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I N T R O D U C T I O N

The Handbook of Structured Finance presents many modern quantitative
techniques used by investment banks, investors, and rating agencies
active in the structured finance markets. In recent years, we have observed
an exponential growth in market activity, knowledge, and quantitative
techniques developed in industry and academia, such that the writing of
a comprehensive book is becoming increasingly difficult. Rather than try-
ing to cover all topics on our own, we have taken advantage from the
expert wisdom of market participants and academic scholars and tried to
provide a solid coverage of a wide range of structured finance topics, but
choices had to be made.

The clear objective of this book is to blend three types of experiences
in a single text. We always aim to consider the topics from an academic
standpoint, as well as from a professional angle, while not forgetting the
perspective of a rating agency.

The review in this book goes beyond a simple list of tools and meth-
ods. In particular, the various contributors try to provide a robust frame-
work regarding the monitoring of structured finance risk and pricing. In
order to do so, we analyze the most widely used methodologies in the
structured finance community and point out their relative strengths and
weaknesses whenever appropriate. The contributors also offer insight
from their experience of practical implementation of these techniques
within the relevant financial institutions.

Another feature of this book is that it surveys significant amounts of
empirical research. Chapters dealing with correlation, for example, are
illustrated with recent statistics that allow the reader to have a better
grasp of the topic and to understand the practical implementation chal-
lenges.

Although the book focuses on collateral debt obligations (CDOs), it
provides extensive insight related to other vehicles and techniques
employed for residential mortgage-backed securities, Credit card securi-
tization, Covered Bonds, and structured investment vehicles.

v
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STRUCTURE OF THE BOOK

The book is divided into 16 chapters. We start with the building blocks
that are necessary to price and measure risk on portfolio structures. This
involves pricing techniques for single-name credit instruments (univari-
ate pricing), and estimation/modeling techniques for default probabili-
ties and loss given default (univariate risk) of such products. We then
focus on dependence, and more specifically on correlation in general
terms, applied to correlation among corporates as well as across struc-
tured tranches. Once this toolbox is available, we can move to the CDO
space, the second part of this book. We investigate the techniques related
to CDO pricing, CDO strategy, CDO hedging, the CDO risk assessment
employed by Standard & Poor’s, and we end up with an overview of
recent developments in the CDO space. A third building block is based on
a review of the methods used in the RMBS sector, for Covered Bonds, for
Operating Companies, and finally we focus on Basel II both from a theo-
retical as well as from a case study perspective.
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C H A P T E R  1

Overview of the Structured
Credit Markets: Trends
and New Developments

Alexander Batchvarov

1

OVERVIEW OF STRUCTURED FINANCE
MARKETS AND TRENDS

The easiest way to highlight the development of the structured finance mar-
ket is to quantify its new issuance volume. That volume has been steadily
climbing all over the world, with U.S. leading, followed closely by Europe,
and Japan and Australia a distant third and fourth. The rest of the world is
now awakening to the opportunities offered by structured credit products
to both issuers and investors and gearing up for a strong future growth. In
that respect, it is worth mentioning Mexico, which is leading the way in
Latin America; South Korea and Republic of China lead in continental Asia
and Turkey in for the Middle East and Eastern Europe. It is only a matter of
time before Central and Eastern Europe and China and India spring into
action, and the Middle East launches its own version of securitization.

The data shown in Tables 1.1 to 1.4 are based on publicly available
information about deals executed on each market. We believe such data
to seriously understate the size of the respective markets due to several
factors:

♦ the availability of private placement markets in many countries,
data for which are not widely available;

♦ the execution of numerous transactions executed for a specific
client, known as bespoke or custom-tailored deals, especially in
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the area of synthetic collateralized debt obligations (CDOs) and
synthetic risk transfers;

♦ the exclusion from the count of many transactions based on
synthetic indices, such as iTraxx and CDX, ABX, etc., whereby
structured products are created using tranches from those indices.

That being said, the publicly visible size of the markets and their growth
rates are sufficient to attract investors, issuers, and regulators. The struc-
tured finance market growth also stands out against the background of
declining bond issuance volumes by corporates and the rising issuance
volumes of covered bonds, which in turn are increasingly becoming more
“structured” in nature.

The markets of United States, Australia, and Europe can be viewed
as international markets, i.e., providing supply to both domestic and for-
eign investors on a regular basis and in significant amounts, whereas
the other securitization markets remain predominantly domestic in their
focus. The international or domestic nature of a given market is not only
related to where the securities are sold and who the investors are, but also
to the level of disclosure, availability of information and, subsequently, the
level of quantification (as opposed to qualification) of the risks involved,
in particular structured finance securities and underlying pools. If we
were to rank the markets by the level of disclosure of information about
the structured finance securities and their related asset pools, we should
consider the U.S. market as the leader by far in terms of breadth, depth, and
quality of the information provided—being the oldest structured finance
market helps, but it is not the only reason: investor sophistication, type of
instruments used (those subject to high convexity risk, for example), big-
ger share of lower credit quality securitization pools, higher trading inten-
sity with related desire to find and explore pricing inefficiencies, etc. are
all contributing factors.

Other structured finance markets, however, are making strides in that
direction as well. Some of the reasons are associated with the type of instru-
ments used: say, convexity-heavy-Japanese mortgages, refinancing-driven
UK subprime, default- and correlation-dependent collateralized debt
obligations (CDO) structures, etc. The existence of repeat issuers with large
issuance programs and pools of information also helps. However, outside
the United States, another major change is quietly driving toward more
quantitative work: the need to quantify risks in structured finance bonds is
moving from the esoteric (for many) area of back-office risk management to
front-office investment decision making based on economic and regulatory

2 CHAPTER 12 CHAPTER 1



3

T A B L E  1 . 1

U.S. Structured Product New Issuance Volume, 2000–2005

Auto CrCards HEL MH Equip StLoans Other Other ABS CDO CMBS

2000 64.72 50.45 55.73 9.13 9.56 12.42 16.90 38.89 68.45 48.9

2001 68.96 58.47 71.79 6.27 7.40 9.94 24.14 41.48 58.49 74.3

2002 93.08 70.04 148.14 4.30 6.54 20.18 12.41 39.14 59.23 67.3

2003 85.49 66.55 214.99 0.44 10.09 39.96 16.67 66.71 65.90 88

2004 77.02 50.36 320.11 0.50 5.92 44.99 6.73 57.64 106.06 103.221

2005 102.44 67.51 493.20 na 7.93 70.36 14.93 93.23 171.62 178.443

Abbreviations: na = not available; ABS = asset backed securitizations; CMBS = commercial mortgage backed securitizations; CDO = collateral debt obligations;
Auto = automobile loan securitizations; CrCards = credit card securitizations; HEL = Home Equity Loans; MH = Manufactured Housing securitizations;
Equip = Equipement / Utility recievables backed Securitizations; StLoans = Student Loans Securitizations.
Source: Merrill Lynch.



capital considerations, under the new regulatory guidelines of BIS2 (Basel 2
Banking Regulation) and Solvency2 (Regulation of Insurance Companies).
Parallel with that, the increase in trading of structured finance securities
beyond the United States, now in Europe, and in other markets over time,
requires better pricing and, hence, more sophisticated pricing models.

Besides transparency and quantification, it is worth taking a look at
some key recent developments in the U.S. and European structured finance

4 CHAPTER 1

T A B L E  1 . 3

European Funded Structured Product New 
Issuance Volume, 2000–2005

2000 2001 2002 2003 2004 2005

ABS 16.195 28.325 30.652 36.929 47.821 53.517

CDO 14.900 26.528 20.966 20.892 32.690 57.657

CMBS 9.455 22.882 20.904 10.139 14.736 45.750

CORP 6.430 14.641 13.536 18.299 17.989 9.416

RMBS 42.186 54.001 69.463 110.653 125.933 159.748

Total 89.166 146.377 155.521 196.912 239.168 326.088

Abbreviations: ABS = asset backed securitizations; CDO = collateral debt obligations; CMBS = commercial mortgage
backed securitizations; CORP = Corporate Securitization; RMBS = Residential Mortgage Backed Securitization.
Source: Merrill Lynch.

T A B L E  1 . 2

U.S. CDO New Issuance by CDO Type, 2000–2005

2000 2001 2002 2003 2004 2005

SF CBO 10.3 13.5 25.2 26.2 56.8 69.9

HY CLO 16.8 11.5 14.7 16.7 30.2 50.5

TruPS 0.3 2.2 4.3 6.5 7.5 9.0

HY CBO 17.5 15.2 1.5 0.8 0.6 0.0

IG CBO 13.1 5.2 4.4 0.0 0.0 0.0

Other 10.2 5.4 3.2 4.6 3.9 25.4

MV 0.2 0.0 0.0 0.0 0.9 —

Total 68.5 53.0 53.3 54.9 99.9 154.8

Synthetic — 5.5 6.0 11.0 6.2 29.7

Total 68.5 58.5 59.2 65.9 106.1 184.5

Abbreviations: SF CBO = Structured Finance Collateralized Bond Obligation; HY CLO = High Yield Collateralized Loan
Obligation; TruPS = Trust Preferred Securities; HY CBO = High Yield Collateralized Bond Obligation; IG CBO = Investment
Grade Collateralized Bond Obligation; MV = Market Value Collateralized Debt Obligation.
Source: Merrill Lynch.
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markets, being the major volume providers for international investors, over
the last two years. We attempt to draw parallels as well as contrasts:

♦ Unlike the U.S. market in its ripening stage, the European
market did not opt for commoditization of the securitization
and structured products. Just the opposite, new structures and
modifications of existing ones proliferated.

♦ Like the U.S. market, the European market saw compression
of the marketing period. It was not uncommon to have deals
oversubscribed even before the reds (sales reports) were printed.

♦ The shorter marketing period led to distortion in pipeline
estimates, which in turn led to surprise over volume in
December 2005, for example, catching many market
participants totally unprepared to take advantage of it.

♦ Bespoke solutions proliferated, especially in the synthetic
market, and were not restricted to deals backed by corporate
portfolios.

♦ The avalanche of deals left little time for European investors to
take in the bigger picture, the tiny details in the structure, the
variations in the collateral, the variations in prepayments,
etc., and whether they do matter. Unlike in the United States,
structured finance investors in Europe are generally not
specialized by sector of the structured finance market and, as a
consequence, are less detail-oriented in their analysis.

Overview of the Structured Credit Markets 5

T A B L E  1 . 4

European Funded CDO New Issuance Volume,
2000–2005

2000 2001 2002 2003 2004 2005

ABS 0.66 0.20 1.83 3.15 5.80 3.62

CBO 3.85 8.19 3.39 2.10 0.40 1.86

CDS 0.97 0.67 1.59 1.22 1.60 0.90

CFO 0.00 0.00 0.85 0.24 0.56 0.56

CLO 6.56 10.18 6.19 4.37 7.94 15.49

MCDO 0.00 0.00 0.27 1.33 5.81 2.78

SME 2.86 7.29 6.84 8.48 10.58 32.46

Abbreviations: ABS = asset backed securitizations; CDS = credit default swap; CFO = Collateralized Fund Obligation;
MCDO = Multiple-Credit-Dependent Obligations; SME = Small and Medium Enterprise Loan CDO.
Source: Merrill Lynch.



♦ The collateral quality softened, sometimes visibly—in commercial
real estate securitizations and in leveraged loans, for example;
sometimes less so—in the residential mortgage deals, where
reportedly prime mortgage pools contained products, which will
not be viewed as prime in countries, where the differentiation is
clearer, e.g., the UK. In contrast, in the United States, the subprime
sector, usually associated with home equity loans of lower FICO
(Fair Isaac & Co. Credit) score, experienced massive growth. The
differentiation between prime and subprime pools, especially in
the mortgage and consumer finance area, is clearly defined in the
United States, and is further helped by the use of quantitative
measurements of consumer credit quality, such as FICO scoring.

♦ European deal reporting and information disclosure is improv-
ing, although slowly. While the necessary information for resi-
dential mortgage pools is getting through in larger quantities,
such information remains fairly sporadic for, say, commercial
real estate transactions. The understanding of loan prepayment
factors in either market remains largely in embryo.

While the above list of developments and trends is by no means exhaus-
tive, it is consistent with the developments we expect in the coming
years. Our positive views on the structured credit market are also sup-
ported by:

♦ The persistence of relatively weak supply of corporate paper
and covered bonds. Structured products exceeded both corpo-
rate bond and covered bond supply for a second year in a row,
which is expected to be the case in the future.

♦ Structured product spreads that remain attractive compared to
similarly rated corporate and covered bonds. The predomi-
nantly triple-A supply (about 85 percent of new issuance on the
structured product market) is offering a significant yield pick-up
over sovereign, covered bond and bank paper. We do not attrib-
ute this pick-up in its entirety to a liquidity premium (except for
bespoke structures, of course). The liquidity component is a
more appropriate explanation for the yield differential between
structured product, on the one hand, and the corporate bonds,
on the other, at below-triple-A levels.

♦ The ability of structurers to offer bespoke deals addressing spe-
cific investor demands or concerns. That alone explains the large
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private volume in synthetic execution. The requirement for pub-
lic rating for regulatory capital purposes may make some of this
volume more visible in the future. We note the increasing flexi-
bility and ingenuity applied by structurers in an effort to meet
specific client’s requirements and needs. Further customization
of the market may lead to a less volatile and less tradable
market at least for larger segments.

♦ The large range of structured product offerings dealing with
repackaging of exposures. Many of these, which are otherwise
unavailable to numerous investors, remain an attractive point
for them; e.g., the investors can take direct exposure to con-
sumer risk or real estate risk and leveraged or managed expo-
sure to familiar and less familiar corporates.

♦ The “safe harbour” argument, which is as old as the structured
credit market itself. There is a modification of this argument,
though: investors in Europe are now becoming more concerned
about mark-to-market of their bond holdings, and structured
products, at least historically, have offered lower spread volatil-
ity, maybe due to their lower liquidity, given that their rating
volatility was low. While the argument about lower event-risk
sensitivity of structured products remains valid, many structured
products have assumed more leverage, which by itself makes
them more susceptible to volatility in the future. However, by
their nature, structured products, in general, should remain more
resilient to event-idiosyncratic risk, which is one of the main
concerns of corporate bond investors. While individual events
may have little impact on specific structured finance products,
we note the delayed effect of accumulating credit risks in later
years. We emphasize this point: credit deterioration has a
cumulative negative effect in the predominantly static collateral
pools backing the majority of structured bonds.

♦ The development of synthetic asset backed securitizations (ABS)
exposures, be it on individual names [the European credit default
swap (CDS) on ABS or U.S. PAYGO versions] or on a pool basis—
through synthetic ABS pools or via the synthetic ABS index ABX
in the United States—has dramatically changed the structured
finance market. These innovations allow the ABS market to speed
up execution, provide the exposures that the cash market cannot
offer, and supply a mechanism to express a negative view on the

Overview of the Structured Credit Markets 7



market, to hedge or speculate. The importance of these develop-
ments cannot be overestimated. In this regard, the United States is
leading Europe and the rest of the world, as has often been the
case in the structured finance market.

Having said all these nice things about the structured product market, let
us be more critical and highlight some of its shortcomings. Many of our
concerns have been voiced before, but they may take a new light now that
the market, by wide consensus, has reached the peak of the current cycle
and has nowhere to go but sideways and eventually descend. The start-
ing point of that descent may be triggered by several weaknesses:

♦ Overall, deals are more leveraged: be it because of underlying
consumer indebtedness, companies’ financial ratios, or the deal
structures. That should lead to bigger swings under unfavorable
and/or unexpected market developments.

♦ Investors are stretched in their ability to absorb new deals, mon-
itor old ones, and keep an eye on new developments. The
growth of the market in complexity and volume has yet to be
reflected in increasing investor specialization across asset sectors
and products. Corporate analysts often know everything about
a couple or so industries and the main companies within those
industries; hence the need for several corporate analysts to man-
age a larger corporate bond portfolio. Structured credit analysts
and portfolio managers, however, are expected to cope with
numerous sectors, structures, and deals simply because they fall
into the simplistic misnomer “structured.”

♦ There is a serious need for more quantitative power dedicated to
structured products. That power can be fully used only if there
is more information about the structured product collateral.
That power, though, is powerless in the face of unquantifiable
quantities—say, the likelihood of prepayment of a given loan in
a commercial real estate portfolio or the impact of a manager in
a CDO under adverse market conditions. Under such circum-
stances, the good old reliance on “gut feeling” seems to be the
one and only last resort for the investor.

♦ Lack of tiering to reflect differences in structure, pool composi-
tion, information availability, and servicer or manager capabili-
ties. The deplored lack of tiering is an enduring feature of the
European market and will properly change, we think, only under

8 CHAPTER 1



market distress. We hope some signs of change are already in the
air, say in commercial mortgage backed securitizations (CMBS)
or CDO land, although with recent tight CMBS spreads pricing
has looked haphazard, particularly for the more junior tranches.

♦ Regulatory uncertainty or uncertainty about the impact of
regulations such as BIS2 and the respective national imple-
mentation guidelines, The accounting Standard IAS39,
Solvency2, and the potential for a not-quite-level playing field
they may be creating across countries and markets. One concern
we have is that regulators’ ambiguity about synthetics in some
countries is hurting not only the market development, but also
the regulated entities themselves, as they are precluded from
using this market to their benefit.

THE NOT-SO-HOMOGENEOUS CDO SECTOR

One of the major market developments in recent years is the emergence
of the CDO sector as a major market sector, with the capacity to influence
developments in other seemingly independent market sectors. The CDO
sector is not homogeneous and consists of many different subsectors and
niches. Referring to the developments in any one CDO sector, and gener-
alizing and applying the conclusions to all the others is wrong and grossly
misleading. It can increase market volatility, deter investors from making
reasonable investment decisions and, in the extreme, create a liquidity cri-
sis in a specific market sector or on the entire market, if the panic spreads
wide enough.

While this is fairly obvious, it is not fully appreciated by many
market participants. Hence, there is a need to broadly differentiate among
the several main categories of CDOs that are dominant on the market
today, and highlight their interaction with the rest of the market.

Arbitrage Cash CDOs

The arbitrage cash CDO sector includes a number of CDO types, widely
differentiated by the type of exposure used to rampup the CDO collateral
pool. Among them are:

♦ cash CDOs comprising high grade and/or mezzanine ABS
♦ cash CLO of leveraged loans and/or middle market loans

Overview of the Structured Credit Markets 9



♦ cash CDOs of insurance and bank trust preferred securities
♦ CDO of emerging markets exposures, both sovereign and

corporate.

Each of these subsectors follows the credit and technical dynamics of its
respective market. A CDO backed by a portfolio of such instruments is
effectively a vehicle for creating tranched risk profile and leverage on that
portfolio.

In the past, there were large subsectors of cash CDOs backed by high
yield (HY) and high grade (HG) bonds, and their fortunes rose and sank
with the movements in the HY or HG bonds backing them and, not least,
with the strategy, behavior, and luck of the CDO managers running those
portfolios.

We note that in a cash CDO, the asset and liability sides of the
CDO are established at launch and may change little during the life of the
transaction:

♦ The liability side (i.e., the capital structure of the CDO) is deter-
mined at deal’s launch and changes only with the amortization
of the senior tranches or the write-down of the equity and junior
tranches in case of default and losses in the pools.

♦ The asset side (i.e., the pool of investments) is also determined
at launch and may experience little change during the life of the
deal. In the currently dominant types of cash CDOs (listed
earlier), trading occurs to a very limited degree, if at all. In most
deals, trading by the manager is restricted to credit impairment
trade (due to expected or real deterioration of a given name)
and credit improvement trade (upon certain spread tightening,
but under condition that traded credit must be replaced by
similar or better credit quality name).

♦ The asset–liability gap (i.e., the funding gap) determines the
level of return that a CDO equity investor can expect (depend-
ing on the level of defaults in the investment pool) and is a key
consideration in the placement of equity and overall economic
viability of a cash CDO.

Hence, a cash arbitrage CDO is a structure mostly set at the beginning
of the transaction and is meant to be maintained as stable as possible
throughout its life, with the ultimate purpose of repaying debt investors
and providing adequate return to equity investors over its scheduled
life.

10 CHAPTER 1



The initial and on-going pricing of the cash CDO tranches is market-
based (rather than model-based). It takes into account where other simi-
lar transactions price on the primary and secondary market and, in case
of significant defaults or downgrades in the pool, considers the value of
the pool and how it relates to the outstanding CDO debt obligations that
the pool is backing.

From this it follows that a cash CDO once launched has little on-
going impact on the market, with its asset and liability side meant to be
relatively stable. Looking at it the other way around: ongoing market
changes may have little impact on the cash CDO, except for defaults and
the mark-to-market of the CDO debt and equity tranches.

Hence, defaults are the issue of main consideration for arbitrage
cash CDOs, as their occurrence or not, the degree thereof, and the subse-
quent crystallized loss will determine the yield on the debt tranches and
return on the equity tranches of these transactions.

Synthetic CDOs

Synthetic CDOs are diverse in nature and include a number of instru-
ments, which are not directly comparable in terms of investment charac-
teristics and market impact. These include:

♦ Synthetic structured finance (or ABS) CDOs—an emerging
sector, in which CDS on ABS in Europe and PAYGO SFCDS in
the United States are used to build an ABS portfolio quickly and
efficiently. Such a portfolio would be more difficult to execute
in 100 percent cash due to allocation and sector and vintage
limitations on the cash-structured finance market today. Such
synthetic deals may be fully/partially funded or may be single
tranche deals. The latter require hedging for the unfunded
senior and junior (to the funded portion) tranches; hedging
usually takes place through a combination of cash purchase
and selling protection on the respective cash bonds and is
usually adjusted downwards as the referenced exposures
amortize or experience losses.

♦ Balance sheet synthetic CDOs/CLOs—associated with credit
risk transfer of a bank bond or loan portfolio—their share of
today’s market is miniscule and their behavior is more akin to
cash CDOs discussed earlier (relatively constant structure and
primarily default-driven investment performance).

Overview of the Structured Credit Markets 11



♦ Other synthetic CDO products, such as those based on constant
maturity CDS, principle protected tranches of CDOs, etc.,
whose behavior is further modified by their specific structural
features and will differ from that of other synthetic CDO
subtypes.

♦ Bespoke synthetic CDOs—single tranche CDOs on corporate
names, referenced through CDS.

♦ Standardized tranches of CDS indices—iTraxx in Europe and
CDX in the United States.

The last two sectors tend to be also lumped together under the “correla-
tion trades” moniker. The latter, because correlation is a derived variable
from a pricing/trading model and a function of spread movements. The
former, because to be priced, the implied correlation input is referenced
from the standardized tranche market. These two sectors can be viewed
as model-driven from the perspective of pricing and trading (exploring
trading opportunities), but there are differences:

♦ The structure of a bespoke single-tranche CDO is set at its
launch, but there is a need for the intermediary to hedge expo-
sures senior and junior to the investor’s tranche, creating an on-
going interaction with and impact on the market. The need to
rebalance the delta hedges creates the need to trade certain CDS
and thus influences the supply and demand for these credits in
the market. The larger the size of the single-tranche market, the
larger the impact such secondary delta-rebalancing trades may
have on it: large and more single-tranche deals suggest larger
and more referenced portfolios, whose senior and junior
tranches must be hedged and the hedges rebalanced. However,
the single-tranche investor may be relatively sheltered in his
investment from such movements, as long as defaults do not
cross certain threshold or he is in some way protected against
trading/hedging losses.

♦ The standardized index tranches are used by investors to
express a view (take a position) on spread direction and correla-
tion, and as their view changes or the market developments do
not justify such view (positioning), a need to trade arises. It may
take place in order to adjust the position or to reverse it (to close
a position altogether). That creates secondary market activity
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and, almost inevitably, market volatility. The standardized
tranches market is also used to hedge positions or execute cer-
tain strategies. A desire to unwind the hedges or the positions
when not needed or the market moves against them may
further exacerbate market volatility.

From this it follows that correlation trades can have a strong on-going
impact on the market either through the need to rebalance the hedges or
to take a position and subsequently unwind it. The opposite is also true:
ongoing market changes, such as spread movements, and the perception
in correlation changes can have an impact on standardized index tranche
pricing and associated positions. Hence, ongoing spread movements,
actual downgrades/defaults, and the related perception of correlation are
the main factors to consider in synthetic standardized tranche trades and in
hedging single-tranche CDOs. From the perspective of the single-tranche
CDO investor, though, the main concern is the level of default in the
reference pool.

Different Investors “Own” Different 
CDO Sectors

The review of the CDO market so far indicates some fairly fundamental
differences among the broadly defined cash arbitrage and synthetic CDO
sectors. Such differences can be further illustrated by looking at the moti-
vation and identity of the investors in the different sectors:

♦ “Real” money accounts tend to focus on cash CDOs and tend to
be buy-and-hold investors when buying synthetic and bespoke
synthetic CDOs. In that space, different parts of the capital
structure of a CDO attract a different type of investor—that
spreads the slices of risk to the broadest possible range of
market participants.

♦ “Leveraged” money accounts (hedge funds) drive most of
the activities on the standardized tranche market, although
some real money accounts have become more active in recent
months. The activities in that space are associated with
taking a view on correlation and how spread changes in the
market could trigger repricing of the different tranches of the
synthetic indices. To some degree, this sector can be viewed as
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“speculative,” although using it for the purposes of hedging is
not uncommon.

Although this division is general and there are some investors who cross
the line in both directions, it is certainly not imprecise.

The mark-to-market aspect affects the different investor types in a dif-
ferent way and is common to all fixed income instruments. We note that
cash CDO “held to maturity” are not subject to mark-to-market, whereas
all synthetic CDOs regardless of their classification are subject to mark-to-
market. MTM issues are of a particular concern to European fixed income
investors this year, as a result of the introduction of IAS39.

While the fall-out from the recent hedge fund standardized tranches
investment strategy gone wrong could be wider spreads and high mark-to-
market losses, there is no evidence in the market to suggest that the different
cash and synthetic tranche CDOs have widened more than similarly rated
other fixed income investments.

Liquidity and the “Unexpected” MTM Problem

A key market consideration is the liquidity of structured finance instru-
ments and the associated mark-to-market volatility. The latter is a rela-
tively recent concern associated with the introduction of mark-to-market
accounting.

Table 1.5 demonstrates the spread movements for a variety of Euro-
pean structured products. Given the limited time frame of this analysis, as
well as the limited time frame of a relatively mature European market, we
suggest that readers do not focus on the nominal values, but rather on the
relative magnitude across asset classes and sectors. If we assume that the
period given in Table 1.5 embraces the tightest spreads seen on the mar-
ket in recent years, it is natural to ask the question as to how much the
spreads can widen. While we expect spread widening to be cyclical (trend-
line), we foresee the actual spread movements to be shaped by technical
and fundamental factors along the way (zigzagging along the trend line).
From that perspective, it is important for investors to understand the
expected behavior of the different sectors and subsectors of the European
structured finance market, their reaction to technical and fundamental
factors, and their interaction with each other.

When considering their portfolio strategies, investors can conceptual-
ize the market and their portfolios in different ways. On that basis, they can
re-examine their tolerance to mark-to-market and credit risk in a market
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T A B L E  1 . 5

Monthly Average Launch Spreads by Asset Class and Rating, 1998–2004

Asset Sub
1998 1999 2000 2001 2002 2003 March 2004

Class type Rating Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min

MBS NCF AAA 27 58 14 41 65 31 35 55 28 35 55 19 27 50 22 35 54 26 19 19 19
MBS PRM AAA 18 24 11 23 28 18 25 28 14 24 30 22 24 28 18 24 40 20 17 22 12
CMBS CMBS AAA 47 47 47 44 55 27 34 51 25 37 44 24 43 63 28 45 50 40 38 38 38
CDO CDO AAA 15 39 7 15 30 11 37 43 26 45 57 35 55 68 25 71 81 61 57 64 48
ABS CAR AAA 45 45 45 32 50 19 31 35 26 24 28 14 24 38 13 30 42 11 15 15 15
ABS CCD AAA 22 30 14 18 20 15 20 30 16 25 28 23 20 22 16 20 27 5 13 22 3
ABS UCC AAA 23 36 17 24 36 16 28 33 25 32 35 28 31 36 28 25 31 20

MBS NCF A 70 83 40 125 160 85 124 150 85 139 203 100 109 125 98 164 188 135 95 95 95
MBS PRM A 57 80 35 63 77 50 69 86 48 68 77 63 64 83 45 71 85 65 52 62 39
CMBS CMBS A 112 138 73 89 115 65 99 108 83 97 110 83 109 118 93 103 103 103
CDO CDO A 66 120 36 59 93 45 100 120 48 118 146 97 182 223 125 216 279 174 202 203 200
ABS CAR A 75 75 75 65 90 51 76 85 65 65 68 47 58 80 43 74 100 35 40 40 40
ABS CCD A 45 48 40 54 75 37 74 77 70 57 62 50 59 78 30 37 55 19
ABS UCC A 55 72 47 62 75 40 69 79 50 82 120 47 75 88 43 72 75 69

MBS NCF BBB 139 175 92 244 275 200 256 300 200 256 300 218 240 270 207 326 350 300 212 212 212
MBS PRM BBB 88 93 82 153 160 150 145 188 130 144 165 135 141 179 120 140 163 127 103 121 81
CMBS CMBS BBB 140 140 140 248 375 165 199 275 140 194 220 183 201 280 138 214 232 200
CDO CDO BBB 131 183 77 124 188 59 159 200 85 238 311 168 322 467 215 348 490 285 375 500 300
ABS CAR BBB 175 175 175 75 75 75 178 180 175 225 225 225 150 150 150 160 170 155
ABS CCD BBB 90 90 90 112 150 88 151 165 138 149 168 120 159 187 110 83 120 45
ABS UCC BBB 130 130 130 160 160 160 175 175 175 217 275 188 150 170 125 153 170 140

Abbreviations: Ave = average; Max = maximum; Min = minimum.
Asset Class: MBS = mortgage backed securitizations; CMBS = commercial mortgage backed securitizations; CDO = collateral debt obligations; ABS = asset backed securitizations.
Subtypes: NCF = nonconforming; PRM = prime; CMBS = commercial mortgage backed securitizations; CDO = collateral debt obligations; CAR = automobiles; CCD = credit cards; UCC = unsecured consumer loans.
Source: Merrill Lynch.



downturn. Then, they can model how their current (at the peak of the mar-
ket) portfolio will react to different levels of market downturn and deter-
mine what is the acceptable credit and marked-to-market loss they can bear.

Furthermore, investors can anticipate the evolution of their portfo-
lio between today and some future point [factoring WAL (Weighted
Average Loss) scheduled and unscheduled amortization, expected losses,
etc.], when they expect the market downturn and see how such a portfo-
lio will react to such downturn. Finally, investors must consider what
steps to take now and in the near future to bring their current portfolio
to that which is sensitive to credit and MTM losses and is consistent with
their own (institutional or personal) tolerance.

CRITERIA FOR STRUCTURED FINANCE
DEALS AND PORTFOLIOS

Review and Risk Tolerance

The analysis of structured finance products and portfolios is a complex
undertaking. We highlight a number of criteria in no particular order:

Granularity
Granular deals with strong credit quality are less susceptible to event risk
of single-name exposures than nongranular deals. Historical evidence sug-
gests that more granular, high quality ABS have experienced little spread
volatility compared with low quality granular deals and nongranular deals.
These observations are true across ABS capital structures. They also hold
for high grade mortgage backed securitizations (MBS) and CMBS as an
example of highly granular and less granular deals, as well as for prime
RMBS and subprime RMBS as an example of deals with similar granularity
but different credit quality. While correct, this outcome may be influenced
by the fact that granular deals in general are associated with consumer
exposures and nongranular deals—with corporate exposures.

Types of Credit Exposure
Consumer ABS in Europe tends to demonstrate less spread volatility than
corporate exposure ABS (in the form of CDOs and CMBS). That may be
also associated with the granularity of the portfolios as mentioned earlier.
In general, though, consumer pools’ tranches tend to reflect tranching of
the systemic risk, associated with a large securitization pool and reflect
the state of the economy of the respective country.
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In addition, consumer portfolios are exposed more to systemic risk,
say widespread economic deterioration, than to event risk (collapse of a
single company or an industrial sector). We caution, however, that today,
in most countries, the consumer is over-indebted, i.e., the consumer sec-
tor is stretched or even over-stretched, which was not the case during the
last corporate credit cyclical downturn. (The two countries, which in the
past downturns have had relatively high consumer indebtedness—
United States and UK, are even more indebted today, with the consumer
debt stretching beyond residential mortgage debt.) Consumer lending
and spending softened the blow during the last downturn—this buffer
may not be as readily available in a future downturn. Hence, the economy
as a whole and the consumer pools, in particular, may suffer more than
previous downturns in history.

Senior versus Junior Tranches
It is a fact that senior tranches have more cushion against credit deterio-
ration than junior tranches. The former seems to hold true for different
asset classes, even ones of similar granularity. An interesting way to look
at the credit cushion is to compare the level of credit enhancement for
each tranche to the level of five-year cumulative losses of a given asset
class. The challenge arises, when such cumulative loss numbers are not
robust, statistically speaking.

As mentioned earlier, senior tranches tend to experience less spread
volatility than junior tranches of the same asset class. Their bid-offer
spread is much lower than the one for junior tranches. Almost always se-
nior tranches are more liquid than junior tranches of the same deal. It
is not uncommon for market participants to often use secondary trade-
based pricing for marking-to-market their senior tranche positions and
estimated pricing (on the basis of primary market or dealer talk) for mez-
zanine positions. In the case of the latter, there is the risk that one-off trade
may lead to serious repricing and mark-to-market volatility.

Sensitivity to Third Parties (Originator,
Servicer, Counterparty)
While structured finance bonds are set up in such a way as to minimize
or eliminate the role of the asset originator and its potential bankruptcy,
some linkages (in terms of credit or portfolio performance) remain—they
may be with the originator or servicer, a third-party servicer and/or hedge
counterparty. These linkages may have both direct and indirect effect on
the bond pricing on the secondary market, and understanding the potential

Overview of the Structured Credit Markets 17



for problems from that corner is crucial in defending against mark-to-
market losses, defaults or downgrades.

In addition, idiosyncratic aspects of underwriting and servicing
should be taken into account in determining future pool performance—
this is particularly true for subprime and commercial real estate sectors.
Nonbank, nonrated servicers are of particular concern when anticipating
the performance of the securitized pools and the headline risk of the
respective bonds.

High versus Low Leverage Positions
In a low spread, low default market environment, leverage is a necessary
way of achieving yield. In the course of the last couple years, investors
had to take leverage to achieve their yield targets. The discussion about
what leverage is in structured finance, how to estimate it, etc. is a never
ending one, and we do not intend to reproduce it here. What is clear,
though, is that leverage can enhance returns in good times and magnify
losses in bad times. Hence, there is a need to review the amount of lever-
age, how it is achieved, and the extent to which it can be detrimental to
the portfolio performance in a market downturn. Investors need to dif-
ferentiate between de-levering structures (say, an MBS) and those that are
meant to remain fully levered for life (say, a CDO Squared).

Pool versus Single-Name Exposures
While this may seem as a repetition of the granularity argument, it is not
necessarily so. Single-name exposure may have many different connota-
tions: it could be in the repetition of a given corporate name in numerous
portfolios, or in the presence of the same servicer in multiple deals, or,
alternatively, in the high dependence of a given transaction on the cash
flows generated by a given entity. The need to estimate the accumulation
of multiple exposures to a single name under different transactions is
obvious, but the estimate is not that simple to make in practice. We sug-
gest going beyond the issue of overlap, as know from CDO land, and con-
sidering all forms of exposure or potential exposure to a given name
present in the structured finance portfolio.

Anticipated Impact of BIS2
We believe that BIS2 considerations should be an inextricable part of the
European investment strategy over the next several years. BIS2 risk
weights favor all senior securitization exposures and do not favor all
subinvestment grade securitization exposures. Investors should factor the
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lower and higher capital requirements post January 1, 2007, when deter-
mining the adequate price for a securitization bonds, scheduled to mature
after 2006. We also note the granularity adjustment differentiation for
senior tranches of securitization exposures.

Other Country-Specific Considerations
Such considerations, e.g., may include:

♦ The changes in pension regulations and eventual new Real
Estate Investment Trust (REITS) legislation in the UK should
have a positive impact on commercial real estate pricing. That
may make CMBS rarer, on one hand, and improve the property
values for existing deals, on the other. In the short-term, this is
offset by the growth in real estate conduits.

♦ The introduction of covered bonds in more countries should
reduce the supply of MBS and make them more attractive.

♦ The reduction of budget support for SMEs in Spain should
reduce their supply, change their geographic diversity, or con-
vert them into stand-alone structures with higher subordination
levels (more supply of non-triple-A paper).

We certainly do not intend an exhaustive list here, but suggest that
investors consider these changes and how they could affect future supply
and pricing in specific structured finance sectors.

Modeling
Structured finance securities are complex credit structures, which can per-
form differently under similar economic and market scenarios. All the
more, when addressing the need to fully understand the variations in
their performance, modeling comes handy. In that regard, availability of
models and people able to use them properly becomes a key factor in
better understanding the future performance of structured finance deals
and related portfolios. The preceding discussion indicates that the simply
rerunning historical scenarios are not enough for investors to fully under-
stand the risk (credit, MTM, duration) of their holdings. One needs not
only modellers, but also credit-savvy ones at that.

Increase Asset-Based Liquidity of the Portfolio
In a market downturn scenario the need for liquidity in a portfolio is most
acutely felt, especially one with margin calls or with a potential for money
withdrawals at a short notice. In that regard, we suggest that investors
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use the rating agencies guidelines for liquidity eligibility and haircuts for
different asset classes of structured finance securities, in determining the
asset-based liquidity of structured investment vehicles. Regulatory guide-
lines for repo eligibility and haircuts can also be useful, although the list
of such securities is limited to primarily senior tranches of ABS backed by
granular pools.

Distinguishing Between Cyclical Sectors
Distinguish between cyclical (CLOs, office CMBS, subprime consumer, etc.)
and cycle-neutral sectors (retail CMBS, high quality consumer pools, etc.).
Corporate ABS seems to be more affected by the event risk of down cycles
than prime consumer ABS. Alternatively, high quality consumer-related
ABS seems to be more cycle-neutral than low-credit-quality consumer-pool
ABS. We refer here to the cyclical nature of the exposures comprising the
pool of the respective structured financing. A CDO, e.g., being a derivative
of the underlying corporate high-yield or high-grade sector will perform
according to the cycles of that sector—the deal performance, however, will
be modified by the actions of the CDO managers. Similarly, the perfor-
mance of a subprime mortgage pool will be dependent on the performance
of the economy and the housing market (hence, its cyclical nature), but
modified by the actions of the respective servicer.

Senior Mezzanine-Equity Positions
That the credit risk and mark-to-market risk of the different tranches of
structured financings are different is a given. What is more important is
that such differences persist across the tranches of different asset classes,
so the equity position of a CDO of senior ABS will have different suscep-
tibility to the earlier risks than, say, the equity position of a CDO of high-
yield loans, not to mention the mezzanine of prime mortgage master trust
MBS compared to the mezzanine of a residential real estate mezzanine
CDO, or the senior tranche of stand-alone amortizing Dutch prime MBS
in comparison with senior tranche of a mixed lease Italian ABS.

BIS2 AND OTHER REGULATIONS—
LONGER-TERM IMPACT ON THE
STRUCTURED FINANCE MARKETS

As we noted on several occasions so far, BIS2 is expected to have a major
effect on the structured finance market in all its aspects: supply, demand,
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spreads, and mark-to-market volatility. We explored some of the mark-
to-market aspects earlier, and we turn our attention now to some of
the more fundamental changes we anticipate BIS2 implementation will
prompt. Here, we take into account only the consequences from the new
capital treatment, as if securitization’s only function were to achieve cap-
ital relief for the securitizing bank and as if banks invested only on the
basis of regulatory capital considerations. We note that the number of
banks expected to adopt the IRB (Internal Rating Based) approach is high
in Europe, making this approach dominant in determining risk capital
and the BIS2 impact in securitization.

From the Perspective of the Originating Bank

Again, if the only reason for securitization were capital relief, then the
expected changes in capital requirements for different types of exposures
on the banks’ balance sheet should give a good understanding of which
assets could conducive to securitization and which not. The chart above
is based on QIS3 data and broadly indicates that banks will have reduced
incentive to securitize consumer assets, and increased incentive to securi-
tize special lending exposures, sovereign and to some degree other banks.
That is because BIS2 leads to significant reduction in risk weights for retail
exposures, particularly mortgages, and an increase in risk weights for
specialized lending and sovereigns, particularly high volatility real estate.
In more specific terms:

♦ There will be a seriously reduced capital relief benefit from
securitizing mortgage portfolios and somewhat reduced benefit
for retail and retail SME portfolios.

♦ The incentive should shift toward the securitization of higher-
risk weighted assets such as lower investment and subinvest-
ment grade corporate exposures, commercial real estate, special-
ized lending, etc.

♦ Securitization of mortgage and retail portfolios should be driven
more by nonregulated companies, as well as by the funding con-
siderations of banks.

These conclusions, however, should be further detailed on the basis of the
credit quality of the underlying exposures, subject to securitization. The
chart below compares the capital requirements for different types of retail
exposures under both standardized and the IRB approaches.
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In all cases, the bank should consider the capital requirement
before securitization and after securitization (in the form of capital for
retained portion of securitization exposure). To simplify, it will depend
on whether the capital before securitization is higher, equal, or less than
the equity piece of the securitization transactions, which is usually the
piece retained by the bank originator. In that regard, the supervisor’s
and bank’s own estimates for loss given default, EAD (Exposure at
Default), and M (Maturity) play a key role in determining the benefits of
securitization for a Foundation IRB bank.

In that respect, we note the wide range of corporate exposures listed
under the IRB approach and the potential difficulty for banks to get
supervisory approval to use their own inputs for capital calculation. That
may lead the banks to use the prescribed risk weightings for specialized
lending, as indicated in the discussion of IRB, and thus have regulatory
capital incentives to securitize such exposures.

Banks who continue to dominate the issuance volume of structured
products may modify their issuance patterns, as a result of incorporating
regulatory capital treatment of the underlying exposures in the econom-
ics equation of securitization. Securitization of mortgages may be prima-
rily done for funding purposes, given limited regulatory capital benefit for
it, whereas securitization of commercial real estate, unsecured consumer
loans, and project finance may be driven by regulatory capital relief con-
siderations in the first place. Alternatively, banks using the standardized
approach may still have a regulatory capital benefit from securitization,
while that benefit will be largely unavailable for banks applying the IRB
approach. All this could lead to a change in supply levels, types of prod-
ucts securitized, and servicer considerations.

To achieve better realignment of regulatory and economic capital,
banks may be tempted to issue also double-Bs and single-Bs, and even
sell first loss positions. That raises questions about the rating agencies’
methodologies for rating below investment grade pieces and how
reliable they are as well as about the breadth of investor base for such
exposures.

From the Perspective of the Investing Bank

An investing bank naturally takes into account the cost of regulatory cap-
ital among other things when determining its investment interest in a
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securitization position. Again from the perspective of regulatory capital
considerations alone, a bank investor should:

♦ Buy riskier sovereign, bank and corporate exposures (say, rated
single B and below) rather than less risky securitization
exposures (say, rated double-B).

♦ Avoid subinvestment grade securitization tranches regardless of
their actual risk, unless of course the pricing of such tranches is
sufficient to compensate the bank for both the risk of the tranche
and the increased cost of capital. The placement of subordinated
tranches may become more dependent on the appetite of
nonregulated investors. In fact, the question of placement of
noninvestment grade tranches of securitizations will become
a key factor in determining the viability of many future
securitization transactions.

♦ Standardized approach requires more capital for investment
grade tranches (except for BBB−) and less capital for lower-rated
tranches, which should lead to different investment incentives
for standardized and IRB bank investors and lead them to
modify their investment allocations.

♦ IRB banks are even less likely than standardized banks to invest
in subordinated noninvestment grade securitization tranches,
and even more likely than standardized banks to seek most
senior investment grade tranches.

♦ The gap between senior secured corporate and securitization
exposure risk weightings for noninvestment grade exposure
widens even further. This creates even bigger disincentives for
IRB banks to invest in subordinated securitization exposures
and make them choose instead high-yield corporate exposures.

♦ The risk weightings for covered bonds and RMBS are converging,
thus reducing or eliminating the regulatory capital advantage of
covered bonds, characterizing the current investment decisions.

Given the reduced risk weights for senior tranches under BIS2, banks are
expected to realize certain savings from holding such securitization posi-
tions. Given that banks are the dominant investors in securitization in
Europe, it is highly likely that such savings are passed on to the market in
the form of spread tightening. Those savings, which can be viewed as a
potential range of spread tightening for securitization exposures. We note
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the “dis-saving” BB exposures or increase in regulatory capital require-
ment for bank investors, which we already stated, should lead them to
shun away from such exposures.

To clarify further, a standardized bank investing in AAA RMBS
securitization tranche will use risk weight of 50 percent under BIS1 (Basel
1 regulation) and 20 percent under BIS2. That will translate into 40 bps
savings on average cost of capital. Those savings can be passed on to the
market in the form of spread tightening, although that will not be a one-
for-one transfer. The same bank needs to increase the risk weight for a BB
securitization exposure from 100 percent under BIS1 to 350 percent under
BIS2. The increase in its regulatory capital is 125 bps, which in turn should
see respective widening of the BB spreads of such exposure, to compen-
sate the bank for the increased regulatory capital. Similar analysis can
be performed for the RBA approach to securitization to be applied by the
IRB banks under BIS2. The respective capital savings or “gains” are
slightly larger in comparison to the standardized approach.

Demand–Supply Dynamics

From the perspective of the demand–supply dynamics of the securitiza-
tion market, our conclusions can be further expanded:

♦ Nonregulated companies may increase their share in consumer
asset securitization, while banks could increase their share in the
securitization of commercial real estate and other corporate
assets. In addition, there will be differentiation of the incentives
to securitize by asset class or at all across banks depending on
the approach to regulatory capital they adopt.

♦ Spreads on subinvestment grade securitization tranches should
widen, and on senior tranches should tighten, compared to pres-
ent levels, although it is difficult to anticipate the changes in the
overall cost of securitization, as the earlier movements may or
may not be netted out.

♦ The spread movements of securitization tranches in comparison
to similarly rated corporate exposures is somewhat less certain,
although we would expect noninvestment grade securitization
tranches to widen more than similarly rated corporate exposures.

♦ We expect ratings to continue to play a major role in the securiti-
zation market, probably more so than in the corporate market.
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In that respect, further improvement in rating approaches
and models for securitization tranching will likely become a
matter of urgency, given the significant differentiation of risk
weights by tranche’s credit rating.

♦ The new BIS2 guidelines will probably slow down the
securitization market, as we know it today, but simultaneously
create new distortions that new structuring techniques will aim
to address. Hence, while this may be the end of securitization,
as we know it, it may be the beginning of a new stage of
securitization and structured market development.

♦ Given that banks and related conduits account for two-thirds
roughly of securitization paper placed on the market, it is
conceivable that lower-risk weights should translate into 
lower-target spreads for such holdings. The potential for
significantly lower-risk weights for senior tranches may be
fuelling demand for them in expectation for spread tightening,
as those weights are introduced (or less spread widening if
their introduction coincides with a softening market):

° Entities, which benefit from such spread tightening as it
occurs, but do not have the permanent benefit of regulatory
capital reduction, may be induced to sell once the tightening
is over, i.e., once the risk weight effect is fully priced in.

° Entities, which benefit from the permanent reduction of regu-
latory capital will be exposed to different regulatory capital
and, subsequently, potentially higher spread volatility as their
securitization holdings are upgraded or, God forbid, are
downgraded.

° In both cases, the aforementioned result may be more trading
and more volatility.

° Downgrades may lead to higher than before spread move-
ments, especially on the border points, where one tranche
moves from one type of investors to another; particularly
given the fact that at least, at present, the breadth and depth
of the investor base rapidly declines from senior to junior
tranches.

♦ Banks may be more sensitive to downgrades in the future, as
they will have to tolerate both MTM losses and regulatory capi-
tal increase. As a result, they may be more likely to sell upon a
downgrade.
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♦ More pronounced differentiation of investor base by tranche
will eventually subject the pricing and dynamics of each tranche
to the developments in its respective specialized investor base,
which in turn may suggest more opportunities to arbitrage the
capital structure of structured products (akin to correlation arbi-
trage of the different layers of standardized tranches of iTraxx).

♦ Given the lack of clarity about regulatory capital treatment of
many structured products (say, combo notes, CPPI, securitiza-
tion of a single commercial real estate loan, etc.), the conse-
quences of a treatment away from market expectation or
practices may be dramatic: no demand and oversell are two that
come to mind.

REGULATORY CHANGES PARALLEL TO BIS2

Two other regulatory changes are already putting their stamp on the
structured finance market. One is the change in accounting practices, the
other is the introduction of regulatory capital requirements for insurance
companies and pension funds, loosely tailored after BIS1 (rather than
BIS2). The accounting changes strike at the heart of securitization prac-
tices, affecting off-balance sheet treatment of securitization, accounting
for securitization exposures, etc. Given the uncertainty about the final res-
olution of numerous points here below we highlight only one of them—
the accounting for synthetic securitizations. Solvency2, on the other hand,
is an exercise similar to the introduction of BIS1 years ago and could
change the way insurance companies and pension funds go about doing
their business in the future.

IAS/Accountancy

While IAS may seem more straightforward, its consequences remain
under scrutiny. The main issue of ambiguity there is related to synthetic
securitizations, in general, and synthetic CDOs, in particular. The ques-
tion has taken on a magnitude worthy almost of Hamlet: to invest or not
to invest? The requirement for bifurcation of synthetic CDOs has intro-
duced unnecessary complexity.

In some cases, auditors have taken the Draconian approach of
stopping certain institutions from investing in the product altogether.
Not to mention that different auditors have adopted different views and
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interpretations of the issue. This suggests replacement of economic sense
with auditor’s inclination. The American FASB has left some hope that
bifurcation issue may find a quiet end for the benefit of all parties con-
cerned. If that is to be the solution, the interest in single tranche synthet-
ics and their secondary and tertiary derivatives will likely be rejuvenated.

Solvency2

As for Solvency2 (the insurance companies and pension funds equivalent
to BIS2), it may be too early to discuss yet—it is not coming into force
before 2009, but it suffices to point to two potential developments: more
demand from insurance companies and pension funds for structured
products and more insurance companies becoming originators of securi-
tization in their own right.
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INTRODUCTION

In this chapter, we discuss the credit risk that is associated with a single
debt instrument and various methods to assess this risk. The credit risk
associated with a defaultable debt instrument can be decomposed into two
components: default risk and recovery risk. The former captures the uncer-
tainty related to a possible default while the latter reflects the uncertainty
related to recovery in the case of default. We shall discuss both types of risk
in this chapter while keeping the focus on single credits; the risk associated
with portfolios of defaultable instruments is discussed in Chapters 4 to 10.

Default risk can be analyzed from various perspectives. One of these
perspectives is provided by the rating approach, in which default risk is
quantified by means of a credit rating. These credit ratings are assigned
by rating agencies, such as Standard & Poor’s (S&P), Moody’s, and Fitch,
and the ratings assigned by these agencies are widely used as default risk
indicators by market participants. We shall review the rating approach in
the next section.

Another widely used approach to quantifying credit risk is the
application of statistical techniques. In this approach, one uses historical
data and analyzes them by means of methods from classical statistics or

*This chapter contains material from de Servigny and Renault (2004).

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



machine learning. The result of such an analysis can be a credit score or a
probability of default (PD) for an obligor. The thus estimated PDs can
refer to a fixed period of time, typically one year, or they can provide a
complete term structure for the possible default event. These statistical
approaches are the topic of Section 2.

From a fundamental perspective, one can view default as the exer-
cise of an option by the shareholders of a firm. Therefore, one can, at least
in principle, derive PDs based on the Black–Scholes option pricing frame-
work. This leads to the so-called structural or Merton models, which are
analyzed in the section “The Merton Approach.”

Yet another perspective on default risk is provided by spreads of
traded bonds and credit default swaps. These spreads contain informa-
tion about the market’s view on default risk. Although these spreads
depend on other factors as well, they can be used for the extraction of
default risk information. We shall discuss these in the section “Spreads.”

Recovery risk is not as well understood as default risk. However,
recovery risk has received a lot of attention in recent years; this is in part
driven by the Basel II requirements. A number of models have been devel-
oped, which will be reviewed in the section “Recovery Risk.” In the final
section, we will discuss the combined effect of recovery and default risk.
In particular, we shall focus on the effect of common factors underlying
the two types of risk.

Some of the models and results reviewed in this chapter are dis-
cussed more rigorously and in more detail in various textbooks on credit
risk such as the ones by Bielicki and Rutkowski (2002), Duffie and
Singleton (2003), Schönbucher (2003), de Servigny and Renault (2004), and
Lando (2004). A more detailed review of models for recovery risk is pro-
vided by Altman et al. (2005). Other results are not included in these
books; we shall give references for those below.

Many of the modeling approaches that we discuss in this chapter, as
well as many other approaches that practitioners use for quantifying credit
risk, rely on standard statistical methods as well as on methods from
the field of machine learning. For a more detailed discussion of statistical
methods, we refer the reader to statistics textbooks, e.g., to the ones by
Davidson and MacKinnon (1993), Gelman et al. (1995), or Greene (2000).
Good overviews of machine learning approaches are provided by Hastie
et al. (2003), Jebara (2004), Mitchell (1997), and Witten and Frank (2005). We
would also like to refer the reader to the textbooks by Andersen et al. (1993),
Hougaard (2000), and Klein and Moeschberger (2003) on survival analysis,
which underlies most of the commonly used default term-structure models.
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THE RATING APPROACH

What is a Rating?

A credit rating represents the agency’s opinion about the creditworthiness
of an obligor, with respect to a particular debt security or other financial
obligation (issue-specific credit ratings). It also applies to an issuer’s general
creditworthiness (issuer credit ratings). There are generally two types of
assessment corresponding to different financial instruments: long-term
and short-term ones. One should stress that ratings from various agencies
do not convey the same information. S&P perceives its ratings primarily
as an opinion on the likelihood of default of an issuer,* while Moody’s
ratings tend to reflect the agency’s opinion on the expected loss (probability
of default times loss severity) on a facility.

Long-term issue-specific credit ratings and issuer ratings are
divided into several categories, e.g., from “AAA” to “D” for S&P. Short-
term issue-specific ratings can use a different scale (e.g., from “A-1” to
“D”). Figure 2.1 reports Moody’s and S&P rating scales. Although these
grades are not directly comparable as recalled earlier, it is common to put
them in parallel. The rated universe is broken down into two very broad
categories: investment grade (IG) and noninvestment grade (NIG) or
speculative issuers. IG firms are relatively stable issuers with moderate
default risk while bonds issued in the NIG category, often called “junk
bonds,” are much more likely to default.

The credit quality of firms is best for Aaa/AAA ratings and deterio-
rates as ratings go down the alphabet. The coarse grid AAA, AA, A, . . .
CCC can be supplemented with plusses and minuses in order to provide
a finer indication of risk.

The Rating Process
A rating agency supplies a rating only if there is adequate information
available to provide a credible credit opinion. This opinion relies on vari-
ous analyses† based on a defined analytical framework. The criteria
according to which any assessment is provided are very strictly defined
and constitute the intangible assets of rating agencies, accumulated over
years of experience. Any change in criteria is typically discussed at a
worldwide level.
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Notching up is also possible.
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For industrial companies, the analysis is commonly split between
business reviews (firm competitiveness, quality of the management and
of its policies, business fundamentals, regulatory actions, markets, opera-
tions, cost control, etc.) and quantitative analyses (financial ratios, etc.).
The impact of these factors depends highly on the industry.

Figure 2.2* is an illustration of how various factors may impact dif-
ferently on various industries. It also reports various business factors that
impact the ratings in different sectors.

Following meetings with the management of the firm asking for a
rating, the rating agency reviews qualitative as well as quantitative fac-
tors and compares the company’s performance to its peers (see the ratio
medians per rating in Table 2.1). Following this review, a rating commit-
tee meeting is convened. The committee discusses the lead analyst’s rec-
ommendation before voting on it.

The issuer is subsequently notified of the rating and the major con-
siderations supporting it. A rating can be appealed prior to its publication
if meaningful new or additional information is to be presented by the
issuer. But there is no guarantee that a revision will be granted. When a
rating is assigned, it is disseminated to the public through the news
media.
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B B

Moody’sDescription

Investment grade

Speculative grade

S&P

Aaa

Aa

Baa

AAA

AA

BBB

Maximum safety

Worst credit quality

Ba BB

Caa CCC

F I G U R E 2 . 1

Moody’s and S&P’s Rating Scales.

*This figure is for illustrative purposes and may not reflect the actual weights and factors
used by one agency or another.
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F I G U R E  2 . 2

An Example of Various Factors that May be Used 
to Assign Ratings.

Indicative
averages

Retail Airlines Property Pharmaceuticals

Investment
and

speculative
grade(%)

Business
Risk

Weight

Financial
Risk

Weight

Business
Qualitative

Factors

Investment grade: 82%
Speculative grade: 18%

heigh

low

-Scale & Geographic profile
-Position on price, value and
service
-Regulatory environment

Iinvestment grade: 24%
Speculative grade: 76%

low

high

-Market Position (share
capacity)
-Ultimation of capacity.
-Aircraftfleet (type/age)
-Cost control (labour fuel)

-Quality and location of the
assets
-Quality of tenarts
-Lease structure
-Country-specific criteria
(laws, taxation, and market
liquidity

low

high

Investment grade: 90%
Speculative grade: 10%

Investment grade:
78%
Speculative grade:
22%

high

low

-R&D Programs
-Product portfolio
-Patert expirations

T A B L E  2 . 1

Financial Ratios per Rating (Three-Year Medians—
1998–2000) in U.S. firms

AAA AA A BBB BB B CCC

EBIT int. cov. (x) 21.4 10.1 6.1 3.7 2.1 0.8 0.1

EBITDA int. cov. (x) 26.5 12.9 9.1 5.8 3.4 1.8 1.3

Free oper. cash flow/ 84.2 25.2 15.0 8.5 2.6 (3.2) (12.9)
total debt (%)

Funds from oper./ 128.8 55.4 43.2 30.8 18.8 7.8 1.6
total debt (%)

Return on capital (%) 34.9 21.7 19.4 13.6 11.6 6.6 1.0

Operating income/ 27.0 22.1 18.6 15.4 15.9 11.9 11.9
sales (%)

Long-term debt/ 13.3 28.2 33.9 42.5 57.2 69.7 68.8
capital (%)

Total debt/capital (%) 22.9 37.7 42.5 48.2 62.6 74.8 87.7

Number of 8 29 136 218 273 281 22
Companies

Source: S&P’s.



All ratings are monitored on an ongoing basis. Any new qualitative
and quantitative piece of information is under surveillance. Regular meet-
ings with the issuer’s management are organized. As a result of the sur-
veillance process, the rating agency may decide to initiate a review (i.e.,
put the firm on Credit Watch) and change the current rating. When a rat-
ing comes on a Credit Watch listing, a comprehensive analysis is under-
taken. After the process, the rating change or affirmation is announced.

More recently, the “outlook” concept has been introduced. It pro-
vides information about the rating trend. If, for instance, the outlook is
positive, it means that there is some potential upside conditional to the
realization of current assumptions regarding the company. If the opposite,
a negative outlook suggests that the creditworthiness of the company fol-
lows a negative trend.

A very important fact that is persistently emphasized by agencies is
that their ratings are mere opinions. They do not constitute any recom-
mendation to purchase, sell, or hold any type of security. A rating in itself
indeed says nothing about the price or relative value of specific securities.
A CCC bond may well be under-priced while an AA security may be trad-
ing at an overvalued price, although the risk may be appropriately reflected
by their respective ratings.

The Link between Ratings and PDs
Although a rating is meant to be forward looking, it is not devised to pin-
point a precise PD but rather to a broad risk bucket. Rating agencies pub-
lish on a regular basis tables reporting observed default rates per rating
category, per year, per industry, and per region. These tables reflect the
empirical average defaulting frequencies of firms per rating category
within the rated universe. The primary goal of these statistics is to verify
that better (worse) ratings are indeed associated with lower (higher)
default rates. They show that ratings tend to have roughly homogeneous
default rates across industries,* as illustrated in the Table 2.2.

Figure 2.3 displays cumulative default rates in S&P’s universe per
rating category. There is a striking difference in default patterns between
investment grade and speculative grade categories. The clear link
between observed default rates and rating categories is the best support
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*For some industries, observed long-term default rates can differ from the average figures.
This type of change can be explained as major business changes like, for example, regulatory
changes within the industry. Statistical effects, such as too limited and nonrepresentative
sample, can also bias results.



T A B L E 2 . 2

Average One Year Default Rates Per Industry*

Trans. Util. Tele. Media Insur. Hightec Chem Build Fin. Ener. Cons. Auto.

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A 0.00 0.11 0.00 0.00 0.09 0.00 0.00 0.42 0.00 0.20 0.00 0.00

BBB 0.00 0.14 0.00 0.27 0.67 0.73 0.19 0.64 0.32 0.22 0.17 0.29

BB 1.46 0.25 0.00 1.24 1.59 0.75 1.12 0.89 0.86 0.98 1.77 1.47

B 6.50 6.31 5.86 4.97 2.38 4.35 5.29 5.41 8.97 9.57 6.77 5.19

CCC 19.40 71.43 35.85 29.27 10.53 9.52 21.62 21.88 24.66 14.44 26.00 33.33

*Default rates for CCC bonds are based on a very small sample and may not be statistically robust.
Source: S&P’s CreditPro, over the period 1981–2001.
Abbreviations: Trans. = transportation; Util. = utilities excluding Energy comps.; Tele. = telecoms; Insur. = insurance; Hightec = High Technology; Chem = chemistry;
Build = construction; Fin. = Financial companies excluding insurance companies; Ener. = Energy companies; Cons. = consumer products; Auto. = automotive companies..
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for agencies’ claim that their grades are appropriate measures of credit-
worthiness.

Rating agencies also calculate transition matrices, which are tables
reporting probabilities of migrations from one rating category to another.
They serve as indicators of the likely path of a given credit up to a given
horizon. Ex-post information, as that provided in default tables or transi-
tion matrices, does not guarantee provision of ex-ante insights regarding
future PDs or migration. The stability over time of the PD in a given rating
class and stability of rating criteria used by agencies, however, contribute
to making ratings forward-looking predictors of default.

Estimating Cumulative Default Rates 
and Transition Matrices

Stability of Default Rates and Transition 
Matrices over the Cycle
Transition matrices appear to be dependent on the economic cycle, as
downgrades and PDs increase significantly during recessions. Nickell
et al. (2000) classify years between 1970 and 1997 in three categories
(growth, stability, and recession), according to GDP growth for the G7
countries. One of their observations is that for IG counterparts, migration
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F I G U R E  2 . 3

Cumulative Default Rates per Rating Category (S&P’s
CreditPro).

50

40

30

20

10

0

1

3 5 7 9

11 13

15 17

19

Years

P
er

ce
n

t

AAA

AA

A

BBB

BB

B

CCC



volatility is much lower during growth periods than during recessions.
Their conclusion is that transition matrices unconditional on the economic
cycle cannot be considered as Markovian.*

In another study based on S&P’s data, Bangia et al. (2002) observe that
the more the time horizon of an independent transition matrix increases, the
less monotonic† the matrix becomes. Regarding its Markovian property, the
authors tend to be less affirmative than Nickell et al. (2000), that is, their
tests show that the Markovian hypothesis is not strongly rejected. The
authors however acknowledge that one can observe path dependency in
transition probabilities. For example, a past history of downgrades has an
impact on future migrations. Such path dependency is significant as future
PDs can increase up to five times for recently downgraded companies.

The authors then focus on the impact of economic cycles on transi-
tion matrices. They select two types of periods (expansion, recession)
according to NBER indicators. The main difference between the two matri-
ces corresponds mainly to a higher frequency of downgrades during
recession periods. Splitting transition matrices in two periods is helpful,
i.e., out of diagonal terms are much more stable. Their conclusion is that
choosing two transition matrices conditional to the economic cycle gives
much better results, in terms of Markovian stability, than considering only
one matrix unconditional on the economic cycle.

In order to further investigate the impact of cycles on transition
matrices and credit VaR, Bangia et al. (2002) use a version of CreditMetrics
on a portfolio of 148 bonds. They show that during recession periods, the
necessary economic capital increases substantially compared to growth
periods (by 30 percent for a 99 percent confidence level of credit VaR or 25
percent for a 99.9 percent confidence level). Note that the authors ignore
the increase in correlation during recessions.

Estimating Default and Rating Transition 
Probabilities via Cohort Analysis
A common approach for rated companies is to derive historic average
default or rating transition probabilities by observing the performance of
groups of companies—frequently called cohorts—with identical credit
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*A Markov chain is defined by the fact that information known at time t − 1, used in the
chain, is sufficient to determine the probabilities at time t. In other words, it is not necessary
the complete path till t − 1 in order to obtain the probabilities at time t.
†Monotonicity rule: probabilities are decreasing when the distance to the diagonal of the
matrix increases. This property is characteristic from the trajectory concept: migrations occur
through regular downgrade or upgrade rather than through a big shift.



ratings. These estimates are particularly suitable in the context of long-
term “through-the-cycle” risk management, which attempts to dampen
fluctuations due to business cycle and other economic effects.

We start by considering all companies at a specific point in time t
(e.g., December 31, 2000). We denote the total number of companies in the
kth cohort at time t by Nk(t), and the total number of observed defaults in
period T (i.e., between time t + T − 1 and time t + T ) by Dk(t, T). We then
obtain an estimate for the (marginal) PD in year T (as seen from time t):

*

Repeating this analysis for cohorts created at M different points in time t
allows us to obtain an estimate for the unconditional PD in period T,

These unconditional probabilities are simply weighted averages of the
estimates obtained for cohorts considered in different periods. Typically,

(each period is equally weighted) or 

(weighted according to the number of observations in different periods).

One way to obtain unconditional cumulative PDs is to replace the
(marginal) number of defaults in period T, Dk (t, T ), with the cumulative

number of defaults up to period T, . 

Unfortunately, this estimator “loses” more and more information as T
increases.† An alternative method, which incorporates all available infor-
mation, is to calculate the unconditional (weighted average) cumulative
probabilities from the unconditional marginal probabilities 

This can be done by means of the following recursion:P Tk ( ).
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*The cohort analysis outlined here is based on the global ratings performance data contained
in S&P’s CreditPro® Version 6.60 (http://creditpro.standardandpoors.com/).
†Some companies will have their rating withdrawn during the course of the year. It is com-
mon to treat these transitions to NR (not rated) as noninformative with respect to the credit
quality. Hence, companies that have their rating withdrawn during the period of interest are
ignored in the subsequent analysis.

http://creditpro.standardandpoors.com/


Table 2.3 and Figure 2.4 show the cumulative PDs for time horizons of up
to 10 years, estimated from the S&P CreditPro® database. The database
contains the ratings history of 9740 companies from December 31, 1981 to
December 31, 2003, and includes 1386 defaults. Figure 2.4 plots the results
for rating classes “AAA” to “B.”

The estimates for “AAA” companies over short horizons reveal one
of the main drawbacks of cohort analysis. The approach is not capable of
deriving nonzero probabilities if no defaults have been observed in the
past. However, it is clear that there is a chance (however small) that even
a highly rated company will default within the course of one or two
years.

The same approach can be taken for estimating probabilities for rat-
ing transitions. In this case, we have, for a given horizon, a matrix of
probabilities (transition matrix) instead of a vector of probabilities. The
entries of this matrix can be estimated using straightforward generaliza-
tions of the given equations. The corresponding rating transition matrix is
given in Table 2.4.

P P

P T P T P T P T
k k

k k k k

cum

cum cum cum

( ) ( ),

( ) ( ) ( ( )) ( ).

1 1

1 1 1

=

= − + − −
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*For T = 5 years, e.g., the last cohort that can be considered is December 1998 if the last entry
in the database corresponds to December 2003. This is because cohorts originating from later
dates would not be not observed for the whole five years, they are “right-censored.”

T A B L E  2 . 3

Cumulative PDs (in Percents) 1981–2003.

Rating Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

AAA 0.00 0.00 0.03 0.06 0.10 0.17 0.25 0.38 0.43 0.48

AA 0.01 0.04 0.10 0.19 0.31 0.43 0.58 0.71 0.82 0.94

A 0.05 0.15 0.28 0.45 0.65 0.87 1.11 1.34 1.62 1.95

BBB 0.37 1.01 1.67 2.53 3.41 4.24 4.94 5.61 6.22 6.93

BB 1.36 4.02 7.12 9.92 12.38 14.75 16.65 18.24 19.84 21.00

B 6.08 13.31 19.20 23.66 26.82 29.29 31.33 33.01 34.21 35.41

CCC/C 30.85 39.76 45.47 49.53 53.00 54.30 55.50 56.11 57.59 58.44

Source: S&P’s.
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F I G U R E  2 . 4

Cumulative Default Probabilities (AAA to B) 1981–2003.
(S&P’s).

Cumulative Default Probabilities for rated firms
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One year Transition Matrix (Percents) in U.S. Industries
(1981–2001)

Initial
End rating

Rating AAA AA A BBB BB B CC D

AAA 89.41 5.58 0.44 0.08 0.04 0 0 0

AA 0.58 88.28 6.51 0.6 0.07 0.09 0.03 0.01

A 0.07 2.05 87.85 4.99 0.46 0.17 0.05 0.06

BBB 0.04 0.24 4.52 84.4 4.24 0.68 0.16 0.27

BB 0.03 0.07 0.43 6.1 75.56 7.33 0.82 1.17

B 0 0.09 0.25 0.32 4.78 74.59 3.75 5.93

CCC 0.13 0 0.25 0.75 1.63 8.67 51.01 25.25

D denotes default in this table.
Source: S&P’s Credit Pro.



Adjusting for Withdrawn Ratings (NR). Some firms that
have a rating at the beginning of a given period may no longer have one
at the end. This may be because the issuer has not paid the agency’s fee or
that it has asked the agency to withdraw its rating. These events are not
rare and account for about 4.5 percent of transitions in the IG class and
10 percent in the speculative grade category over a given year.

When calculating probabilities, one needs to adjust the probabilities
calculated earlier to take into consideration the possibility of withdrawn
rating. Otherwise, the sum of transition probabilities to the n ratings
would be less than one.

The adjustment is performed by ignoring the firms that have their
rating withdrawn during a given period. The underlying assumption is
that the withdrawal of a rating is a neutral event, i.e., it is not associated
with any information regarding the credit quality of the issuer. One
could, however, argue that firms that expect a downgrade below what
they perceive is an acceptable level ask for their ratings to be withdrawn,
whereas firms that are satisfied with their grade generally want to main-
tain it.

It is difficult to get information about the motivation behind a
rating’s withdrawal and, therefore, such adjustment is generally considered
acceptable.

Table 2.5 shows the default table used in collateral debt obligations
S&P CDO Evaluator version 2.4.1. In that version, the cohort analysis was
the basis of the methodology used.

