantial losses of one of the parties and failure
to abide by the margin call, the margin is used by the clearinghouse to close the position
with the counterparty.

Of course, the success to reduce credit risk is strictly linked to the ability to reduce
liquidity risk. In fact, the possibility of closing a position at any time, following the default
of one of the parties in the market, or for some other reasons, is linked to a feature that is
called contract standardization. Both the features of the underlying asset and the delivery or
exercise dates are determined in a notional contract. In case the contract required physical
delivery, some price adjustments could be included to allow for the delivery grade. This
structure makes sure that everyone interested in hedging or investing in a broad class of
highly correlated risk factors could be interested in the same contract. The pros have to be
balanced against the cons: the contract is not written on any specific underlying asset. So, in
a structured finance example, hedging a derivative with a futures style contract should take
into account that the underlying of the contract is generally different from the underlying
asset in the structured product. This is known as basis risk. Furthermore, for some structured
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product a sufficiently close liquid market for the underlying may not exist at all, providing
an extreme case of market incompleteness.

The choice to hedge on the OTC market rather than on futures style markets then hinges
on a basic trade-off between credit and liquidity risk on the one hand and basis risk and
market incompleteness on the other. In particular, futures style markets have proved highly
effective in reducing counterparty risk, while basis risk may be completely erased in OTC
transactions. The question is whether some intermediate arrangement could be made to
strike a balance between these two advantages. It seems that financial intermediaries have
addressed this issue since the 1990s. The way they have been doing so is by bringing some
of the features of futures style markets into their operations process. This shows up clearly
in two kinds of provisions that are nowadays largely diffused in the market, and will be
discussed throughout this chapter:

• Value-at-Risk limits: Most intermediaries use a Value-at-Risk (VaR) requirement to allo-
cate risk among the different desks and business units. It is easy to show that this concept
is very close to that of margin requirement in futures markets.

• Marking-to-market and collateral: In derivative transactions, at least between intermedi-
aries, there is an agreement to mark the value of the position to market every day or every
week and to post the losses as collateral. This is also very close to the idea of margin
call in the futures markets.

9.3 VALUE-AT-RISK & CO.

The Value-at-Risk (VaR) methodology has become the market standard of risk measurement
since the last decade of the past century. The development has followed the increasing
involvement of the financial intermediation system in the derivative markets. In a sense, this
development has paralleled the growth of the structured finance business. As we noticed
above, the concept of VaR can be traced back in some sense to that of margin requirement in
the futures market: it is meant to measure the amount of capital that is likely to absorb losses
for the time needed to unwind the position in front of adverse market movements or events.
With respect to the traditional standard asset and liability management (ALM) techniques
the innovative element is then that VaR is a probabilistic concept, just like the margin
requirement, and has to do with the probability distribution of profits and losses. Beyond
the traditional approach, the analysis is not limited to the evaluation of sensitivities of the
position with respect to the risk factors (e.g. duration gap), but extends to the probability
distribution of the risk factors themselves. The recent debate on alternative risk measures to
be used in substitution of VaR has in no way diminished the relevance of this revolutionary
feature. The argument actually builds on this innovation, and addresses the question of how
to measure risk from a given distribution of profits and losses.

Designing a risk management process requires a set of strategic decisions that may be
formalized in a sequence of steps

1. Analysis of the structure of products in the portfolio, identifying their replicating portfolios
in terms of elementary products.

2. Evaluation of the risk factors and pricing of the products of the portfolio: marking-to-
market of the position.

3. Mapping of each position into a set of exposures to the risk factors.
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4. Evaluation of the statistical joint distribution of the risk factors and that of profit and
losses.

5. Choice of a risk measure for the distribution of profit and losses.

As we focus in this chapter on peculiarities related to structured products, we will only touch
upon some of the points above.

9.3.1 Market risk exposure mapping

A standard by-product of the risk measurement process is the so called mapping process of
risk exposures. A set of risk factors is defined in such a way as to break down the exposures by

• country or issuer
• currency
• kind of security (equity, bond, commodity, etc.)
• maturity (a limited set of maturities is considered for every issuer).

The portfolio is mapped into exposures to the different risk factors. The mapping is per-
formed taking into account each product in the portfolio and each cash flow in the product.
Exposures are then collected in a set of buckets. In standard risk measurement analysis of
linear products, attention is focused on the sensitivity of the position to movements in one
direction or the other. With respect to this, positions are mapped in terms of exposures to the
risk factors in such a way as to preserve their financial characteristics as closely as possible.
For this purpose, the mapping procedure is performed, abiding by three requirements:

• The sign of the exposures resulting from the mapping should be the same as that of the
original position.

• The marking-to-market value of the mapped exposure should be the same as that of the
original position.

• The risk of the mapped exposure should be as close as possible to that of the original
position.

The first two requirements are particularly easy to preserve, and imply that each cash flow be
transformed into a linear combination of risk factor exposures. As for the third requirement,
one has to make a further choice, particularly for positions that have to be mapped on
several risk factors. The standard problem is to map a cash flow maturing at time � in two
exposures to the maturities tj−1 and tj , with tj−1 ≤ � ≤ tj . Three options are available:

• The mapped exposures must have the same duration (or PV01) as the original position:
this choice preserves the sensitivity of the position with respect to a 1-bp shock in all the
risk factors involved.

• The mapped exposures must have the same volatility as the original position. This choice
was proposed in the first version of RiskMetrics™ and is meant to preserve the variance
of the position, so taking into account both the volatilities and correlation between the
risk factors.

• The mapped exposures must have the same sensitivity to each risk factor as in the original
position. This is a latest proposal by RiskMetrics™. It strikes a compromise between the
previous two choices. Allocation to the risk factors is determined in such a way as to
preserve the sensitivity of the position with respect to a 1-bp shock in each of the risk
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factors. In order to abide by the constraint that the marking-to-market value has to be
preserved, however, part of the position has to be mapped in the cash bucket.

Let us now see what is different about the risk measurement of structured products. As
we have shown throughout this book, risk analysis of a structured product must gauge two
sensitivities:

• The sensitivity of the value of the product with respect to changes of risk factors in one
direction or another. In this respect risk measurement calls for the same analysis as that
of a linear product discussed above.

• The sensitivity of the value of the product with respect to volatility and correlation, or
more generally changes in the distribution of the risk factors. This sort of higher moment
dimension is what actually differentiates structured products from linear products.

In portfolios with substantial positions in structured products, the mapping procedure must
be supplemented by reports of sensitivities to finite shocks (gamma) and to volatility
changes (vega). As sensitivities are linear operators, they may be summed across all the
positions and across all the risk factors, just as we do for linear products. So, in a risk
management report each risk factor will be endowed with three buckets:

• The first bucket will collect the delta of the product with respect to the risk factors. This
bucket will represent the sensitivity to directional changes in each risk factor.

• The second bucket will collect second-order sensitivity to changes in the risk factor in
both directions, and will report the global gamma position of the portfolio with respect
to each risk factor.

• The third bucket will collect the sensitivity with respect to volatility and correlation
changes, and will report the global vega of the portfolio with respect to each risk factor.

Notice that representation of the exposure beyond first order is mandatory to ensure
sound risk management decisions. The classical case it that of negative gamma and vega
nightmares, well known to every trader and risk manager. In presence of a negative exposure
to volatility changes, in fact, a delta hedging strategy would leave the position exposed to
losses no matter which direction a risk factor moves.

9.3.2 The distribution of profits and losses

Once the portfolio of positions is mapped onto a set of exposures to risk factors, one is left
with the problem of estimating the joint distribution of risk factor changes. The distribution
would then be applied to the set of exposures to recover the profit and loss distribution of
the portfolio as a whole.

In order to estimate the distribution of risk factor changes, three methodologies are
available:

• Parametric method
• Monte Carlo simulation
• Historical simulation.

In the parametric method, a specific functional form for the distribution of factor shocks
is assumed. The market standard, due to RiskMetrics™, is to assume that the shocks
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are conditional and normally distributed. Variances and correlations are updated with an
exponentially weighted moving average scheme (EWMA). It may actually be proved that
such an assumption corresponds to an integrated GARCH(1, 1) (IGARCH) model for the
risk factors dynamics.

The parametric method is certainly to be recommended for portfolios in which nonlinear-
ities are not substantial. This is not the case, of course, for portfolios of structured products.
Sticking to the parametric approach in the presence of massive nonlinearities in the pay-offs
would call for the extension of the model to the corresponding higher-order effect (gamma)
and to volatility shocks (vega). There is a problem that this actually destroys the closed
form solution that we postulated for the profit and loss distribution. As a matter of fact,
even assuming conditional normality for the shocks, the second-order effect – that is, the
squared shock – would be distributed according to a chi-squared law. Unfortunately, there
is no closed form representation of mixtures of normal and chi-squared distributions. A
more direct way to address the problem is then to move to simulation techniques. If one
would like to stick to the assumption of conditional normality for the risk factors, Monte
Carlo simulation could be a choice. Over the unwinding period, scenarios could be generated
for the risk factors and the portfolio could be re-evaluated under each scenario. Sorting
the scenarios by the associate profit and loss figures would then allow the profit and loss
distribution to be designed. Of course, the reliability of the representation of the distribution
would actually depend on the assumption of normality that we have imposed in the first
place. A more radical choice is historical simulation: scenarios would be drawn from past
experience of the markets, rather than from an assigned distribution. This method, which
has become the market standard for nonlinear portfolios, will be covered in more detail in
the next section.

9.3.3 Risk measures

Once the distribution of profit and losses has been properly estimated, a problem that has
been debated for a very long time is which measure to use to represent the risk of losses.
The measure that has been proposed since the 1990s, that is, Value-at-Risk, is actually the
percentile of the distribution.

VaR ≡ F−1 ��� (9.1)

where F��� is the profit and loss distribution and � is a confidence level (typically 1% or 5%).
The choice of VaR, which, as we saw previously, was inspired by the practice of futures style
markets, has been questioned on several grounds. The most important arguments against it
have been collected under the concept of coherent risk measures theory. The concept was
first raised by Artzner et al. (1999) who addressed the question of a set of requirements that
a measure has to fulfil to represent risk in a consistent way. Three axioms were considered

• Positive homogeneity: ���X� = ���X�
• Translation invariance: ��X + �/v�t	 T�� = ��X� − �
• Subadditivity: ��X1 + X2� ≤ ��X1� + ��X2�

The use of VaR was questioned on the grounds that it fails to abide by some of these
requirements. Alternative measures, such as the so-called expected shortfall (ES), have been
proposed. ES is the expected value of losses greater than the VaR. Formally,
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ES ≡ E�X 
 X ≤ F−1���� (9.2)

where X is the change in value of the portfolio. The choice of one measure or the other has
been the subject of a long debate, and the issue cannot be considered to be definitely settled
even today. Most of the argument has concentrated around subadditivity. On one hand, it
is definitely true that the VaR measure could fail to be subadditive in some applications.
This means that if one allocates 1 million dollars VaR to business A and 1 million dollars
VaR to business B to ensure � probability of default of each business considered as a
separate entity, one would have to allocate more than 2 million dollars to maintain the
same probability � for the two businesses merged together. On the other hand, however,
that would mean that merging the two businesses would actually increase the probability
of default, and this is a piece of information that is no doubt particularly interesting for
any risk manager: looking at the concrete risk management practice from this viewpoint it
would seem that violation of the subadditivity axiom is an advantage, rather than a flaw of
the VaR measure. And maybe the only one. There are in fact many other reasons why the
ES measure would be expected to prevail in the long run. The most convincing of these
is that it is almost straightforward to solve an asset allocation problem with a constraint
on ES, but doing the same under a VaR constraint may be a very involved problem: this
is not the case, of course, in the standard parametric approach for linear products, but it
may become a hugely relevant problem if one allows for departures from normality and/or
a substantial presence of payoff nonlinearities, which is the case of any structured product
portfolio.