Estimating Default and Rating Transition 
Probabilities via a Duration Technique
The cohort approach outlined earlier is also frequently employed in the
calculation of rating transition probabilities or transition matrices. Instead
of counting the number of defaults, Dk(t, T ), we use the number of rating
migrations from rating class k to a different class l, Nkl(t, T ). Although
matrices can be obtained for different horizons T, it is common to focus on
the average one-year transition matrix, denoted by Q– . Assuming that rat-
ing transitions follow a time homogeneous Markov process, the T-period
matrix Q– (T) is given by Q– (T) = Q– T. The analysis does not take into account
the exact timing of events and ignores multiple transitions between time
t and the end of the observation period, t + T. The estimates may also vary
with the exact choice of t and the number of cohorts considered within a
fixed period of time (e.g., monthly or annual cohorts). One way to over-
come these drawbacks is to work within a so-called duration (or hazard)
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T A B L E  2 . 5

Cumulative PDs per Rating Category (in Percents)—CDO Evaluator 2.41 Assumptions

AAA AA+ AA AA− A+ A A− BBB+ BBB BBB− BB+ BB BB− B+ B B− CCC+ CCC CCC− CC SD D

1 0.023 0.023 0.111 0.136 0.136 0.136 0.145 0.225 0.225 0.544 1.666 2.772 2.792 3.667 8.594 9.563 14.693 19.824 46.549 100.000 100.000 100.000

2 0.062 0.071 0.242 0.290 0.303 0.317 0.358 0.532 0.638 1.357 3.316 5.265 5.667 7.535 14.514 16.626 23.401 30.176 53.451 100.000 100.000 100.000

3 0.119 0.143 0.394 0.464 0.501 0.542 0.632 0.911 1.182 2.317 4.916 7.498 8.380 11.078 18.594 21.564 28.696 35.829 57.219 100.000 100.000 100.000

4 0.193 0.239 0.565 0.659 0.728 0.808 0.959 1.352 1.814 3.344 6.439 9.489 10.826 14.122 21.446 24.962 32.024 39.086 59.390 100.000 100.000 100.000

5 0.284 0.357 0.757 0.875 0.984 1.111 1.330 1.841 2.500 4.387 7.866 11.255 12.973 16.655 23.488 27.316 34.200 41.083 60.722 100.000 100.000 100.000

6 0.392 0.497 0.968 1.113 1.265 1.448 1.737 2.368 3.215 5.415 9.189 12.817 14.834 18.735 24.997 28.985 35.690 42.394 61.596 100.000 100.000 100.000

7 0.517 0.656 1.198 1.372 1.570 1.814 2.173 2.921 3.941 6.410 10.407 14.197 16.436 20.438 26.151 30.208 36.762 43.317 62.211 100.000 100.000 100.000

8 0.658 0.835 1.445 1.650 1.896 2.204 2.632 3.492 4.667 7.360 11.525 15.419 17.816 21.840 27.065 31.141 37.576 44.010 62.673 100.000 100.000 100.000

9 0.815 1.033 1.710 1.946 2.242 2.614 3.108 4.074 5.383 8.261 12.548 16.503 19.008 23.004 27.816 31.883 38.222 44.562 63.041 100.000 100.000 100.000

10 0.988 1.247 1.990 2.259 2.604 3.041 3.597 4.661 6.084 9.112 13.486 17.470 20.044 23.984 28.453 32.497 38.760 45.023 63.349 100.000 100.000 100.000

11 1.176 1.478 2.285 2.588 2.981 3.481 4.096 5.248 6.766 9.914 14.346 18.338 20.952 24.821 29.008 33.023 39.223 45.424 63.616 100.000 100.000 100.000

12 1.378 1.724 2.594 2.931 3.371 3.931 4.599 5.831 7.428 10.671 15.139 19.122 21.755 25.548 29.504 33.488 39.635 45.782 63.855 100.000 100.000 100.000

13 1.594 1.985 2.916 3.287 3.772 4.389 5.106 6.409 8.068 11.384 15.872 19.835 22.473 26.190 29.957 33.910 40.011 46.111 64.074 100.000 100.000 100.000

14 1.823 2.259 3.249 3.654 4.183 4.852 5.614 6.979 8.687 12.058 16.554 20.489 23.122 26.765 30.377 34.300 40.359 46.418 64.278 100.000 100.000 100.000

15 2.066 2.546 3.593 4.032 4.601 5.319 6.120 7.539 9.286 12.697 17.189 21.093 23.714 27.288 30.771 34.667 40.687 46.708 64.472 100.000 100.000 100.000

16 2.320 2.844 3.947 4.418 5.025 5.789 6.624 8.090 9.864 13.304 17.786 21.655 24.260 27.770 31.146 35.015 41.000 46.986 64.657 100.000 100.000 100.000

17 2.586 3.154 4.310 4.812 5.454 6.259 7.125 8.629 10.425 13.882 18.349 22.182 24.768 28.220 31.506 35.349 41.301 47.253 64.835 100.000 100.000 100.000

18 2.863 3.473 4.681 5.213 5.887 6.728 7.621 9.159 10.967 14.435 18.882 22.680 25.245 28.643 31.854 35.673 41.593 47.513 65.009 100.000 100.000 100.000

19 3.150 3.802 5.058 5.619 6.323 7.197 8.112 9.677 11.493 14.965 19.390 23.152 25.696 29.045 32.191 35.987 41.877 47.766 65.178 100.000 100.000 100.000

20 3.447 4.140 5.442 6.030 6.761 7.663 8.598 10.185 12.005 15.474 19.875 23.603 26.126 29.430 32.520 36.294 42.154 48.014 65.343 100.000 100.000 100.000

21 3.753 4.485 5.831 6.444 7.200 8.127 9.078 10.683 12.502 15.966 20.342 24.036 26.538 29.801 32.843 36.595 42.427 48.258 65.505 100.000 100.000 100.000

22 4.067 4.838 6.224 6.861 7.639 8.588 9.552 11.171 12.987 16.442 20.792 24.454 26.935 30.161 33.159 36.892 42.695 48.498 65.665 100.000 100.000 100.000

23 4.389 5.197 6.622 7.281 8.078 9.046 10.021 11.650 13.460 16.904 21.227 24.858 27.319 30.510 33.471 37.183 42.959 48.735 65.823 100.000 100.000 100.000

24 4.719 5.562 7.023 7.702 8.517 9.500 10.483 12.120 13.923 17.353 21.650 25.251 27.692 30.852 33.779 37.472 43.220 48.969 65.979 100.000 100.000 100.000

25 5.056 5.932 7.426 8.124 8.954 9.950 10.940 12.582 14.376 17.791 22.062 25.634 28.056 31.186 34.083 37.756 43.479 49.201 66.134 100.000 100.000 100.000

26 5.398 6.307 7.831 8.547 9.389 10.396 11.391 13.036 14.819 18.219 22.463 26.008 28.412 31.515 34.383 38.039 43.734 49.430 66.287 100.000 100.000 100.000

27 5.747 6.686 8.239 8.970 9.823 10.838 11.836 13.482 15.255 18.638 22.856 26.375 28.761 31.838 34.681 38.318 43.988 49.658 66.438 100.000 100.000 100.000

28 6.101 7.068 8.647 9.392 10.254 11.276 12.276 13.921 15.683 19.048 23.242 26.735 29.104 32.157 34.976 38.595 44.239 49.883 66.589 100.000 100.000 100.000

29 6.459 7.454 9.056 9.813 10.684 11.710 12.711 14.354 16.104 19.452 23.620 27.089 29.442 32.472 35.268 38.870 44.489 50.107 66.738 100.000 100.000 100.000

30 6.822 7.842 9.465 10.234 11.110 12.140 13.140 14.780 16.518 19.848 23.992 27.437 29.775 32.783 35.559 39.143 44.737 50.330 66.887 100.000 100.000 100.000



modeling framework, where the exact points in time of migrations are
captured. In its simplest form, the duration analysis involves the estima-
tion of a generator matrix of a Markov chain, which, for the time-
homogeneous as well as time-inhomogeneous case, is only marginally
more complex than a cohort analysis. Lando and Skodeberg (2002),
Jafry and Schuermann (2003), and Jobst and Gilkes (2003) discuss these
approaches in more detail. Another advantage of the duration framework
is that the estimation process can be extended to incorporate state vari-
ables (economic variables or past ratings), in order to capture business
cycle effects and ratings momentum. See, e.g., Kavvathas (2001),
Christensen et al. (2004), and Couderc and Renault (2005).

Let us consider the simplest case of a time-homogeneous, constant
intensity estimator. A transition matrix can be estimated in a straight-
forward manner. The maximum-likelihood estimator under the assumption
of constant transition intensities is:

where mij(0, T ) corresponds to the total number of migrations from class
i to class j with i � j over the interval [0, T]; it includes firms that were
not in rating class i initially, but have entered into this class i during the
period [0, T] and subsequently moved to class j during the same period.
ni(u) is the total number of firms in class i at time u. As a consequence, ∫

T

0
ni(u)du represents the total number of firms in class i during the [0, T]
period weighted by the actual length of time each firm spent in this
class.

We show in Tables 2.6A and B how the estimation of a one-year
time-homogeneous transition matrix can differ whether it is computed
with the duration method or with the cohort approach. We use S&P’s
Credit Pro over the period 1981–2002, adjusting for NRs.

A comparison of the matrices reveals three major differences:

1. AAA default probabilities and migration rates to B and CCC are
nonzero for the duration method, despite the fact that no
defaults were observed for highly rated issuers. Migrations of a
firm from AAA to AA to A to a subsequent default are sufficient
to contribute probability mass to AAA default probabilities
(PDAAA).

λij
ij

i

T

m T

n u du
=

∫
( , )

( )

0

0
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2. In particular, IG (except AAA) PDs are significantly smaller for
the time-homogeneous duration approach: the less-efficient
cohort approach appears to overestimate default risk
significantly. For example, PDA is approximately six times
higher in the cohort approach. These lower estimates are
obtained when firms spend time in the A state during the year
on their way up (down) to higher (lower) ratings from lower
(higher) rating classes (passing through effects). Such moves
reduce the default intensity of A-rated issuers (as the denomi-
nator increases) which in turn leads to lower PDs.
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T A B L E  2 . 6 A

Duration Method: One-year (NR-adjusted) Transition
Matrix (1981–2002)

AAA AA A BBB BB B CCC D

AAA 93.1178 6.1225 0.5736 0.1267 0.0536 0.0048 0.0006 0.0003

AA 0.5939 91.3815 7.3290 0.5600 0.0697 0.0527 0.0092 0.0040

A 0.0641 1.9125 91.9291 5.4793 0.4386 0.1514 0.0157 0.0093

BBB 0.0363 0.2314 4.0335 89.5775 5.0656 0.8554 0.0866 0.1137

BB 0.0299 0.0987 0.5407 5.0917 83.8964 8.8088 0.8564 0.6774

B 0.0043 0.0764 0.2531 0.4936 4.3764 83.4296 6.3009 5.0658

CCC 0.0595 0.0101 0.3169 0.4650 1.1593 7.0421 47.1048 43.8423

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.000

T A B L E  2 . 6 B

Cohort Method: Average One-year (NR-adjusted)
Transition Matrix (1981–2002)

AAA AA A BBB BB B CCC D

AAA 93.0859 6.2624 0.4534 0.1417 0.0567 0.0000 0.0000 0.0000

AA 0.5926 91.0594 7.5372 0.6134 0.0520 0.1144 0.0208 0.0104

A 0.0538 2.0987 91.4858 5.6084 0.4664 0.1913 0.0419 0.0538

BBB 0.0324 0.2265 4.3362 89.2161 4.6355 0.9223 0.2751 0.3560

BB 0.0361 0.0843 0.4334 5.9595 83.0966 7.7173 1.2039 1.4688

B 0.0000 0.0830 0.2844 0.4029 5.2264 82.4484 4.8353 6.7196

CCC 0.1053 0.0000 0.3158 0.6316 1.5789 9.8947 56.5263 30.9474

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000



3. For very low rating categories (CCC in the above coarse setup),
the differences are also extreme; About 30 percent CCC default
rates for the cohort approach compared to 44 percent for the
duration method. Hence, using the less efficient (yet industry
standard) cohort approach leads to 13 percent lower results. One
explanation is that companies pass through CCC ratings on their
way to default and if they do so, usually spend only little time
there. This yields a small denominator and therefore higher PDs.

The use of this duration approach has had a significant impact on the
default table embedded into CDO Evaluator version 3. The new default
table (Table 2.7) is presented next, and changes can be seen from the table
(Table 2.5) that corresponded to CDO Evaluator version 2.41. This new
table is a result of a blend between the cohort approach, the duration
approach, and empirically observed cumulative default rates.

STATISTICAL PD MODELING 
AND CREDIT SCORING

In order to quantify credit risk, practitioners often build models that
provide PDs of specific obligors over a given period of time. Alternatively,
one often assigns a so-called credit score to an obligor, e.g., a number
between 1 and 10 with 1 corresponding to low risk and 10 corresponding
to high risk of default.

There are two fundamentally different approaches to modeling PDs
or assigning credit scores:

♦ Statistical approach
♦ Structural approach (also called Merton model)

Both types of approaches, along with a myriad of hybrids, are commonly
used in practice. We shall review some popular examples for the former
approach first, and we shall discuss the latter approach in a later section.

Some Statistical Techniques

In this section, we briefly discuss some statistical approaches to model-
ing PDs for a given period of time (typically one year) and deriving
credit scores. Some of these approaches are based on techniques from
classical statistics, whereas others resort to methods from machine learning
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T A B L E  2 . 7

Cumulative PD per Rating Category (in Percents)—CDO Evaluation 3 Default Rates

AAA AA+ AA AA− A+ A A− BBB+ BBB BBB− BB+ BB BB− B+ B B− CCC+ CCC CCC− CC SD D

1 0.000 0.001 0.008 0.014 0.018 0.022 0.033 0.195 0.294 0.806 1.484 2.296 3.457 4.100 5.295 8.138 23.582 45.560 66.413 100.000 100.000 100.000

2 0.005 0.009 0.039 0.048 0.064 0.080 0.121 0.427 0.684 1.805 2.915 4.506 6.624 8.124 10.833 16.559 38.046 59.087 79.205 100.000 100.000 100.000

3 0.016 0.027 0.085 0.102 0.138 0.172 0.262 0.701 1.162 2.899 4.312 6.597 9.516 11.903 15.940 23.729 46.605 64.704 82.840 100.000 100.000 100.000

4 0.034 0.056 0.144 0.178 0.240 0.298 0.451 1.023 1.713 4.034 5.681 8.567 12.164 15.388 20.479 29.578 52.040 67.875 84.478 100.000 100.000 100.000

5 0.061 0.098 0.219 0.276 0.371 0.459 0.686 1.391 2.323 5.179 7.020 10.424 14.595 18.571 24.463 34.333 55.809 70.042 85.513 100.000 100.000 100.000

6 0.097 0.153 0.310 0.397 0.531 0.655 0.966 1.805 2.980 6.316 8.327 12.175 16.832 21.462 27.947 38.234 58.626 71.685 86.285 100.000 100.000 100.000

7 0.144 0.224 0.420 0.543 0.719 0.887 1.287 2.261 3.672 7.434 9.598 13.826 18.895 24.083 30.999 41.476 60.850 73.005 86.907 100.000 100.000 100.000

8 0.204 0.311 0.549 0.713 0.937 1.152 1.648 2.756 4.390 8.529 10.831 15.387 20.800 26.457 33.680 44.209 62.672 74.105 87.429 100.000 100.000 100.000

9 0.276 0.414 0.700 0.909 1.184 1.451 2.047 3.284 5.127 9.598 12.025 16.862 22.563 28.610 36.046 46.543 64.204 75.041 87.877 100.000 100.000 100.000

10 0.362 0.536 0.872 1.130 1.458 1.782 2.479 3.842 5.876 10.637 13.179 18.258 24.197 30.565 38.145 48.559 65.517 75.853 88.268 100.000 100.000 100.000

11 0.463 0.678 1.066 1.377 1.761 2.143 2.943 4.425 6.634 11.649 14.295 19.580 25.717 32.346 40.016 50.320 66.657 76.565 88.614 100.000 100.000 100.000

12 0.581 0.839 1.284 1.650 2.092 2.534 3.434 5.029 7.396 12.631 15.371 20.834 27.132 33.973 41.694 51.871 67.659 77.197 88.921 100.000 100.000 100.000

13 0.715 1.020 1.525 1.947 2.448 2.952 3.952 5.651 8.160 13.587 16.410 22.025 28.453 35.463 43.206 53.248 68.548 77.762 89.197 100.000 100.000 100.000

14 0.867 1.223 1.790 2.270 2.830 3.396 4.491 6.287 8.923 14.515 17.414 23.157 29.689 36.832 44.575 54.481 69.343 78.271 89.447 100.000 100.000 100.000

15 1.037 1.447 2.078 2.617 3.237 3.864 5.051 6.936 9.684 15.418 18.383 24.234 30.849 38.096 45.822 55.592 70.060 78.732 89.674 100.000 100.000 100.000

16 1.225 1.693 2.389 2.988 3.666 4.353 5.628 7.593 10.441 16.296 19.320 25.262 31.940 39.265 46.962 56.599 70.710 79.154 89.882 100.000 100.000 100.000

17 1.433 1.961 2.724 3.382 4.117 4.862 6.221 8.258 11.193 17.152 20.226 26.243 32.969 40.351 48.009 57.517 71.304 79.541 90.074 100.000 100.000 100.000

18 1.661 2.250 3.080 3.798 4.588 5.390 6.826 8.928 11.940 17.985 21.103 27.181 33.941 41.363 48.976 58.359 71.848 79.898 90.250 100.000 100.000 100.000

19 1.908 2.561 3.458 4.234 5.078 5.934 7.442 9.602 12.680 18.798 21.952 28.081 34.862 42.310 49.872 59.134 72.350 80.229 90.414 100.000 100.000 100.000

20 2.175 2.893 3.858 4.690 5.586 6.493 8.068 10.279 13.414 19.591 22.777 28.944 35.737 43.198 50.706 59.851 72.816 80.538 90.568 100.000 100.000 100.000

21 2.462 3.246 4.277 5.165 6.110 7.065 8.701 10.957 14.142 20.365 23.577 29.773 36.570 44.034 51.486 60.517 73.249 80.827 90.711 100.000 100.000 100.000

22 2.769 3.619 4.715 5.657 6.648 7.648 9.340 11.636 14.862 21.123 24.355 30.572 37.365 44.824 52.216 61.140 73.654 81.099 90.845 100.000 100.000 100.000

23 3.095 4.012 5.171 6.164 7.200 8.241 9.985 12.314 15.575 21.863 25.112 31.343 38.126 45.571 52.904 61.723 74.035 81.355 90.973 100.000 100.000 100.000

24 3.440 4.423 5.644 6.687 7.763 8.844 10.633 12.991 16.281 22.589 25.850 32.087 38.855 46.281 53.554 62.271 74.394 81.598 91.093 100.000 100.000 100.000

25 3.804 4.853 6.133 7.223 8.337 9.454 11.284 13.667 16.980 23.300 26.570 32.808 39.556 46.958 54.169 62.789 74.733 81.828 91.207 100.000 100.000 100.000

26 4.187 5.300 6.638 7.772 8.921 10.070 11.937 14.340 17.671 23.997 27.272 33.506 40.230 47.604 54.754 63.280 75.055 82.048 91.316 100.000 100.000 100.000

27 4.586 5.763 7.156 8.331 9.513 10.692 12.591 15.010 18.356 24.682 27.959 34.184 40.881 48.222 55.311 63.746 75.362 82.258 91.419 100.000 100.000 100.000

28 5.003 6.241 7.686 8.901 10.112 11.318 13.245 15.678 19.033 25.354 28.630 34.842 41.510 48.815 55.844 64.190 75.655 82.459 91.519 100.000 100.000 100.000

29 5.436 6.735 8.229 9.480 10.718 11.947 13.900 16.342 19.704 26.015 29.288 35.483 42.118 49.386 56.355 64.615 75.935 82.653 91.614 100.000 100.000 100.000

30 5.885 7.241 8.781 10.066 11.329 12.580 14.553 17.003 20.367 26.665 29.933 36.108 42.709 49.936 56.845 65.022 76.205 82.839 91.706 100.000 100.000 100.000



(also called statistical learning). They share the common idea that the PD
of an obligor is learned from the data with no or little input of knowledge
about the mechanisms that lead firms to default.

In statistical learning, one often makes a distinction between super-
vised and unsupervised classification. These two approaches differ with
respect to the data from which we learn. In the first case, so-called labeled
training data are available, i.e., observations that provide a default indi-
cator or a credit score along with the potential risk factors. In other words,
a supervised algorithm learns from historical observations of firms for
which we know the class labels (default indicator or credit score).
Unsupervised learning algorithms, on the other hand, rely on so-called
unlabeled data, i.e., observations for which the class labels are unknown.
While this type of learning can be used for the assignment of credit scores,
it is not commonly used for modeling PDs; we will not discuss unsuper-
vised learning in this chapter.

Some approaches that can be used for modeling PDs or deriving
credit scores are*:

1. Logistic regression and probit
2. Maximum-likelihood estimation
3. Bayesian estimation (e.g., naïve Bayes classifier)
4. Minimum-relative-entropy models
5. Fisher linear-discriminant analysis
6. k-Nearest neighbor classifiers
7. Classification trees
8. Support vector machines
9. Neural networks

10. Genetic algorithms

Some of the methods in this list are closely related to each other, and the
methods in the list are not exclusive. For example, logistic regression can
be viewed as a special case of methods 2, 3, or 4, and maximum-likelihood
estimation can be interpreted in the Bayesian framework. However, all
of these methods are interesting in their own right and are applied by
practitioners.

The first four of these methods provide conditional probabilities for
the classes (default or nondefault for PD modeling and the score for credit
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scoring), given the values of the risk factors. The remaining methods in
the list are classifiers by design, i.e., they assign a single class but no class
probabilities to obligors. This makes these methods more relevant for
credit scoring than for PD modeling. However, some of these methods
can be generalized to provide conditional probabilities. One way for
doing this is to apply multiple, slightly different, classifiers for a given
obligor and assign class probabilities according to how often each class is
assigned.

In what follows, we shall focus on PD modeling and restrict our-
selves to logistic regression, which is perhaps the most popular method
for PD modeling, and to a generalization that fits into frameworks 2, 3,
and 4.

Let us consider a vector X of risk factors, with X ∈ Rd. In a logistic
regression, the probability of a default (symbolized by a “1”) in a given
period of time (e.g., one year), conditional on the information X, is writ-
ten as the logit transformation of a linear combination of the feature func-
tions fj (X), j = 1, . . . , J, i.e.,

where the βj are parameters. One can think of the feature functions as
terms of a Taylor expansion of some appropriate function of X that reflects
the dependency of the PD on the risk factors. The logit transformation*
enables us to obtain a result located in the interval ]0, 1[.

There are various choices one can make for the feature functions.
The simplest choice, which is frequently used, is a set of linear functions.
In this case, we obtain the so-called linear logit model, i.e.,

Another occasionally used choice for feature functions is the set of
all first- and second-order combinations of risk factors; it results in
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*Other transformations such as the probit are possible; the probit is used by Moody’s
Riskcalc™, see Falkenstein (2000).
Another way to present it is to further reduce the residual or error term.



We have renamed some of the βj as δjk here in order to simplify the nota-
tion.

Another choice made for S&P PD model, called Credit Risk Tracker
(CRT) (see Zhou et al., 2006), is to include, besides the first- and second-
order terms, additional cylindrical kernel features of the form 

aj are the selected centers and σ is a bandwidth corre-

sponding to the decay rate of the kernels.
In order to specify a model of any of these types, one has to estimate

the model parameters, i.e., the βj. The standard approach for doing so is
to maximize, with respect to the βj, the log-likelihood function

where the (Xi, Yi), i = 1, . . . , N, are observed pairs of risk factors and
default indicators (1 for default and 0 for no default). This approach is
often called logistic regression (see, e.g., Hosmer and Lemeshow, 2000).
This maximum-likelihood approach is effective if there are relatively
few feature functions and relatively many observations available for
the model training. Otherwise, it can lead to overfitting, i.e., to a model
that fits the training data well, but performs poorly on out-of-sample
data. In order to mitigate overfitting, one can use so-called regulariza-
tion, i.e., maximize a regularized likelihood that typically takes the
form

L(β ) + R(β ).

Here, R(β ) is a regularization term that takes a large value for large
absolute βj and a small value for small absolute βj. Since smaller βj corre-
spond to smoother (as a function of the risk factors) PDs, the above regu-
larization term penalizes nonsmooth PDs. The result of the estimation
is the PD that is smoother than the one we would obtain from the
maximum-likelihood estimation. In practice, one uses regularization
terms that are either quadratic or linear in the absolutes of the βj. It is
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interesting to observe that regularization linear in the absolutes of the βj
leads to automatic feature selection.*

The above statistical methods are usually characterized as (pos-
sibly regularized) maximum-likelihood estimations of exponential
probabilities. They can also be shown to be equivalent to minimum-
relative-entropy methods (see, e.g., Jebara, 2004). Moreover, the result-
ing probabilities turn out to be robust from the perspective of an
expected utility maximizing investor (see Friedman and Sandow,
2003b).

Performance Analysis for PD Models

There are a variety of measures that are commonly used to quantify the
performance of PD models. Many, such as the Gini curve or cumulative
accuracy curve (CAP) and receiver operator characteristic (ROC), which
we shall discuss next, analyze how a PD model ranks individual obligors.
Other performance measures, such as the likelihood, which we shall also
discuss next, do not explicitly focus on ranks but rather depend on the PD
values that are assigned to obligors.

The Gini/CAP and ROC Approaches†

A commonly used measure of classification performance is the Gini curve
or CAP. This curve assesses the consistency of the predictions of a scoring
model (in terms of the ranking of firms by order of default probability) to
the ranking of observed defaults. Firms are first sorted in descending
order of default probability as produced by the scoring model (horizontal
axis of Figure 2.5). The vertical axis displays the fraction of firms that have
actually defaulted.

A perfect model would have assigned the D highest PDs to the D
firms that have actually defaulted out of a sample of N. The perfect
model would therefore be a straight line from the point (0, 0) to the point
(D/N,1), and then a horizontal line from (D/N, 1) to (1, 1). Conversely,
an uninformative model would assign randomly the PDs to high risk
and low risk firms. The resulting CAP curve is the diagonal from (0, 0)
to (1, 1).
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*See Hastie et al. (2003) for the general idea of regularization, and Zhou et al. (2006) for an
application in the PD context.
†A more formal presentation of the Gini is in Appendix 1. For a more detailed discussion of
ROC, see, e.g., Hosmer and Lemeshow (2000).



Any real scoring model will have a CAP curve somewhere in between.
The Gini ratio (or accuracy ratio), which measures the performance of the
scoring model for rank ordering, is defined as: G = F/(E + F), where E and F
are the areas depicted in Figure 2.5. This ratio lies between 0 and 1; the
higher this ratio, the better the performance of the model.

The CAP approach provides a rank-ordering performance measure
of a model and is highly dependent on the sample on which the model
is calibrated. For example any model calibrated on a sample with no
observed default, which predicts zero default, will have a 100 percent
Gini coefficient. However, this result will not be very informative about
the “true performance” of the underlying models. For instance, the same
model can exhibit an accuracy ratio under 50 percent or close to 80 per-
cent, according to the characteristic of the underlying sample. Comparing
different models on the basis of their accuracy ratio and calculated with
different samples is therefore totally nonsensical.

A closely related approach is the ROC curve. Here one varies a par-
ameter α and computes, for each α, the hit rate [percentage of correct
default prediction assuming that P(1�X) > α predicts default] and the
false alarm rate (percentage of wrong default prediction assuming that
P(1�X) > α predicts default). The ROC curve is the plot of the hit rate
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against the false alarm rate. There exists a simple relationship between
the area, ROC, under the ROC curve and the Gini coefficient, Gini,
which is

Gini = 2(ROC − 0.5).

In order to give an idea of what ranges to expect for Gini or ROC, we
quote Hosmer and Lemeshow (2000):

♦ If ROC = 0.5: this suggests no discrimination (i.e., we might as
well flip a coin).

♦ If 0.7 < ROC < 0.8: this is considered as an acceptable discrimina-
tion.

♦ If 0.8 < ROC < 0.9: this is considered as an excellent discrimina-
tion.

♦ If ROC > 0.9: this is considered as an outstanding discrimination.
♦ In practice, it is extremely unusual to observe areas under the

ROC curve greater than 0.9.

All of the model performance measures focus exclusively on how a model
ranks the PDs of a set of obligors. They provide very valuable information
and often work well in practice. However, they neglect the absolute lev-
els of the PDs. That is, if, e.g., all PDs for a given set of obligors are mul-
tiplied by 10 (or any other monotone transformation is applied), the above
performance measures do not change their values. So it seems advisable
to supplement these measures, e.g., with the likelihood.

Log-likelihood Ratio
Among statisticians, the perhaps most popular performance measure for
probabilistic models is the likelihood. We have discussed it in the previ-
ous section as a tool to estimate model parameters. For the purpose of
measuring the relative performance of two PD models, one often uses the
following log-likelihood ratio (the logarithm of the ratio of the two model
likelihoods):

where the (Xi, Yi), i = 1, . . . , N, are observed pairs of risk factors and
default indicators (1 for default and 0 for survival) on a test dataset (as
opposed to the model training dataset) here.
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The above log-likelihood ratio has a number of interpretations:

♦ It measures the relative probabilities the two models assign to
the observed data (by construction).

♦ It is the natural performance measure from the standpoint of
Bayesian statistics (see, e.g., Jaynes, 2003).

♦ It is the performance measure that generates an optimal (in the
sense of the Neyman–Pearson Lemma) decision surface for
model selection (see, e.g., Cover and Thomas, 1991).

♦ It is the difference in expected utility between a particular
rational investor who believes the first model and such an
investor who believes the second model, in a complete market
with probabilities corresponding to the empirical ones of the test
dataset (see Friedman and Sandow, 2003a).

Modeling the Term Structure of PDs

So far, we have discussed PDs for a fixed period of time. For many prac-
tical applications in Structured Finance, one needs to quantify the term
structure of PDs, i.e., one needs to know the probability of default for a
series of time intervals in the future. For example, in order to understand
the credit risk associated with a typical CDO tranche, one has to be able
to model the quantity and the timing of cashflows originated by the
collateral, which requires a model for the term structure of PDs.

The most natural framework for modeling PD term structures is the
so-called hazard rate framework. Perhaps, the easiest way to introduce
hazard rates is to start with a set of consecutive discrete time intervals t1,
t2, . . . , tN that start at the current time. The discrete-time hazard-rate of a
given obligor is then defined as

h(ti , x, z(ti)) = Prob(default in ti|no default before ti , X = x, Z(ti) = z(ti)),

where X is a set of risk factors at time zero (e.g., balance sheet information
about an obligor) and Z(ti) is a set of risk factors at time ti (e.g., the state
of the economy). There are various choices one can make for the risk fac-
tors X and Z; in particular, one can omit variables of the Z-type or vari-
ables of the X-type.

Knowing the hazard rates of a given obligor, one can compute the
probability of survival till the end of ti as

S t x z h t x z ti j j
j

i

( , , ) [ ( , , ( ))]= −
=

∏ 1
1
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and the probability of default at time ti as

S(ti − 1, x, z) h(ti, x, z(ti)).

Unfortunately, the survival probability, S(ti), depends on the Z(tj) for
all times upto ti. which are unknown at the observation time. There are
essentially two ways to deal with this issue: one can either build a model
that does not include any Z-type factors, or one can build a time series
model for those factors and average over their joint distribution.* Both
approaches are viable and are used in practice.

Many models work with a continuous-time hazard rate λ(t, x, z(t)),
which can be defined by letting the time-interval length, ∆t, approach
zero, i.e., as

The survival probability is then

For both type of models, discrete or continuous, the hazard rates
have to be estimated from data. This is typically done by assuming a para-
metric form and estimating the parameters by means of the (possible
regularized) maximum-likelihood method.† One can also make use of
nonparametric techniques, such as the Nelson–Aalen estimator (see, e.g.,
Klein and Moeschberger, 2003). However, these nonparametric tech-
niques are not appropriate for directly deriving the conditional (on X
and/or Z) hazard rates; one can use them in our context only for model-
ing the time dependence after separating out the time-dependence from
the risk-factor dependence.‡

S t x z x z d
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*Including, modeling, and averaging out Z-type factors (e.g., macroeconomic variables) that
are common to all obligors in a portfolio provides a way to model default dependencies.
Even if the individual hazard rates are independent given a realization of the Z-paths, after
averaging out the Z-type variables, defaults become dependent.
†In a somewhat different approach, one can model the hazard rates as an affine stochastic
processes of the type commonly used for interest rates (see, e.g., Lando, 2004).
‡The latter approach is usually taken to estimate the Cox proportional hazard model (see
Cox, 1972, or Klein and Moeschberger, 2003).



An example for a model that contains only credit factors of X-type is
the model by Shumway (2001). In this model, a discrete hazard rate of the
form

is estimated, where θ1 and θ2 are parameters, and g is a function of time,
which reflects the firm’s age.

A model that includes Z-type variables, but no X-type variables, is
the one from Duffie et al. (2005). Here, the Z-type variables describe
macroeconomic as well as firm-specific information; e.g., each firm’s dis-
tance to default (see the next section) and trailing one-year stock return are
Z-type variables in the model. The model is formulated in the continuous-
time setting.

Another, slightly different, approach is taken by Friedman et al.
(2006), who incorporate firm-specific information in terms of X-type and
macroeconomic information in terms of Z-type variables.

THE MERTON APPROACH

In their original option pricing paper, Black and Scholes (1973) suggested
that their methodology could be used to price corporate securities.
Merton (1974) was the first to use their intuition and to apply it to corpo-
rate debt pricing. Many academic extensions have been proposed and
some commercial products use the same basic structure.

The Merton Model

The Merton (1974) model is the first example of an application of contin-
gent claims analysis to corporate security pricing. Using simplifying
assumptions about the firm value dynamics and the capital structure of
the firm, the author is able to give pricing formulas for corporate bonds
and equities in the familiar Black and Scholes (1973) paradigm.

In the Merton model, a firm with value V is assumed to be financed
through equity (with value S) and pure discount bonds with value P and
maturity T. The principal of the debt is K. The value of the firm is the sum
of the values of its securities: Vt = St + Pt. In the Merton model, it is assumed
that bondholders cannot force the firm into bankruptcy before the maturity

h t x
g t xi

i

( , )
exp( ( ) )

=
+ + ′

1
1 1 2θ θ

Univariate Risk Assessment 55



of the debt. At the maturity date T, the firm is considered solvent if its value
is sufficient to repay the principal of the debt. Otherwise, the firm defaults.

The value of the firm V is assumed to follow a geometric Brownian
motion* such that†: dV = µV dt + σvV dZ. Default happens if the value of the
firm is insufficient to repay the debt principal: VT < K. In that case, bond-
holders have priority over shareholders and seize the entire value of the
firm VT. Otherwise (if VT > K), bondholders receive what they are due: the
principal K. Thus, their payoff is P(T, T) = min(K, VT) = K − max(K − VT, 0)
(see Figure 2.6).

Equity holders receive nothing if the firm defaults, but profit from
all the upside when the firm is solvent, i.e., the entire value of the firm net
of the repayment of the debt (VT − K) falls in the hands of shareholders.
The payoff to equity holders is therefore max(VT − K, 0) (see Figure 2.6).

Readers familiar with options will recognize that the payoff to equity
holders is similar to the payoff of a call on the value of the firm struck at
K. Similarly, the payoff received by corporate bond holders can be seen as
the payoff of a risk-less bond minus a put on the value of the firm.
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*A geometric Brownian motion is a stochastic process that results in a lognormal distribu-
tion for a fixed point of time. µ is the growth rate while σv is the volatility of the process. Z
is a standard Brownian motion whose increments dZ have mean zero and variance equal to
time. The term µV dt is the deterministic drift of the process, and the other term σv Vd Z is
the random volatility component. See Hull (2002) for a simple introduction to geometric
Brownian motion.
†We drop the time subscripts to simplify notations.
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Payoff of Equity and Corporate Bond at Maturity T.



Merton (1974) makes the same assumptions as Black and Scholes
(1973), and the call and the put can be priced using Black–Scholes option
prices. For example, the call (equity) is immediately obtained as:

with and N(·) denoting the 
cumulative normal distribution and r the risk-less interest rate.

The Merton model provides a lot of insight into the relationship
between the fundamental value of a firm and of its securities. The origi-
nal model, however, relies on very strong assumptions:

♦ The capital structure is simplistic: equity + one issue of zero-
coupon debt.

♦ The value of the firm is assumed to be perfectly observable.
♦ The value of the firm follows a lognormal diffusion process.

With this type of process, a sudden surprise (a jump), leading to
an unexpected default, cannot be captured. Default has to be
reached gradually, “not with a bang but with a whisper,” as
Duffie and Lando (2001) put it.

♦ Default can only occur at debt maturity.
♦ Risk-less interest rates are constant through time and maturity.
♦ The model does not allow for debt renegotiation between equity

and debt holders.
♦ There is no liquidity adjustment.

These stringent assumptions may explain why the simple version of
the Merton model struggles to cope with the empirical spreads observed on
the market. Van Deventer and Imai (2002) test empirically the hypothesis of
inverse comovement of stock prices and of credit spread prices, as predicted
by the Merton model. Their sample comprises First Interstate Bancorp two-
year credit spread data and associated stock price. The authors find that
only 42 percent of changes in credit spread and equity prices are consistent
with the directions (increases or decreases) predicted by the Merton model.

Practical difficulties also contribute to hamper the empirical rele-
vance of the Merton model:

♦ The value of the firm is difficult to pin down, because the
marked-to-market value of debt is often unknown. In addition,
all that relates to goodwill or to out-of-the-balance-sheet
elements is difficult to measure accurately.

k V K r T t T tt V V= + − − −(ln( / ) ( )( ))/( )1
2

2σ σ

S V N k T t Ke N kt t V
r T t= + − − − −( ) ( ),( )σ
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♦ The estimation of assets volatility is difficult due to the low
frequency of observations.

A vast literature has contributed to extend the original Merton
model and lift some of its most unrealistic assumptions. To cite a few, we
can mention:

♦ Early bankruptcy (default barrier) and liquidation costs have
been introduced by Black and Cox (1976)

♦ Coupon bonds, e.g., Geske (1977)
♦ Stochastic interest rates, e.g., Nielsen et al. (1993) and Shimko

et al. (1993)
♦ More realistic capital structures (senior and junior debt), e.g.,

Black and Cox (1976)
♦ Stochastic processes including jumps in the value of the firm,

e.g., Zhou (1997)
♦ Strategic bargaining between shareholders and debtholders, e.g.,

Anderson and Sundaresan (1996)
♦ The effect of incomplete accounting information is analyzed in

Duffie and Lando (2001)
♦ Uncertain default barrier, e.g., Duffie and Lando (2001)
♦ Endogenous default boundaries, e.g., Leland (1994) and Leland

and Toft (1996).

Moody’s KMV Credit Monitor® Model
and Related Approaches

Although the primary focus of Merton (1974) was on debt pricing, the
firm-value based approach has been scarcely applied for that purpose in
practice. Its main success has been in default prediction.

Moody’s KMV Credit Monitor® (see Crosbie and Bohn, 2003) applies
the structural approach to extract probabilities of default at a given hori-
zon from equity prices. Equity prices are available for a large number of
corporates. If the capital structure of these firms is known, then it is pos-
sible to extract market-implied probabilities of default from their equity
price. The probability of default is called expected default frequency
(EDF) by Moody’s KMV.

There are two key difficulties in implementing the Merton-type
approach to firms with realistic capital structure. The original Merton
model only applies to firms financed by equity, and one issue of zero-
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coupon debt is: how should one calculate the strike price of the call
(equity) and put (default component of the debt) when there are multi-
ple issues of debt? The estimation of the firm value process is also diffi-
cult: how to estimate the drift and volatility of the asset value process
when this value is unobservable? Moody’s KMV uses a “rule of thumb”
to calculate the strike price of the default put and a “proprietary method-
ology” to calculate the volatility.

Moody’s KMV assumes that the capital structure of an issuer is con-
stituted of long-term debt (i.e., with maturity longer than the chosen hori-
zon) denoted by LT and short-term debt (maturing before the chosen
horizon) denoted by ST. The strike price default point is then calculated
as a combination of short- and long-term debt: “We have found that the
default point, the asset value at which the firm will default, generally lies
somewhere between total liabilities and current, or short term liabilities”
(see Crosbie and Bohn, 2003). The practical rule for choosing the default
value, K, is

K = ST + 0.5 LT.

This rule of thumb is purely empirical and does not rest on any solid
theoretical foundation. Therefore, there is no guarantee that the same rule
should apply to all countries/jurisdictions and all industries. In addition,
no empirical study has been shown to provide information about the con-
fidence level associated with this default point.*

In the Merton model, the PD† is

is the so-
called distance to default, and we have used the following notation:

N(·) = the cumulative Gaussian distribution
Vt = the value of the firm at t
X = the default threshold

σV = the asset volatility of the firm
µ = the expected return on assets

where (ln( ) ln( ) ( / )( ))/( )DD = − + − − −V K T t T tt V Vµ σ σ2 2

PD DDt N= −( ),
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*Recent articles and papers focus on the stochastic behavior of this default threshold. See
e.g., Hull and White (2000) and Avellaneda and Zhu (2001).
†This is the probability under the historical measure. The risk neutral probability is 
N(−K) = 1 − N(K), as described in the equity pricing formula.



Example: Consider a firm with a market cap of $3 billion, an equity
volatility of 40 percent, ST liabilities of $7 billion and LT of $6 billion. Thus
X = 7 + 0.5 × 6 = $10 billion. Assume, further, that we have solved for
A0 = $12.511 billion and σ = 9.6 percent. Finally µ = 5 percent, the firm does
not pay dividends, and the credit horizon is one year. Then (log(Vt/K) + (µ −
σV

2 /2))/σV = 3. And the “Merton” probability of default at a one-year hori-
zon is N(−3) = 0.13 percent.

In order to use the Merton framework for practical ends, one needs
to estimate the current asset value and the asset volatility from market
data.* Moody’s KMV does this by using the Black–Scholes option pricing
framework, viewing equity as an option on the asset value. In this picture
we have the following two equations:

where St is the equity value, σS its volatility, and C is the function that
assigns the Black–Scholes value to a call option. The equity value is usu-
ally known (at least for publicly traded firms), and the equity volatility
can be either estimated from historical data or implied from option prices
if those are available. Knowing St and σS, one can solve the above equa-
tions for Vt and σV, which completes the calibration of the Merton model.

An alternative approach to the estimation of Vt and σV is the itera-
tive scheme of Vassalou and Xing (2004). According to this scheme, a time
series of asset values is computed from a times series of equity values by
means of the Black–Scholes formula for call options, and σV is subse-
quently estimated from this time series.

Moody’s KMV approximates the DD as

.

The EDF is then computed as

EDFt = Ξ(−DD)

(see Crosbie and Bohn, 2003). Here, we denote by Ξ(·) the function map-
ping the DD to EDFs. Unlike Merton, Moody’s KMV does not rely on the

DD =
−V K

V
t

V tσ

σ σ σ σs t V V
t

t
t t VC V
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S
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*The PD actually depends, through the distance to default, on the asset value drift as well.
However, this dependence is often neglected in practical approaches (see the approximative
formula for the DD given herewith).



cumulative normal distribution N(·). PDs calculated as N(−DD) would
tend to be much too low due to the assumption of normality (too thin
tails). Moody’s KMV therefore calibrates its EDF to match historical
default frequencies recorded on its databases. For example, if historically
two firms out of 1000 with a DD of 3 have defaulted over a one-year hori-
zon, then firms with a DD of 3 will be assigned an EDF of 0.2 percent.
Firms can therefore be put in “buckets” based on their DD. What buckets
are used in the software is not transparent to the user.

Figure 2.7 is a graph of the asset value process and the interpretation
of EDF.

Once the EDFs are calculated, it is possible to map them to a more
familiar grid, such as agency rating classes (see Table 2.8). This mapping,
while commonly used by practitioners, makes little sense, since the EDFs
are point-in-time measures of credit risk focused on default probability at
the one-year horizon; while ratings are through-the-cycle assessments of
creditworthiness, they cannot therefore be reduced to a one-year PD.

A similar approach is taken by S&P internal Merton model (see
Park, 2006). Results from this model are demonstrated in Figure 2.8,
which shows the one-year PD for the Delta Airline stock. This model is
compared with S&P CRT for U.S. public firms (see Huang, 2006 and
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EDFs and Corresponding Rating Class

EDF(%) S&P

0.02–0.04 AAA

0.04–0.10 AA/A

0.10–0.19 A/BBB+
0.19–0.40 BBB+/BBB−
0.40–0.72 BBB−/BB

0.72–1.01 BB/BB−
1.01–1.43 BB−/B+
1.43–2.02 B+/B

2.02–3.45 B/B−

Source: Crouhy, Galai, and Mark (2000).
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Evolution of the One-Year PDs from S&P’s Merton
Model and CRT for Delta Airlines. (S&P).

Zhou et al., 2006), which is a statistical model (see section “Some
Statistical Techniques”).

In Table 2.9, we compare S&P Merton model with S&P CRT for
U.S. public firms. This Merton model ranks companies according to their
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distance to default, which is sufficient to compute ROC without any map-
ping on a real-world PD. CRT uses the distance to default from the
Merton model as one of its input variables. The results shown in the table
are very interesting. One can see that both models perform much better
on the largest 2000 firms than on the set of all public firms. One can also
see that the Merton model rank-orders firms surprisingly well. In partic-
ular, for large firms, the ROC difference between the statistical model and
the Merton model is only 3 percent; i.e., a large part of the explanatory
power of the statistical model can be derived from the DD. Furthermore,
the table seems to suggest that the Merton model is somewhat tuned
toward large firms.

Uses and Abuses of Equity-Based 
Models for Default Prediction

Equity-based models can be useful as early warning systems for individ-
ual firms. Crosbie (1997) and Delianedis and Geske (1999) study the early
warning power of structural models and show that these models can give
early information about ratings migration and defaults.

There has undoubtedly been many examples of successes where
structural models have been able to capture early warning signals from
the equity markets. These examples, such as the WorldCom case, are
heavily publicized by vendors of equity-based systems. What the vendors
do not mention is that there are also many examples of false starts: a gen-
eral fall in the equity markets will tend to be reflected in increases in
all EDFs and many “downgrades” in internal ratings based on them,

Univariate Risk Assessment 63

T A B L E  2 . 9

ROCs for S&P’s Merton Model (see Park, 2006) and
S&P’s CRT for U.S. Public Firms. ROCs were
Computed for all Public U.S. Firms and for the Subset
of the Largest 2000 Firms. In All Cases, a Five-Fold
Cross-Validation was Applied.

CRT Merton model

ROC on all public U.S. firms 0.87 0.80

ROC on largest 2000 public U.S. firms 0.95 0.92

Source: S&P (see Zhou et al. 2006).



although the credit quality of some firms may be unaffected. False starts
can be costly, as they often induce banks to sell the position in a tempo-
rary downturn at an unfavorable price.

Conversely, in a period of booming equity markets such as 1999,
these models will tend to assign very low PDs to almost all firms. In short,
equity-based models are prone to overreaction due to market bubbles.

Toward a Term Structure of Merton PDs: 
Use of Merton Model Results as an 

Input into CDO Models

In order to obtain a default term structure, one has to generalize the
Merton model. One such generalization was proposed by Black and Cox
(1976), who assume that default can occur at any time before the maturity
of a particular bond, whenever the asset value hits a given barrier. This
idea can be motivated if there are bond safety covenenants or in the con-
text of a continuous stream of payments to be made by the obligor.

The basic idea of the Black–Cox model is that, as in the Merton
model, the firm’s value undergoes a geometric Brownian motion, i.e.,

dV = µV dt + σVV dZ.

Default occurs when V hits, for the first time, the barrier C, which
undergoes the dynamics

Ct = C0 exp(γ t).

Computing the term structure of PDs in this setting amounts to solv-
ing a well-understood first passage time problem. This makes the
Black–Cox model very attractive. Moreover, it is theoretically possible to
generalize this model to a multivariate setting (see Zhou, 2001).

The default term structure one obtains from a Black–Cox model is
not necessarily realistic. Although one can try to calibrate the parameters
C0 and γ to a term structure obtained from a statistical hazard rate model,
the calibration is rarely very good, since there are only two parameters
available. To avoid this problem, one can generalize the dynamics of the
default barrier. One such generalization has been proposed by Hull and
White (2001), who assume a very flexible dynamics that can be calibrated
to an arbitrary term structure. This type of model, however, can hardly be
viewed as a structural model anymore.
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SPREADS (YIELD SPREADS AND
CDS SPREADS)

Dynamics of Credit Spreads 
(Yield Spreads)

In this section, we review the dynamics of credit-spread series in the
United States. The data consists of 4177 daily observations of Aaa and Baa
average spread indices, from the beginning of 1986 to the end of 2001.
Spread indices are calculated by subtracting the 10-year constant maturity
treasury yield from Moody’s average yield on U.S. long-term (>10 years)
Aaa and Baa bonds.

StAaa = YtAaa − YtT, and StBaa = YtBaa − YtT.

All series are available on the Federal Reserve’s web site,* and bonds
in this sample do not contain option features.

Aaa is the best rating in Moody’s classification with a historical
default frequency over 10 years of 0.64 percent, whereas Baa is at the bot-
tom of the IG category and have historically suffered a 4.41 percent
default rate over 10 years (see Keenan et al., 1999). Both minima were
reached in 1989 after two years of very low default experience. At the end
of our sample, spreads were at their historical maximum, only matched
by 1986 for the Aaa series. The rating agencies branded 2001 as the worst
year ever in terms of the amount of defaulted debt.

Summary statistics of the series are provided in Table 2.10.
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Summary Statistics

St
Aaa St

Baa

Average 1.16% 2.04%

Standard deviation 0.40% 0.50%

Minimum 0.31% 1.16%

Maximum 2.67% 3.53%

Skewness 0.872 0.711

Kurtosis 3.566 2.701

http://www.federalreserve.gov


Figure 2.9 depicts the history of spreads in the Aaa and Baa classes
whereas Figure 2.10 is a scatter plot of daily changes in Baa spreads, as a
function of their level. The Aaa series oscillates around a mean of about
1.2 percent, whereas the term mean of the Baa series appears to be around
2 percent.

Several noticeable events have affected spread indices over the past
20 years. The first major incident occurred during the famous stock market
crash of October 1987. This event is remembered as an equity market
debacle, but corporate bonds were equally affected with Baa spreads soar-
ing by 90 basis points (bp) over two days, the biggest rise ever (see Figures
2.10 and 2.11).

The Gulf war is also clearly visible on Figure 2.9. On the run-up to the
war, Baa spreads rose by nearly 100 bp and started to tighten immediately
after the start of the conflict and by the end of the war; they had narrowed
back to their initial level. Aaa spreads were little affected by the event.

Finally, let us mention the spectacular and sudden rises which
occurred after the Russian default of August 1998 and after September 11,
2001.*
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*September 14 was the first trading day after the tragedy.
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Relative Spreads between Baa and Aaa Yields.

Explaining the Baa-Aaa Spread
We have noted earlier that some events such as the Gulf war did substan-
tially impact on Baa spreads, whereas Aaa spreads were little affected. It
is therefore interesting to focus on the relative spread between Baa and
Aaa yields. Figure 2.11 is a plot of this differential.



One can observe a clear downward trend between 86 and 98 only
interrupted by the Gulf war. This contraction in relative spreads was due
mainly to the improvement in liquidity of the market for lower-rated bonds.

We can observe three spikes in the relative spread (Baa–Aaa): 1991,
1998, and 2001. These are all linked to increases in market volatility, and
the peaks can be explained in the light of a structural model of credit risk.

Recall that in a Merton (1974)-type model, a risky bond can be seen
as a risk-less bond minus a put on the value of the firm. The put’s exercise
price is linked to the leverage of the issuing firm (in the simple case, where
the firm’s debt is only constituted of one issue of zero-coupon bond, the
strike price of the put is the principal of the debt). Obviously the values of
Baa firms are closer to their “strike price” (higher risk) than those of Aaa
firms. Therefore, Baa firms have higher vega than Aaa issuers.* As a result,
as volatility increases, Baa spreads increase more than Aaa spreads.

Determinants of Yield Spreads

Spreads should at least reflect the probability of default and the recovery
rate. In a careful analysis of the components of corporate spreads in the
context of a structural model, Delianedis and Geske (2001) report that
only 5 percent of AAA spreads and 22 percent of BBB spreads can be
attributed to default risk. We now turn in greater details to the possible
components of an explanatory model for spreads.

Recovery
The expected recovery rate for a bond of given seniority in a given industry
affects credit spreads and is therefore a natural candidate for inclusion in
a spread model. Recoveries will be discussed in the forthcoming section.
We shall see there that they tend to fluctuate with the economic cycle. So,
ideally, a measure of expected recovery conditional on the state of the
economy would be a more appropriate choice.

Probability of Default
Spreads should also reflect PD. The most readily available measure of
creditworthiness for large corporates is undoubtedly ratings, and they are
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*The vega (or kappa) of an option is the sensitivity of the option price to changes in the
volatility of the underlying. The vega is higher for options near the money, i.e., when the
price of the underlying is close to the exercise price of the option (see, e.g., Hull, 2002).



easy to include in a spread model. Figure 2.12 is a plot of U.S. industrial
and treasury bond yields. Spreads are clearly increasing as credit rating
deteriorates. The model by Fons (1994) provides an explicit link between
default rates per rating class and the level of spreads. The main difficulty
is to model the risk premium associated with the volatility in the default
rate, as market spreads incorporate investors risk aversion.

A similar but dynamic perspective on the relationship between rat-
ings and spreads is provided in Figure 2.13. We again observe what
appears to be a structural break in the dynamics of spreads in August
1998. The post-1998 period is characterized by much higher mean spreads
and volatilities for all risk classes. Although the event triggering the
change is well identified (Russian default followed by flight to quality
and liquidity), analysts disagree on the reasons for the persistence of high
spreads in the markets. Some argue that investors risk aversion has
durably changed and that each extra “unit” of credit risk is priced more
expensively in terms of risk premium. Other put forward the fact that
asset volatility is still very high and that default rates have increased
steadily over the period. Keeping unchanged the perception of risk by
investors, spreads merely reflect higher real credit risk.

An alternative explanation lies in the fact that the change coincided
with the increasing impact of the equity market on corporate bond
prices. The reasons for this are two-fold: the recent popularity of equity/
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U.S. Industrial and Treasury Bond Yields. (Riskmetrics).
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corporate bond trades among market participants and the common use of
equity driven credit risk models.

PD Extracted from Structural Models
In many empirical studies of spreads, equity volatility often turns out to be
one of the most powerful explanatory variables. This is consistent with
the structural approach to credit risk, where default is triggered when the
value of the firm falls below its liabilities. The higher the volatility, the more
likely the firm will reach the default boundary and the higher the spreads
should be. Several choices are possible: historical versus implied volatil-
ity, aggregate versus individual, etc. Implied volatility has the advantage
of being forward looking (the trader’s view on future volatility) and is
arguably a better choice. It is, however, only available for firms with
traded stock options. At the aggregate level, the VIX index, released by
the Chicago Board Options Exchange VIX, is often chosen as a measure of
implied volatility. It is a weighted average of the implied volatilities of
eight options with 30 days to maturity.

The second crucial factor of PD in a structural approach is the lever-
age of a firm. This measures the level of indebtedness of the firm scaled
by the total value of its assets. Leverage is commonly measured in empir-
ical work, as the book value of debt divided by the market value of
equity plus the book value of debt. The reason for the choice of book
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10Y Spreads per Rating. (S&P Indices).
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value in the case of debt is purely a matter of data availability: a large
share of the debt of a firm will not be traded and it is therefore impossi-
ble in many cases to obtain its market value. This problem does not arise
with the equity of public companies. If no information about the level of
indebtedness is available or if the model aims at estimating aggregate
spreads, then equity returns (individual or at the market level) can be
used as a rough proxy for leverage. The underlying assumption is that
book values of debt outstanding are likely to be substantially less volatile
than the market value of the firms’ equity. Hence, on average, a positive
stock return should be associated with a decrease in leverage and in
spreads.

At the macroeconomic level, the yield curve is often used as an indi-
cator of the market’s view of future growth. In particular, a steep yield
curve is frequently associated with an expectation of growth whereas an
inverted or flat yield curve is often observed in periods of recessions.
Naturally, default rates are much higher in recessions (see Figure 2.14*);
the slope of the yield curve can therefore be used as a predictor of future
default rates and we can expect yield spreads to be inversely related to the
slope of the term structure.
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Default rates and Economic Growth. (S&P).
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Risk-less Interest Rate
There has been much debate in the academic literature on the interaction
between the risk-less interest rates and spreads. Most papers (e.g., Duffee,
1998) report a negative correlation, implying that when interest rates
increase (respectively decrease), risky yields do not reflect the full impact
of the rise (fall). Morris et al. (1998) make a distinction between a negative
short-term impact and a positive long-term impact of changes in risk-free
rates on corporate spreads. One possible explanation for this finding
would be that risky yields adjust slowly to changes in the treasury rate
(short-term impact) but that in the long run, an increase in interest rates
is likely to be associated with a slowdown in growth and therefore an
increase in default frequency and spreads.

Risk Premium
The credit spread measures the excess return on a bond granted to
investors as a compensation for credit risk. Measuring credit risk as the
probability of default and recovery is insufficient. Investors’ risk aversion
also needs to be factored in.

If the purpose of the exercise is to determine the level of spreads
for a sample of bonds, one can extract some information about the “mar-
ket price of credit risk” from credit-spread indices. Assuming that the
risk differential between highly rated bonds and speculative bonds
remains constant through time (which is a strong assumption), changes
in the difference between two credit-spread indices, such as those stud-
ied earlier in the chapter, should be the result of changes in the risk
premium.

Is a Systemic Factor at Play? Many of the variables iden-
tified earlier are instrumental in explaining the levels and changes in cor-
porate yield spreads. A similar analysis could be performed to determine
the drivers of sovereign spread, such as that of Italy versus Germany or
Mexico versus the United States. The fundamentals in these markets are
however very different, and one could argue that trading or investment
strategies in these various markets should be uncorrelated. This intuition
would appear valid in most cases but spreads tend to exhibit periods of
extreme comovement at times of crises.

To illustrate this, let us consider the Russian and LTCM crises in 1998.
We have seen that the Russian default in August did push up corporate
spreads dramatically. This was not an isolated phenomenon. Figure 2.15
jointly depicts the spread of the 10-year Italian government bond yield
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over the 10-year Bund (German benchmark) on the right-hand scale, and
the spread of the Mexican Brady* discount bond versus the 30-year U.S.
treasury on the left-hand scale.

Figure 2.15 is instructive on several counts. First, it shows that finan-
cial instruments on apparently segmented markets can react simultane-
ously to the same event. In this case, it would appear that the Russian
default in August 1998 was the critical event.†

Secondly, it explains partly why hedging, diversification, and risk
management strategies failed so badly over the period from August 1998
through February 1999. Typical risk management tools, including value at
risk, use fixed correlations among assets in order to calculate the required
amount of capital to set aside. In our case, the correlation between the
two spreads from January to July 1998 was −11 percent. Then suddenly,
although the markets are not tied by economic fundamentals and
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*Brady bonds are securities issued by developing countries as part of a negotiated restruc-
turing of their external debt. They were named after U.S. treasury secretary Nicholas Brady,
whose plan aimed at permanently restructuring outstanding sovereign loans and arrears
into liquid debt instruments. Brady bonds have a maturity of between 10 to 30 years and
some of their interest payments are guaranteed by a collateral of high-grade instruments
(typically the first three coupons are secured by a rolling guaranty). They are among the
most liquid instruments in emerging markets.
†A more thorough investigation of this case can be found in Anderson and Renault (1999).
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although the crisis occurred in a third market apparently unrelated, cor-
relations all turned positive and very significantly so. In this example, the
correlation over the rest of 1998 increased to 62 percent.

Some may argue that the Russian default may just have increased
default risk globally or that market participants expected spill-over effects
in all bond markets. Another explanation lies in the flight-to-liquidity and
flight-to-safety observed over that period: investors massively turned to
the most liquid and safest products, which were U.S. treasuries and
German bunds. Many products bearing credit risk did not seem to find
any buyer at any price in the immediate aftermath of the crisis.

From a risk management perspective, it is sensible to consider that a
global factor (possibly investors’ risk aversion) impacts across all bond
markets and may lead to substantial losses in periods of turmoil.

Liquidity
Finally, and perhaps most importantly, yield spreads reflect the relative
liquidity of corporate and treasury securities. Liquidity is one of the
main explanations for the existence of corporate yield spreads. This has
been recognized early (see, e.g., Fisher, 1959) and can be justified by the
fact that government bonds are typically very actively traded large
issues, whereas the corporate bond market is an over-the-counter mar-
ket whose volumes and trade frequencies are much smaller. Investors
require some compensation (in terms of added yield) for holding less
liquid securities.

In the case of IG bonds, where credit risk is not as important as in the
speculative class, liquidity is arguably the main factor in spreads. Liquidity
is, however, a very nebulous concept and there does not exist any clear-cut
definition for it. It can encompass the rapid availability of funds for a cor-
porate to finance unexpected outflows or it can mean the marketability of
the debt on the secondary market. We will focus on the latter definition.
More specifically, we perceive liquidity as the ability to close out a position
quickly on the market without substantially affecting the price. Liquidity
can therefore be seen as an option to unwind a position.

Longstaff (1995) follows this approach and provides upper bounds
on the liquidity discounts on securities with trading restrictions. If a secu-
rity cannot be bought or sold for say seven days, it will trade at a discount
compared to an identical security for which trading is available continu-
ously. This discount represents the opportunity cost of not being able to
trade during the restricted period. It should therefore be bounded by the
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value of selling* the position at the best (highest) price during the
restricted period. The value of liquidity is thus capped by the price of a
lookback put option.

Little research has been performed on the liquidity of nontreasury
bonds. Kempf and Uhrig (1997) propose a direct modeling of liquidity
spreads—the share of yield spreads attributable to the liquidity differen-
tial between government and corporate bonds. They assume that liquid-
ity spreads follow a mean reverting process and estimate it on German
government bond data. Longstaff (1994) considers the liquidity of munic-
ipal and other credit risky bonds in Japan. Ericsson and Renault (2001)
model the behaviour of a bondholder who may be forced to sell his posi-
tion due to and external shock (immediate need for cash). Liquidity
spreads arise because a forced sale may coincide with a lack of demand in
the market (liquidity crisis). Their theoretical model based on a Merton
(1974) default risk framework generates downward sloping term struc-
ture of liquidity spreads as those reported in Kempf and Uhrig (1997) and
also in Longstaff (1994). They also find that liquidity spreads should be
increasing in credit risk: if liquidity is the option to liquidate a position,
then this option is more valuable in presence of credit risk, as the inabil-
ity to unwind a position for a long period may lead the bondholder to be
forced to keep a bond entering default and to face bankruptcy costs. On a
sample of over 500 U.S. corporate bonds, they find support for the nega-
tive slope of the term structure of liquidity premiums and for the positive
correlation between credit risk and liquidity spreads.

On the empirical side, the liquidity of equity markets (and to a lesser
extent also of treasury bond markets) has been extensively studied empir-
ically, but very little has yet been done to measure liquidity premiums in
default risky securities. Several variables can be used to proxy for liquid-
ity. The natural candidates are the number of trades and the volume of
trading on the market. The OTC nature of the corporate bond market
makes this data difficult to obtain. As second best, the issue amount out-
standing can also serve as proxy for liquidity. The underlying implicit
assumption is that larger issues are traded more actively than smaller
ones.

A stylized fact about bonds is that they are more liquid immediately
after issuance and rapidly lose their marketability as a larger share of the
issues becomes locked into portfolios (see, e.g., Chapter 10 in Fabozzi and
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Fabozzi, 1995). The age of an issue could therefore stand for liquidity in
an explanatory model for yield spreads. In the same spirit, the on-the-
run/off-the-run spread (the difference between the yields of seasoned and
newly issued bonds with same residual time to maturity) is frequently
used as an indicator of liquidity. During the Russian crisis of 1998, which
was associated with a substantial liquidity crunch, the U.S. long bond
(30-year benchmark) was trading at a 35 basis point premium versus the
second longest bond with just a few months less to maturity, while the
historical differential was only 7 to 8 basis points (Poole, 1998).

Taxes
In order to conclude this nonexhaustive list of factors influencing spreads,
we can mention taxes. In some jurisdictions (such as the United States), cor-
porate and treasury bonds do not receive the same tax treatment (see Elton
et al., 2001). For example, in the United States, treasury securities are exempt
from some taxes while corporate bonds are not. Investors will of course
demand a higher return on instruments on which they are taxed more.

We have reported that many factors impact on yield spreads and
that spreads cannot be seen as purely due to credit. We will now focus
more specifically on the ability of structural models to explain the dynam-
ics and level of spreads.

CDS Rates

Another market quantity that provides default risk information is the
CDS rate. Here, CDS stands for credit default swap. The credit default
swap is the most commonly used credit derivative. In its most basic form,
it works as follows: Party A, the so-called protection buyer, pays an
annual or semi-annual premium to party B, the so-called protection seller.
These payments end either after a given period of time (the maturity of
the CDS) or at default of the reference entity. In the case of such a default,
the protection seller compensated the protection buyer for the loss
incurred due to the default. The CDS rate, also called credit-swap spreads
or CDS premiums, is the premium paid by the protection buyer. Figure 2.16
illustrates the cashflows in a credit default swap.

It follows from a no-arbitrage argument that, under some idealized
assumptions, the CDS rates are the same as the corresponding bond
spreads (off LIBOR) for the same obligor, and are therefore determined by
some of the same factors, such as default probability, risk premium, and
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recovery expectations. However, the assumptions underlying this rela-
tionship are often not accurate in practice, which can lead to differences
between CDS rates and bond yields, i.e., between CDS spreads and yield
spreads. We list a couple of reasons why such differences may appear:

♦ If the note that underlies a CDS is very illiquid, the no-arbitrage
argument does not apply and CDS spreads can differ substan-
tially from yield spreads.

♦ CDS usually have a cheapest-to-deliver option, which tends to
increase CDS spreads with respect to bond spreads.

♦ CDS often have a wider definition of a credit event, which can
increase CDS spreads with respect to bond spreads for long-
dated bonds that trade below par.

♦ Shorting notes through a reverse repo is usually not cost-free,
which increases CDS spreads with respect to bond spreads. The
amount of increase is the so-called repo-special.

For empirical research on CDS rates, we refer to the reader to
Houweling and Vorst (2002), Aunon-Nerin et al. (2002), and Nordon and
Weber (2004). Examples for historical CDS spreads as a function of time
are shown in Figure 2.17.
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Extracting Default Information from 
Spreads: Market-Implied Ratings

As we have seen in the previous section, spreads contain information
about default risk or rather about the market’s perceived default risk.
There are various ways to extract this information from spread data; one
approach is to construct market-implied ratings. Moody’s offers a prod-
uct providing such ratings based on bond spreads and on CDS rates.

Some recent research conducted by S&P suggests that one approach
to constructing market-implied ratings can be from bond or CDS rates.
Since these spreads depend not only on default probabilities, but also on
other factors such as recovery expectations and liquidity, one has to
filter out some of these other factors in order to map spreads on ratings.
These other factors have market wide and idiosyncratic components.
One can filter out components of the first type by working with spreads
relative to average market spreads for the corresponding rating cate-
gory. In order to do this, one constructs, at a given point of time, a
market spread curve for each (actual) rating. This can be done, e.g., by
applying joint Nelson–Siegel (see Nelson and Siegel, 1987) interpolations
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to the spreads for each rating at a given date.* An example for a set of
resulting spread curves is shown in Figure 2.18.

Having constructed a spread curve for each rating category at a
given date, one can assign a spread-implied rating by comparing the
spreads of a given obligor (again, after adjusting for idiosyncratic compo-
nents of non-default-related factors) to the spread curves. A simple dis-
tance measure, e.g., the average square distance, can be used to identify
the spread curve that is closest to the obligor of interest. The rating that
corresponds to this closest spread curve is the spread-implied rating.

Another approach to implying ratings from spreads introduced by
Breger et al. (2002). In this approach, optimal spread boundaries between
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Spread Curves for Rating Categories Constructed with
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Interpolations. (S&P ).
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the rating categories are determined by means of a penalty function; these
boundaries are subsequently used to imply ratings. Kou and Varotto
(2004) use this approach to predict rating migrations.

RECOVERY RISK

In the previous sections, we have reviewed various approaches to assess
default risk. However, the credit risk that an investor is exposed to con-
sists of default risk and recovery risk. The latter, which reflects the uncer-
tainty associated with the recovery from defaulted debt, is the topic of this
section. To date, much less research effort has been made toward model-
ing recovery risk than toward understanding default risk. Consequently,
the literature on this topic is fairly small in volume; the perhaps earliest
works on recoveries were published by Altman and Kishore (1996) and
Asarnow and Edwards (1995). A fairly comprehensive overview is pro-
vided by Altman et al. (2005).

The quantity that characterizes recovery risk is recovery given
default (RGD) or equivalently loss given default (LGD). RGD is usually
defined as the ratio of the recovery value from a defaulted debt instru-
ment and the invested par amount, and LGD = 1 − RGD. There are various
ways to define the recovery value; some people define it as the traded
value of the defaulted security immediately after default, others define it
as the payout to the debt holder at the time of emergence from bank-
ruptcy (often called ultimate recovery). Which one of the recovery defini-
tion is the appropriate one, depends on the purpose of the analysis. For
example, an investor (e.g., a mutual bond fund) who always sells debt
securities immediately after they have defaulted should be interested in
the first type of recovery value; whereas an investor (e.g., a bank that
works out defaulted loans) who holds on to defaulted debt till emergence
should care about the second type of recovery.

A prominent feature of RGD is its high uncertainty given the infor-
mation a typical investor can obtain at a time before default. For exam-
ple, an investor in bonds of large U.S. firms who has access to the
obligor’s balance sheet and is aware of the economic environment, but
does not have any more detailed information about the debt, is only able
to predict RGD with an uncertainty in the range of 30 to 40 percent,
as measured by the standard deviation of a forecasting model (see
Friedman and Sandow, 2005). For this reason, given relevant factors it is
desirable to model the uncertainty associated with recovery and not just
its expected value.
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The perhaps most commonly used approach to modeling RGD is the
beta-distribution. Here one assumes that RGD has the following condi-
tional probability density function (pdf ):*

where rmax is the largest and rmin the smallest possible value of RGD,† B
denotes the beta function, and α and β are parameterized functions of the
risk factors x. The D in this equation indicates that we condition all PDs
having happened. Often one assumes the α and β are linear in the risk fac-
tors x. It is then straightforward to estimate the model parameters via the
maximum-likelihood method.

An RGD model that relies on this beta-distribution is Moody’s
KMV’s LossCalc™ (see Gupton and Stein, 2002).‡ This model, which pre-
dicts trading price recoveries of U.S. corporations, is commercially avail-
able. It was trained on data from Moody’s recovery database.

Another commercially available RGD model is S&P’s LossStats™
Model (see Friedman and Sandow, 2005). This model predicts ultimate
recoveries and trading prices at arbitrary times after default for large U.S.
corporations; it was built using data from S&P LossStats™ Database.§ It is
based on a methodology that is related to the one S&P’s for PD modeling
(see section “Some Statistical Techniques”). Specifically, for trading prices
it is assumed that

p r D x
Z x

x r x r x r( , )
( )

exp{ ( ) ( ) ( ) }� = + +1 2 3α β γ

p r D x
B x x

r r

r

r r

r

x x

( , )
( ( ), ( ))

,min

max

( )

min

max

( )

� =
−





−

−






− −
1

1
1 1

α β

β α

Univariate Risk Assessment 81

*This conditional probability density function is interpreted as follows: for an obligor with
risk factors x, the probability of recovering a value in the infinitesimal interval (r, r + dr) is
p(r|D, x)dr.
†One might think that rmax = 1, which corresponds to complete recovery. However, at least for
ultimate recoveries of large U.S. firms, one can actually recover more than the invested par
amount. This happens, e.g., if the investor recovers equity that has increased in value dur-
ing the bankruptcy proceedings. The smallest possible recovery value, rmin , is zero, unless
we include workout costs. In the latter case, rmin can be negative.
‡ In LossCalc™, the parameters of the distribution are not estimated via the maximum-
likelihood method, but rather by means of a linear regression after a transformation of the
distribution into a normal distribution.
§ See, e.g., Bos et al., 2002, for more details.



where Z(x) is a normalization constant and α, β, and γ are linear functions
of the risk factors x. In the case of ultimate recovery, additional point prob-
abilities are added for r = 0 and r = 1 to account for the fact that there are
substantial numbers of observations concentrated on these points. The pa-
rameters are estimated by means of a regularized maximum-likelihood
method. As it was the case for S&P PD model, the resulting probabilities
are robust from the perspective of an expected-utility maximizing investor.

The risk factors in S&P LossStats™ Model are

♦ Collateral quality. The collateral quality of the debt is classified
into 16 categories, ranging from “unsecured” to “all assets.”

♦ Debt below class. This is the percentage of debt on the balance
sheet that is contractually inferior to the class of the debt instru-
ment considered.
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F I G U R E 2 . 1 9

Conditional Probability Density Function (blue lines) of
Trading Price Recovery from LossStats™ Model for
Varying Debt Above Class. The Other Risk factors are
kept fixed in the Middle of their Historical Ranges. The
Red Dots are Actually Observed Data for Large U.S.
Firms from the LossStats™ Database.
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♦ Debt above class. This is the percentage of debt on the balance
sheet that is contractually superior to the class of the debt
instrument considered.

♦ Regional default rate. This is the percentage of S&P-rated U.S.-
bonds that defaulted within the 12 months prior to default.

♦ Industry factor. This is the ratio of the percentage of S&P-rated
bonds in the industry of interest that defaulted within the
12 months prior to default to the above regional default rate.

The risk factors in Moody’s KMV’s LossCalc™ are not the same, but cap-
ture similar characteristics of the balance sheet and the economy.

A typical model output is shown in Figure 2.19. The figure demon-
strates how the probability density depends on one of the risk factors. It
also shows that the probability density is fairly flat, i.e., is associated with
a high uncertainty.

The models mentioned here approach recoveries from a statistical
point of view: a probability density is learned from data without any
assumptions about the underlying process, which leads to default. An
alternative approach is taken by Chew and Kerr (2005), who approach
recovery modeling from a fundamental perspective.

COMBINING PD AND RECOVERY MODELS

Investors in credit-risky debt are usually interested in the expected loss
or the loss distribution of a given debt instrument. The latter one can be
used, in its turn, as an input into a portfolio model for the computation
of portfolio VaR, economic capital, or other risk characteristics of a
credit portfolio. The loss distribution of a single credit can be computed
by combining a PD model and a recovery model. Let us consider a debt
instrument with risk factors x (this denotes the vector of all risk factors
that affect either LGD or PD), and denote the PD by P(D�x) and the prob-
ability density for LGD (which is 1 − RGD) by p(l�D, x), where l denotes
a loss value and D denotes the default event. The loss distribution is
then

p(l �x) = (1 − P(D �x))δ(l) + P(D �x)p(l �D, x),

where δ is Dirac’s delta function. This equation implies that

E[L �x] = P(D �x)E[L �D, x],
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that is, that, for a debt instrument with known risk factors x, the expected
loss is equal to the PD times the expected LGD. This formula is widely
used by practitioners.

In many practical applications, however, the risk factors should be
viewed as having a probability distribution, p(x), rather than being given
by a single value. Possible reasons for this are the following:

♦ The economic environment at the default time is uncertain.
♦ We are interested in a portfolio instead of in a single loan. The

components of the portfolio are typically not identical with
respect to their risk factor values.

In this case, the loss distribution is

p(l) = ∫p(x)p(l�x)dx = ∫p(x)[(1 − P(D�x))δ (l) + P(D�x)p(l�D, x)]dx,

and the expected loss is

E[L] = ∫p(x)E[L�x]dx = ∫p(x)P(D�x)E[L�D, x]dx.

These expressions involve integrals over products. Therefore, if
there are any risk factors that PD and LGD share,* one cannot simply cal-
culate the loss distribution or the expected loss based on the formulae for
given credit factors after averaging PD and LGD separately over x. This
fact, which received some attention in the recent literature (see, e.g., Frye,
2003 or Altman et al., 2006), has important practical consequences. It has
been shown that there are indeed joint risk factors, such as the economy-
wide default rate, which typically drive PDs and LGDs in the same direc-
tion. Numerical experiments have shown (see Altman et al., 2006) that
this leads to an expected loss; a VAR that is higher than the expected loss
would be in the absence of such joint risk factors. These experiments are
in line with what one would expect from the previous equation for p(l); if
those x-values with a higher PD have a greater probability for larger
losses than those x-values with a lower PD, then p(l) is more concentrated
on higher loss values than it would be otherwise. In other words, in the
case of common factors that drive PD and LGD in the same direction, if
situations turn bad with regard to PDs they also turn bad with regard to
LGDs, and the investor gets hit twice.
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*Risk factors that affect either the PD or LGD only can be averaged out separately, and there-
fore do not affect the argument which follows.



CONCLUSION

In this chapter, we have reviewed some popular approaches to modeling
PDs and RGD. Most practitioners analyze PDs from one of the following
perspectives:

1. Ratings
2. Statistical modeling
3. Structural (Merton-type) models
4. Spreads

Interestingly enough, in the pricing world (risk-neutral), the dominant
technique relies on spread, but we have seen that under the historical
measure, it is very difficult to extract a probability of default from spread.
This explains why the first three methods have been so dominant.

Going forward, we believe that the two dominant approaches that
are going to be used are rating-based models and statistical models, i.e.,
approaches 1 and 2. We do not exclude structural models, but think that
the refinements they go through these days increasingly bring them closer
to statistical models. These two approaches usually provide different infor-
mation. The first one, which is based to a large extent on expert judgement,
gives a smoothed view over a longer horizon (through the cycle), whereas
approach 2, which is usually used to derive a one-year PD from quantita-
tive factors, gives a more precise but more volatile view of the term struc-
ture of the creditworthiness of an obligor. One can, however, use approach
2 to estimate long-term PDs, in which case its output resembles a rating-
derived PD more closely.

RGD is rather difficult to predict. For this reason, it seems advisable
to model its conditional probability distribution given a set of credit fac-
tors. Perhaps the most popular approach to doing so is to estimate a beta-
distribution. More general families of distributions (e.g., exponential
densities with point probabilities), however, can improve the perfor-
mance of an RGD model substantially. An important feature, which any
RGD model should reflect, is the empirical observation that RGD and PD
share some credit factors, a fact which tends to increase the risk of high
portfolio losses.
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APPENDIX 1

Definition of the Gini Coefficient

Given a sample of n ordered individuals with xi the size of individual i, in
this specific case ordered by the PD with respect to the percentage of
default events, and x1 < x2 < · · · < xn, the sample Lorenz curve is the poly-
gon joining the points (h/n, Lh, Ln), where h = 0, 1, 2, . . . , n, L0 = 0 and

If all the individuals are the same size, the Lorenz curve is a

straight diagonal line, called the line of equality. The Lorentz curve can be

expressed as where F(x) is a c.d.f. and µ is the mean size

of xi.
If there is any equality in size, the Lorenz curve falls below or above

the line of equality.
The total amount of inequality can be summarized by the Gini coef-

ficient, which is the ratio between the area enclosed by the line of equal-
ity and the Lorenz curve, and the total triangular area under the line of
equality. The Gini coefficient G is a summary statistic of the Lorenz curve
and a measure of inequality in a population. The Gini coefficient is most
easily calculated from unordered size data as the “relative mean differ-
ence,” i.e., the mean of the difference between every possible pair of
individuals, divided by µ:

Alternatively, if the data is ordered by increasing size of individuals, in
this specific case ordered by PD with respect to the percentage of default
events, G is given by:

The Gini coefficient ranges from a minimum value of zero, when all
individuals are equal, to a theoretical maximum of one, in an infinite
population in which every individual except one has a size of zero. In
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general, in the Credit universe, Gini coefficients are positioned in the 50
to 85 percent interval.
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INTRODUCTION

Univariate pricing is a key component to the pricing of structured credit
vehicles. Several books like Bielecki and Rutkowski (2002) (BR) provide a
detailed review of up to date modeling techniques.* In this chapter, we rather
focus on giving an overview of the various possible pricing alternatives. We
start with reduced-form models that have become the market standard. We
then detail recent customizations in structural modeling, and we ultimately
offer an example of a more advanced hybrid-modeling framework.

To date, credit is still very much an incomplete market. In addition,
it is usually difficult to use a simple diffusion setup to model its dynamic,
as default risk is usually perceived as an unexpected event, i.e., a jump.
An incomplete market and the presence of jumps make the credit space a
difficult market, where it is not always easy to derive prices from the cost
of related replicating (hedging) strategies/portfolios.

Due to these characteristics, market participants have been trying
hard to make the most of two alternatives:

*These authors spend some time on the definition of the appropriate reference filtration,
more generally of the appropriate probability space and the uniqueness of martingale mea-
sures. We revert interested readers to them.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



92 CHAPTER 3

♦ Use the dynamics derived from the rating information in order
to take advantage of the (more or less perfect) Markov chain
properties of credit events.

♦ Use the information available in equity markets (stock and option
prices) to improve the accuracy of the pricing of credit instru-
ments. Interestingly, the structural approach has been rejuvenated
mainly for this purpose. Unfortunately, its contribution in terms
of calibration is generally poor and the incremental information it
considers is limited, as these models mainly focus on the price of
stocks and very little on equity option information.

We believe that further developments are required in this area. In this
chapter, we therefore provide a discussion of joint calibration of various
risks/underlyings, such as ratings and credit spreads, or debt and equity
instruments.

REDUCED-FORM MODELS*

In structural models of credit risk, the default event is explicitly
related to the value of the issuing firm. One of the difficulties with this
approach lies in the estimation of the parameters of the asset value pro-
cess and in the definition of the default boundary. For complex capital
structures or securities with nonstandard payoffs such as credit deriva-
tives, firm value-based models tend to be cumbersome to deal with.
Reduced-form models aim at simplifying the pricing of these instru-
ments by ignoring what the default mechanism is. In this approach,
default is unpredictable and driven by a jump process: when no jump
occurs, the firm remains solvent, but as soon as there is a jump, default
is triggered.

In this section, we first review the usual processes used in the pric-
ing literature to describe default, namely hazard rate processes. Once their
main properties have been recalled, we give pricing formulae for default-
risky bonds and explain some key results derived using the reduced-form
approach.

In a second step, we build on continuous time transition matrices to
cover rating-based pricing models for bonds and credit derivatives, before
focusing on spread calibration.
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At last, we focus on what tends to become a market standard: the
combination of spread processes with migrations.

Pricing Based on Hazard Rate Models

The main approach to spread modeling (see Lando, 1998; Duffie and
Singleton, 1999) consists of describing the default event as the unpre-
dictable outcome of a jump process. Default occurs when a Poisson pro-
cess with intensity λt jumps for the first time. λt dt is the instantaneous
probability of default. Under some assumptions, Duffie and Singleton
(1999) establish that default risky bonds can be priced in the usual mar-
tingale framework* used for pricing treasury bonds. Hence the price of a
credit risky zero-coupon bond is:

where As = rs + λs Ls and Q denotes the risk neutral probability measure
(see Appendix 1 for further details).

Ls is the loss given default (LGD) and the second term therefore
takes the interpretation of an expected loss (probability of default times
loss given default). λs Ls can also be seen as an instantaneous spread, the
extra return above the risk-less rate. This approach is very versatile as it
allows to price bonds and also credit-risky securities as discounted expec-
tation under Q but with modified discount rate.

Standard Poisson Process
Let Nt be a standard Poisson process. It is initialized at time 0 (N0 = 0) and
increases by one unit at random times T1, T2, T3, . . . . Durations betweens
jump times Ti −Ti −1 are exponentially distributed.

The traditional way to approach Poisson processes is to consider dis-
crete time intervals and to take the limit to continuous time. Consider a
process whose probability of jumping over a small time period ∆t is
proportional to time:

P[Nt + ∆t − Nt= 1] = λ∆t and† P[Nt + ∆t − Nt = 0] ≈ 1 − λ∆t.

The constant λ is called the intensity or hazard rate of the Poisson process.
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*See Appendix 1 for a brief introduction to this concept.
†For ∆t sufficiently small, the probability of multiple jumps is negligible.



Breaking down the time interval [t, s] into n subintervals of length ∆t
and letting n → ∞ and ∆t → dt, we obtain the probability of the process
not jumping:

P[Ns − Nt = 0] = exp(−λ(s − t)),

and the probability of observing exactly m jumps is:

(0)

Finally, the intensity is such that: E[dN] = λ dt. These properties character-
ize a Poisson process with intensity λ.

Inhomogeneous Poisson Process
An inhomogeneous Poisson process is built in a similar way as the stan-
dard Poisson process and shares most of its properties. The difference is
that the intensity is no longer a constant but a deterministic function of
time λ(t). Jump probabilities are slightly modified accordingly:

(1)

and

(2)

Cox Process
Cox processes or “doubly stochastic” Poisson processes go one step fur-
ther and let the intensity itself to be random. Therefore, not only the time
of jump is stochastic (as in all Poisson processes) but so is the conditional
probability of observing a jump over a given time interval. Equations (1)
and (2) remain valid but in expectation, that is,

(3)

and

(4)

where λu is a positive-valued stochastic process.
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Default-Only Reduced-Form Models

We now study the pricing of defaultable bonds in a hazard-rate setting by
assuming that the default process is a Poisson process with intensity λ.
The case of Cox processes is studied afterwards. We further assume that
multiple defaults are possible and that each default incurs a fractional loss
of a constant percentage L of the principal (RMV).* This means that in case
of default, the bond is exchanged for a security with identical maturity
and lower face value.

In this section, we do not derive the equations of the pricing models
for all the recovery options. For the RT and RFV cases, we revert the read-
ers to Jobst and Schönbucher (2002).

Let P(t, T) be the price at time t of a defaultable zero-coupon bond
with maturity T.

Using Ito’s lemma, we derive the dynamics of the risky bond price:

(5)

The first three terms in Equation (5) correspond to the dependence of the
bond price on calendar time and on the risk-less interest rate. The last
term translates the fact that when there is a jump (dN = 1), the price drops
by a fraction L.

Under the risk-neutral measure† Q, we must have EQ[dP] = rP dt and
thus, assuming that the risk-less rate follows a stochastic process dr = µr
dt + σr dwr , with a drift term µr and a volatility σr , under Q, we obtain:

‡ (6)

Comparing this partial differential equation with that satisfied by a
default free bond B(t, T ):
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*So far, we have not considered the case of uncertain recovery. Various options have been
studied like (1) the recovery of treasury (RT), where a predefined fraction of the value of a
comparable default-free bond is provided in the event of default, (2) the fractional recovery
of face value immediately upon default (recovery of face value—RVF), (3) the fractional
recovery of predefault value of the defaultable bond (recovery of market value—RMV), (4)
the stochastic recovery, etc. We revert the readers to BR for further details.
†See Appendix 1. 
‡Given that EQ[dN] = λ dt and EQ[dr] = µr dt.
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one can easily see that the only difference is in the last term and that if one
can solve Equation (7) for B(t, T), the solution for the risky bond is imme-
diately obtained as P(t, T ) = B(t, T )e−Lλ(T − t). The spread is therefore Lλ,
which is the risk-neutral expected loss.

Of course, this example is simplistic in many ways. The probability
of default over an interval of given length is assumed to be constant as the
intensity of the process is constant. In addition, default risk and interest
rates are also not correlated.

We can consider a more the versatile specification of a stochastic
hazard rate with intensity λt , such that under the risk-neutral measure:*

dr = µr dt + σr dW1,

dλ = µλ dt + σλ dW2,

The instantaneous correlation between the two Brownian motions W1 and
W2 is ρ.

The derivation of the credit-risky zero-coupon bond follows closely
that described earlier in the case of a Poisson intensity. We start by apply-
ing Ito’s lemma to the dynamics of the bond price:

(8)

We then impose the no arbitrage condition: EQ[dP] = rP dt which leads to
the partial differential equation:

(9)

The solution of this equation of course depends on the specification of the
interest rate and intensity processes, but again one can observe that the
spread is likely to be related to Lλ.

Rather than setting up the dynamics of the credit-risky zero coupon
bond through the stochastic differential equation (SDE) defined in
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*We drop the time subscripts in rt and λt to simplify notations.



Equation (9), it is possible to derive the solution using martingale meth-
ods. This is the approach chosen by Duffie and Singleton (1999).

From the FTAP* we know that the risk-less and risky bond prices
must satisfy

(10)

and

(11)

respectively.
Equation (10) corresponds to the discounted expected value of the

$1 risk-free zero-coupon bond, given the paths of rs. Equation (11) expresses
the fact that the payoff at maturity is no longer always $1 as in the case
of the risk-less security, but is reduced by a percentage L each time the
process has jumped over the period [0, T]. NT is the total number of jumps
before maturity and the payoff is therefore (1 − L)NT ≤ 1.

Using the properties of Cox processes, one can simplify equation
(11)† to obtain

(12)

which corresponds to the discounted expected value of a defaultable bond,
conditional on the paths of rs and λs. This formulation is extremely useful,
as it signifies that one can use the familiar Treasury bond pricing tools to
price defaultable bonds as well. One just has to substitute the risk-adjusted
discount rate At ≡ rt + Lλt for the risk-less rate and all the usual formulas
remain valid. Similar formulas can be derived for defaultable securities with
more general payoffs by decomposing them into combinations/functions
of defaultable zero-coupon bonds with different characteristics.

Obviously, the main practical challenge remains the appropriate cal-
ibration of the hazard rate process. Up to now, we have focused on a par-
ticular credit event: default. The next section focuses on multiple credit
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*FTAP: first fundamental theorem of asset pricing, see Appendix 1.
†See Schönbucher (2000) for details of the steps.
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events in an elegant setup based on the existence of multiple discrete
intensity regimes related to rating migrations.

Defaultable HJM/Market Models

As in the interest rate universe, the natural next step is to move from the
calibration of a unique hazard rate specification to the modeling of its
entire term structure.

The Heath, Jarrow, and Morton (1992) (HJM) framework is therefore
extended in order to model the dynamics of the defaultable forward rates:

♦ Schönbucher (2000) shows that under certain arbitrage free
conditions, this model is applicable to the “zero recovery”
situation and a multiple default setup that is (under certain
assumptions) equivalent to the RMV assumption.

♦ Duffie and Singleton (1999) obtain similar results in the case of
fractional recovery (RMV).

♦ Duffie and Singleton (1998) show that in the case of RT, it is still
possible to refer to the HJM setup, provided that the usual con-
ditions get customized.

These results are important from a methodological perspective. A practi-
cal limitation has, however, been so far the lack of data to calibrate such
term structures appropriately.

Rating-Based Models

The idea behind this class of models is to use the creditworthiness of the
issuer as a key state variable on which to calibrate the risk-neutral haz-
ard rate.

The seminal article in this rating-based class is Jarrow, Lando and
Turnbull (1997) (JLT). We review their continuous time pricing approach
and discuss extensions that have lifted some of the original assumptions
of the JLT model.

Key Assumptions and Basic Structure
The model by JLT considers a progressive drift in credit quality toward
default and no longer a single jump to bankruptcy, as in many intensity-
based models. Recovery rates are assumed to be constant and default is
an absorbing state.



JLT assume the availability of risk-less and risky zero-coupon bonds
for all maturities and the existence of a martingale measure Q equivalent
to the historical measure P. In the sequel we work directly under Q.

The authors assume that the transition process under the historical
measure is a time homogeneous Markov chain with K nondefault states (1
being the best rating and K the worst) and one absorbing default state
(K + 1).
The risk-neutral transition matrix over a given horizon h is

(13)

where for example qh
1,2 denotes the risk-neutral probability to migrate

from rating 1 to rating 2 over the time period h.
Transition matrices for all horizons h can be obtained from the gen-

erator* matrix Λ:

(14)

via the relationship Q(h) = exp(hΛ). Over an infinitesimal period dt, Q(dt) =
I + Λ dt, where I is the (K + 1) × (K + 1) identity matrix.

Pricing Zero-Coupon Bonds
Let B(t, T) be the price of a risk-less zero-coupon bond paying $1 at matu-
rity T, with t ≤ T. It is such that:

Pi(t, T) is the value at time t of a defaultable zero-coupon bond with rat-
ing i due to pay $1 at T. In case of default (assumed to be absorbing in
the JLT model), the recovery rate is constant and equal to δ < 1. The default
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*Loosely speaking the matrix of intensities.
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process is assumed to be independent from the interest rate process and
the time of default is denoted as τ. Finally, let G(t) = 1, . . . , K be the rating
of the obligor at time t.

The price of the risky bond therefore is:

(15)

Given that the default process is independent from interest rates we can
split the expectations into two components:

(16)

where qT − t
i,K + 1 = EQ

t [1(τ ≤ T)|G(t) = i] is the probability of default before matu-
rity T for an i-rated bond.

From Equations (10) and (16), one can observe that the term struc-
ture of spreads is fully determined by the changes in probability of default
as T changes. We return to spreads a little later.

Pricing other Credit-Risky Instruments
The main comparative advantage of a rating-based model does not
reside in the pricing of zero-coupon bonds for which the only relevant
information is whether or not default will occur before maturity. JLT-
type models are particularly convenient for the pricing of securities
whose payoffs depend on the rating of the issuer. Some credit derivatives
are written on the rating of specific firms, e.g., derivatives compensating
for downgrades.* More commonly, step-up bonds whose coupon is a
function of the rating of the issuer can also be priced using rating-based
models.

We will consider a simple example of an European style credit deriv-
ative based on the terminal rating G(T) of a company. We assume that its
initial rating is G(t) = i and that the derivative pays nothing in default. The
payoff of the derivative is Φ(G(T)) and its values are known conditional
on the realization of a terminal rating G(T).
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*See Moraux and Navatte (2001) for pricing formulas for this type of options.



From the FTAP, the price of the derivative is:

(17)

Given that the rating process is independent from the interest rate, we can
write:

(18)

Deriving Spreads in the JLT Model

Let be the risk-less forward rate agreed at date t for

borrowing and lending over an instantaneous period of time at time T. It
is such that: f(t, t) = rt.

The risky forward rate for rating class i is:

Hence,

(19)

The credit spread in rating class i for maturity T is defined as f i(t, T) − f(t, T).
From Equation (19), one can indeed observe that spread variations reflect
changes in the probability of default and changes in the steepness of the
curve relating the probability of default to time T.

In order to obtain the risky short rate, one takes the limit as T → t
and f(t, T) → rt:

ri
t = rt + 1τ > T(1 − δ )λiK + 1,

which immediately yields the spot instantaneous spread as ri
t − rt.
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Calculating Risk-Neutral Transition Matrices from
Empirical Ones*
For pricing purposes, one requires “risk-neutral” probabilities. A risk neu-
tral transition matrix can be extracted from the historical matrix and a set
of corporate bond prices.

where all q probabilities take the same interpretation as the empirical
transition matrix that follows, but are under the risk-neutral measure.

Time Nonhomogeneous Markov Chain In the original JLT paper,
the authors impose the following specification for the risk premium
adjustment, allowing to compute risk-neutral probabilities from histori-
cal ones:

(20)

Note that the risk premium adjustments πi(t) are deterministic and do not
depend on the terminal rating but only on the initial one. This assumption
enables JLT to obtain a nonhomogenous Markov chain for the transition
process under the risk-neutral measure.

The calculation of risk-neutral matrices on real data can be per-
formed as follows. Assuming that the recovery in default is a fraction δ of
a treasury bond with same maturity, the price of a risky zero-coupon bond
at time t with maturity T is

Pi(t, T) = B(t, T) × (1 − qi,K + 1(1 − δ )).
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*Some parts of the section come from de Servigny and Renault (2004).



Thus, we have

and thus the one-year risk premium is

The JLT specification is easy to implement but often leads to numerical
problems because of the very low probability of default of investment
grade bonds at short horizons. In order to preclude arbitrage, the risk-
neutral probabilities must indeed be non-negative. This constrains the
risk premium adjustments to be in the interval:

From this we notice that the historical probability of an AAA bond default-
ing over a one-year horizon is zero. Therefore, the risk-neutral probability
of the same event is also zero.* This would however imply that the spreads
on short dated AAA bond should be zero. (Why have a spread on default
risk-less bonds?) To tackle this numerical problem, JLT assume that the
historical one-year probability of default for an AAA bond is actually 1
basis point. The risk premium for the AAA row adjustment is therefore
bounded above. This bound is, as we will see in the next equation, fre-
quently violated on actual data.

Kijima and Komoribayashi (1998) propose another risk premium
adjustment that guarantees the positivity of the risk-neutral probabilities
in practical implementations.

(21)

where li(t) are deterministic functions of time. Thanks to this adjustment,
“negative prices” can be avoided.

Time-Homogeneous Markov Chain Unlike the precedent authors,
Lamb, Peretyatkin, and Perraudin (2005) propose to compute a time-
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*Recall that two equivalent probability measures share the same null sets.
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homogeneous Markovian risk-adjusted transition matrix. They rely on
bond spreads, thanks to the term structure of spreads per rating category.

exp(−Si(t)) = (δqi
K + 1(t) + (1 − qi

K + 1(t)).

where t corresponds to integer-year maturities.
In order to obtain the matrix, they minimize*

(22)

knowing that qK + 1
i (t) is a function of the q j

i (⋅).
A minor weakness of this approach is that it does not ensure that

spreads are matching market prices for all maturities.

Some Extentions of JLT

Das and Tufano (1996) The specificity of the model by Das and
Tufano (1996) is to allow for stochastic recovery rates correlated to the
risk-less interest rate. A wider variety of spreads can be generated due to
this flexibility. In particular, features of the model include the following:

♦ Credit spreads can change although ratings are unchanged. In
the JLT model, a given rating class is associated with a unique
term structure of spreads, and all bonds with same maturity and
rating are identical.

♦ Spreads are correlated with interest rates.
♦ Spreads are “firm specific” and not only “rating class specific.”
♦ The pricing of credit derivatives is facilitated.

While the JLT model assumed that recovery in default was paid at
the maturity of the claim,† Das and Tufano (1996) assume that recovery is
a random fraction of par paid at the default time τ.

Arvanitis et al. (1999): Arvanitis et al. (1999) extend the JLT model by
considering nonconstant transition matrices. Their model is “pseudo
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*Attaching penalties if entries in the transition matrix become negative in the course of the
minimization.
†Or identically that recovery occurs at the time of default but is a fraction δ of a T-maturity
risk-less bond.



nonMarkovian” in the sense that past ratings changes impact on future
transition probabilities. This conditioning enables the authors to replicate
much more closely the observed term structure of spreads.

In particular, their class of models allows for correlations between
default probabilities and interest rate changes and for correlation of
spreads across credit classes and spread differences within a given rating
class for bonds that have been upgraded or downgraded.

Calibration of Spread Processes

Market practice is often to model spreads directly, which eliminates the
need to make assumptions on recovery.

Spread modeling
Longstaff and Schwartz (1995) present a simple parametric specification
and provide first empirical results on real market data. The main stylized
fact incorporated in their model is the mean reverting behavior of
spreads: the logarithm of the spread is assumed to follow an Ornstein-
Uhlenbeck process under the risk-neutral measure Q:

dst = κ (θ − st)dt + σ dWt, (23)

where the log of the spread is st. The parameters are constant, with long-
term mean θ, and volatility σ and a speed of mean reversion κ.

Mean reversion is an important feature in credit spreads and has
been found in Longstaff and Schwartz (1995) and Prigent, Renault, and
Scaillet (2001) (PRS). Interestingly the speed of mean reversion is not the
same for Baa and Aaa spreads, for example. PRS provide a detailed para-
metric and nonparametric analysis of credit spread indices and find that
higher rated spreads tend to revert much faster to their long-term mean
than lower rated spreads. A similar finding is reported on a different sam-
ple by Longstaff and Schwartz (1995).

Another property of spreads is that their volatility tends to be
increasing in level. This was not captured by the earlier model. To tackle
this, Das and Tufano (1996) suggest an alternative specification, similar to
the Cox–Ingersoll–Ross (1985) specification for interest rates:

dst = κ (θ − st)dt + σ √st
–

dWt.* (24)
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Of course, various other stochastic processes can be considered. For
example, a generalization of Equation (1) is given by

dx = (a + bx)dt + σxγ dW

where the mean reverting level is given by θ = −(a/b) and the mean rever-
sion speed is given by β = −b, and γ is a scalar. PRS apply the model to credit
spread data. Depending on the parameter γ (which measures the level of
nonlinearity between the level and volatility), several commonly known
models can be derived. For example, γ = 0 leads to the Vasicek (1977) process,
while γ = 1/2 results in the Cox, Ingersoll, and Ross (1985) (CIR) process.

PRS also discuss a Jump-diffusion dynamics and support their claim
by empirical evidence. They therefore extend the model of Longstaff and
Schwartz (1995b) in a different direction and incorporate binomial jumps:*

dst = κ (θ − st)dt + σ dWt + dNt, (25)

where Nt is a compound Poisson process whose jumps take either the
value +a or −a (given that the specification is in logarithm, they are per-
centage jumps).

Jumps are found to be significant in different rating series (Aaa and
Baa), and a likelihood ratio test of the jump process versus its diffusion
counterpart strongly rejects the assumption of no jumps at the 5 percent
level. Note that the size of percentage jumps in Baa spreads is about half
that of jumps in Aaa spreads. In absolute terms, however, average jumps
in both series are approximately the same size, because the level of Aaa
spreads is about half that of Baa spreads.

Calibration of Spreads Modeled as 
Jump-Diffusion Processes
The model specification we retain here corresponds to Equation (25)

Specification The discretization of Equation (25) leads to:

(26)

The compound Poisson process specification means that the time-arrival
of the jumps follows a Poisson process and that the size of the jumps

s s s dt t N I N ut t t t t+ − = − + +1 0 1κ θ σ ν( ) . ( , ) . ( , )

*Models estimated by PRS are under the historical measure and cannot be directly compared
to the risk-neutral process mentioned earlier.



follows a normal distribution with parameters u and v. Practically, It is
equal to 1 when there is a jump at time t and 0 otherwise. u is drawn
from a standard uniform distribution and a jump takes place if u < 1 −
exp(−λ dt).

MLE Calibration The common approach is to maximize the log-
likelihood function. In order to build this function, we want to define the
probability of obtaining a level of spread st, given a level of spread st − 1 in
previous observation. We know from Ball and Torous (1983) that p(dst)
will follow a normal distribution weighted by the probability of a jump
(K = P(x = 1) ≈1 − exp(−λt))

with the density of normally distributed spread changes being written as:

Eno_jump = κ (θ − s)dt and Ejump = κ (θ − s)dt + u being the expectation of the
spread process

Vno_jump = σ 2dt and Vjump = σ 2 dt + v2.

The Log-likelihood function to be maximized is then:

(27)

The tractability of the approach has been previously demonstrated, and
the more data is available, the more the MLE estimators are close to the
“true” parameters (i.e., there is a high confidence level).

More Advanced Calibration

A relatively recent trend in spread calibration has been to calibrate spread
movements as the combination of a jump-diffusion process and a correlated
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migration process. This type of process can be seen as an advanced version
of the CreditMetrics setup where instead of relying on deterministic
spreads, we would add pure spread uncertainty. Such a framework has
been considered in Kiesel et al. (2001) and Jobst and Zenios (2005), where
the relative contribution of spread, (interest rate) and transition/default
risk is explored for various bond portfolios.

The calibration of the two processes does not represent a serious
issue as long as they are considered as independent from each other. The
challenge becomes obvious when dealing with dependence between
these two processes and when suggesting cocalibration. This topic seems
to be open for research, See for example, Bielecki et al. (2005) who try to
tackle the problem formally.

STRUCTURAL MODELS

Structural models have received some renewed consideration recently, as
market participants investigate more thoroughly hybrid products as well
as debt equity arbitrage, e.g., through credit default swap and equity
default swap carry trades. In addition as the equity market is more com-
plete than the credit market, credit pricing, and hedging solutions based
on equity products receives ongoing market interest.*

The Merton Model

The Merton (1974) model is the first example of an application of contin-
gent claims analysis to corporate security pricing. Using simplifying
assumptions about the firm value dynamics and the capital structure of
the firm, the author is able to give pricing formulae for corporate bonds
and equities in the familiar Black and Scholes (1973) paradigm.

In the Merton model a firm with value V is assumed to be financed
through equity (with value S) and pure discount bonds (with value P) and
maturity T. The principal of the debt is K, and the value of the firm is
given by the sum of the values of its securities: Vt = St + Pt. In the Merton
model, it is assumed that bondholders cannot force the firm into bank-
ruptcy before the maturity of the debt. At the maturity date T, the firm is

*Such models allow in particular to provide a “fair value” spread estimation on loans related
to listed companies.



considered solvent if its value is sufficient to repay the principal of the
debt. Otherwise, the firm defaults.

The value of the firm V is assumed to follow a geometric Brownian
motion* such that† dV = µV dt + σVV dZ. Default happens if the value of the
firm is insufficient to repay the debt principal: VT < K. In that case, bond-
holders have priority over shareholders and seize the entire value of the
firm VT. Otherwise (if VT ≥ K), bondholders receive what they are due: the
principal K. Thus, their payoff is P(T, T) = min(K, VT) = K − max(K − VT , 0)
(see Figure 3.1).

Equity holders receive nothing if the firm defaults, but profit from
all the upside when the firm is solvent, i.e., the entire value of the firm
net of the repayment of the debt (VT − K) falls in the hands of share-
holders. The payoff to equity holders is therefore max(VT − K, 0) (see
Figure 3.1).

Readers familiar with options will recognize that the payoff to equity
holders is similar to the payoff of a call on the value of the firm struck at
X. Similarly, the payoff received by corporate bond holders can be seen as
the payoff of a risk-less bond minus a put on the value of the firm.
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Payoff of Equity and Corporate Bond at Maturity T.

*A geometric Brownian motion is a stochastic process with log-normal distribution. µ is the
growth rate while σv is the volatility of the process. Z is a standard Brownian motion whose
increments dZ have mean zero and variance equal to time. The term µV dt is the determin-
istic drift of the process and the other term σvV dZ is the random volatility component. See
Hull (2002) for a simple introduction to geometric Brownian motion.
†We drop the time subscripts to simplify notations.
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Merton (1974) makes the same assumptions as Black and Scholes
(1973), and the call and the put can be priced using option prices derived
in Black–Scholes.

For example, the call (equity) is immediately obtained as:

(28)

with and N(⋅) denoting the
cumulative normal distribution and r the constant risk-less interest rate.

From Risk-Neutral Probabilities to Spreads

The firm value approach suffers from several theoretical shortcomings
like the fact that the evolution of the value of the firm usually follows a
diffusion process that does not allow for unexpected default.

What is more important from the point of view of practitioners is
to evaluate whether a structural model can help them to derive prices
for credit instruments such as defaultable debt or credit default swaps
(CDSs). A particular area of focus is short-term credit spreads, as in the
traditional structural setup the probability of a firm to default in the
short term is zero, leading to zero initial credit spreads. We review var-
ious approaches and assess whether they can provide realistic results.

The Capital Asset Pricing Model (CAPM) Approach
In Chapter 2, we have mainly focused on historical probabilities of default,
i.e., probabilities estimated on historical data. However, for pricing pur-
poses (for the calculation of spreads), one needs to estimate risk-neutral
probabilities. Here, we show a customary way to obtain spreads from his-
torical probabilities: a similar calculation is used by the firm MKMV
(Moody’s KMV) and many banks (see, e.g., McNulty and Levin, 2000).

Recall that the cumulative default probability (historical probability)
for a firm i (HPi

t) is defined as the probability of default at the horizon t
under the historical measure P. In the MKMV (model, this corresponds to
their expected default frequency.

We now introduce the risk-neutral probability, RNPi
t, which is the

equivalent probability under the risk-neutral measure Q (see Appendix 1).
Under Q, all assets drift at the risk-free rate and therefore one should sub-
stitute r for µi in the dynamics of the value of the firm.*

k V X r T t T tt V V= + − − −(ln( / ) ( )( )) / ( )1
2

2σ σ

S V N k T t Ke N kt t
r T t= + − − − −( ) ( ),( )σ ν

*That is, we have dAt = rAt dt + σAt dWt under Q and dAt = µAt dt + σAt dW*t under P.



The formulas for the two cumulative default probabilities are there-
fore:

(29)

with:

N(⋅) = the cumulative standard normal distribution
Vi

0 = the firm’s asset value at time 0
Xi = the default point (value of liabilities)
σi = the volatility of asset values
µi = the expected return (growth rate) on asset values
r = the risk-less rate

The expected return on an asset includes a risk premium, leading to µi ≥ r,
and hence:

RNPt
i ≥ HPt

i.

Writing the risk-neutral probability of default as a function of HPi
t , we

obtain:

(30)

According to the CAPM (see, e.g., Sharpe et al., 1999), the risk premium
on an asset should depend only on its systematic risk measured as the
covariance of its returns with the returns on the market index.
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More precisely for a given firm i with expected asset return µi we
have:

µi = r + βi (E(rm) − r)

≡ r + βiπt,

with E(rm) the expected return on the market index and πt, the market risk
premium. βi = σim/σ 2

m = ρimσi/σm is the measure of systemic risk of the
firm’s assets, where σm, σim, and ρim are, respectively, the volatility of the
market, the covariance, and correlation of asset returns with the market.

Using these notations, the quasi probability becomes:

(31)

Corporate spreads are the difference between the yield on a corporate
bond Y(t, T ) and the yield on an identical but (default) risk-less secu-
rity R(t, T ). T denotes the maturity date while t stands for the current
date.*

The spread is therefore: S(t, T) = Y(t, T ) − R(t, T ). Recall that the price
P(t, T ) at time t of a risky zero-coupon bond maturing at T can be obtained
by:

P(t, T) = exp(−Y(t, T) × (T−t))

Similarly, for the risk-less bond B(t, T):

B(t, T) = exp(−R(t, T) × (T − t)).

Therefore,

S(t, T) = 1/(T − t) log(B(t, T)/P(t, T)). (32)

Thus, all else being equal, the spread widens when the risky bond price
falls.

For the sake of simplicity, assume for now that investors are risk
neutral. In a risk-neutral world, an investor is indifferent between receiv-
ing $1 for sure and receiving $1 in expectation.
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*We drop the superscript i in the probabilities for notational convenience.



Then: B(t, T) = P(t, T)/(1 − RNPT−t* L), where L is the loss in default (1
minus the recovery rate) and RNPT the probability of default. Therefore,
we get: S(t, T) = −1/(T − t) ln(1 − RNPT − t * L).

The risk-neutral spread reflects both the probability of default and
the recovery risk. In reality of course, investors exhibit risk aversion that
will also be translated into spreads.

We now want to calculate the price of a defaultable bond using risk-
neutral probabilities of default. Let PC(t, T) be the value at time t of a
T-maturity risky coupon bond paying a coupon C (there are n coupon
dates spaced by ∆t years). We assume that the principal of the bond is
1 and that the value recovered in case of default is constant and equal to R.

We have:

(33)

An important point to notice is that this approach does not prove really
satisfactory to cope with nonzero short-term credit spreads.

The Market Implied Volatility Approach
In a Merton setup, the value of the equity at time t is immediately
obtained as:

with and N(⋅) denoting the
cumulative normal distribution and r the risk-less interest rate.

It can be rewritten at t = 0 as:

If we assume that an implied volatility σV can be derived from the mar-
ket, we can obtain P0 as a function of S0 : P0 = F(S0). For small t, we can
assume: Pt ≈ F(St).

We also would like to infer the density of Pt from that of St. A stan-
dard assumption for the distribution of the equity is log-normality.
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Let us call ϕ (⋅) the density function of St:

(34)

where µs and σs are, respectively, drift and the volatility of the equity
under the empirical measures.

The density function of Pt can now be inferred numerically from that
of St as:

Probability (Pt) ∈[P; P + dP] = ξ(P)dP = ϕ(F−1(S))d(F−1(S))

The expected return of the zero-coupon bond price can be written as:

(35)

and the bond spread can be derived as s–P(t) = �RP(t) − r�.
This type of analysis is typically used in the market by the financial

institutions that want to obtain some indication of whether a bond is
“cheap” or “expensive,” based on a relative value assessment between the
observed spread and the corresponding fair-value spread.

Obviously, the fair-value of the bond spread will depend on the
specification of the dynamics of the equity price. As we have considered
log-normal dynamics for the value of the firm V(⋅) over the period [0, T],
we cannot consider an arbitrary density for S over the corresponding
period. As we are focusing on a very short time horizon, we could how-
ever consider a more complex pattern generating an implied volatility
skew. There is a large range of possibilities based, for instance, on the
use of standard CEV diffusion processes. One can even think of jumps in
order to generate very steep volatility skews.

So far, we have not referred to a term structure of spreads, but only to
an assessment of what the market value of the spread could be in the very
short term. The way to obtain a term structure of spreads would be to rely
on forward prices for the equity, the equity and the asset volatilities, the
equity drift, and the risk-free rate, as well as on a specification of the for-
ward density of the equity price. In the end, it is probably fair to say that the
result will correspond to an art as much as to a scientific piece of work.
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Extensions of the Merton Framework

First-Passage-Time Models
An important extension of the original Merton model consists of the
“first-passage-time approach.” The idea is introduced in Black and Cox
(1976). It allows for default to occur prior to the maturity of the debt. This
approach consists in including an early default time-dependent barrier as
can be seen in Figure 3.2. Depending on the authors, the dynamics of the
barrier (the barrier process) can be specified either endogenously or
exogenously. For example, for a simple constant barrier K, the probability
of default (“first passage time”) is given in closed form:

In addition, the recovery upon default can be defined in various ways.
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The Effect of Incomplete Information Duffie and Lando (2001) lay
stress on the fact that first-passage structural models are based on account-
ing information. This information to investors can be somewhat opaque
and sometimes insufficient, as we have observed recently with Enron,
Worldcom, Parmalat, and others. In addition, accounting practices lead to
the release of data with a time lag and in a discrete way. For all these rea-
sons, part of the information used as an input in structural model (e.g.,
asset value and default boundary) can be imperfect.

Duffie and Lando (2001) suggest that if the information available to
investors was perfect, observed credit spreads would be closer to theoret-
ical ones, as predicted by the Merton models. However, as the informa-
tion available in the financial markets is not complete, observed spreads
exhibit significant differences (see Figure 3.3).

To summarize, the driving forces behind the dynamics of the Merton
approach, we can say that the risk on the debt of the firm, reflected in its
spread, largely depends on three key factors: the debt equity leverage, the
asset volatility, and the dynamics of the default barrier.

The Dynamic Barrier Approach
This class of model builds on the first-passage-time approach, where
default can happen before the maturity of the debt when the value of the
firm hits a time varying barrier. The problem with such models is to
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define a specification for the time-dependent barrier that allows for
tractable pricing solutions.

The CreditGrades Approach Finger et al. (2002) propose a fair value
spread estimator (CreditGrades) more refined than the MKMV one. In
order to allow for non-zero spreads at the beginning of the life of a CDS, the
model assumes a stochastic barrier driven by a log-normally distributed
stochastic recovery rate.

Assuming zero drift, the authors show that it is then possible to
derive the risk-neutral probability of default of the obligor in a simple way:

with Xˆ i being the mean value of the new barrier depending on the mean
recovery value and vari a time-dependent element derived from the vari-
ance term of the Brownian component of the geometric Brownian motion
characterizing the asset value of the firm, complemented with the variance
of the recovery. As a result, initially as time is zero or close to zero, the vari
term differs from zero and the risk-neutral probability remains strictly pos-
itive. This in turn justifies the existence of a nonzero initial spread.

The spread can be derived as in the previous paragraph. The authors
describe a closed form solution in the case of a continuously compounded
spread.

This model has become a market standard in particular because of
its tractability. It however relies on an ad hoc hypothesis on recovery that
is difficult to validate empirically and that positions the model at the
boundary of structural models.

The Safety Barrier Approach Brigo and Tarenghi (2005) suggest to
consider a “safety barrier” that is defined as the product of the barrier at
the maturity of the debt and a discount factor derived from an adjusted
drift extracted from the geometric Brownian motion corresponding to the
asset return of the firm. The risk-neutral drift is adjusted in the sense that
it includes a parameter β whose main role is to vary the steepness of the
safety barrier by reinforcing the effect of the volatility. Based on this choice,
they derive analytically the risk-neutral survival probability of the firm. By
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assuming a deterministic risk-free rate and an equivalence between the
equity and the firm value volatilities, they can ultimately infer in a
straightforward manner the price of a CDS at time 0.

To start with, the authors assume a diffusion process for the dynam-
ics of the value of the firm under the risk-neutral measure, with time-
dependent risk-free rate, payout ratio, and asset volatility.

The expression of the “safety barrier” Ĥ (t) is related to the default thresh-
old H

(36)

τ is the first time when V hits Ĥ

τ = inf {t ≥ 0: Vt ≤ Ĥ(t)}.

The survival probability is given in a closed form way:

(37)

Under deterministic interest rates, the value at time 0 of a CDS between
times Ta and Tb corresponding to two payment date of the installments,
with a fixed running amount per period R and fixed LGD can easily be
inferred as:

with P(0, t) the zero-coupon bond at time 0 for maturity t.
As can be seen, the pricing of the CDS will depend on the definition

of V0/H, the asset volatility that is approximated by the equity volatility
and the barrier curvature parameter β.
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The authors calibrate* their model with V0/H = 2 and β = 0.5. With
this calibration, they show that they are able to provide a calibration of the
CDS on Vodafone with results quite close to those derived from an inten-
sity model.

This paper looks quite promising in the sense that it leads to
tractable results while providing some intuition in terms of rational eco-
nomic interpretation.

The Structural Approach Blended with a 
Jump-Diffusion Process to Model the 
Evolution of the Firm
The pioneer article related to jump-diffusion structural models is Zhou
(2001).

We can write the evolution of the value of the firm as the sum of a
diffusion process and a compound Poisson jump process Z. c is the
product of the arrival intensity of the Poisson process by the mean jump
size.

(38)

Zhou (2001) is able to derive a closed form expression of the risk-neutral
probability of default.

There are some technical difficulties to calibrate such a model:

♦ Asset returns are not observable
♦ A proxy is to rely on equity return or on an index return, but

this calibration needs to be transformed from the real to the risk-
neutral probability measure and as the market is not complete,
there is no unique solution to the problem.

Huang and Huang (2003) go through the process of calibrating a
jump-diffusion process in a structural framework. Their finding is that
even when introducing a jump term, pure credit risk cannot account for
the observed level of credit spread. The only way to reach such level

dV

V
r c dt dW dZt

t
t t= − − + +( )γ σ
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*Brigo and Tarenghi (2005) suggest to link the ratio of the initial value of the firm to the bar-
rier to expected recovery. I.e., we have dAt = rAt dt + σAt dWt under Q and dAt = µAt + σAtdWt*
under P.



would be by forcing parameters into the model that lack empirical
support.

Hybrid Models: A Discussion Around 
the Equity-to-Credit Paradigm
In this section, we discuss new approaches to the pricing of credit instru-
ment based on the cocalibration with equity products. This is summarized
as the “equity-to-credit paradigm” that attempts to grasp the complexity
of the full spectrum of securities issued by or related to a single name in a
consistent framework. It results from the need to price consistently equity
products such as options, credit instruments such as bonds and CDSs, and
hybrid securities such as convertible bonds. The intuitive idea is simple.
The prices of out-of-the-money put must say something about the proba-
bility of default of the issuer, and reciprocally the credit standing revealed
by the term structure of CDS spreads should impact the implied volatility
smile. The joint calibration of different classes of assets related to a single
name is often viewed as a complex and distant challenge. We argue instead
that a large set of available market data provides a great opportunity
to extract precise information on a single name. This nice feature of single
name modeling is in sharp contrast with multiname problems such as
CDO pricing, where there is less hope of finding enough instruments to cal-
ibrate precisely a correlation structure for hundreds of names. As a result,
multiname pricing is limited to educated guesses and statistical inference
from past data. The calibration of single name models has the luxury to rely
on a large set of forward looking derivative prices. The challenge is to pro-
pose models that are capable of handling this rich source of information.
We review why both standard structural models and simple reduced-form
models fail and propose a new class of regime-based models, versatile
enough to handle most situations in a numerically tractable way.

Structural Models

As we have seen earlier, structural models attempt to explain the price
dynamics of the instruments related to a single name, the so-called equity-
to-credit universe, by making use of the available information on the capital
structure of the firm. Default is triggered when the assets of the company fall
below some critical threshold. The value of the company’s assets is the only
state variable, and the price of every security is derived from its process and
its relation to the critical threshold. From their introduction by Merton in
1974, these models have been continuously refined but have kept the same
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philosophy. The most advanced refinements introduce complex joint
dynamics for the value of the assets and the critical default threshold. Jumps
for instance, either in the asset value or in the threshold itself, make it pos-
sible for a firm to fall into default at every instant. This is a much-needed fea-
ture as otherwise default would always be predictable and short-term CDS
spread should consequently be close to zero, a clear empirical contradiction.

The main problem with structural models is their inability to repro-
duce the observed prices of the equity-to-credit instruments. By tweaking
the volatility parameter of the asset value process, for instance, it is possi-
ble to account for the observed term structure of CDS spreads. Such cali-
bration exercise is however limited to a single asset class. The tweaked
model will, in general, fail to reproduce the observed term structure of at-
the-money implied volatilities, let alone the entire smile across strikes and
maturities or the prices of critical exotic derivatives such as barrier or for-
ward starting options.

It is important to understand why the shortcoming of the struc-
tural model is not marginal. Its inability to calibrate the equity-to-credit
universe is fundamental and cannot be dealt with by a few adjustments
on the underlying process. The reason is rather obvious: corporate life is
a complex process that cannot be summarized in a one-dimensional pro-
cess. A trader with equity and credit exposures knows intuitively that
the stock price is not the only variable which affects his P&L (Profit and
Loss). At the minimum, he is equally concerned with the volatility and
the evolution of the spread. These risk dimensions, although clearly cor-
related with the stock price, cannot be reduced to a one-dimensional
problem. The critical weakness of structural models is to assume that the
value of every security linked to an issuer is a function of the assets of
the company alone. The empirical reality presents a much more complex
picture.

Simple scatter plots of CDS spread or implied volatility against stock
price show the gap that often exists between the structural theory and the
empirical evidence. Figures 3.4 and 3.5 show, respectively, the five-year
CDS spread and the one-year ATM implied volatility as a function of spot
for the firm Accor from April 2003 to December 2005. Structural theory
predicts that both the spread and the implied volatility should be decreas-
ing functions of the spot price.

Not only is it clear that in many situations the price dynamics of
equity-to-credit securities cannot be reduced to a one-dimensional manifold,
but in some critical cases the structural models fail to grasp the sign of the
correlations. Structural models view the equity as a call written on the assets
of the company whose value decreases with the value of the assets. As the
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stock price falls with the value of the assets, leverage increases and the com-
pany becomes more risky resulting in larger spreads and higher stock price
volatility levels. This intuitive behavior often fails to grasp the rich dynam-
ics of the equity-to-credit universe.

Figure 3.6 examines in more detail a subset of the data presented ear-
lier for Accor, from June 1, 2005 to December 8, 2005. It can be decomposed
into three subperiods that correspond to three distinct regimes. Period 1
runs from June 1 to July 7 and is characterized by a low level of volatility.
On July 8, the volatility suddenly increases and this regime lasts until
August 10 (Period 2). On August 11, the volatility jumps again to a third
regime until the end of the sample (Period 3). At each juncture, the spot
price barely moves. The CDS spread scatter plot for the same period (see
Figure 3.7) fails to reveal any clear regime or any correlation with the spot
price. The regimes can therefore best be described as volatility regimes.
They correspond to very real events affecting the life of the company or the
business environment. The first regime change on July 7, 2005 was most
probably triggered by the terrorist attacks in London, which ushered in a
period of perceived instability, reflected in a larger implied volatility. The
second regime switch corresponded to rumours in the press of manage-
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ment shakeout and potential buyout of Accor by the real estate fund Colony
Capital together with the company Starwood Hotels & Resorts Worldwide
Inc. The stock price increased first from 41.78 to 43.69 euros on Friday
August 5, and the implied volatility then jumped on August 11 from 18.4 to
21.9 percent. Needless to say that none of these changes of regime can be
accounted for by standard structural models. The potential buyout has log-
ically a positive impact on both the stock price and the implied volatility
while the structural model would imply a smaller risk as the price increases.

It could be argued however that the structural model remains a good
candidate within each regime in order to describe the day-to-day behavior
of the Equity-to-Credit universe. Figure 3.7 has already shown that it is dif-
ficult to believe that the CDS spread is a function of the spot price, even
within each regime. Figure 3.8 describes the joint behavior of the CDS
spread and the implied volatility over a small period of time from May 4 to
June 3, 2005 while Figure 3.9 tracks the spot price over the same period.

During that period, the stock remained virtually constant until May 18
at around 36 euros while both the spread and the implied volatility were
increasing significantly. The stock then jumped to around 37.5 euros while
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Implied ATM Volatility (Left Axis) vs CDS Spread (Right
Axis).
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both the spread and the implied volatility went back to their original values.
Traders who would have hedged their credits or volatility position on Accor
in the first two weeks of May 2005 with the underlying alone according to
a structural model would have been widely off the mark.

Reduced-form Equity to Credit Models

A reduced-form model is sometimes seen as an attempt to alleviate the
most striking shortcoming of the structural model: the fact that the default
event itself is triggered by the stock price. In its standard formulation, a typ-
ical reduced-form model often keeps the stock price as the only explanatory
variable for the entire equity-to-credit universe but for one event, which is
the time of default. Default is seen as an exogenous and unexplained event
that may occur anytime according to a Poisson process. The intensity of this
process, just like the instantaneous volatility of the stock price, may itself be
a function of time and spot. The state space is therefore expanded from the
stock price alone (as in structural models) to the stock price and the default
event in the reduced-form model. The stock price S follows a stochastic dif-
ferential equation under the risk-neutral probability:

dSt / St = (rt + λ(St, t)) dt + σ (St, t) dWt − dNt

where rt is the short-term risk-free rate at time t and Nt is a Poisson process
with instantaneous intensity λ(St, t), which triggers default. We assume here
for simplicity that the stock price jumps to zero upon default. Notice that the
drift is adjusted to make sure that the stock price follows a discounted mar-
tingale in the risk-neutral probability measure, as required by the absence of
arbitrage opportunity. Any derivative instrument should also earn the risk-
free rate on average under the risk-neutral measure and from this we derive
the value V of any derivative security:

E[dV]/dt = rtV = ∂V/∂t + (rt + λ(St, t))S∂V/∂S + 1
2σ 2S2∂ 2V/∂S2 + λ(St, t)∆V

The term ∆V describes the jump in value on the derivative caused by a
jump to default of the underlying. Contrary to structural models, reduced-
form models do not impose any a priori structure on the local default
intensity and volatility parameters. In practice, one seeks to calibrate these
functions to market data such as vanilla options and CDS.

The structural model setup fails to grasp the rich behavior of the
equity-to-credit universe, because the spot price alone is too crudely a state
variable. Adding the default event to the state space is certainly welcome but
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is unlikely to be sufficient. Standard reduced-form models are still unable to
grasp regime changes, except in the most extreme case of default. As a result,
even if they manage to reproduce a smile of vanilla options and a term struc-
ture of CDS at a given time, they will not properly account for the rich
dynamics of these objects. This in turn implies that they will produce wrong
hedges and that they will fail to correctly price exotic instruments.

Regime-Switching Models

The models that we have reviewed so far share the same drawback. They
rely on a state space that is too restrictive to correctly handle the complex
situations that are common in the corporate life of a firm. Expanding the
state space from the stock price alone in the structural model to an addi-
tional default state variable in the standard reduced-form model goes in
the right direction but is still too limited. Our choice of additional dimen-
sions for the state space will be guided by two complementary sources,
asset pricing theory on the one hand and corporate finance on the other
hand.

From advanced asset pricing theory, we know that robust pricing
and hedging of equity and credit derivatives require complex models for
the stock price process with jumps, stochastic volatility with possibly
jumps on the volatility, and finally a stochastic credit dimension with a rich
correlation structure between these risk factors. This means that we need
to keep track of at least two or more processes, in addition to the stock
price and the default status: a process for the instantaneous volatility and
another one for the instantaneous default intensity. A full-fledged three or
more dimensional state variable is however extremely cumbersome to
work with and such complex models have so far been confined to aca-
demic studies. Their calibration time is often too important to be of any
value for practitioners, which explains the popularity of simpler models
where the state space is essentially limited to the stock price. We face a dis-
turbing contradiction. Asset pricing theory requires a rich state space while
numerical tractability demands a limited number of risk dimensions.

Discrete regimes offer a nice way to solve this contradiction. We con-
sider here a small number of abstract regimes: in practice, two are
often enough and three is plenty. In each regime, the stock price follows a
geometric jump-diffusion process with constant parameters. Each regime
is defined by a distinct volatility, a distinct hazard rate, and distinct stock
price jumps. The switch between regimes is driven by a Markov chain in
continuous time. Default can be seen as an additional regime from which
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the firm does not recover. Formally, the state space is described by the
stock price and an additional discrete variable that tracks the regime and
default status. Finally, the much needed correlation between stock price,
volatility, and default risk is obtained by allowing stock price jumps of
various sizes when changes of regime occur. The proposed state space is
both coarse enough to remain numerically tractable and rich enough to
capture the risk dimensions called for by advanced pricing theory. It is
crucial to remark that, contrary to the stock price or the default status, the
volatility and the hazard rate are abstract variables, which are not directly
observed. An elementary Markov chain is the simplest framework where
these variables are stochastic with potentially rich correlation patterns.

One drawback of any regime-switching model is the absence of any
closed form solution, which means that a calibration exercise must rely
on fast numerical procedures. Luckily, the regime-switching model lends
itself to fast numerical analysis through the use of coupled partial differ-
ential equations. We need to solve one backward one-dimensional grid
per regime, which means that the pricing of an option with three regimes
is only three times as costly as in the case of a standard jump diffusion, a
far cry from the time needed to solve a full three-dimensional grid. In
each regime i, the underlying price follows a jump-diffusion process in
the risk-neutral probability with Brownian volatility σi and some jumps of
percentage size yij and intensity λij:

dSt / St = (rt − ∑j λijyij) dt + σi dWt + ∑j yij dNijt

We distinguish three kinds of jumps: simple price jumps within each
regime, a jump to default with a regime-dependent intensity or hazard
rate, and jumps that occur together with a regime switch. The value Vi of
a derivative in regime i is a solution to a one-dimensional evolution equa-
tion which results from the fact that in the absence of arbitrage every secu-
rity must earn the risk-free rate in the risk-neutral probability:

The last term ∆Vij measures the jump on the value of the instrument
implied by the corresponding jump of the underlying. For the jump to
default, we need to input here the residual value of the instrument after
default. In the case of a switch between regimes, ∆Vij involves the value
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of the instrument in the new regime. This coupling jump term explains
how the values of the derivative in the different regimes are interrelated.

Although apparently simple, the regime-switching model is quite
versatile. Even with two regimes, it may give rise to very different inter-
pretations depending on the values of its parameters. It can, for instance,
reproduce the features of a stochastic volatility model or the ones of a
credit migration model. Most interestingly, and unlike structural models,
it can accommodate correlations of any sign and size between the stock
price, the credit quality, and the volatility.

As predicted by asset pricing theory, the regime-switching model can
successfully reproduce an entire smile of vanilla options and a term struc-
ture of CDS. We consider here the case of Tyco as of April 13, 2005 when its
shares traded at US $33.64. We used a simple two-regime model. There are
three sorts of jumps. First, the stock price jumps to zero upon default and
this can occur in each regime with a different intensity. Second, the stock
price jumps when the regime changes. And finally, we allow an additional
stock price jump in the first regime only, which helps capture the options of
very short maturities. Figure 3.10 describes the calibrated parameters while
Figures 3.11 to 3.13 compare the market data with the option prices and
CDS spreads produced by the model. The two regimes are solved by two-
coupled one-dimensional PDE (Partial Differential Equation), essentially
doubling the numerical effort needed to solve a standard jump-diffusion
model. Calibration was obtained on a normal laptop in a few minutes.

The two regimes differ widely in terms of volatility or default intensity.
The first regime has low volatility and no possibility of default while the sec-
ond regime has a large volatility and a positive hazard rate. Switching from
the first regime to the second is accompanied by a negative jump while
reverting to the first regime occurs with a positive jump. This reproduces the
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Brownian Volatility Default Intensity
Regime 1 16.09% 0.000
Regime 2 66.17% 0.041

Size Jump Intensity
Regime 1 -15.96% 0.986

Regime 1-> 2 -44.58% 0.078
Regime 2 ->1 21.29% 0.020

F I G U R E 3 . 1 0

Model Calibration: A 2 State Regime Switching
Approach.



familiar correlation pattern of the structural model, where the volatility and
the hazard rate increase as the price goes down. Notice, however, that the
relation here is not functional but only probabilistic.

These regimes are not only a convenient way to tackle the asset pric-
ing challenge of the Equity-to-Credit universe. They also offer a unique
corporate finance perspective on the underlying firm. This is a second
important source of inspiration for expanding the state space, this time
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Market Time Value
Strike / Maturity 15 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 50

21/05/05 0.12 0.19 0.25 0.68 0.56 0.18
16/07/05 0.14 0.23 0.30 0.63 1.23 1.14 0.37 0.12
22/10/05 0.19 0.40 0.67 1.15 1.90 2.02 1.05 0.43 0.22 0.13
21/01/06 0.15 0.25 0.33 0.56 0.96 1.54 2.59 0.85 0.18 0.14
20/01/07 0.74 1.58 2.91 4.55 3.10 1.84 1.10

Model Time Value
Strike / Maturity 15 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 50

21/05/05 0.06 0.10 0.24 0.59 0.41 0.03
16/07/05 0.09 0.16 0.29 0.58 1.18 1.07 0.34 0.07
22/10/05 0.23 0.38 0.65 1.11 1.86 2.00 1.07 0.50 0.21 0.08
21/01/06 0.08 0.24 0.38 0.61 0.97 1.52 2.69 1.01 0.29 0.07
20/01/07 0.75 1.50 2.82 4.85 3.05 1.78 1.00

F I G U R E 3 . 1 2

Model Fit vs Market Data: Implied Equity Options by
Strike and Maturity.



corporate finance point of view. While asset pricing theory views the
regimes as a cheap and abstract expedient to produce stochastic volatility
and stochastic hazard rate, corporate finance would want to name the
regimes and to relate regime changes with the life of the firm.

This naming exercise is rather obvious in our example. The change of
regime describes a likely deterioration in the credit standing of the com-
pany, and regimes can simply be interpreted here as proxy for credit rat-
ing. A downgrading is then associated with higher volatility and a large
negative jump of −44 percent. Recovery from this bad state is possible and
would be associated with a positive jump of 21 percent. It is interesting to
note that these two regimes are enough to recover the entire term structure
of CDS spreads quite accurately. This could certainly also be obtained in a
model where the hazard rate is an increasing function of time but we
would then have lost the underlying probabilistic interpretation.

The versatile nature of the regime-switching model means that it can
morph to correspond to very different corporate finance stories. A com-
pany faced with the prospect of an LBO (Leveraged Buyout) will typically
be described with a second regime with higher volatility and higher haz-
ard rate, and reaching this regime will occur with a positive jump if the
market sees the transaction as a creating value. This correlation pattern is
at odds with the leverage story of the standard structural model.

Corporate restructuring may be another situation outside the reach of
traditional models. The second regime would correspond to a successful
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restructuring of the balance sheet of the company. It would typically be
associated with a smaller hazard rate and a smaller volatility. The stock
price direction is unclear since it depends on the outcome of the negotiation
between the various stakeholders.

Larger hazard rate should not automatically be associated with
higher volatility. A company that is the target of an acquisition could see
its shares swapped and the acquiring company may be less risky in terms
of default, but more risky in terms of share price volatility. This would
typically be associated with a positive jump for the target company, but
this is certainly not a rule and no scenario should be a priori rejected.

In conclusion, the regime-switching model proposes an elegant
answer to three apparently contradictory requests:

♦ Asset pricing theory needs a model complex enough to grasp
the securities of the equity-to-credit universe

♦ Traders want quick numerical solutions
♦ Finally, corporate finance seeks to capture the significant events

of the life of the company.

No doubt that in addition to its flexibility, this type model will gen-
erate heated debates between the derivatives experts and the capital
structure specialists.

APPENDIX 1

Fundamental Theorems of Asset Pricing 
(FTAP) and Risk Neutral Measure

In many occasions in this book, we encounter the concept of risk-neutral
measure and of pricing by discounted expectation. We will now summa-
rize briefly the key results in this area. A more detailed and rigorous expo-
sition can be found, for example, in Duffie (1996).

Intuitively, the price of a security should be related to its possible
payoffs, to the likelihood of such payoffs, and to discount factors reflect-
ing both the time value of money and investors risk aversion.

Standard pricing models such as the Dividend Discount Models use
this approach to determine the value of stocks. For derivatives, or securities
with complex payoffs in general, there are two fundamental difficulties
with this approach:

1. To determine the actual probability of a given payoff
2. To calculate the appropriate discount factor.



The seminal papers of Harrisson and Kreps (1979) and Harrisson and
Pliska (1981) have provided ways to circumvent these difficulties and
have led to the so-called FTAP.

1st FTAP: markets are arbitrage free if and only if there exists a mea-
sure Q equivalent* to the historical measure P under which asset prices
discounted at the risk-less rate are martingales.†

2nd FTAP: this measure Q is unique if and only if markets are com-
plete.

A complete market is a market in which all assets are replicable. This
means that you can fully hedge a position in any asset by creating a port-
folio of other traded assets.

The first fundamental theorem provides a generic option pricing for-
mula that does not rely either on a risk-adjusted discount factor or on
finding out the actual probability of future payoffs. Assume that we want
to price a security at time t whose random payoff g(T ) is paid at T > t. By
no arbitrage, we know that at maturity the price of the security should be
equal to the payoff PT = g(T). By the 1st FTAP, we immediately get the
price:

Pt = EQ[e−r(T−t) PT|Pt] = EQ[e−r(T−t)g(T)|Pt].

The probability Q can typically be inferred from traded securities. It is
called the risk-neutral measure or the martingale measure.

The second theorem says that the measure Q (and therefore also
security prices calculated as earlier) will be unique if and only if markets
are complete. This is a very strong assumption, particularly in credit mar-
kets which are often illiquid.
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INTRODUCTION

In this chapter,* we introduce multivariate effects, i.e., interactions between
credit instruments or obligors.

The analysis of credit risk in a portfolio requires measures of depend-
ency across assets. Individual spreads in the pricing world, probabilities of
default (PDs) and loss-given-default in the risk universe, management world,
are important but insufficient to determine the price/risk of multiname prod-
ucts and their entire distribution of losses. Because the diversification effects
are related to dependency, neither the price of a portfolio can be defined as
a linear combination of the price of its underlying components, nor its loss
distribution can be the sum of the distributions of individual losses.

The most common measure of dependency is linear correlation.
Figure 4.1 illustrates the impact of correlation on portfolio losses.† When
default correlation is zero, the probability of extreme events in the portfolio
(large number of defaults or zero default) is low. However, when correlation

*Some elements of this chapter have been extracted from “Measuring and Managing Credit
Risk” by Arnaud de Servigny and Olivier Renault, Mc Graw Hill, 2004.
†Correlation here refers to factor correlation. This graph was created by using a factor model
of credit risk and assuming that there are 100 bonds in the portfolio and that the probability
of default of all bonds is 5 percent. Maturity is one year.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



is significant, the probability of very good or very bad events increases sub-
stantially. Given that market participants and risk managers focus on tail
measures of credit risk such as value at risk, correlation is of crucial impor-
tance. In addition, the constant development of derivative products that are
priced and hedged depending on the joint default or survival behavior of
portfolios, such as collateral debt obligation (CDOs), baskets, etc., has lead
to a specific emphasis on dependence modeling.

Dependency is a more general concept than linear correlation over a
predefined time period. For most marginal distributions, linear correlation
is only part of the dependence structure and is insufficient to construct the
joint distribution of losses. In addition, it is possible to construct a large set
of different joint distributions from identical marginal distributions.

In structured credit markets, default correlation has given way to a
more flexible approach in the form of the “time-to-default” survival cor-
relation introduced by Li (2000). In addition, the need to account better
for extreme joint events or comovements has led to focus on more
customized dependence structures called copulas.

The copula approach is not really dynamic, in the sense that, for
instance, there are no stochastic processes for the intensities or for the
copulas. In this respect, the need for a more dynamic analysis has re-ignited
the emphasis on joint intensity modeling.
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Dependency includes effects more complex than correlation, such as
the comovement of two variables with a time lag, or causality effects.
Some recent research tries to express dependency as the consequence of a
contagion of infectious events.

Sources of Dependencies

In this chapter, we will focus primarily on measuring default and spread
dependencies rather than on explaining them. Before doing so, it is worth
spending a little time on the sources of joint defaults and of joint price
movements.

Defaults occur for three main types of reasons:

♦ Firm-specific reasons: bad management, fraud, large project fail-
ure, etc.

♦ Industry specific reasons: entire sectors sometimes get hit
by shocks such as overcapacity, a rise in the prices of raw
materials, etc.

♦ General macroeconomic conditions: growth and recession, inter-
est rate changes, and commodity prices affect all firms with var-
ious degrees.

Firm-specific causes do not lead to correlated defaults. Defaults triggered
by these idiosyncratic factors tend to occur independently. On the contrary,
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macroeconomic and sector specific shocks lead to increases in the default
rates of entire segments of the economy and push up correlations.

Figure 4.2 depicts the link between macroeconomic growth (mea-
sured by the growth in gross domestic product) and the default rate of
noninvestment grade (NIG) issuers. The default rate appears to be almost
a mirror image of the growth rate. This implies that defaults tend to be
correlated as they depend on a common factor.

Figure 4.3 shows the impact of a sector crisis on default rates in the
energy and telecom sectors. The surge in oil prices in the mid-1980s and
the telecom debacle starting in 2000 are clearly visible.

Prices, i.e., credit spreads, can move simultaneously for at least as
many reasons:

♦ Default information that triggers prices on the basis of industry,
macroeconomic, or idiosyncratic changes

♦ Common changes in the risk aversion of market participants
due to changing economic conditions, such as the downgrade in
May 2005 of General Motors (GM) and Ford (see Figure 4.4*).

*In Figure 4.4, we show the impact of the downgrade of Ford and GM on the CDO prices.
As a consequence, indicators such as spread and correlation level exhibit large movements
during the period.



Modeling Credit Dependency 141

The first part of this chapter (Part 1) reviews useful statistical concepts. We
start by introducing the most popular measures of dependence (covariance
and correlation) and show how to compute the variance of a portfolio from
individual risks.

We then illustrate on several examples that correlation is only a partial
and sometimes misleading measure of the comovement or dependence of
random variables. We review various other partial measures. We continue
and introduce default factor correlation and survival factor correlation
and copulas, which describe more accurately multivariate distributions. We
finally describe intensity-based correlation.

These statistical preliminaries are useful for the understanding of
following part (Part 2), which deals with credit-specific applications of
these dependence measures. Various methodologies have been proposed
to estimate default correlation. These can be extracted directly from
default data or derived from equity or spread information.
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PART 1: CORRELATION METHODOLOGY

Correlation and Other Dependence Measures

Definitions
The covariance between two random variables X and Y is defined as:

cov(X, Y) = E(XY) − E(X)E(Y), (1)

where E(⋅) denotes the expectation.
It measures how two random variables move together. The covari-

ance satisfies several useful properties, including:

♦ cov(X, X) = var(X), where var(X) is the variance
♦ cov(aX, bY) = ab cov(X, Y)
♦ In the case X and Y are independent, E(XY) = E(X)E(Y), and the

covariance is 0.

The linear correlation coefficient, also called the Pearson’s correlation
measure, conveys the same information about the comovement of X and
Y but is scaled to lie between −1 and +1. It is defined as the ratio of their
covariance to the product of their standard deviations:

(2)

(3)

In the particular case of two binary (0, 1) variables A and B, taking value
1 with probability pA and pB, respectively, and 0 otherwise and given joint
probability pAB., we can calculate:

E(A) = E(A2) = pA, E(B) = E(B2) = pB, and E(AB) = pAB.

The correlation is therefore:

(4)

This formula will be particularly useful for default correlation, as defaults
are binary events. In Part 2, we will explain how to estimate the various
terms in Equation (4).

corr( , )
( ) ( )

.A B
p p p

p p p p
AB A B

A A B B

=
−

− −1 1

= −
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Calculating Diversification Effect in a Portfolio

Two Asset Case Let us first consider a simple case of a portfolio with
two assets X and Y with proportions w and 1 − w, respectively. Their vari-
ance and covariance are σX

2, σY
2, and σXY.

The variance of the portfolio is given by

σP
2 = w2σX

2 + (1 − w)2 σY
2 + 2w(1 − w)σXY. (5)

The minimum variance of the portfolio can be obtained by differentiating
Equation (5) and setting the derivative equal to 0:

(6)

The optimal allocation w* is the solution to Equation (6):

(7)

We thus find the optimal allocation in both assets that minimizes the total
variance of the portfolio. We can immediately see that the optimal alloca-
tion depends on the correlation between the two assets and that the
resulting variance is also affected by the correlation. Figures 4.5 and 4.6
illustrate how the optimal allocation and resulting minimum portfolio
variance change as a function of correlation. In this example, σX = 0.25 and
σY = 0.15.

In Figure 4.5, we can see that the allocation of the portfolio between
X and Y is highly nonlinear in the correlation. If the two assets are highly
positively correlated, it becomes optimal to sell short the asset with high-
est variance (X in our example), hence W* is negative. If the correlation is
“perfect” between X and Y, that is, if ρ = 1 or ρ = −1, it is possible to create
a risk-less portfolio (Figure 4.6). Otherwise, the optimal allocation w* will
lead to a low but positive variance.

Figure 4.7 shows the impact of correlation on the joint density of X and
Y, assuming that they are standard-normally distributed. It is a snapshot of
the bell-shaped density seen in this figure. In the case where the correlation
is zero (left-hand side), the joint density looks like concentric circles. When
nonzero correlation is introduced (positive in this example), the shape
becomes elliptical: it shows that high (low) values of X tend to be associated
with high (low) values of Y. Thus there is more probability in the top-right

w Y XY X Y

X Y XY X Y

* .=
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+ −
σ ρ σ σ
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2 2 2
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The Impact of Correlation on the Shape 
of the Distribution.

and bottom-left regions than in the top-left and bottom-right areas. The
reverse would have been observed in the case of negative correlation.

Multiple Assets We can now apply the properties of covariance to cal-
culate the variance of a portfolio with multiple assets. Assume that we
have a portfolio of n instruments with identical variance σ2 and covari-
ance σi,j for i, j = 1, . . . , n.