9.4 HISTORICAL SIMULATION

Historical simulation is the most straightforward and intuitive, and yet powerful, tool for the
risk measurement of portfolios of structured finance products. The idea is very simple. We
draw scenarios from past experience of the market and use them as possible future market
conditions. The positions in the portfolio are evaluated using the risk factor realizations in
each scenario and aggregated in the portfolio. The profit and losses are then sorted and
reported in a histogram, in which the empirical percentile is recorded as the Value-at-Risk
figure of the portfolio.

In further detail, a historical simulation algorithm is composed of three steps:

1. Data compression: As it is very hard to address non-Gaussian joint distributions, even
with low dimensions, data is typically compressed into very few, possibly one, dimension.
Standard data compression techniques provided by statistics include principal component
or factor analysis. On economic grounds, an alternative would be to compress data into
exposures to a similar risk factor, and to apply the analysis for each risk factor. The
choice that is typically made in real applications is to use the current portfolio as a data
compression criterion. The current portfolio composition is held fixed and revaluated
under different scenarios.

2. Choice of scenarios: Scenarios are taken from past history. A period has to be selected
subject to the typical trade-off that too long a period may include structural breaks, while
too short a period may not be representative of the distribution of returns. Typically, in
standard applications one year of data is selected. But, as we will describe below, most
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of the problems with this method, as well as many of the advances proposed, refer to
this point.

3. Histogram: The profits and losses of the current portfolio are evaluated under each and
every scenario. Profits and losses are then ranked and represented in a histogram. The
risk measure selected is finally computed on the empirical distribution.

The plain algorithm described, however (known as classical historical simulation), is exposed
to some problems.

• The first argument that may be raised is that history never repeats itself, certainly not
exactly in the same way. So, taking raw historical scenarios as they really occurred
includes not only some systematic elements that are typical of the data-generating process
of the risk factor, but also idiosyncratic features that belong to those specific days, and
would not be likely to show up again in the future. As we are interested in simulating future
distributions of profits and losses, trying to filter out idiosyncratic features would increase
the reliability of the simulation. This trade-off actually shows up again and again in many
instances and in the very strategic foundations of risk management. It closely recalls
the concepts of “generalization” capability in artificial intelligence disciplines or that of
“parsimony” in statistics: the idea is that increasing the number of parameters increases
the ability of the model to fit the data in-sample, but beyond a reasonable dimension it
reduces the ability of the model to describe the data out-of-sample (a phenomenon called
overfitting).

• The second argument against classical historical simulation is that it is based on the
assumption that the profit and loss variables are identically and independently distributed
(i.i.d). This assumption ensures that when we draw scenarios from past history, we are
actually drawing them from the same distribution as that of future history scenarios. There
is overwhelming evidence that in financial markets this is not the case. The distribution
of returns changes over time, particularly as far as variance and higher moments are
concerned. More precisely, an empirical regularity that is very often observed in the
market is the phenomenon of “clustering” of volatility and correlation – days of high
(low) volatility tend to cluster in periods. It is not hard to understand that this phenomenon
may have disruptive effects on the classical simulation technique. Consider, for example,
what could happen if you draw scenarios from a period of low volatility when the market
is moving to a high-volatility regime: the risk measure simulated from this data would
prove to be looser than expected. On the contrary, if in the recent past the market has
been through a high-volatility period, the risk measure could be more conservative than
required.

In order to overcome these problems, the simulation technique widely used in the market
relies on filtering the data. The idea was introduced by Barone-Adesi and Giannopoulos
(1996, 1998). We are going to illustrate their procedure here below.

9.4.1 Filtered Historical Simulation

The main idea behind the procedure proposed by Barone-Adesi and Giannopoulos is to use
a GARCH model to filter the data. Scenarios are constructed by drawing random samples
from filtered data and using the estimated GARCH structure to simulate the dynamics of
profits and losses over the unwinding period.
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The innovation refers to Step 2 above – that is, the choice of scenarios. In detail, the step
is described in the following algorithm: We assume that profits and losses on a position are
computed for a set of i = 1	 2	 � � � 	 T past scenarios and that we want to simulate losses
from time T onwards over an unwinding period of n days.

Step 2.a Specify and estimate a GARCH model on the series of portfolio returns.
Step 2.b From the estimate, save the series of residuals �t and the series of fitted volatilities


t. Compute zt =�t/
t, that is, divide the series of residuals by that of volatilities
term by term. The series zt is called filtered residuals.

Step 2.c Randomly draw n filtered residuals from the series zt.
Step 2.d Set i = 1.
Step 2.e Compute �T+i = 
T+izi Notice that for i = 1 we already know 
T+1 = f�
T 	 �T �
Step 2.f Use the GARCH specification to compute 
T+i = f�
T+i−1	 �T+i−1�.
Step 2.g Set i = i + 1 and go back to Step 2.e unless i > n
Step 2.h Compute rT	 T+n == �T+1 + �T+2 + � � � + �T+n .
Step 2.i Go back to Step 2.c until the number of number of scenarios is reached.

Once the generation of scenarios has been run, the algorithm proceeds as in standard historical
simulation. The profits and losses are arranged in a histogram and the risk measures are
computed on the empirical distribution.

9.4.2 A multivariate extension: a GARCH+DCC filter

One of the problems with historical simulation, in both the classical and filtered approaches
is that the multivariate dimension of the risk exposure representation is somewhat lost. This
was actually considered to be the price paid to address the problem of departures from
Gaussianity in a multivariate setting. Nowadays, the diffusion of methods like copulas or
dynamic conditional correlation (DCC) may actually make it possible to have a multivariate
extension of the approach above.

As an example, we describe here a simple modification of the filtered simulation
approach that uses Engle’s DCC approach described in Chapter 3. Assume a number of
j = 1	 2	 � � � 	 k series of portfolio returns. We are still interested in simulating profits and
losses over a n-day unwinding period, based on a set of past scenarios i = 1	 2	 � � � 	 T .

Step 2.a.1 Specify and estimate a GARCH model on each of the series of portfolio returns.
Step 2.a.2 Estimate a DCC model for the standardized residuals
Step 2.b From the estimates, save the series of residuals �jt and the series of fitted

volatilities 
jt and the correlation matrices Rt. Compute �jt = �jt/
jt, that is
divide the series of residuals by that of volatilities term by term, for each return.
The vector series �t has correlation Rt. Determines a sequence of matrices At

such that zt = At�t are independent. Say At is the matrix of orthonormalized
eigenvectors of Rt. The vector zt contains the filtered residuals

Step 2.c Randomly draw a set of n k-dimensional filtered residuals from the series zt.
Step 2.d Set i = 1.
Step 2.e.1 Compute �i = A′

T+izi.
Step 2.e.2 Compute �jT+i = 
jT+i�j	 i for all j = 1	 2	 � � � 	 k for each return.
Step 2.f.1 Use the GARCH specification to compute 
t+i =f�
t+i−1	 �t+i−1� for each return.
Step 2.f.2 Use the DCC specification to compute RT+i = f�RT+i−1	 �T+i−1�, from which

compute AT+i what � is the vector of returns.
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Step 2.g Set i = i + 1 and go back to Step 2.e unless i > n.
Step 2.h Compute rT	 T+n = �T+1 + �T+2 + � � � + �T+n .
Step 2.i Go back to Step 2.c until the number of scenarios is reached.

This simple extension takes care of cleaning the data to i.i.d. even in the presence of a
time-varying conditional correlation. Notice that if one were willing to rely on a constant
conditional correlation (CCC) framework, Steps 2.a.2, 2.e.2 and 2.f.2 could be skipped. As
conditional correlation is assumed constant, it would suffice to standardize the residuals by
dividing them by the corresponding volatility. Samples could then be directly bootstrapped
from these standardized residuals and iteratively used in the simulation: they would in fact
carry their own realized value of correlation, which is assumed to be the same, apart from
sampling errors, across the sample.

To summarize the main hypotheses behind the algorithms presented, and a guideline about
the cases to which one or the other should be applied, we have the following recipe.

1. Constant volatility and correlation: Use classical historical simulation.
2. Time-varying volatility and constant correlation: Use filtered historical simulation, apply-

ing the GARCH filter series by series.
3. Time-varying volatility and correlation: Use filtered historical simulation, with a

GARCH+DCC filter.

9.4.3 Copula filters

The above analysis was just a suggestion and an example, of course. Other models could
be used to filter the data in Case 3, in which conditional and dynamic copula models are
the most straightforward ideas that come to mind. For completeness, we report here a very
broad description of a copula filter as an example.

Assume again a number of j = 1	 2	 � � � 	 k series of portfolio returns. We are still
interested in simulating profits and losses over a n-day unwinding period, based on a set of
past scenarios i = 1	 2	 � � � 	 T .

Step 2.a Transform the series of portfolio returns into probabilities, applying the probability
integral transformations ujt = Fj�xjt�. Such transformations can use conditional
probabilities.

Step 2.b Estimate a conditional copula model Ct�ut1	 ut2	 � � � 	 utk�, which is assumed to
be a function of information available at time t.

Step 2.c Randomly draw a set of n k-dimension vectors ut = ut1	 ut2	 � � � 	 utk.
Step 2.d Iteratively use the vectors to simulate marginals uT+i as a function of the infor-

mation set available, such as uT+i−1 and CT+i−1.
Step 2.e Having computed uT+n, compute xj	 T+n = Fj

−1�uj	 T+n�.

9.5 STRESS TESTING

Nonlinear positions may react to changes in the market in ways that are difficult to predict.
This is mainly due to the interplay of exposure to changes in risk factors, their volatility
and correlation. For this reason it is essential to check the reaction of such positions to
stress situations. In principle, stress testing looks like a straightforward technique: just reflect
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on what may go wrong with your position and create a scenario in which these worries
materialize. Actually, performing such stress tests is easier said than done. First, it is not
easy to neatly say what the worst scenario might be. Second, it is by no means easy to
build meaningful scenarios. Actually, when performing stress tests one has to address three
strategic problems:

• Choice of the information source to build scenarios.
• Make the scenarios globally consistent.
• Search for the worst possible scenarios.

In the following we will describe the main choices available to address these issues.

9.5.1 Sources of information

Scenarios can be built from three different sources:

• Historical information
• Implied information
• In-house information.

According to the first choice, one would just re-run history re-evaluating the positions with
the prices of particular historical periods of severe financial crisis. So, for example, one
could evaluate a position in a CDO tranche by using data from the crisis between the first
two weeks of May 2005.

The choice of historical information is exposed to criticisms that are very similar to those
discussed about historical simulation. If we may add something, it is that since we are
examining extreme cases those arguments appear less clear-cut. Actually, on the one hand it
is true that the worst possible scenario may not yet have taken place. “Diabolic Mrs Nature”
may still have some trick in store for us, so we may try to work it out before it really happens
and save capital for that event. On the other hand, being in the shoes of “Mrs Nature” is
no easy task. Taking again the case of the credit market crisis of May 2005, not only did
it come unexpectedly to all the players in the market, but as of today it is not even clear
how that nasty scenario was created by Mrs Nature herself. By the same token, just imagine
designing a scenario such as that of 19 October 1987 before it happened.

Beyond the fight between Mrs Nature and us, some insight on what could happen in the
future could be backed out from the market as a whole. Implied information is then another
important source for the construction of stress test scenarios. There is actually a third source
of information that is very useful in stress tests: it is “in-house” information. Fundamental
analysts and chartists produce a lot of such information to support investment ideas for
clients and proprietary traders. This flow of information, which is a typical and valuable
by-product of the investment and financial intermediation activities, is often overlooked by
risk managers. It would represent instead precious matter on which to build realistic and
sensible stress test scenarios.

9.5.2 Consistent scenarios

Once the source of information has been selected, the main problem is to build a consistent
scenario for all the other risk factors. In fact, stress tests are typically focused on particular
events which may occur to specific risk factors, e.g. a crisis in a particular credit sector, or
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a crash in the equity market. An important issue is what may happen in these cases to other
risk factors. Evaluating the effect of a shock to a risk factor on the exposure to that risk factor
is, of course, trivial: what instead is more problematic is how that shock would impact on
other exposures, because of the co-movements with other risk factors. Historical scenarios
provide a natural advantage with respect to this, as the dependence structure among the risk
factors is built into the scenario itself. If one would like instead to stress test the portfolios
to some scenario that has never occurred in history, he would have to be careful to model it
by addressing two questions.