The variance of the portfolio is given by:

(8)

where Xi is the weight of asset i in the portfolio.
Assuming that the portfolio is equally weighted: Xi = 1/n, for all i,

and that the variance of all assets is bounded, the variance of the portfo-
lio reduces to:

(9)

where the last term is the average covariance between assets.
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When the portfolio becomes more and more diversified, i.e., when
n → ∞, we have σP

2 → cov
___

. The variance of the portfolio converges to the
average covariance between assets. The variance term becomes negligible
compared to the joint variation.

For a portfolio of stocks, diversification benefits are obtained fairly
quickly: for a correlation of 30 percent between all stocks and a volatility
of 30 percent, one is within 10 percent of the minimum covariance with n
around 20. For a pure default model (i.e., when we ignore spread and
transition risk and assume 0 recovery) the number of assets necessary to
reach the same level of diversification is much larger. For example, if the
probability of default and the pair-wise correlations for all obligors are 2
percent, one needs around 450 counterparts to reach a variance that is
within 10 percent of its asymptotic minimum.

Deficiencies of Correlation
As mentioned earlier, correlation is by far the most used measure of
dependence in financial markets, and it is common to talk about correla-
tion as a generic term for comovement. We will use it a lot in Section 3 of
this chapter and in the following chapter on CDO pricing. In this section,
we want to review some properties of the linear correlation that make
it insufficient as a measure of dependence in general, and misleading in
some cases. This is best explained through examples.*

♦ Using Equation (2), we see immediately that correlation is not
defined if one of the variances is infinite. This is not a very fre-
quent occurrence in credit risk models, but some market risk
models exhibit this property in some cases.
Example: see the large financial literature on α-stable models
since Mandelbrot (1963), where the finiteness of the variance
depends on the value of the α parameter.

♦ When specifying a model, one cannot choose correlation arbi-
trarily over [−1; 1] as a degree of freedom. Depending on the
choice of distribution, the correlation may be bounded in a
narrower range , with .
Example: if we have two normal random variable x and y, both
with mean 0 and with standard deviation 1 and σ, respectively.
Then X = exp(x) and Y = exp(y) are lognormally distributed.
However, not all correlations between X and Y are attainable.

− < < <1 1ρ ρρ ρ;[ ]
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*Embrecht et al. (1999a,b) give a very clear analysis of the limitations of correlations.



One can show that their correlation is restricted to lie between:

See Embrecht et al. (1999a) for a proof.

♦ Two perfectly functionally dependent random variables can
have zero correlation.
Example: Consider a normally distributed random variable X
with mean 0 and define Y = X2. Although changes in X com-
pletely determine changes in Y, they have zero correlation. This
clearly shows that while independence implies zero correlation,
the reverse is not true!

♦ Linear correlation is not invariant under monotonic transforma-
tions.
Example: (X, Y) and (exp(X), exp(Y)) do not have the same
correlation.

♦ Many bivariate distributions share the same marginal distribu-
tions and the same correlation but are not identical.
Example: See section on copulas.

All these considerations should make clear that correlation is a partial and
insufficient measure of dependence in the general case. It only measures
linear dependence. This does not mean that correlation is useless. For the
class of elliptical distributions, correlation is sufficient to combine the
marginals into the bivariate distribution. For example, given two normal
marginal distributions for X and Y and a correlation coefficient ρ, one can
build a joint normal distribution for (X, Y).

Loosely speaking, this class of distribution is called elliptical because
when we project the multivariate density on a plane, we find elliptical
shapes (see Figure 4.6). The normal and the t-distribution, among others,
are part of this class.

Even for other nonelliptical distributions, covariances (and therefore
correlations) are second moments that need to be calibrated. While they are
insufficient to incorporate all dependence, they should not be neglected
when empirically fitting a distribution.

Other Dependence Measures: Rank Correlations
Many other measures have been proposed to tackle the problems of lin-
ear correlations mentioned earlier. We only mention two here, but there
are countless examples:
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Spearman’s Rho This is simply the linear correlation but applied to the
ranks of the variables rather than on the variables themselves.

Kendall’s Tau Assume we have n observations for each of two random
variables, i.e., (Xi, Yi), i = 1, . . . , n.

We start by counting the number of pairs of bivariate observations
whose components are concordant, i.e., pairs for which the two elements
are either both larger or both lower than the elements of another pair. Call
that number Nc.

Then Kendall’s Tau is calculated as:

τK = (Nc − ND)
(Nc + ND),

where ND is the number of discordant (nonconcordant) pairs.
Kendall’s Tau shares some properties with the linear correlation:

τK ∈ [−1, 1] and τK(X, Y) = 0 for X, Y independent. However, it has some
distinguishing features that make it more appropriate than the linear
correlation in some cases. If X and Y are comonotonic,* then τK(X, Y) = 1;
whereas if they are counter-monotonic, τK(X, Y) = −1. τK is also invariant
under strictly monotonic transformations. To return to our earlier exam-
ple, τK(X, Y) = τK(exp(X), exp(Y)).

An interesting feature of Kendall’s tau is that it gives the opportu-
nity to analyze comovement in a dynamic way (see Figure 4.8).

In the case of the normal distribution,† the linear and rank correla-
tions can be linked analytically:

(10)

These dependence measures have nice properties but tend to be less used
by finance practitioners. Again, they are insufficient to obtain the entire
bivariate distribution from the marginals. We are now going to focus on a
very important class of models that accounts for correlation: factor models.

Factor Models of Credit Risk
This approach underlies portfolio models based on a structural approach
of the firm. It is used in commercial portfolio credit risk models such as
those offered to the market by Risk Metrics, MKMV, and Standard &

τ
π

ρK ( , ) arcsin( ( , )).X Y X Y= 2
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*X and Y are comonotonic if we can write Y = G(X) with G(⋅) an increasing function. They are
countermonotonic if G(⋅) is a decreasing function.
†More generally, this result holds for elliptical distributions.



Poor’s (S&P) Risk Solutions. The main advantage of this setup is that it
reduces the dimensionality of the dependence problem for large portfolios.

In a factor model, a latent variable drives the default process: when
the value A of the latent variable is sufficiently low (below a threshold K),
default is triggered. It is customary to use the term “asset return” instead
of “latent variable,” as it relates to the familiar Merton-type models where
default arises when the value of the firm falls below the value of liabilities.

Asset returns for various obligors are assumed to be functions of
common state variables (the systematic factors, typically industry and
country factors) and of an idiosyncratic term εi that is specific to each firm
i and uncorrelated with the common factors. The systematic and idiosyn-
cratic factors are usually assumed to be normally distributed and are
scaled to have unit variance and zero mean. Therefore, the asset returns
are also standard normally distributed. In the case of a one-factor model
with systematic factor denoted as C, asset returns at a chosen horizon (say
one year), for obligors i and j, can be written as:

(11)

(12)A Cj j j j= + −ρ ρ ε1 2

A Ci i i i= + −ρ ρ ε1 2 ,
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such that:

ρi,j ≡ corr(Ai, Aj) = ρi ρj. (13)

In order to calculate default correlation using Equation (4), we need to
obtain the formulas for individual and joint default probabilities at the
one-year horizon. Given the assumption about the distribution of asset
returns, we have immediately:

pi
D = P(Ai ≤ Ki)

= N(Ki),
(14a)

and

pj
D = P(Aj ≤ Kj)

= N(Kj),
(14b)

where N(⋅) is the cumulative standard normal distribution. Conversely,
the default thresholds can be determined from the probabilities of default
by inverting the Gaussian distribution: K = N −1(p).

Figure 4.9 illustrates the asset return distribution and the default
zone (area where A ≤ K). The probability of default corresponds to the area
below the density curve from −∞ to K.
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Assuming further that asset returns for obligors i and j are bivari-
ate normally distributed,* the joint probability of default is obtained
using:

pi,j
D,D = N2(Ki, Kj, ρij). (15)

Equations (14) and (15) provide all the necessary building blocks to cal-
culate default correlation in a factor model of credit risk.

Figure 4.10 illustrates the relationship between asset correlation and
default correlation for various levels of default probabilities, using
Equations (15) and (4). The lines are calibrated such that they reflect the
one-year probabilities of default of firms within all rating categories.†

It is very clear from the picture that as default probability increases,
default correlation also increases for a given level of asset correlation.

It is now possible to compute the full loss distribution of a portfolio.
Correlation between obligors stems from the realization of the latent
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*From the section on copulas we know that we could choose other bivariate distributions
while keeping Gaussian marginals.
†The AAA curve cannot be computed as there has never been a AAA default within a year.
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variable. It impacts asset values and therefore default probabilities.
Conditional on a specific realization of the factor C = c, the probability of
default of obligor i is:

(16)

Furthermore, conditional on c, defaults become independent Bernouilli
events. This leads to simple computations of portfolio loss probabilities.

Assume that we have a portfolio of H obligors with same probabil-
ity of default and same factor loading ρ. Out of these obligors, we may
observe X = 0, 1, 2 or up to H defaults before the horizon T. Using the law
of iterated expectations, the probability of observing exactly h defaults
can be written as the expectation of the conditional probability:

(17)

where φ(⋅) is the standard normal density.
Given that defaults are conditionally independent, the probability of

observing h defaults conditional on a realization of the systematic factor
will be binomial such that:

(18)

Using Equations (17) and (18), we then obtain the cumulative probability
of observing less than m defaults:

(19)

Figure 4.11 shows a plot of P[X = h] for various assumptions of factor cor-
relation from ρ = 0 percent to ρ = 10 percent. The probability of default is
assumed to be 5 percent for all H = 100 obligors.

The mean number of defaults is 5 for all three scenarios but the
shape of the distribution is very different. For ρ = 0 percent, we observe a
roughly bell-shaped curve centered on 5. When correlation increases, the
likelihood of joint bad events increase, implying a fat right-hand tail. The
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likelihood of joint good events (few or zero defaults) also increases and
there is a much larger chance of 0 defaults.

The main drawbacks associated with this approach are that:

♦ It tells if default happens before the predefined time horizon,
without specifying when.

♦ It can underestimate “tail dependence,” given the assumption of
normal asset returns.

From a Default Factor Model to A Survival 
Factor Model
This approach, usually called the “Gaussian copula” default time approach,
has been introduced in Li (2000). It has become a market standard for the
pricing of CDOs and baskets of credit derivatives. The key innovation is to
question the fixed predefined time horizon described in the previous sec-
tion and to define the correlation between two entities as the correlation
between their survival times.

Let us define Si(t) the cumulative survival time function for obligor
i, where τi is the time-until-default.

Si(t) = P(τi > t)
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The related cumulative default probability for obligor i is expressed as:

Fi(t) = P(τi ≤ t)
= 1 − Si(t)

For two obligors i and j, with respective survival times Ti and Tj, we then
define a survival time correlation:

(20)

The objective in this section is to obtain the cumulative survival distribu-
tion for a set of obligors included in an instrument such as a CDO, taking
into account their correlated survival times. As in the previous section in
Equation (11), we consider a factor model where the asset return of obligor
i is defined both by a systematic risk factor and an idiosyncratic one.

The next step is to compute credit curves, i.e., the evolution of the
probability of default or of survival of an obligor with time. We revert read-
ers to the Chapters 2 and 3 on “Univariate Risk and Univariate Pricing” and
give here a simplified view.

We first start with a simple stylized approach, using credit ratings.*
In this case instead of computing a specific default curve for each obligor,
we define standard ones per credit rating category. For a detailed method-
ology description of the estimation of cumulative rating curves (Figure
4.12), see Chapter 2.

Another way is to rely on market observable data as described in
Chapter 3 [asset swap spreads, credit default swap (CDS) spreads, etc.].
The methodology corresponds, for instance, to defining a credit event as
characterized by the first event of a Poisson process occurring at time t,
with τ being the default time and h the hazard rate:

Pr[τ ≤ t + dt|τ > t] = h(t)dt (21)

We can then write and calibrate the survival probability over [0, t] as
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*It is also possible to obtain default curves using the Merton (1974) model and its exten-
sions.



assuming that h is constant piecewise per interval (ti−1,ti). In fact, model-
ing the default or the survival curve properly is a source of competitive
advantage for market participants.

By considering here a constant intensity of the hazard rate h over the
life of the instrument, we can even simplify the equation to:

S(t) = e−ht (23)

In the two instances, i.e., for a given rating or for a given obligor, there
exists a unique link between the survival probability or the probability of
default and a corresponding time. We can therefore obtain the default
time τ for each obligor, depending on any selected random variable u on
the default curve.

(24)

Survival probabilities can now be aggregated using the normal multivari-
ate distribution also called “Gaussian copula” setup:

Based on an adjustment of Equation (16), using the copula map-
ping Fi(t) = N(Ki) that is performed on a “percentile per percentile”

τ = −
log( )u

h
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basis,* any marginal conditional probability of survival ui = (S(τi|C) =
P(t < τi|C) can be written as:

(25)

Because of conditional independence, the joint conditional survival prob-
ability can be written as:

(26)

The joint unconditional survival probability can ultimately be expressed
as:

(27)

The empirical mechanism to generate correlated survival default times
from Excel is articulated here and summarized in Figure 4.13. We consider
a portfolio of i obligors. Let us first consider A an i x j matrix of i uncor-
related uniform random variables of size j.

♦ Step 1: Draw i random variables from a uniform [0, 1] distribu-
tion to obtain A.

♦ Step 2: Invert the cumulative standard normal distribution func-
tion to obtain a new matrix B of i uncorrelated random variables
from N(0, 1).

♦ Step 3: Impose the correlation structure by multiplying matrix
B by the Cholesky decomposition of the covariance matrix.
The new matrix C contains i correlated random variables from
N(0, 1).

♦ Step 4: Use the cumulative standard normal distribution to
obtain the new matrix of uniform random variables.

♦ Step 5: From the default/survival curve, infer for each obligor i
the series of j conditional survival times.
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*This means that the closer the realization of the latent variable Ai is from the default thresh-
old Ki, the sooner the default is going to occur.



A More Advanced Multivariate Distribution: 
The Copula
A copula is a function that combines univariate density functions into
their joint distribution. We can in fact either extract copulas from multi-
variate distributions or create a new multivariate distribution by combin-
ing the marginal distributions with a selected copula. The interest with
copulas is that the marginal distributions and the dependence structure
can be modeled separately. An in-depth analysis of copulas can be found
in Nelsen (1999).

Applications of copulas to risk management and the pricing of
derivatives have soared over the past few years. An interesting feature of
copulas is the Sklar’s theorem.

Definition and Sklar’s Theorem Definition: A copula with dimension
n is an n-dimensional probability distribution function defined on [0, 1]n

that has uniform marginal distributions Ui.

C(u1, . . . , un) = P[U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un] (28a)

One of the most important and useful results about copulas is known as
Sklar’s theorem (Sklar, 1959). It states that any group of random variables
can be joined into their multivariate distribution using a copula. More
formally:
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If Xi, i = 1, . . . , n are random variables with respective marginal dis-
tributions Fi, i = 1, . . . , n, and multivariate probability distribution func-
tion F, then there exists an n-dimensional copula of F such that:

F(X1, . . . , Xn) = C(F1(X1), . . . , Fn(Xn)) for all (X1, . . . , Xn) (28b)

and

C(u1, . . . , un) = F(F1
−1(u1), . . . , Fn

−1(un)). (28c)

With the pseudo-inverse F−1 defined as (see Figure 4.14):

x = F−1 (u) = sup{x/F(x) ≤ u}

Furthermore, if the marginal distributions are continuous, then the copula
function is unique.

Looking at Equation (28c), we clearly see how to obtain the joint dis-
tribution from the data. The first step is to fit the marginal distributions Fi,
i = 1, . . . , n, individually on the data (realizations of Xi, i = 1, . . . , n). This
yields a set of uniformly distributed random variables u1 = F1(x1), . . . ,
un = Fn(un).
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The second step is to find the copula function that appropriately
describes the joint behavior of the random variables. There is a plethora
of possible choices that make the use of copulas sometimes unpractical.
Their main appeal is that they allow us to separate the calibration of the
marginal distributions from that of the joint law. Figure 4.15 is a graph of
a bivariate Frank copula (see next paragraph for an explanation).

Properties of The Copula: Copulas satisfy a series of properties
including the four listed herewith. The first one states that for indepen-
dent random variables, the copula is just the product of the marginal dis-
tributions. The second property is that of invariance under monotonic
transformations.* The third property provides bounds on the values of
the copula: these bounds correspond to the values the copula would take
if the random variables were countermonotonic (lower bound) or co-
monotonic (upper bound). Finally, the fourth one states that a convex
combination of two copulas is also a copula.
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*This property is important to account for nonlinear dependencies and different time hori-
zons. In particular, it is the reason why one-year correlation matrices can be used to derive
multiple year portfolio loss distribution.
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Using similar notations as earlier where X and Y denote random
variables and u and v stand for the uniformly distributed margins of the
copula, we have:

1. If X and Y are independent, then C(u, v) = uv.
2. Copulas are invariant under increasing and continuous trans-

formations of marginals.
3. For any copula C, we have max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v).
4. If C1 and C2 are copulas, then C = α C1 + (1 − α )C2 for 0 <α < 1 is

also a copula.

Survival Copulas As we have seen in the previous section, the CDO
world focuses on joint survival times.

We can define Si(t) the cumulative survival time function for obligor
i, where τi is the time until default.

St(t) = P(τi > t)

The related cumulative default probability for obligor i is expressed as:

Ft(t) = P(τi ≤ t)

= 1 − Si(t)

Let us now consider two obligors i and j. We call C as the copula that links
τi and τj. The joint survival function can be written as S (ti, tj) = P(τi, > ti, τj > tj)
and S(ti, tj) = C

∼ 
(Si(ti),Sj(tj)) = Si(ti) + Sj(tj) − 1 + C(1 − Si(ti), 1 − Sj(tj)), where C

∼
is

called the survival copula of τi and τj.
We now briefly review three important classes of copulas which are

most frequently used in risk management applications: Elliptical (Gaussian
and Student-t) copulas, Archimedean copulas, and Marshall-Olkin copulas.

Important Classes of Copulas There exists a wide variety of possible
copulas. Many but not all are listed in Nelsen (1999). In what follows, we
introduce briefly elliptical, Archimedean, and Marshall-Olkin copulas.
Among elliptical copulas, Gaussian copulas are now commonly used to
generate dependent random vectors in applications requiring Monte-
Carlo simulations (see Bouyé et al., 1999, or Wang, 2000). The
Archimedean family is convenient as it is parsimonious and has a simple
additive structure. Applications of Archimedean copulas to risk manage-
ment can be found in Das and Geng (2002) or Schönburcher (2002), among
many others. The Marshall-Olkin copula has recently be used in the CDO
world as an alternative way to compensate for the weaknesses of the
Gaussian copula.
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Elliptical Copulas: Gaussian and t-Copulas
The Gaussian Copula As recalled earlier, copulas are multivariate
distribution functions. Obviously, the Gaussian copula will be a
multivariate Gaussian (normal) distribution.

Using the notations of Equation (28b), we can write C∑
Gau, the n-

dimensional Gaussian copula with covariance matrix ∑*:

C∑
Gau (u1, . . . , un) = N∑

n (N−1(u1), . . . , N−1(un)), (29)

with N∑
n and N−1 denoting, respectively, the n-dimensional cumulative

Gaussian distribution with covariance matrix, ∑ and the inverse of the
cumulative univariate standard normal distribution.

In the bivariate case, assuming that the correlation between the two
random variables is ρ, Equation (29) boils down to:

(30)

The t-Copula The t-copula (bivariate t-distribution) with ν degrees
of freedom is obtained in a similar way. Using evident notations, we
have:

Ct
ρ,ν (u, v) = tρ,

2
ν (tν

−1(u),tν
−1(v)), (31)

The bivariate t-copula can be defined as an independent mixture of a 

multivariate normal distribution N∑
2 and of scalar random , 

variable where W follows a chi-squared distribution with ν degrees of

freedom, with and . Its usage for credit 

modeling purposes has been suggested by different authors such as Frey
et al. (2001). t-Copulas generate “tail dependence,” i.e., more extreme
events than the Gaussian copulas.
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More recently, Hull and White (2004) have referred to double t cop-
ulas for the pricing of CDOs. In this case, the marginal probability distri-
butions are not derived from a latent variable following a Student-t
distribution but following a convolution of two Student-t distributions.
This convolution is not a Student-t distribution itself and the copula is not
a Student-t copula either.

Archimedean Copulas The family of Archimedean copulas is the class
of multivariate distributions on [0,1]n that can be written as

CArch (u1, . . . , un) = G−1(G(u1) + · · · + G(un)), (32)

where G is a suitable continuous monotonic function from [0, 1] to �+ sat-
isfying G(1) = 0. G(⋅) is called the generator of the copula.

Three examples of Archimedean copulas used in the finance litera-
ture are the Gumbel, the Frank, and the Clayton copulas, for which we
provide the functional form now. They can easily be built by specifying
their generator (see Marshall and Olkin, 1988, or Nelsen, 1999).

♦ Example 1: The Gumbel copula (multivariate exponential)
The generator for the Gumbel copula is:

GG(t) = (−ln t)θ (33)

with inverse: and θ ≥ 1.
Therefore using Equation (29), the copula function in the bivari-
ate case is:

(34)

♦ Example 2: The Frank copula

The generator is:

(35)

with inverse and θ ≠ 0.

The bivariate copula function is therefore:
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♦ Example 3: The Clayton copula

The generator is:

(37)

with inverse: and θ ≥ 0.
The bivariate copula function is therefore:

CC
θ (u, v) = max([u−θ + v−θ − 1]−1/θ, 0). (38)

Calculating a Joint Cumulative Probability Using an
Archimedean Copula Assume we want to calculate the joint
cumulative probability of two random variables X and Y P(X < x, Y < y).
Both X and Y are standard-normally distributed. We are interested in
looking at the joint probability depending on the choice of copula and on
the parameter θ.

The first step is to calculate the margins of the copula distribution:
v = P(Y< y) = N(y) and u = P(X< x) = N(x). For our numerical example, we
assume x = −0.1 and y = 0.3. Hence u = 0.460 and v = 0.618.

The joint cumulative probability is then obtained by plugging these
values into the chosen copula function [Equations (34), (36), and (38)].
Figure 4.16 illustrates how the joint probabilities change as a function of θ
for the three Archimedean copulas presented earlier. The graph shows
that different choices of copulas and theta parameters lead to very differ-
ent results in terms of joint probability.

The Marshall-Olkin Copula This type of copula has been promoted
recently by several authors such as Elouerkhaoui (2003a,b) and Giesecke
(2003). It can be useful to describe intensity-based models for correlated
defaults in which unpredictable default arrival times are jointly exponen-
tially distributed.

The bivariate survival copula is expressed as:

(39)

where θ1 and θ2 are the controls for the degree of dependence between the
default times of firms 1 and 2, respectively.

C u v uv u vMO
, ( , ) min( , )θ θ θ θ1 2 1 2= − −

G s sC
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The “Functional Copula” The definition of the “functional copula” is
introduced by Hull and White (2005).

The “functional copula” approach is derived from the section “Factor
Models of Credit Risk” described earlier.

The underlying idea is that in a factor model, what is simulated, is a
distribution of adjusted probabilities of default [Equation (16)] conditional
on the realization of the systematic factor c. Typically, because of an adverse
realization of the common factor (e.g., a recession), the adjusted probability
of default will be higher than the empirically estimated one. We can there-
fore consider that the distribution of the latent variable C corresponds to the
description of the various static default environments until the horizon.

Moving from a default factor model to a survival factor model, and
in the case of a constant hazard rate model, we can write the probability
of default as:

Fi(t) = P(τi ≤ t) = 1 − Si(t) = 1 − e–ht (40)

the conditional survival probability for obligor i being Equation (25), we
can infer a conditional hazard rate, depending on the realization of the
common factor C:

(41)h
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The distribution of C, leads to a distribution of static pseudo-hazard rates
hC. These conditional hazard rates represent the range of possible expected
hazard rates, depending on different realizations of the macroeconomic
environment. Such conditional average hazard rates during the life of the
instrument are not, however, currently observable.

Hull and White (2005) suggest that there is no reason to assume a
normal distribution for the common factor C and the idiosyncratic term εi.
Equation (41) can therefore be written in a more general way as:

(42)

where Hi is the cumulative probability distribution of εi and Gi the
cumulative probability distribution of the latent variable Ai. In addition,
of course, the conditional hazard rates can be considered as time-
dependent.

The idea of the authors is in fact not to specify the parametric form
for any variable, but to extract from empirical CDO pricing observations
the empirical distribution of conditional hazard rates.

The empirical distribution can be inferred from a three-step process:

♦ Step 1: Assume a series of possible default rates at the horizon of
the instrument and extract the corresponding pseudo-hazard
rates.

♦ Step 2: Compute the cash inflows and outflows of the various
market instruments (CDO tranches) for each pseudo-hazard rate
extracted from step 1.

♦ Step 3: Write the unconditional expected value of the instru-
ments as a linear combination of weighted step 2 conditional
expected values. Estimate the weights by considering that the
unconditional expected values of each instrument should be
zero.

There is no single set of values, given the fact that there are usually more
possible default rates than credit instruments, but results are stable when
a regularization term is added in the optimization problem to maximize
the smoothness of the distribution of conditional hazard rates.

Thanks to this approach, the fit with the observation is almost per-
fect at the time the distribution of pseudo-hazard rates is computed. This
distribution is time-dependent and reflects the changes in the market
expectation related to this multiple regime-switching pattern.
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Copulas and Other Dependence Measures Recall that we introduced
earlier Spearman’s Rho and Kendall’s Tau as two alternatives to linear cor-
relation. We mentioned that they could be expressed in terms of the copula.
The formulas linking these dependence measures to the copula are:

♦ Spearman’s rho:

ρS = 12 ∫1

0 ∫1

0 (C(u, ν) − uν) du dν (43)

♦ Kendall’s tau:

τK = 4 ∫1

0 ∫1

0 C(u, ν)dC(u, ν)−1 (44)

Thus, once the copula is defined analytically, one can immediately calcu-
late rank correlations from it. Copulas also incorporate tail dependence.
Intuitively, tail dependence will exist when there is a significant probabil-
ity of joint extreme events. Lower (upper) tail dependence captures joint
negative (positive) outliers.

If we consider two random variables X1 and X2 with respective mar-
ginal distributions F1 and F2, the coefficients of lower (LTD) and upper tail
dependence (UTD) are*:

(45)

and
(46)

Figure 4.17 illustrates the asymptotic dependence of variables in the
upper tail, using t-copulas. The tail dependence coefficient shown in the
Figure 4.17 corresponds to UTD. As can be observed, Gaussian copulas
exhibit no tail dependence.

Statistical Techniques Used to Select and
Calibrate Copulas
In this section, we mainly focus on two sensitive issues related to the use
of copulas: how to select the most appropriate copula and how to cali-
brate any selected copula.

In summary, copula estimation is still in its infancy, and so far there
has not been any real way to define and estimate the “optimal parametric

LTD lim Pr ( ) ( )= < < →
− −

z
X F z X F z

0 2 2
1

1 1
1�

UTD lim Pr ( ) ( )= > > →
− −

z
X F z X F z

1 2 2
1

1 1
1�
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copula” from a multivariate set of observations. There are different rea-
sons to account for such a situation:

♦ A copula summarizes in a stable way the dependencies between
the margins. The existence of temporal dependencies in time
series does not facilitate the identification of stable patterns.
Longin and Solnik (2001), for instance, identify different
dependencies during periods with large movements in returns
and more stable periods.

♦ There is a large set of copula classes, with little evidence on how
to select one class rather than another. A common market prac-
tice is to retain only those copulas that are widely spread or eas-
ily tractable (see earlier for a description).

♦ Once selected, a copula function is usually not easy to calibrate.
Does a copula provide a good fit when it accounts for tail events
or when it replicates reasonably well most joint observations?

The selection of an appropriate copula is usually dictated by the identifi-
cation of some key features, such as:

♦ No asymptotic dependence (no fat tail) in the case of Gaussian
copulas, except in the case of perfect correlation
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♦ Symmetric asymptotic dependence both for t-copulas and Frank
copulas

♦ Higher dependence in bear conditions when using Clayton cop-
ulas

♦ Higher dependence in bull conditions with Gumbel copulas

Based on the selection of a class of copulas, we review how to calibrate
and to measure subsequently the goodness-of-fit.

In terms of calibration, there is a first choice between parametric and
nonparametric estimations.

We are presenting here the three most common parametric
approaches: Full Maximum Likelihood (FML, a one-step parametric
approach), Inference Functions for Margins (IFM, a two-step paramet-
ric approach) and Conditional Maximum Likelihood (CML, a two-step
semiparametric approach). Fermanian and Scaillet (2004) show that there
can be pitfalls attached to these different estimation techniques, either due
to a misspecification of the margins or to a loss of efficiency when the mar-
gins do not require explicit specification.

We then introduce nonparametric estimation, based on the calcula-
tion of the “Empirical copula” defined in Deheuvels (1979).

Mapping the empirical copula to a well-known parametric one
becomes a problem of goodness-of-fit in a multivariate environment.
Classical statistical tests, such as the Kolmogorov-Smirnov, the Chi-square,
or the Anderson-Darling tests, usually cannot be used in a straightforward
manner.

There are mainly two types of approaches that are usually consid-
ered to obtain the best fit:

♦ An approach based on a visual comparison, as suggested by
Genest and Rivest (1993).

♦ The selection of the copula that minimizes the distance with the
empirical copula. Obviously, results will depend on the choice
of such a distance. Scaillet (2000), Fermanian (2003), and Chen
et al. (2004), among others, suggest the use of Kernels to smooth
the empirical copula before fitting in order to obtain an explicit
limiting law for the test statistic.

Full Maximum Likelihood Also Called Exact Maximum Likelihood
In this approach, the parameters of the copula and of the marginal distri-
butions are estimated simultaneously. It is worth noting that both the
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univariate and multivariate distributions are assumed to correspond to
some preselected parametric forms, hence the classification of FML in the
parametric estimation category.

The density c of a copula C is defined as:

(47)

and xi = Fi
−1(ui)

where f is the density of the joint distribution F and fi the density of the
margin Fi.

Let us define θ the vector of parameters to be estimated and lt(θ) the
log-likelihood for the n observations (xi

t), with i = 1 to n, at time t. For the
density function f, the canonical expression of the log-likelihood can be
written as:

(48)

In the case of the Gaussian copula, the parameters that need to be esti-
mated correspond the covariance matrix ∑: They can be obtained easily as 

the solution of the equation , with θ̂= ∑̂.

In the case of the t-copula, the solution is more complex to obtain as
both ∑ and ν have to be estimated simultaneously.

Under the appropriate regularity assumptions, we know that the
maximum likelihood estimator exists and that it is asymptotically efficient.

Inference Functions for Margins The IFM approach, initiated by Joe
and Xu (1996), takes advantage of the property of copulas via Sklar’s
representation: the disconnection between univariate margins and the
multivariate dependence structure. It is worth noting that both the uni-
variate and multivariate distributions are assumed to correspond to pres-
elected parametric forms—hence the classification of IFM in the parametric
estimation category.

The first step is to estimate the parameters for the univariate mar-
gins and then only to calibrate the copula parameters, using the estima-
tors of the univariate margins.
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Let us call θ= (θ1, . . . , θn, α), with θi the parameters related to the
marginal distributions and α the vector of the copula parameters. The log-
likelihood expression [Equation (48)] can be written as:

(49)

The two-step maximization process follows:

(50)

and subsequently

(51)

It is worth mentioning that the IFM estimation is computationally easier
to obtain than the FML/exact maximum likelihood one.

Conditional Maximum Likelihood or Canonical Maximum Likelihood
With this approach presented inter alia in Mashal and Zeevi (2002), there is
no parametric assumption related to the distribution of the margins.

The dataset of n sequences of observations X = (X1
t, . . . , Xn

t)T
t =1 is

transformed into discrete variates û = (û1
t, . . . , µt

n)T
t=1 through empirical

distribution functions F̂i (⋅) defined as:

(52)

This transformation is referred to as the “empirical marginal transfor-
mation.” See Figure 4.18 for an example corresponding to two quarterly
time series of default rates over 20 years corresponding to two groups of
industry. Data has been retrieved from CreditPro.

In a second step, the copula parameters, corresponding to the para-
metric family that has been selected, can be estimated in a straightforward
way as:
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Definition of the Empirical Copula With this approach, there is no
parametric assumption neither on the marginal distributions, nor on the
copula function itself. It has been introduced by Deheuvels (1979).
Appropriate assumptions are summarized in Durrleman et al. (2000).

As in the precedent paragraph, let us consider the dataset of n i.i.d.
sequences of T observations X = (X1

t,…,Xn
t)T

t =1, on which an empirical mar-
ginal transformation is performed.

Instead of selecting a parametric copula function, the next step is to
observe the new uniform variates û = (û1

t,…,ut
n)T

t=1 and to define an associ-
ated empirical copula Ĉ:

(54)

The introduction of T in the notation ĈT defines the order of the copula,
i.e., the dimension of the sample/time series used.

Deheuvels (1981) shows that the empirical copula converges uni-
formly to the underlying copula.
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The empirical copula can be expressed based on its empirical fre-
quency ĉT (Nelsen, 1999):

(55)

where

A practical example is provided in Figure 4.19.
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Goodness-of-Fit and Visual Comparison Genest and Rivest (1993)
propose a graphical technique to compare and fit a copula belonging to a
parametric class C, like the class of Archimedean copulas, to the empiri-
cal one.

Let us define Kθ(y) = P{C(U1, U2, . . . , Un) ≤ y}, with (U1, U2, . . . , Un)
being a random vector of uniform variables with copula C. A nonpara-
metric estimate of Kθ , K̂T, can be written as a cumulative distribution func-
tion allocating a weight of 1/T to each pseudo observation.

(56)

(57)

If we introduce Rt
i as the rank of Xt

i among X1
i , X2

i ,…, XT
i , then

(58)

Figure 4.20 gives an example of K̂T in the case described previously.
The graphical procedure for model selection is based on a visual

comparison of the nonparametric estimate K̂T to the parametric one Kθ.
(see Figure 4.21)

A way to evaluate how close the graphs are is to measure the dis-
tance between them (see Figure 4.22). One distance can be defined as the
sum of the weighted quadratic differences: . 

There is of course, no unique definition of distance and no unique way to
allocate weights. In particular, it could be tempting to attribute higher
weights to extreme events rather than to equally split between observa-
tions and, in fact, calibrate the copula based on the bulk of the
distribution. Ultimately, 

One of the weaknesses of this approach, however, is that the defini-
tion of the univariate function K̂T corresponds to the reduction of the n-
dimensional copula problem. There cannot be any certitude that the
choice of this K̂T is optimal, leading to the selection of the most appropri-
ate parametric copula.

ˆ arg min( ).θ
θ

θ= DW

D K y K y WW
y T yθ θ

= −∑ [ ( ) ˆ ( )]2

V
TT R R R R R R

t

T

t
n
t

n
τ τ τ τ τ=

≤ ≤ ≤
=
∑1

1
1 1 2 2

1
{ , ,..., }

V
TT X X X X X X

t

T

t t
n
t

n
τ τ τ τ=

≤ ≤ ≤
=
∑1

1
1 1 2 2

1
{ , , , }K

ˆ ( ) ( ), with [ , ] andK y
T

V y yT T

T

= ≤ ∈
=

∑1
0 1

1
τ

τ

Modeling Credit Dependency 173



174 CHAPTER 4

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TK̂

The Genest and Rivest (1993) estimator of the empirical copula

F I G U R E 4 . 2 0

A Visual Presentation of the Genest and Rivest (1993)
Estimator in the Case of the Two Default Rate Series.

Goodness-Of-Fit and Distribution-Free Distance Minimization
One of the additional possible problems with the previous approach is
that the shape of the empirical copula can be far from smooth. As a con-
sequence, goodness-of-fit results will depend very much on the set of
observations on which they are computed. By using a kernel-smoothed
estimator of the empirical copula density, Fermanian (2005) suggests that
the goodness-of-fit tests behave in a more stable manner with nice distri-
bution asymptotic properties.

In what follows, the presentation is derived from Fermanian and
Scaillet (2004). Getting back to initial steps, a goodness-of-fit test is
designed to test a null hypothesis that in this case can be:

H0: Ĉ ∈C against Ha: Ĉ ∉ C,

where Ĉ is the copula function to be tested and C = {Cθ , θ∈Θ} represents
the parametric class of copulas.



Let us define some p disjoint subsets of dimension n: A1, . . . , Ap,
û = (ût

1, . . . , ût
n)T

t=1 and

(59)

with T representing the size of the sample. Under the null hypothesis, χ2

tends in law toward a chi-squared distribution.
In order to obtain a tractable solution, let us consider the empirical

copula and smooth it using a classic kernel estimator. Let us call gT its den-
sity at point u:
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where K(⋅) is an n-dimensional kernel, with h(T) being the bandwidth and
vector ut = (û1

t,…, ut
n) being defined on the basis of the empirical marginal

transformation Equation (52).

As usual, ∫K(⋅) = 1 and .

Based on the definition of this kernel, we can now revert to the χ2-
test that can be written as:

(61)

where gθ(⋅) corresponds to the parametric copula density, θ̂ to the esti-
mated parameter vector, and the p vectors to some arbitrary choice
defined by where the tester wants to assess the quality of the fit.

Discussing the Estimation of Copulas for Time Series Copula esti-
mation has been presented so far under the assumption of an environment
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of i.i.d. observable samples or time series. When dealing with partially
autocorrelated time series displaying varying heteroscedasticity, we need
to revisit the previous copula estimation techniques and to assess their
robustness. This point is of particular importance, for instance, in the syn-
thetic CDO world where samples typically correspond to spread prices.

Some initial transformation of the data at the univariate level may be
needed in order to be able to rely on the i.i.d. assumption. Some tech-
niques are available. Serial autocorrelation, nonstationarity, heteroscedas-
ticity of the time series can be filtered through GARCH and ARMA
processes.

Based on this transformation, we can focus on the residuals, as it is
much more likely to be i.i.d. Parametric copulas can then be typically fit-
ted on these residuals.

We revert readers to Scaillet and Fermanian (2003), Fermanian et al.
(2004), Doukhan et al. (2005), and Chen and Fan (2006) on this topic of
estimation of copulas on time series and of time-dependent copulas.

Correlation as a Result of Joint Intensity Modeling
In May 2005, the downgrade of Ford and GM by S&P lead to a widen-
ing of the spreads of almost all the components of the CDS indices. In a
Credit Metrics setup, we could imagine that a shock on the automotive
sector would lead to some rating actions on other corporate firms in the
same industry and to a lesser extent on other firms in different sectors.
In this case, no other significant rating change has occurred as a conse-
quence. Thereby, the Credit Metrics approach proved unable to account
for the changes in the prices of CDO tranches. The period was surpris-
ing in the sense that two investors holding exactly the same tranche of
a CDO in their portfolio (assuming it did not include Ford and GM)
could have completely different views about the quality of their asset,
whether they would consider it from a market-to-market or from a
traditional pure default risk perspective. The general trend, over the
recent period, has been to take into account both default dependency
and market price risk.

As Schönbucher and Schubert (2001) point out, the joint risk-neutral
survival function of two obligors A and B will depend dramatically on a
default event on any of them. Typically, the default probability of B will
increase as soon as obligor A defaults. If we focus on the period bounded
by the time just before default and the time of obligor A’s default, we will
observe a jump in the default intensity of B. Any substantial jump like the
downgrade to a NIG level of some obligors can have the same effect as a
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default and entail price contagion for other obligors, which could not be eas-
ily explained by Gaussian copulas. The GM and Ford examples stand as a
good illustration of the phenomenon.

All these classes of joint-intensity models start by focusing heavily
on the estimation of the price or the creditworthiness (hazard rate) of each
obligor considered separately. These approaches do not preclude then the
use of copulas but tend to encourage the selection of a multivariate model
based on some explicit rationale. One of the main reasons why these
approaches have not been widely used by practitioners so far is probably
because the estimation problems that arise are generally more complex
than with the traditional Gaussian copula setup. There seems, however,
to be growing interest for these types of models as they can represent
observed prices quite accurately.

In this context, it is important to refer to intensity-based models
when dealing with dependence. In order to summarize the evolution in
this field, we can identify four parallel classes of joint intensity models:

♦ The most traditional class initially corresponded to the introduc-
tion of some correlation in the dynamics of the default intensity
of obligors. This approach had been widely used in the context
of interest rates and FX modeling and has then been introduced
in credit. These initial models are usually considered to underes-
timate observed correlation. Duffie (1998) and Duffie and
Singleton (1999) have suggested that higher default dependen-
cies could be obtained by increasing the likelihood of joint
default events. In their model, when an obligor defaults, an
enhancement in the intensity of the jump of the other obligors is
observed. Obviously, with a large sample, calibration of intensi-
ties can be a problem. Since then, other models presenting jump-
intensity correlation have been developed, allowing for
idiosyncratic as well as systematic jumps, like Giesecke (2003)
and dealing with calibration thanks to an exponential copula
framework.

♦ Another area of investigation has been in the direction of
frailty models. These models are used in other fields like biol-
ogy and medicine. In such a setup, individuals within different
groups can be affected by common frailties. In credit, this
translates into an extra stress factor due to unobserved risk
factors (see Yashin and Iachine, 1995). In this case, a particular
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specification of the intensity for a Gamma frailty model can be
expressed as:

λt(t, X, Z) = (Z0 + Zt)λ0(t)exp(β'Xt) (62)

With Z0 an unobservable gamma random variable common to
all obligors (the shared frailty component), Zi an unobservable
gamma random variable that is specific to obligor i, and the rest
of the specifications corresponding to a classic proportional haz-
ard rate model*; i.e., a combination of a simple time-dependent
hazard rate function and of a multifactor model of additional
explanatory variables. Fermanian and Sbai (2005) show that this
class of models can provide realistic levels of dependence.

♦ Another class corresponds to default infection models. The orig-
inal papers in this area are Davis and Lo (1999a,b, 2000) and
Jarrow and Yu (2001). In this approach the default of an obligor
will impact the default intensities of other obligors through a
jump. Let us consider n obligors. The default intensity of obligor
i at time t can be written as:

(63)

Calibration of this class of models may not prove straightforward.
♦ The last class we will mention here is the threshold copula

approach presented by Schönbucher and Schubert (2001). A
detailed description of the model is provided in Appendix A. 
It focuses particularly on the dynamic specification of the survival
probabilities and hazard rates. The concept is that any default in a
portfolio will create a threshold effect through a modified specifi-
cation of the survival copula, due to additional information
gained over time on the default status of the obligors in the port-
folio. This threshold information can also be seen as modifying
the individual pseudo-intensities over time. Though the equations
in the model look complex, the intuition remains simple. The
major constraint resides with its implementation, as it seems to be
tractable mainly with Archimedean copulas.

λ α β τi i ij t
j

n

t t t
j
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*Also called Cox regression model.



Discussion on the Evolution of 
Dependency Modeling

This section completes our introduction to correlation, copulas, and other
dependence measures. Looking backwards, we can see that dependence
measurement has considerably gained inaccuracy but also in complexity
in a short time span. From the initial linear correlation approach, the
credit world has quickly moved toward static factor models at the end of
the 1990s, with the Credit Metrics setup. The subsequent leap has been
from default correlation toward survival correlation with Li (2000). It has
enabled us to adopt a more flexible view of correlation, taking into con-
sideration the timing of default. With an almost simultaneous access to
various forms of copulas, market participants have also been able to
account for dependence in a more refined way. Surprisingly, many practi-
tioners have however not fully adopted these innovative solutions so far
for several reasons. The most reasonable cause accounting for it is that the
selection of an appropriate copula is not a fully objective process and its
calibration is not immediate. A second one corresponds to the very prac-
tical fact that no common language, other than the Gaussian copula, has
emerged among practitioners so far. A point to mention at this stage is
that there seems to be an increasing view on credit markets that the cop-
ula approach has shown some limitations and that there may not exist any
perfect solution or “the Perfect Copula” as Hull and White (2005) put it.
Such limitations are to be related, among other things, to the incomplete
treatment by copulas of dynamic aspects. The next frontier for depend-
ence models would indeed be to account not only for the default dynam-
ics but also for the price dynamics, following, for instance, credit event
or credit contagion. Possible paths for the future could be to introduce
regime-switching patterns associated with copulas in order to account
better for temporal dependencies or to focus on the joint modeling of
intensity-based models, and on finding, among other issues, new solu-
tions to the inherent dimensionality problem related to this approach.

PART 2: EMPIRICAL RESULTS 
ON CORRELATION

Calculating Empirical Asset Implied Correlations

In order to compute the loss distribution of a portfolio, a traditional
approach has been to assume that the general correlation process is driven
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by latent variables that partially drive the movement to default or the
time to default of the corporate obligors in that portfolio. Such models
belong to the category of factor models described in the section “Factor
Models of Credit Risk” of the previous part. This class of models ulti-
mately relies on an interpretation within the structural Merton frame-
work. In this context, default correlation is derived indirectly from asset
correlation, as the comovement of the asset value of different obligors, to
a default threshold.

The usual approach in CDO pricing and risk management is to con-
sider equity or credit spread correlation as proxies for asset correlation. In
what follows, we focus on extracting asset correlation from empirical
default observations. This will enable us later on to understand properly
the arbitrage between ratings and prices of structures.

We describe three ways to estimate implied asset correlation. The
first way in called the joint default probability approach (JPD). The sec-
ond corresponds to a maximum likelihood approach (MLE). The third
one is based on a Bayesian inference technique generalized linear mixed
model (GLMM).

The Joint Default Probability Approach
In Equation (4) of the previous part, we have derived the correlation
formula for two binary events A and B. These two events can be joint
defaults or joint downgrades, for example. Consider two firms originally
rated i and j, respectively, and let D denotes the default category. The mar-
ginal probabilities of default are Pi

D and Pj
D, while Pi,j

D,D denotes the joint
probability of the two firms defaulting over a chosen horizon. Equation
(4) can thus be rewritten as:

(64)

Obtaining individual probabilities of default per rating class is straight-
forward. These statistics can be read off transition matrices. The only
unknown term that has to be estimated in Equation (64) is the joint
probability.

Estimating the Joint Probability Consider the joint migration of two
obligors from the same class i (say, a BB rating) to default D. The default
correlation formula is given by Equation (64) with j = i, and we want to
estimate pi, i

D,D.
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Assume that at the beginning of a year t, we have Nt
i firms rated i.

From a given set with Nt
i elements, one can create (Ni

t (Ni
t − 1))/2 different

pairs. Denoting by Tt
i,D the number of bonds migrating from this group to

default D, one can create (Tt
i,D (Tt

i,D − 1))/2 defaulting pairs. Taking the ratio
of the number of pairs that defaulted to the number of pairs that could have
defaulted, one obtains a natural estimator of the joint probability.
Considering that we have n years of data and not only one, the estimator is:

(65)

where w are weights representing the relative importance of a given year.
Among possible choices for the weighting schemes, one can find:

(66a)

(66b)

(66c)

Equation (65) is the formula used by Lucas (1995) and Bahar and Nagpal
(2001) to calculate the joint probability of default. Similar formulae can be
derived for transitions to and from different classes. Both papers rely on
Equation (66c) as weighting system.

Although intuitive, the estimator in Equation (65) has the drawback
that it can generate spurious negative correlation when defaults are rare.
Taking a specific year, we can indeed check that when there is only one
default, T(T − 1) = 0. This leads to a zero probability of joint default. However,
the probability of an individual default is 1/N. Therefore, Equation (64)
immediately generates a negative correlation as the joint probability is 0 and
the product of marginal probabilities is (1/N)2.

de Servigny and Renault (2002) therefore propose to replace the
Equation (2) with:
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This estimator of joint probability follows the same intuition of compar-
ing pairs of defaulting firms to the total number of pairs of firms. The dif-
ference lies in the assumption of drawing pairs with replacement. de
Servigny and Renault (2002) use the weights in Equation (66b). On a sim-
ulation experiment, they show that formula (65) has better finite sample
properties than (65), that is, for small samples (small N) using Equation (67)
provides an estimate that is on average closer to the true correlation than
using Equation (65).

Empirical Default Correlation Using the S&P’s CreditPro 6.20 data-
base that contains about 10,000 firms and 22 years of data (from 1981 to
2002), we can apply formulas (4) and (1) to compute empirical default cor-
relations. Results are shown in Table 4.1.

The highest correlations can be observed on the diagonal, i.e., within
the same industry. Most industry correlations are in the range of 1 to 3 per-
cent. Real estate and, above all, Telecoms stand out as exhibiting particu-
larly high correlations. Out-of-diagonal correlations tend to be fairly low.

Table 4.2 illustrates pairwise default correlations per class of rating.*
From these results we can see that default correlation tends to increase sub-
stantially as the rating deteriorates. This is in line with results from various
studies of structural models and intensity-based models of credit risk.

We will return to this issue later on when we investigate default cor-
relation in the context of intensity models of credit risk.

From Default Correlation to Asset-Implied Correlation The estimated
joint default probabilities can be used to back out the latent variable corre-
lation ∑= [ρij] within the factor model setup described in the previous part.

Let us consider two companies (or two industries) i and j. Their joint
default probability Pij is given by

Pij = Φ(Zi, Zj, ρij), (68)

where Zi and Zj correspond to the default thresholds for each of these
companies (or the average default threshold for each industrial sector).

The asset correlation between the two companies (or between the
two sectors) can be derived by solving:

ρij = Φ−1 (Pij, Zi, Zj) (69)
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been any AAA-rated company defaulting within a year.



T A B L E  4 . 1

One-Year Default Correlations, All Countries, All Ratings, 1981–2002 (%)

High Real Transpor-
Automobile Construction Energy Finanance Build Chemical tech Insurance Leisure estate Telecom tation Utility

Automobile 2.44 0.87 0.68 0.40 1.31 1.15 1.55 0.17 0.93 0.71 2.90 1.08 1.03

Construction 0.87 1.40 −0.42 0.44 1.45 0.96 1.07 0.27 0.79 1.93 0.34 0.95 0.20

Energy 0.68 −0.42 2.44 −0.37 0.01 0.19 0.27 0.26 −0.37 −0.27 −0.11 0.17 0.29

Finanance 0.40 0.44 −0.37 0.60 0.55 0.22 0.30 −0.05 0.52 1.95 0.30 0.23 0.23

Build 1.31 1.45 0.01 0.55 2.42 0.95 1.45 0.31 1.54 1.92 2.27 1.65 1.12

Chemical 1.15 0.96 0.19 0.22 0.95 1.44 0.84 0.12 0.67 −0.15 1.03 0.78 0.23

High tech 1.55 1.07 0.27 0.30 1.45 0.84 1.92 −0.03 0.94 1.27 1.25 0.89 0.20

Insurance 0.17 0.27 0.26 −0.05 0.31 0.12 −0.03 0.91 0.28 0.47 0.28 0.72 0.48

Leisure 0.93 0.79 −0.37 0.52 1.54 0.67 0.94 0.28 1.74 2.87 1.61 1.49 0.85

Real estate 0.71 1.93 −0.27 1.95 1.92 −0.15 1.27 0.47 2.87 5.15 −0.24 1.38 0.71

Telecom 2.90 0.34 −0.11 0.30 2.27 1.03 1.25 0.28 1.61 −0.24 9.59 2.36 3.97

Transportation 1.08 0.95 0.17 0.23 1.65 0.78 0.89 0.72 1.49 1.38 2.36 1.85 1.40

Utility 1.03 0.20 0.29 0.23 1.12 0.23 0.20 0.48 0.85 0.71 3.97 1.40 2.65

Source: S&P’s CreditPro 6.20.
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In this particular context, as we compute pairwise industry default corre-
lation, we are able to generate the corresponding pairwise industry asset
correlation.

The Maximum Likelihood Approach
The estimation of implied asset correlation can also be extracted directly
through a maximum likelihood procedure, as described originally in Gordy
and Heitfield (2002). Given the default data scarcity, the numerical tractabil-
ity of this approach is however the major constraint. Demey et al. (2004)
suggest a simplified version of the previous estimation technique, where all
inter industry correlation parameters are assumed equal. Thanks to this
additional constraint, for each company or sector, the number of parame-
ters to estimate is in fact limited to two.

In order to describe precisely the estimation technique, we first start
by displaying the latent variable (the asset value) for each obligor i in the
portfolio as the linear combination of a reduced number of independent
factors. Given the assumption of a unique correlation intensity across all
industries (ρcd = ρ for all industries c ≠ d), the asset value of any company i in
industry c can be written as a function of two independent common factors
C and Cc as:

(69)A C C i ci c e c i= + − + − ∈ρ ρ ρ ρ ε1 ,
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T A B L E  4 . 2

One-Year Default Correlations, All Countries, 
All Industries, 1981–2002 (%)

Rating AAA AA A BBB BB B CCC

AAA NA NA NA NA NA NA NA

AA NA 0.16 0.02 −0.03 0.00 0.10 0.06

A NA 0.02 0.12 0.03 0.19 0.22 0.26

BBB NA −0.03 0.03 0.33 0.35 0.30 0.89

BB NA 0.00 0.19 0.35 0.94 0.84 1.45

B NA 0.10 0.22 0.30 0.84 1.55 1.67

CCC NA 0.06 0.26 0.89 1.45 1.67 8.97

Source: S&P’s CreditPro 6.20.



C can be considered as a factor common to the whole economy, whereas
Cc is a more industry specific common factor and εi is the idiosyncratic
term corresponding to obligor j.

The resulting asset correlation matrix can be written as:

Assuming that the idiosyncratic factor εi is Gaussian, and that Zc corre-
sponds to the average, time invariant, default threshold of all companies
in industry c, we can write the probability of default within industry c,
conditional on the realization ( f, fc) of factors (F, Fc) as:

(70)

where Φ is the normal c.d.f.
Conditional on the realization of the factors, the number of defaults

in a given industrial sector c has a binomial distribution, with parameters
Nc, the number of firms in class c at time t, and Dc the default number in
the same class.

(71)

Due to the property of conditional independence, we can write the
unconditional log-likelihood as:

(72)

Demey et al. (2004) investigate the potential stability and bias problems in
several bootstrap experiments. They obtain reasonably good perfor-
mances, as the mean of the bootstrap distribution converges quickly to the
true correlation for class samples as small as 50.
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Computing the Asset-Implied Correlation Through JPD and MLE
de Servigny and Jobst (2005) use the S&P’s Credit Pro 6.60 database over
the period 1981 to 2003. It contains 66,536 annual observations and 1170
default events. On a yearly basis and for each of 13 industrial sectors c,
they compute Nc and Dc.

The authors compare the value of the asset-implied correlation esti-
mated under the JPD and the MLE techniques (Table 4.3 and Figure 4.23).
They find a reasonably good match between the two approaches.

Regarding default based asset-implied correlation, it is worth men-
tioning that Gordy and Heitfield (2002) show that the slight positive rela-
tionship between credit quality and asset-implied correlation is not
statistically significant and that there is no real value in terms of accrual pre-
cision to reject the hypothesis of constant implied asset correlation derived
from default, across ratings.

Modeling Credit Dependency 187

T A B L E  4 . 3

Comparison of Asset-Implied Correlation Using JPD
and MLE

Implied asset 
Industrial Average Average Implied asset correlation
sector N PD correlation JPD MLE

Automobile 297 2.17 11.80 10.84

Construction 354 2.48 6.80 7.63

Energy 149 2.20 12.60 19.06

Finance 530 0.60 9.40 15.93

Chemical 113 2.04 13.40 6.55

Health 149 1.25 10.00 8.44

High tech 97 1.84 9.60 6.55

Insurance 260 0.65 14.60 13.32

Leisure 169 3.07 8.60 9.16

Real estate 60 1.11 34.20 33.02

Telecom 119 1.97 27.80 30.32

Transportation 134 2.07 9.70 6.55

Utility 352 3.52 21.90 21.30

Average intra 14.65 14.51
industry

Average inter 4.70 6.45
industry

Abbreviations: JPD = joint default probability approach; MLE = maximum likelihood; PD = probability of default.



The Bayesian Estimation Approach—GLMM
This approach has been proposed recently by Mc Neil and Wendin
(2005). The authors assume a multi time-step econometric model condi-
tional on time varying predictive covariates. This model belongs to the
class of GLMMs. In this setup, probabilities of default rely on some usual
fixed covariates that are used in scoring,* but they also include one unob-
servable vector of random dynamic factors. Serial correlation is assumed
for this vector, i.e., its current realization is partially conditioned by its
past realizations through a serial dependence AR(1) specification.

The aggregation of the probabilities of default in a portfolio is per-
formed assuming independence conditional on the realization of the
paths of the common vector of random covariates. In order to resolve this
dynamic estimation problem, the authors use a Bayesian computational
technique.

The authors test their approach in an empirical study, using the rat-
ing database from S&P’s Credit Pro 6.60 and selecting observations in the
United States and Canada from 1981 to 2000.
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For an obligor i, at time t, the probability of default conditional on
the realization of this systematic, unobserved, risk factor Fi is therefore:

P(Yt
i = 1/Ft) = logit(µt

i+ βXt + γ i
t Ft)

where Xt corresponds to a vector of explainable common macroeconomic
effects,* µi

t to the intercept,† and β i
t and γ i

t to related weights. The AR(1)
process for the vector of latent systematic unobserved Gaussian random
risk factors Fi can be written as: Ft = αFt-1 + φεt.

At the portfolio level, the usual assumption of conditional indepen-
dence leads to the calculation of the loss distribution in a straightforward
manner.

In a first analysis, the authors assume that there is no fixed common
variable Xt, but only one random unobservable variable Ft. Using the
Bayesian technique, they observe that the hypothesis of an independent
simulation of the factor at each step, i.e., α = 0, is strongly rejected empir-
ically. The estimation of α gives a mean value of around 0.65 with a stan-
dard deviation representing around 25 percent of the mean. In addition,
the expected value of the implied asset correlation can be estimated.
Practically it comes to 7.6 percent.

In a second step, the authors incorporate a fixed macroeconomic vari-
able Xt corresponding to the Chicago Fed National Activity Index, pub-
lished on a monthly basis. They also consider six broad industrial sectors:

♦ Aerospace, automotive, capital goods, and metal
♦ Consumer and service sector
♦ Leisure time and media
♦ Utility
♦ Health care and chemicals
♦ High tech, computers, office equipment, and Telecom

They show that the mean realization of the common random factor is
depending very clearly on the economic cycle, as can be seen on Figure 4.24.

Results show that both the introduction of industrial sectors and of
a macroeconomic factor reinforces the quality of the estimation. With this
specification, average inter-industry asset-implied correlation comes to 6
percent and intra-industry correlation to 10.5 percent. These results are in
line in terms of magnitude with the results provided by the previous MLE
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*Let us think of the typical credit factors used in credit scoring models.
†Possibly derived from company specific factors and a true intercept.



and JPD estimators, especially given the fact that we are now talking
about a less granular industry specification. We also note that asset corre-
lation follows a cycle-dependent pattern.

Are Equity Correlations Good Proxies 
for Asset Correlations?
We have just seen that the formula for pairwise default correlation is quite
simple but relies on asset correlation, which is not directly observable. It has
become market practice to use equity correlation as a proxy for asset corre-
lation. The underlying assumption is that equity returns should reflect the
value of the underlying firms and, therefore, that two firms with highly cor-
related asset values should also have high equity correlations.

To test the validity of this assumption, de Servigny and Renault (2002)
have gathered a sample of over 1100 firms for which they had at least five
years of data on the ratings, equity prices, and industry classification. They
then computed average equity correlations across and within industries.

These scaled equity correlations were inserted in Equation (68) to
obtain a series of default correlations extracted from equity prices. They
then proceeded to compare default correlations calculated in this way to
default correlations calculated empirically using Equation (69).

Figure 4.25A summarizes their findings. Equity-driven default corre-
lations and empirical correlations appear to be only weakly related or, in
other words, equity correlations provide at best a noisy indicator of default
correlations. This casts some doubt on the robustness of the market standard
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assumption and also on the possibility of hedging credit products using the
equity of their issuer.

Although disappointing, this result may not be surprising: equity
returns incorporate a lot of noise (bubbles, etc.) and are affected by supply
and demand effects (liquidity crunches) that are not related to the firms’ fun-
damentals. Therefore, although the relevant fundamental correlation infor-
mation may be incorporated in equity returns, it is blended with many other
types of information and cannot easily be extracted. Figure 4.25B confirms
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this fact in the sense that it shows that there is half of the equity correlation
that is not coming from joint default events.

Describing the Behavior of Implied 
Asset Correlation
So far, we have observed that different default based asset-implied corre-
lation estimators do give comparable results. In the light of the difference
observed between asset-implied correlation and equity correlation, we
would however like to reach a more in depth understanding of the issue.
In this respect, we are testing for the stability of this asset-implied corre-
lation based on different “default” events.

In this paragraph, we therefore compute implied asset correlation,
using MLE, in two cases:

♦ We define an event as breaching an equity value barrier in the
case of EDSs.*

♦ We can also consider pure credit event triggers that are different
from default. We, for instance, consider rating based events like
the joint downgrade to a predefined rating level (from CCC to
BBB).

By backing out the implied asset correlation from different events like
joint defaults, joint EDSs triggers, or joint downgrades, we would expect
to obtain similar results. Whatever the instrument or event we consider,
the underlying reference asset value is indeed unique for any obligor.

Extracting Asset-Implied Correlation from EDSs Based on EDS
events at different barrier levels, Jobst and de Servigny (2006) measure
asset-implied correlation using JPD and MLE. The universe they work on
represents 2,200 companies for which they have collected monthly equity
time series, the corresponding ratings, and financial information from
1981 to 2003.

As can be observed in Figures 4.26 and 4.27, asset-implied correla-
tion is far from being stable across barrier levels.

A correlation skew can be observed, whichever estimator is
retained. Note that below the 50 percent barrier, EDSs can be considered
more like debt products as shown in de Servigny and Jobst (2005). On the
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*An EDS is a credit hybrid derivative, and more precisely a deep “out-of-the-money” long
dated digital American put with regular installments. A barrier level such as 30 percent cor-
responds to a loss in value of 70 percent of the related equity share.
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contrary, above the 50 percent barrier, EDSs typically look more like
equity products.

To summarize the situation, we can observe distinctly three correla-
tion states:

1. Pure default: (average intra-industry asset-implied correlation,
average inter-industry asset-implied correlation) = (14.5, 5.5).

2. EDS below 50 percent barrier: (Average intra-industry asset-
implied correlation, Average inter-industry asset-implied corre-
lation) = (26.5, 15.5).

3. EDS above 50 percent barrier: (Average intra-industry asset-
implied correlation, average inter-industry asset-implied corre-
lation) = (31, 22.5)

Correlation in state (2) and to some extent in state (3) looks quite compa-
rable with typical equity correlation. It differs significantly from the lower
default levels observed in state (1).

In the next paragraph, we consider different credit event triggers
rather than EDS barriers. By going this way, we will be able to assess
whether asset-implied correlation extracted from default constitutes a sin-
gular, doubtful situation or a confirmed and robust observation.

Extracting Asset-Implied Correlation from Different Credit Events
de Servigny et al. (2005) now consider different credit triggers.* Instead of
picking default as the only relevant event, they back out asset-implied
correlation from different downward migrations toward a predefined rat-
ing level. They start by identifying all firms that move to default, as well
as the firms that are downgraded to a rating level ranging from CCC to
BBB during a given period of time, typically one year.

Using the JPD approach, we can obtain the joint probability of
comovement to a rating level K from an adjustment of Equation (4):

(73)

With K being defined as the credit event ranging from BBB to D. In addi-
tion, we introduce the condition i > K, in order to insure that we are cap-
turing downgrades only.† We can then easily extract the asset-implied
correlation using Equations (68) and (69).
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*Using Credit Pro 6.60 between 1990 and 2003.
†When using both downgrades and upgrades, we obtain significantly lower asset-implied
correlation levels.



Using the MLE approach, we derive the conditional probability of
default from an adjustment of Equation (8):

(74)

with Zk
c being the credit event threshold associated with rating K. We then

proceed with Equations (72) and (73).
The results are summarized in Figure 4.28. Interestingly, unlike what

we would have expected from the experience derived from EDSs, here we
cannot identify a clear skew effect.

To summarize, though the asset-implied correlation figures obtained
from default events look significantly lower than those extracted from
EDS events or equity prices, they do not correspond to any anomaly
among credit events.

In reality, the latent variable we refer to as the asset-implied value for
a given obligor is not unique whether we refer to credit events, to equity,
or to EDS events. Unlike in the pure default/migration environment, the
last two approaches contain a market component in the valuation of the
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asset. This is the reason why in the pure credit situation asset-implied cor-
relation is lower.

A similar conclusion applies when we compare CDO compound
correlation with default implied asset correlation.

Correlations in an Intensity Framework

We have seen earlier in this book (in Chapter 3) that intensity-based mod-
els of credit risk are very popular among practitioners to price defaultable
bonds and credit derivatives. This class of model, where default occurs as
the first jump of a stochastic process, can also be used to analyze default
correlations.

In an intensity model, the probability of default over [0, t] for a firm
i is:

(75)

λi
s is the intensity of the default process and τi the default time for firm

i. Linear default correlation [Equation (23)] can thus be written as:

(76)

with

yi
t = exp(−∫0

t
λt

s ds) for i = 1, 2. (77)

In the remainder of this section, we show the findings that we have
obtained in the previous section.

Testing Conditionally Independent Intensity Models
Yu (2005) implements several intensity specifications belonging to the
class of conditionally independent models including those of Driessen
(2002) and Duffee (1999), using empirically derived parameters.

The intensities are functions of a set of k state variables Xt = (X1
t, . . . , Xk

t)
defined below. Conditional on a realization of Xt, the default intensities are
independent. Dependency therefore arises from the fact that all intensities
are functions of Xt.
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Common choices for the state variables are term structure factors (level
of a specific Treasury rate, slope of the Treasury curve), other macro-
economic variables, firm-specific factors (leverage, book-to-market ratio),
etc. For example, the two state variables in Duffee (1999) are the two factors
of a risk-less affine term structure model (see Duffie and Kan, 1996).
Driessen (2002) also includes two term structure factors and adds two fur-
ther common factors to improve the empirical fit. In most papers, including
those mentioned earlier, the intensities λi

s are defined under the risk-neutral
measure and they therefore yield correlation measures under that specific
probability measure. These correlation estimates cannot be compared
directly to empirical default correlations as shown in Tables 4.1 to 4.3. The
latter are indeed calculated under the historical measure.

Yu (2005) relies on results from Jarrow et al. (2001), who prove that
asymptotically in a very large portfolio, average intensities under the risk-
neutral and historical measures coincide. Yu argues that given that the pa-
rameters of the papers by Driessen and Duffee are estimated over a large
and diversified sample, this asymptotic result should hold. He then com-
putes default parameters from the estimated average parameters of inten-
sities reported in Duffee (1999) and Driessen (2002), using Equations (77)
and (78).

These results are reported in Tables 4.4 and 4.5. The model by Duffee
(1999) tends to generate much too low default correlations compared to
other specifications.

Table 4.6. [empirical default correlations using Equation (64)] and
Table 4.7 (default correlations in the equity-based model of Zhou, 2001)
are presented for comparative purposes. Driessen (2002) yields results
that are comparable to those of Zhou (2001).
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T A B L E  4 . 4

Default Correlations Inferred from Duffee 
(1999)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.05

A 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.04 0.03 0.06 0.06

Baa 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.04 0.06 0.05 0.06 0.09

Source: Yu (2005).



Both intensity-based models exhibit higher default correlations as
the probability of default increases and as the horizon is extended.

Yu (2005) notices that the asymptotic result by Jarrow et al.
(2001) may not hold for short bonds because of tax and liquidity effects
reflected in the spreads. He therefore proposes an ad hoc adjustment of
the intensity:

where t is time and a and b are constants obtained from Yu (2002).
Tables 4.9 and 4.10 report the liquidity-adjusted tables of default cor-

relations. The differences with Tables 4.4 and 4.5 are striking. First, the
level of correlations induced by the liquidity-adjusted models is much
higher. More surprisingly, the relationship between probability of default
and default correlation is inverted: the higher the default risk, the lower
is the correlation.

Modeling Intensities Under the Physical Measure
The modeling approach proposed by Yu (2005) relies critically on the
result by Jarrow et al. (2001) about the equality of risk-neutral and histor-
ical intensities that only holds asymptotically. If the assumption is valid,
then the risk-neutral intensity calibrated on market spreads can be used
to calculate default correlations for risk management purposes.

Das et al. (2006) consider a different approach and avoid extracting
information directly from market spreads. They gather a large sample of
historical default probabilities derived from the Moody’s RiskCalc™ model
for public companies from 1987 to 2000. Falkenstein (2000) describes this
model that provides one-year probabilities for a large sample of firms.

λ λt t

a
b t

adj ,= −
+
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T A B L E  4 . 5

Default Correlations from Driessen (2002)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.04 0.05 0.08 0.17 0.19 0.31 0.93 1.04 1.68 3.16 3.48 5.67

A 0.05 0.06 0.10 0.19 0.32 0.35 1.04 1.17 1.89 3.48 3.85 6.27

Baa 0.08 0.10 0.15 0.31 0.35 0.56 1.68 1.89 3.05 5.67 6.27 10.23

Source: Yu (2005).



T A B L E  4 . 6

Average Empirical Default Correlations [Using Equation (26)]—In 
Percent

1 year 2 years 5 years 10 years

AA A BBB AA A BBB AA A BBB AA A BBB

AA 0.16 0.02 −0.03 0.16 −0.03 −0.07 0.48 0.12 0.09 0.79 0.54 0.60

A 0.02 0.12 0.03 −0.03 0.20 0.23 0.12 0.32 0.23 0.54 0.54 0.61

BBB −0.03 0.03 0.33 −0.07 0.23 0.78 0.09 0.23 0.82 0.60 0.61 1.17

Source: S & P’s CreditPro 6.20—over 21 years.
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T A B L E  4 . 7

Default Correlations from Zhou (2001)—In Percent

One year Two years Five years Ten years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.00 0.00 0.00 0.00 0.00 0.01 0.59 0.92 1.24 4.66 5.84 6.76

A 0.00 0.00 0.00 0.00 0.02 0.05 0.92 1.65 2.60 5.84 7.75 9.63

Baa 0.00 0.00 0.00 0.01 0.05 0.25 1.24 2.60 5.01 6.76 9.63 13.12

T A B L E  4 . 8

Liquidity-Adjusted Default Correlations Inferred from
Duffee (1999)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 0.08 0.07 0.05 0.17 0.14 0.11 0.29 0.23 0.20 0.30 0.22 0.23

A 0.07 0.08 0.05 0.14 0.15 0.10 0.23 0.24 0.17 0.22 0.30 0.18

Baa 0.05 0.05 0.03 0.10 0.11 0.07 0.20 0.17 0.14 0.23 0.18 0.17

Source: Yu (2005).

The authors show that in the Merton setup, the two drivers to the
variation of PDs and to PD correlation changes are the debt ratio and the
equity volatility of companies. In addition, they outline that volatility
seems to be the dominant factor, having the largest impact on PDs.

They start by transforming the default probabilities into average
intensities over one-year periods. Using Equation (76) and an estimate
of default probabilities, they obtain a monthly estimate of default inten-
sity by:

λi
t = −ln(1 − PDt

i). (78)

The time series of intensities can be filtered for autocorrelation by being
either derived from a mean value (Model 1) or modeled as a discrete
AR(1) process (Model 2).



(79)

(80)

The objective is to study the correlations between ε i
t and ε j

t, as well as
between ε~i

t and ε~ j
t for two firms i and j.

In the case of the AR(1) model, βi ranges from 0.90 to 0.94.
Table 4.11. reports results for various time periods and rating classes.

As can be seen in Figure 4.29, correlation of the residuals of default inten-
sities appears to be less stable for high PDs than for low PDs.

In the case of low PDs, we can approximate: εi
t = λi

t − λi
t − 1 ≈ PDt

i − PDi
t−1 .

This means that measuring the correlation of the change in intensities is
close to measuring the correlation of the change in one-year PDs. Under
the Merton assumption, the key driver for PD changes is equity volatility.
These results cannot be directly compared with that related to rating
based default correlation, as they clearly include a market component in
addition to pure default event correlation.

Duration Models
The discussion about how much systematic and company specific covari-
ates contribute to explain either spread, PD, or rating movements has
gained some traction over the past five years. In the early 2000, Collin-
Dufresne et al. (2001), Elton et al. (2001), and Huang and Huang (2003)
reported that only a small fraction of corporate yield spreads could be

λ α β λ εt
i

i i t
i

t
i= + +−1 , ˜

λ λ ε λ ξt
i

t
i

t
i i

t
i= + = +−1
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T A B L E  4 . 9

Liquidity-Adjusted Default Correlations from Driessen
(2002)—In Percent

1 year 2 years 5 years 10 years

Aa A Baa Aa A Baa Aa A Baa Aa A Baa

Aa 1.00 1.12 0.63 3.11 2.98 1.90 11.78 9.58 7.48 28.95 21.92 20.03

A 1.12 1.29 0.72 2.98 2.90 1.84 9.58 7.87 6.12 21.92 16.68 15.22

Baa 0.63 0.72 0.40 1.90 1.84 1.17 7.48 6.12 4.77 20.03 15.22 13.91

Source: Yu (2005).