• How does the shock propagate from one risk factor to the others?
• How can the dependence structure possibly change in the presence of the shock?

The second question is particularly difficult to address. The main reason is that we do not
have many models of the relationship between risk factors and dependence, particularly
when extreme market movements are involved.

Cholesky decomposition

Let us address the problem of propagating a shock from one risk factor through the whole
system. The first idea that would come to mind, particularly to econometricians, would be
to resort to Cholesky decomposition. We should remember that by Cholesky decomposition
we construct a lower triangular matrix C such that CC′ = R. Remember also that R is the
n-dimensional correlation matrix of the risk factors. Let us denote by q a k-dimensional
vector of shocks, and denote by ej an n-dimensional vector with all elements equal to zero,
except the jth element, which is set equal to 1. Finally, construct P as an n × k matrix in
which column j is the vector ej . This enables us to associate the ith shock in vector q to
a risk factor j. In plain terms, Pq will be a n-dimensional vector with zeros at all places,
except at positions corresponding to the stressed risk factor. A stress testing algorithm based
on Cholesky decomposition would simply be as follows:

1. Arrange the shock to the risk factor in vector q and matrix P.
2. Construct matrix C.
3. Compute the vector of risk factor changes: � = CPq.
4. Re-evaluate the portfolio according to risk factor changes �.

Cholesky decomposition has been largely used in econometrics, precisely in the simulation
of dynamic vector autoregression systems (VAR). The technique is generally known as an
impulse–response function: a shock is given to a variable in the system and the dynamic
effects through the other variables are simulated using Cholesky decomposition. As econo-
metricians know, however, Cholesky decomposition has a severe flaw: it is not unique.
Intuitively, it is easy to check, even in a simple bivariate setting, that the decomposition is
different if one shuffles the order of the variables in the system. A solution to this problem
can be found among the techniques used in asset allocation.

Black and Litterman approach

Black and Litterman (1992) suggested a Bayesian approach to mix “in-house” views, provided
by experts, with expected returns estimated on the market. This idea could be usefully
borrowed in a risk management framework to design scenarios for stress-testing experiments.
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Actually what in asset management is called a “view” is simply a description of an event.
Scenarios are simply a collection of events. Sticking to the notation above, we may collect
them in a k-dimensional vector q. We may also endow these scenarios with a degree of
precision and a dependence structure, represented by a covariance matrix �.

Note that we may design two kinds of events. The first refers to the direction of a risk
factor. Assume, for example, that the change of the ith risk factor, ri under the scenario may
be represented as

ri = ei
′r = q1 + �1 (9.3)

where q1 is the average change of the risk factor in the scenario and �1 is a zero mean
normal variable. The vector r contains all of the changes in the risk factors, and vector ei

has the same meaning as before. The second kind of event refers to the spread between risk
factors. We say that, on average, risk factor i would change by more than factor j by q2

with uncertainty represented by the variable �2:

ri − rj = �ei
′ − ej

′�r = q2 + �2 (9.4)

The views may be arranged in matrix form defining matrix P. In our example above:

P′ ≡
[

e1
′

e3
′ − e2

′

]
=
[

1 0 0
0 −1 1

]
q ≡

[
q1

q2

]
� ≡

[
�1

�2

]
(9.5)

Assume that the unconditional distribution of the vector r is normal with mean � and
variance �. Consider the system of vectors r and q. The unconditional distribution is given by

[
r
q

]
∼ �

([
�

P′�

]
	

[
� �P

P′� P′�P + �

])
(9.6)

Making a stress test scenario consistent amounts to computing the conditional distribution
of r with respect to q

r�q ∼ ��� + �P�P′�P + ��−1�q − P′���� − �P�P′�P + ��−1P′�� (9.7)

Notice that all we have done is a generalized least squares (GLS) regression of the changes
of risk factors vector r on the events vector q. Notice in fact that cov(r	 q� = �P and
var�q� = P′�P + �. So, the unconditional mean of vector r is changed by the distance
between events q and their unconditional means times a set of regression coefficients given
by cov(r, q)/ var(q).

Using the same description as before, we may summarize the algorithm as follows:

1. Arrange the shock to the risk factor in vector q and matrix P.
2. Define a matrix of scenario precision �.
3. Compute the vector of risk factor changes: � = r �q .
4. Re-evaluate the portfolio according to risk factor changes �.

Notice that the result of the algorithm is actually a distribution – namely, the conditional
distribution with respect to the set of events (that is the scenario) that was simulated.
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We may then choose to represent the risk associated to the scenario by any measure of
such distribution. The measure that is usually presented is the average profit/loss under the
scenario. However, one could also resort to other measures used in risk management such
as Value at Risk or Expected Shortfall.

9.5.3 Murphy’s machines

Up to this point, we have just seen how to build and “regularize” scenarios. A final prob-
lem, which is particularly relevant for complex portfolios of nonlinear positions, is that of
searching the worst possible scenario. Let us assume that you start with a set of scenarios.
Once we have decided a risk measure to rank the scenarios, we can of course easily decide
which is the worst possible among those in that set. But we may ask the following question:
“Could be worse?” The answer is not as easy as “could be raining” as in the Frankenstein
Junior movie. It is immediately clear that it would be very difficult to answer this question
by gradient methods. The reason is that this optimization problem may have many local
minima. An idea would be to try to combine the initial scenarios in such a way as to generate
others that are worse and worse. Taken to the extremes, this idea leads to genetic algorithm
(GA) applications.

GA techniques differ from other optimization methods for some peculiar features:

• They use encoding of the parameters to be optimized, generally in binary notation. Every
encoded parameter is called a gene. The set of strings identifying a parameter is called a
chromosome. A chromosome is then a point in the optimization domain (a scenario, in
our application).

• The search process uses the genetic material of the existing set of chromosomes, called
a population, differently from other methods that instead at each iteration use a single
member from the previous iteration. In our application, GAs allow to use all the views
contained in all the scenarios, rather than only those in the worst scenario at the previous
iteration.

• The model does not rely on gradients but only on the value of the function to be optimized
(the fitness function) for the different chromosomes in the population. A new population
is generated by a cross-over of the genetic material in the previous generation, plus a light
random change of some of it (mutation). The cross-over process is organized in such a
way that the fittest individuals have greater opportunities to produce offspring than the
weaker individuals. Mutation allows instead an entirely new material to be added to the
population.

GA represents the ideal tool to be used in an algorithm to search for the worst possible
scenario. A general algorithm, that we may call Murphy’s machine to remind us of Murphy’s
law, may be designed as follows:

1. Select a set of scenarios to start the process.
2. Regularize each scenario using the Black and Litterman procedure described above.
3. Compute a risk measure of the conditional distribution of profits and losses for each and

every scenario in the population.
4. Encode the scenarios in the population in binary notation.
5. Randomly select couples of scenarios from the population. For that purpose, design a

random device so that scenarios associated to a higher risk measure could be selected
proportionally more often than those associated to lower risk.
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6. Generate two new scenarios by the cross-over of two old scenarios. That is, for every
couple of scenarios: (i) randomly generate an integer number, say j, smaller than the
overall number of binary elements in the chromosomes; (ii) merge the first j binary
elements of the first scenario with those to the right of the jth element of the second
scenario; (iii) do the same using the first j elements of the second scenario and the
remaining elements of the first.

7. Perform mutation – that is, randomly change a very small percentage of the binary
elements of the chromosomes.

8. Transform back the binary elements to sets of parameters, that is, a new population of
scenarios.

9. Go back to Step 2, unless the maximum number of iteration has been reached.

9.6 COUNTERPARTY RISK

When a financial intermediary issues a structured product, the risk manager has the choice
between two alternatives:

• Hedge the derivative contract embedded in the product with liquid instruments, such as
futures and the like.

• Offset the instrument bought or sold in the product with other counterparties in OTC
transactions.

It is clear that the first choice calls for the availability of human resources with adequate
education in quantitative finance. Besides this, of course, the strategy runs into objective
problems: as most of the derivative contracts embedded in structured products are particularly
complex, or exotic, it is often difficult to find a hedging strategy that could be satisfactorily
close to the derivative. The second choice overcomes the problem, or rather transfers the
problem to a specialized intermediary. The obvious shortcoming is that the counterparty has
to be paid for that. A less obvious problem, which is all the more relevant nowadays, is
that this strategy leaves the intermediary buying re-insurance exposed to the risk that the
counterparty could go bankrupt before the re-insurance contract expires. If this happens, the
intermediary would incur a loss equal to the value of transferring the re-insurance contract
to another counterparty (cost of substitution). This kind of risk is called counterparty risk.
In this section we will analyse that impact that counterparty risk may have on the risk and
the price of derivative contract. We will also discuss the particular arrangements that the
two parties may set up in order to mitigate this kind of risk. It will not come as a surprise
that, again, the intermediaries will take inspiration from a futures style market organization.

9.6.1 Effects of counterparty risk

Curiously enough, it is more difficult to account for counterparty risk in the presence of
linear products, rather than nonlinear ones. The very reason is that in linear contracts every
counterparty provides insurance to the other, while in non linear contracts one of the two
parties buys protection, while the other sells protection in exchange for a premium. It is clear
that in the latter case it is only the protection buyer that is faced with a counterparty risk
problem: if the protection seller defaults, the protection buyer would not be able to exercise
her option. On the contrary, in linear contracts a party may be hurt by default only if two
events occur:
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• The counterparty defaults before the end of the contract.
• The contract has negative value for the counterparty in default.

To keep things simple, consider a plain forward contract, on an underlying asset S, for
delivery at time T . Party A is assumed to be long in the contract, and party B is assumed to
be short. Assume we consider that default may occur at time �	 t ≤ � ≤ T . If we look at the
contract from the point of view of the long party A, we may break down the value of the
contract at time � into two parts depending on whether the contract has positive value (is in
the money) for party A or has negative value (is out of the money) for her. We then introduce
an indicator function 1B indicating default of counterparty B by time �. Accordingly, we
denote RRB and LGDB the recovery rate and the loss given default of counterparty B. Taking
into account default of counterparty B, the value of the contract for party A would then be

CFA�S	 t 
 T� = EQ�v�t	 �� max�S��� − v��	T�F�0�	 0��1 − 1B��

+EQ�v�t	 �� max�S��� − v��	T�F�0�	 0�1BRRB�

+EQ�v�t	 �� max�F�0� − v��	T�S���	 0��

= CF�S	 t 
 T� − EQ�v�t	 �� max�S��� − v��	T�F�0�	 0�1BLGDB� (9.8)

where CF��� is the value of the forward contract if it were free from counterparty risk. The
equation is easy to explain. If by time � the short counterparty in the contract is found
to be in default, then the long counterparty would have to face the cost of substituting
the contract with another counterparty by paying the marking-to-market value of the con-
tract. At the same time she would join the other creditors to recover the percentage RRB

of it. Down the line, the long party would have lost LGDB times the value of the con-
tract at time �. By the same token the value of the forward contract for the short party
would be

CFB�S	 t 
 T� = EQ�v�t	 �� max�v��	T�F�0� − S���	 0��1 − 1A��

+EQ�v�t	 �� max�v��	T�F�0� − S���	 0�1ARRA�

+EQ�v�t	 �� max�v��	T�F�0� − S���	 0��

= −CF�S	 t 
 T� − EQ�v�t	 �� max�v��	T�F�0� − S���	 0�1ALGDA� (9.9)

where 1A	 RRA and LGDA denote the default indicator function, the recovery rate and the
value of the loss given default figure for counterparty A.

Notice that the effect of counterparty risk is to modify the marking-to-market value of
the contract. As a matter of fact, counterparty risk turns linear contracts into nonlinear ones
by introducing a short position in an option. Namely, it is a short position in a call option
from the point of view of the long end of the contract, and a short position in a put option
for the short end of the contract.

To provide a general representation of counterparty risk for the linear contract, we
could write

EQ�v�t	 �� max���S��� − v��	T�F�0��	 0�1i LGDi� (9.10)

where i = A	 B and � = 1 for the long position and � = −1 for the short one.
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Notice that the payoff of counterparty risk is not actually that of a plain vanilla option. In
fact, exercise of the option is conditioned by default of the counterparty. Several risk factors
could be actually identified in the value of counterparty risk, namely

• interest rate risk
• underlying asset risk
• counterparty default risk
• recovery risk.