T A B L E  4 . 1 0

Average Correlations Between Residuals of Default Intensities

January 87 to July 90 to January 94 to July 97 to 
June 90 December 93 June 97 October 2000

Group Model 1/Model 2 Model 1/Model 2 Model 1/Model 2 Model 1/Model 2

HIGH GRADE 0.36 0.37 0.10 0.10 0.02 0.01 0.37 0.38
Above A

MEDIUM GRADE 0.22 0.23 0.10 0.10 0.03 0.02 0.24 0.25
Ba and Baa

LOW GRADE 0.16 0.16 0.06 0.07 0.02 0.02 0.17 0.17
Single B and C

Source: Das et al. (2006).
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explained by default information.* Based on these findings, systematic
risk components, such as common factors, liquidity effects, and risk
aversion, can be considered as very important drivers to account for
spread changes. From an opposite perspective a legitimate question can
be: how much company specific are default intensities under the empir-
ical measure?

In the research community, the first step has been to move from a
discontinuous rating based approach to a time continuous intensity one.
In the wake of Lando and Skodeberg (2002), Jafry and Schuermann (2003),
Jobst and Gilkes (2003), and several authors like Couderc and Renault
(2005) or Duffie et al. (2005), the model default intensity as a parametric
or semiparametric factor model derived from the Cox proportional haz-
ard methodology (Cox, 1972 and 1975)† as follows:

λi(t) = λ0(t) exp (β’Xi(t)),

where Xi(t) corresponds to the vector of covariates.
In Table 4.11, we draw a comparison between the categories of fac-

tors that have been tested, in order to explain default intensity changes.
Interestingly, at a rating category level, Couderc and Renault (2005) show
that contemporaneous financial market factors as well as past financial,
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Delta Default intensity correlation (Das et al. 2005)
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The evolution of Correlation of Delta Default Intensities
through Time using Model 1.

*Less than 25 percent Collin-Dufresne et al. (2001) and Elton et al. (2001).
†The former estimates the default intensity at a company level, the latter per rating category.



T A B L E  4 . 1 1

The Table contains All Covariates that were Reviewed. In Italic, the Selected Covariates

Bangia et al. Koopman and Lucas Couderc and Renault Duffie et al.
Data source (2002) (2005) (2005) (2005)

Noncompany Credit market Spread of the LT Baa Spread of LT BBB bonds 
specific bond yields over LT U.S. over treasuries

Government bonds Spread of LT BBB bonds
U.S. business failure rate over AAA bonds

Net issues of treasury 
securities

M2–M1
Business NBER growth/ GDP Index Real GDP growth
cycle recession Industrial production growth

monthly clas- Personal income growth
sification CPI growth

Financial Return on S&P’s 500 U.S. 3-month 
market Volatility of S&P’s 500 returns Treasury bill rate

10-year treasury yield one-year return 
Slope of the term structure S&P’s is 500
of interest rates

Default IG and NIG upgrade rates
Cycle IG and NIG downgrade rates

Lag effects Mainly Financial Market series

Company Company Distance to default
Specific specific 1 year stock return

Abbreviations: LT = long term; NBER = _____; GDP = gross domestic product; CPI = _____; IG = investment grade; NIG = noninvestment grade.
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credit market, and business cycle factors provide valuable explanatory
power jointly. They find, based on principal component analysis, that the
first five eigenvectors related to the above factors can explain 71 percent
of the variance in the data. Figure 4.30, illustrates very clearly the impact
of macroeconomic events on the default intensity.

Intensity models are usually undershooting the level of correlation
generated by factor models, both under the empirical and the risk-neutral
measure. Fermanian and Sbai (2005) try to reconcile the loss distribution
of the portfolio models constructed based on a traditional factor model
approach with intensity-based portfolio modeling. In order to reach sim-
ilar levels of magnitude in the distribution of portfolio losses, they need
to add to the Cox model defined earlier an unobservable random frailty
term Z, common to all obligors.

λi (t) = Zλ0 (t) exp(β’ Xi (t))
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The calibration of this frailty term (typically a gamma distributed variable)
enables us to obtain even more skewed loss distributions and thereby to
avoid the underestimation problem that factor models usually face, due to
the assumption of a Gaussian distribution of the common factors.*

Das et al. (2006) tend to provide some rationale for the use of a frailty
term. They look at the same problem from a different perspective and esti-
mate a default intensity model for each of the 2770 firms in their sample,
according to the specification detailed in Duffie et al. (2005). Because some
of the covariates in the estimation are common to all obligors, they ini-
tially assume that it is possible to aggregate losses in the portfolio condi-
tional on the realization of these factors. Based on the different tests they
perform, they find that their model fails to fully match the tail of the true
loss distribution of the portfolio. This could be because their intensity
model is not capturing all the relevant common macrofactors at play.
They focus on one extra covariate in particular: “the growth rate of the
industrial production.” It could also well be that more fundamentally, the
assumption of conditional independence does not hold due to contagion
(i.e., the presence of an unobservable variable common to all firms). As we
know, contagion cannot be accounted for in a proper manner under the
conditional independence assumption.

Implications for CDOs

Identifying How Sensitive CDO Tranches are to
Empirical Correlation
In order to investigate the impact of correlation on CDO tranches, we con-
sider the simple case of a well-diversified portfolio of 100 BB (or BBB)
bonds with a nominal exposure of 1$ each. During growth periods we
consider that the average default rate at a five-year horizon Q corre-
sponds to Pgr

BB, and during recession periods the average default rate
jumps to Pre

BB. In terms of correlation, we assume a one-factor model com-
mon to all obligors. Based on empirical work, we consider that the aver-
age asset-implied correlation ρ in a portfolio is in the range of ρgr during
growth periods and moves up to ρre during recessions.

We focus on four scenarios:

♦ A growth scenario where the default rate and the correlation
levels are, respectively, Pgr

BB and ρgr

206 CHAPTER 4
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♦ A recession scenario where the default rate and the correlation
levels are Pre

BB and ρre

♦ A hybrid scenario with a default rate corresponding to the reces-
sion period (Pre

BB) and a correlation applicable to the growth
period (ρgr)

♦ An average scenario with a default rate corresponding to an
average period (Pav

BB) and a correlation applicable to growth peri-
ods (ρav)

The next step is to define the loss distribution of the portfolio in four dif-
ferent cases: growth, recession, hybrid, and average (i.e., one single aver-
age state of the world).

The probability of default conditional to the realization f of the com-
mon factor can be written as:

The function Φ typically corresponds to the Gaussian c.d.f.
The computation of the loss distribution of the portfolio is per-

formed by drawing N = 100 binary variables (default or no default) from a
binomial distribution, conditional on the realization f of the latent vari-
able.

where D corresponds to the number of defaulters.
In order to obtain the unconditional loss distribution of the portfo-

lio, we integrate on the density of the latent variable f. In this exercise, we
assume that the law of the density of the latent variable corresponds to
that of the PD.

Depending on the values we input for Q and ρ, we obtain one of the four
loss distributions mentioned earlier.

An increase in portfolio losses from the growth scenario to the hybrid
scenario is therefore purely due to the increase in default probability. The
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further increase in loss associated to the move from the hybrid scenario to
the recession case is purely attributable to correlation.

Identifying the Impact of Cycles on the Tranching
of Rated Transactions
Based on the work that has been performed in the past, we know from
Bangia et al. (2002) that it is relevant to extract cumulative growth and
recession default rates per rating category based on the approximation of
first order Markovian transition matrices (see Table 4.12).

Based on empirical findings, on an average, default based asset-
implied correlation during growth periods is found equal to 4.15 percent,
correlation during recession periods amounts to 9.22 percent, and overall
average correlation is 7.05 percent.

Based on the information related to the average PD and average
correlation in the portfolio, we can define the initial tranching of the
pool. We therefore obtain Scenario Loss Rates (SLR)* defining the attach-
ment points related to the tranching, based on targeted ratings. For
instance, in the average view of the world, a AAA tranche scenario can
sustain DAAA defaults and a BBB tranche scenario, DBBB defaults. We then
consider that we move to a world with three different states: growth,
hybrid, and recession. We look at the new loss distribution of the pool
depending on which state we are in and derive how many defaults we
can now sustain with the initial SLR, given the fact that we are in a given
state of the world.
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T A B L E  4 . 1 2

Default Rates Conditional on the Economic Cycle

Default
BB BBB

rate Growth (%) Recession (%) Growth (%) Recession (%)

1 Year 1.026 2.35 0.289 0.44

2 Years 2.51 5.93 0.69 1.17

3 Years 4.33 10.27 1.19 2.15

4 Years 6.37 15.01 1.78 3.79

5 Years 8.55 19.90 2.47 4.78

*See Chapter 10.



The increase in portfolio losses from the growth scenario to the
hybrid scenario is therefore purely due to the increase in default prob-
ability. The further increase in loss associated to the move from the
hybrid scenario to the recession case is purely attributable to corre-
lation.

In a first step, we consider an underlying homogeneous BBB pool. In
the growth and recession cases, the loss distribution of the portfolio is
impacted by a change in PDs and a change in correlation. Based on the
methodology described earlier, we know for each rated tranche what is
the relative contribution of univariate (PD) and multivariate (correlation)
changes. In Figure 4.31 we see that the more senior a tranche is, the more
correlation matters.

In a second step, we use the earlier methodology. Practically, we
consider two underlying portfolios constituted of BB and BBB bonds. We
analyze the impact on the structured tranches of having one to five years
of recession or growth after the deal is rated. We can observe in Figure
4.32 that the quality of the underlying pool makes a significant difference
during the first year of recession: the lower the quality of the pool, the
more sensitive to the cycle it is. When recession periods last more than
one year, the quality of the underlying pool does not seem to matter any-
more in a clear way.
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Relative sensitivity of 5-year CDO tranches to
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Identifying the Sources of the CDO Arbitrage
Between Ratings and Prices
In this section, we investigate the impact of arbitrage between risk-neutral
pricing and tranche ratings in a simple setup. We consider an underlying
portfolio of 100 BBB bonds equally weighted in a five-year CDO.

In a layman’s term, market prices include risk aversion and pure
spread risk that the rating model doesn’t consider. As a consequence,
market quotes are typically higher than if prices were compared to prices
made on a pure rating basis. In what follows we “project” the risk-neutral
components in the empirical setup and analyze the change of enhance-
ment levels that would be suggested by the change of measure, in order
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Comparison of the Level of the Addition Enhancement
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Level of Risk in a Rated Tranches as a Result of One
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to match the empirical default rates per tranche. We then investigate
whether this change in enhancement levels would be caused primarily by
the multivariate or the univariate adjustment.

The model we use is the one described in the previous paragraphs.
In addition, we consider a flat compound correlation of 14 percent that
corresponds to the average level on the iTraxx on February 28, 2006. The
average BBB bond spread that day was 67 bps, and we assume a 50 per-
cent recovery rate.

We consider three scenarios:

♦ An Empirical scenario, where the default rate and correlation
levels are historical ones.

♦ A Risk Neutral scenario, where the default rate and correlation
levels are market ones

♦ A Hybrid scenario with a risk-neutral default rate and an empir-
ical correlation.

The increase in portfolio losses from the first scenario to the hybrid
scenario is therefore purely due to the change in default probability mea-
sure. The further increase in loss associated to the move from the hybrid
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scenario to the risk-neutral case is purely attributable to a change in mea-
sure for correlation.

As can be seen in Figure 4.33, for investment grade tranches, it is the
change from an average 7 percent correlation level to an average 14 per-
cent, which explains the majority of the arbitrage. On the opposite, in the
case of subinvestment grade tranches, it is the change, at a name level,
from the empirical measure to the risk-neutral one, which explains the
majority of the arbitrage.

When we run a similar exercise with a subinvestment grade under-
lying pool, we observe an increased contribution of the univariate com-
ponent (change from the empirical to the risk-neutral measure) with
respect to that of the change in correlation.

Of course, some precaution is required with all these results, as they
do not factor in the correlation skew observed in the market.

CONCLUSION

Dependency is a vast and complex topic. A lot of progress has been made
as the size of this chapter shows. There are still many problems to be
solved in this field. An important area of investigation is undoubtedly
around the dynamic dimension of comovements. Copulas have shown
some limit in this respect.
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INTRODUCTION

This chapter investigates the differences in rating migration behavior of
structured finance (SF) tranches and corporates and analyzes asset cor-
relation within and between these groups. Although the market size of
SF products such as asset-backed securities (ABS), collateralized debt
obligations (CDO), residential-mortgage backed securities (RMBS), etc.
has grown enormously over the past decade, only little is known about
their behavior in terms of rating migration, especially default, com-
pared to corporates. Credit risk portfolio models generally rely on
the estimation of rating migration and/or default probabilities and
asset correlation between exposures.† The latter significantly affects the
portfolio loss distribution and in particular the tails of the distribu-
tion. Therefore, the accuracy of these parameter estimates is of vital
importance.

*We would like to thank Arnaud de Servigny, Kai Gilkes, and André Lucas for very helpful
comments and suggestions.
†The loss distribution also requires information on the recovery rate. However, the latter is
not the focus of this chapter.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



We use Standard & Poor’s rating migration data to perform the
analysis. Rating transition matrices are estimated using the cohort method,
which corresponds to the industry standard, and the time-homogeneous
duration method. For SF tranches, we focus on portfolios based on ratings
and/or collateral types, whereas for corporates, we focus on portfolios
based on ratings and/or industry classification. We then estimate asset
correlation within and between portfolios using two methods. The first
method derives implied asset correlation from joint default probabilities
using historical transition data. [see, e.g., Bahar and Nagpal (2001) and de
Servigny and Renault (2002)]. The second method uses a two-factor credit
risk model to estimate asset correlation applying a maximum likelihood
approach similar to Gordy and Heitfield (2002) and Demey et al. (2004).

DATA DESCRIPTION

We use Standard & Poor’s rating performance data for SF and corporate
tranches and the Standard & Poor’s CreditPro dataset for corporates. The
sample covers the period December 1989–December 2005. Since the SF
market is much less mature than the corporate bond market. The reason
for using this period is simply the availability of data. The SF (corporate)
dataset consists of 71,646 tranches from 26,256 deals (11,436 corporate
issuers, respectively) with at least one long-term Standard & Poor’s rat-
ing during the sample period. Both datasets include U.S.-denominated
as well as non-U.S.-denominated assets and only cover the assets with a
long-term Standard & Poor’s rating. For the SF tranches, similarly rated
credit classes in the same deal are collapsed into a single tranche.*

As shown in Panels A and B of Table 5.1, the majority of SF tranches
(83 percent) and corporates (69 percent) are issued in North America, espe-
cially in the United States. For corporates, the regional distribution of the
financial sector is somewhat different from the other sectors. On average, 33
percent of the financials have their main office in Europe, which is high rel-
ative to the corporate average of 14 percent. For SF tranches, the regional
distribution of CDOs is somewhat different from ABS, CMBS, and RMBS.
An important percentage (39 percent) of CDOs is issued in Europe. Making
a distinction between different types of CDOs, namely cash flow (CF)
or synthetic (Synt), shows that the majority of U.S. CDOs are CF deals,
whereas the majority of European CDOs are synthetic deals (see Panel B of
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*Notice that corporate issuer ratings are based on senior bond ratings.



T A B L E  5 . 1

Regional Distribution for SF Tranches and Corporates

United States/ Australia/New Latin America/
Total Canada (%) Europe (%) Asia/Japan (%) Zealand (%) Africa (%)

Panel A: SF tranches

ABS 12,856 79 12 5 2 2

CDO 11,134 56 39 3 2 0

CMBS 8,657 84 9 5 2 0

RMBS 38,999 92 5 1 2 0

Total 71,646 83 12 2 2 0

Panel B: Corporates

Auto 1,350 71 13 10 2 4

Cons 1,481 78 9 5 3 5

Energy 645 77 11 5 2 5

Fin 2,068 38 33 16 4 10

Home 465 73 11 5 3 9

Health 732 78 13 6 1 3

HiTech 462 82 6 10 1 1

Ins 921 66 17 7 3 6

Leis 922 83 9 3 2 3

Estate 351 70 10 9 8 3

Telecom 553 63 18 7 1 11

Trans 496 60 17 9 7 7

Utility 990 62 18 5 6 8

Total 11,436 69 14 7 3 6

Note: This table presents the number of SF tranches (Panel A) and corporates (Panel B) with at least one long-term Standard & Poor’s rating between December 1989 and December
2005. SF tranches are classified by collateral type, whereas corporates are classified by industry.
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Figure 5.1). Panel A of Figure 5.1 shows the most common types of ABS
included in the sample: auto loans or lease (18 percent), credit cards (20 per-
cent), synthetic ABS (15 percent), student loans (10 percent), equipment
(6 percent), and manufactured housing (MH) (5 percent). Even though the
MH sector is relatively small compared to other sectors, it can significantly
affect the results be discussing.

Making a distinction between different rating categories shows
that the majority of SF tranches rated by Standard & Poor’s between
December 1989 and December 2005 are high quality, often AAA. Over
the last decade, the number of rated SF tranches has grown enormously.
To get an indication of the growth rate, we split the sample in two sub-
periods 1990–1997 and 1998–2005 (see Table 2). From the results, it is
clear that the total number of observations between December 1997 and
December 2005 is significantly higher than the number of observations
between December 1989 and December 1997. For corporates, the most
important rating categories in terms of number of observations are A
and BBB. While the number of corporates has grown as shown in Table
5.2, the growth rate is much smaller relative to SF tranches.
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Different Types of ABS and CDOs (Sample period:
December 1989–December 2005)

Note: Panel A and B give an overview of the different types of ABS and CDOs, respectively. The percentages are cal-

culated as the total number observations for a specific subgroup of ABS and CDOs between December

1989–December 2005 divided by the total number of ABS and CDOs, respectively, between December

1989–December 2005. In Panel B, CF stands for cash-flow CDOs, whereas Synt stands for synthetic CDOs.
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T A B L E  5 . 2

Average Number of SF Tranches and Corporates 
by Rating

AAA AA A BBB BB B CCC/C

SF tranches

1990–2005 3,241 1,509 1,283 920 422 300 55

1990–1997 1,714 984 524 188 76 70 13

1998–2005 4,986 2,109 2,151 1,756 819 563 102

Corporates

1990–2005 156 496 927 808 554 540 70

1990–1997 177 476 772 515 351 335 37

1998–2005 133 519 1103 1142 786 775 107

Note: This table presents the average number of observations between December 1989 and December 2005 for SF
tranches and corporates by rating.

MIGRATION PROBABILITIES

In this section, we focus on the cohort and the time-homogenous dura-
tion method to estimate migration probabilities (see Chapter 2 of this
book for more details). Using the cohort method, the average one-year
unconditional migration probability from rating k to rating l can be writ-
ten as follows

(1)

where Nkl(t, t + 1) denotes the number of rating changes from rating k in
year t to rating l in year t + 1 and Nk(t) the number of observations in rat-
ing k in year t. T represents the maximum number of years and wk(t) the
weight for rating k at time t. For each rating, the weights sum to one. The
unconditional migration probabilities (p–kl) are weighted averages of
yearly migration probabilities, with the weights being the relative size

in terms of observations, that is 

While the cohort method has become the industry standard,
it ignores some potentially valuable information such as the timing of
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transition taking place during the calendar year and the number of
changes that have led to a given rating at the end of the year. Furthermore,
the cohort method is affected by the choice of observation times (See for
example Lando and Skodeberg (2002), Schuermann and Jafry (2003)). An
alternative approach that takes these issues into account is the time-
homogeneous duration method, hereafter referred to as the duration
method. The latter assumes that the transition probabilities follow a
Markov process. Under the assumption of time-homogeneity, the transi-
tion probabilities can be described via a continuous time generator or
matrix of transition intensities Λ.

P(m) = exp(Λm) and m ≥ 0,

with P(m) the matrix of probabilities, Λ the generator, m the maturity (in
years), and

with Nkl the number of rating migrations from rating k to rating l over the
interval [0, T], Yk the number of “firm years” spent in rating k. Λ is called
a generator if λkl ≥ 0 for k ≠ l and λkk = −Σk ≠ l λkl. In the case of a homoge-
neous Markov chain, intensities are assumed to be constant. The denomi-
nator sums the number of “firm years” each tranche has spent in rating k.

While Table 5.3 presents the transition matrices for all SF tranches
and corporates, Table 5.4 shows the transition matrices for ABS, CDO,
CMBS, and RMBS.* Migration probabilities are estimated using the cohort
method and are weighted averages of yearly probabilities from December
1989 until December 2005. Rating categories CC, C, and D are collapsed
into one rating category D, which is absorbing. Migration probabilities are
adjusted for transitions to NR.†

λkl
kl

T
k

N T

Y s ds
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*The transition matrices for ABS, CDO, CMBS, and RMBS are in line with the transition
matrices in Erturk and Gillis (2006). Notice that the latter have another approach for han-
dling NR, which might cause slightly different results.
†NR stands for NonRated. Migration probabilities are adjusted as follows:

♦ a transition to NR is removed from the sample unless it is followed by a transi-
tion to a (nondefault) rating.

– if a transition to NR is followed by a transition to the last rating before NR
within three months, the transition to NR is assumed to be driven by noncredit
related issues and therefore ignored.



The estimates using the cohort and duration methods (not shown)
allow us to draw the following main conclusions: Firstly, the one-year prob-
ability of staying in the same rating category is significantly higher for AAA
SF tranches than for AAA corporates, 99 versus 92 percent. As shown in
Table 5.4, this holds for all collateral types, especially CMBS and RMBS.
Notice that the results for AAA CDOs are somewhat different from the other
collateral types. The AAA CDO downgrade probability is high relative to
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T A B L E  5 . 3

Transition Matrix for SF Tranches and Corporates Using
Cohort Methods (NR Adjusted)

AAA AA A BBB BB B CCC D

Panel A: SF tranches

AAA 99.2 0.65 0.11 0.06 0.01 0.01 0.01 0.005

AA 6.84 91.0 1.62 0.34 0.10 0.07 0.02 0.003

A 1.85 4.68 90.3 2.46 0.35 0.16 0.13 0.09

BBB 0.72 1.97 3.65 90.0 1.81 1.08 0.50 0.27

BB 0.17 0.27 1.73 5.13 87.4 2.56 1.67 1.09

B 0.05 0.09 0.11 1.13 4.05 87.3 4.00 3.24

CCC 0 0.10 0.20 0.10 0.51 2.95 64.8 31.4

Panel B: Corporates

AAA 92.3 7.23 0.43 0.09 0 0 0 0

AA 0.43 90.7 8.36 0.43 0.01 0.05 0.01 0.01

A 0.04 1.68 92.2 5.65 0.27 0.07 0.01 0.08

BBB 0.01 0.14 3.50 91.2 4.09 0.60 0.14 0.35

BB 0.05 0.03 0.17 5.40 84.6 7.50 0.87 1.41

B 0 0.05 0.16 0.35 6.45 81.6 4.37 7.02

CCC 0 0 0.11 0.33 1.32 13.8 51.2 33.1

Note:Transition probabilities are weighted average probabilities over the period December 1989–December 2005.The
weights are the number of observations in a particular rating category at time t divided by the total number of obser-
vations in that rating category over the sample period. The probabilities are presented in percent. Rating categories
CC, C, and D are collapsed in one rating category D.

– if a transition to NR is followed by a transition to a (nondefault) rating after
three months or another rating than the rating just before NR within three
months, the transition to NR is removed. However, later transitions are again
taken into account.

♦ if a transition to NR is followed by a transition to default, the transition to NR
and default are removed from the sample.



T A B L E  5 . 4

Transition Matrix for Structured Products Using the Cohort 
Methods (NR adjusted)

AAA AA A BBB BB B CCC D

Panel A: Pure ABS

AAA 98.6 1.08 0.21 0.08 0.01 0.01 0.01 0.02

AA 1.94 93.29 3.18 1.00 0.38 0.19 0 0.02

A 1.09 1.58 91.5 4.71 0.41 0.31 0.15 0.23

BBB 1.56 0.66 1.64 88.2 3.65 2.45 1.07 0.77

BB 0.29 0.38 2.58 2.96 74.8 9.16 6.20 3.63

B 0.23 0 0 0.23 3.42 59.7 18.0 18.5

CCC 0 0 0 0 0 4.41 61.0 34.6

Panel B: CDO

AAA 97.6 1.69 0.38 0.28 0.03 0.03 0.03 0

AA 2.72 92.5 3.12 1.19 0.37 0.09 0.06 0

A 0.56 2.92 91.2 3.28 1.29 0.43 0.27 0.07

BBB 0.27 0.43 1.93 91.6 3.19 1.36 1.16 0.07

BB 0 0 0.06 1.68 90.4 3.07 3.59 1.22

B 0 0 0 1.11 2.77 79.8 10.6 5.82

CCC 0 0 0.41 0 0.41 2.48 73.6 23.1

224



Panel C: CMBS

AAA 99.6 0.33 0.03 0 0 0 0 0

AA 11.1 87.8 0.75 0.29 0 0.07 0 0

A 3.07 6.52 88.0 2.13 0.19 0.04 0.04 0.02

BBB 0.86 2.65 5.40 88.3 1.99 0.58 0.08 0.16

BB 0.25 0.22 0.57 4.77 90.4 2.51 0.60 0.72

B 0.04 0 0.04 0.30 3.16 90.8 3.75 1.94

CCC 0 0 0.40 0.40 1.61 4.42 75.9 17.3

Panel D: RMBS

AAA 99.8 0.18 0.01 0.01 0 0 0 0

AA 7.81 90.9 1.18 0.06 0.02 0.037 0.03 0

A 2.32 6.88 89.9 0.61 0.13 0.031 0.12 0.01

BBB 0.38 2.69 4.29 91.1 0.52 0.587 0.25 0.15

BB 0.15 0.38 2.94 7.10 87.1 0.95 0.69 0.71

B 0.05 0.17 0.17 1.69 4.74 88.9 2.12 2.17

CCC 0 0.457 0 0 0 0 47.0 52.5

Note: Transition probabilities are weighted average probabilities over the period December 1989–December 2005. The weights are the number of observations
in a particular rating category at time t divided by the total number of observations in that rating category over the sample period. The probabilities are presented
in percent. Rating categories CC, C, and D are collapsed in one rating category D.
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CMBS, RMBS, and even ABS. This might be due to the relatively short rat-
ing history for CDOs and a higher downgrade probability at the end of our
sample. Furthermore, the fact that there is a high degree of portfolio overlap
between synthetic CDOs might cause higher downgrade probabilities (see,
for example, South, 2005). For rating categories below AAA, the diagonal
probabilities are very similar for SF tranches and corporates. Similarly to
Schuermann and Jafry (2003), we estimate a mobility index (MI) or metric,
which is the average of the singular values of the mobility matrix. The higher
probability of staying in AAA for SF tranches is also reflected in a lower MI
for SF tranches than corporates, 0.17 versus 0.12.

Secondly, the off-diagonal downgrade probabilities are significantly
higher for corporates than for SF tranches. This holds for all rating cate-
gories, except for B and CCC. Thirdly, the upgrade probability for invest-
ment grade SF tranches, especially AA and A, is significantly higher than
for corporates. As shown in Table 5.4, this is mainly driven by the results for
CMBS and RMBS. Over the last few years, the MBS market could have ben-
efited from a strong mortgage credit environment, including rapid industry
wide prepayments, generally rising home prices and low interest rates.

Finally, the results using the cohort method seem to indicate that
the default probabilities are higher for corporates than for SF tranches.
However, using the duration method, the differences are much less pro-
nounced and no clear conclusion can be drawn. Regarding the difference
between the cohort and the duration methods, we find that default prob-
abilities for high quality ratings (AAA and AA) are higher using the dura-
tion method, whereas for the below A rating assets, the probabilities are
higher using the cohort method.

In Panels A and B of Figure 5.2, we present the distribution of
notch-level rating migrations for SF tranches and corporates. For each
product, we analyze the rating at the end of each year and compare it
to the rating at the end of the previous year. The maximum notch-level
downgrade is −19 (from AAA to D) and the maximum notch-level
upgrade is 18 (from CCC–to AAA). The distributions are adjusted for
migrations to NR (see footnote * on page 222). The following conclu-
sions can be drawn from Figure 5.2: Firstly, for SF tranches, the number
of rating migrations is clearly dominated by upgrades (64 percent),
whereas for corporates, it is dominated by downgrades (63 percent).*

*This is even more pronounced when we focus on investment grade rating migrations (not
shown).



Given that the SF sample is clearly dominated by AAA tranches, the
upgrade probability for SF tranches is likely to be even biased down-
wards. Secondly, for corporates, one- or two-notch-level rating migra-
tions (up- or downgrades) represent 81 percent of all rating migrations.
For SF tranches, however, the number of up-to-two notch-level rating
migrations is significantly lower, 58 percent. As a result, the distribu-
tion of notch-level rating migrations is concentrated around the mean
for corporates and more spread around the mean for SF tranches.
Thirdly, the maximum notch-level downgrade is higher for SF tranches
than for corporates, −19 and −16, respectively. Furthermore, on average
1.4 percent of the yearly rating migrations for SF tranches is a more
than 10 notches (say from AAA to BB+) compared to 0.6 percent for
corporates.

A general conclusion that can be drawn from Table 5.3 and Figure 5.2
is that there are less rating migrations for SF tranches than for corporates,
but that the migrations are more significant in terms of notches for SF
tranches.

So far, we have mainly focused on average probabilities over a
period of 11 years. In what follows, we will briefly discuss the time-
varying behavior of the downgrade probabilities for SF tranches and
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Rating Migrations in Notches.

Note: This figure presents the percentage of rating migrations in notches. The maximum notch-level downgrade is

−19 (from AAA to D) and the maximum notch-level upgrade is 18 (from CCC- to AAA). The distributions are adjusted

for migrations to NR.



corporates. As shown in Panels A and B of Figure 5.3, the downgrade
probabilities for investment grade (IG) and speculative grade (SG)
SF tranches and corporates vary substantially over time. The pro-
bability for corporates reaches a peak at the end of 2001 and remains
high for almost a year. This peak moment coincides with a very low
growth rate of the OECD U.S. leading indicator. For SF tranches, the
peak is reached mid-2003, which is somewhat later than for corporates.
Notice that the SG downgrade probability for SF tranches was high in
1995. This is mainly due to a very small number of SG observations for
SF tranches.

ASSET CORRELATION

An important input parameter for credit risk models is the correlation
between assets in the underlying portfolio (see Chapter 4 of this book
for more details on dependence). We use a non parametric and a para-
metric method to derive the (asset) correlation within and between
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Time-Varying Rating Downgrade Probabilities for
Investment and Speculative Grade Ratings 
(NR adjusted)

Note: This figure presents the downgrade probability (in percentage) for investment grade (pink line) and speculative

(blue line) grade ratings from December 1995 until December 2005. The probabilities are calculated as the number

downgrades at the end of each year divided by the total number of observations at the end of the previous year.

Probabilities are adjusted for migrations to NR.



portfolios of assets from time series of default probabilities.*,† The non-
parametric method, which will hereafter be referred to as the joint default
probabilities (JDP) approach, estimates JDP using historical transition
data. Implied asset correlation is derived from JDP (see, for example,
Bahar and Nagpal, 2001 and de Servigny and Renault, 2002). In the para-
metric approach, asset correlation is derived from a credit risk model. As
suggested by Gordy and Heitfield (2002) and similar to Frey and McNeil
(2003), Demey et al. (2004), Tasche (2005), Jobst and de Servigny (2006),
and others, we use a two-factor model. The latter assumes that correlation
between firm asset values is driven by two systematic risk factors, which
could be thought of as an economic and a sector-specific factor. In the
remainder of this chapter, we will create portfolios of assets based on sec-
tor classification, which implicitly assumes that sectors can be seen as
homogeneous risk classes that are driven by similar factors.

Joint Default Probabilities (JDP) Approach

Based on the number of transitions to the default state D for sector i and
j (MD

i and MD
i , respectively) and the total number of assets in sector i

and j (Ni and Ni, respectively), the average JDP can be estimated as
follows

(2)

with T the maximum number of years and w(t) the weight at time t.
To analyze the impact of the strong growth of the SF market, we
estimate equally-weighted (that is, w(t) = 1/T) and size-weighted (that is,
w(t) = √Ni(t)Nj(t)/∑t=0

T-1 √Ni(t)Nj(t)) average JDP.
Implied asset correlation, which is the correlation needed in a typi-

cal credit risk model to recover or match the joint default events that have
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*In this chapter, we focus on asset correlation derived from rating migrations to default.
Alternatively, we could use credit spread data or equity data to obtain asset correlation. See
Schönbucher (2003) (p. 297) for a detailed discussion of the advantages and disadvantages
of the three approaches.
†See Van Landschoot (2006) for a detailed analysis of asset correlation estimates derived
from default probabilities and rating transitions (including default) for SF tranches and cor-
porates and a discussion of confidence intervals for correlation estimates based on a simu-
lation analysis.



been observed, is derived from JDP. We start from a structural credit risk
model, initiated by Merton (1974), and assume that default occurs when
the firm’s asset value falls below a threshold ZD. The threshold is cali-
brated such that the default probability corresponds to the observed prob-
ability

pi
D = Φ(Zi

D)

with ZD
i = Φ−1(pD

i ) and Φ the standard Gaussian cumulative distribution
function (CDF).

The joint default probability for sector i and j is given by

p–D
i,j = Φ2(Z

i
D, Zj

D, ρij) (3)

with Φ2 the bivariate standard Gaussian CDF. The implied asset correlation,
ρij, can be derived by solving Equation (3). Estimating asset correlation
between I sectors results in the following estimator of the correlation matrix

(4)

with the elements being the intra (within sectors) and inter (between sec-
tors) asset correlation. In what follows, we will only present the intra asset
correlation (diagonals) and the average inter asset correlation (average of
off-diagonal elements). The correlation structure Σ̂JDP is the result of
I(I − 1)/2 pairwise estimations.

Two-Factor Model

In a two-factor model, the asset value Vi is driven by two common, stan-
dard normally distributed factors Y and Yi and an idiosyncratic standard
normal noise component εn

(5)

Y can be seen as a common (or economywide) factor that affects all assets
at the same time and Yi as a sector-specific factor. The asset values are cor-
related with correlation coefficients ρ and ρi. Default occurs when the
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asset value hits a threshold. An interesting feature of this model is that
default events are independent conditional on the two common factors.
The conditional default probability of sector i can be written as follows

with ZD
i = φ−1 (p–D

i ) the default threshold for sector i, p–D
i the average (uncon-

ditional) default probability for sector i, and Φ the standard Gaussian
CDF. This two-factor model implies the following correlation structure

with ρ̂ the inter asset correlation (or the correlation between I sectors) and
ρ̂i the intra asset correlation (or the correlation within the ith sector). This
two-factor model approach differs from the JDP approach in that the
correlation structure is the result of one joint estimation. Default 
information for all sectors is considered at the same time. Similar to
Demey et al. (2004), we apply the asymptotic maximum likelihood
(ML) method to estimate the factor loadings and thus asset correlation.

Empirical Results: SF Tranches 
versus Corporates

In this section, we present the asset correlation estimates for different sec-
tors defined by collateral type for SF and industries for corporates. We
apply the JDP and the two-factor model approach. For each approach, we
estimate asset correlation based on equally and size weighted default
probabilities. We use time series of 3-monthly default probabilities for dif-
ferent sectors from December 1994 until December 2005.* In this chapter,
we do not analyze the impact of country and/or regional differences.
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*The reason for using a shorter sample period for asset correlation than for the transition
matrices is because of a lack of default observations before December 1994.



In Table 5.5, we present the average yearly default probabilities
based on historical data and the inter and intra asset correlation estimates
for SF tranches. As shown in Panel A of Table 5.5, the intra asset correla-
tion estimates are quite different for different collateral types, varying
from on average 4 percent for RMBS to on average 17 percent for CDOs.
To analyze the impact of regional differences on the estimations, we
exclude all non-U.S. SF tranches from the sample. Although not reported
the results are very similar. Again, we find that intra asset correlation esti-
mates for CMBS and RMBS are somewhat below the estimates for ABS
and especially CDOs. One could argue that the average intra asset corre-
lation estimates, which are between 7 and 15 percent, are relatively low.
However, one should bear in mind that SF rating performance histories
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T A B L E  5 . 5

Asset Correlation Estimates for SF Tranches

p–k JDP Two-factor model

Size Equal Size Equal Size Equal

Panel A: SF tranches

Inter correlation (ρ) 4.5 4.9 1.6 1.8

Intra correlation (ρi)

ABS 0.74% 0.57% 9.1 11.6 12.4 19.7

CDO 0.19% 0.19% 15.0 20.2 16.9 17.6

CMBS 0.54% 0.43% 8.3 10.5 5.2 7.3

RMBS 0.32% 0.35% 5.0 5.0 3.2 3.5

9.3 11.8 9.4 11.8

Panel B: SF tranches

Inter correlation (ρ) 4.7 4.7 1.5 1.7

Intra correlation (ρi)

ABS, excl MH 0.40% 0.34% 10.1 12.1 12.9 13.5

MH 3.88% 2.78% 20.7 24.1 26.7 37.5

CDO 0.19% 0.19% 15.0 20.2 13.1 13.5

CMBS 0.54% 0.43% 8.3 10.5 6.4 6.7

RMBS 0.32% 0.35% 5.0 5.0 4.4 5.2

7.5 9.0 12.7 15.3

Note: This table presents average default probabilities (p–k) and asset correlation estimates (ρ and ρi) for SF tranches. The latter
are estimated using two methods: (1) Joint default probability (JDP) approach, and (2) a two-factor model approach. The latter is
estimated using an asymptotic maximum likelihood (ML) technique. “Equal” refers to equally weighted results, whereas “Size”
refers to size weighted results, with the weights in year t being the number of assets in year t relative to the number of assets over
the total sample period (adjusted for NR).



are very short and only include one recession period.* As a result, the
effect of (severe) several recession periods on rating transitions and
default behavior has not been tested. Asset correlation is likely to be lower
during economic growth periods.

The inter asset correlation estimates are always below 5 percent.
However, they are significantly higher using the JDP approach than the
two-factor model. An analysis of one-by-one inter asset correlation esti-
mates using the JDP approach [see ρ̂i,i in Equation (4)] shows that this is
mainly driven by the inter asset correlation estimates with CDOs.
Excluding CDOs from the sample (not shown) results in average inter
asset correlation estimates just below 2 percent, which is very similar to
the results based on a two-factor model. This shows that ABS, CMBS, and
RMBS are very different and react differently to changes in a common fac-
tor, which could be seen as the business cycle.

Comparing equally- and size-weighted results indicates that the
estimates for ABS and CDOs are most affected by the enormous growth
in the SF market. However, when we split the ABS sector into two sepa-
rate sectors, namely MH and ABS excluding MH, we find that the intra
asset correlation estimates for ABS are much less affected by the method-
ology (see Panel B of Table 5.5). At the same time, it shows that the MH-
sector is different from other ABS subsectors. In general, MH seems to be
a risky sector in a sense that the behavior of MH tranches is substantially
affected by sector-specific events, which results in a high intra asset cor-
relation estimate. The average default probabilities are also substantially
higher for MH than for other sectors. This is mainly due to an increasing
trend in the delinquency rate for MH loans and the level of losses for MH
pools over the last decade. As a result, the majority of MH issuers were
affected by high levels of cumulative repossessions and losses.

In Table 5.6, we present the average annual default probabilities and
asset correlation estimates for corporates. Similarly to the results for SF
tranches, we find that intra asset correlation estimates differ substantially
between sectors. However, average intra asset correlation estimates for SF
tranches and corporates have more or less the same order of magnitude.
This is somewhat surprising given the substantial differences between
these markets. Comparing the default probabilities for SF tranches and cor-
porates shows that the average default probability for ABS (excluding MH),
CDO, CMBS, and RMBS are significantly below the average for corporates.
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However, notice that the averages are calculated for the same short period
(December 1994–December 2005).

The corporate bond market is more mature than the market for SF
tranches, resulting in very similar results for size-weighted and equally-
weighted estimates. Furthermore, when reestimating correlation for corpo-
rates using default probabilities from December 1981 until December 2005,
we find that the average intra asset correlation estimates are between 13 and
16 percent for the two methods. Average inter asset correlation is between 4
and 6 percent. This is in line with the results in Jobst and de Servigny (2006).

In a final step, we combine the SF and corporate data and estimate
inter and intra asset correlation for 13 corporate industries and 4 SF collat-
eral types. Using a two-factor model, we assume that there is one factor
that drives the results for SF tranches and corporates and a second factor

T A B L E  5 . 6

Asset Correlation Estimates for Corporates

p–k JDP Two-factor model

Size Equal Size Equal Size Equal

Inter correlation (ρ) 5.9 6.3 3.2 3.2

Intra correlation (ρc)

Auto 3.45% 3.14% 9.8 10.6 8.6 8.7

Cons 3.35% 3.34% 5.1 4.9 6.7 6.8

Energy 1.70% 1.63% 14.4 14.7 9.7 9.6

Fin 0.51% 0.52% 18.0 17.6 10.0 9.9

Home 2.14% 2.07% 12.2 12.6 6.9 6.8

Health 2.08% 2.03% 9.6 9.9 7.1 7.3

HiTech 1.77% 1.66% 13.4 13.8 7.4 7.6

Ins 0.35% 0.36% 14.0 14.0 10.3 9.8

Leis 3.11% 2.92% 9.6 10.0 9.1 8.9

Estate 0.14% 0.13% 31.0 33.0 25.9 27.7

Telecom 5.87% 4.79% 17.0 18.7 18.4 16.7

Trans 2.94% 2.84% 8.5 8.9 7.0 6.9

Utility 0.83% 0.70% 21.1 22.3 10.8 10.3

14.1 14.7 10.6 10.5

Note: This table presents average probabilities of default (p–k) and asset correlation estimates (ρ and ρi) for corporates.
The latter are estimated using two methods: (1) Joint default probability (JDP) approach. (2) Asymptotic maximum likeli-
hood (ML). “Equal” refers to equally weighted results, whereas “Size” refers to size weighted results, with the weights
in year t being the number of assets in year t divided by the number of assets over the total sample period (minus NR).
The estimates are given in percent.



that is specific for each sector/collateral type. Table 5.7 shows that adding
SF data to the corporate dataset results in lower inter asset correlation and
very similar average intra asset correlation. A few changes are worth men-
tioning. Firstly, intra asset correlation for ABS and RMBS is significantly
higher once corporate default information is added. Secondly, intra asset
correlation for automotive and consumer sector have gone up significantly,
whereas the intra asset correlation for real estate and telecom has come
down significantly. A possible explanation for these differences might be
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Asset Correlation Estimates for SF Assets
and Corporates

p–k JDP Two-factor model

Size Equal Size Equal Size Equal

Inter correlation (ρ) 4.3 4.69 2.37 2.41

Intra correlation (ρc)

Auto 3.45% 3.14% 10.8 12.1 16.6 20.0

Cons 3.35% 3.34% 4.1 3.8 11.8 15.0

Energy 1.70% 1.63% 11.0 11.5 9.9 10.9

Fin 0.51% 0.52% 9.6 9.4 5.9 7.1

Home 2.14% 2.07% 9.5 10.0 7.2 8.4

Health 2.08% 2.03% 8.1 8.4 7.1 6.6

HiTech 1.77% 1.66% 13.7 13.9 8.2 8.9

Ins 0.35% 0.36% 10.0 9.7 8.9 9.5

Leis 3.11% 2.92% 8.5 8.8 6.3 6.0

Estate 0.14% 0.13% 17.8 18.6 6.0 6.8

Telecom 5.87% 4.79% 21.3 24.1 6.5 7.1

Trans 2.94% 2.84% 6.6 7.1 9.0 9.2

Utility 0.83% 0.70% 20.4 22.1 9.8 8.6

ABS 0.74% 0.57% 8.5 11.5 27.1 28.7

CDO 0.19% 0.19% 13.4 14.8 19.2 16.1

CMBS 0.54% 0.43% 5.4 7.8 5.7 5.6

RMBS 0.32% 0.35% 1.9 1.6 8.3 9.1

10.6 11.5 10.2 10.8

Note: This table presents average probabilities of default (p–k) and asset correlation estimates (ρ and ρc) for corporates
and SF tranches. The latter are estimated using two methods: (1) Joint default probability (JDP) approach. (2) Asymptotic
maximum likelihood (ML). “Equal” refers to equally weighted results, whereas “Size” refers to size weighted results, with
the weights in year t being the number of assets in year  divided by the number of assets over the total sample period
(minus NR). The estimates are given in percent.
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T A B L E  5 . 8

Abbreviations for Corporate Sectors

Corporate Sectors Abbreviations

Aerospace/automotive/capital goods/metal Auto

Consumer/service sector Cons

Energy and natural resources Energy

Financial Institutions Fin

Forest and building products/homebuilders Home

Health care/chemicals Health

High technology/computers/office equipment HiTech

Insurance Ins

Leisure time/media Leis

Real estate Estate

Telecommunications Telecom

Transportation Trans

Utility Utility

For an overview of the different corporate industries, see Table 5.8.

that SF tranches and corporates are very different, in which case the sector
and collateral specific factor partially captures the corporate common risk
for corporate sector and the SF common risk for SF tranches. A possible
solution, which has not been explored in this chapter, would be to use
multi-factor extensions.

CONCLUSIONS

In this chapter, we investigate and compare transition probabilities and asset
correlation estimates for SF tranches and corporates. We use Standard &
Poor’s rating transition data from December 1989 until December 2005 to
perform the analysis. Rating transition probabilities are estimated using the
cohort method, which is the industry standard, and the time-homogeneous
duration method. Asset correlation within and between sectors of SF
tranches and corporates are estimated using two methods. The first method,
referred to as the joint default probability approach, derives implied asset
correlation from joint default probabilities using historical transition data.
The second method uses a two-factor credit risk model to estimate asset cor-
relation. The latter is estimated using a asymptotic maximum likelihood.
The following main conclusions can be drawn from the empirical analysis:



♦ Over the past decade, AAA SF tranches show much higher rat-
ing stability than AAA corporates.

♦ For SF tranches, the number of rating migrations is clearly
dominated by upgrades (64 percent), whereas for corporates,
it is dominated by downgrades (63 percent). This is even
more pronounced when we focus on investment grade rating
migrations.

♦ One and two notch downgrades and upgrades represent a much
higher percentage of the total number of migrations for corpo-
rates (81 percent) than for SF tranches (58 percent). This means
that the distribution of notch-level rating migrations is concen-
trated around the mean, whereas for SF tranches, the distribu-
tion is more spread around the mean.

♦ The distribution of notch-level rating migrations is also fatter
tailed for SF tranches than for corporates. On average, 1.4 per-
cent of the yearly rating migrations for SF tranches is more than
10 notches (say from AAA to BB+) compared to 0.6 percent for
corporates.

♦ Even though the SF and corporate markets are very different, the
average intra asset correlation estimates within and between
groups of SF tranches and corporates are comparable. Individual
intra asset correlation estimates, however, can differ substantially.

♦ The results seem to indicate that asset correlation within portfo-
lios of CDOs and manufactured housing (MH) is higher than for
other collateral types such as RMBS and CMBS.
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Collateral Debt 
Obligation Pricing
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INTRODUCTION

In this chapter, we present pricing techniques for Collateral Debt
Obligation (CDO) tranches. As we will see, a very comprehensive toolbox
has been recently developed, which enables us to quickly price standard-
ized tranches. Prices in this market depend not only on pure credit and
default risk but also significantly on market risk (spread movements and
co-movements).

The first impression of the existence of a mature corpus of pricing
techniques applicable to liquid synthetic CDO transactions is however
somewhat deceiving. During the May 2005 crisis period, these models did
not succeed in providing fully reliable pricing results and, in addition, the
related hedging strategies did not prove very robust. The concept of corre-
lation extracted from copulas,* on which these prices are typically based,
has found some limitations. The main challenge for copulas is to account
for a dynamic spread co-movement structure as well as to harness a robust
hedging strategy.

The above mixed statement can look quite surprising as an intro-
duction. In our view, it only reflects the fact that the segment of marked-
to-market structured credit products corresponds to a very recent activity.

*See Chapter 4 for a definition of copulas.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



The tools that have been developed so far are not perfect, but certainly
facilitate the expansion of that market. In equity and fixed income pricing,
it is agreed that the market standard Black and Scholes (1973) approach
has a rather weak performance, everybody still uses it as the market stan-
dard. In a similar way, we have recently seen that copulas are not fully
accurate in the fast growing credit space, but almost everybody keeps on
using the paradigm for the sake of consolidating a common language.

In parallel to this liquid and traded market, there exists an important
but less liquid bespoke synthetic market. The appropriate word used to
describe these instruments is single tranche CDO (STCDO). The challenge
here is to harness a pricing technique to an illiquid market.

In what follows, we focus at first on the synthetic CDO market, with
some particular emphasis on “correlation trading” related to indices. We
then discuss briefly the pricing techniques used for the more bespoke
synthetic tranches.

The second type of instruments we will focus on in this chapter are
cash CDOs. Pricing such instruments is not straightforward, especially
when, on the asset side, there is no market price for the loans in the under-
lying pool. On the liability side, we need to be aware that the waterfall
structure of cashflows has an effect on the value of tranches.

TYPOLOGIES OF CDOS

It is customary to classify CDOs depending on their function. In this case,
usually consider CDOs are in balance sheets and arbitrage deals. The for-
mer type of transactions is typically used by financial institutions in order
to rebalance their portfolio, whereas the latter focuses on the excess
spread generated in the securitized pools because of diversification (see
Chapter 10 for further details).

In the current analysis we focus on a different perspective, i.e.,
pricing techniques. As a consequence, it is more relevant to concentrate
primarily on the way CDO instruments are structured. What really
matters in order to differentiate CDO prices is the nature and the source
of repayment of the collateral pool. We distinguish here between the two
main categories of CDOs: synthetic and cashflow CDOs.

♦ Synthetic CDOs: These are based on a portfolio of Credit Default
Swaps (CDSs) and constitute an alternative to the actual transfer
of assets to the SPV, see Figure 6.1. These structures benefit from
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advances in credit derivatives and transfer the credit risk associ-
ated to a pool of assets to the SPV while not moving assets
physically.* The SPV sells credit protection to the bank via credit
default swaps.
Synthetic deals may be fully funded, through the recourse to
CLNs (credit-linked notes), partially funded or totally
unfunded. In the cases where the deals are partially funded or
unfunded, counterparty risk needs to be mitigated.
Single tranches can be issued on their own, without the full CDO
being placed in the market (STCDO). The issuing bank then per-
forms the appropriate hedging of these tranches on its books.

♦ Cashflow CDOs: A simple cashflow CDO structure is described in
Figure 6.2. The issuer (special purpose vehicle) purchases a pool
of collateral (bonds, loans, etc.), which will generate a stream of
future cash flows (coupon or other interest payment and repay-
ment of principal). Standard cashflow CDOs involve the physi-
cal transfer of the assets.† This purchase is funded through the
issuance of a variety of notes with different levels of seniority.
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*The typical maturity for a synthetic CDO is five years, but has moved recently to longer
ones like 7 and 10 years.
†The ramp up period can be quite lengthy and costly. In addition, loan terms vary. The lack
of uniformity in the manner in which rights and obligations are transferred results in a lack
of standardized documentation for these transactions.
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The collateral is managed by an external party (the collateral/
asset manager) who deals with the purchases of assets in the
pool and the redemption of the notes. The manager also takes
care of the collection of the cash flows and of their transfer to
the note holders via the issuer. The risk of a cashflow CDO
stems primarily from the number of defaults in the pool: the
more and the quicker obligors default, the thinner the stream of
cash flows available to pay interest and principal on the notes.
The cash flows generated by the assets are used to payback
investors in sequential order from senior investors (class A), to
equity investors that bear the first-loss risk (class D). The par
value of the securities at maturity is used to pay the notional
amounts of CDO notes.

PRICING SYNTHETIC CDOS

In this section, we focus on unfunded CDO transactions and articulate
the pricing techniques used in this market. We do not spend any time on
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the related discussion on hedging, as this important topic will be dealt
with in Chapters 7 and 8. In addition, it is one of the peculiarities of this
somewhat incomplete market that the price of a tranche cannot always
be related with the cost of hedging or a replicating portfolio.

There are many papers in the market to explain the most established
pricing techniques, and we refer to a very pedagogical discussion by
Gibson (2004).

Pricing a CDO tranche means being able to define the spread on the
regular installments paid by the protection buyer to the protection seller.

The central constituent necessary to define this spread on a tranche is the
tranche-expected loss derived from the loss distribution of the underlying
portfolio, as summarized in Figure 6.3. In this section, we detail succes-
sively all the building blocks necessary to compute a price.

We explain how to get to the tranche “Expected Loss,” i.e., the aver-
age loss unconditional on systematic risk constituents. With this key input,
we can move to the proper pricing of CDO tranches. We then focus more
specifically on the traded market of tranches based on the CDS indices,
also called “correlation trading.” We ultimately focus on the new theoreti-
cal developments in this market, based on a more dynamic modeling of
the portfolio loss and show how this may pave the way for advanced
derivatives written on CDO tranches.
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Generating the Loss Distribution 
of the Portfolio

In the previous chapters, we have discussed in great detail how to esti-
mate univariate survival probabilities (Chapters 2 and 3) as well as recov-
ery rates (Chapter 3) and correlation (Chapter 4). Based on these three
constituents, we can generate the loss distribution of the portfolio at a
defined horizon. The loss distribution in the CDO portfolio is a key input
to obtain the tranche loss distribution and, subsequently, the expected loss
per tranche.

More generally, what we would like to generate is the continuum of
loss distributions in the portfolio at any point in time until the maturity of
the CDO. In order to reach this point, Li (2000) and Gregory and Laurent
(2003) have really been instrumental to orientate the market approach
towards the concepts of a default survival approach, copulas and condi-
tional independence.

Basically, in order to obtain the portfolio loss distribution at any hori-
zon, we need to know the survival probability of each obligor in the pool at
the corresponding time (step 1), as well as the nature of the dependence of
these probabilities on systematic risk factors (step 2). On the basis of these
constituents, we can identify the joint survival probability in the portfolio
conditional on the systematic risk factors (step 3). By blending it with recov-
ery at default and simulating the behavior of the systemic risk factors, we
will be in a position to extract the portfolio loss distribution at the various
horizons (step 4) and the related term structure of expected losses per
tranche.

Step 1: Let us define τ1, . . . , τn the default times of the n obligors in
the CDO portfolio.
For each obligor i, a risk-neutral survival probability function
S(ti) = Q(τi > ti) is defined and extracted from spreads as a result
from/credit curves.* It does not assume any dependence between
obligors.
Step 2: The joint probability cannot be computed directly. We need
to introduce a dependence structure. This joint survival probability
function is therefore written as a (survival) copula

S(t1, . . . , tn) = Q(τ1 > t1, . . . , τn > tn)

244 CHAPTER 6

*See Chapter 3 for a description of different methodologies.



In order to avoid dimensionality issues, dependence across oblig-
ors is typically modeled through a vector of latent factors V that is
common to all obligors. The usual approach in the CDO world is
to consider a single latent factor for ease of computation, but there
is no theoretical restriction on the number.
Step 3: This step consists of expressing the joint survival probability
conditional on the realization of the latent factor.
Let us denote the survival probability for obligor i, at time t, condi-
tional on the factor V as:

qV
i (t) = Q(τi > t|V). (1)

Based on the property of conditional independence, we can write
the conditional joint survival probability in a simple way as:

(2)

Step 4: The unconditional joint survival probability distribution can
then be obtained by integrating the conditional joint survival prob-
ability on the density of the common latent factor. In addition, by
assuming a constant recovery level such as 40 percent, we obtain
the portfolio loss distribution.

From this “recipe,” it is clear that the key building block necessary
to obtain the portfolio loss distribution, apart from the distribution of the
latent factor V, is the conditional survival probability for each obligor
[Equation (1)].*

We review different approaches based on copulas that have been
used in the market.

Possible Candidates for Conditional 
Survival Probability
Gregory and Laurent (2003) and Burtschell et al. (2005) provide a taxon-
omy of possible candidates for conditional probabilities based on the
choice of different copulas. Each of the options presented in this section
are derived from the assumption of a deterministic asset correlation
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structure. The selection of any one of them is usually driven by how well
it can fit empirical evidence.*

We start with the Gaussian copula that corresponds by far to the
market standard.

Gaussian Copula The most established setup is the one factor
Gaussian copula. That has been presented in the previous chapter on cor-
relation. It can be interpreted as the asset value of the firm i being driven
by a latent common factor and an independent idiosyncratic factor, both
normally distributed:

(3)

If we define the cumulative default probability pi(t) = Q(τi ≤ t), ρi the factor
loading corresponding to asset i and Φ, the normal c.d.f., the conditional
default probability can be written as (Vasicek, 1987):

(4)

Student-t Copula The Student-t copula is a natural extension of
the Gaussian copula suggested by several authors, such as O’Kane and
Schloegl (2001) and Frey and McNeil (2003). It is supposed to account for
fat tails better than the Gaussian copula, but the drawback is its symme-
try, leading to a high probability of zero losses, too.

The asset value of the firm i follows a Student-t distribution. It is,
however, driven by a latent common factor and an independent idiosyn-
cratic factor, both normally distributed:

where W is an inverse Gamma distribution with parameter equal to (ν/2),
independent from the Gaussian factors.

The conditional default probability becomes:
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tic approach to correlation, whatever the circumstances, may not correspond to a fully
appropriate representation of the reality.



(5)

Double-t Copula This approach has been suggested in Hull and
White (2004) in order to partially decouple the size and shape of the upper
and lower tail of the loss distribution.

The asset value of the firm i does not follow a Student-t distribution,
but is a convolution of a latent common factor and an independent idio-
syncratic factor, both Student-t distributed, with respectively ν and ν–

degrees of freedom:

(6)

In this situation, the conditional default probability can be expressed as:

(7)

where Hi(Ai) = pi(t) corresponds to the distribution function of Ai that has
to be computed numerically as it is not a Student-t.

Normal Inverse Gaussian (NIG) Copulas There are
two rationales for using NIG Gaussian distributions:

♦ Fat tails: the fact that asset returns tend to exhibit more asym-
metric, as well as fatter, tails than a Gaussian distribution sup-
ports the use of a NIG distribution.

♦ Tractability reasons: the point that a convolution of NIG distri-
butions is a NIG distribution facilitates the computation of the
pricing of tranches.

In Kalemanova et al. (2005), the asset value of the firm i is driven by a
latent common factor and an independent idiosyncratic factor, both NIG
distributed:
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If we define the NIG c.d.f. as:

With s, α, and β the parameters of the NIG. The first one is related to cor-
relation, whereas the next two are related to the mean and the variance.

Kalemanova et al. (2005) show that the conditional probability of
default can be written as:

(8)

Archimedean Copulas Archimedean copulas have been pro-
posed in particular by Schönbucher and Schubert (2001) in the context of
contagion models.

In the case of the Clayton copula, the conditional default probability
can be expressed as:

pV
i (t) = exp(V(1 − pi(t)

−θ)), (9)

where θ is the parameter of the copula.

Marshall-Olkin Copula Multivariate exponential spread mod-
eling associated with the Marshall-Olkin copula is also called a “Poisson
shock” model. It allows for simultaneous defaults and fat tails, as the
default intensity for each obligor is split between a systematic and an idio-
syncratic component. Several authors like Duffie and Singleton (1998),
Lindskog and McNeil (2003), Elouerkhaoui (2003a,b), and Giesecke (2003)
have suggested its use. Practical calibration can be challenging, as many
parameters need to be calibrated. Figure 6.4 shows how this copula gives
significant modeling flexibility.

In order to obtain a one factor representation of this approach, let us
consider one latent common variable V and n obligor specific random
variables V

–
i, all independent and exponentially distributed with respec-

tive parameters α and 1 − α and α ∈ [0, 1].* For each obligor i, we can
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*α should be seen as describing the intensity of co-movement to default, α = 1, meaning total
comonotonicity.



define and Si(t) = 1 − pi(t), the marginal survival function.

We can then express the corresponding default time as: τi = Si
−1exp(−Vi).

Conditionally on V, τi are independent and the conditional default prob-
ability for obligor i can be expressed as:

pV
i (t) = 1 − 1V > − ln(1 − p

i
(t))(1 − pi(t))

1 − α (10)

The Functional Copula The functional copula has been intro-
duced by Hull and White (2005) and has been described in Chapter 4.

(11)

where Hi is the cumulative probability distribution of the idiosyncratic
term εi, and Gi is the cumulative probability distribution of the latent
variable Ai.

The idea of the authors is to eliminate the need for a parametric
form, but to extract the empirical distribution of conditional hazard rates
from empirical CDO pricing observations.
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To date, the market standard remains the Gaussian copula.
However, this Gaussian set-up does not prove very effective in pricing
tranches. As an illustration of this problem, market participants have
noted that a strong correlation skew is empirically observed based on
market prices. This skew cannot be matched in a simple way with the
Gaussian copula. As a result, finding a more accurate model has become
the new frontier. In addition to the alternative copulae described previ-
ously, market practitioners have also tried to provide some extensions of
the Gaussian copula in order to better match observed prices.

Possible Extensions of the Gaussian Copula:
Relaxing Deterministic Assumptions
Gaussian copulas have such a footprint in the CDO market that it would
be nice to be able to keep this framework while gaining accuracy in the
valuation of tranches. Two related extensions have been suggested. They
consist of either modifying the dependence structure of the asset value
depending on different states of the world,* or considering that Loss
Given Default is correlated to the realization of the common systematic
factor.

Random Factor Loadings The idea is that it is possible to
approximate the apparently non-Gaussian behavior of an asset value as a
convolution of Gaussian distributions.

In the correlation Chapter 4, it was noted that under the empirical
measure there was evidence supporting a two-regime-switching approach
depending on growth and recession periods in the economy. Andersen
and Sidenius (2005) head towards this direction with “random factor load-
ings.” Practically in their simplest setup, factor loadings depend on the
realization of the common factor with respect to a barrier that can be seen
as describing the state of the economy.

Burtschell et al. (2005) present the approach in a generic way under
the wording of “stochastic correlation.” Like in the simple Gaussian case,
the asset value of the firm i is still driven by a latent common factor and
an independent idiosyncratic factor, both normally distributed, but there
are two possible states that come to play. In this respect, Bi is the Bernouilli
distributed weight associated with the case where the factor-loading
corresponding to company i is ρi, and a weight (1 − Bi) corresponds to a
correlation of ρ–i. As a result, the asset value of the firm can be written as:
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Let us define the probability bi = Q(Bi = 1), the conditional default proba-
bility can be written as:

(12)

Random Recovery The principle here is to have not only the
asset value to be dependent on a vector of common factors, but also to
have the recovery rate dependent on the same factors.

Ri = C(µi + biVi + εi), (13)

where C is a function on [0, 1], such as a beta distribution function.
Increasing the dependency of the recovery on the common factors

generates a fatter tail and therefore can account for some of the correlation
skew observed for senior tranches. However, Andersen (2005) notes that
when realistically calibrated, random recovery does not seem to be suffi-
cient to explain the equity and the super senior correlation skews.

Assuming Homogeneity in the Portfolio
In an active market, traders require fast models and simple ways to com-
municate. Speed of computation and communication are often obtained
at the expense of accuracy. Will a stylized model be sufficiently rich and
robust to price and hedge transactions? This question represents a key
challenge for the industry to date.

In addition to the assumption of the single factor copula framework,
we mention below some other simplifications that are sometimes consid-
ered by market participants. Simplification can be obtained by assuming
obligor homogeneity in the CDO portfolio. This leads to two simplifications:

♦ Factor loadings (i.e., the weight on the common factor, ρi) are
independent from the obligors in the CDO portfolio. This
means that we move from multiple, obligor dependent, factor
loadings to a single one for the pool, ρ.

♦ Obligors can be considered as reasonably close in terms of
creditworthiness and prices and as a result an average spread or
probability of default is supposed to characterize the portfolio
of obligors well. Practically, in all previous formulas, this
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assumption means that pi(t) can be turned into an average p(t),
independent from any name in particular. As shown in Figure
6.5, this assumption of homogeneity in the credit quality can
prove hard to defend when dealing with the liquid indices.

Under these approximations, knowing factor loading (corresponding to
the square root of what is defined in the market as the implied correlation)
and given the corresponding average default probability is sufficient to
obtain the loss distribution of the pool.

In addition to these approximations, some banks like JP Morgan have
at some stage promoted the large pool approximation that facilitates the
use of a limiting closed-form distribution described in Vasicek (1987, 1997).

(14)

with α a defined loss level, L(t) the unconditional portfolio loss, and p(t)
the average probability of default of obligors in the pool.

As McGinty, Bernstein et al. (2004) from JP Morgan put it:

“The model we (JPM) use to imply correlations in tranches is known
as the homogeneous large pool gaussian copula (the ‘large pool
model’, or ‘HLPGC’), which is a simplified version of the Gaussian
copula widely used in the market.
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. . . The model is based on three major assumptions. First, default
of a reference entity is triggered when its asset value falls below
a barrier. Second, asset value of the portfolio is driven by a common,
standard normally distributed factor M, which is often referred to as
the ‘Market,’ and can be taken to imply the state of the overall busi-
ness cycle. Finally, the portfolio consists of a very large number of
credits of uniform size, which effectively cancels the effect of a sin-
gle name’s performance on tranche loss and is why the portfolio can
be considered homogenous.

We believe that the fundamental benefits of the large pool model
are transparency and replicability—we can provide our specific
implementation of the model. The model also has the advantage
that it requires few inputs–only the average level of market spreads
and average recovery rate (which we define as 40%), rather than
individual spreads for all of the credits in the portfolio, which
would be impossible for a user to reproduce at any instant. The
downside of course, is that the model does not consider single
name blow-ups correctly. This manifests itself in two main ways:
one, the model cannot differentiate between a single name widen-
ing by 10,000 bp and 100 names widening by 100 bp, and two, there
is a discontinuity as credit spreads widen towards default. The
model is unlikely to produce spreads consistent with market
observations in these scenarios. . . .”

Such an approximation facilitates immensely the calculation of correla-
tion and ultimately of prices. However, it can be very misleading when
applied to a portfolio characterized by a low number of names and/or
different profiles in terms of creditworthiness.

This fully granular model assumes full diversification of the idio-
syncratic risk, but empirical evidence shows that full diversification in
a credit portfolio is typically obtained with a minimum of 400–500
obligors. Indices like CDX, I-Traxx only contain up to 125 names. It can
be therefore quite risky to apply the large pool model to index based
correlation trading.

Pre-May 2005, Finger (2005) reported that the JP Morgan model had
performed well for investment grade index tranches. This set-up is, how-
ever, no longer used by market participants, and other ways to reduce
computational time are investigated next.
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Getting to the Loss Distribution of the Portfolio:
Monte-Carlo and Semi-analytical Techniques

Option 1: The Full Monte-Carlo Calculation* The
Monte-Carlo approach is based on the random draw of realizations of the
common systematic factor and for each realization, a portfolio loss can
be computed as the sum of individual losses. The unconditional portfolio
loss corresponds to the integration of the conditional losses on the distri-
bution of the common factor.

This “brute force” approach is usually not selected by market par-
ticipants, as it is time consuming.† Some techniques, often based on vari-
ance reduction, can help to speed-up the computation time.

Option 2: The Recursive Approach This approach has
been suggested almost simultaneously by Andersen et al. (2003) and by
Hull and White (2003). The principle is integration over a discretely
approximated portfolio loss distribution.

In a portfolio of j names, the probability of observing exactly h
defaults (with h ≤ j) by time t, conditional on the realization of the common
factor V can be written as pV

i (h, t). Furthermore, pV
j –1(t) is the condi-

tional default probability of name j–1:

pV
j +1(h, t) = pV

j (h, t)(1 – pV
j+1(t)) + pV

j (h – 1, t)pV
j+1(t)

where, of course,

pV
j+1(0, t) = pV

j (0, t)(1 − pV
j+1(t))

pV
j+1( j + 1, t) = pV

j ( j, t) pV
j+1(t)

Based on the above recursion, we can obtain the unconditional probabil-
ity of observing h defaults in a portfolio of n names by time t by integrat-
ing over the common factor with distribution function f(V):

(15)p h t p h t f V Vn n
V( , ) ( , ) ( )d=

−∞

∞∫
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Option 3: Using Fourier Transform Techniques*
We consider the total accumulated loss of the reference pool at time t, and
δ is the recovery fraction at default on each name. The default time for
obligor j is τj. Once the nominal on each name j, Nj, is defined, we can
write the accumulated loss at time t, by calling the
indicator function: 1τi ≤ t = Xj.

The Fourier transform of the accumulated loss function can be
expressed as:

ϕL(t)(u) = E[exp(−iuL(t)] = E[E(exp(−iuL(t)|V)],

where V is the common systematic factor.
We can then introduce the expression of the Fourier transform of the

loss

(16)

The Fourier transform of the conditional loss is more tractable, due to
the possibility to permute the expectation under conditional indepen-
dence. Based on the Bernoulli distribution of the indicator function Xj,
we obtain:

In turn, this can be written as
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*We revert readers to the presentation on Fourier Transform techniques, by Debuysscher
and Szego (2003). There are other possible convolution techniques, such as Laplace trans-
forms and Moment Generating functions.



where ϕV
(1−δ )(Nj u) is derived from the Fourier transform of the Loss Given

Default on asset j.
The unconditional Fourier transform is then obtained numerically

by integrating on the distribution of the common systematic factor:

(17)

In a final step, the unconditional loss can be computed using the inverse
Fourier transform by practically applying standard Fast Fourier trans-
form algorithms.

Option 4: Proxy Integration Proxy integration, presented in
Shelton (2004), has gained traction in the market because of its simplicity.

The central limit theorem states that the sum of independent
random variables with finite variance and arbitrary probability
distribution converges to a normal distribution as the number of vari-
ables increases.

Shelton’s approach is based on the idea that the convergence to a
normal distribution might take place sufficiently quickly to allow for the
approximation.

In the case of CDO pricing, we cannot consider the survival proba-
bility variables for each obligor to be independent, as obligor losses are
typically correlated. We have seen though that conditional on a vector of
latent risk factors, the portfolio loss distribution can be expressed as the
weighted sum of conditionally independent random variables.

Let us consider again the total accumulated loss of the reference pool
at time t, with δ the recovery fraction at default on each name. The default
time for obligor j is τj. Once the nominal on each name j, Nj, is defined, we

can write the accumulated loss at time horizon t,
by calling the indicator function: 1τ j ≤ t = Xj.

We then consider various realizations of the common systematic
latent factor V. Under the assumption of conditional independence, we
can now easily compute the conditional loss distribution in the portfo-
lio based on Equation (2). According to the Proxy integration approach,
we assume that conditional on each realization of V, the joint distribu-
tion of losses in the portfolio converges to a normal distribution as
shown in Figure 6.6. For each realization of the systematic factor, we
can compute the mean and the variance of the approximated normal
distribution.
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Its mean is:

And, its variance is:

VARV(L(t)) = E[(L(t) − µV (L(t)))2|V]

The unconditional portfolio distribution can be computed as a weighted
mixture of Gaussian distributions, where the weights correspond to the
distribution of the latent variable. This numerical integration problem can
be solved by a simple algorithm like the trapezium rule.

For pools like the index pools, the degree of convergence proves sat-
isfactory and the method typically delivers good results.

This approach is more straightforward than the option 2 (the recursive
approach), in the sense that each conditional loss distribution is approxi-
mately characterized by only two parameters: the mean and the variance.

For CDO2 trades, the proxy integration approach mentioned earlier
can be generalized to a similar problem with a dimension corresponding to
that of the number of underlying pools. Instead of computing a univariate
normal integral, we now have to estimate a multivariate normal integral.
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Loss Distribution on a Portfolio of 100 names wish correlation of 25%, survival
Probability = 90%, conditional on N(0,1) variable Y

9.00%

8.00%

7.00%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

P
ro

ba
bi

lit
y

Number of Defaults

Unconditional

Conditional on Y= 1

Conditional on Y= 0

Conditional on Y= 1

Conditional on Y= 1.5

Conditional on Y= 2

0 5 10 15 20 25 30 35 40

F I G U R E  6 . 6

Loss Distribution for Correlated Defaults. (Citigroup)



Pricing a CDO Tranche Once the Unconditional
Portfolio Loss Distribution is Obtained

A synthetic CDO tranche can be valued like any other swap contract.
There are two parties involved: the issuer who typically is the protec-
tion buyer and the investor, the protection seller. The investor receives
from the issuer a regular “fee” or “premium.” When default impacts
the tranche, the investor has to pay a “contingent” amount, correspon-
ding to the “contingent” or “default” leg. For the investor holding a
tranche, there is a need to be compensated appropriately for bearing
potential losses (the expected losses). The higher the seniority, the
lower the fees.

Let us introduce the following notations:
In the CDO we consider, there are n different names with i = {1, . . . , n}.

A default time τt is associated to each name i.
We can now define the counting process of the

number of defaults at time t, T the maturity of the CDO, and δ the stan-
dard recovery fraction at default on each name. When conditioned on the
common factor, these Bernouilli variables become independent and the
conditional loss distribution at time t can be obtained easily. As a result,
once the nominal on each name i, Ni, is defined, we can write the
accumulated unconditional losses at time t, also called expected loss, as

where V corresponds to the common sys-

tematic factor. Its practical computation has been described previously.

Computing the Value of the “Contingent Leg”*
We initially start with a three-tranche CDO with equity, mezzanine, and
senior pieces, but nothing precludes us to consider more tranches in the
remainder of this section. The subordination priority rule means that
losses will be allocated first to the equity piece, then to the mezzanine,
and the remainder to the senior tranche. The equity tranche corresponds
to [A0 = 0, A1 = A], the mezzanine to [A, A2 = B], and the senior to

where Aj are agreed upon thresholds. Accumulated

losses will therefore be successively absorbed by each of the tranches.
The next step is to measure explicitly overtime the unconditional

average accumulated loss in each of the tranches [Aj, Aj +1].
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*Also called “protection leg” or “loss leg.”



ELj(t) = E(max[min((L(t) − Aj), (Aj +1 − Aj)), 0]) (18)

The discounted payout corresponding to contingent losses in
tranche j during the life of the CDO can be written as:

(19)

where D(k) is the discount factor term. We consider here the time series of
the premium payment dates k = {1, . . . , K}.

More rigorously, this contingent leg can be written as an integral and
can be integrated by parts:

(20)

where f(t) = −(1/D(t))(dD(t)/dt) is the spot forward rate.

Computing the Value of the “Fee Leg”*
The expected present value of the fee leg on each tranche corresponds to
the payment of regular installments at a predefined spread Sj applied
to the principal exposure of the tranche outstanding at the date of pay-
ment of the premium.

(21)

The initial mark-to-market value of the tranche is Cj(0) − Fj(0). In the
case that the CDO tranche is unfunded and fairly priced, this initial
marked-to-market value is 0.

The value of the spread can be deducted in a straightforward way as:
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*Also called “premium leg.” For ease of presentation, we assume here that tranches are
priced using spreads only, with no upfront payment.



During the life of a CDO, the balance between the value of the fee leg
and that of the contingent leg usually vanishes. The marked-to-market value
of a tranche is defined as the value difference between the two legs. One way
to measure this value consists of defining the factor loading contributing to
the expected loss as the unknown parameter. The factor loading corresponds
to the square root of the correlation value that makes the fee leg break even
with the contingent leg gives an equivalent of the price of the corresponding
tranche. It is usually called the implied “compound correlation.”

A Practical Example
We consider a synthetic CDO on a portfolio of 100 equally weighted
names (Figure 6.7).

We assume that the size of the CDO is $100 million. The equity
tranche corresponds to the usual 0 percent to 3 percent bucket. In addi-
tion, we consider a risk-neutral hazard rate of 100 bps for the CDSs on
each underlying name, a factor-loading ρi equal to the square root of 0.2
and a standard recovery of 40 percent.

The premium fee for the equity tranche is 40 percent upfront pay-
ment plus a running fee of 500 bps.

In Table 6.1 we first look at the implication of the loss mechanism on
the equity tranche for the protection seller.

In a second step, we consider the traditional one-factor approach.

We can write the asset return as A Vi i i i= + −ρ ρ ξ1 2 .
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Synthetic CDO
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F I G U R E  6 . 7

A Stylized Synthetic CDO Structure.



T A B L E  6 . 1

Implication for the Protection Seller of Losses in the Portfolio Pool*

Cumulative Premium perceived
Contingent contingent by the protection seller

Number of Notional of the Detachment payment by payment by (during 1 year assuming
defaulted pool Attachment point protection protection no additional default 
names ($M) point ($M) ($M) seller seller and without upfront fee)

0 100 0 3 0 0 0.15

1 99 0 2.4 0.6 0.6 0.12

2 98 0 1.8 0.6 1.2 0.09

3 97 0 1.2 0.6 1.8 0.06

4 96 0 0.6 0.6 2.4 0

5 95 0 0 0.6 3 0

6 94 0 0 0 3 0

7 93 0 0 0 3 0

8 92 0 0 0 3 0

9 91 0 0 0 3 0

10 90 0 0 0 3 0

· · · · · · ·

· · · · · · ·

· · · · · · ·

· · · · · · ·

100 0 0 0 0 3 0

*The recovery on the defaulted name is allocated to the most senior tranche holder as an early repayment.261



We use the recursive methodology presented earlier in order
to define the probability distribution of the number of defaults in the port-
folio, given the distribution of the common factor, and then compute the
unconditional default distribution. Results are summarized in Table 6.2.

By combining columns (A) and (B), we obtain the expected loss of
the equity tranche at time K = 5 years.
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T A B L E  6 . 2

Defining the Unconditional Loss Distribution of the
Portfolio at any Time Horizon (in this case five years)

Unconditional
default

Number h of Default distribution distribution at a 
defaulted conditional on the 5-year 
names realization of horizon p100(h, 5)
(A) common factor V (B)

V = … V = −1 V = 0 V = 1 V = …

0 1.85 × 10−6 0.007 0.210 0.109

1 2.6 × 10−5 0.035 0.330 0.103

2 1.8 × 10−4 0.088 0.257 0.093

3 8.4 × 10−4 0.147 0.132 0.081

4 2.9 × 10−3 0.183 0.051 0.070

5 7.8 × 10−3 0.180 0.015 0.061

6 0.017 0.146 0.004 0.052

7 0.033 0.100 0.001 0.045

8 0.054 0.060 1.5 × 10-4 0.039

9 0.078 0.031 2.4 × 10-5 0.034

10 0.100 0.015 3.4 × 10-6 ·

· · · · ·

· · · · ·

· · · · ·

· · · · ·

100 1.6 × 10−91 6.5 × 10−123 1.1 × 10−181 4.83 × 10−13

Probability
attached
to each 
realization
of the 
common factor

0.24% 0.39% 0.24% 100%



The last necessary step in order to be able to obtain the value of the
equity tranche is to compute the expected loss at all the time steps we are
interested in. On the basis of this time series of expected losses, we can
infer the contingent and the fee legs and easily deduct the par-spread
from the computations.

Detailing Implied Correlation

Defining the Indices
The market of standardized tranches based on credit indices has grown
tremendously over the past years. The market has benefited from the
merger of the leading U.S. and European CDS indices in 2004. There are
now the CDX indices in the United States and the iTraxx in Europe. The
most important indices are the investment grade indices that include 125
CDS contracts corresponding to the most liquid names in each region.

The standardized tranches on the CDX.NA.IG* correspond to the
equity tranche (0 to 3 percent), the junior mezzanine (3 to 7 percent), the
mezzanine (7 to 10 percent), the senior (10 to 15 percent), and the junior
super senior tranche (15 to 30 percent). On the European iTraxx index,
attachment points differ slightly, with attachment points for the intermedi-
ary tranches at 6 percent, 9 percent, 12 percent, and 22 percent, respectively.

Implied Correlation
The idea behind the concept of an “implied correlation” is based on an
analogy with the Black and Scholes formula for the valuation of options,
where there is an equivalence between option prices and the definition of
the corresponding “implied volatility.” Similarly, in the case of CDO
tranches, the knowledge of the price of a tranche as well as of the spread
levels on the names of the underlying portfolio leaves only one degree of
freedom, using a Gaussian copula: the value of the factor loading, called
implied compound correlation. Given our past notations, corr = ρ2.

Note that if the model was correct we should observe a flat level of cor-
relation for all tranches, given that the asset value of the underlying pool we

EL p h h
h

n
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=

∑
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*The CDX.NA.IG index corresponds to the Dow Jones North American Investment Grade
index.



refer to is identical whatever the tranche. In general, however, implied com-
pound correlation is higher for the equity and the more senior tranches than
for the mezzanine tranche (Figure 6.8). This phenomenon is known as the
“correlation smile.” There are basically two ways to account for this smile:

♦ The first one focuses on market inefficiencies and segmentation.
The market for junior tranches differs from that related to senior
ones due to different investor preferences, with little “cross
tranches” arbitrage.

♦ The second way to explain the skew is by considering that it
corresponds to some model misspecification. According to this
view, the true level of correlation cannot be captured in a stable
way by the Gaussian copula due in particular to underestima-
tion of the probability of extreme loss scenarios. This analysis
explains why alternative copulas, or other extensions capturing
random factor loadings and recoveries, have been introduced in
the previous sections.

The use of compound correlation to quote tranches was the industry stan-
dard until spring 2004, but has been abandoned for three reasons. First, in
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mezzanine tranches, there can be two solutions for the implied compound
correlation.* In addition, for some spread levels (e.g., very high spreads on
the mezzanine tranche), there can be no solution at all to the correlation
problem using a Gaussian copula. Lastly, as compound correlation gives a
“U-shaped” distribution, it is very difficult to infer from the correlation curve
the interpolated prices on tranches that have nonstandard attachment points.

Since 2004, the market has moved to the quotation of equity tranches
with different detachment points (0 percent to 3 percent, 0 percent to 7 per-
cent, 0 percent to 10 percent, and so on). This is equivalent to pricing call
options on the cumulative losses of the underlying portfolio up to a
defined level (Figure 6.9). Such equity correlations are also called “base
correlations.” They are often (not always though) monotonically increas-
ing with the level of detachment point. The price on a 3 to 6 percent
tranche can be computed knowing the 0 to 3 percent and the 0 to 6 percent
base correlations and considering that it corresponds to the combination of
a long 0 to 6 percent tranche with a short 0 to 3 percent. Compared with
compound correlation, base correlation offers the advantage of bringing a
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* Mezzanine tranche premiums are not monotonic in the compound correlation.
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Base Correlation, 07/10/2004, Five-Year iTraxx Europe.



unique solution to the pricing of Mezzanine tranches.* Some problem can
however remain for the calibration of the most senior tranches, as reported
in St-Pierre et al. (2004). Pricing tranches with bespoke attachment points
is reasonably straightforward, by interpolation of the base correlation
curve.† A practical example of market prices is provided in Table 6.3.

Base correlation can be seen as a way to represent the market per-
ception relative to the underlying risk-neutral loss distribution of the col-
lateral portfolio (Figure 6.10). Low-level losses and very high losses tend
to exhibit higher probability in reality than anticipated by the Gaussian
copula. This translates into the probability of losses in the equity and se-
nior tranches being higher than expected and that in the mezzanine

266 CHAPTER 6

T A B L E  6 . 3

Typical Market Quote on 28/02/06. Spreads are in bps,
Except for the 0 to 3 Percent Equity Piece that is
Defined as a % of the Notional Plus 500 bps.

Spread Delta Base Corr Impld Corr

iTraxx 5 year (index 35 Mid)

0–3%* 25.625/26.2 22.5× 10.9% 10.9%

3–6% 70/72 5.5× 22.0% 3.9%

6–9% 21/23 2.0× 29.9% 11.7%

9–12% 10/13 1.0× 36.3% 17.2%

12–22% 3.875/5.125 0.5× 53.6% 23.7%

iTraxx 7 year (48 Mid) Delta Base Corr Impld Corr

0–3%* 47.625/48.25 14.5× 7.2% 7.2%

3–6% 198/203 8.0× 19.9% 92.5%

6–9% 46/50 2.5× 30.3% 5.0%

9–12% 27/30 1.5× 38.2% 11.9%

12–22% 10.5/12.5 0.7× 59.1% 19.6%

iTraxx 10 year (60 Mid) Delta Base Corr Impld Corr

0–3% 58/58.75 8.0× 7.7% 7.7%

3–6% 590/610 11.0× 12.1% 19.0%

6–9% 126/131 4.25× 22.2% na

9–12% 55/59 2.0× 30.8% 4.8%

12–22% 22/26 1.0× 53.0% 13.9%

*3 to 6 percent implied correlation for iTraxx 7 year in the table above illustrates the problem.
†One point to mention is that the pricing of equity tranchelets below the 3 percent detach-
ment level is not possible by interpolation.



being lower. This phenomenon in turn accounts for the “correlation
skew.”

We can clearly see on Figure 6.10 why the Gaussian copula is not
fully appropriate for pricing and leads to a correlation skew. Market
participants have tried to find out if any of the other copulas introduced
beforehand would perform better. We use for this comparison the results
obtained by Burtschell et al. (2005), related to both compound (Figure
6.11) and base correlation (Figure 6.12).
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The c.d.f. of Conditional Portfolio Losses.
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What we can see is that by trying to fit each copula* to the empirical
conditional losses in the portfolio, we obtain very different results. In par-
ticular, we can observe on Figure 6.11 that neither of the Gaussian, Student-
t, and Clayton copulas pick-up the skew and that only the Double-t and
the stochastic Gaussian copulas seem to be reasonably close in matching
the market skew. The picture looks identical when focusing on base cor-
relation (Figure 6.9), with the Double-t being the closest to reality. Overall,
it is obvious that some of the copulas are doing a better job than others,
but that none of them can fully match market prices.

Practical Calibration of Base Correlation
From a practical perspective, base correlation can be derived from the
market quotes on the standardized tranches using a standard bootstrap-
ping technique.

We want to price a 0 to 7 percent (T) tranche. This non-standard equity
tranche can be incorporated as the combination of two standard tranches
quoted in the market: the 0 to 3 percent (T1) and the 3 to 7 percent (T2).

C0,7 − C0,3 = (F–0,7 − F–0,3), (23)

where the premium leg components F–0,7 and F–0,3 are computed using the
spread corresponding to tranche T2.

268 CHAPTER 6
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copula with parameters adjusted for each tranche.



Let us decompose the process in three steps:

Step 1: We price T1 and T2 using the premium/fee (S2) correspon-
ding to T2. We in fact only have to price T1, given the fact that the
price of T2 given s2 is zero. The price we compute for T1 uses s2 as
the premium but the T1 base correlation. It will always be positive,
given the fact that the more senior the tranche, the lower the price.
We can price tranche T1 using s2 = s3,7

(24)

(25)

PT
1
= C0,3 − F–0,3

Step 2: All what we need is to price T, given the knowledge of T1
computed in step 1. A rescaling operation has to take place at
this stage, given the respective notional width of the two tranches
T1 and T2:

PT = PT1
[(A3 − A0)/(A7 − A0)] (26)

Step 3: Once the value of tranche T is computed, the 0 to 7 percent
base correlation can be inferred using the Gaussian copula
approach.

ρ0, 7 = Arg(PT = C0, 7 − F–0, 7) (27)

With

Pain et al. (2005) suggest that the estimation of base correla-
tions can be further refined by the use of quotes at different
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horizons, typically 5, 7, and 10 years, hence moving from a
single correlation term over the pricing period towards a term
structure of correlations.

Massaging the Correlation Skew: Towards 
a Term Structure of Base Correlations
Many people have pointed out that the Gaussian copula model is not a
dynamic model in the sense that spreads and correlation levels do not
evolve through time. In addition it can be observed in the market that cor-
relation is maturity dependent. This explains the attempt to build a more-
time-dependent term structure of correlation. The principle of this more
refined calibration is that the pricing of CDO tranches at different hori-
zons gives some information about the dynamics of the expected loss over
time, i.e., about the timing of defaults.

So far we have considered a unique premium payment date K, usu-
ally based on quarterly instalment over 5, 7, or 10 years and we have
derived a unique base correlation over the life of the instrument. What we
can do is to compute the term structure of base correlation over 10 years as
a three-step process. We consider that from years zero to five we can rely
on the price of the five-year tranche, from years five to seven we rely on
the zero to five base correlation and on the price of the seven-year tranche,
from years 7 to 10 we rely on the zero to five base correlation, on the five
to seven adjusted base correlation, and on the price of the 10-year tranche.

Step 1: computing the five-year base correlation
We can rewrite the base correlation formula for a five-year tranche:

ρ5
0, 7 = Arg(PT = C5

0, 7 − F–5
0, 7) (28)

With

Step 2: computing the base correlation between years five and
seven
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ρ5/7
0, 7 = Arg(PT = C7

0, 7 − F–7
0, 7) (29)

With

A more refined way to compute the base correlation between year
five and year seven suggested by Pain et al. (2005) is to consider 
an interpolation, for instance, linear, for all the intermediary time
steps.
Step 3: computing the base correlation between years 7 and 10. 

The process is following the approach outlined in step 2.

Discussion on Implied Correlation
The CDO business had initially emerged as an illiquid activity helping in
particular financial institutions to hedge their portfolio from a perspective
of credit and default risk.

Little attention was paid at the time to the evolution of the price of a
CDO tranche with respect to the movement of the credit spreads in the
underlying pool. Factor models, whether they translate into a Gaussian
copula or any more refined approach, provided results in terms of correla-
tion or price without really integrating the dynamics of spread move-
ments. The Gaussian copula model with the large portfolio approximation
should be seen as the most extreme case of poor integration of the sensi-
tivity to the dynamics of spreads.

With active trading on secondary markets, the focus has now changed
dramatically towards an integration of market risk. Banks and investors are
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increasingly exposed to market risk in a way that is difficult to hedge. They
are left with the traditional hedging techniques based on what is commonly
called the “greeks,”* with the losses it may lead to when market shocks surge
(see Chapter 8) translating into P&L damaging spread widening and conta-
gion. Due to this problem, implied correlation, unlike implied equity volatil-
ity, looks like a poor instrument to work with. It offers limited security with
existing instruments and is not the relevant parameter in order to price more
complex instruments, such as options on tranches, or forward-starting CDOs
that depend on the dynamics of the loss distributions of the CDO pool.

Currently, we observe a shift in the market, with banks keeping
correlation as a pricing tool mainly for spot transactions and possibly
gradually moving to a more robust framework for both, hedging and
new CDO-related instruments. In this respect, two interesting theoreti-
cal papers have emerged in the second half of 2005: Sidenius et al.
(2005) and Schönbucher (2005) suggesting the adoption of the whole
loss distribution of the CDO portfolio and its dynamics as the underly-
ing process to price CDO-based instruments. In what follows, we
describe the methodology related to this change of paradigm and
discuss related implications.

Dynamic Portfolio Loss Modeling

The idea behind this approach is to model the dynamics of portfolio losses
directly and ensure an initial calibration to tranche prices for different
seniorities and maturities (i.e., a calibration to a curve of tranche spreads).
This is different to the Gaussian copula approach that focuses on correlated
default times on a name-by-name basis and is not able to integrate the evo-
lution of the univariate and multivariate parameters to future time under
changing market conditions. Essentially, this is a result the static credit
spread curve and constant correlation setup that is usually assumed. Here,
we focus on a more macroscopic approach by specifying the dynamics of
portfolio losses directly, motivated by the need to value advanced (hybrid)
derivatives written on CDO tranches (e.g., options on tranches).

The SPA (Sidenius, Piterbarg, and Andersen) Model
The idea of Sidenius et al. (2005) is to consider the portfolio loss distribu-
tion corresponding to the underlying pool as the relevant variable. This
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variable is considered in a dynamic way. The authors use a classical mod-
eling technique that consists of splitting the modeling effort in two steps:
the first one corresponding to the modeling of a diffusion process for the
“smooth” portfolio loss probabilities (or forward rates), whereas the sec-
ond focuses on the actual loss process consistent with, or conditional on,
the loss probability or forward process.

In the first step, the authors define the variable they want to model
as a diffusion. For any given level of loss considered in the portfolio ini-
tially, they consider the term structure of forward portfolio losses, in an
analogy with the Heath, Jarrow, and Morton (HJM) approach for interest
rates. The dynamics of the initial portfolio loss distribution can be inferred
from the aggregation of the dynamics of the probability of portfolio losses*
considered for any initial level of portfolio loss. The level of loss is
assumed to remain stable over time in each forward process. From a tech-
nical perspective, as this first layer of modeling does not include any infor-
mation about the dynamics of losses in the portfolio, they say that it is
related to the “background filtration.”

In a second step, the authors focus more precisely on the dynamics of
defaults in the pool, thanks to a second layer of modeling based on proper
information on default (i.e., under the loss filtration). The typical model con-
sidered is a one-step Markov chain. Transition probabilities are defined
exclusively from the knowledge of the background forward loss rate at that
time. Forward loss rates can in fact be seen as a way to describe the state of
the market. In other words, the dynamics of losses in the portfolio at any
time t will only depend on the situation in the market at that time, hence the
view that we now have a much more dynamic set-up to assess CDO prices.

Portfolio Loss Probabilities and Forward Dynamics
In step 1, let us define first the loss probability

px(t, T ) = P(τx > T �Mt) = P[l(T) ≤ x �Mt],

where l(t) denotes the (nondecreasing) loss fraction at time t, and P is a
martingale that corresponds to the risk-neutral measure with respect to the
background filtration {Mt}, x� [0, 1] is a possible loss level in the portfolio
and τx the corresponding stopping time. T corresponds to the horizon.

We can think of this stopping time as the first jump of a Cox process
with intensity λx(t), and we can write the loss probability as:
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By defining the compounded forward rates as:

(30)

we can express the loss probability as:

with fx (t, t) = λx (t) (31)
Given the fact that px (., T) is a martingale, and that we consider a

diffusion process, we can write the process of the portfolio loss as:

dpx(t, T )/px(t, T ) = Σx(t, T ) dWx(t), (32)

where Σx(t, T) denotes a general stochastic process (in t) indexed by x, and
T, and Wx(t) is a Brownian Motion for each loss level x.

SPA outline a number of conditions a general loss process has to sat-
isfy. For example, the probability of losses should be decreasing in matu-
rity, and increasing in loss fraction, i.e., P[l(T) ≤ x] ≤ P[l(T) ≤ y], for all x ≤ y.
Essentially, this means that the probability of portfolio losses being lower
than x has to be lower than the probability of losses being lower than y, and
is denoted as “spatial order preservation” condition. Instead of working
with portfolio loss probabilities, the first condition can be easily satisfied
in terms of the forward loss rates, i.e., fx (t, T) ≥ 0. These forward loss rates
fx (t, T) can naturally be derived from Equation (32) using the Ito’s lemma.

Given this framework, SPA derive conditions for the dynamics of
the processes to satisfy the necessary conditions (e.g., spatial ordering)
under a dynamic loss probability, or instantaneous forward rate (HJM), or
forward Libor (BGM) modeling framework. The advantage of the full
modeling of a forward curve for each loss level (as in the HJM or BGM
setup) is that it is very flexible and able to capture the full loss curve
dynamics, whereas the “short-rate” loss probability modeling is less
flexible but needs to propagate fewer variables.
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Practically, this still means that in a portfolio of say 125 names like
an index and assuming, homogenous recoveries across all names, we
would need to calibrate up to 125 such diffusion processes for the loss
probabilities in order to characterize all the realizations of x and be able to
obtain the dynamics of the entire loss distribution. If idiosyncratic recov-
eries are assumed, the state space of x would further increase, which fur-
ther increases the number of processes (and their interaction) to be
considered. The only way to get there is to restrict the volatility process
Σx(t, T) to be a deterministic function of time t and of loss probabilities
{px(t, s), s ≥ t}. The SPA provide several examples of such functions, some
of which are computationally challenging, while more tractable ones may
lead to a violation of some of the conditions discussed beforehand.

Portfolio Loss Process Assuming that the dynamics of the
loss probabilities is properly specified under the background filtration
{Mt}, we can move to the second step, i.e., the calibration of the loss pro-
cess under a broader filtration {Lt}, called the loss filtration.

We can now consider the intensity of the jump from the loss level xi
to the loss level xi + l, conditional on the background filtration {Mt} as:

Kxi
(t, T) dT = P[l(T + dT) = xi + l � l(T) = xi, Mt]

or

(33)

The main contribution here is that SPA have constructed a one-step
Markov chain (“one-step” as it is assumed that losses can take values on
a finite grid (0 = x0 < x1 < … < xN) and that loses can actually shift only by
one step), i.e., a discrete one-step loss process on {xi}

N
i = 0 that is consistent

with the loss probability process (32).
While the previous derivation is useful when a homogeneous port-

folio (i.e., same recoveries) is considered, for idiosyncratic or stochastic
recoveries, the state space needs to be extended to a much thin discretisa-
tion or to a continuous setup x∈[0, 1], respectively.

In a more general setup using Markov processes, we can define a
jump survival function: mz, x(t, T ):

mz, x(t, T)dT = P[l(T + dT) > x|l(T) = z, Mt]
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and write, assuming that l(t) is a nondecreasing pure-jump conditional
Markov process on [0, 1]:

(34)

It remains to define the actual dynamics of the loss process, given
the knowledge of px(t, T). This corresponds to the estimation of the jump
survival process mz, x (t, T) itself.

In order to be able to estimate the latter process with sparse data, the
only way is to specify more precisely a corresponding parametric func-
tion, and SPA motivate functions of the form mz, x (t, T) = θ(T, x − z) ⋅ νx(t, T).
Note that for θ(T, y) = 1{y ∈[0, 1/N]}, a single one-step Markov chain is recov-
ered. Then, even a more general setup where θ(⋅) is given externally, νx(t, T)
can be estimated from Equation (32).

Tranche Valuation Assuming that the loss process is properly
calibrated, we can reconsider the Equations (19) and (21) driving the price
of any tranche j and write it for any starting time anterior to the first
coupon date as:

Note that EL(k|Lt) satisfies the following form EL(k|Lt) =
E[ f(l(k))|Mt, l(t)], and it can be shown that this expectation can be decom-
posed into a linear combination of conditional loss probabilities:

py, x(t, k) = P[l(k) ≤ x �Mt, l(t) = y] (35)

In other words, px (t, T) provides an average default loss probability,
and py, x (t, T), is the loss probability conditional on a particular loss level
y at time t.* It can be obtained by solving the following forward
Kolmogorov equations in T and in x, with proper initial conditions (see
SPA).
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(36)

This model is undoubtedly conceptually very attractive. In terms
of tractability and practical implementation, it requires simplifying
assumptions related to the volatility of the loss probability process. It
also requires assumptions on the loss process through a tight character-
ization of the Markov chain (or Markov process). In order to be able to
apply it for practical pricing purposes, three to four calibrations need to
be undertaken with little data:

1. calibration of the loss probability processes (or?);
2. calibration of the compound forward rates;
3. calibration of the jump survival functions; and
4. calibration of the conditional loss probability processes.

The number of calibration steps involved requires a good understanding
of the model behaviour, stability of parameterization and estimation, and
the development of hedging strategies in order to mitigage the possibility
of model risk and over fitting. If these issues can be addressed successfully,
and if more market data becomes available, the model is capable of pric-
ing options on tranches, forward starting tranches, and tranches with
dynamic (loss dependent) attachment points, consistently.

Schönbucher’s Model
Schönbucher’s model does not differ very much from the SPA model. It
does not go through a two-step model but models the loss distribution via
time-inhomogeneous Markov chains.

Schönbucher calls P(t, T) the transition probability matrix with a
dimension corresponding to the number N of obligors in the underlying
pool. P(t, T) can be retrieved from a Kolmogorov equation with appropri-
ate initial conditions:

with A(T) being a generator function constituted of N · (N + 1)/2 elements
anm(T).

As with the previous model, the dynamic calibration of the genera-
tor function corresponds to the key challenge. Restrictions are required to
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be able to come with some tractable results. In our view, the SPA model
might give more accurate results as it leads to a better understanding of the
underlying processes and consequently perhaps to more realism regarding
the simplifying assumptions required to be able to calibrate the model.

Pricing Based on a Dynamic Modeling of the
Underlying Obligors

Given the tractability problems we think the dynamic loss distribution
modelling approach might encounter, we believe it is important to men-
tion alternative dynamic set-ups.

The most noticeable alternative is to simulate directly the dynamics
of each exposure in the CDO pool. Duffie and Garleanu (2001) suggested
to analyze the risk and valuation of CDOs in an intensity model where
the issuers’ hazard rates are assumed to follow correlated jump diffusion
processes.

More recent approaches focus on less cumbersome solutions.
Instead of describing the survival probability for a given obligor i over
[0, t] as Si(t) = exp(−∫t

0 λi(u)du) and of thinking independently of correla-
tion, di Graziano and Rogers (2005)* or Joshi and Stacey (2005) suggest
to describe the survival probability as Si(t) = exp(−∫t

0 λi( f(u))du). For the
former authors, the intensity is a deterministic function of a time con-
tinuous market chain common to all obligors, for the latter f(u) is a
Gamma process common to all obligors. In the two instances, the idea
is to represent the dynamic time as a stochastic variable depending on
market situations such as the state of the economy. With these spec-
ifications, correlation across the survival times of the obligors in the
pool is coming naturally from the dependency on the state of the
chain or from the calibration of the Gamma process and is not to
be “forced” thanks to the use of a copula or by the calibration of a
variance–covariance matrix.

In principle, the calibration of such processes looks reasonably
tractable due to the recourse to conditional independence. Speed of com-
putational calculation is most likely to be an issue as pointed out in the
relevant papers.
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Pricing Bespoke CDO Tranches

Throughout this section, we consider two different types of “bespoke”
tranches: first, bespoke tranches on traded indices and bespoke tranches
based on a bespoke pool.

In the first case, we are typically talking about an investor who is
considering, for example, a 5 to 8 percent five-year tranche on, say the
iTraxx, for which there is no market price. Market practice is to use the
levels of correlation at the bespoke attachment points from the interpo-
lated base correlation curve to derive the price of the tranche. Recent prac-
tice has been to compute “centi-tranches” (1 percent tranchelets) as a
building block to the pricing of bespoke tranches.

In the second case, the approach is cruder in the sense that banks
tend to use internal recipes in order to get a sense of what the appropriate
level of “market correlation” should be for the bespoke transaction, given
correlation trends in the related index-based market.

Prince (2006) provides a review of three different valuation method-
ologies used in the industry and suggests to use a blend of them:

♦ Net asset value: The first one is the liquidation value (NAV). In
this method, the first step is to measure the net market value of
a CDO as the market value of the asset pool plus the value of
the hedges minus all the liabilities. When the net market value is
divided by the notional amount of the Equity, we have the liqui-
dation value of the equity.

♦ Cashflow analysis: This approach is more forward looking, as it is
based on the dynamics of the CDO collateral over time. It is in
fact very close to what is presented in the following section of
this chapter when dealing with cash CDOs.

♦ Comparables: This approach typically involves deriving prices
from liquid tranches on indices.

PRICING CASH CDOS

In a cash CDO, loans and bonds in the asset pool are usually not traded
actively. Price indications are therefore mainly related to ratings or to
probabilities of default extracted from, e.g., a Merton type model. They
will incorporate default risk, migration risk, and a component related to
some average risk premium per rating category. However, these fair value

Collateral Debt Obligation Pricing 279



prices cannot integrate idiosyncratic spread movements, as there is no
market reference on which to rely.

In order to price a cash CDO, three constituents are necessary: a risk-
neutral transition matrix, a risk-neutral asset correlation structure, and
the knowledge of the waterfall structure. With these ingredients, it helps
to have a multi-period rating-based portfolio model in order to be able to
capture the dynamics of the waterfall structure that is conditioned by the
performance of the asset pool, on the liability side.

Once these elements are defined, we detail various ways to obtain
the fair value prices of the CDO tranches.

The numerical methodology presented next consists of simulating
realizations of the value of the collateral pool and calculating the price of the
CDO tranches by a technique similar to least square Monte-Carlo approach
proposed by Longstaff and Schwartz (2001). The algorithm starts by calcu-
lating the payoff of each tranche at the maturity of the CDO and rolls back-
wards until the issuance of the notes by estimating the payoff of each tranche
conditional on the performance of the pool of assets at each time step.

On the Asset Side

From Historical to Risk-Neutral Transition Matrices*
For pricing purposes, one requires “risk-neutral” probabilities. A risk-
neutral transition matrix can be extracted from the historical matrix and a
set of corporate bond prices.

All q probabilities take the same interpretation as the empirical transition
matrix below, but are under the risk-neutral measure.
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Time Nonhomogeneous Markov Chain In the origi-
nal Jarrow-Lando-Turnbull (1997) (JLT) paper, the authors impose the fol-
lowing specification for the risk premium adjustment, allowing to compute
risk-neutral probabilities from historical ones:

(37)

Note that the risk premium adjustments πi(t) are deterministic and do not
depend on the terminal rating but only on the initial one. This assumption
enables JLT to obtain a nonhomogenous Markov chain for the transition
process under the risk-neutral measure.

The calculation of risk-neutral matrices on real data can be per-
formed as described below. Assuming that the recovery in default is a
fraction δ of a treasury bond with same maturity, the price of a risky zero
coupon bond at time t with maturity T is

Pi(t, T) = B(t, T) × (1 − qi,K + 1(1 − δ )).

Thus, we have

and thus the one-year risk premium is

(38)

The JLT specification is easy to implement, but often leads to numerical
problems because of the very low probability of default of investment
grade bonds at short horizons. In order to preclude arbitrage, the risk-
neutral probabilities must indeed be non-negative. This constrains the
risk premium adjustments to be in the interval:

As noticed above, the historical probability of an AAA bond defaulting
over a one-year horizon is zero. Therefore, the risk-neutral probability of
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the same event is also zero.* This would however imply that the spreads
on short-dated AAA bond should be zero (why have a spread on default
risk-less bonds?). To tackle this numerical problem, JLT assume that the
historical one-year probability of default for an AAA bond is actually 1
basis point. The risk premium for the AAA row adjustment is therefore
bounded above. This bound is, as will be shown later, frequently violated
on actual data.

Kijima and Komoribayashi (1998) propose another risk premium
adjustment that guarantees the positivity of the risk-neutral probabilities
in practical implementations.

πij(t) = li(t) for j ≠ K + 1

(39)

where li(t) are deterministic functions of time. Thanks to this adjustment,
“negative prices” can be avoided.

Time-Homogeneous Markov Chain Unlike the prece-
dent authors, Lamb et al. (2005) propose to compute a time-homogeneous
Markovian risk-adjusted transition matrix. They rely on bond spreads,
thanks to the term structure of spreads per rating category.

exp(−Si(t)) = (δ ⋅qK + 1
i (t)) + (1 − qK + 1

i (t)). (40)

where t corresponds to integer-year maturities.
In order to obtain the matrix, they minimize†

(41)

Knowing that qK + 1
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Correlation
In a previous chapter, we have discussed correlation. An important ques-
tion to answer here, in order to price tranches of a cash CDO, is what type
of correlation to use.

There are basically three different options:

1. Using default implied asset correlation
2. Using equity correlation
3. Using correlation levels extracted from averaging the com-

pound correlation on index tranches.

In option 1, the correlation we refer to only relates to credit events in the
real world (rating downgrades and defaults). In option 2, we are captur-
ing some market co-movement via equity price co-movements. What we
can observe in Figure 6.13, however, is that equity correlation may be
lower than average compound implied correlation retrieved from syn-
thetic CDO index references. Equity correlation is commonly applied in
software products comparable to Credit Metrics portfolio tool. This
means that there could be some pricing mismatch between cash CDO and
synthetic CDO pricing when equity correlation is used.
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A related point to mention is that CPM* teams in commercial banks
tend to rely primarily on models based on equity correlation, while the
reference in the CDO market† may be closer to compound correlation lev-
els. As a consequence, offloading exposures from the balance sheet of
banks may turn out to be a costly exercise if the market grants less bene-
fit to diversification than banks expect. The interest of obtaining a rating,
from the perspective of a bank, is to counterbalance this mismatch with
investors. Rating agencies, by using models that rely on default-based
asset correlation, typically grant a higher benefit of diversification to
offloaded tranches compared to the underlying assets staying on the port-
folio of the bank. This situation, while it gives confidence to investors
with respect to the risk/return of their structured investment, creates suf-
ficient excess spread to facilitate disintermediation.

In what follows, we show how, in a portfolio model, correlation
impacts the migration process. As we are considering a ratings-based
model, the primary purpose of the simulation engine is precisely to gen-
erate migration events with the appropriate correlation structure.

Figure 6.14 illustrates the impact of asset correlations on the joint
migration of obligors, assuming that there are two nondefault states
(investment grade IG and noninvestment grade NIG) and an absorbing
default state D.

The experiment uses a one-factor model. Similar results would be
obtained in the multifactor setup. The tables are bivariate transition matri-
ces for various levels of asset correlation under the assumption of joint nor-
mality of assets returns and using aggregate probabilities of transition
extracted from CreditPro®.‡ In order to reduce the size of the tables, we
have assumed that the pair IG/NIG is identical from a portfolio point of
view to the pair NIG/IG. Thus, each bivariate matrix is 6 × 6 instead of 9 × 9.

Taking, e.g., the case of two noninvestment grade obligors (row
NIG/NIG) one can observe that, as the correlation increases, the joint
default probability (as well as the joint probability of upgrades) increases
significantly.

Multivariate transition probabilities cannot be computed for portfo-
lios with reasonable numbers of lines. In a standard rating system with
eight categories, a portfolio with N counterparts would imply an 8N × 8N

transition matrix that soon becomes intractable.
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*Credit Portfolio Management.
†For instance, when investors try to assess the fair value of their investment on the basis of
correlation trading-based prices.
‡A database from Standard & Poor’s Risk Solutions.



In a CreditMetrics type model, the process consists of simulating
realizations of the systematic factors and the idiosyncratic components.
As a consequence, given that firms all depend on the same factors, their
asset returns are correlated and their migration events also exhibit co-
movement. Joint downgrades for two obligors 1 and 2 will occur when
the simulations return a low realization for both asset returns A1 and A2.
This will be more likely when these asset returns are highly correlated
than in the independent case.

Unlike the Gaussian copula model, based on survival probabilities,
a CreditMetrics type model requires the specification of a targeted hori-
zon. In risk management, the one-year horizon usually corresponds to the
standard. However, it is an insufficient period to analyze CDO tranches
with a five-year maturity. Two possibilities exist. The first one is to con-
sider a single period model covering the five years. The issue with such a
set-up is that it does not give sufficient visibility to assess the dynamics of
cashflow allocation on the liability side (e.g., no collateralization test is
possible during the life of the transaction). The second possibility is to rely
on a multistep dynamic model. This latter type of model is obviously
more relevant for cash CDO pricing.
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However, one aspect related to multiple time-step models needs to
be highlighted. A multi-period model with independence between the
periods and a correlation level of ρ at each period will undershoot the cor-
responding single period model with a similar correlation level ρ. The dif-
ference can be explained intuitively, as in the case of a single period
model, some autocorrelation prevails, whereas in a multi-period model,
the assumption of independence between periods, there is essentially cor-
responds to no autocorrelation.

Computing the Price of Each Line in the Portfolio
Depending on its Rating
In the previous paragraph, we have intuitively described how a
CreditMetrics type model simulates all the ratings up to the horizon of inter-
est t for any of the obligors in the portfolio.* The next step is to calculate the
profits or losses arising from these risk-neutral migrations including defaults.

For “surviving” obligors, the value of the assets at time t is calcu-
lated using the risk free rate as observed at the time of calculation.

Let us consider a defaultable fixed rate bond with j∈{1, . . . , N}
coupons c beyond the horizon t and with principal P. Its rating at the sim-
ulation horizon is i, its price Vi(t), the spread level defined in Equation
(40) from the risk neutral transition matrices is Si( j), and the forward risk
free interest rate corresponding to the period [t; t + j] is rt, t + j .

(42)

The Monte Carlo simulation of the common and the idiosyncratic factors
to which the latent variable (the asset value) of each exposure in the port-
folio is tied enables us to draw many realizations of rating paths for each
obligor at each future sub-period before the horizon. It ultimately allows
us to price each of the exposures based on Equation (42).

On the Liability Side

A Brief Description of the Waterfall Structure
In this section, we describe briefly how the cashflows generated on the asset
side are distributed on the liability side, thereby influencing the pricing of

V t r j S j P r N S Ni
j

N

t t j i t t N i( ) exp[ ( ( ))] exp[ ( ( ))], ,= − + + ⋅ − +
=

+ +∑
1
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*For a more refined description, see Chapter 4.



each tranche. Figure 6.15 provides an example of what a tranching exercise
can look like.

The allocation of the proceeds from the asset side usually requires a
relatively complex bespoke cashflow model. This type of model is
designed to accurately reflect:

♦ The transaction capital structure
♦ The priority of payments
♦ Hedges
♦ The fee structures
♦ The coverage tests
♦ The collateral coupon spread
♦ The scheduled principal payments.

The Waterfall or priority of payments describes the flow of proceeds
through the Special Purpose Vehicle to the note holders, hedge counter-
parties, and other agents participating in the CDO.
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♦ Money flows into the CDO as asset interest proceeds and principal
amortizations and hedge receipts.

♦ Money flows out of the CDO as fees, expenses, hedge payments
and interests, and principal payments to the rated notes and
preferred shares.

Coverage tests are ratios calculated in a CDO structure that alter the dis-
tribution priority of collateral proceeds by delevering the notes when the
required ratio level is breached. There are two main tests:

♦ The over collateralization (OC) test. It is a ratio that tests the
ability of the collateral balance (net of defaults and recoveries) to
support the current liability balance (including deferred interest
on the notes).

♦ The interest coverage (IC) test. It is a ratio that tests the ability of
the collateral interest proceeds to support the current liability
interest payouts (i.e., tests excess spread).

The dynamics of the waterfall structure is described in Figure 6.16 in a
generic manner.

Impact on the Pricing of CDO Tranches
The payoff of a structured exposure depends in a complex way on the
cashflows generated by the exposures on the asset side as well as on the
way these cashflows are allocated to the tranches on the liability side,
given the waterfall structure of the deal.

In practice, there are as many pricing models as there are different
structures. Due to the Monte-Carlo approach, computational times are
usually substantial.

Lamb et al. (2005) suggest an interesting shortcut consisting of the
estimation of a pricing function by applying scoring techniques. More pre-
cisely, they show that it is possible to fit a regression-type function for each
tranche that will give a price at the maturity of the CDO as a function of
the realization of the vector of latent variables corresponding to the oblig-
ors in the CDO pool. As a result, any price of a tranche before maturity of
the pool is easily obtainable by proper discounting. In terms of speed of
calculation, the pricing functions for each deal typically require less than
10,000 Monte Carlo replications to provide accurate results. The tests per-
formed by Lamb et al. (2005) show that this class of model performs well
in terms of first moments, Value at Risk and Expected Shortfall. In terms of
hedging, this model provides interesting and accurate strategies.
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Hedge Receipts

Collateral Interest Account

1

Col. (Interest + Principal)

1) Note A Interest + Deffered Interest
2) Note B Interest + Deffered Interest

3

Tests
1)     A/B O/C Ratio
2)     A/B I/C Ratio

1) Note A Principal
2) Note B Principal

Fail

4

Col. (Interest + Principal)

1) Note C Interest + 2) C Deffered Interest

5

Tests
1) C O/C Ratio
2) C I/C Ratio

1) Note A Principal
2) Note B Principal
3) Note C Principal

Fail

6

Col. (Interest + Principal)

1)     Note D1 Interest
2)     Note D1 Deffered Interest (*)
3)     Note D2 Interest
4)     Note D2 Deffered Interest (*)

7

Tests
1)     D O/C Ratio
2)     D I/C Ratio

1) Note A Principal
2) Note B Principal
3) Note C Principal
4) Note D Principal

Fail

8

1) Admnistrative Expenses
2) Hedge Costs
3) Management Fees

Hedge receipts are added to the interest
amount received from the collateral

Money coming from Interest and Principal are
used to pay1), and 2) in that order.

O/C and I/C tests on that order are made for notes A and B. If the
tests fail Collateral Interest and Principal are used to pay Principal
of notes A and B in this order.

Money coming from Interest and Principal are
used to pay 1), and 2) in that order.

O/C and I/C tests on that order are made for
notes C. If the tests fail Collateral Interest and
Principal are used to pay Principal of notes
A, B and C in this order.

Money coming from Interest and Principal are
used to pay 1), 2), 3) and 4) on that order. (*)
In case of deferred interest only the interest
is used.

O/C and I/C tests on that order are made for
notes D. If the tests fail Collateral Interest and
Principal are used to pay Principal of notes A, B,
C and D in this order.

Money coming from Interest and Principal are
used to pay 1), 2), and 3) in that order.

2 Collateral Interest + Collateral Principal
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The Waterfall Structure Including Tests Extracted from
Garcia et al. (2005).



CONCLUSION

In this chapter, we have tried to provide some insight into the most promi-
nent pricing techniques used in the synthetic and cash CDO markets. It is
very difficult to offer a full coverage given the amount of academic as well
as applied research that is continuously generated in this area.

The driving force in the efforts that we have reported is focused on
generating accurate results while using data in a parsimonious way. We can
see that the most recent techniques tend to be less parsimonious though.
One question we might ask ourselves is: what is the appropriate minimum
level of information (factors, and parameters) that is required to match mar-
ket prices? In this respect, Longstaff and Rajan (2006) suggest that single
factor models are too simplistic to price CDO tranches accurately. They
advocate that the ideal number of common factors to consider should be 2
in order to allow for firm specific, industry, and economy-wide events to be
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Col. Principal

1)     Note A Principal
2)     Note B Principal
3)     Note C Principal
4)     Note D Principal

After reinvestment period Money coming from
Principal is used to redeem (pay principal) the
notes from 1) to 4) in that order.

9b

Col Interest

1)     Note E Interest
2)     Note E Interest Deferred

Money coming from Interest and Principal are
used to pay 1), 2) on that order.

10

Excess Interest

Note E Interest

Excess interest is given to the Equity holders.11

Col. Principal

Note E Principal

Money coming from principal is paid to the equity holders.12

Col. Principal

Reinvest in new collateral

Before the end of the reinvestment period
money coming from Principal is used to
reinvest in new collateral following
certain guidelines.

9a
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explained. On the basis of this specification, they are able to identify three
loss regimes on the CDX index. These regimes correspond to 0.4 percent, 6
percent, and 35 percent loss levels and take place respectively every 1.2,
41.5, and 763 years on average. The first firm-specific regime typically dom-
inates 65 percent of the time, the second industry-specific regime is at play
27 percent of the time and the third regime, corresponding to catastrophic
risk, accounts for the remaining 8 percent. The authors may not have a suf-
ficiently large data sample yet to be too assertive on these results, with only
two years of daily observations of the CDX index. There is, however, cer-
tainly an interesting aspect to these first statistical results.
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C H A P T E R  7

An Introduction to the
Risk Management of
Collateral Debt Obligations

Norbert Jobst

295

INTRODUCTION

In recent years, the market for collateral debt obligations (CDOs) and,
in particular, the development of the synthetic CDO market and corre-
lation trading has resulted in significant developments in valuation and
risk management for such products. The market has been dominated by
developments around the static Gaussian copula model, the introduc-
tion of base correlation as an alternative to the compound correlation,
and extensions to better capture the observed correlation smile/skew,
only recently more dynamic models that incorporate credit spreads—or
other major modeling parameters—have been introduced by practition-
ers and academics (see Chapter 6). All valuation approaches are based on
risk-neutral pricing principles and little focus has been given to
replication-based arguments that would also lead to developments for
practical hedging and risk management. Currently, risk management
often focuses on static risk measures that address the likelihood of
a CDO investor receiving full notional and actual interest in a timely
manner (ratings perspective), or on mark-to-market (MtM) sensitivities
and “the greeks” frequently employed by correlation investors and
traders.

This chapter focuses on a MtM-based risk assessment. A brief and
concise overview of static risk measures frequently employed by rating
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agencies or “buy-and-hold” investors is given in the next section. This
chapter is complemented by Chapter 8, where many of the theoretical
concepts introduced here are put into practice. Hence, whereas the
focus in this chapter is on introducing “the greeks” conceptually and
providing guidelines for practical implementation, the next chapter
provides a critical discussion based on a number of popular synthetic
CDO trading strategies. As with the chapter on valuation, many deri-
vations evolve around the Gaussian copula model, and we provide
implementation details on simulation-based and semianalytical
techniques.

RISK MEASUREMENT I: A CREDIT RISK 
AND RATINGS PERSPECTIVE

Rating agencies (RAs), such as Standard & Poor’s, Moody’s, Fitch, or
DRBS, are typically interested in the risk a CDO investor is facing, and
base their opinions partly on model-based statistics. For example, Moody’s
rating is a so-called “expected loss” rating and, as a result, the expected
loss on a CDO tranche is assessed and benchmarked to various rating-
specific targets. Standard & Poor’s, on the other hand, applies a “probabil-
ity of default” (PD) or “first dollar of loss” rating and estimates the
likelihood of an investor facing any loss at all.

Underlying such approaches is an assessment, in one form or
another, of the (likelihood of ) losses a CDO tranche investor may face
over the life of the transaction. Traditionally, the definition of losses is
restricted to a buy-and-hold perspective and hence to losses from default
events only, but recently, RAs moved towards an assessment of the preva-
lent MtM risk (see Chapter 11 for a brief discussion). For now, we focus
on potential losses from defaults that may occur until maturity T of a
transaction.

More specifically, we consider a portfolio of N different names/oblig-
ors (i = 1, . . . , N) referenced by a CDO, and default times τi associated with
each name. If τi is less than the maturity T of the CDO transaction, the loss
Li is determined as Li = Ni × (1 − δi), where Ni and δi are the exposure-at-
default and recovery,* respectively for the ith asset. We can therefore write
the portfolio loss up to time T, L(T), as
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*The recovery can either be assumed to be constant, or drawn from a distribution.
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(1)

where is the default indicator for the ith asset.*

In practice, the distribution of portfolio losses can be determined
with high accuracy, and various approaches capturing dependence in dif-
ferent ways have been discussed in Chapters 4 and 6.

Most rating agencies employ simulation-based approaches that gen-
erate correlated default times τi in which case the distribution of portfolio
losses [Equation (1)] can be readily determined. Standard & Poor’s simula-
tion model, the CDO Evaluator, is outlined in Chapter 10 in further detail.

CDO Risk Measures and Rating Assignment

From now onwards, we assume that a model computing the loss distri-
bution, FL(T)(l) = P(L(T) ≤ l), and/or default times τi is available, and we
introduce a few popular risk measures employed by “buy-and-hold”
investors or RAs.

Tranche Default Probability
Given a CDO tranche Tj with attachment point Aj and detachment point Dj
(i.e., a tranche thickness equal to Dj − Aj), the tranche default probability (PD)
is the probability that portfolio losses at maturity T exceed Aj. This is given by

(2)

where E[] denotes the expectation. This measure forms the basis for assign-
ing a rating to a synthetic CDO tranche for a PD-based rating, as provided
for example by Standard & Poor’s (see Chapters 10 and 11 for further details).

Expected Tranche Loss
Rather than focusing only on whether or not a single tranche (ST)
CDO investor is facing a loss, we should also focus on the size of the
losses. The cumulative loss on tranche Tj at time T, , is given by

Then, the expected

tranche loss is given by
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(3)

which can be easily computed through Monte-carlo (MC) simulation.
If the attachment probabilities QL(T)(l) = 1 − FL(T)(l) can be computed effi-
ciently through (semi) analytic methods, we can show that integration by
parts and −QL(T)(l)/dl = FL(T)(l)/dl enables us to rewrite Equation (3) as an
integral over the attachment probabilities:

(4)

An expected loss rating assigned by rating agencies such as Moody’s
is partly based on this measure of tranche risk.

Tranche Loss-Given-Default
From the expected tranche loss and the tranche PD, the tranche loss-
given-default (LGD)—assuming that LGD and PD are uncorrelated—is

simply given by .

As discussed earlier, the typical RA assessment is based around
a probabilistic view of tranche losses and is, as such, sensitive to the
assumptions made in the underlying credit portfolio model (such as the
Gaussian copula model). These assumptions are typically estimated from
historic ratings and default data, and the probabilities and expectations
considered are therefore taken under the “real world” or “historic” measure,
whereas the assumptions throughout the next section are often denoted as
“market implied” or “risk neutral.” For corporate credit, for example, risk
neutral default probabilities are on average two to five times observed
default rates, thus embedding a risk premium taken by investors (see Berndt
et al. (2005) for a empirical discussion on the credit risk premia). A good
introduction to CDO risk management is also given in Gibson (2004).

RISK MEASUREMENT II: MARKET RISK,
SENSITIVITY MEASURES, AND HEDGING

Correlation investors and traders are typically not only concerned with the
pure credit or default risk of correlation products, but also with MtM risks
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such as spread, convexity, and correlation sensitivity, as well as volatility
and relative value (risk/return) considerations. In addition, buy-and-hold
investors, traditionally interested in the risk throughout the life of the
transaction, also estimate their MtM exposures for internal risk reporting.
Correlation traders, on the other hand, structure adequate hedging strate-
gies and look for cheap convexity, volatility, and/or correlation from a rel-
ative value perspective. The sensitivity measures provide some insight
into how the value of a CDO tranche may change when market factors,
and therefore the valuation parameters, are changing. This is particularly
important for CDO tranches, where the impact of such changes can be very
different across tranches depending on tranche parameters such as seni-
ority and thickness. Table 7.1 provides an overview of the measures that
will be discussed throughout this section.

In the remainder of this section, we introduce these sensitivity mea-
sures from a conceptual perspective and discuss some computationally
efficient approaches for practical implementation. In order to establish such
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T A B L E  7. 1

MtM Sensitivity Measures (“Greeks”).

Sensitivity
Measure Description

Spread sensitivity: Tranche price sensitivity to (small) changes in credit spreads.
Delta Frequently, the sensitivity to spread changes on individual 

names and/or to wider market movements (all names) is of
interest.

Tranche Leverage: Leverage effectively scales the DELTA of a tranche by the 
Lambda tranche notional and gives an indication of how the total spread

risk is split across different tranches.

Spread Convexity: Tranche price sensitivity to larger changes in credit spreads.
Gamma Gamma is very important when considering delta-neutral posi-

tions as it gives some insight into the MtM changes when indi-
vidual spreads or the market move significantly.

Time decay: Change in tranche value due to the passage of time. It is 
Theta important as delta-neutral positions may become spread sen-

sitive as time passes and no other parameters change.

Correlation Change in tranche value resulting from a change in 
sensitivity: Rho “implied” compound or base correlation.

Default sensitivity: Change in tranche value resulting from an instantaneous 
Omega default of one or more names in the portfolio. Omega is also

denoted as “Value on Default” (VOD) or “Jump to default” (JTD),
and is particularly interesting for delta-hedged positions.



sensitivities, a consistent valuation framework, as outlined in Chapter 6 on
pricing, needs to be in place.

First Order Spread Sensitivity: Delta

In practice, the spread risk of a CDO tranche is managed by buying and
selling single name CDS protection as an offsetting hedge. This, of course,
is not addressing all risks inherent in ST CDOs and provides only a partial
hedge (a spread hedge), compared to entering an offsetting but identical
trade. Such an offsetting trade, however, is rarely possible due to the
bespoke nature of many ST CDOs. With the recent growth in standardized
index tranches—ST CDOs referencing the CDX indices in the United States
and/or the ITraxx ones in Europe—such offsetting hedges are possible.
Depending on how similar a bespoke tranche portfolio is to the composi-
tion of a CDS index, liquid tranches on that index can provide a good
approximate hedge. In practice, instead of single name CDS, liquid indices
can be used directly (in unlevered form) to manage spread sensitivity. We
denote the sensitivity to single name spread movements by individual or
microspread sensitivity (CS01), while the sensitivity to a broad move in the
portfolio spread will be denoted by market or macrosensitivity (Credit01).*

Defining Single Name/Individual Delta
A widening in credit spreads (keeping everything else equal) leads to an
increase in expected portfolio loss and, correspondingly, to the expected
loss of all tranches. Hence, ST positions are subject to MtM movements as
credit spreads in the underlying portfolio change. To hedge a long (short)
position in a tranche requires buying (selling) protection on each of the
underlying names according to the delta. We therefore define the delta 
of a credit j in the underlying portfolio as the amount of protection the
dealer sells (buys) on that name to hedge the MtM risk of a short (long)
tranche position, denoted by Tj, due to credit spread change of name i. In
practice, such a change in spreads will lead to MtM gains or losses on the

tranche position as well as on the single name CDS or hedge

portfolio (∆MtMi). Hence, holding amount of CDS on name i will lead
to the same profit and loss (P&L) impact as holding the CDO tranche, if
the credit spread of name i changes slightly. Formally,
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*“01” in CS01 and Credit01 stands for a small, 1 bp shift in credit spreads.



and

(5)

where denotes the parameters necessary for valuation and MtM calcula-
tion. In the context of the Gaussian copula framework and compound
correlations, would contain the valuation time t, maturity T, a vector of
credit spread curves S

→
(t):= S

→
(t):= (S1(t), . . . , SN(t)) where Si(t) denotes the term

structure of credit spreads of name i at time t, a vector of recovery rates
δ
→:= (δ1(t), . . . , δN(t)), and the compound correlation (matrix) ρ. In the exam-
ples shown here, the maturity of the CDS position heding a CDO tranche
spread sensitivity are taken to be identical. We only state the parameters of
immediate interest in the remainder of this chapter, and assume that all
other parameters remain unchanged, unless otherwise noted. In order to
compute delta, the MtM of single name CDS and CDO tranches needs to be
derived next.

MtM of a Single Name CDS
We denote by Q(t, T, Si(t)), the risk neutral survival probability for obligor i:

where λs(Si(t)) denotes the hazard rate at time s bootstrapped from the
credit spread curve Si(t) as seen at time t (see Chapter 3 for further details
and Appendix A on the computation or bootstrapping of hazard rates
from credit spread data).

The MtM of a default swap position, when the valuation date is on
a premium payment date—thereby simplifying notation, as accrued inter-
est and premium accrued can be ignored—is given for a long protection
position by

MtMi(tν , T, Si (tν )) = (Si (tν ) − Si (t0))RiskyPV01(tν , T, Si, (tν )),

where tν denotes the valuation and premium payment date, and
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denotes the present value (PV) of one unit investment in a CDS written on
obligor i that matures at time T. Here, 1{PA} = 1 if premium accrued is taken
into consideration and 0 otherwise. B(t,T) denotes the Libor discount fac-
tor, D(tn − 1, tn) the day count fraction between premium payment dates,
and tN = T the deal maturity.

O’Kane and Turnbull (2003) show that Equation (6) provides a very
good approximation to

where the premium accrued is modeled more accurately.
For the purpose of determining the change in MtM, ∆MtMi,

caused by a 1 bp parallel shift in the credit spread of obligor i at the initial
time t = t0 is given by

∆MTMi:= ∆MTMi(t0, T, Si (t0), Si (t0) + 1 bp)

= MTMi(t0, T, Si (t0) + 1 bp) − MTMi (t0, T, Si(t0))

= MTMi (t0, T, Si (t0) + 1 bp)

= (Si (t0) + 1 bp − Si (t0)) RiskyPV01(t0, T, Si (t0) + 1 bp)

= (1 bp) RiskyPV01(t0, T, Si (t0) + 1 bp)

Note that the third equality stems from the fact that at time t = 0, the
PV of protection leg and premium leg are equal if the CDO is fairly priced.
As a result, the MtM at that time is zero.

MtM of an ST CDO
In order to compute the delta of a tranche, we also need to derive the
change in MtM on a specific tranche of a synthetic CDO resulting from the
1 bp parallel shift in credit spreads. At time t0 = 0, the PV of the protection
leg (PPV) of a synthetic CDO tranche Tj is given by

(7)
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time t0 by employing the spread information (curve) available at that
time (S(t0)). Here, S(t0) denotes the vector of credit spreads (curves) for
all names in the underlying portfolio. As before, the expected tranche
loss can be computed from an adequate model, such as the Gaussian
copula, and through various numerical techniques such as MC simula-
tion, Fast Fourier Transform Methods, recursive schemes, or the proxy
integration method. An overview of these approaches is provided in
Chapter 6.

Given an estimate of expected tranche losses through time, we can
also compute the PV of the fee or premium leg, that is,

(8)

We also define the Tranche PV01 as the PV of 1 bp (unit) invested in
tranche j as:

Then, at time t = 0, the MtM for tranche j is defined as the difference in
the fee and PPVs, which, assuming a fairly priced tranche, is zero at

inception of a trade

S(t0)) = 0. The fair tranche spread, is therefore given by

At a later date, say a premium payment date tν (to keep the notation
simple), the MtM is given by
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which is unequal to zero as time passes, and spreads and other pricing pa-
rameters may have changed. Hence, with

we obtain

For the purpose of calculating the change in tranche MtM for a
1 bp parallel shift in the credit spread term structure of name i is given by

where Si01(t) := (S1(t), . . . , Si − 1(t), Si(t) + 1 bp, Si + 1(t), . . . , SN(t)) denotes the
vector of credit spreads and where the term structure of name i is shifted
uniformly by 1 bp while all other term structures remain unchanged.

The approach just outlined is frequently denoted as “brute force” or
“bumping,” and is fairly flexible and independent of the actual valuation
model employed. In order to compute the change in MtM, the expected
tranche loss needs to be derived at different points in time efficiently.
While simulation is in principle feasible, more efficient approaches are
preferable, especially as calculations need to be repeated for each under-
lying name. Although there are generally no explicit analytical expressions
for tranche deltas available, practitioners and academics have developed
various approaches for determining tranche sensitivities more efficiently
and accurately. These approaches are often developed for a specific
pricing model or numerical implementation of such models and employ
the exact definition rather than the approx-
imate relationship
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Closed form or semi-closed-form solutions for the partial integral are fre-
quently developed.

Appendix B outlines a semi-analytic computation of the sensitivity
of the tranche value to small changes in PDs (spreads) within the com-
monly used recursive scheme of Andersen et al. (2003) as outlined in
“Option 2: The recursive approach” of Chapter 6.

Appendix C reviews the LH+ model of Greenberg et al. (2004) where
spread hedges are computed in closed form. The model is based on the
large homogeneous portfolio (LHP) approximation with one additional
asset, for which sensitivities are computed.

Additional insights into efficient and accurate computation of CDO
and basket sensitivities, within a simulation framework can be found in
Joshi and Kainth (2003), Rott and Fries (2005), and Glasserman and Li
(2003). We provide some insight in appendix D on MC deltas, and also
refer to Brasch (2004) who revisits analytic and semianalytic methods
focusing on sensitivities for CDO and CDO^2 structures.

Practical Hedging and Delta Sensitivity
By definition, delta hedging immunizes the tranche against small
changes in credit spreads. For larger spread movements, a significant
amount of spread risk (spread convexity) prevails, resulting in a need to
dynamically rebalance the hedges throughout the life of the transaction.
Such a process may incur a significant amount of transaction costs,
depending on the frequency of rebalancing actions and current bid–ask
spreads. Furthermore, liquidity in some of the underlying names may be
poor due to the bespoke nature of underlying assets in synthetic ST
CDOs. Nevertheless, tranche deltas provide significant insight into the
behavior of CDOs and are a major risk management tool. If the behavior
of deltas is well understood, it is possible to design trading strategies
with desired spread sensitivities over time. Similarly, strategies can be
constructed with an initial delta-mismatch that become delta neutral
when spreads move in line with one’s expectations. We will therefore
review the sensitivity of tranche deltas to various parameters that impact
CDO performance.

∂
∂

≈

= −

MtM ( , , ( ))

( )
( bp) MtM

MtM ( , , ( )) MtM ( , , ( )).

T

i
i

T

T i T

j
j

j j

t T S t

S t

t T S t t T S t

0 0

0

0
01

0 0 0

1 ∆

An Introduction to the Risk Management of CDOs 305



Delta and the Capital Structure Generally speaking, the
delta of a single name increases as we move down the capital structure,
i.e., the lower the level of subordination, the higher the tranche delta.

Delta and Credit Spread Levels Credits with a higher
spread are expected to default (in the risk neutral world) earlier than cred-
its trading at a lower spread. The earlier a credit is expected to default, the
higher the impact will be on the equity tranche, resulting in higher equity
tranche deltas for wider trading names and vice versa. Similarly, lower
spreads imply that the expected default time is later (than the average
default time in the portfolio) and those names are more likely to impact the
senior tranches. Hence, the delta for tight spread trading names is higher
than the delta for wider trading names for senior tranches, and the reverse
is true for junior positions (e.g., equity tranches). Figure 7.1 displays typical
credit spread deltas expressed in percent of the names notional.* As we con-
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*The practical examples illustrating spread sensitivities are based on a homogeneous port-
folio of 50 credits with a notional of 10 m each, trading at a spread of 100 bp under an
assumed recovery of 38 percent. Furthermore, the compound correlation is assumed flat at
25 percent. The equity, mezzanine, and senior tranches are trached at 0 to 4 percent, 4 to
8 percent, and 8 to 12 percent, respectively.
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Delta (in Percent of Reference Name Notional) 
as a Function of Credit Spread Level.



sider a homogenous pool (same spreads, recoveries, and correlations), the
delta is the same for each name. Figure 7.1 reveals that mezzanine tranches
appear to have less directionality with respect to credit spread levels.

Deltas of individual credits will rise in time for the equity tranche if
the spread on that name widens (assuming little change in average port-
folio spread) as a result of an earlier expected default time for that name.
For senior tranches, however, deltas will reduce as spreads widen on a
single credit only, as this credit is expected to default earlier, impacting
the equity tranche more than the senior exposures.

Of course, in practice, credit spreads on more than one name may
widen, and one wants to consider how single name deltas change when
all (or some) credits in the portfolio widen. A cumulative widening of all
names in the portfolio leads to an increase in the chance of a high number
of defaults and reduces the probability of a small number of defaults.
Hence, the spread sensitivity of the value of an equity tranche reduces
while the spread sensitivity of a senior tranche increases, leading to an
increase in each individual senior tranche delta and a decrease in each
individual equity tranche delta. The reverse holds when all spreads
are tightening. A cumulative spread move also underlies the definition
of Credit01, and is frequently used to estimate hedge ratios when liquid
tranches are hedged with CDS indices, as further discussed in the section
“Delta hedging with a CDS index: Credit01 sensitivity.”

Delta as a Function of Time Assuming there are no losses
in the underlying portfolio, deltas will change due to the passage of time.
The delta of the equity tranche will increase to 100 percent as time to matu-
rity decreases. Mezzanine and senior tranches at the same time become
less risky compared to the equity tranche, resulting in a decrease in their
delta towards zero at maturity (see Figure 7.2 for a illustrative example).

Delta and Correlation The MtM or fair spread on a CDO tranche
within the usual Gaussian copula valuation framework depends on the
current (observable) term structure of credit spreads on each of the under-
lying names, the maturity of the transaction, a recovery assumption for each
name, and the correlation assumption (see Appendices B, C, and D for dif-
ferent numerical implementation techniques and Chapter 6 on pricing).
Assuming that the first two sets of parameters are observable, (or can be at
least implied from the single name CDS market) and a fixed maturity, the
only variable left unspecified is the correlation applied in the pricing model.
Then, given quoted tranche prices, one can compute the corresponding
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“implied” or “compound” correlation that makes the model price consistent
with market quotes.

If our valuation model could perfectly address replication dynamics,
we could expect the same implied correlation for different tranches that
reference the same portfolio. In practice, however, a correlation skew/smile
is observed, where often implied correlations for equity and senior
tranches are higher than for ( junior) mezzanine tranches. Figure 7.3 shows
the correlation smile for October 4, 2004 on standardized tranches on the
ITraxx index.

Changes in the underlying compound (or implied) correlation also
impacts tranche deltas. Typically, increased correlation leads to relatively
more risk for senior tranches and relative less risk for the equity tranche,
as large numbers of defaults are more likely for higher levels of correla-
tion among credits. Therefore, as the implied correlation increases, the
equity tranche deltas of credits decreases and the senior tranche deltas
increase. Equity tranche deltas, however, are almost always above (very)
senior tranche deltas independent of the actual level of correlation.

Delta and Upfront Payments Currently, the equity tranche
for the investment grade DJ CDX index and the first two tranches of the
high yield DJ CDX index trade with upfront payments. Upfront payments
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F I G U R E  7. 2

Delta (in % of Notional) as a Function 
of Time to Maturity.
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for tranches genuinely lowers their deltas compared to the same tranche
that is valued with only a running spread (and no upfront payment). The
reason is that if we have a significant amount of the tranche value paid up-
front, any spread move thereafter only impacts a small amount of the pre-
mium to be collected. On the contrary, upfront payments do not impact the
protection leg of the CDO tranche, as higher spreads imply higher expected
defaults. A tranche that has only running premium and no upfront pay-
ments will be impacted much more by a spread widening as, in addition to
more expected defaults, expected premium payments are also lower (as the
notional is reduced), making it more sensitive to a spread move.

Delta Hedging with a CDS Index: 
Credit01 Sensitivity
In practice, an alternative to hedging each individual name by delta-
amounts of single name CDS is to hedge by taking a position in a liquid
index (such as the CDX or ITraxx indices). The advantage of hedging with
an index is that liquidity is very high and bid–ask spreads (transaction
costs) are tight. However, the quality of the hedge depends on how similar
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Correlation Smile on 5 year 1Traxx Tranches 
on October 7, 2004.
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the portfolio referenced by the CDO tranche is to the computation of the
index. Formally, we define the Credit01 as the change in MtM (dollar value)
for a 1 bp parallel shift in credit spreads on all names in the portfolio. It can
therefore be seen as a cumulative or aggregate (market) spread sensitivity
measure:

where S01(t0) : = (S1(t) + 1 bp, . . . , Si − 1(t) + 1 bp, Si(t) + 1 bp, Si + 1(t) + 1 bp, . . . ,
SN(t) + 1 bp).

can therefore be used to estimate a hedge ratio when a
standardized CDO tranche (e.g., ITraxx tranche) is hedged with the
underlying CDS index (e.g., ITraxx), that is,

where · ∆MtMI corresponds to the change in MtM on the CDS index
for a 1 bp spread widening on each of the underlying names (and hence
on the overall index).*

Unlike individual spread sensitivity CS01, Credit01 increases for se-
nior tranches as all spreads widen in parallel, whereas Credit01 of the
equity tranche decreases if all spreads widen in a parallel move. This results
from the fact that a widening in all spreads increases the risk of higher num-
bers of defaults shifting the risk from the equity to senior tranches.

Note, however, that an index hedge in practice provides only an
approximate (or average) delta hedge when the underlying names in the
portfolio are very dispersed, whereas it provides a perfect spread hedge if
all names trade at the same spread. As a result, for an equity tranche in the
index, a tighter name would be overhedged as the relative risk to the equity
tranche of a low spread name is lower than that of a name with a (higher)
average spread. Similarly, wider trading names would be underhedged as
the deltas of the equity tranche are lower if the credits trade at a lower
(average) level. The reverse behavior holds for hedging a senior tranche.
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*In practice, an alternative way is to sum over all individual single name deltas and enter a
CDS index position according to the resulting notional. The reason why there is hardly a dif-
ference in bumping all spreads at once or summing over all hedges when one spread is
bumped at the time is that convexity is less of an issue for a small (typically 1 bp) spread move.



Tranche Leverage: Lambda

The leverage, or lambda, of a tranche is closely linked to tranche deltas
and provides useful information as it effectively scales the delta by the
tranche notional. Formally, we define leverage, or lambda, as

where denotes the tranche notional and Ni the notional of
name i in the underlying portfolio.

Practically, leverage gives an indication of how the total risk is dis-
tributed between different tranches. Hence, the higher the leverage, the
higher the spread risk in relation to the tranche notional. For example, con-
sider a 7 to 10 percent tranche of a $1 billion underlying portfolio with a
notional of $30 million. Assume an (average) hedge ratio of per-
cent for this senior tranche resulting in a total notional of $150 million for
the hedge portfolio. The lambda, or leverage, for this tranche is therefore 5.

A super senior position (for example, 10 to 100 percent) usually
results in a higher delta portfolio, but also a significantly lower leverage.
Of course, given the leverage or lambda we can compute an average delta
for an index tranche (as discussed in the previous section). Given the
leverage and tranche size, the size of the underlying hedge portfolio can
be computed and the index can be bought accordingly.

Credit Spread Convexity: Gamma

While first order spread sensitivity is a very important measure of risk, the
sensitivity of credit product spread changes beyond 1 bp also needs to be
considered. This is especially true when hedging instruments have different
leverage, i.e. hedging a tranche with an index, or an equity tranche with a
mezzanine or senior tranche. Spread convexity of credit products usually
refers to the MtM behavior as a function of the underlying level of credit
spreads. Spread convexity, or gamma, of various tranches can be very dif-
ferent, and particularly large compared to the convexity of single name CDS
or CDS indices. A detailed understanding is therefore required, particularly
when we want to implement various relative value or credit strategies.

As with first order sensitivity, we can differentiate between macro-
and microspread convexity, and it is particularly important to understand
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the behavior of (delta-hedged) tranche products when individual spreads
are moving (microconvexity), or when the overall market/portfolio
spread is moving (macroconvexity).