All of these risks may be correlated, even though what is most relevant is the dependence
structure between the underlying asset and the counterparty. We will address this issue below.
For the time being we assume that underlying risk and counterparty risk be orthogonal and
that the contract be monitored at a set of dates �t1	 t2	 � � � 	 tn�. Counterparty risk at time t0

is then represented by the sum

n∑
j−1

LGDi�Qi�tj−1� − Qi�tj��EQ�v�t	 tj� max���S�tj� − v�tj	 T�F�0��	 0�� (9.11)

where Qi�tj� is the survival probability of counterparty i = A	 B beyond time tj .
Notice that in the representations above the options representing counterparty risk of the

long and short counterparties have the peculiarity that the strike price is actually known
only at the time of exercise tj . In fact, it is represented by the delivery price of the contract
(that is F (0), the forward price at time 0) times the discount factor from time tj to the
delivery time T . If interest rates are stochastic, the latter variable is not known at time
t. We know, however, that under the forward martingale measure the expected value is
equal to the forward price at time t of an investment starting in tj and delivering a unit of
currency in T :

v�t	 �	T� = v�t	T�

v�t	 ��
= EQ�T��v��	T�� (9.12)

If we use v�t	 �	T� instead of v��	T� in the counterparty risk equation and we compute the
expectation under the forward martingale measure we get

n∑
j=1

LGDi�Qi�tj−1� − Qi�tj��v�t	 tj�EQ�T��max���S�tj� − v�t	 tj	 T�F�tj��	 0�� (9.13)

This kind of approach, assuming independence of the underlying and counterparty risk
and representing default risk as a stream of options, was first introduced by Sorensen
and Bollier (1994) for the case of swaps. Counterparty risk of a swap contract was
represented as a stream of swaptions with strike equal to the swap rate at the origin
of the contract, weighted by the probability of default of the counterparty in a given
period. Here we have simply presented an extension of that idea to a generic linear pay-
off. Below, we will further extend the approach to the case of dependence among the
risks and the adoption of risk-mitigating techniques. Let us just remark here that this
representation is hugely useful since it provides a replicating portfolio for counterparty
risk. As usual, a replicating portfolio immediately allows one to recover both the price
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and the hedging strategy for the corresponding risk factor, which in the case at hand is
counterparty risk.

It is worth noting that counterparty risk has the effect of changing the very nature of
linear contracts, by introducing nonlinearities and making them similar to the so-called
hybrid products – that is, products that, by construction, mix credit risk with other risk
factors. As a result, beyond the direct effect of introducing a new source of risk exposure,
counterparty risk may bring about perverse indirect effects inasmuch as ignoring it may lead
to inaccurate pricing and hedging decisions. More precisely, allowing for counterparty risk
in linear products leads to

• lower prices of the contracts
• nonlinear hedges
• sensitivity to volatility and correlation.

Figure 9.1 shows the first effect for both long and short positions. Notice that, of course,
the value for the long end of the contract is mostly affected by counterparty risk when
the price is much higher than it was at the origin, while it is almost nil if the price is
substantially lower than that. The reverse is obviously true for the short position, for which
the impact of counterparty risk will increase in value following a decrease of the underlying
asset.
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Figure 9.1 Counterparty risk for long and short positions
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As counterparty risk amounts to a position in an option, this would actually induce non-
linearity in the product, and in the hedge. The delta for the long and short positions would be

�A = 1 −
n∑

j=1

�QB�tj−1� − QB�tj��LGDB����

�B = −1 +
n∑

j=1

�QA�tj−1� − QA�tj��LGDA��−�� (9.14)

� = ln�S�t�/�F�0�v�t	T�� + 0�5
2�tj − t�



√

tj − t

where we have used equation (9.13). Figures 9.2 and 9.3 depict nonlinearity for a single
element of the sum. Notice that most of the nonlinearity is found to correspond to at-
the-money values, while the product gets closer and closer to linearity when it gets more
in-the-money or out-of-the-money. In the latter case it goes to zero, while in the former case
it tends to the value of the expected loss of the counterparty.
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Figure 9.2 Counterparty risk and the delta of a long position

Nonlinearity also implies that the value of the product may be affected by changes in
volatility, and this will be more so around the at-the-money value. Figures 9.4 and 9.5 show
the effects of volatility changes on the counterparty risk for the long and short positions of
the contract.
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Figure 9.5 Counterparty risk and sensitivity of a short position to volatility

9.6.2 Dependence problems

We saw that counterparty risk is linked to the joint probability of two events: the pos-
itive value of the contract for one party and default of the other. Obviously the depen-
dence between the two events may have a relevant impact on counterparty risk. More
precisely, we may expect that dependence would have a positive impact on the value of
counterparty risk, and therefore a negative impact on the value of the derivative. One
would allow for more counterparty risk if one were to buy, for example, a put option
on oil from an oil producer, simply because it is more likely that any decrease in the
price of oil that triggered exercise of the option could also bring about default of the
counterparty.

This dependence problem between underlying asset and counterparty risk can be addressed
in two ways:

• change of numeraire
• use of copula functions.

The change in numeraire technique allows the probability measure to change in such a way
as to make the two risks orthogonal. To decompose the risks, recall that the value of a
defaultable zero-coupon bond issued by entity i is

Di�t	 �� = EQ�v�t	 ���1 − 1i LGDi�� (9.15)



254 Structured Finance

The value of the counterparty risk can then be written as

EQ�v�t	 �� max���S��� − v��	T�F�0��	 0�1iLGDi�

= EQ�v�t	 �� max���S��� − v��	T�F�0��	 0��

− EQ�v�t	 ���1 − 1iLGDi� max���S��� − v��	T�F�0��	 0�� (9.16)

and, using the change of numeraire technique, we get

EQ�v�t	 �� max���S��� − v��	T�F�0��	 0�1iLGDi�

= v�t	 ��EQ�T��max���S��� − v��	T�F�0��	 0��

− Di�t	 ��EQ∗�T��max���S��� − v��	T�F�0��	 0�� (9.17)

where Q�T� is the forward martingale measure and Q∗
i �T� is the forward measure such that

Di�t	 T� be a martingale. Notice that EQ�T��x� = EQ∗�T��x� would imply that x has the same
drift under the two numeraires, meaning that the correction for correlation is the same under
both the default-free and defaultable numeraires. This implies that credit risk is orthogonal
to the underlying asset risk, so that we could write

EQ�v�t	 �� max���S��� − v��	T�F�0��	 0�1i LGDi�

= �v�t	 �� − Di�t	 ���EQ�T��max���S��� − v��	T�F�0��	 0�� (9.18)

As for the second kind of approach, a copula function can be directly used to model the
dependence between the two kinds of risk (Cherubini and Luciano, 2003). For the long
position we have

EQ�v�t	 �� max�S��� − v��	T�F�0�	 0�1B LGDB�

= v�t	T�LGDB

�∫
v��	T�F�0�

C̃�Q�S�T� > ��	Q�t ≤ T�� d� (9.19)

and for the short position

EQ�v�t	 �� max�F�0� − v��	T�S���	 0�1A LGDA�

= v�t	T�LGDA

v��	T�F�0�∫
0

C�Q�S�T� ≤ ��	Q�� ≤ T�� d� (9.20)

The dependence structure can then be directly accounted for by estimating it on a time series
of the underlying asset and the default probability of the counterparty.

9.6.3 Risk mitigating agreements

Counterparty risk is one of the major concerns of the derivatives and structured finance
business nowadays. This problem takes on different aspects, and calls for different solutions,
depending on the kind of business relationship involved. On one side, the growing exposure
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between financial intermediaries and final investors raises concerns of risk and awareness of
the final investor: in this case the only solution seems to be that of proper evaluation of the
counterparty and determination of the appropriate premium for credit risk, along the lines
described in the previous sections. On the other side, structured finance has led to a massive
increase in OTC positions among the financial intermediaries for hedging purposes. Default
of one of these intermediaries could actually trigger a worldwide systemic crisis. For this
reason, financial institutions have reshaped the rules of their bilateral relationships in such a
way as to mitigate the effect of counterparty default. Again, as with the VaR concept above,
the main idea has been to try to internalize the rules of a futures style market in the bilateral
relationship.

This process led to a set of “risk mitigating rules” codified in the ISDA protocol agreement.
Just as in a futures style market, the main principles are:

• Periodic, daily or weekly, marking-to-market of the positions.
• Computation of the net exposure with respect to the counterparty.
• Posting of a collateral deposit for an amount corresponding to the loss.

In plain words, the main principle is that putting money on the table could actually reduce
the loss in case of default of one of the two parties in the game. We are now going to see
that these mitigating techniques may also be represented in terms of replicating portfolio.

Collateral

Let us now go back to our linear contract CF��� and include a clause of collateral deposit at
time � when the contract is monitored.

LGDB�1−QB����Call�S	 t� v��	T�F�0�	 ��

+ LGDB�QB��� − QB�T��Call�S	 t� S���	T�Pr�S��� > v��	T�F�0��

+ LGDB�QB��� − QB�T��Call�S	 t� v��	T�F�0�	T�Pr�S��� ≤ v��	T�F�0��

(9.21)

So, counterparty risk consists of three parts

• Default before the collateral is deposited, in which case counterparty risk is measured by
a call option with strike equal to the forward price at the origin of the contract.

• Default after time � if the collateral has been deposited, in which case counterparty risk
is measured by a call option with strike equal to the value of the underlying asset at the
monitoring date (a forward start option).

• Default after time � if the collateral has not been deposited, in which case counterparty
risk is measured by a call option with strike equal to the value of the forward price at the
origin of the contract.

The model can be easily extended to cases in which the contract is monitored, and the
collateral deposited, at a set of dates �t1	 t2	 � � � 	 tn�. Notice that the effect is similar
to that of resetting the strike price in a futures contract. Conditional on the event that the
market has moved in favour of the long end of the contract at the monitoring date, the
value of counterparty risk in the next period is a forward start option, that is an option with
strike reset at the monitoring date. If, instead, the market moves against the long end of the
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contract, the value of counterparty risk remains a stream of call options with strike equal to
the forward price at the origin of the contract. If one looks at the contract from the point
of view of the short end, the analysis is simply reversed and the counterparty risk is a put
option that is activated only in the case in which the underlying asset has dropped below
the discounted value of the forward price at the origin of the contract.

In Figure 9.6 we show the effect of collateral agreement on counterparty risk. The
derivative product is assumed to be a forward contract for delivery in one year, and the
position is assumed to be monitored on a weekly basis. The two lines represent counterparty
risk for every week – that is, the stream of options with exercise date in each week. Overall
counterparty risk of the position is then the integral below the two lines.

As we observed, the idea of posting collateral is somewhat mutuated from the organization
of trading on futures style markets. Actually, this analogy is not perfect. First, in futures
markets the margin is posted at the beginning of the transaction. Second, in futures markets
the initial margin is deposited by both the long and the short party of the contract. How-
ever, the underlying basic intuition is roughly the same: ask the party who is losing money
in the contract to pay for the loss before going ahead with the transaction. Furthermore,
in analogy with the futures markets organization, this principle naturally rests on another:
mark-to-market and monitor the value of the contract at short intervals of time. Figure 9.7
shows the reduction in counterparty risk that can obtained by marking-to-market the position
over shorter and shorter intervals of time, and the reduction due to collateral agreements.
As before, the position is on a forward contract for delivery in one year. Notice that the
reduction of counterparty risk becomes substantial for the weekly and daily frequencies.
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Figure 9.6 The effect of collateral on counterparty risk: weekly monitoring



Risk Management 257

0

0.000001

Daily Weekly Quarterly Semestral Yearly

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007
Collateral
No-Collateral

Figure 9.7 The effects of marking-to-market and collateral on counterparty risk

Furthermore, it is at these frequencies that the impact of the collateral agreement is highest,
reducing counterparty risk by almost half.