Macroconvexity: Gamma
More formally, we define the macro spread convexity, gamma, as the addi-
tional MtM change on a tranche over that obtained by multiplying the
Credit01 of that tranche by the parallel spread move for all of the underly-
ing single name CDSs. Put another way, it is the difference between the lin-
ear approximation and the actual movement in market value. For example,
assuming a 100 bp spread widening, gamma is given by:

(9)

where S100(t): = (S1(t) + 100 bp, . . . , SN(t) + 100 bp).
In practice, a relative spread shift factor is frequently introduced and

gamma is calculated by bumping the underlying spreads uniformly by
varying amounts (for example, in the range of 50 to 150 percent depend-
ing on the actual level of spreads). We therefore require efficient algo-
rithms once again, as it requires a recalculation for various spread levels
in a brute-force computation.*

Microconvexity: iGamma
Single name, or idiosyncratic convexity, iGamma, is defined as the con-
vexity resulting from a single CDS spread moving independently of
the others, i.e., one spread moves while the other names remain
unchanged:

(10)

where Si100(t): = (S1(t), . . . , S1i − 1(t), Si(t) + 100 bp, Si + 1(t), . . . , SN(t)).
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*While some of the efficient calculations of spread sensitivities outlined in the Appendix can
be extended to higher order sensitivities, we are focusing on the most generic implementa-
tion through “brute-force” or “bumping” in the remainder of this chapter.



Convexity of Delta-Hedged Tranches
In practice, one is mostly concerned with the convexity of delta-neutral
tranches, or portfolios of tranches, index, and single name positions when
specific trading strategies are being developed. While a more elaborate
discussion of specific strategies follows in the next chapter, we explore
important convexity issues for simple delta-hedged equity and senior
tranche positions next.

Similarly to the definitions in Equations (9) and (10), the convexity of
a single name CDS can be defined as the difference between the RiskyPV100
and 100 times the RiskyPV01. For relatively simple credit exposures, multi-
plying the spread shift by the RiskyPV01 provides a good approximation of
the true MtM impact, and while some level of convexity is present, the sign
of the MtM impact is the same for various levels of spread widening. We
will show that such consistency is not guaranteed for CDO tranches, high-
lighting the need to compute such higher order spread sensitivities. We will
illustrate that the convexity of tranches can be very different to the convex-
ity of single name CDS (and across tranches), which therefore expose delta-
hedged or neutral portfolios to spread convexity. This not surprising, as the
delta itself is a function of spread level and changes when spreads move.
Again, in practice, the easiest way to observe convexity is to plot the P&L of
a delta-hedged transaction. In particular, the change in tranche MtM, the
change in hedge portfolio MtM, and the net P&L for a uniform and parallel
shift in all (or a single) credit spreads provide some valuable insight into the
likely MtM behavior of delta-neutral strategies.

Macroconvexity In order to understand spread convexity and
the resulting MtM of delta-hedged positions, we consider a delta-hedged
equity tranche (long correlation) and a delta-hedged senior tranche (short
correlation) when all spreads move together (macroconvexity/gamma)
next.*

Delta-Neutral Long Equity Tranche Selling protection on an equity
tranche and buying delta-amounts of single name CDS results in an
increase in expected tranche loss and a shift of the risk away from the
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*A (delta-neutral) equity tranche is often denoted as a long correlation position as an
increase in implied correlation leads to a decrease in tranche value. Similarly, a (delta-
hedged) senior tranche is a short correlation as an increase in compound correlation implies
an increase in tranche value.



equity tranche to mezzanine and senior tranches when all credit spreads
widen. Essentially, this means that we are overhedged, as discussed in the
previous section on first order sensitivity. Therefore, the MtM change on
the delta portfolio is greater than the MtM on the equity tranche. Since the
MtM on the hedge portfolio is positive, the net MtM, or P&L, is positive.
Table 7.2 summarizes the behavior for both spread widening and
tightening scenario, and Figure 7.4 shows a typical plot for such a long
correlation trade.
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F I G U R E  7. 4

Gamma for a Long Correlation Equity Tranche.

Gamma: Delta neutral long equity tranche as a function of parallel shift in
all spreads
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T A B L E  7. 2

Delta-Neutral Portfolio MtM (Long Equity Tranche) 
for a Change in ALL Spreads

All Spreads Widen All Spreads Tighten

Equity Tranche (protection sold) −MtM +MtM

Delta notional of CDS +MtM −MtM
(protection bought)

Effective Hedge Overhedged Underhedged

Net MtM (net P&L) +MtM +MtM



From an investor’s perspective, in order to maintain a delta-neutral
position, single name CDS contracts need to be sold at higher spreads,
thus locking in a profit. However, if spreads are significantly tighter, the
equity tranche becomes relatively more risky, implying higher deltas, i.e.,
the portfolio is underhedged. Put another way, the change in equity
tranche position MtM is higher than the change in the current hedge port-
folio, which implies again a positive net position.

Delta-Neutral Long Senior Tranche For an investor who is short
correlation by selling protection on a senior tranche and buying
underlying CDS, the net MtM behaves the opposite. If all portfolio spreads
are widening, the risk shifts towards the senior tranche, which implies that
senior tranche deltas need to increase: the tranche is underhedged. With
the MtM of the tranche decreasing (the tranche is worth more, but we sold
protection) and the delta MtM increasing, further CDS contracts need to be
bought at a higher spread. This means a net loss to the portfolio. The
reverse holds for the tightening scenario and is further illustrated in Table
7.3 and Figure 7.5.

Microconvexity Perhaps counter-intuitive, the iGamma or micro-
convexity of a tranche is generally the opposite to macroconvexity. For
example, a spread widening on a single CDS implies, for the long equity
tranche, a positive MtM on the hedge portfolio and a negative MtM on the
equity tranche. The equity delta for that name increases as, relative to the
other credits, this name becomes more risky. Hence, the MtM of the hedge
portfolio increases as all other spreads remain unchanged, leading to an
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T A B L E  7. 3

Delta-Neutral Portfolio MtM (Long Senior Tranche) 
for a Change in ALL Spreads

All Spreads Widen All Spreads Tighten

Senior Tranche (protection sold) −MtM +MtM

Delta notional of CDS +MtM −MtM
(protection bought)

Effective Hedge Underhedged Overhedged

Net MtM (net P&L) −MtM −MtM



MtM change on the hedge portfolio due to changes only in credit i’s spread
(despite changes in all other deltas). In such a situation, we need to buy
more CDS on name i at a higher spread (as we are underhedged), imply-
ing a negative net MtM or P&L.

For a delta-neutral senior tranche, a spread widening of only a sin-
gle credit implies that we are essentially overhedged, as this credit
becomes relatively more risky for the equity tranche and relative less
risky for the senior tranche. As a result, this CDS needs to be sold at a
higher spread, implying a positive net MtM. Table 7.4 illustrates the P&L
impact further for a long correlation hedged equity tranche and a short
correlation hedged senior tranche.

Figure 7.6 illustrates graphically iGamma for both hypothetical
trades, also highlighting the significant assymmetry (difference in absolute
MtM) for different delta-neutral CDO tranches. The difference in MtM
behavior of different tranches also provides opportunities for hedging
some tranches by shorting others. In order to do so, of course, the tranche
spread, correlation, and default sensitivity need to be well understood.

Realized Correlation
The previous examples and definitions of macro- and microconvexity are
of course not unique. One could also consider situations where a fraction
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F I G U R E  7. 5

Gamma for a Long Senior Tranche.
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T A B L E  7. 4

Delta-Neutral Portfolio MtM for a Change 
in ONE Spread

One Spread One Spread
Widens Tightens

Equity Tranche (protection sold) −MtM +MtM

Delta notional of CDS (protection bought) +MtM −MtM

Effective Hedge Underhedged Overhedged

Net MtM (net P&L) −MtM −MtM

Senior Tranche (protection sold) −MtM +MtM

Delta notional of CDS (protection bought) +MtM −MtM

Effective Hedge Overhedged Underhedged

Net MtM (net P&L) +MtM +MtM

F I G U R E  7. 6

Delta-Neutral Long Equity or Senior Tranche.

iGamma: Delta neutral long equity and senior tranche as a function of
parallel shift in one credit spread only
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of the portfolio (e.g., n obligors) spreads are moving, while the rest of the
portfolio spreads remain unchanged. Another way of describing these
spread movements is in terms of correlation. Clearly, the situation where
one spread blows out significantly while the others remain unchanged can
be seen as a low correlation environment, whereas all spreads widening



together corresponds to very high correlation. Frequently, realized correla-
tion is defined as the observed spread correlation between the credits in
the portfolio relative to the assumed (or implied/compound) correlation.
Realized correlation can be positive or negative: positive if observed cor-
relation is above the compound correlation and negative if observed
correlation is lower.

Generally, a delta-hedged tranche that is a long correlation generates
a profit for a positive realized correlation and a loss for a negative realized
correlation (see, e.g., Kakodkar et al., 2003). For example, investors hold-
ing delta-hedged equity (that are long correlation) hold long gamma (pos-
itive MtM and positive realized correlation) and short iGamma positions
(negative MtM and negative realized correlation). Similarly a delta-
neutral tranche that is a short correlation will generate a loss for a positive
realized correlation and a profit for a negative realized correlation. For
example, a delta-hedged senior investor (who is short correlation) holds
short Gamma (negative MtM and positive realized correlation) and long
iGamma positions (positive MtM and negative realized correlation). 

Time Decay: Theta

The value and spread on a CDS converges to zero with its maturity
approaching, but the rate of decline is determined by the slope of the
credit curve or spread term structure. For example, consider an upward
sloping (index) credit curve, where a significant amount of defaults is
expected towards, say, the last year of the transaction. If no defaults occur
during the first year of the transaction, the protection buyer faces a sub-
stantial MtM loss as a significant amount of losses “disappear,” leading to
a significantly lower valuation after a year. With junior tranches being lev-
ered investments on default, their value (to the protection buyer) declines
faster than the index value declines as time passes. Looking at the absolute
tranche value, tranches with index deltas higher than one lose value faster
than the index, whereas senior tranches with deltas lower than one lose
value much slower than the index or portfolio.

Formally, time decay is frequently defined as the change in MtM or
total return that a tranche position generates when time passes, all other
parameters remaining unchanged (i.e., credit spread term structure,
compound or base correlation, no defaults, etc.). Theta is usually com-
puted by simply valuing a tranche with different time horizons (matu-
rities) and taking the difference. For example, from a protection seller’s
viewpoint,
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where ν denotes the time that has passed since inception of the transaction.*
For a typical equity, mezzanine, and senior tranche backed by an

investment grade (IG) portfolio or index, the total return is shown for var-
ious tranches from the protection seller’s viewpoint in Figure 7.7. Theta
would therefore be the difference between the values at two points along
these curves.

It is also interesting to consider the speed of time decay, i.e., how
much of the total value is realized every year. It is not unusual for IG
tranches to observe that only the equity tranche value decays slower than
the index, whereas the other tranches decay faster. Looking at the expected
premium received and the expected tranche loss through the life of the
transaction gives further insight into the theta of different tranches. While
at inception of a trade, expected premium PVs and expected tranche loss
PVs are equal, as time evolves, the premium received will not exactly offset
tranche losses in each period.
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*An alternative view of time decay can be obtained by rolling down the transaction on the
interest rate and credit spread forward curves.

F I G U R E  7. 7

Total Return of CDO Tranches for Different 
Time Horizons.
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Figure 7.8 plots the expected tranche loss and expected premium for
a typical IG mezzanine tranche.

We can observe that protection buyers pay more than required over
the first few month of the transaction and the relationship reverses at a
later point in time. From a protection seller’s viewpoint this implies a
negative theta (negative MtM).

For a senior tranche, expected premiums are flat in each period,
which reflects the small incremental loss over each period. Similar to the
mezzanine tranche, losses are initially significantly below periodic spread
or premium expectations.

Only equity tranches may have periodic losses exceeding the
expected premium received initially. Figure 7.9 illustrates this for a typical
tranche when all premium payments occur periodically, with no upfront
payments. Here, theta is initially positive from a protection seller’s view-
point, but negative thereafter.

Correlation Sensitivity: Rho

As previously discussed, different CDO tranches have different sensitivity
to changes in correlation. Junior tranches are typically long correlation as
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F I G U R E  7. 8

Expected Premium and Loss for Mezzanine Tranche.

Periodic expected premium and loss for a mezzanine tranche
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the value of protection decreases (from a protection buyer’s perspective),
when correlation increases, causing the trance value to decrease corre-
spondingly. Senior tranches, on the other hand, are short correlation (value
increases in correlation) for investors who bought protection. Mezzanine
tranches are typically relatively insensitive to changes in correlation. In
today’s credit markets, compound or base correlations are quoted daily on
liquid index tranches and severe changes have been observed in the past.
Given the sensitivity of tranche positions to changes in implied correlation,
an understanding of the correlation sensitivity is essential in managing the
risk in ST CDOs. Over time, however, the sensitivity of various tranches
can change, particularly if credit spreads in the underlying CDOs move
significantly or if losses occur and diminish subordination.

Formally, we define Rho as the MtM change of a tranche for a small
(typically 1 percent) change in the compound correlation that is used to
price the tranche, that is:

Rho MtM ( , , ( ), ) MtM ( , , ( ), %)
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Periodic expected premium and loss for a equity tranche
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Expected Premium and Loss for Equity Tranche.



In practice, Rho is once again computed by bumping the correlation
parameters and tranche revaluation.

In general, long equity or short senior tranches have positive Rho
(long correlation positions), while long senior or short equity postitions
have negative Rho (short correlation positions). For example, Figure 7.10
plots Rho as a percentage of the tranche size for a typical (and risky) CDO
portfolio with a fixed tranche size of 1 percent and varying attachment
points (or levels of subordination).

The figure reveals that Rho tends to zero for very high levels of sub-
ordination (senior positions) but there is also a correlation neutral point
between the senior and equity tranches. It is therefore possible to con-
struct a correlation neutral mezzanine tranche around this point. For
example, in a tight spread environment, junior mezzanine tranches tend
to be correlation neutral. Indeed, we can try to construct tranches (e.g.,
two mezzanine tranches, one at each side of the correlation neutral point)
such that the portfolio of tranches is correlation neutral, particularly as
the change in expected tranche loss due to a correlation move from ρ to
can be derived as an integral over changes in the attachment probabilities:
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RHO as a function of subordination (fixed tranche size of 1%)
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Correlation Sensitivity as a Function of Subordination.



In practice, of course, correlation may change by more than 1 per-
cent, which means that a “correlation hedged” tranche is still exposed to
possible losses from more severe correlation movements. Furthermore,
correlation may depend on spreads, which would also imply an imperfect
correlation hedge (see Chapter 8 for further details).

Base Correlation
The computations so far have considered only compound correlation, and
similar steps are required when base correlation is employed instead (refer
to the chapter on CDO pricing for further details). There, one assumes fre-
quently that the base correlation skew moves in parallel, i.e., for all tranches
the attachment and detachment point correlations change by the same
amount. In practice, of course, this base correlation skew may change. For
example, the skew tends to rise as spreads fall to very low levels, and flat-
ten as spreads widen. Similarly, the skew tends to steepen when correlation
increases and it tends to flatten with decreasing correlation.

Delta-Hedging and Rho
It is worth mentioning that a single name CDS, or a portfolio of CDS (and
hence a CDS index), is insensitive to correlation changes. As a result, a
delta-neutral tranche has the same correlation sensitivity as the tranche
itself. This allows us to combine tranches with CDS and index positions
without altering the correlation behavior of the credit strategy.

Default Sensitivity: Omega

Another very important risk factor in correlation products is the default
sensitivity, Omega, which we will define as the change in MtM of a
tranche position (hedged or unhedged) as a result of an instant default of
one underlying, keeping spreads on the surviving names unchanged.
Although default events occur relatively rarely, the impact of “the unex-
pected” should be measured. Furthermore, a default can be viewed as the
most severe form of iGamma where spreads widen unboundedly. We
define iOmega formally as:

Omega is often also denoted as VOD (value on default) or JTD
(jump to default), and we will use these terms interchangeably. The impact

iOmega : MtM ( , , ( ), ( )).T T ij j t T S t S t= ∞∆ 0 0 0
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of an instantaneous default is genuinely high for unhedged tranches,
whereas the level of risk for hedged strategies depends on the tranche
seniority and thickness. The impact of a sudden default on the perfor-
mance of credit strategies is important, particularly when comparing
different strategies with similar expected returns (or carries) at the out-
set. This section only provides some conceptual discussion, and a more
detailed insight into the performance/relative value of popular trading
strategies is given in Chapter 8.

Multiple Defaults (Omega)
In practice, it is not only interesting to consider the MtM change as a result
of a single default, but also as resulting from multiple defaults. We define
the default sensitivity, when the n-widest trading names are defaulting, as

.* The n names with the highest credit spreads are chosen as these
are the most likely defaulters, but many different combinations of n default-
ers could be chosen. In reality, of course, a probabilistic view can be
imposed and a distribution of Omega, and tranche P&L more generally, can
be derived for different trading strategies (see Chapter 8).

iOmega and Omega for Hedged and Unhedged
Tranche Positions
Figures 7.11 and 7.12 show iOmega (VOD) and Omega (RVOD), respec-
tively, for a delta hedged equity and senior tranche. It is apparent that the
default sensitivity is significantly reduced for the delta-neutral strategy
up to a point where the sign of the sensitivity even reverses.

We can observe the maximum loss for six defaults in the case of
equity tranche and five defaults for the delta-neutral equity strategy.
Furthermore, Omega reduces for more than five defaults again and
becomes neutral around the breakeven scenario of eight defaults. Beyond
that, Omega is positive. It is also worth pointing out that due to upfront
payments (typical for equity tranches), losses amount to less than the total
tranche notional (<100 percent).

The (delta neutral) senior position reveals quite a different behavior.
The Omega of the delta-hedged position is significantly higher for the
hedge position for the first few defaults, compared to the senior tranche.
The hedged senior positions Omega is positive for the first 11 defaults,
and becomes negative thereafter.

Omegan
Tj
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*In Chapter 8, this measure will be denoted as Running VOD (RVOD).
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Default sensitivity for delta hedged equity position
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Default sensitivity for delta hedged senior position
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Default Sensitivity for Delta Hedged Equity Tranche.

F I G U R E  7. 1 2

Default Sensitivity for Delta Hedged Senior Tranche.



By focusing once again on just a single default, i.e., iOmega, we can
say that a long correlation delta hedged tranche has a negative MtM as a
result of default, is short iGamma, and also short iOmega. A short correla-
tion delta-hedged tranche (e.g., delta-neutral senior tranche) has positive
MtM after a single default, positive MtM is long iGamma and long iOmega.

(i)Omega and Spread Widening
In practice, it is also interesting to consider situations where spreads on
the surviving names widen as a result of one or more defaults. For a delta
hedged equity tranche that is long correlation, a widening of spreads on
the surviving names implies that the realized correlation increases. This
has a positive MtM impact and would therefore reduce the level of default
sensitivity (iOmega). Similarly, a short correlation position suffers an
MtM loss if all spreads widen and hence, the positive iOmega reduces.

Omega behaves in a similar way, e.g., a delta hedged equity
tranche’s default sensitivity reduces if all surviving spreads in the portfo-
lio would widen.

Of course, this last example highlights the possibility of interaction
between various (pricing) variables or risk factors and, as a result, high-
lights the need for more advanced sensitivities. For example, time decay
in the “Time decay-Theta” section is simply computed as the difference in
MtM when we reduce maturity while keeping all the other parameters
unchanged. Essentially, we ignore the impact of the new, shorter maturity
on other inputs, most notably correlation. If the correlation skew is differ-
ent for different maturities, the MtM calculation for a one-year time decay
of a five-year tranche should use the four-year base correlation. Similarly,
if we calculate spread sensitivity (convexity) and bump spreads up sig-
nificantly, we should use the correlation assumption applied for a more
junior tranche. Essentially, these are all higher order effects that can be
quite significant and would need to be addressed in more advanced sen-
sitivity calculations. We address such issues in Chapter 8 by motivating a
more flexible (and computationally demanding) MC framework for CDO
risk management.

SUMMARY AND CONCLUSIONS

This chapter forms the first part of our discussion on CDO risk manage-
ment. After a very brief introduction of risk measures important to buy-
and-hold investors and rating agencies, we focus on popular MtM
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sensitivity measures. We start with first order spread sensitivity and delta
hedging, by capturing the conceptual paradigm as well as practical imple-
mentation. Delta hedging gained widespread acceptance in credit mar-
kets, partially because many (fixed-income) risk management systems
were initially designed for single name exposures such as corporate
bonds or single name CDSs. For such products, delta hedging has proven
adequate and at first sight it seems plausible to introduce synthetic CDOs
into such a risk management framework through their delta-exposures.
However, the nonlinearity inherent in tranched products necessitates a
closer look into the likely MtM sensitivity to additional risk factors. We
introduce micro- and macrospread convexity, and show that the sign of
the MtM impact changes when the overall market is moving instead of
one individual spread. Similarly, the concepts of correlation and instanta-
neous default sensitivity are introduced, highlighting—once again—that
synthetic tranche positions, even when delta-hedged, exhibit significant
MtM risk.

Furthermore, spread, correlation, and default risk between various
tranches on the same reference portfolio can vary substantially, providing
opportunities to create hedging strategies that immunize against some (or
all) of the risks prevailing. For example, equity tranches exhibit substan-
tial default risk as well as spread risk, whereas the default risk of senior
tranches is much smaller when some spread risk still prevails. A delta-
neural combination of equity and senior tranches (has positive carry and)
compensates investors for taking default risk without having spread
exposure (at least to first order). The resulting hedge is cheaper than buy-
ing protection on all single names; however, residual higher order spread
and correlation risk exist (in addition to the default risk). For example, the
straddle outlined above has significant correlation risk, as changes in cor-
relation have an impact on both the long equity and the short senior
exposure.

In the next chapter, the practical aspects of many of these concepts
are put into practice by analyzing several popular CDO strategies. By
investigating the performance of real trades, we shed some further light
onto the inadequacy of pure delta-hedging for synthetic tranche products.
In addition, we are take a detailed look at risk/return characteristics of
such trades.
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A P P E N D I X  A

Building a Hazard Rate 
Term Structure

The standard assumption in credit markets is to assume that the hazard
rate is a piecewise flat function of maturity, which is sensible given the
limited number of observable points on the term structure of credit
spreads.

Given 1-, 3-, 5-, 7-, and 10-year default swap spread values, we
would build a hazard rate term structure with five sections λ01, λ13, λ35,
λ57, and λ710 where λkl is a short form of λkl(S(t)) in which t denotes the
time when the credit spread curve is available. Bootstrapping the term
structure of hazard rates is an iterative process, where we start by taking
the shortest maturity contract and use it to calculate the first survival
probability. In this case, the one-year default swap has to be used to cal-
culate the value λ01. Assuming quarterly premium payment frequency,
using a value of M = 12 (monthly frequency), and assuming that premium
accrued is not paid, λ01 is found by solving:

where a monthly discretization means τ0 = 0, τ1 = 0.0833, . . . , τ12 = 1 and R
denotes the assumed recovery rate.

This procedure is the repeated to solve for λ13 and the other sections
of the hazard curve until final maturity. Beyond that, a flat hazard rate is
frequently assumed. Defining τ = T − tν , we obtain the (risk neutral) sur-
vival probabilities implied from the term structure of credit spreads:
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A P P E N D I X  B

Efficient Computation of Tranche
Sensitivities within the Gaussian
Copula Recursive Scheme

The Gaussian copula model, as introduced in the chapters on correlation
and pricing, is most commonly implemented through a one-factor model,
and interpreted as the asset value of firm i, Ai, driven by a normally
distributed latent common factor V, and an normally distributed

independent idiosyncratic factor 

In Andersen et al. (2003), quasi-analytical techniques are developed
for the computation of the conditional loss distribution over a time inter-
val [0, t] by simple recursion since defaults, when conditioned on the out-
come of the factors, are independent. In order to do so, an arbitrary loss
unit, u, is required such that loss amounts li can be well approximated by
integer multiples of u, say li = kiu. Now let Ln, 1 ≤ n < N, be the loss mea-
sured in loss units in the subportfolio consisting of the first n obligors
(ordered arbitrarily). We then have the following recursive relationship
between the conditional distributions of Ln and Ln + 1:

pn + 1
V (Ln + 1 = K, t) = pn + 1

V (t)pn
V (Ln = K − kn + 1,t) + (1 − pn + 1

V (t))pn
V (Ln = K,t) (11)

where pn
V(Ln = K,t) = Prob(Ln(t) = K|V) denotes the probability of Ln units of

loss at time t conditional on factor V, and pn
V(t) denotes the PD for name n

by time t conditional on the common factor outcome. This relationship
can then be used to compute the portfolio loss distribution starting from
an empty portfolio.

Andersen et al. (2003) show that sensitivities of expectations over
the loss distribution can be efficiently computed using the recursive rela-
tionship (10). Let F(L(t)) be some function of the portfolio loss. If we con-
sider the sensitivity of its expectation to PD pi, that is, ∂E(F(L))/∂Pi(t), it
can be shown that

ε ρ ρ εi i i i iA V: .= + −1 2
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(12)

where Φ denotes the cumulative Gaussian distribution function and
ci(t) := Φ−1(pi) denotes the default threshold of asset i.

The first two factors of the integrand can be easily computed ana-
lytically, and the last factor can be derived from the recursive relationship:

Here, LN − 1
i is the loss of the portfolio with the ith obligor removed

and can be obtained from the recursive relationship very efficiently.
Within the context of the computation of spread sensitivities for CDO

tranches, we are interested in the computation of 

Hence, E(F(L(t))) = MtMTj(t0 ,t,S(t0)) = FPVTj(t0,t,S(t0)) − PPVTj(t0,t,S(t0),
where the fee PV and protection PV are functions of the expected
tranche loss , and are given by
Equations (7) and (8). As a result, the sensitivity of the MtM with respect
to changes in the underlying PD, of
name i requires the calculation of sensitivities of form Equation (12),
that is:
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Clearly, the RHS of both equations contains expressions of type
Equation (12).

Hazard rate, or credit spread sensitivities, are related to these PD
sensitivities by simple Jacobian factors. For example, assuming a constant
hazard rate λi, pi = g(λi) = 1 − exp{λit}, therefore 

Credit spread sensitivities can be computed similarly. Assuming that

, we obtain

A P P E N D I X  C

A Fast Analytical Model for CDO 
Sensitivities (LH+)

While the approach in Appendix B outlines a computationally efficient
and exact way of computing spread sensitivities based on the commonly
used recursive scheme, this section outlines an alternative based on an
extension of the asymptotic LHP approach first introduced by Vasicek
(1987). The advantage of this approach, developed by Greenberg et al.
(2004), is ease of implementation and computational speed as, essen-
tially, a closed-form solution for spread hedges can be derived; however,
it only provides an approximate solution. The authors show, however,
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that the size of the error is small for realistic portfolios and recommend
this approach for those looking for a fast, simple, and suitably accurate
tool.

The main idea is to single out the credit for which we want to com-
pute a particular sensitivity, and to treat the remaining names in the port-
folio asymptotically, i.e., we consider an LHP plus one additional asset,
which allows us to address both idiosyncratic and market wide risks in a
tractable way.

Model Setup

The asset values or latent variables of the homogeneous part of the port-
folio are assumed to follow Ai = ρ V + √1 − ρ2–––––εi, where common factor and
idiosyncratic terms are defined as before. Because all factor loadings are
identical we can write the conditional default probability of an asset in the
homogeneous portfolio as: pV(t) = Φ((C − ρV)/ √1 − ρ2–––––), where C := Φ−1(p(t))
and p(t) corresponds to the average default probability of an obligor in the
homogeneous pool. Assuming a total notional N and a (average) recovery
rate of R, we can write the expected conditional loss on the homogeneous
part of the portfolio as

ELV, LHP(t) = (1 − R)NpV(t).

In addition we assume there is a single asset (with notional N0 that
evolves as A0 = ρ0 V + √1 − ρ0

2–––––ε0 and defaults when the latent variable falls
below C0 := Φ−1(p0(t)). Then, the default probability of this single asset,
conditional on the market factor V is given by 

.

The total portfolio loss is then given by
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PORTFOLIO LOSS DISTIRBUTION

Greenberg et al. (2004) show that the conditional loss distribution,
pV (L(t) ≥ K) = Prob(L(t) ≥ K �V) ,

is given by pV (L(t) ≥ K) = 1{V ≤ X} + p0
V(t) 1{X < V ≤ Y}, where

and

Integrating over the common factor V enables us to derive the uncondi-
tional loss distribution in terms of the bivariate normal distribution
p(L(t) ≥ K) = Φ(X) + Φ2(C0, Y; ρ0) − Φ2(C0, X; ρ0), which can be very easily and
accurately evaluated numerically and is essentially a closed-form approach.

TRANCHE LOSSES

Rewriting the tranche loss LTj(t) = max[min(L(t) = Aj ,Dj − Aj), 0] = [L(t) −A]+ −
[L(t) − D]+, is, beneficial as it can be shown that the expectation E[L(t) − K]+

can also be computed very efficiently within the current model setup:

where denotes the covariance matrix used in the

evaluation of the trivariate normal distribution that can also be evaluated
very efficiently, see, e.g., Genz (2002).

CREDIT SPREAD SENSITIVITY

Calculation of credit spread sensitivities
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requires the efficient computation of , as

.

Greenberg et al. (2004) show that can be computed very
efficiently as
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Although this expression looks quite involved, its computation for a set of
different valuation dates is straightforward, as the only numerical effort lies
in the evaluation of the bivariate normal distribution function. We have
therefore obtained an algorithm where tranche deltas can be computed
almost analytically, which offers a considerable advantage in computation
time and effort compared to the “brute-force” or bumping approach, and is
also less implementation intense than the recursive derivation. All this
comes at the cost of accuracy; however, Greenberg et al. (2004) show that
the relative error is less than 5 percent.

A P P E N D I X  D

CDO Valuation and Sensitivities
Through MC Simulation

MC simulation still provides one of the most flexible platforms for prod-
uct valuation and risk management. However, the advantages of flexibil-
ity and ease of implementation come at the cost of computational
efficiency and accuracy, especially when sensitivities have to be computed.
While variance reduction techniques such as importance sampling, control
variates, or stratified sampling [see Glasserman (2003) and Jaeckel (2002)
for a general overview] may be applied with some benefit, more direct
approaches focusing particularly on the problem of sensitivity estimation
appear more promising and can be combined with variance reduction
techniques in many cases.

MC VALUATION: BRUTE FORCE

In the following, we stay within the framework of the standard Gaussian
copula model, where the latent variable is given by 
as introduced earlier. Using standard notation, portfolio losses can be sim-
ulated by generating independent, standard normal random numbers for
the common and idiosyncratic factors, and extracting the time of default
as outlined in chapters on correlation and pricing.

For a standard ST CDO, the portfolio loss in each simulation ω,
ω = 1, . . . , W, at time t is given by

A Vi i= + −ρ ρ ε1 2
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where pi(t) = 1− exp[∫t
0λi(s)ds] denotes the unconditional PD of name i.

Then, for each simulation ω the tranche loss can be computed as

and the PV of protection and premium leg, PP (t, ω) = PP
(t0, t, λ(S(t0)), ω) and FP (t, ω) = FP (t0, t, λ(S(t0)), ω), can be easily
computed along the lines of Equations (7) and (8).

Repeating the simulation W times allows us to estimate the expected
values of protection and premium legs as 

and

respectively.

Then, the fair tranche spread can be computed, or the MtM can be esti-
mated as

MC SENSITIVITIES: BRUTE FORCE

Computation of spread or hazard sensitivities involves once again the
finite difference approximation
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within the MC framework. The brute force computation of sensitivities
proceeds by bumping of the spread curve and re-evalution; i.e.,

Of course, the problem with this MC simulation is that the sensitivity is
mainly determined by just a few MC paths. Shifting the spread curve of
name i by 1 bp will increase this PD slightly, and hence decrease the default
time. The sensitivity is therefore mainly determined by the few paths that
result in additional defaults, and only when this additional default results
in an additional payout of the default leg of the CDO. In general, it is obvi-
ous that such a solution is highly unstable, and approaches focusing more
directly on MC sensitivities need to be considered.

MC Sensitivities: Likelihood Ratio Method

One such approach that greatly enhances computation and accuracy is the
likelihood ratio method. Rott and Fries (2005) show that we can approxi-
mate the derivative by 

where LRi denotes the likelihood ratio for the change of measure from the
original to the shifted default intensities for the underlying credit i. If we
denote by τi and the random default times corresponding to the inten-
sities λi(Si) and λi(Si + 1 bp), respectively, and by di(t) = λit(Si + 1 bp) − λit(Si),
the difference in intensities at time t, it can be shown that within each MC
simulation, this likelihood ratio is given by

Here, τi(ω) denotes the simulated default time in iteration ω, and φ denotes
the density of the standard normal distribution function, while Φ denotes
the cumulative distribution functions of the standard normal distribution.
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From this expression, it is apparent that only the default times τi(ω)
are simulated from the original spread or hazard curve, and each simula-
tion path contributes to the computation of the hazard sensitivity. This
method depends purely on the density of the default times and not on the
payoff as such; hence, once implemented for ST CDOs, it also works for
all other credit products where a valuation code is available. Further
details on the likelihood ratio method within the Gaussian copula frame-
work can be found in Rott and Fries (2005) and Joshi and Kainth (2003).

An alternative to the previous method is the pathwise method, which
is often the most efficient, but the payoff of each product must be differen-
tiated analytically, which makes it more difficult to implement. We refer the
reader to Joshi and Kainth (2003) and Glasserman (2003) for further details.
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INTRODUCTION AND MOTIVATION

The collateral debt obligations (CDO) modeling framework with static
spread term structures and employing copula functions (see Chapters
4 and 6 for further details) is taking hold in the accounting of syn-
thetic CDO trading profit and loss (P&L). This has been spurred by
tranches on standardized credit indexes (e.g., CDX.NA.IG, CDX.NA.HY,
ITRAXX Eur, etc.) that have provided a calibration target for pricing
models. There are ongoing discussions on different ways of fitting prices
across the capital structure (e.g., “compound correlation,” versus “base
correlation”) as discussed in Chapter 6. Less understood are hedging
strategies and their cost and effectiveness, and the basic risk-reward
profiles of popular CDO trading strategies and the associated capital-
ization needs for banks. The two main reasons for this state of affairs
are:

1. The popular emphasis and practical techniques for pricing CDO
tranches have not addressed replication and hedging errors
(accounting for spread diffusion, spread jumps, and jumps to
default with uncertain recovery) and therefore have not resulted
in a commensurate maturing of the hedging and risk manage-
ment paradigm.
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2. Risk aggregation regimes that are based merely on marginal
and linear spread sensitivities are rendered ineffective and
misleading due to the nonlinearity created by tranching (i.e.,
payoff is non linear in reference asset performance). These
linear risk aggregation regimes are deeply entrenched in risk
management circles that have not effectively participated in the
revolution of structured credit products.

The practical task of assessing risk and developing a hedging strategy
involves delineating probabilistic descriptions of the variables that the
prevalent pricing models depend upon, and assessing a probabilistic
description of the P&L associated with the trading strategy. While Chapter
7 focused on the conceptual framework and practical computation of
popular risk measures, this Chapter is focused on assessing credit related
risks and P&L performance. It can, therefore, be seen as part two of our
discussion of CDO risk management.

The risks in one elementary long-only credit trade (sell protection on
a credit index) and three popular synthetic CDO strategies are compared
throughout this chapter. We will illustrate how marginal spread and
default sensitivities are insufficient for the CDO trading strategies
on account of the nonlinearities created by tranching credit exposures,
despite providing a good description of the elementary credit strategy
(sell protection on pool of names). In addition, we will compare the carry
at inception with the downsides of popular CDO trades and provide a
comparison of the carry and value on default (VOD) probability
distributions for different CDO strategies.

After analyzing the risk characteristics of static portfolios in terms of
default, spread, and correlation as introduced in Chapter 7, we provide
an exposition of dynamic hedging and risk management. Specifically, we
explore the equity trade (sell equity protection and buy index protection)
and show how the trading P&L evolves and can be attributed to different
market variables. We therefore go beyond the static risk measures
previously described.

OVERVIEW OF SOME POPULAR 
TRADING STRATEGIES

Throughout this chapter, we will investigate a number of popular CDO
trading strategies by using the tools introduced in Chapter 7, and by
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providing a probabilistic P&L exposition. The trading strategies consid-
ered are outlined next:

Elementary Portfolio

Selling protection on an index of credit default swap (CDS) is an example
of an elementary credit portfolio. For example, the credit index,
CDX.NA.IG, consisting of 125 North American credits, will be used to
provide sample calculations. The risk-profile for the CDO trades will be
compared with risks incurred in simply selling protection on the index.

CDO Portfolios

Quotes on tranches referencing credit indices and market participants’
estimates of associated deltas (CS01 or Credit01 hedges)* are widely avail-
able on at least a daily frequency. These trades are sometimes based on
delta-exchanges, which are ostensibly CS01 “hedges” for the tranches,
which can, in certain strategies, be the long credit risk driver. We focus on
three CDO trades based on such an indexed product:

I. Positive Carry Equity Tranche Trade
Sell protection on the 0 to 3 percent tranche referencing the CDX.NA.IG
index and hedge CS01 exposure by buying protection on the index.

II. Positive Carry Straddle Trade
Sell protection on 0 to 3 percent of the CDX.NA.IG index and hedge CS01
exposure by buying protection on the 7 to 10 percent tranche.

III. Positive Carry Senior Mezzanine Tranche Trade
Buy protection on the 7 to 10 percent tranche of the CDX.NA.IG index and
hedge CS01 exposure by selling protection on the index.

In these CDO strategies, at execution, the premium received as a result
of selling credit protection exceeds the premium paid to immunize small
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spread changes (where upfront payments are amortized over the tranche
duration and added to the running premium to provide an estimate of the
net carry). The carry for these trades is computed by adding the running
coupon rates to the time-decay of the trade mark-to-market. At inception
the carry is close to a no-default cash flow found by simply amortizing the
upfront payments over the tranche duration. Table 8.1 compares the carry
at inception for the three trading strategies on March 31, 2005. It reveals that
the Straddle (II) had the highest carry followed by the delta-neutral equity
tranche (I) and the delta-hedged senior mezzanine tranche (III).

PRACTICAL RISK MANAGEMENT I: PITFALLS
OF MONITORING CREDIT DELTA ALONE

The trading strategies introduced above are particularly interesting in the
view of traditional risk management systems. Such systems typically do
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T A B L E  8 . 1

Quote and Comparison of CDX.NA.IG.4 Tranche Trade
Carry at Inception on March 31, 2005. The Carry
for the CDO Strategies is Expressed in Terms of the
Tranche Notional, and for the Straddle (that Involves
Two Tranches), It is Expressed in Terms of the Equity
Tranche Notional

CDX.NA.IG.4 6/20/2010 49 bps

Tranche Price Correlation Delta

0–3% 500 bps +33.5% 19% 17×
3–7% 199 bps 5% 7×

7–10% 64 bps 16% 2.8×
10–15% 25 bps 21% 1.1×
15–30% 10 bps 32% 0.3×

Strategy Description Carry

Linear Long CDS index 49 bp/pa

CDO-I Delta-hedged equity tranche 457 bp/pa

CDO-II Straddle 1149 bp/pa

CDO-III Delta-hedged senior mezzanine tranche 116 bp/pa

Abbreviations: CDO, collateral debt obligations.



not address structured credit capital structures and the ensuing credit non-
linearity. These risk systems were built for aggregating risks from vanilla
credit products, such as corporate bonds or single name CDS, and are
designed to monitor delta exposures (“bond equivalent market values” as
customary in big bond shops, or delta-notional, respectively). These risk
management systems typically monitor CS01: i.e., the change in mark-to-
market (mtm) due to an issuer spread widening by 1 bps. Even for a single
CDS, this is a simplification because the duration over which premiums
are expected to be paid depends on the issuer risk-neutral default probabil-
ity and then non linearly on the issuer spreads. As a consequence, the P&L
impact of spreads changing by more than 1 bps doesn’t have to be the
product of CS01 and the spread move (in bps). Indeed, if an issuer, on
which a trading book has sold default protection, was to suddenly approach
default (say by an unbounded spread rise), the loss is bounded above by
the notional amount (minus recovery and adjusting for mtm). Such non-
linearity is endemic to credit instruments and it renders the results of
sensitivity based risk management systems as approximations of the true
risks. However for vanilla credit, such approximations are not pernicious.
A book that is a net CDS protection purchaser will have its losses under
spread tightening understated in a CS01 based system. A book that is a net
CDS protection seller will have its losses under extreme moves somewhat
exaggerated in a CS01 based system. In either situation, the sign of the
mtm move incurred due to the extreme spread widening or tightening is
captured by the spot CS01 of a vanilla credit book.

In the presence of such risk management regimes, the chosen CDO
strategies can be particularly popular as they essentially provide positive
cash flows (carry) with no delta exposure (widely regulated and moni-
tored risk). In addition, if risk capital requirements are explicitly driven
by, or proportional to, delta exposures, as they have been traditionally
and continue to be, trading desks can essentially book positive-carry
without having to set aside anticipatory risk capital.

Unless risk management systems and risk capital models capture
credit spread-default convexity (single name and marketwide), and corre-
lation risk measures, the risk–return characteristics of CDO trading strate-
gies illustrated here can be quite different compared to risk management
rendition based on the equivalent “delta-portfolio.” We show here how the
“delta-portfolio” can miss both the risks and the opportunities in CDO
trading. In the next section, we shed some light on the sensitivities intro-
duced in Chapter 7 for the three CDO strategies, before providing a full
P&L (back-testing) case study thereafter.
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Credit Spread Sensitivity

As previously discussed, a CS01 based risk management framework can
provide a good approximation for vanilla credits, while the nonlinearity
introduced through tranching creates non monotonic mtm changes for
spread changes (e.g., market moves versus single-name, idiosyncratic
moves). Here, we put the machinery developed in Chapter 7 into practice
and examine model CDO trades. At inception, there is little or no “CS01
risk,” yet if spreads were to blowout on any issuer name, the trade incurs
a mtm loss. Figures 8.1 to 8.3 show the mtm impact when spreads on mul-
tiple names are widening-tightening for the three trading strategies,
respectively. For each figure, the bottom panel provides a “zoom-in” for
spread shifts from −20 to 40 bps.

We can clearly see that the mtm impact of spread widening on mul-
tiple names is certainly not the same as the sum of mtm impacts when
individual names widen, and that the impact is amplified for larger spread
changes. In fact, the simultaneous widening of spreads on many names
could result in an mtm gain for the strategies shown here. This is referred
to as having “positive index gamma.” The positive index gamma can be of
a local nature (e.g., if all names widen by 100 bps the mtm impact is posi-
tive), and the event of the spreads of all names increasing unboundedly
could still be a loss event as shown in Figure 8.3 for the delta-neutral se-
nior mezzanine tranche. It is also interesting to note that all trades appear
to incur a positive mtm impact when spreads blow out enormously on
somewhere between 5 and 10 names. However, while a further widening
on even more names leads to larger and larger gains for the first two strate-
gies, Figure 8.3 reveals that large “blowouts” may reduce the mtm gain
again or even cause losses if the number of blowouts is too large.

While some of these spread shock scenarios are quite unlikely, it is
interesting to note that when considering more realistic market changes
(e.g., a large number of assets moving by moderate amounts, or the
spreads of a few names widening modestly, as shown in the lower panels
of Figures 8.1 to 8.3), the mtm sensitivity of the CDO trades is an increas-
ing function of the initial trade carry (Table 8.1). The highest carry trade,
the straddle (II), has the highest spread sensitivity, while the lowest carry
trade, the senior mezzanine trade (III), has the lowest, when considering
a spread shock scenarios in the range of −20 to +50 basis points. For the
straddle, this is caused by the higher convexity causing larger losses (in
the event of the spread of a handful of names widening) on both sides of
the trade (i.e., long equity and short senior tranche).
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Spread Sensitivity of Delta-Hedged Equity Tranche (0 to
3 percent). The Issuers are Arranged in a Decreasing
Spread Order and the top 1,2, . . . , N Names are Applied
a Parallel Spread Shock (Amount Depicted on
Horizontal Axis). (CDX. NA. IG.4, March 31, 2005)
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Spread Sensitivity of Straddle (0 to 3 Percent and 7 to
10 Percent). The Issuers are Arranged in a Decreasing
Spread Order and the Top 1,2, . . . , N Names are
Applied a Parallel Spread Shock (Amount Depicted on
Horizontal Axis). (CDX. NA. IG.4, March 31, 2005)
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Spread Sensitivity of Delta-Hedged Senior Mezzanine
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are Applied a Parallel Spread Shock (Amount Depicted
on Horizontal Axis). (CDX. NA. IG.4, March 31, 2005)



Hence, the carry may be seen as compensation for the idiosyncratic
and systematic spread risk inherent in the corresponding CDO strategies.
These examples highlight how a marginal CS01 based risk management
framework does not effectively capture risks prevailing in popular CDO
strategies. The spread sensitivity computations show that the popular
CDO strategies are susceptible to idiosyncratic spread move risks, and
any effort to “bucket” spread moves by ratings or sectors and potentially
perturb many issuers simultaneously in the same direction is a poor way
to assess CDO trading “market risks.” The market risk of these CDO
strategies can be controlled by the propensity of spreads to not move
together and, therefore, the broad-brush coherent moves based on either
sector or ratings are misleading.

In practice, when interested in synthetic CDO trading Value at Risk
(VaR), both CS01 based VaR and/or VaR based on broad market moves
are troublesome. While a CS01 based “VaR” can be completely uninfor-
mative for synthetic CDOs (by not addressing convexity and correlation
risk), a “VaR” based on broad index moves can be even more misleading,
because the positive carry strategies encounter losses under spread twists
and not necessarily under coherent parallel shocks that are more amenable
to traditional “market-risk” scenarios.

As a result, while there can be index or sector factor drivers for spread
moves, a name specific spread time series (modeled or historically sam-
pled) is a prerequisite for articulating a hedging strategy and for assessing
a synthetic CDO trading VaR. Hence, good risk management requires a rea-
sonable (probabilistic) description of possible future outcomes including a
“real world” description of the credit spread environment.

The actual hedging, of course, still employs liquid indices because of
ease–efficiency of execution. Periodic single name hedging can be under-
taken as an overlay on top of the index hedging if one desires to maintain
a small CS01 exposure per name. As the index is equally weighted, and
the hedge ratios per name (found by bumping individual spreads one at
a time) are not identical, employing the index as a CS01 hedge results in
slight residual negative and positive CS01 exposures to individual
names.*
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*Note that whether one bumps all the names 1 bps simultaneously and finds the overall
index hedge ratio (in terms of notional), or one bumps individual names to assess individ-
ual hedge ratios and hedges using the index with a notional that equals the sum of the indi-
vidual hedge notionals, one arrives at the same point (because convexity does not manifest
strongly at 1 bps).



Correlation Sensitivity

For illustration purposes all of the sensitivities shown above did not involve
any changes to the implied correlation of the tranches. The tranche implied
correlation reflects how the market views interact with model assumptions,
which are: (1) static spread term structure; (2) normal copula; (3) fixed recov-
ery; (4) deterministic asset-correlation structure. Indeed, there is no way to
separate the effect of all of these assumptions once they have been thrown
into the kitchen sink of implied correlation. Correlation is not the only uncer-
tain variable in portfolio credit derivative pricing. Recovery uncertainty and
recovery-default correlation are long outstanding features that do not find
systematic treatment even in single name CDS pricing practice, to date.

The need for different implied correlation values to be used in pric-
ing different tranches across the capital structure is referred to as the cor-
relation skew. The correlation skew can be at least qualitatively explained
with even a small set of the kitchen sink ingredients.

In the standard pricing model with static spreads, the asset correla-
tion input controls the correlation between the times to default of differ-
ent issuers. The value of buying protection on a tranche is a nonlinear
function of the input correlation as shown in Figure 8.4. Therefore if one
hypothesizes a correlation uncertainty band and assesses the expectation
of the tranche value under uncertain correlation, one gets a price that is
possibly quite different from what one gets by simply inputting the aver-
age correlation (Jensen’s inequality). As value of default protection in dif-
ferent tranches have different degrees of dependence on the correlation
input parameter, the implied correlation that produces the same price, as
found under a correlation uncertainty band, is tranche-dependent. These
rudimentary correlation convexity arguments are sufficient to explain the
correlation skew qualitatively. Of course, asset and default correlation are
not deterministically knowable parameters. Under significant correlation
convexity, it is inconceivable for the market to price different tranches of
the same structure at the same implied correlation.

As correlation is a pricing variable, CDO trades are exposed to the
market risk of that pricing parameter changing. Interestingly, just like for
spread-convexity for small to medium spread movements the correlation
sensitivity is also an increasing function of the initial trade carry (see
Figure 8.4 for the three CDO trades analyzed here). The highest carry
trade, the straddle, has the highest correlation sensitivity (moving both
the equity and senior mezzanine tranche correlation simultaneously in
the same direction which is not guaranteed to occur). The equity tranche
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trade has the second highest correlation sensitivity and the second high-
est carry. The senior mezzanine tranche trade has the lowest carry and the
lowest correlation sensitivity. One reason for the higher correlation sensi-
tivity of the straddle (II) is that an increase (decrease) in implied equity
and senior correlation leads to an mtm decline (increase) on the equity,
and a mtm increase (decline) on the senior tranche, respectively. Hence,
the long equity and the short senior tranche position suffer a double mtm
impact, while the hedging portfolio in the other two trades (I and III) is
insensitive to changes in correlation. Again, the carry seems to be a com-
pensation for the additional correlation risk inherent in CDO positions.
Managing the risk by only looking at the spot delta-equivalent portfolio
would totally miss these risks, as the delta-portfolio is correlation neutral.
Later we show the connection between spread risks and implied correla-
tion risk when we look at the evolution of the trading P&L.

Default Sensitivity

Marginal Value On Default (iOmega)
As with almost all credit risky instruments, default of one or several names
in the portfolio referenced by the CDO tranches may have a significant
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impact on the model trades. As introduced in Chapter 7, the change in mtm
due to an issuer spread widening unboundedly (referred to as the VOD or
iOmega) provides important insight into the risk inherent in CDO tranches.
Figure 8.5 shows the mtm impact on the vanilla credit portfolio and the
three CDO trades if one obligor in the portfolio is defaulting. Hence, each
“dot” in Figure 8.5 shows the mtm loss for a specific credit defaulting.

For the long credit index trade, the sign of the VOD is negative: the
spread on the index is the price of taking on default risk. The “delta-
hedged” CDO trades also have negative marginal VODs to each reference
entity in the pool. Within each positive carry CDO strategy on
CDX.NA.IG.4, the marginal VODs (iOmega) themselves do not vary a
great deal in this largely BBB pool. For different trading strategies, how-
ever, iOmega is ordered by the carry (computed at inception) of the strat-
egy, i.e., the greater the carry; the more negative is the marginal VOD.
Once again, the carry associated with the “delta-hedged” CDO trade is
clearly a compensation for taking on credit event risks. Whether the carry
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Marginal Value on Default (VOD) Sensitivity for Three
CDO Strategies and the Long Credit Index Trade. There
are 125 Issuers in the Credit Index and Associated
CDO Analyzed here. The Horizontal Axis is the Credit
Spread Level of the Distinct Issuers, and the Vertical
Axis is the Marginal P&L Impact of Default (VOD) of
Distinct Issuers. (CDX. NA.IG.4, March 31, 2005)



provides a trading book any excess spread over what is fair to take on
credit risk is an interesting question that will be addressed by comparing
the default risk and carry of these strategies with the elementary credit
strategy further below.

Running Value On Default (Omega)
By simultaneously defaulting multiple issuers, the running VOD of a trade
can be computed. As there are many possible 2-tuples, 3-tuples, etc., there is
no unique running VOD unless we are dealing with a homogeneous port-
folio. As in Chapter 7, the running VOD shown here is based on sorting the
issuers in the order of decreasing spreads and defaulting the top n names
simultaneously as outlined in Chapter 7. Figures 8.6 to 8.8 show the running
VOD for the three different CDO strategies. The entire strategies exhibit a
“positive index gamma” type profile in the running VOD, i.e., the losses due
to a few defaults is less than the sum of the corresponding marginal VODs.
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Default Sensitivity of Delta-Hedged Equity Tranche (0 to
3 Percent).

(The cumulative MtM impact due to defaults for the Equity Tranche Strategy is shown here. The issuers are sorted by
their five year credit spread and the highest 1, 2,. . . . N names are defaulted. The MtM changes can be decomposed
into those arising from the CDO Tranche and from the single name CDS. Due to upfront payments received for sell-
ing equity protection, the losses incurred due to defaults for the tranche level out at amounts less than the tranche
notional. The CDS protection purchased via the index results in payoffs that grow linearly with the number of
defaults. The net running default P&L impact is non-monotonic, with the maximum loss scenario corresponding to
five defaults (24 percent of equity tranche notional) and the breakeven scenario corresponding to eight defaults
(CDX. NA. IG.4, March 31, 2005)).
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In fact all the strategies show a gain after the number of defaults exceeds a
certain level.

For the positive carry equity tranche trade or straddle, the concept
of maximum loss is useful because there is a clearly defined maximum
loss for any sequence of defaults (Figures 8.6 and 8.7). The concept
becomes less clear for the positive carry senior mezzanine tranche trade
(Figure 8.8). After a certain number of defaults, the senior mezzanine
strategy shows a reversal of the P&L gains associated with an increasing
number of defaults. This feature arises because after the CDO tranche is
eaten through by defaults, there is no short exposure left.

In general, the notion of a “maximum loss” associated with portfo-
lio of CDO trades is not always a viable risk management target because
the maximum loss scenario can be wildly unrealistic (e.g., all the names in
the pool defaulting). Also, if we do not need to worry about defaults
beyond the first maximum loss scenario, then carry versus maximum loss
provides important bounds on CDO pricing with “arbitrageurs” (more
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Default Sensitivity of Straddle (0 to 3 Percent and 7
to 10 Percent Tranche).

(The cumulative MtM impact due to defaults for the straddle strategy is shown here. The net running default P&L impact
is non-monotonic, with the maximum loss scenario corresponding to six defaults (47 percent of mezzanine tranche
notional) and the breakeven scenario corresponding to ten defaults (CDX. NA. IG.4, March 31, 2005)).



appropriately “relative value traders”) stepping in when the carry to max-
imum loss ratio is out of line with other credit opportunities (i.e., the carry
to maximum loss ratio of a trade strategy can exert a “good-deal bound”
on CDO tranche pricing).

The positive carry CDO trades tend to exhibit positive P&L under
sufficiently large (or intermediately large) numbers of default within the
pool. Therefore, when considering a portfolio of positive carry CDO
trades with non overlapping pools, the worst P&L outcome associated
with a small number of defaults is likely to be when those defaults occur
in non overlapping pools.

VOD Risk Per Unit Carry
An extension to the computation of Omega is to actually simulate defaults
of the underlying issuers in a Monte-Carlo (MC) setting, which will gen-
erate many possible running VOD scenarios, and the associated mtm
impact. We will therefore be able to look at a distribution of mtm changes
resulting from a plausible default simulation. In particular, when the
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Default Sensitivity of Delta-Hedged Senior Mezzanine
Tranche (7 to 10 Percent).

(The cumulative MtM impact due to defaults for the mezzanine tranche strategy is shown here. The net running
default P&L impact is nonmonotonic, with the first maximum loss scenario (9 percent mezzanine tranche notional)
corresponding to nine defaults and the first breakeven scenario corresponding to eleven defaults (CDX. NA. IG.4,
March 31, 2005)).



VOD losses are compared as multiples of the carry of trades (for positive
carry trades), interesting insights and relative value comparisons can be
obtained.

In the following we look at such VOD/carry distributions when
“real measure” defaults are simulated using a normal copula with 25 per-
cent asset correlation and Standard & Poor’s 2004 corporate default
table.* The P&L impact of the issuers that default over a time horizon less
than one year is found by repricing the portfolio under that scenario. This
is repeated 50,000 times and the one-year distribution of default sensitiv-
ity as a fraction/multiple of carry (annual cash flow associated with the
trade) can be investigated. Figure 8.9a shows such carry-default statistics
at different confidence levels, which will be valuable when comparing
different trades.

The figure reveals the positive index gamma nature of the CDO strate-
gies, i.e., the loss stemming from many defaults is lower for the CDO strate-
gies compared to the index itself. Hence, the tail for the long short strategies
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*Of course, one could employ Moody’s MKMV expected default frequency, Kamakura
default probabilities, or impose a proprietary view on the issuer’s balance sheets and default
probabilities.
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One-Year Default Risk. (CDX. NA. IG.4, March 31, 2005)



is relatively thin (at high confidence levels) compared to the index for the
same amount of initial carry. Such a view is quite different from simply
looking at the absolute carry. For instance, the carry-default profile of the
different CDO strategies come out to be quite similar (on the specific date
shown here), despite the absolute carry numbers being widely different.
Hence, a proper risk capital calculation based on default risk would render
the carry per unit risk capital for these strategies to be quite similar. Put in
another way, at the 99 percent confidence level, the carry of the CDO strate-
gies is not particularly attractive compared to a long credit index (on March
31, 2005), while at higher confidence levels the CDO strategies exhibit less
default risk per unit carry compared to the long credit index strategy.

The observations made in Figure 8.9A are of course tied to the mar-
ket data (issuer spreads, tranche pricing) and will change as the market
spreads and pricing correlations change as the credit-cycle evolves and as
market participants learn more about their risk–reward profiles, as shown
in Figure 8.9B.

The residual VOD risk (expressed as a multiple of the trade carry)
may be altered by hedging differently than an index-CS01 hedge. In some
instances, buying more index protection for the equity trade reduces the
VOD risk per unit carry (implying a cheap index protection and rich com-
pensation for taking on equity tranche risk) and in other instances buying
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One-Year Default Risk Versus Hedge Ratio for Equity
Tranche Trade. (CDX.NA.IG.4)

less protection reduces the VOD risk per unit carry (implying an expensive
index protection and poor compensation for taking on equity tranche risk)
as illustrated in Figure 8.10.

This should not be surprising because the delta found by perturbing
the spreads by 1 bps is not addressing hedge error minimization or elimi-
nation (in fact the standard CDO model does not address any dispersion
in spreads either), therefore, the residual VOD risk (which is not zero even
in theory) can be altered by changing the hedging strategy. Of course, such
an alteration of hedging will end up producing credit-delta exposure,
which will then show up in traditional risk management system radars.

Throughout this section, we have shown that a CS01-only based risk
management system is particularly inadequate because of the potential of
creating positive carry trades with little CS01 and with significant nega-
tive VOD sensitivity. A trading book with long and short positions on
CDOs and CDS (e.g., the three model trades analyzed here) can become a
seller of default protection on the issuers in the CDO reference pools (i.e.,
exhibit negative VOD to reference names), yet not exhibit any negative
CS01 to those issuers, and under extreme spread widening for any of



those issuers can incur a significant loss. If all risk management is doing
is staring at credit delta or CS01 (or equivalent bond market value expo-
sure), then CDO trading can simply become a pretext to sell default pro-
tection without any limit, or recognition of opportunities and risks.

PRACTICAL RISK MANAGEMENT II: 
TRADING P&L CASE STUDY

The Trade: Sell Equity Tranche 
Protection Position on CDX.NA.IG.4

While the previous analysis dissects the residual risks in CS01 or delta-
hedged trades, and presents interesting risk–return tradeoffs (carry ver-
sus VOD, spread, and implied correlation sensitivity), it does not show
how different components of the P&L evolve over time in response to
simultaneous changes in market variables: i.e., issuer spreads and implied
correlations. To examine in greater depth how a combination of market
variable changes influences the risk–return of synthetic CDO trades, we
examine the components of the trading P&L (1) Cash component; (2)
Mark-to-market component. The change in a trading book’s wealth is
given by the sum of these components: ∆W(t) = C(t) + mtm(t). Under the
assumption that the cash flows received/incurred accrue at the short
risk-free rate, we have

The cash flows incurred at times ti are denoted by ci, and r(τ) is the risk-
free short term interest rate. The mark-to-market component responds to
evolving spreads, pricing model correlations, and defaults, as discussed
in Chapter 7.

An equity tranche trade on the CDX.NA.IG.4 pool is initiated on
March 22, 2005. Using historical time-series for on the run quotes on
CDX.NA.IG.4, index spread, and single name spreads; we display the P&L
of different types of trades (unhedged and delta-hedged) and the impact
of rebalancing on P&L volatility. To interpret these results, we examine
many different measures of credit spread (see Appendix A) in addition to
the implied correlation time series for the equity tranche.
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Time-Decay—Carry View at Execution

If there are no market moves, as time passes by and the trade matures,
what would be the wealth of the trader at different points in time? The
cash component of trader’s wealth is made up of the initial payment
received to sell protection and ongoing premium payments. If a hedge is
in place then there are ongoing payments for the hedge. The upfront pay-
ment on the CDO tranche and the received running premium payments
(netted with premium payments to purchase the hedge) are assumed to
accrete and grow at short-term risk-free rates. The initial mtm on the CDO
equity tranche is negative due to the upfront payment, but it decays with
time due to the decreased expected contingent payments over smaller
maturities. Figure 8.11 (top panel) depicts the time-decay view of P&L on
a sell equity tranche protection position.

Figure 8.11 (middle panel) depicts the time-decay view of P&L on
a buy CDS index protection, i.e., the CDS index position needed to delta
hedge CDO equity tranche sell protection position at inception
depicted in Figure 8.11 (top). The mtm component of the CDS index
hedge is zero at inception (assuming a fairly priced contract with no
upfront payment) and at maturity. The mtm of the CDS index hedge
may not be zero in between inception and maturity, depending on the
credit spread term-structure and the manner in which time-decay is
assessed. For the combined CDO tranche with CDS index hedge posi-
tion, the P&L components are shown in Figure 8.11 (bottom panel).
These time-decay views of P&L are assessed by decreasing the maturity
of the transaction (from five years at inception). Another view of time-
decay is by rolling the transaction on the interest rates and credit spread
forward curves.

Both the unhedged sell equity protection trade (Figure 8.11 top) and
the CS01-hedged trade (Figure 8.11 bottom) are positive carry insofar as in
the absence of market moves the protection seller’s wealth increases
with time. Both the unhedged sell equity protection trade and the CS01-
hedged trade, have negative marginal VOD sensitivities (Figure 8.5), with
the unhedged trade having larger carry and a more negative VOD sensi-
tivity than the CS01-hedged trade. Therefore both the unhedged sell
equity protection trade and the CS01-hedged trade represent long credit
positions.
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Time-Decay View on Trade Date for Sell Equity Tranche
Protection Position. (CDX.NA.IG.4, March 31, 2005)



P&L Components With Market Moves: 
Back Testing Insights

We look at the P&L performance taking into account what actually hap-
pened in the market between March and December 2005 next. We dissect
again the cash and mtm components in this exercise. In the long-only (sell
equity tranche protection) trade or the statically delta-hedged trade, the
cash component is not influenced by movements in credit spreads (Figure
8.12 top panel). A sell equity protection position results in receiving an
upfront payment and ongoing running premium payments that have
been accrued continuously here. Delta hedging of the equity tranche
results in the running net premium to be negative (i.e., negative cash out-
flow) on top of the positive upfront payment. For the static hedge, the pre-
mium payments are also insensitive to spread moves after conducting the
initial trade, while rebalancing introduces some spread sensitivity.

The mtm of the trade is influenced by movements in credit spreads
and implied correlation, on top of time-decay (Figure 8.12 mid). The
unhedged sell equity tranche protection position is an outright long
credit-delta exposure and is also long correlation and therefore suffers a
deep blow when spreads widen on the average and the equity tranche
implied correlation falls. A short credit hedging position of course damp-
ens the mtm fluctuations (and reduces the cash component of the P&L).
The total P&L (cash plus mtm) is displayed in Figure 8.12 bottom panel.

Of course, as deltas change with changes in market variables, differ-
ent hedging frequencies will impact the P&L differently. It turns out that a
static hedge, i.e., a CS01 hedge using the index at inception, ends up per-
forming not too different from a daily CS01-hedged trade employing the
index to hedge. The less frequently hedged trade that involves delta hedg-
ing every two weeks or two months happens to perform better than the
daily or statically hedged trade (Figure 8.12 bottom panel). In the following,
we provide an interpretation of the P&L moves based on market variables
attempting to gain further insight into the drivers of P&L performance.

Interpretation: Role of Index Spread, Spread
Dispersion, & Implied Correlation

Figure 8.12 revealed that a sharp P&L drawdown event for the sell equity
tranche trade (initiated in March 2005 on CDX.NA.IG.4) occurred in May
2005. Figure 8.13 shows that this was associated with a widening of the
index average spread (top panel), a widening of the index cross-sectional
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Components of P&L for Sample CDX.NA.IG.4 Sell
Equity Protection Trade.
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P&L and Risk Factors for Sample CDX.NA.IG.4 Sell
Equity Protection Trade.



dispersion of spreads (middle panel), and a sudden drop in the implied
correlation for the equity tranche (bottom panel). Both index spread
widening and increase in dispersion had built up over April, and then in
May there was a sharp drop in implied correlation.

Even the delta-hedged equity tranche trade experienced a signifi-
cant P&L drawdown (10 to 15 percent of equity tranche notional) despite
being CS01 hedged using the index, although delta hedging significantly
reduces the negative P&L relative to naked long equity risk position (39
to 35 percent of equity tranche notional). This is because of the increase
in cross-sectional spread dispersion in the index and the concomitant
decrease in the equity tranche implied correlation. Index average spread
widening, increase of cross-sectional dispersion, and drop of implied cor-
relation tended to occur together (Figures 8.14 and 8.15).

The scatter plot of the equity implied correlation versus spread dis-
persion (Figure 8.15) suggests that the market developed a new realization
of the vulnerability of the sell equity protection trade to pool idiosyn-
crasies in May 2005.

The response of the implied correlation pricing parameter to mar-
ket spread moves can be interpreted as follows. As the index spread
widens, those market players who have a leveraged long exposure to the
index via an unhedged equity tranche protection sell position and those
who have a heightened exposure to idiosyncratic spread moves via CS01
hedged sell equity tranche protection positions incur losses. In response
to these losses they either try to close out their position by taking an
opposing position, or demand greater compensation for taking on the
risk. The increased demand for buying equity tranche protection and the
higher asking price for selling equity tranche protection both manifest as
a downward move in the equity tranche implied correlation parameter.

This empirical feature of spread dispersion being associated with
index widening and equity implied correlation decreasing underlines the
inadequacy of employing CS01 as the primary risk-monitoring tool for
synthetic CDO trades. A delta-hedged trade will not exhibit any CS01 and
not prepare anyone for losses that will occur when the index spread
widens: These losses are inflicted by idiosyncratic spread-movements and
the associated decrease in equity implied correlation which can be inter-
preted as an increase in risk-aversion to idiosyncratic credit impairments.
If a CDO tranche is thought to simply be a collection of single name credit
instruments (albeit with the correct individual CS01) one is not prepared
for the downside risks associated with idiosyncratic spread flare-outs and
implied correlation movements.
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Time Series of Cross-Sectional Average Spread, Index
Spread, Cross-Sectional Spread Dispersion
(Normalized by Average Spread), and Equity Tranche
Implied Correlation. (CDX.NA.IG.4)

0

2

4

6

8

10

12

14

16

18

20

100 120 140 160 180 200

Normalized Dispersion (%)

E
q

u
it

y 
Im

p
lie

d
 C

o
rr

el
at

io
n

 (
%

)

3/22/05-5/10/05

5/11/05-12/31/05

1/1/06-3/31/06

F I G U R E 8 . 1 5

Equity Tranche Implied Correlation versus Normalized
Spread Dispersion Scatter-Plot. (CDX.NA.IG.4)



366 CHAPTER 8

Tales of poor P&L attribution from credit-delta risk factors and ele-
ments of surprise and fear associated with P&L marking and risk-
assessment abound the broker-dealer and hedge fund community
transacting in synthetic CDOs. The experiences in 2005 have crystallized
the fallacy of measuring synthetic CDO risk by systems that were built
primarily for single name instruments and have also highlighted the
importance of assessing P&L risk scenarios under a comprehensive set of
spread moves, with single name granularity, and correlation move sce-
narios, in addition to the Monte-Carlo default risk described in previous
sections.

Realized Correlation of Spread Moves 
and Hedging Frequency

A measure of the tendency of spreads to move together is expressed by
the “realized correlation,” which for a pair of names is the correlation of
changes in spreads over different intervals. This measure is defined in
Appendix A. To calculate the correlation between the changes of spreads
for a pair of obligors from a time series requires a time window, which is
taken to be the CDX.NA.IG.4 life (from March 22 onwards). This creates a
pair-wise realized correlation matrix of spread change over different time
intervals, and the average of those correlations (off-diagonal elements) is
shown in Figure 8.16.

Spreads show a tendency to have more coherent moves over longer
time-intervals (e.g., two months) compared to shorter time-intervals
(daily). For example, the daily time-interval spread changes have an aver-
age correlation of about 16% whereas the correlation of spread changes
over two weeks rises to 35 percent, and at two months it becomes ~ 40 per-
cent. Beyond time-intervals of two months the realized correlation
appears to fall (although that inference is relatively less reliable consider-
ing the time averaging window to infer correlations is approximately nine
months long).

The relationship of realized correlation with time-interval helps to
interpret the performance of the hedging strategy, where hedging every
two weeks ends up with a more favorable P&L outcome relative to
daily delta hedging, and hedging every two months ends up even bet-
ter (Figure 8.12). This is a demonstration of monetization of positive
index spread gamma when spreads move coherently over the hedging
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interval for the delta-hedged equity tranche. In the extremely artificial
case where there is a perfect coherence of spread moves (i.e., all spreads
move homogeneously) and no movement in implied correlation, the
mere act of delta hedging would result in perpetual P&L gains (Figure
8.17).

In the more realistic case, idiosyncratic spread moves and the as-
sociated movements in the implied correlation parameters compete with
coherent spread moves, thus more frequent CS01-hedging in itself does
not guarantee the least volatile P&L profile and of course not the most
favorable P&L outcome. Of course, the time window of this analysis is
limited, and further analysis is needed in a framework that integrates
market moves and default events to elucidate a definitive hedging
strategy.

SUMMARY AND CONCLUSIONS

Throughout this chapter, we have investigated the P&L sensitivity of three
popular, positive carry CDO trades. In particular, spread, correlation and
default sensitivity highlighted the non linearity in tranche products and
the fallacy of employing credit-delta as the primary risk measure for CDO
trading. Furthermore, we show that within some popular CDO trading
strategies, a higher carry is associated with higher mtm sensitivity to these
additional risks.

Systematic Versus Idiosyncratic Risks

We have shown how the return of synthetic CDOs depends on spread
movements throughout the life of the transaction and the interaction of
hedging and realized spread correlation. Single name spread convexity,
while providing an important measure of issuer risk, is not sufficient to
fathom CDO trading risk–reward, as the mtm sensitivity to marketwide
spread changes (“index spread convexity”) can have a different sign from
the “idiosyncratic spread convexity.” If all spreads widen together by
much more than 1 bps, a P&L gain is booked while independent spread
moves (or single defaults) causes losses. Furthermore, pricing for the
equity tranche appears to have a direct dependence on spread dispersion,
which further exacerbates the losses experienced when spreads disperse,
as experienced in 2005.
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Tranche Pricing Correlation Risks

Positive carry CDO trades are in general long the correlation pricing param-
eter which can undergo sudden changes that can be caused—amongst other
things—by sector credit quality moves (e.g., autos in May 2005) or specific
trade flows (leveraged super senior trades—see Chapter 11—in September
2005). These fluctuations in implied correlation reflect an evolving market as
it grapples with tranched credit risk in long-short portfolios. These fluctua-
tions in implied correlation also reflect how the market becomes more or less
risk averse depending on how coherently the spreads move, and a discern-
able correlation between the equity tranche pricing/correlation and the
cross-sectional spread dispersion measure has been noted.

Credit Event Risk Versus Credit “Delta” Risk

We have also shown that the positive carry synthetic CDO trades in which
the traders wealth increases with time in the absence of any market moves,
can be created with little CS01 risk, yet being long credit exposures insofar
as the trades have a marginal default sensitivity (VOD) that is negative, i.e.,
a loss in the event of a default, for all the names in the CDO reference pool.
Additionally, for these positive carry CS01-neutral trades, the loss due to
default sensitivity (VOD) tends to be an increasing function of the initial
carry on the trade. This is different from traditional portfolio credit risk
where the sign of the credit-delta exposure (CS01) and default exposure
(VOD) tends to be the same. Similarly, the impact of multiple defaults is dif-
ferent from the sum of the impacts of single name defaults. For the delta-
hedged CDO trades, multiple defaults can result in P&L gains despite the
marginal impact of each individual default being a significant loss.