Netting

Until this point we have considered the risk of a single transaction. For multiple positions,
netting is an important provision that is added to collateral posting. The idea is that the value
of all the contracts between two counterparties is marked-to-market over short time intervals
(day or week). The value of all the contracts is consolidated and collateral is deposited only
for the net value (if negative) of the overall position, rather than contract by contract. By
the same token, in the case of default of one party, the counterparty would remain exposed
only for the net value of all the positions that are open at the time of default. Application
of netting agreement is often limited to derivative contract relationships between financial
intermediaries, and for the set of countries whose bankruptcy regulations acknowledge the
principle.

Netting applies to all the contracts between the parties, no matter whether linear or not
and no matter what the underlying asset may be. From the point of view of evaluation, then,
simulation is the only technique available. To illustrate the point in a simplified setting,
however, assume that a financial intermediary has a portfolio of p forward contracts, written
on a set of underlying assets with the same counterparty:

CFi�Si	 t	 ti� = �i�Si�t� − v�t	 ti�Fi� (9.22)
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The netting agreement states that if there is default of the counterparty at time � the loss is

Loss = max
p∑

i=1

��i�Si��� − v��	 ti�Fi�� (9.23)

instead of

Loss =
p∑

i=1

max��i�Si��� − v��	 ti�Fi�� (9.24)

Writing the counterparty loss in terms of a replicating portfolio leads to a basket option

Loss = max

[
p∑

i=1

�iSi��� − A���	 0

]
(9.25)

where

A��� ≡∑
i=1

�iv��	 ti�Fi (9.26)

To conclude, we describe a streamlined algorithm for the evaluation of counterparty risk in
the presence of netting.

• Define a set of monitoring dates �t1	 t2	 � � � 	 tn�.
• Run a Monte Carlo analysis to price a basket option for each and every date.
• In case of a collateral agreement, the Monte Carlo analysis should take care of collateral

accrual.

9.6.4 Execution risk and FpML

There is a final feature that OTC markets would like to import from futures style markets.
It is the velocity and safety of execution. This is in turn based on the two main features of
futures markets: liquidity and product standardization. Liquidity is probably out of reach,
since, as we stated above, it seems to be at odds with the very reason for the existence
of OTC markets: increasing liquidity would only come at a cost of higher basis risk.
The only response to the liquidity issue is then to ensure reasonable and robust pricing
techniques. Much more can instead be done to improve the standardization of products,
at least as far as the basic constituents – interest rate, equity and credit derivatives – are
concerned. Further development of FpML standards across products and further diffusion
of them across intermediaries would be the main driver of this standardization process. Use
of the standard would ease the data transmission between counterparties and the automated
execution of deals. That would in turn ensure the extension of the delivery-versus-payment
(DVP) principle to these products, achieving a reduction of execution risk similar to that
usually found in standard financial product trading.

Execution risk and the use of paper to finalize transaction is actually one of the main
concerns of both public and private bodies in charge of designing sound risk management
practices. For this reason, the best conclusion to this paragraph, this chapter and this book
seems to lie in the following statement by Mario Draghi, Chairman of the Financial Stability
Forum:
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“The FSF welcomes progress by financial firms in improving the trading and settle-
ment infrastructure for over-the-counter credit derivatives, particularly in reducing
backlogs of outstanding confirmations, and in further strengthening counterparty risk
management relating to complex products. The good cooperation between the private
and public sectors provides a model for future work in other areas. The FSF noted
that further work was needed to improve the infrastructure of these rapidly growing
market segments, particularly in such areas as the automation of trade processing
settlement, and they encouraged the extension of these efforts to equity derivatives and
other types of OTC derivatives. The FSF also underscored the importance of reliable
valuation practices for illiquid products.”
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Appendix A

Eclipse

A.1 WHAT IS ECLIPSE?

Eclipse is an open, universal tool platform or tool base developed in recent years by IBM.
Open means that Eclipse is an open-source project. Universal means that Eclipse uses an
innovative plug-in architecture allowing near-infinite extensions to the base IDE. These
plug-ins can do anything from syntax highlighting to interfacing with a source code control
system. While the Eclipse project started with just a Java IDE, IBM and RedHat jointly
released a C/C++ IDE earlier this year. (Other vendors have also built on the Eclipse
platform.)

Unlike other open-source projects that do not allow proprietary derivative works, Eclipse
can be extended with proprietary plug-ins, repackaged and sold commercially. In fact, there
is a commercial IBM version of Eclipse called WebSphere Studio Workbench. The Eclipse
platform itself consists of several major components: the platform runtime, the workspace, the
workbench, the standard widget toolkit (SWT), the version and configuration management
(VCM) and the help system. The platform runtime manages resources and plug-ins as well
as provides bootstrapping code. At start-up, the platform runtime looks for plug-in manifest
files – XML files that describe the plug-in – and loads this information into a registry. The
platform runtime executes (activates) the plug-ins when they are first requested. The platform
runtime itself is the only major component of Eclipse that is not a plug-in. The workspace
is a platform-agnostic view of the file system. It provides resource management including
low-level change tracking and virtual symbolic links (markers). As these capabilities are
made available to the other plug-ins, they do not have to deal directly with varying platforms’
file systems.

The user interface for Eclipse is known as the workbench. The workbench is made up
of one or more main windows that display a collection of pages. Only one page can be
active at a time. Pages can be thought of as a composite of workbench parts. A workbench
part can either be a view or an editor. Further, these parts can be any combination of tiled
or tabbed layouts. Finally, the workbench offers the concept of templates (perspectives). A
template defines a page’s parts and layout. Generally speaking, a perspective is tied to one
or more workspace resources. Finally, the help component provides an easy way for plug-ins
to supply HTML documentation that cannot be presented contextually from the workbench
(see Figure A.1.1).
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Figure A.1 Eclipse workbench

In addition to the above major components, Eclipse comes with some really useful plug-
ins: the debugger, the content assist, ANT, compare, and a library of refactorings.

Eclipse’s debugger is quite full-featured for an open-source project. It provides all the
functionality you would expect from a commercial IDE, including the ability to set break-
points, set values, inspect values, suspend and resume threads, and so on. Additionally, you
can debug applications that are on a remote machine.

ANT is an open-source build tool that is part of Apache’s Jakarta project. Eclipse provides
a graphical front-end to ANT, which allows you to execute any option defined in your ANT
build file.

Eclipse also provides two great features, “compare with” and “replace with”, that allow
you to compare differences between local and remote copies of your source code. This
comparison feature goes beyond the standard diff by providing a more contextually aware
presentation of the variances.

Finally, Eclipse comes with a library of refactorings. From extract method, to pull-up
method, to self-encapsulate field, these refactorings can save you the headache of excessive
copying and pasting.

A.2 UML PLUG-INS FOR ECLIPSE

In the great ensemble of Eclipse plug-ins there are a lot of resources for UML design. Among
these there are also some free resources like the Poseidon Project and Omondo plug-in. You
can download a trial version for free of both at the following sites
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Poseidon: http://www.gentlesoftware.com/
Omondo: http://www.omondo.com/

FURTHER READING

http://www.eclipse.org/ is the home page of the Eclipse Consortium and contains detailed
information about the code and the project, plus downloads, articles, and links to newsgroups
and mailing lists. A synthetic and very useful manual is Steve Holzner’s Eclipse, published
by O’Reilly (2004).
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XML

B.1 INTRODUCTION

The “Extensible Mark-up Language” (XML) is a World Wide Web Consortium�W3C-
recommended general-purpose mark-up language for creating special-purpose mark-up lan-
guages, capable of describing many different kinds of data. In other words: XML is a way of
describing data and an XML file can also contain the data, as in a database. It is a simplified
subset of Standard Generalized Mark-up Language (SGML). Its primary purpose is to facilitate
the sharing of data across different systems, particularly systems connected via the Internet.

XML provides a text-based means of describing and applying a tree-based structure to infor-
mation. At its base level, all information manifests as text, interspersed with mark-up that indi-
cates the information’s separation intoahierarchyof“characterdata”, container-like“elements”
and “attributes” of those elements.

In this chapter we will give a brief, general introduction to XML. In the last paragraph we will
present FpML, which is a set of financial specification developed by ISDA in order to facilitate
OTC transactions. This is a rather technical chapter that the reader interested only in financial
aspects can skip to a first reading.

B.2 WHAT IS A MARK-UP LANGUAGE?

Mark-up is a term for metadata, that is, information about information. It originated long before
computers, in the field of publishing, where publishing mark-up referred to the tags inserted
into an edited text to tell a processor (human or machine) what to do with the information. In this
sense HTML is a classic mark-up language. The following is a simple fragment of an HTML
page. Try to copy this in a text file, save it with HTML extension and open it with a browser.
What you should get is reported in Figure B.1.

<html>
<head>
<title>This is an HTML very simple test</title>
</head>
<body>
My first HTML sentence is: <b>Hello World!</b>
</body>
</html>
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In the phrase"MyfirstHTMLsentenceis:<b>HelloWorld!</b>", for exam-
ple, the HTML <b> tags tell the browser how to display the information between them. Note
that each HTML element starts with a start tag <b>and ends with an end tag </b>. This is
also an HTML element:

<body>
This is my first homepage. <b>This text is bold</b>
</body>

This HTML element starts with the start tag <body>, and ends with the end tag </body>.
The purpose of the <body> tag is to define the HTML element that contains the body of
the HTML document. Finally the element <title>This is an HTML very simple
test</title> write the string “This is an HTML very simple test” as the title of
the window.

Figure B.1 A simple example of HTML

B.3 WHAT IS XML?

XML is not a mark-up language like HTML. Unlike HTML, XML tags identify the data, rather
than specifying how to display it. Where an HTML tag says something like “display this data in
bold font” (<b> � � � </b>), an XML tag acts like a field name in your program. It puts a label
on a piece of data that identifies it (for example: <message>� � � </message>). XML was
created to structure, store and to send information. The primary uses of XML are:

• Exchanging information between heterogeneous applications, enterprises, databases, etc.
• Enabling styling and presentation of the same information on multiple output devices

and/or for different purposes and audiences
• As a storage format for long-lived or structurally rigorous document-centric information,

such as aircraft manuals or enterprise information models.
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Let us explain just a bit more on these points. With XML, data can be exchanged between
incompatible systems. In the real world, computer systems and databases contain data in incom-
patible formats.Oneof themost time-consumingchallenges fordevelopershasbeen toexchange
data between such systems over the Internet. Converting the data to XML can greatly reduce
this complexity and create data that can be read by many different types of applications. With
XML, plain text files can be used to share data. Since XML data is stored in plain text for-
mat, XML provides a software- and hardware-independent way of sharing data. This makes
it much easier to create data that different applications can work with. It also makes it eas-
ier to expand or upgrade a system to new operating systems, servers, applications and new
browsers.

B.4 XML SYNTAX IN A NUTSHELL

B.4.1 Mark-up building blocks

The syntax rules of XML are simple and very strict. The rules are easy to learn, and very easy
to use. Let’s take a look at a simple instance, in this case a fragment of data from a financial
database:

<?xml version="1.0" encoding="UTF-8" ?>
<ASSET Type = "Equity Index">
<DESCRIPTION>"MILAN STOCK EXCHANGE INDEX"</DESCRIPTION>
<ISIN>"IT000MIB30"</ISIN>
<LEVEL>"33.456,78"</LEVEL>
<VOLATILITY>"22.3"</VOLATILITY>

</ASSET>

An XML file always starts with a prologue. The minimal prologue contains a declaration that
identifies the document as an XML document, like this:

<?xml version="1.0"?>

The declaration may also contain additional information, like this:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

The XML declaration is essentially the same as the HTML header, <html>, except that it uses
<? � � � ? > and it may contain the following attributes:

• version: Identifies the version of the XML mark-up language used in the data. This attribute
is not optional.

• encoding: Identifies the character set used to encode the data. “ISO-8859-1” is “Latin-1” the
Western European and English language character set. (The default is compressed Unicode:
UTF-8.)

• standalone: Tells whether or not this document references an external entity or an external
data type specification (see below). If there are no external references, then “yes” is appro-
priate.
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In the example above the document conforms to the 1.0 specification of XML and uses the
ISO-8859-1 (Latin-1/West European) character set.

The prologue can also contain definitions of entities (items that are inserted when you ref-
erence them from within the document) and specifications that tell which tags are valid in the
document, both declared in a Document Type Definition (DTD, more on this subject below)
that can be defined directly within the prologue, as well as with pointers to external specification
files.

This fragment illustrates several of the key building blocks of XML:

• The document consists of elements (the <tags> in brackets), which are roughly analogous
to fields in a relational database. An element begins with the opening bracket of its start tag,
ends with the closing bracket of its end tag, and includes everything in between. For instance,
<DESCRIPTION> and <ISIN> are elements.

• An element can have content, which is the text between the opening and closing tags. For
example, "MILAN STOCK EXCHANGE INDEX" and "33.456,78" are both element
contents.

• Some elements contain attributes, which are additional information stored inside the open-
ing tag of the element in the form of name= value pairs.Type in this example is an attribute,
and its contents ("Equity Index") is referred to as attribute value.

• Elements can contain other elements. This is referred to as nesting or containership. Con-
tainership can be used to represent serialized collections of objects or rows of data, or for
any other appropriate information. In this example the element ASSET contains the other
elements (DESCRIPTION, ISIN, LEVEL and VOLATILITY).

– All XML elements must have a closing tag: The closing tag contains a “/” (e.g.<ASSET>
and </ASSET>). You might have noticed from the previous example that the XML
declaration did not have a closing tag. This is not an error. The declaration is not a part of
the XML document itself. It is not an XML element, and it should not have a closing tag.

– XML tags are case sensitive: With XML, the tag <Letter> is different from the tag
<letter>. Opening and closing tags must therefore be written with the same case.

– All XML elements must be properly nested: Improper nesting of tags makes no sense
to XML, in particular all XML documents must contain a single tag pair to define a root
element and all other elements must be within this root element. All elements can have
sub-elements (child elements). Sub-elements must be correctly nested within their parent
element:

<root>
<child>
<subchild>.....</subchild>

</child>
</root>

B.4.2 Well-formed and valid

XML allows you to work formally or informally. For small projects or when prototyping, you
can quickly develop well-formed documents. On larger projects or projects involving multiple
systems, you will usually go further and create valid documents.
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• Well-formed XML conforms to a set of built-in structural rules, including:

– one unique “root” element
– every non-empty element has matching start and end tags
– all elements neatly nested, with no overlaps
– various character and name restrictions.

• Valid XML is well-formed and:

– references or includes a schema or DTD (Document Type Definition)
– conforms to the rules in that schema.

B.4.3 Schemas Provide Validity

The word “schema” refers to the rules applying to a set of similarly structured documents. In
the case of XML, these rules include:

• What elements and attributes may occur?
• In what sequences and nesting?
• What kind of data can they contain (e.g., data types, ranges, character masks, etc.)?

XML provides two schema languages: DTD and XML-Schema.

• DTD(orDocumentTypeDefinition) is theschemamechanisminventedoriginally forSGML
and inherited by XML. DTDs are relatively document-centric, so they do not include a lot
of useful features such as data typing, ranges and picture masks. Also, they are written in a
syntax all their own, and there are relatively few tools that can process them.

• XML-Schema is a new schema standard that has been designed specifically for XML. It uses
XML syntax, it addresses most of the shortcomings of the DTD format, and the major tools
vendors are already shipping technology to support it. As a result, people just arriving in the
XML world are advised to ignore the DTD syntax if possible and adopt the XML-Schema
standard for their work.

B.5 DTD

A Document Type Definition defines the legal building blocks of an XML document. It defines
the document structure with a list of legal elements. A DTD can be declared inline in your XML
document, or as an external reference. If the DTD is included in your XML source file, it should
be wrapped in a DOCTYPE definition with the following syntax:

<!DOCTYPE root-element [element-declarations]>

Example XML document with a DTD:

<?xml version="1.0"?>
<!DOCTYPE asset [
<!ELEMENT asset (description, isin, level, volatility)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT isin (#PCDATA)>
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<!ELEMENT level (#PCDATA)>
<!ELEMENT volatility (#PCDATA)>

]>
<asset>
<description>"MILAN STOCK EXCHANGE INDEX"</description>
<isin>"IT00000"</isin>
<level>"32000"</level>
<volatility>"15%"</volatility>

</asset>

This DTD is interpreted as:

• !DOCTYPE asset (in line 2) defines that this is a document of the type asset.
• !ELEMENT asset (in line 3) defines the asset element as having four elements:

"description,isin,level,volatility".
• !ELEMENTdescription (in line 4) defines the to element to be of the type"#PCDATA".
• !ELEMENT isin (in line 5) defines the from element to be of the type "#PCDATA"
• and so on.

If the DTD is external to your XML source file, it should be wrapped in a DOCTYPE definition
with the following syntax:

<!DOCTYPE root-element SYSTEM "filename">

This is the same XML document as above, but with an external DTD:

<?xml version="1.0"?>
<!DOCTYPE asset SYSTEM "example_ch03_02.dtd">
<asset>
<description>"MILAN STOCK EXCHANGE INDEX"</description>
<isin>"IT00000"</isin>
d<level>"32000"</level>
<volatility>"15%"</volatility>

</asset>

And this is a copy of the file "example_ch03_02.dtd" containing the DTD:

<!ELEMENT asset (description, isin, level, volatility)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT isin (#PCDATA)>
<!ELEMENT level (#PCDATA)>
<!ELEMENT volatility (#PCDATA)>

With DTD, each of your XML files can carry a description of its own format with it and, more
importantly, independent groups of people can agree to use a common DTD for interchanging
data. Moreover, your application can use a standard DTD to verify that the data you receive
from the outside world is valid and you can also use a DTD to verify your own data.
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B.6 NAMESPACE

Since element names in XML are not predefined, a name conflict will occur when two different
documents use the same element names. This XML document carries information about a single
point of an interest rate curve, and each point has two inner elements: TERM and LEVEL.

<CPOINT>
<TERM>"01/01/2005"</TERM>
<LEVEL>2.1</LEVEL>

</CPOINT>

This XML document carries information about an asset in which we have again an element
called LEVEL:

<ASSET>
<DESCRIPTION>"MILAN STOCK EXCHANGE INDEX"</DESCRIPTION>
<ISIN>IT000MIB30</ISIN>
<LEVEL>33.456,78</LEVEL>
<VOLATILITY>22.3</VOLATILITY>

</ASSET>

If these two XML documents were added together, there would be an element name conflict
because both documents contain a<LEVEL> element with different content and definition. To
solve the problem, first of all, let us introduce a prefix in this way:

<xc:CPOINT>
<xc:TERM>"01/01/2005"</xc:TERM>
<xc:LEVEL>2.1</xc:LEVEL>

</xc:CPOINT>

and

<xa:ASSET>
<xa:DESCRIPTION>"MILAN STOCK EXCHANGE INDEX"
</xa:DESCRIPTION>

<xa:ISIN>IT000MIB30</xa:ISIN>
<xa:LEVEL>33.456,78</xa:LEVEL>
<xa:VOLATILITY>22.3</xa:VOLATILITY>

</xa:ASSET>

Now there will be no name conflict because the two documents use a different name for their
<LEVEL> element (<xc:LEVEL> and <xa:LEVEL>). By using a prefix, we have created
twodifferent typesof<LEVEL>elements. Insteadofusingonlyprefixes,wecanaddanxmlns
attribute to the <LEVEL> tag to give the prefix a qualified name associated with a namespace.

<xc:CPOINT xmlns:xc="http://www.w3.org/2001/XMLSchema">
<xc:TERM>"01/01/2005"</xc:TERM>
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<xc:LEVEL>2.1</xc:LEVEL>
</xc:CPOINT>

and

<xa:ASSET xmlns:xa="http://www.polyhedron.it">
<xa:DESCRIPTION>"MILAN STOCK EXCHANGE INDEX"
</xa:DESCRIPTION>
<xa:ISIN>IT000MIB30</xa:ISIN>
<xa:LEVEL>33.456,78</xa:LEVEL>
<xa:VOLATILITY>22.3</xa:VOLATILITY>

</xa:ASSET>

The XML namespace attribute is placed in the start tag of an element and has the following
syntax:

xmlns:namespace-prefix="namespaceURI"

When a namespace is defined in the start tag of an element, all child elements with the
same prefix are associated with the same namespace. Note that the address used to iden-
tify the namespace is not used by the parser to look up information. The only purpose is
to give the namespace a unique name. However, very often companies use the namespace
as a pointer to a real Web page containing information about the namespace (see, e.g.,
http://www.w3.org/TR/html4/). A Uniform Resource Identifier (URI) is a string
of characters which identifies an Internet Resource. The most common URI is the Uniform
Resource Locator (URL) which identifies an Internet domain address. Another, not so com-
mon type of URI, is the Universal Resource Name (URN). In our examples we will only
use URLs.

B.7 XML SCHEMA

The XML schema serves the same purpose as DTD, namely to define the allowed structure and
value types for specific XML documents, but offers more functionality than DTD.

• XML schemas are the future for XML. DTDs are a dead-end technology, in terms of both
vendor support and ongoing work in the W3C. While DTDs support will never completely
vanish, the majority of technological advances and all new W3C specifications will be done
in alignment with XML schemas, not DTDs.

• XML schemas have better support for defining reusable structures in an object-oriented
fashion. These features had to be coerced into the DTD-based specifications, as there is no
direct support for such notions in DTDs.

• XML schemas provide direct support for extensions: again, DTDs lack such support.
• XML schemas have facilities that make adding attachments and other addenda to a instance

document more straightforward than possible with DTDs.
• XML schemas are fundamentally better designed to allow for independent, decoupled devel-

opment groups to work on different parts of a specification, with minimal cross-group inter-
action required, and without necessitating a new revision of the entire specification if only
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one of the parts changes. DTD support in this area is minimal, and requires a new overall
release if only one “part” changes.

• XML schemas are expressed in XML, unlike DTDs which are written in their own language.
This simplifies training for developers who will work with the standards generated.

• Going forward, XML schemas will enjoy better tools support from vendors and the Open
Source community than will DTDs.

One of the greatest strengths of XML schemas is the support for data types.
With the support for data types it is easier to describe permissible document content and to

validate the correctness of data. For example, when a calendar data is sent from a sender to
a receiver it is essential that both parts have the same “expectations” about the content. With
XML Schemas, the sender can describe the data in a way that the receiver will understand. A
date like this: “03-11-2004” will, in some countries, be interpreted as 3 November and in other
countries as 11 March, but an XML element with a data type like this:

<date type="date">2004-03-11</date>

ensures a mutual understanding of the content because the XML data type date requires the
format YYYY-MM-DD.

There are also deeper technical advantages, such as namespace support, that we do not discuss
considering the introductory nature of this chapter.

B.7.1 A simple XML schema

This is a simple XML schema file called "example_ch03_02.xsd" that defines the ele-
ments of the XML document above:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.polyhedron.it"
xmlns="http://www.polyhedron.it"
elementFormDefault="qualified">

<xs:element name="asset">
<xs:complexType>
<xs:sequence>
<xs:element name="description" type="xs:string"/>
<xs:element name="isin" type="xs:string"/>
<xs:element name="level" type="xs:decimal"/>
<xs:element name="volatility" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

Theassetelement is said tobeofacomplex typebecause it containsotherelements.Theotherele-
ments (description,isin,level,volatility) are said to be simple types because
they do not contain other elements. The syntax for defining a simple element is:
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<xs:element name="xxx" type="yyy"/>

where xxx is the name of the element and yyy is the data type of the element. XML schema
has a lot of built-in data types. Here is a list of the most common types:

xs:string
xs:decimal
xs:integer
xs:boolean
xs:date
xs:time

The <schema> element is the root element of every XML schema:

<?xml version="1.0"?>
<xs:schema>
...

...

</xs:schema>

The <schema> element may contain some attributes. A schema declaration often looks some-
thing like this:

<?xml version="1.0"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.polyhedron.it"
xmlns="http://www.polyhedron.it"
elementFormDefault="qualified">
...
...
</xs:schema>

The following fragment

xmlns:xs="http://www.w3.org/2001/XMLSchema"

indicates that the elements and data types used in the schema (schema,
element, complexType, sequence, string, boolean, etc.) come from the
"http://www.w3.org/2001/XMLSchema" namespace. It also specifies that the ele-
ments and data types that come from the "http://www.w3.org/2001/XMLSchema"
namespace should be prefixed with “xs:”. The fragment

targetNamespace="http://www.polyhedron.it"
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indicates that the elements defined by this schema (description, isin, level,
volatility.) come from the "http://www.polyhedron.it" namespace. The frag-
ment

xmlns="http://www.polyhedron.it"

indicates that the default namespace is "http://www.polyhedron.it" and, finally, the
fragment

elementFormDefault="qualified"

indicates that any elements used by the XML instance document that were declared in this
schema must be namespace qualified.

This XML document has a reference to the above XML schema:

<?xml version="1.0"?>

<asset
xmlns="http://www.polyhedron.it"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.polyhedron.
it example_ch03_02.xsd">

<description>"MILAN STOCK EXCHANGE INDEX"</description>
<isin>"IT0000"</isin>
<level>32456.23</level>
<volatility>.1567</volatility>

</asset>

The following fragment

xmlns="http://www.polyhedron.it"

specifies the default namespace declaration. This declaration tells the schema-validator
that all the elements used in this XML document are declared in the "http://
www.polyhedron.it" namespace. Once you have the XML schema Instance namespace
available:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

you can use the schemaLocation attribute. This attribute has two values. The first value
is the namespace to use. The second value is the location of the XML schema to use for that
namespace:

xsi:schemaLocation="http:// www.polyhedron.it
example_ch03_02.xsd"
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B.8 XML IN FINANCE

There are a number of areas in which the finance community is looking at XML to improve
business. Within companies XML is used to integrate legacy systems, some of which imple-
ment complex financial models developed over many years and remain mission critical. This
integration XML is sometimes internally developed and sometimes build using a selection of
third-party mark-up language. In this case the use of XML for integration is not fundamentally
different to what is done outside the financial world.

Perhaps the most compelling financial use of XML it is in financial transaction. In the context
of structured finance XML is particularly appropriate to deal with the complexity of financial
instruments. even with standard contracts, a lot of time is still required to confirm that both
parties are actually agreeing to the same deal, to say nothing of OTC derivatives. This, in turn,
greatly impacts on the overall cost of transaction. The main applications of XML to finance are,
among others: FpML, XBRL and MDDL.

B.8.1 FpML

Financial products Mark-up Language (FpML) is a set of financial specifications which is ini-
tially focusing on transactions of over-the-counter financial instruments. FpML messages each
have a known and predefined set of defaults which are be overridden explicitly by either party
as required. This makes the process of not specifying something explicitly a well-defined one,
and allows the confirmation to be done in a fast semi-automatic fashion where only mismatched
information is brought to the attention of humans. We include a discussion of FpML in this
appendix because of its relevance to financial engineering in general and because it is a good
example of a structured approach to the management of information.

B.8.2 XBRL

The eXtensible Business Reporting Language (XBRL) is a financial specification which is
initially focusingoncompanyfilingsandreports.Onaninternational level, themajorcomplexity
with company reports at present is that each country has its own accounting standard. In the
United States of America (USA), the generally accepted accounting principles (GAAP) is used,
while in the united kingdom (UK) it is the UK GAAP, Australia has an Australian GAAP, etc.
Each accounting standard requires a different XBRL “taxonomy”.

B.8.3 MDDL

Market Data Definition Language (MDDL) is a financial information specification produced
by the Financial Information Services Division (FISD), part of the Software and Information
Industry Association (SIIA). MDDL 1.0 was released at the start of November 2001, and sup-
ports the publication of snapshots and historical time-series of equity prices, financial indexes,
and mutual fund data. Many of the world’s major financial companies have contributed to the
development of the MDDL 1.0 vocabulary, which guarantees that MDDL contains the items
that are really used every day. A goal of MDDL is to stimulate the development of new and
innovative applications of financial information by providing a common and flexible language
that can be used to pass information between applications.
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B.9 WHAT IS FpML

FpML (Financial products Mark-up Language) is a protocol for complex financial products
based on XML (eXtensible Mark-up Language). FpML has been designed to be modular, easy-
to-use and in particular intelligible to practitioners in the financial industry. The FpML standard
was first published by J.P. Morgan and PricewaterhouseCoopers on 9 June 1999 in a paper
titled “Introducing FpML: A new standard for E-commerce”. As a result, the FpML standards
committee was founded. The development of the standard, controlled by ISDA (the Interna-
tional Swap and Derivatives Association) will ultimately allow the electronic integration of
a large range of services, from electronic trading and confirmation to risk management. It is
expected to become the standard for the derivatives industry in the rapidly growing field of
electronic commerce. The standard, which will be freely licensed, is intended to automate the
flow of information across the entire derivatives partner and client network, independent of
the underlying software or hardware infrastructure supporting the activities related to these
transactions.

The description in this chapter is based on documentation for the 4.0 version which is freely
downloadable from internet (www.fpml.org). FpML 4.0 covers FX, interest rates, equity and
credit derivatives though the goal is, over time, to incorporate all types of OTC products. The
FpML community is currently working on version 4.2, which already includes additional prod-
uct support for inflation swaps, asset swaps, credit default swap baskets, and tranches on credit
default swap indexes. New processes included are allocations, position reporting, cash flow
matching, as well as a formal definition of party roles.

FpML adopts a structured approach by grouping related elements into so-called components.
Each component may contain other components and may be contained into other components.
Components serve as the building blocks for a flexible and extensible model. The main idea of
structured finance which we are describing in this book is that, generally speaking, the com-
plexity of financial products is a result of combining a few simple ideas in a variety of different
ways. The component structure supports type definitions that are flexible enough to represent
the wide variation of features found in traded financial instruments. There is a symmetrical
view of the trade, such that the trade is counterparty neutral and will look identical to either the
buyer or the seller of the trade. FpML separates the elements describing a feature of a financial
product or trade into separate components, where each component serves a particular semantic
purpose. Components are expressed using an XML schema. The definition are organized into
small building blocks in order to improve maintainability. FpML makes use of a number of
primitive entity components that describe the basic building blocks for financial products:

• FpML_Money
• FpML_AdjustableDate
• FpML_BusinessCenters
• FpML_Interval
• FpML_BusinessDayAdjustment
• etc.

These primitive components are reused in different business contexts.
In the next section we will give a short overview of FpML structure based on the original doc-

umentation that is freely available on www.fpml.org, to which the interested reader is referred
for any further information.
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B.9.1 An overview of FpML structure

Starting from version 4.0, FpML type definitions are expressed using XML schema. FpML is
divided into several schema files, which organize the definitions into smaller and more main-
tainable building blocks. These building blocks include:

• fpml-main-4-0.xsd: Root definitions.
• fpml-doc-4-0.xsd: Trade definitions and definitions relating to validation.
• fpml-shared-4-0.xsd: Shared definitions used widely throughout the specification. These

include items such as base types, shared financial structures, etc.
• fpml-enum-4-0.xsd: Shared enumeration definitions. These definitions list the values that

enumerated types may take.
• fpml-asset-4-0.xsd: Underlying definitions plus some types used by these (e.g. ones relating

to commissions or dividend payouts).
• fpml-msg-4-0.xsd: Definitions related to messaging and workflow.
• fpml-ird-4-0.xsd: Interest rate derivative product definitions.
• fpml-fx-4-0.xsd: Foreign exchange product definitions.
• fpml-cd-4-0.xsd: Credit derivative product definitions.
• fpml-eqd-4-0.xsd: Equity derivative option product definitions.
• fpml-eqs-4-0.xsd: Equity derivative swap product definitions.

An FpML 4.0 document can be either of two categories:

• ADataDocument is adocument that containsonlydata, suchas trades,partiesandportfolios.
The DataDocument type is provided for compatibility with previous version and for those
who do not wish to use FpML 4.0 messaging features. When using a DataDocument, none
of the FpML messaging features need be used.

• A Message is a document that contains a message header and data elements specific to that
message. In fact, an FpML message will always be of a more specific type derived from
Message, such as “RequestTradeStatus”. Thought a very important part of the global FpML
architecture, we will not refer further to this part of the standard.

The FpML root element

The FpML element forms the root for an FpML instance document. The structure of the
FpML document depends on the "xsi:type" attribute. The simplest FpML document is
a "DataDocument" (xsi:type="DataDocument"). This is described in the next
section. The FpML root element contains attributes that specify the FpML version (“4-0” for
FpML 4.0), the schema name and location, the namespace, and related properties, as well as the
xsi:type. A fragment of this definition is shown as:

<xsd:element name="FpML" type="Document">
<xsd:annotation>

<xsd:documentation xml:lang="en">
The FpML element forms the root for any
conforming FpML instance document.The
actual structure of the document is determined
by setting the ’type’ attribute
to an appropriate derived subtype of the complex
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type Document.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

The DataDocument

The DataDocument type contains three elements: trades, portfolios and parties. Portfolios con-
tain only trade references, if the trades themselves need to be included in the document then the
trades can be included within the root element (Figure B.2).

Figure B.2 The Data Document type

The Trade Component

The trade is the top-level component within the root element FpML. A trade is an agreement
between two parties to enter into a financial contract and the trade component in FpML contains
the information necessary to execute and confirm that trade (Figure B.3).

• tradeHeader The information within tradeHeader is common across all types of trade
regardless of product. In FpML 4.0 this element contains the trade date and party trade
identifiers, as well as party-specific trade information.

• product Product is an abstract concept in FpML and an actual product element is not used.
Instead, one of the FpML products will appear directly under trade.

• otherPartyPayment This component contains additional payments such as brokerage
paid to third parties which are not part of the FpML Financial product Markup Language
Recommendation 2 April 2004, economics of a trade itself.

• brokerPartyReference The brokerPartyReference identifies the party or parties that
arranged the trade.

• calculationAgent The calculation agent identifies the party or parties responsible for
performing calculation duties, such as cash settlement calculations.

• documentation The documentation element defines where the legal definitions used for
the trade are documented.

• governingLaw The governingLaw element identifies which legal system will be used to
enforce the contract.
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Figure B.3 The Trade Component
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The portfolio component

The portfolio component specifies a set of trades as a list of tradeIds and a list of sub-portfolios.
Portfolios can be composed of other portfolios using a composition pattern. By using the tradeId
to identify the trade, the standard allows for portfolios to be sent around without the full trade
record.

The party component

The party component holds information about a party involved any of the trades or portfolios
included in the document. The parties involved will be the principals to a trade and potentially
additional third parties such as a broker. For this release, this component is restricted to party
identification. It should be noted that an FpML document is not “written” from the perspective
of one particular party, i.e. it is symmetrical with respect to the principal parties. The particular
role that a party plays in the trade, e.g. buyer, seller, stream payer/receiver, fee payer/receiver, is
modelled via the use of references from the component where the role is identified to the party
component.

The product component

The product component specifies the financial instrument being traded. This component cap-
tures the economic details of the trade. It is modelled as a substitution group; each asset class
may create one or more product definitions. Some examples of products that different working
groups have defined include:

• Interest rate swaps
• FRAs
• caps/floors
• swaptions
• FX spot/forwards
• FX swaps
• FX options
• Equity options
• Equity swaps
• Credit default swaps.

The strategy component

This component defines a special kind of product that allows the structuring of trade by com-
bining any number of products within a strategy. A trade can be of a strategy rather than of a
base product; this strategy can then in turn contain other products, such as multiple options. For
example, you could define a strategy consisting of an FX call and an FX put to create a straddle
or strangle, and then create a trade of that strategy. The strategy component makes use of a
composition pattern since strategy itself is a product. This means that strategies can themselves
contain strategies.
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REFERENCES AND FURTHER READING

About XLM from a general point of view on the web

The main page of the World Wide Web Consortium (W3C) dedicated to XML activity and
information is:

www.w3.org/XML/.

A very interesting site with community resources and solutions is:

www.xml.com.

At this site you can find a well-organized and easy-to-understand free tutorial with lots of
examples and source code:

www.w3schools.com/xml/.

Books

The XML literature is almost infinite, we report only some manuals that authors have found
useful in their daily work:

Van Der Vlist, E. (2002) XML Schema. O’Reilly.
St Laurent, S. & Fitzgerald, M. (2002) XML Pocket Reference. O’Reilly.
Harold, E.R. & Means, W.S. (2004) XML in a Nutshell. O’Reilly.

There are also some interesting chapters in:

Duffy, D.J. (2004) Financial Instrument Pricing Using C++. John Wiley & Sons, Ltd, Chichester.

As far as FpML is concerned, the best thing to do is to make a visit to the internet site:

http://www.fpml.org/.

Here you can find everything you need to known about FpML. In particular you’ll find important
updates with respect to the version discussed in this book.
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117–20, see also separate entry

object-oriented structuring process 113–14
financial asset class 114

reverse convertible bonds 121
COption_American class 32, 40–2
COption_European class 32, 40–2
copula/copula functions 8, 59–63

Archimedean copulas 210
CCopulaGenerator factory pattern 228
Clayton copula 211
copula dualities 62–3
Copula filters 242
copulas and survival copulas 61–2
Gaussian copula 208–9
non-exchangeable copulas 68–70
student t and double t copulas 209–10
see also factor copula

correlation, implied 221–2
base correlation 221, 223
compound correlation 221
correlation asymmetry 68–70

counterparty risk 12–13, 234, 247–59
collateral 255–7
dependence problems 253–4
execution risk and FpML 258–9
netting 257–8
risk mitigating agreements 254–8

crash protection 138–40
credit derivatives 179–87

asset swap spread 180–1
CDS 182–4, see also under CDS (credit default

swap)
TRORS 181–2

credit event 182
credit implied correlation 56–7, 221–2
credit-linked notes 177–201

callable and putable bonds 190–1
credit derivatives 179–87, see also separate entry
credit protection 188–9
defaultable bonds 177–9, see also under defaults

credit protection 188–9
credit risk

market information on 196–201
obligor-specific information 197–201

CDS information 199
equity information 197–9
maximum likelihood approach 198–9
Moody’s KMV approach 198

security-specific information (ASW) 196–7
reduced form models 193–6, see also separate

entry
structural models 191–3

DateFormat class 81, 83
day count conventions 79–80
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DCC (dynamic conditional correlation) 59, 241–2
defaults

default risk 194–5
defaultable bonds 177–9

credit spreads 178–9
expected loss 178

dependent
copula functions 207
Marshall–Olkin model 205–7

independent 204–5
delivery grade 234
‘delta hedged equity’ 222–4
derivatives

linear derivatives 3
nonlinear derivatives 3–5
replicating portfolios for 3–5

Derman and Kani model 50
digital and cliquet notes 153–6

cliquet notes 154
digital notes 153
forward start options 154–5
reverse cliquet notes 155–6

DVP (delivery-versus-payment) principle 258
dynamic replication strategy 4

eclipse 261–2
UML plug-ins for 262–3
workbench 262

ELNs (equity-linked notes) 76–7, 137–75
digital and cliquet notes 153–6, see also separate

entry
multivariate notes 156–61, see also separate entry
single coupon products 137–50, see also separate

entry
EMM (equivalent martingale measure) 6
Encapsulation principle 28–9
equity ‘average’ implied correlation 56
ES (expected shortfall) 238
Everest note 158–60
EWMA (Exponentially Weighted Moving Average)

scheme 52, 238
exceedance correlation 68
exercise class 117–20

CAmericanExercise 118–19
CBermudaExercise 119
CEuropeanExercise 118
CExercise 118
exercise period classes 120

factor copula 208–11
filtered residuals 241
floaters 76
FMM (forward martingale measure) 7–8
Forex markets implied correlation 55–6
forward price 3
FpML (Financial products Mark-up Language) 276

description 277–82
DataDocument 279
party component 281
portfolio component 281
product component 281
strategy component 281
structure, overview of 278–82
Trade Component 279–81

execution risk and 258–9
FpML representation of CDS 184–7, see also

under CDS (credit default swap)
future asset returns distribution 46–8

implied information 47
parametric models 47
realized (cross)moments 47–8

futures style market 258
OTC and 234
purpose of 234

GA (genetic algorithm) techniques 246
gamma-hedging strategy 15
GARCH models 51–2

factor GARCH representation 58
GARCH+DCC filter 241–2
multivariate GARCH 57–8
orthogonal GARCH model 58

Gaussian copula 208–9, 221
GED (Generalized Error Distribution) 52
getDateInstance method 82
Girsanov theorem 5, 8
GLS (generalized least squares) regression 245
GregorianCalendar 83–97

hedging 12, 15
see also ‘delta hedged equity’

historical correlation 57–9
historical simulation 237, 239–42

choice of scenarios 239
data compression 239
filtered historical simulation 240–1
histogram 240
multivariate extension, GARCH+DCC filter

241–2

implied correlation 55–7
credit implied correlation 56–7, 221–2
equity ‘average’ implied correlation 56
Forex markets implied correlation 55–6

implied information 47
implied probability 48–50
implied trees 49
inflation-linked bonds 77
Interval classes 95
i-Traxx 220

see also under CDOs (collateralized debt
obligations)
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Java 26–7
components 26–7
Java Runtime Environment (JRE) 26
see also JScheduler

JMC program, Asian option pricing with
169–75

JScheduler 80–99
data models 85–98

CInterval class structure 90
CInterval factory pattern 92
CPeriod class 87
day adjustment classes 96
Interval classes 95

design patterns 98–9
classification 98

factory method pattern 99
JScheduler panel control 86

date handling in Java 80–5
DateFormat class 83
DateFormat, class 81
getDateInstance method 82
GregorianCalendar class 83–4
parse( ) method 83

jump process 71

Lévy processes 71
liquidity 183, 196–7, 258

liquidity risk 234–5
local volatility models 53–4
long-term risk 12
LYONs (Liquid Yield Option Notes)

bond 117–20

mapping process
of market risk exposure 236–7

buckets 236
gamma position 237

Margrabe formula 8
mark-up language 265–6

see also XML (Extensible Mark-up Language)
Marshall–Olkin model 205–7
martingale property 6
MaxMin–Expected–Utility framework 193
MBS (mortgage backed securities) 77
MDDL (Market Data Definition Language) 276
Mezzanine tranche 213
MIR (Market Implied Ratings), Moody’s 201
model risk 11
moment matching 151–2
Monte Carlo method 161–75, 211, 237

components 161–2
error estimation 162
probability distribution functions (p.d.f.’s) 161,

see also separate entry
random number generator 161
sampling rule 161

scoring (or tallying) 162
variance reduction techniques 162

error estimates 164–5
JMC program, Asian option pricing with 169–75
Monte Carlo integration 162–3
variance reduction techniques 165–8, see also

separate entry
Moody’s KMV approach 198

Moody’s Market Implied Ratings (MIR) 201
multivariate notes 156–61

Altiplanos 157–8
AND/OR rule 156–7
Basket notes 160–1
Everest 158–60

Murphy’s machines 246–7

netting 257–8
Newton–Rhapson method 144
no-arbitrage and pricing 5–8

multivariate claims 7–8
univariate claims 5–7

non-parametric dependance measures 64–5

OEX (option to exchange) 8
option class 127–9

option pricing 129–35
down-and-in call/up-and-in put 132
down-and-in put/up-and-in call 132
down-and-out call/up-and-out put 132
princing( ) method 130–1
rebate 132
up-and-out call/down-and-out put 132

valuation methods for barrier options 125–6
see also Parisian option

OOP (object-oriented programming) 15–17, 19–42
abstraction 27
analysis and design 20–5

notation elements for classes 21
option and asset classes 21
option, asset and country classes 22

associations 34–6
attributes and operations 28–9
classes 28
collections 37
description 19–20
inheritance 29–34, see also COption_American

class; COption_European class
abstract classes 34

Java 26–7, see also separate entry
message exchanging 37
modeling 25–7

UML (Unified Modelling Language) 25–6
polymorphism 37–42, see also separate entry
responsibilities 29
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OTC (over-the-counter) market 12
versus futures style derivatives 234–5, see also

under futures style market
overfitting 240
overloaded methods 37–8
overridden methods 37–8

parametric models 47, 237
parametric volatility models 51–4, see also under

volatility and correlation
Parisian option 123–4
parse() method 83
payment date conventions 78–9
Poisson process 194
polymorphism 37–42

dynamic polymorphism 39
early binding 39
late binding 39
overloading 38
overriding 39–42

premium leg 182
probability distribution functions (p.d.f.’s) 161

sampling from 163–4
sampling via inversion of c.d.f. 164
transformation of 163–4

protected variables 33
protection buyer 182
protection leg 183
putable bond 115
put–call parity relationship 5

random number generator 161
realized variance 46
realized volatility 54–5
reduced form models 193–6

default risk 194–5
recovery risk 195

replicating portfolios
arbitrage-free valuation and 2–3
for derivatives 3–5, see also under derivatives
super-replicating portfolios 4

reverse convertible bond 13–16, 121
see also under ELNs (equity-linked notes)

reverse floaters 76
risk

basis risk 234
counterparty risk 234, 247–59, see also separate

entry
execution risk and FpML 258–9
liquidity risk 234

risk management 233–59
counterparty risk 247–59, see also separate entry
OTC versus futures style derivatives 234–5,

see also under OTC (over-the-counter) market
stress testing 242–7, see also

separate entry

counterparty risk 12–13
long-term risk 12
measurement risk 11–12
model risk 12
optionality 11

value-at-risk & co. 235–9, see also under VaR
(Value-at-Risk) methodology

Rubinstein model 50

sampling rule 161
scoring (or tallying) 162
securitization 203

see also CDOs
sequence diagram 109–10
SGML (Standard Generalized Mark-up Language)

265
single coupon products 137–50

Asian options 150–3
call spreads 141
callability/putability, compound options 142–50,

see also separate entry
crash protection 138–40

outside barrier options 139–40
setting the strike 139

participation rate 141
up-and-out option 141

smile and skew effects 7, 50
Spearman rank correlation 68
square root process 53
static replication strategy 3
stochastic correlation 209
stochastic volatility models 52–3
stress testing 242–7

consistent scenarios 243–6
Black and Litterman approach 244
Cholesky decomposition 244

information sources 243
Murphy’s machines 246–7

super-replicating portfolios 4
survival copulas 61–2
SWT (standard widget toolkit) 261

tail dependence 65–6
tranches/tranching 213–14

equity tranche 213, 216
junior tranches 213, 216
Mezzanine 213
senior and supersenior tranches 213

‘triangular arbitrage’ relationship 55
TRORS (total rate of return swap) 181–2

UML (Unified Modelling Language) 25–6
UML’s activity diagram 100–2

Date Computation block, activities 101
sequence diagram 109–10
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value() 116
VaR (Value-at-Risk) methodology 235–9

market risk exposure mapping 236–7
profits and losses, distribution 237–8

historical simulation 237, see also separate
entry

Monte Carlo simulation 237
parametric method 237

risk measures 238–9
coherent risk measures theory 238

VAR (vector autoregression systems) 244
variance reduction techniques 162, 165–8

antithetic variates 167
common random numbers 165–6
control variates 168

VCM (version and configuration management) 261
volatility 45–71

parametric volatility models 51–4
GARCH models 51–2
local volatility models 53–4
non-normal conditional distribution 52
stochastic volatility models 52–3
volatility asymmetry 52

realized volatility 54–5
volality measures 50–5

implied volatility 50–1
volatility surface 51

waterfall 213–14, 228–30
squared CDO waterfall mechanism 229

XBRL (eXtensible Business Reporting Language)
276

XML (Extensible Mark-up Language) 265–82
building blocks of 268
description 266–7
DTD and XML-Schema 269
DTD (Document Type Definition) 268–70
in finance 276
mark-up language 265–6
namespace 271–2
uses 266–7
XMLschema 269, 272–5

simple XML schema 273–5
XMLsyntax 267–9
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