Risk Aggregation and Reporting Regimes

Marginal and linear sensitivity based risk aggregation provide risk man-
agement an appearance of sophistication insofar as every business line’s
marginal contribution to the overall risks and risk capital “can be” assessed.
However such a risk management framework that is adequate for relatively
linear credit instrument such as bonds, CDS, portfolios of bonds and CDS,
has to evolve significantly to deal with a credit-type risk associated with
synthetic CDOs as discussed above. Many popular synthetic CDO trades
do not even show up on the radar of such traditional risk management
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schemes that are largely driven by credit-delta exposures—which provides
the lowest common denominator of exposures than “can be aggregated.”
Risk reports will have to first stop equating credit-delta risk exposures with
credit event risk exposures because CDO trades may not exhibit any credit-
delta risk at inception (based on 1 bps spread moves) and yet be long all the
credits underlying the CDO pool from a credit event perspective (i.e., neg-
ative VOD). The risk-systems challenge is to replace the highly convenient
marginal and linear sensitivity based approaches, with the trade strategy
cognizant approach that requires: (1) resolving single name credit descrip-
tion without any bucketing (or artificial separation of “index” and “specific”
risks); and (2) a revaluation of the CDO positions under historical and/or
simulated scenarios (including spread jumps and defaults) that explicitly
describe the CDO reference pool at a constituent level and capture realistic
spread dispersion, spread jumps, defaults, recovery, and correlation moves.
Then, hedging strategies can be constructed that address all prevalent risks
by minimizing P&L hedging-errors rather than only addressing spot spread
delta sensitivity.

Models that explicitly capture the joint credit spread and default
dynamics and directly address hedging costs provide a competitive
advantage over the practice of just fitting static spread copula models to
observed prices (without addressing replication-hedging challenges and
costs) while accounting for synthetic CDO P&L. As the hedging and risk
management strategy evolves, the correlation markets will “learn” to
co-exist with the volatility markets (e.g., single name and index CDS
swaptions) and the differences in index and single name implied volatil-
ities should provide some constraint on the implied correlation markets.
As these two markets start to transmit to each other, the credit modeling
paradigm will be further pushed towards directly addressing hedging
costs and hedging-errors while accounting for coherent and idiosyncratic
spread moves and credit events, as an essential precursor to assessing
fair-value rather than as an after thought.
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Disclaimer: The authors make no representation as to the accuracy or
completeness of the information provided. The views expressed here are
those of the authors, and do not necessarily represent those of their
employers.
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and Investment Strategies

Olivier Renault
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In this chapter, we discuss the key motivations for investment in the struc-
tured credit’s most popular product to date—collateral debt obligations
(CDOs). We tackle this vast area by breaking it down into the two main
structured credit markets: cash CDOs and synthetic CDOs. Although
these two markets are broadly defined as CDOs, they are very different in
terms of structure, underlying assets, and investor focus. Accordingly, we
will deal with the motivations for both of these markets separately. First,
we will discuss cash CDOs that are natural extension of asset-backed secu-
rity (ABS) technology to more lumpy assets. Then, we will address syn-
thetic CDOs that apply credit derivative technology to portfolios. Both
markets share some of the same motivations for issuance, which we will
discuss in the next section.

THE MOTIVATIONS OF A CDO ISSUER

The two main motivation for issuing CDOs are the need to free up capital
or optimize return on capital, and rating arbitrage, i.e., the possibility to
fund assets more cheaply in securitized format than by holding them on
balance sheet.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



Balance Sheet Optimization

Optimizing return on regulatory and economic capital is a key concern for
bank portfolio managers. Reducing the capital backing existing holdings
can help redeploy the capital to more profitable businesses, shrink the
balance sheet, or boost returns.

One obvious way of reducing the capital held is to sell a particular
set of assets that are capital-intensive. But these assets tend also to be the
ones that yield more and selling them could harm the return on the banks
portfolios. CDO technology enables banks to keep most of the returns
while significantly reducing regulatory capital. The idea is to sell the
assets to a separate bankruptcy-remote special purpose entity, thereby
ridding the balance sheet of these assets and then buying back the equity
tranche of the CDO, which has a levered first-loss exposure to the origi-
nal assets and a correspondingly high yield.

Figure 9.1 provides an example of optimization of return on regula-
tory capital. Many regulators impose a one-for-one capital charge for
holding the equity of a CDO but only an 8 percent capital charge for hold-
ing debt. This means that, should the bank decide to hold 2 percent of
equity and 30 percent of the second loss (debt) of a CDO, it would have to
hold a minimum of 2 percent × 1 + 30 percent × 8 percent = 4.4 percent of
the notional in capital. In practice, the bank would usually not hold any of
the debt but only retain the equity. Therefore, it would only have to hold
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2 percent capital in our example. This contrasts with 8 percent capital to
be held against the loans on the balance sheet. Thus, even with a first-loss
piece requiring a one-for-one holding of capital, this strategy still typically
can improve the return on the capital held against it. In our example, the
capital drops by a factor of four, whereas the return may drop by only one
half. Furthermore, the operation can drastically reduce the amount of
assets on the balance sheet, and therefore help the bank extend new loans.
The Balance sheet management was the original motivation behind cash
CDOs, but balance sheet CDOs went out of fashion. They made a significant
comeback in 2005.

By 2001, as the credit derivative market developed, banks were able
to hedge credit exposure synthetically through the use of credit default
swaps (CDSs) and, later, portfolio CDSs. The advantage of synthetic se-
curitization is that the original assets are still owned by the bank, but
because some of the credit risk is hedged, a reduction of capital can be
achieved.

The rationale of the trade is the same as for cash CDO, but it does
not involve a true sale of assets. The bank buys protection on the second
loss piece of its loan book and retains the first loss. Because assets
remain on the balance sheet, a full deduction of capital cannot be
achieved but the hedged portion would typically benefit from a reduc-
tion of capital from 8 percent to 1.6 percent. The much lower costs
involved in synthetic reduction of risk compared to a true sale partly off-
set the lower reduction in capital. The added benefit of synthetic balance
sheet CDOs is that the risk transfer can occur without the original bor-
rower’s knowledge that the bank has hedged the credit risk. This
enables banks to maintain or even increase relationships with borrowers
while keeping the bank’s risk exposures to individual borrowers under
control (Figure 9.2).

Spread/Rating Arbitrage

Arbitrage CDOs, whether cash or synthetic, are motivated mainly by the
mismatch between the return on assets (spread on loans or CDSs) and
the cost of liabilities (spread on CDO notes). Because spreads on both
sides are partly driven by ratings, it is often possible to tranche up a
portfolio where the weighted average spread on rated liabilities is sig-
nificantly lower than the spread generated by the assets. This enables to
generate excess spread for equity holders who are often the arrangers of
the transaction. The main difference between a balance sheet CDO and
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an arbitrage CDO is the fact that assets for arbitrage deals are purchased
specifically for the transaction rather than assets held on the arrangers
books.

Often a manager is employed to manage the underlying collateral in
order to satisfy rating agency criteria and to avoid defaults. The manager
is incentivised by the fees he earns during the life of the transaction.
Investors in the debt tranches of arbitrage-driven CDOs are motivated by
a different type of “arbitrage”: CDO tranches tend to offer more yield than
cash assets (bonds and loans) with similar ratings. We will now describe
investors’ motivations in more detail.

MOTIVATIONS OF A CDO INVESTOR

Improving Returns Under Rating Constraints

Many fixed-income investors have strict rating constraints for their invest-
ments while also facing yield targets. The tightness of spreads prevailing
over the last few years has made it hard for these investors to achieve their
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return targets while maintaining the risk of their portfolios within their
risk limits. In order to achieve it, many have turned to CDOs that are typ-
ically higher yielding than cash assets. For example, in December 2005,
AAA corporate bonds were trading at a spread of 5 basis points over Libor,
whereas CDOs with comparable maturities were offering spreads between
25 basis points (AAA CLOs—Collateral Loan Obligations) and 50 basis
points (AAA synthetic investment-grade CDOs).

There are several reasons for this rating arbitrage.

♦ First, the secondary market liquidity on tranches of CDOs is
lower than that of corporate bonds. A higher spread is therefore
justified to compensate for the lack of liquidity.

♦ Second, and related to the previous point, some portfolio
managers are restricted from investing in structured credit,
either by internal constraints or by guidelines determined by
their investors or regulators. This creates market segmentation
and a lower potential demand for CDOs than cash assets.

♦ Third, CDOs are leveraged investments and usually have 
higher mark-to-market volatility (or beta) than corporate bonds.
This is particularly true of synthetic CDOs. Even buy-and-hold
investors often mark their portfolios to market and require
to be compensated for this extra volatility by means of a
higher spread.

♦ Fourth, cash assets and CDOs have different recovery profiles. A
corporate bond, in the event of default, is likely to have some
nonzero recovery value. A common assumption in the
investment-grade credit market is a recovery of 40 cents to the
dollar. A tranche, however, has the potential to be completely
wiped out if the number of defaults in the underlying pool is
large enough.

♦ Lastly, there may be a perception among investors that CDOs
are simply more risky than cash assets, despite having the
same rating. This is difficult to judge historically as CDO
rating histories are still relatively short and the type of prod-
ucts has evolved considerably over the years. The poor perfor-
mance of high-yield CBOs (Collateral Bond Obligation) issued
in the late nineties may however have contributed to this nega-
tive perception, although CBOs have now almost disappeared
from the new issue market.
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Diversified Exposure to Different 
Underlying Asset Classes

Another reason for the success of CDOs is that they enable investors to
access a large pool of underlying assets (Figure 9.3). This brings immedi-
ate diversification benefits and enables some investors to get exposure to
assets they do not generally invest in.

For cash CDOs, the most popular asset classes are loans (for CLOs)
and mezzanine or senior tranches of ABSs (CDOs of ABS). By buying a
cash CDO, a corporate bond investor can enhance yield (as discussed ear-
lier) while only bringing limited correlation in his portfolio as loans, and
ABSs are typically not highly correlated with investment-grade corporate
bonds.

CDO investors also benefit from the expertise of the collateral man-
ager who often has a track record in managing loans or ABS assets.
Furthermore, the manager brings his ability to source the assets, which
can be difficult in periods of high demand as we saw in the last few
years.
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Tailored Risk and Return Profiles

CDOs are often said to have tailored risk return profiles. The “tailoring”
can be performed in at least four ways: choice of underlying assets, choice
of leverage, choice of rating, and choice of maturity.

One of the main advantages of CDOs is that they let investors dis-
connect their choice of risk from their choice of asset class. In a traditional
bond portfolio, investors who are restricted to hold investment-grade
paper will be forced to invest in well-rated bonds even if they believe the
value is in noninvestment-grade issues. With CDOs, the same investor
can access noninvestment-grade collateral while securing a high-grade
rating for his investment.

Conversely, investors looking for high return may still want to have
exposure to AAA ABS for diversification or value purposes. This can be
achieved by buying an equity piece of a CDO of ABS.

SYNTHETIC CDOS

Synthetic CDOs are one of the key products in the structured credit world.
They are portfolios of CDS that are tranched and sold on to investors
based on their risk/reward preferences. Figure 9.4 illustrates the basic
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setup of a standard synthetic CDO and how losses accrue up the capital
structure, starting with the erosion of the most junior tranche (equity) and
progressively affecting mezzanine and more senior tranches.

Over the last several years, synthetic CDOs have evolved through
different stages, from full capital structure deals to single tranches. Today,
they are firmly established as a credit investment and hedging tool. In the
following sections, we will discuss the motivation behind synthetic CDOs
and their main differences with cash products. We will also address who
the participants to that market are and what are the main investment
strategies followed by hedge funds and real money investors in the synthetic
CDO market.

COMPARISON TO CASH CDOS

Synthetic and cash CDOs have many similarities as they offer leveraged
exposures to a diversified basket of credits. Synthetic CDOs reference
CDSs which are standardized bilateral contracts, whereas cash CDOs are
more akin to a miniature bank, financing real assets, and distributing cash
flows. Some of the main differences between the two types of products are
listed below:

♦ Separation of credit risk from other types of risk. Synthetic structures
are not exposed to interest rates, prepayments, and other types
of risk that are common in cash CDOs. In particular, they allow
investors to disconnect their choice of interest rate duration to
that of credit duration.

♦ Sourcing collateral: asset diversity and speed of ramp-up. Using syn-
thetic credit risk transfer technology, originators are not lim-
ited by the ability to physically source the collateral assets.
Synthetic CDOs can be structured very fast as they do not require
a ramp-up period. On the other hand, the need of dealers to
hedge single-tranches restricts the universe of names that can be
included in synthetic deals. These are normally only credits that
are traded in the single-name CDS market.

♦ Single-tranche versus full-capital structure deals. Unlike cash CDOs
where the entire capital structure is sold, synthetic CDOs are
usually structured as single-tranche deals where only the risk of
a limited part of the capital structure is sold to investors. Dealers
hold the residuals risks (spreads, defaults, correlation, etc.) that
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are aggregated and hedged in their correlation book. Full-capital
structure synthetic CDOs are rare but attractive for dealers as
they prevent imbalances in their correlation books.

♦ Simplified CDO structures. Standard synthetic CDOs are much
simpler than cash CDOs as they only involve the distribution of
default losses. Cash CDOs rely on complex cash flow waterfalls
and various technical features such as interest coverage and
overcollateralization tests, prepayments, etc. The simplicity of
synthetics have enabled structurers and investors to use simple
models for pricing and risk management with only a limited
number of inputs (CDS spreads, correlations, and tranching
details). Proper modeling of cash CDOs require a detailed
knowledge of the underlying pool of assets and of the cash flow
distribution rules.

♦ Customization and easy execution. The simplicity of synthetic
CDOs allows them to be customized in terms of size and attach-
ment points for each individual tranche. Investors can select
their reference portfolios and choose the credit exposure that
best fits into their investment strategy.

♦ Static versus managed structures. Index-linked tranches are static
in their nature, but bespoke tranches can be managed. In private
transactions, investors can play the role of the manager if the
structure includes credit substitution rights, and publicly placed
synthetic deals usually include an external manager.

♦ Liquid and transparent market for standard index-linked tranches.
Index-linked tranches are some of the most liquid products in
the credit space. With the growth of CDS indices referencing
new asset classes and the increasing number of liquid tenors, we
expect that the index-linked tranche market will continue to
expand. Derivatives referencing index-linked tranches are also
likely to be introduced in coming years. No such benchmark
exists for cash CDOs.

♦ Shorting the credit risk in a leveraged form. Unlike for cash CDOs
that are primarily buy-and-hold investments, investors can take
long or short positions in synthetic tranches. Synthetic CDO
markets provide a variety of different directional and hedging
investment opportunities. Short buckets can also be included in
bespoke synthetic CDOs to mitigate the effect of a credit market
selloff.

Cash and Synthetic CDOs 381



MOTIVATION BEHIND SYNTHETIC 
CDO INVESTORS

Synthetic CDOs gained their popularity from the variety of advantages
they offer over cash CDOs or other related credit investments. These differ-
ences will be discussed in greater details next, but the advantages of syn-
thetics are primarily their ease of structuring, their ability to separate
funding (interest rate component) and risk transfer (credit risk component),
and the ability they offer to investors to express views on the market.

Liquidity of Index Tranches 
and Flexibility of Bespokes

One of the most important motivations behind the use of synthetic struc-
tures is the flexibility and customization that can be achieved by the
single-tranche technology. Instead of structuring a full-capital structure
CDO, synthetic CDOs are issued in single-tranche form, where each trans-
action is a transfer of the credit risk between the seller and the buyer
of protection on a specific part of the capital structure (e.g., from 3 to 7
percent on Figure 9.4). In that way, investors can target their specific
risk/return profiles, and originators combine and manage outstanding
positions in aggregated portfolios (“correlation books”).

The synthetic CDO market is separated into flow tranche products,
such as index-linked tranches that are primarily used as relative value
and hedging tools, and bespoke (customized) tranches, which are private
or publicly placed synthetic CDOs with a structure that is designed to fit
investor needs. Liquidity and transparency in CDX/iTraxx index-linked
tranches shaped the correlation market in the variety of ways. Credit
investors can take on long or short leveraged positions, look for relative
value trades, or express directional view strategies. On the other side,
dealers are using index-linked tranches to hedge their positions in the
bespoke products. In the recent past, we have experienced a significant
improvement in liquidity of index-linked tranche across the term structure.

More Growth to Come

The development of synthetic indexes outside the corporate credit
domain, in particular in ABS, should contribute to future expansion. The
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bespoke tranche market has also been developing at a rapid pace. Buy-
and-hold investors, who focus on senior bespoke tranches, use these
products not just as a leveraged investment, but also to achieve diversifi-
cation of their positions. Leveraged accounts can find attractive investment
opportunities in the junior and equity tranches of customized portfolios,
as dealers are usually left with the overhang of bespoke equity positions
from the process of placing customized senior tranches to traditional
investors. In the past, credit hedge funds have been the natural buyers of
the equity residual. As index-linked synthetic tranches become even more
liquid and transparent, the key advantage of bespoke products is in cus-
tomization: investors can select the credits in the reference pool and also
customize the size and attachment point of the tranche.

Some Drawbacks as Well

Synthetic CDOs also have some drawbacks compared to cash products.
The accounting treatment of derivatives and their perceived mark-to-
market volatility can be major obstacles for certain types of investors. As
synthetic tranches are marked-to-market and largely held by leveraged
accounts, the tranche market can go through strong technical periods
leading to significant repricings, as witnessed in May 2005. The relative
youth of the synthetic CDO market compared to the seasoned cash CDO
market may also be of concern to some investors. In particular, they may
question the ability of single-tranche products to withstand a credit mar-
ket downturn and a pick-up in default rates. CDS are bilateral contracts
and not “real assets,” and there is an element of legal risk whenever
defaults occur in synthetic CDO pools.

SYNTHETIC CDOS: WHO BUYS WHAT 
AND WHY?

As mentioned previously, one of the main attractions of CDOs (cash or
synthetic) is that they enable to split the choice of the credit risk of the
actual investment (the tranche) from that of the underlying assets. For
example, an investor may want to buy AAA paper but based on BB col-
lateral. This property of CDOs makes them accessible to a very large sec-
tion of the investment community, from risk averse pension funds to yield
hungry hedge funds (Figure 9.5).
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Hedge Funds and Proprietary Desks

Investors at the bottom end of the capital structure (equity and very junior
mezzanine tranches) are primarily hedge funds and bank proprietary
desks. These are investors willing to take first loss risk against the expec-
tation of high returns, often in excess of ten percent per annum. These
investors mark their positions to market and tend to delta-hedge them,
either by buying single-name protection, by shorting an index, or a
mezzanine tranche.

Real Money Investors

“Real money” investors (asset managers, banks, insurance companies,
pension funds, etc.) primarily focus on mezzanine and senior tranches,
which are safer than equity but offer lower returns. They tend to be
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Schematic Distribution of Synthetic CDO Tranche
Investors. (Citigroup)
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buy-and-hold and often rating-sensitive investors who are attracted by
the higher spread offered by synthetic CDOs compared to cash products
with identical ratings.

Dealers and Other Market Participants

One of the key differences between cash and synthetic CDOs is that syn-
thetics most often are not full-capital structure deals but single-tranche
CDOs. This means that structurers do not sell all the risk of the underlying
portfolio of CDS, but only a portion, e.g., the 3 to 9 percent tranche. Strong
demand for mezzanine tranches risk from real money investors can lead
dealers holding significant positions. Figure 9.6 illustrates schematically the
residual position of a dealer after selling a mezzanine tranche to an investor
in two extreme scenarios. In the first scenario, the dealer sells the mezza-
nine tranche risk to the investor and does not hedge its position, resulting
in a net short mezzanine position. In the second scenario, the mezzanine is
hedged with the full underlying portfolio of CDS, resulting in long equity
and super senior positions. These positions (long equity, long super senior,
and short mezzanine) are typical of the dealer community.

Dealers therefore hold significant positions in their correlation
books and are not mere arrangers of deals, as is often the case for cash
CDOs. Equity risk is either retained by dealers or passed on to hedge
funds. Super senior tranches can also be retained by the bank or sold
to monoline insurers (wrappers) or to Credit Derivative Product
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Dealer’s Residual Position After Selling Mezzanine
Tranche Risk. (Citigroup)
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Companies (CDPCs). The risk on these tranches can also be transferred to
real money investors in leveraged super senior (LSS) structures. LSS con-
sists of recourse leverage notes referencing the super senior tranche, and
levered several times to enhance return. They are usually designed to have
a low probability of recourse ( justifying a AAA rating) but their leverage
makes them quite sensitive to mark-to-market fluctuations, hence their
better suitability for buy-and-hold investors. We will return to LSS in the
section on double leverage.

SYNTHETIC CDO STRATEGIES

Investment strategies in synthetic CDOs are as diverse as investors in
tranches. Broadly speaking, we can split strategies into leverage trades,
relative value trades, and directional trades. Tranches can also be used for
hedging portfolios.

Taking Leverage

The tranching of CDS portfolios distributes the risk into the various
tranches and introduces leverage. Recall that the delta of a tranche is the
sensitivity of that tranche’s spread to a one basis point change in the
underlying portfolio. By definition, the delta of the portfolio itself (which
can be seen as the 0 to 100 percent tranche) is equal to one. Junior tranches
have deltas significantly higher than one and very senior tranches have
deltas below one. The former are thus levered in spread terms and the lat-
ter de-levered. Tranching concentrates most of spread and default risks
into the equity and junior mezzanine pieces but, although both sources of
risk are higher at the bottom of the capital structure, the split between
default risk and spread risk is very different to that of senior tranches.
Thanks to their high degree of subordination, senior tranches bear very
little default risk but they still suffer from some spread risk. In proportion,
equity has more default risk than spread risk and vice versa for the senior.
At this stage, it is useful to distinguish between idiosyncratic (single name)
spread risk and market-wide spread risk. What we refer to as spread risk,
unless clearly mentioned otherwise, is the widening of the entire market
or underlying portfolio, not that of a single credit or group of credits.
Equity tranches are more sensitive to high spread names, whereas senior
tranches tend to react more to low spread names widening. They have dif-
ferent single-name deltas.
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Figure 9.7 (right panel) illustrates a tranche combination that relies
on these differences in default and spread risks. Assuming that the equity
tranche has a delta 20 times higher than that of the senior, one can build a
delta-neutral position by buying one unit of equity tranche and selling 20
units of the senior. The resulting position has positive carry to compensate
investors for default risk but does not have spread exposure (ignoring
convexity). This “bull-bear” trade (long default risk but spread-hedged)
was popular with hedge funds but is very sensitive to changes in correla-
tions. In particular, falls in correlations hurt the trade both on its long leg
and on its short leg.

In summary, tranching distributes spread and default risks unequally
across tranches. Investors can choose what type of risk they want to take
and their degree of exposure by taking more or less senior tranches. The
spreads paid on the tranches are compensation for both sources of risk.
Through tranche combinations risk can be separated into a spread and a
default component. Care should be taken not to consider that delta-
neutral strategies are immune from all spread risk. Delta-hedging protects
from small moves in the average spread of the portfolio, but not from
large swings. Tranches exhibit convexity (second order spread sensitivi-
ties) that can be significant. Delta-hedging also relies on all spreads mov-
ing by an equal amount. We mentioned earlier that tranches have
different micro-deltas. An uneven spread widening (with some names
widening more than others) will not be perfectly hedge by traditional
delta-hedging.
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Indicative Risks and Returns of Tranches and Bull-
Bear Combination. (Citigroup)

Hypothetical Risks and Returns Long Equity / Short Senior Combination

Senior
= 40 bp

Mezzanine
= 150 bp

Equity
= 1200 bp

Default risk Spread risk

Risk 1 m 
Equity

20 m
Senior

Bull-
bear

=

Spread
risk

Default
risk



Relative Value Trades

Arguably the main motivation for real money investors for investing in
tranches is their search of relative value. Value is present at two levels in
synthetic CDOs. First, market segmentation, the lower liquidity of bespoke
synthetic tranches compared to cash instruments and their higher mark-
to-market sensitivity make them trade cheaper (offering higher spread)
than cash products with identical ratings. Rating-sensitive investors, who
are able to hold their positions to maturity and can withstand mark-to-
market fluctuations, can thus find tranches attractive on a risk/reward
basis. Second, as mentioned earlier, tranches enable investors to target
underlying assets that they consider offer good relative value, irrespective
of their ratings. They can thus extract the value of these underlying assets
in levered form and benefit from the additional value brought by synthetic
structures.

Directional and “Undirectional” Trades

Both the leverage and the relative value arguments apply equally to cash
and synthetic CDOs. A peculiarity of synthetics is that they enable
investors to go long or short risk, hence putting on directional trades. We
have described long investment strategies earlier, including outright long
positions or delta-hedged trades. Investors expecting spreads to widen
can take short positions on mezzanine or senior tranches. These should
benefit from a spread selloff, and the carry-to-delta ratio is often favorable
to tranches compared to untranched portfolios. Investors who are bearish
on default risk can buy equity risk protection, although the cost of this
hedge is likely to be prohibitively high.

There are countless possible combinations of tranches offering dif-
ferent spread and default risk sensitivities. These enable savvy investors
to express views on the direction of spreads and of default risk, possibly
in different directions (e.g., bullish on default and bearish on spreads).
This is not possible with cash products (bonds, cash CDOs, or even CDS)
with which investors must either be long default and spread risk or, if at
all possible, short both risks. Other trades do not take views on the direc-
tion of the market but rather on the behaviour of a subset of the market
(sector, group of credits, etc.). For example, a dispersion trade consists of
buying a senior tranche and delta-hedging the position by selling a more
junior tranche on the same portfolio. If all spreads move by an equal small
amount, the trade should be unaffected (but it suffers from negative
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convexity for large moves), but if a given subset suffers from a large
spread widening while the overall market is unchanged, the trade should
benefit. This is due to the greater sensitivity of more junior tranches to
idiosyncratic (single name) risk.

Double Leverage

CDOs are leveraged products, as the risk of an entire portfolio is distributed
among tranches of smaller size than the portfolio itself. However, structur-
ers have created a newer generation of credit products that provide further
leverage on CDOs. This is the case of CDO-squareds and LSS whose
investors take exposure to a levered product referencing underlying
tranches.

CDO-squareds leverage mezzanine tranches of CDOs (Figure 9.8).
A portfolio of mezzanine tranches is collected and tranched again in
equity, mezzanine, and senior tranches. This can be done in cash or syn-
thetic formats and follows usually a rating arbitrage logic: more spread
can often be achieved for a CDO-squared than with a CDO with same
rating. A similar logic underlies CDOs of ABS where the underlying is
also tranched.

LSS are levered positions on a very thick and senior tranche of
a CDO. These are usually done in synthetic deals, but some form of LSS
is also possible for cash CDOs. On the contrary to CDO-squared, the
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technology underlying LSS does not rely on further tranching but simply
on the principle of recourse leverage. An investor can, e.g., take an expo-
sure to a a500 million piece of the super senior tranche of a CDO (say, the
10 to 70 percent tranche), through a a50 million note. The leverage is 10
times (500/50) and the spread on the LSS is 10 times that on the unlev-
ered super senior tranche. However, the contract is designed in such a
way that if there are defaults in the portfolio or if spreads widen sub-
stantially, the protection buyer can ask the protection seller either
to unwind the deal or post further collateral, on top of the initial a50
million.

Tranches as Hedging Vehicles

Although the vast majority of single tranche CDOs are issued to satisfy
customer needs to take risk and receive premium, they are also used by
some investors as hedging devices. Returning to Figure 9.7 (left panel),
the advantage of hedging a portfolio with senior mezzanine tranches
becomes apparent. Investors who are comfortable with the default risk on
their portfolio can hedge their spread risk (delta-hedging) by buying pro-
tection on a mezzanine or senior tranche of a synthetic CDO, referencing
the same or similar names. This hedge will offer little protection against
default risk but should be significantly cheaper than single-name CDS
protection or even index protection. Protection buyers thus only pay for
the risk they want to hedge: spread risk in this example. The leverage of
CDO tranches will often require hedgers to buy protection on a smaller
tranche notional than that of the hedged portfolio, unless they use a very
senior tranche (with delta lower than one).

As discussed at the beginning of this chapter, bank loan managers
and insurance companies can also use tranche hedges to optimize their
return on regulatory capital. Under the current banking regulations,
which do not link regulatory capital based on the riskiness of exposures
(e.g., all corporate loans and bonds have an 8 percent risk charge irre-
spective of maturity and default probability), the incentive has been for
banks to buy protection on low risk and low yield exposures. These are
cheaper to hedge and offer the same capital relief as more risky exposures.
However, the new regulatory framework (Basel II) is about to change this
(see the last section of this chapter).
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MAY 2005: A TURNING POINT 
IN THE SYNTHETIC CDO MARKET

The May Events

In May 2005, the synthetic CDO market went through its first real crisis,
with many tranches being repriced by over 20 percent and some of the
most active players in tranche markets facing large losses (Figure 9.9).
What did actually happen? The roots of the “crisis” can be found in the
positions held by dealers and hedge funds at the time. As explained in a
previous section, the natural position of dealers is short mezzanine, long
equity, and long super senior, due to the relatively stronger demand for
mezzanine (A to AAA rated) compared to other tranches. Hedge funds,
on the other hand, have fairly little involvement in super senior, but were
running large positions in the long equity/short mezzanine trade
described earlier. The mezzanine pieces were in the hands of buy-and-
hold investors such as pension funds or insurance companies.

On May 5, Standard & Poor’s downgraded both General Motors
(GM) and Ford (F) to noninvestment grade, prompting fears of a rapid
default. While the downgrades were expected by most market partici-
pants, they came earlier than forecast by most and they led to a jump in

Cash and Synthetic CDOs 391

F I G U R E 9 . 9

P&L of 5y iTraxx Equity Tranche (in Percent, Roll of
March 20 to roll of September 20, 2005). (Citigroup)

-30

-25

-20

-15

-10

-5

0

5

10

20-Mar 19-Apr 19-May 18-Jun 18-Jul 17-Aug 16-Sep



spreads of the two companies. GM and F are two of the most pervasive
names in synthetic CDOs and their selling-off triggered a negative mark-
to-market move in the price of equity tranches. Some hedge funds then hit
their risk limits (value at risk constraints) and tried to close their posi-
tions. Unfortunately, because dealers were also long equity and were also
facing losses on their positions, they had little appetite for buying the
equity positions of hedge funds. The price of equities then started to
plummet, resulting in a plunge in correlation (−10 percent in 5y iTraxx
equity). The reallocation of losses into equity led to a relative outperfor-
mance of mezzanine, which was further fuelled by the unwinding of the
equity/mezzanine trades.

Dealers who were caught short mezzanine tried actively to buy it
back, but mezzanine tranches were held by long-term investors who did
not intend to sell their positions early. This lack of paper led to a large
drop in mezzanine spreads with the iTraxx 3 to 6 percent tranche, e.g.,
trading up to 120 basis points tighter than what its delta would have
implied (Figure 9.10).

Mezzanines and equities were not the only tranches affected by
the repricing. The tightening of the mezzanine was such that the
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Reallocation of Expected Losses Among Tranches
in May 2005. (Citigroup)
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expected loss that came out of it could not be fully absorbed by the
equity (which was saturated with risk). Some of it then spilled over to
the super senior tranche (Figure 9.11), which, at the time, was neither
closely traded nor even closely monitored. The super senior spread then
doubled in a few days triggering interest from investors and spurring
the growth of LSS.

Consequences

Market participants have reacted to these events by adjusting their trad-
ing and hedging behavior. Some of the trends that were started by the
correlation turmoil include the following:

♦ Hedge funds have become significantly more cautious with
their equity investments. Some have realized that parts of their
losses were due to their high sensitivity to mark-to-market fluc-
tuations and the possibility of hedge fund investors to withdraw
their funds at short notice. They have tried to go round this
problem by launching funds with longer lock-up periods or
vehicles with permanent capital.

♦ Dealers have become a lot more reticent with issuing large
single-tranche mezzanine deals. They are now increasingly try-
ing to issue full capital structure CDOs. When they cannot do
so, they try to fill up the capital structure by buying protection
on liquid tranches (iTraxx or CDX).



♦ Given the high demand for mezzanine, the main difficulty facing
dealers since the May repricing is the placement of equity
tranches, as placing the super senior is now straightforward with
LSS. Equity tranches are more difficult to sell, as some of their nat-
ural holders (hedge funds and dealers) have shied away from
them. Structurers have therefore developed new equity-linked
products to broaden the investor base of equity. Buy-and-hold
investors are particularly sought after, as they could bring more
stability to the market and are less prone to overreaction linked to
mark-to-market fluctuations. Rated equity and principal-protected
structures such as simple combination securities, step-down
coupon notes are CPPI (Constant Proportional Portfolio Insurance)
referencing equity tranches, have now become mainstream.

♦ While the May events have led to financial innovation such as
LSS and the equity-linked structures mentioned earlier, they
have also led to the quasi-disappearance of CDO-squared, which
were one of the most popular trades of 2004 and early 2005. The
tightness of mezzanine spreads has made the rating arbitrage of
CDO-squared less compelling, and dealers have become more
wary of correlation risk inherent to those structures.

♦ Finally, buy-and-hold investors have moved their preferred
maturity to seven year from five year because of the tightness
of mezzanine spreads. Seven year is now the most common
maturity for synthetic CDOs.

BASEL II—CHANGING THE RULES OF CDO
ISSUANCE AND INVESTMENT

We have shown in this chapter how important banks are in the CDO mar-
ket, both from an issuance perspective (balance sheet CDOs, synthetic
hedging) and also as investors. Until now, no global set of regulation
is available for banks with respect to CDOs and other securitizations. The
current international regulatory framework (Basel I) does not cover CDOs,
and each jurisdiction has its own local regulations.

However, this is about to change with the implementation of Basel
II rules, from January 2007.*
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For the first time, minimum capital requirements will be homoge-
nized internationally, although local regulators will have significant
scope for imposing more stringent rules on top of Basel II minimum
standards. The main idea underlying Basel II is to better align capital
with the riskiness of investments. For securitization tranches, the risk-
iness is assessed based on agency ratings, such that more capital is
required, e.g., to hold a BB tranche than a AAA tranche of the same
CDO. Figure 9.12 shows the capital requirement of the standardized and
foundation IRB approaches of Basel II for CDOs. Clearly Basel II gives
strong capital incentives for banks to buy well-rated tranches and avoid
noninvestment-grade CDOs. The large jump in capital from 6 percent
(75 percent × 8 percent) to 34 percent (425 percent × 8 percent) will induce
some forced-selling by banks in case of downgrade below investment-
grade. This should put some widening pressure on spreads of speculative-
grade tranches.

Basel II also clarifies rules for hedging risk using CDOs, e.g., by buy-
ing protection on a portion of a bank’s loan book. The proposed new
banking regulatory framework indeed recognizes tranches as hedging
tools, subject to their providing a “significant risk transfer.”
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When buying protection on a tranche, the bank can replace the risk
weight of the hedged portion of its portfolio with the risk weight of its
hedge counterparty (another bank or an insurance company), as
described at the begining of this chapter. We expect a lot of activity to take
place in the junior mezzanine portion of the capital structure, as it is
currently the most efficient in terms of improvement of return on capital.

396 CHAPTER 9



C H A P T E R  1 0

The Collateral Debt
Obligation Methodologies
Developed by Standard
and Poor’s

397

This chapter consists of two parts. Part 1 describes the modeling of the
credit behavior of the assets employed in Standard & Poor’s Tool: “CDO
Evaluator.” Part 2 describes the modeling of the liabilities, i.e., the modeling
of the cashflows of Cash CDOs. Both parts are retrieved from S&P criteria.

PART 1 DESCRIPTION OF S&P
PORTFOLIO MODEL: CDO EVALUATOR
VERSION 3* FOR SYNTHETIC
SECURITIZATION

Standard & Poor’s Ratings Service’s CDO Evaluator is a portfolio credit
risk model for analysis of CDO transactions. This document describes the
theory, assumptions, and computational methods used by CDO Evaluator
version 3.0 to simulate the portfolio loss distribution, which allows deter-
mination of the various portfolio risk measures we use in the CDO rating
process. The application of the CDO Evaluator to different types of CDO
transactions is also discussed.

* Extracted from the S&P criteria publication CDO Evaluator Version 3.0: Technical Document
by Kai Gilkes, Norbert Jobst, and Bob Watson dated 19-12-05.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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INTRODUCTION

CDO Market Developments

The collateral debt obligations (CDOs) are financial instruments that trans-
fer the risk associated with a portfolio of assets to one or more investors.
The first CDOs were issued as funded (cash) investments by a special pur-
pose entity (SPE), collateralized by portfolios of bonds and loans. Over the
past decade, the unfunded (synthetic) CDO market has grown rapidly,
especially in Europe. Instead of purchasing a debt instrument of a given
entity, the SPE enters into a credit default swap (CDS) that references the
entity. This use of credit derivatives technology has greatly simplified the
execution of CDO transactions, and has led to a market dominated by so-
called “single-tranche” CDOs, bilateral contracts between a buyer and
seller of default protection on a portfolio of entities. These can either take
the form of a portfolio CDS between two counterparties or a credit-linked
note (CLN).

While the rise of the synthetic CDO market has led to a simplifica-
tion of the debt issuance, the composition of the asset portfolio has
become more complex. In addition to corporate bonds and loans, CDO
portfolios now routinely include sovereign bonds, loans to small- or mid-
sized enterprises (SMEs), asset-backed securities (ABS), and other CDOs.
More recently, equity default swaps (EDSs) and commodity options have
also been included. The CDO risk transfer mechanism has also increased
in complexity. In addition to referencing a single portfolio, a CDO trans-
action can also reference a number of bespoke CDO tranches, each of
which in turn references a single portfolio. This leveraging creates an
investment that is more isolated from small numbers of credit events
within the underlying portfolio, but is also more likely to suffer large
losses once its credit protection is eroded. The so-called “CDO-squared”
transactions dominated synthetic CDO issuance in 2004 and in early 2005,
partly due to the tightening of CDS spreads.*

In recent years, the synthetic CDO market has witnessed the prolif-
eration of many innovative structures, including CDOs with short CDS
positions, forward starting CDOs, nth-to-default baskets, leveraged super
senior structures, and constant proportion portfolio insurance (CPPI)
structures. These innovations typically arise from a variety of different

*These transactions often include a large proportion of ABS in addition to bespoke CDOs,
and are therefore often referred to as “CDO of ABS” transactions.



incentives expressed by market participants: from the search by investors
for yield in a tight spread environment to the need for investment diver-
sification, from the quest for arbitrage to structures that can be used to
express a view on either the credit cycle or idiosyncratic credit risk.

Portfolio Credit Risk Models

Models for CDO risk analysis are generally based on the estimation of
transition/default probabilities and recoveries, and the linkage of these
through a dependency model, which specifies the joint transition/default
behavior. This allows simulation of the full loss distribution at maturity of
a portfolio of assets. This loss distribution can then be used to determine
a number of useful measures of portfolio risk.

Many portfolio credit risk models fall into the category of “struc-
tural” models, which assume that the default behavior of a firm can be
determined from knowledge of the firm’s assets and liabilities. These are
based largely on a model originally proposed by Merton (1974), in which
the asset value of a firm is assumed to follow a Geometric Brownian
Motion characterized by the asset volatility. Default of the firm occurs
when the asset value falls below a certain threshold.* Within this frame-
work, the default correlation between pairs of firms will depend both on
the correlation of asset value and the default threshold for each firm. For
an excellent review of structural models, see de Servigny and Renault
(2004).

In common with many other structural models, CDO Evaluator
assumes that the transition/default probabilities, recoveries, and asset
value correlations of all assets in the portfolio are exogenous variables,
driven either by firm-specific (i.e., idiosyncratic) or systematic effects.†

However, rather than using market data to estimate these parameters for
each firm, we estimate these parameters from historical data.

For example, in the case of rated firms, we make use of our global
CreditPro® database‡ of rating transitions and defaults over the period
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*In the Merton framework, this threshold is related to the value of the liabilities of the firm,
and hence more highly leveraged firms will generally possess higher probabilities of default,
assuming similar asset volatilities.
†Other models focus instead on the instantaneous default probability (also known as the
“hazard rate” or “default intensity”), which is itself treated as a stochastic process.
‡For details, visit www.standardandpoors.com, run a search using “CreditPro,” and scroll
down to Products & Services.

www.standardandpoors.com
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1981–2003. This method assumes that the rating on a firm is a good proxy
for the likelihood of the firm defaulting over a given horizon, when this
firm is part of a portfolio.*

Technical Document Outline

The remainder of this part is divided into five sections. In the section “The
CDO evaluator model,” the underlying mathematical model for CDO
Evaluator version 3.0 is outlined, along with the assumptions required by
the model for computation of the portfolio loss distribution. The sections
“Transition and default probabilities,” “Recoveries,” and “Correlation” out-
line the data and methods used to estimate these assumptions, which are
the main inputs required by CDO Evaluator. The section “CDO risk analy-
sis” describes the different CDO risk measures computed by CDO Evaluator
and the application of CDO Evaluator to the risk assessment of various CDO
transactions in the marketplace. Many of the detailed assumptions within
CDO Evaluator are contained within the Appendices.

While this document addresses all of the technical aspects of the
CDO Evaluator model and assumptions, it does not necessarily cover
each and every aspect in full, as the purpose of this document is to pro-
vide a complete picture of CDO Evaluator to a wide range of market par-
ticipants. Those readers interested in drilling down to a deeper technical
or theoretical level should consult the references provided within the
document.

THE CDO EVALUATOR MODEL

The main purpose of the CDO Evaluator model is the computation of the
loss distribution of a portfolio of N assets. This is carried out by first sim-
ulating the default time of each asset. If the default occurs before the matu-
rity of the CDO transaction, an asset-specific recovery is also computed. If
the exposure to each asset at the time of default is known, then the com-
plete distribution of portfolio losses can be computed.

In addition to modeling the individual (or univariate) default and
recovery of each asset in the portfolio, the dependency between defaults of

*It is important that this method is used only for portfolios, not single firms. Given that rat-
ings are ordinal measures of creditworthiness, a single rating cannot be uniquely linked to a
default probability.



CDO Methodologies Developed by S&P 401

different assets must also be modeled. The standard dependency model
in the marketplace is the Gaussian copula model, originally proposed by
Li (2000). In this approach, a term structure of survival probabilities Si(t)
is assumed for the ith asset. These survival probabilities can be obtained
from the cumulative default probabilities for each asset, which we refer
to as the credit curves. Dependency is then introduced via the Gaussian
copula function C(u1 , . . . , uN) = ΦΣ(y1 , . . . , yN), where Σ denotes the cor-
relation matrix, Φ the univariate standard normal cumulative distribu-
tion function, and ΦΣ the multivariate standard normal distribution
function with correlation matrix Σ. The copula function therefore links
together the standard normal variables y1 to create a multivariate distri-
bution of uniform random variables u1. The standard normal variables yi
are often referred to as latent variables (analogous to asset values in the
Merton model).

Correlated default times can therefore be simulated in the following
order.

♦ Simulate a vector of N standard normal random variables yi for
each asset;*

♦ Impose a given correlation matrix Σ on the above vector.†

♦ Calculate ui = Φ(yi); and
♦ Calculate a default time τi = S−1(ui) for each asset. An example is

shown in Figure 10.1 for a “BBB” rated asset.‡

If τi is less than the maturity T of the CDO transaction, the loss Li is deter-
mined as Li = Ei × (1 − δi), where Ei and δi are the exposure-at-default and
recovery,§ respectively, for the ith asset. We can therefore write the portfo-
lio loss up to time t, L(t), as:

where is the default indicator for the ith asset.||1{ }τ i t≤

L t Ei i t
i

i
( ) ( ) ,= × − ×

≤{ }∑ 1 1δ
τ

*Standard normal random numbers are computed using the well-known Mersenne Twister
algorithm. For details, see Matsumoto and Nishimura (1998).
†This is performed using Cholesky factorisation. See, e.g., Glasserman (2004), pp. 72–73.
‡S−1 is used to denote the quasi-inverse of the survival function.
§The recovery can either be assumed to be constant, or drawn from a distribution.
||The default indicator equals 1 if the expression within parentheses is true, and 0 if it is
false.
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Simulation Procedure
There are two aspects of the simulation procedure worth discussing
in more detail in order to understand the impact of different ratings,
maturities, and correlation assumptions on the portfolio loss distri-
bution.

Individual Asset Default Behavior
When assets are uncorrelated, the default time for each asset i is sim-
ply obtained by comparing a uniform random variable ui with the
credit curve for the asset, as shown in Figure 10.1 for a “BBB” rated
asset. If the default time occurs before the asset maturity, a default is
recorded. For example, if the “BBB” rated asset in Figure 10.1 has a
maturity of seven years, a default is recorded halfway through year
five. For the same rating, it is clear that high values of ui will result
in lower default times, whereas low values will result in higher
default times. Also, for the same value of ui, it is clear that higher
ratings will experience higher default times.

Joint Default Behavior
When assets are correlated, the uniform random numbers for these
assets are first correlated to the required level, as described above.
For any pair of correlated assets, this produces values of ui that tend
to move together, i.e., are “clustered” around high or low values. As
a result, the default times of the two assets will also move together,
leading to more cases in which the assets survive or default together
before their maturity.

Using the above Monte Carlo simulation procedure, the distribu-
tion of portfolio losses can be determined to a high level of accuracy by
generating a sufficient number of default times to achieve satisfactory
convergence, which depends on the shape of the credit curves and the
degree of asset correlation. For example, highly rated assets will rarely
generate low default times, requiring a larger number of simulation tri-
als to generate a significant number of default events before maturity. For
most portfolios, 500,000 simulation trials are sufficient to obtain satisfac-
tory convergence.



For a CDO linked to a single portfolio of assets, the portfolio loss dis-
tribution contains all of the information required to determine the perfor-
mance of each CDO tranche. When a synthetic CDO references other
synthetic CDOs, the model uses a “drill-down” approach to simulate the
default times of the assets underlying each CDO. The drill-down approach
is outlined in the section “Synthetic CDO squared transactions.”*

TRANSITION AND DEFAULT PROBABILITIES

Rated Companies

For rated companies, we make use of our global CreditPro® database of
rating transitions and defaults over the period 1981–2003, which contains
a ratings history of 9740 companies from January 1, 1981 to December 31,
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* See also Drill-Down Approach for Synthetic CDO Squared Transactions, Standard & Poor’s
Special Report, December 10, 2003, available to subscribers of RatingsDirect, our Web-based
credit analysis system, at www.ratingsdirect.com. The criteria can also be found on our Web
site at www.standardandpoors.com.

www.ratingsdirect.com
www.standardandpoors.com
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2003, including 1386 default events. The method used by Standard &
Poor’s to estimate credit curves involves two stages. The first stage is the
estimation of the probabilities of transitions between different ratings—the
transition matrix. The second stage is the repeated application of this
matrix to determine the credit curves.* In both cases, rating transitions are
assumed to follow a Markov process, in which transition probabilities are
constant over time, and do not depend on the previous rating on the firm,
e.g., whether the firm was recently upgraded or downgraded.†

A straightforward method for estimating a discrete transition
matrix from empirical data involves observing the transition of cohorts
of firms with the same initial rating. Indeed, our annual transition
study‡ is based on this cohort analysis. We denote the total number
of firms in class k at time t by nk(t), and the total number of observed
transitions from class k at time t to class l at time T by nkl(t, T). Assuming
rating transitions follow a Markov process, the maximum likelihood
estimator of the correspon-ding transition probability, q̂kl(t, T), is

for all k ≠ l. Denoting the average annual 

transition matrix by Q–, a T-period matrix Q– (T) is obtained under the
Markov assumption using Q– (T) = Q– T. Credit curves can be directly extracted
from this matrix.

An alternative to the cohort method, which compares the initial and
final rating over a certain period, is the duration method, which takes into
consideration the exact points in time at which rating transitions take
place, using the instantaneous probability of transition, the transition inten-
sity. We directly estimate transition intensities via the generator matrix Λ̂
of the (time-homogenous) Markov chain. The off-diagonal transition inten-
sities λ̂ kl are given by:

ˆ ( , )
( , )

, for all ,
( )

λkl
kl

n s ds
t T

m t T
k l

kt

T= ≠
∫

ˆ ( , ) ( ( , )/ ( )),q t T n t T n tkl kl k=

*If only default probabilities are required, it is tempting to try to estimate cumulative default
probabilities directly from the data. However, given the paucity of historical default data—
especially for highly rated firms and/or long time horizons—this method can give unreli-
able results.
†While empirical data suggests that these assumptions do not always hold, they are nonethe-
less a very useful starting point for estimation purposes.
‡See, e.g., Annual Global Corporate Default Study: Corporate Defaults Poised to Rise in 2005,
Standard & Poor’s, January 31, 2005.
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where mkl(t, T) is the total number of transitions from class k to class l (k ≠ l)
over the interval [t, T]. The denominator is the total time (in firm-years)
firms spend in rating class k over the whole sample period. A T-year tran-
sition matrix is then calculated from the generator matrix (with diagonal
elements ) using Q– (T) = exp{T ⋅ Λ~}.*

By comparing the results of the two methods, and making certain
qualitative adjustments,† we have derived a single one-year transition
matrix that, in our view, produces the best agreement with the average
long-term historical default behavior of rated firms. The full matrix is
provided in Appendix A. The one-year transition matrix is then used to
determine the long-term credit curves for each rating category.‡ These are
shown in Figure 10.2 for the major rating categories. The full table of
credit curves is also provided in Appendix A.

λ λll k l kl= − ≠Σ

*Further details can be found in Jobst and Gilkes (2003).
†For example, we adjust for certain “ratings momentum” effects reported in the literature.
For details, see Fledelius et al. (2004).
‡This is done by raising the matrix to higher powers, and extracting the “default” column of
each N-year matrix (N = 1–30).
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Asset-Backed Securities

Given that structured finance securities themselves are often included in
CDO portfolios, their transition and default behavior also needs to be esti-
mated. On average, these securities have exhibited considerable ratings
stability over the past two decades, and as a result there have been very
few cases of default.* Given the relative paucity of default data, we have
so far adopted a conservative treatment of these securities by using cor-
porate default rates as proxies for their long-term default behavior.

In CDO Evaluator version 3.0, ABS default rates are determined
using a transition matrix that is based on the average historical ABS tran-
sition matrix, with certain qualitative adjustments. These adjustments
result in long-term ABS default rates that are approximately 55 and 75
percent of the corresponding default rates for rated firms at investment-
grade and non-investment-grade, respectively (for maturities between
five and seven years). The ABS credit curves are provided in Appendix A.
Note that ABS maturities are capped at seven years for modeling pur-
poses, as we consider that the probability of default of an ABS asset—
conditional upon survival for seven years—is negligible.

Sovereign Securities

Given that transition and default data for sovereign debt securities are rel-
atively sparse in comparison with rated firms, the credit curves used for
rated firms are currently used as conservative proxies for sovereign
default behavior.

Small- to Mid-sized Enterprises

The wealth of financial information obtained by Standard & Poor’s Risk
Solutions Group on SMEs has been used to create advanced “credit scor-
ing” models for SME default prediction. For example, in Europe, the
credit risk tracker (CRT) product can be used to obtain one-year default
probability forecasts for more than 1 million SMEs across France,
Germany, Italy, Spain, and the U.K. These models have also been used to
analyze the historical volatility of default probabilities, in order to create

*See, e.g., Global Structured Securities Rating Performance: 1978–2004, Standard & Poor’s,
March 24, 2005.



“rating estimates” that combine one-year default probabilities and annu-
alized default volatilities.* By analyzing the transition behavior across dif-
ferent rating categories, we have created a one-year SME transition matrix
and used it to create credit curves for SMEs. The credit curves are pro-
vided in Appendix A. Note that while the rating identifiers are written in
the same way as those for traditional Standard & Poor’s ratings, they are
not obtained through the normal rating analysis conducted by our ana-
lysts. It is therefore not possible to make direct comparisons between the
credit curves for SMEs and those for other rated entities.

Equity Default Swaps

An EDS is similar to a CDS, in that a protection seller agrees to pay the pro-
tection buyer if the contract is triggered. However, as opposed to a credit
event, an EDS is linked to the drop of the equity price of the reference entity
below a certain barrier, typically 30 percent of the initial price. As a result of
extensive analysis of historical equity price data from our Compustat® data-
base, capturing approximately 12,000 companies trading in the United
States or Canada between 1962 and 2003, we have developed new criteria
for estimating the probability of an EDS contract triggering over a given
time horizon. Using scoring techniques similar to those described in the pre-
vious section, we have identified five variables that are very informative:

♦ The credit rating;
♦ The historical equity volatility;
♦ The market capitalization;
♦ The historical equity return; and
♦ The general level of the equity market measured by the current

value of the S&P500 compared with the highest value of the pre-
vious 10 years.

The resulting EDS scoring models are used to derive a risk score between
one and five for each EDS. These scores can then be mapped to an EDS
default curve, i.e., the cumulative probability of the EDS contract breach-
ing its price barrier.† Further technical details can be found in de Servigny
and Jobst (2005). An overview of our criteria for CDOs containing EDS
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*For example, in the case of two SMEs with low one-year default probabilities but very dif-
ferent volatilities, the one with the lower volatility is likely to be assigned a higher rating.
†We can provide these scoring models upon request.



can be found in a forthcoming criteria article, and Appendix A contains
further details of the EDS default curves.

RECOVERIES

In general, the level of recovery achieved following a default is uncertain,
or stochastic. For a debt instrument, such as a bond or loan, recovery
depends on a number of factors, for instance, the seniority of the instru-
ment and the economic environment in which the default occurred.
However, in the context of synthetic CDOs, recovery can be determined
in different ways, including the specification of a fixed level that does not
depend on these factors.

In order to properly model the different types of recovery mecha-
nisms included in CDOs, CDO Evaluator treats recoveries in two ways:
fixed and variable. This section outlines the two different methods, both in
terms of the rationale for using each method, and the underlying data
used to estimate recoveries in each case.

Fixed Recoveries

Although recoveries are usually uncertain, there are two main reasons
for using fixed recovery assumptions. First, recovery can in certain trans-
actions be set at a fixed percentage of the amount at risk, e.g., 50 per-
cent.* Secondly, historical data is not always sufficient to allow precise
determination of the degree of variability in recoveries. For this reason,
a fixed recovery that incorporates some degree of conservatism can be
the best compromise. As this clearly involves some level of qualitative
judgment, these assumptions are normally determined through a
committee process.

Variable Recoveries

In some cases, sufficient historical data exists to allow the degree of vari-
ability in recoveries to be explicitly modeled. For example, our LossStats®

database† contains recovery information for more than 500 non-financial
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*This is the recovery level typically used for EDSs.
†For details, visit www.standardandpoors.com, run a search using “LossStats,” and scroll
down to Products & Services.

www.standardandpoors.com


public and private U.S. companies that have defaulted since 1988. It con-
tains information on more than 2,000 defaulted bank loans and high-yield
bonds, and other debt instruments. This extensive data has allowed us to
create recovery distributions for certain types of assets, based on the beta
distribution, a well-known two-parameter distribution. Specification of
the mean and standard deviation of the beta distribution is sufficient for
CDO Evaluator version 3.0 to simulate the full range of potential recover-
ies for each type of asset. These assumptions are provided in Appendix B.

CORRELATION

In addition to specifying the univariate default probabilities and recovery
assumptions for each asset in the portfolio, the correlation between pairs
of assets must also be specified. As explained in the section “The CDO
evaluator model,” this is assumed to be the asset value correlation between
each pair of assets, which is not directly observable in the market. In prin-
ciple, there are several ways to estimate asset value correlation:

♦ Regression analysis of equity returns within a factor model;
♦ Using equity return correlations as proxies for asset value corre-

lation;
♦ Using credit spread correlations as proxies for asset value corre-

lation;
♦ Inferring asset value correlations from rating migrations; and
♦ Estimating asset value correlations from empirical default obser-

vations.

We have chosen to use empirical default observations to estimate the cor-
relation assumptions within CDO Evaluator, as this estimation method is
likely to be less prone to the “noise” within equity return data, and the
limited time period of credit spread data. In addition, unlike rating migra-
tions, it can be used consistently for a wide range of different rated and
non-rated assets, such as corporates, ABS, SMEs, and EDS. In order to
determine correlation assumptions for rated firms and EDSs, we have
undertaken an extensive analysis of historical data, making use of the
CreditPro® and Compustat® databases mentioned earlier. For SMEs, the
CRT database mentioned earlier has been used.

We consider several statistical techniques which ensures a good
degree of stability, ranging from maximum likelihood methods and factor
models, to simple methods based on empirical joint default events. While
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a detailed overview of these techniques for corporate defaults and EDS
can be found in Jobst and de Servigny (2006), the latter approach—
frequently referred to as joint default probability (JDP) method—is out-
lined next, given the significance of correlation estimates for CDO risk
analysis.

The JDP method involves two stages. The first is the estimation of
the JDP Pij(t) between pairs of companies, either in the same industry or
different industries. If pairs of companies are drawn (with replacement)
from the database, an estimate of the JDP within an industry is given by:

and between industries by:

In these expressions, Dc
t, Dd

t and Nc
t, Nd

t are the number of defaulted
companies and total number of companies in industries c and d, respec-
tively, observed over a time period t. The empirical default correlation ρ cd

can easily be obtained from the standard correlation equation:

In this formula, P–k denotes the average default probability of com-
panies in industry k.

The second stage of the JDP method is the calculation of the implied
asset correlation from the JDPs. This is done using the Gaussian copula
model described in the section “The CDO evaluator model” by calculat-
ing the asset correlation required to recover the empirically observed
JDPs. For two companies, the JDP Pij is given within the model by
Pij = Φ(Zi, Zj, ρij), where Zi = Φ−1(Pi) and Zj = Φ−1(Pj) are “z-scores” indicat-
ing the default threshold for each company. This means that the implied
asset correlation ρij can be determined by solving ρij = Φ−1(Zi, Zj, Pij).* In all
cases, correlations were estimated within and between different industry
sectors. The average intra-industry and inter-industry correlations across
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*For further details, see Jobst and de Servigny (2006).



the entire datasets were then used to create the assumptions used in CDO
Evaluator. These assumptions are contained in Appendix C.

CDO RISK ANALYSIS

This section describes how CDO Evaluator can be applied to different
CDO transactions, in order to analyze the risk exposure of each CDO
tranche. First, we discuss the different risk measures that can be com-
puted for each CDO transaction, and then go on to show how the model
is used in the risk analysis and rating of different CDO transactions. The
emphasis here is on synthetic CDO transactions, as these can be com-
pletely analyzed by CDO Evaluator, whereas cash CDO transactions
require some additional steps, such as modeling the impact of interest rate
and currency risk on the interest payments made to each CDO tranche.

Scenario Loss Rate

The primary risk measure used in our analysis of CDO transactions is the
scenario loss rate (SLR), which is a quantile of the portfolio loss distribu-
tion consistent with a given rating and maturity.* For example, if the rat-
ing quantile corresponding to a certain rating and maturity is 0.5 percent,
the required percentile of the loss distribution will be 99.5 percent. It is
important to note that the rating quantiles have been developed specifi-
cally for CDO tranches and are not identical to the corporate credit curves
as in previous versions of CDO Evaluator. This is mainly due to the fact
that both the corporate credit curves and CDO rating quantiles were
highly “idealized” in previous versions, due to a lack of historical data. As
described earlier, the corporate credit curves are now based on a more
extensive analysis of historical corporate transition and default data, and
have therefore been de-linked from the CDO rating quantiles.

Given that there is much less historical performance data for CDOs
than the underlying corporates, the CDO rating quantiles have not been
determined purely from historical data. In this case, we have used a num-
ber of quantitative and qualitative considerations, including the avoid-
ance of potential instability in high investment-grade SLRs when very
low CDO quantiles are imposed, and the observation that high degrees of
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*The mean and standard deviation of the loss distribution are also computed by the CDO
Evaluator.



leverage in CDO tranches tend to result in higher average rating volatil-
ity than investment-grade corporates. As a result, the CDO rating quan-
tiles are higher than the corporate credit curves at investment-grade
rating levels, and converge to the corporate credit curves at low,
speculative-grade rating levels. The CDO rating quantiles are provided in
Appendix A.

For a synthetic CDO, the SLR is equivalent to the attachment point (or
credit enhancement) required for a tranche with the relevant rating and
maturity. For cash CDOs, the credit enhancement is determined through
a cash flow modeling exercise, in which the default times of the asset port-
folio are combined with interest rates and currency exchange rates (if
required) to determine the overall credit performance of each rated CDO
tranche.

Rated Overcollateralization

Once a CDO transaction has been structured, it is possible to determine
the extent to which available credit enhancement exceeds the required
level. This can be done either for a cash or synthetic tranche. In the latter
case, the SROC (synthetic rated overcollateralization) is given simply by:

In the case of cash CDO tranches, the value of any excess spread
must also be included, which requires the additional modeling of the
transaction cash flows.

Synthetic CDO Tranche Risk Measures

The SLR is a portfolio risk measure. There are also several useful CDO
tranche risk measures, such as the tranche default probability, expected
loss, and the loss-given-default.* For a synthetic CDO tranche, these can
all be computed by “overlaying” the tranche on the portfolio loss distri-
bution, as shown schematically in Figure 10.3. Here, the tranche has an
attachment point equal to 4 percent of the total notional amount of the

SROC
PortfolioNotional SLR

PortfolioNotional CreditEnhancement
=

−
−
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*Clearly these measures also exist for cash CDO tranches. However, their determination
requires the additional step of modelling time-dependent cash flows.



portfolio, and a thickness also equal to 4 percent. This means that the
tranche will no longer suffer losses above 8 percent of the portfolio
notional amount, and, for this reason, this upper loss level is referred to
as the detachment point of the tranche.

Tranche Default Probability
Given an attachment point A and detachment point D (i.e., a tranche
thickness equal to D −A), the tranche default probability is the proba-
bility that portfolio losses at maturity T exceed A. This is given by:
PDTranche = P(L(T) ≥ A) = E[1{L(t) ≥ A}], where L(t) is the portfolio loss up to
time t (see section “The CDO evaluator model”), 1{} is the indicator func-
tion,* and E[] denotes the expectation. This forms the basis for assigning
a rating to a synthetic CDO tranche.

In the above expression for the tranche default probability, we
assumed that the attachment point A is constant over time. This can easily
be generalized to cases where the attachment point is a function of time t,
so that the above expression becomes PDTranche = P(L(t) ≥ A(t)) = E[1{L(t) ≥ A(t)}].
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In this case, we evaluate the loss distribution at all points in time at which
the attachment point changes. As an example, consider a hypothetical
seven-year synthetic CDO transaction. If the attachment point is initially set
at 3 percent of the portfolio notional balance, but then increases to 5 percent
after three years and remains at this level until maturity, we need to evalu-
ate the loss distribution at years three and seven. The cumulative default
probability of the tranche is therefore the probability that losses exceed
3 percent by year three, plus the probability that losses exceed 5 percent by
year seven, conditional upon losses not exceeding 3 percent by year three.

Finally, the time dependency of the attachment point can even be
made conditional upon certain levels of loss being reached within the
portfolio. For example, it is possible to model transactions in which the
attachment point “resets” according to the cumulative loss experienced
by the portfolio by a certain date. This dynamic behavior is easily mod-
eled by keeping track of the portfolio loss paths during simulation.

Expected Tranche Loss
The cumulative loss on the tranche at time t, M(t), is given by: M(t) = (L(t) −
A)1{A ≤ L(t) ≤ D} + (D − A)1{L(t) ≥ D}. The expected tranche loss is therefore given
by E[M(t)] = E (L(t) − A)1{A ≤ L(t) ≤ D} + (D − A)1{L(t) ≥ D}.

Tranche Loss-Given-Default
The tranche loss-given-default is given simply by:

Other Tranche Risk Measures

The tranche leverage and hedge ratio

are also useful in quantifying implied

tranche performance.

Synthetic CDO-Squared Transactions

Synthetic CDO-squared transactions have now become an established fea-
ture of the global CDO marketplace. Rather than referencing secondary
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market CDO tranches, these transactions typically use portfolio CDSs to
create so-called “bespoke” CDO tranches, each referencing a single under-
lying corporate portfolio. In this way, additional leverage is created above
and beyond the leverage already present in each bespoke CDO, resulting
in a yield pickup of these structures relative to similarly rated synthetic
CDOs.

While some CDO-squared transactions reference only CDOs, many
recent CDO-squared transactions have referenced portfolios containing a
mixture of CDO and ABS tranches, where the proportion of ABS is typi-
cally in the range of 70 to 90 percent by reference notional amount. The
ABS component normally consists of funded tranches that exist in the sec-
ondary market, whereas the CDO tranches are often tailor-made for the
CDO-squared investor. A CDO-squared typically references between 5
and 15 different bespoke CDOs, each of which may reference between 100
and 200 corporate names. At first sight, this might suggest that the under-
lying corporate reference portfolio could be as large as 3000 names!
However, this is not the case, given that the liquid corporate names in the
CDS market number between 400 and 600. For this reason, there is nor-
mally a significant overlap between the reference portfolios of different
bespoke CDOs, ranging from 20 to 30 percent in most cases. The basic
structure of a typical CDO-squared transaction is shown schematically in
Figure 10.4.

Should a credit event occur on an underlying corporate name, a bid-
ding process is used to establish a recovery, and the resulting loss is allo-
cated to each bespoke CDO that references this name. The overall impact
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of the credit event will therefore clearly depend on the overlap among
the underlying CDO tranches. When the loss allocated to a bespoke CDO
exceeds the attachment point of the CDO tranche, the loss is passed
through to the CDO-squared transaction. Bespoke CDOs therefore act as
“loss filters” between the underlying corporate assets and the CDO-
squared. This is very different to the ABS tranches, where a credit event in
general triggers a bidding process, the ABS tranche is removed from the
CDO-squared reference portfolio, and the resulting loss is allocated to the
CDO-squared transaction.

While each bespoke CDO tranche can be analyzed using the approach
described earlier, CDO-squared transactions require additional modeling,
such as the ability to “drill down” to the corporate names underlying each
CDO tranche included within the CDO-squared portfolio. In this way,
losses are modeled “from bottom to top,” flowing through each bespoke
CDO before being allocated to the CDO-squared tranche. This allows the
overlap between pairs of bespoke CDO tranches to be explicitly modeled, in
addition to their individual default and loss-given-default characteristics.*

Cross-Subordination

One of the innovations in the CDO-squared market has been the intro-
duction of so-called “cross-subordination.” This mechanism allows dif-
ferent bespoke CDOs to share the total subordination provided by all
bespoke CDOs. For example, eight CDOs with attachment points and
thicknesses of i10 million would create a total cross-subordination of i80
million. During the life of the transaction, if any CDO experiences losses
greater than i10 million, these losses are not passed through to the CDO-
squared until the total aggregate losses exceed i80 million. In this way, the
CDO-squared investor is protected from the risk of a small number of
CDOs experiencing losses, but is exposed to the risk that a large number
of CDOs experience losses.†

This is easily modeled within CDO Evaluator by “tracking” the
losses experienced by each bespoke CDO in each simulation step, and
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* See Drill-Down Approach for Synthetic CDO Squared Transactions, Standard & Poor’s Special
Report, December 10, 2003.
†Another way of stating this is that cross-subordination reduces the idiosyncratic risk spe-
cific to each CDO, but increases the systematic risk common to all CDOs.



only passing through the aggregate loss if it exceeds the total available
subordination. This can also be extended to cases in which the subordi-
nation is only “partially” cross-subordinated (e.g., the CDO-squared
transaction is insulated from only 75 percent of the total aggregate subor-
dination of the bespoke CDOs).

Consider a hypothetical CDO-squared with the following character-
istics:

♦ The CDO-squared references a portfolio containing eight
bespoke CDO tranches and 50 “AAA” rated ABS tranches, with
an average asset correlation of 10 percent.

♦ Each bespoke CDO tranche references a portfolio of approxi-
mately 100 “A” rated names with 5 percent average asset corre-
lation, equal reference notional amounts of euro;10 million, and
assumed recoveries of 35 percent.

♦ Each bespoke CDO tranche has an attachment point of i40 mil-
lion (consistent with a CDO rating at the “A” rating level) and
a detachment point of i0 million, i.e., a tranche thickness of 
i10 million.

♦ The average overlap between pairs of bespoke CDOs is 33
percent.

♦ Each ABS tranche has a reference notional amount of i10
million and an assumed recovery of 90 percent.

♦ The CDO-squared has a maturity of five years.

The CDO-squared portfolio therefore has a total reference notional
amount of i580 million. Of this amount, the ABS portion makes up 86 per-
cent, and the bespoke CDOs 14 percent.

Figure 10.5 shows the loss distribution of the CDO-squared portfo-
lio. In one case, the CDOs are assumed to contribute losses to the CDO-
squared without cross-subordination, as described earlier. In the other
case, all eight bespoke CDOs are assumed to be cross-subordinated, as
described above. In both cases, the probability of zero or small losses is
very high, while there is a “tail” of higher losses. However, in the case of
the cross-subordinated transaction, the probability of zero/small losses
increases significantly, with a corresponding decrease in the probability of
larger losses. This means that a senior CDO-squared tranche with a rela-
tively high attachment point has a lower probability of default in the case
of cross-subordination, as the total area of the distribution above 6 percent
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loss is lower. However, this tranche is likely to exhibit a higher loss-given-
default.

Long/Short CDS

The CDSs behave in a similar fashion to bilateral insurance contracts. One
party (the protection seller) agrees to pay another party (the protection
buyer) an amount equal to the reference notional amount of the contract
minus a recovery amount in the event of a default of a given reference
entity on one or more of its obligations. The recovery amount is normally
determined either by physical delivery of a specified obligation or by cash
settlement. The details of allowable obligations and settlement proce-
dures are not discussed in any detail here.

In exchange for this contingent payment, the protection buyer pays
the protection seller a premium. A CDS therefore consists of two cash
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flows: the premium flow and the contingent payment. The “fair value” of
the CDS is that which makes the net present value (NPV) of the premium
flow exactly equal to the NPV of the contingent payment. Figure 10.6
illustrates the CDS payment mechanics.

When an entity sells protection in CDS form, it is said to take a “long”
position, as it receives the same economic loss/benefit as owning a bond
issued by the reference entity. Conversely, when an entity buys protection,
it takes a “short” position. The CDO Evaluator models a short CDS simply
by reversing the sign of the loss (i.e., making it a gain) in the event of
default of the reference name, conditional upon the survival of the protec-
tion seller. This is one example of the way in which CDO Evaluator treats
counterparty risk, which requires additional information on the CDS coun-
terparty when short CDSs are included within the portfolio.

Long/Short CDO Tranches

Using CDS technology, it is also possible to take a short position on an
underlying CDO tranche within a CDO-squared transaction. In this case,
the CDO-squared buys protection on an underlying CDO tranche, so that
if losses exceed the attachment point of the tranche the CDO-squared
receives a payment equal to the difference between the net portfolio loss
and the tranche attachment point, up to a maximum of the size of the
tranche.

Nth-to-Default Baskets

The mechanics of these transactions are similar to those of a CDS (Figure
10.6), except that the reference entity is replaced by a basket of reference
entities, and the seller of protection is exposed to the risk of the nth
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default within the basket. An nth-to-default basket can be treated as a spe-
cial case of a synthetic CDO containing a small number of equal expo-
sures (typically three to five). As described earlier, the tranche default
probability is the probability that portfolio losses at maturity T exceed the
attachment point A. For an nth-to-default basket with a fixed recovery δ,
the attachment point is clearly equal to (n − 1)δ.
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CDOs Tranches—Credit Curves and Rating Quanties



CDO Methodologies Developed by S&P 425

A P P E N D I X  B

Recovery Assumptions for CDO
Evaluator Assets



426 CHAPTER 10



CDO Methodologies Developed by S&P 427



428 CHAPTER 10



CDO Methodologies Developed by S&P 429

A P P E N D I X  C

Correlation Assumptions for CDO
Evaluator Assets

Rated Securities

EDSs



430 CHAPTER 10

PART 2 CASH FLOW METHODOLOGY*

In this part, we present S&P methodology related do cashflow modeling
for cash CDOs.

This part provides a detailed insight into the analytics we employ
in the cash flow modeling of CDO transactions. It expands upon our
global criteria for cash flow and synthetic CDO transactions, which were
published in 2002. Specifically, this article augments the section in the
global criteria that covers the cash flow analytics performed as part of
the rating process. Transaction arrangers should also use this as a guide-
line with which to structure a CDO transaction to achieve the desired
ratings.

These criteria are relevant to both cash flow and synthetic CDO trans-
actions. Besides being an integral part of the rating process for all cash flow
CDOs, cash flow analytics is also employed in the quantitative analysis of
synthetic CDO transactions that generate excess spread to reduce the sub-
ordination requirement for the rated notes.

CDO transaction structures and collateral eligibility can vary signif-
icantly from transaction to transaction. We modify the general assump-
tions that follow to fit the unique circumstances of each transaction. While
comprehensive, this part does not attempt to cover all the cash flow mod-
eling stresses that might be applied to any particular transaction. Sponsors
and arrangers are encouraged to work with us as early as possible in the
structuring process of the transaction to ensure that appropriate cash flow
modeling parameters are used.

Our published criteria, entitled Global Cash Flow and Synthetic CDO
Criteria, were published on March 21, 2002 and are available on
RatingsDirect, our Web-based credit analysis system, at www.ratings
direct.com.

OVERVIEW OF ANALYSIS

Our CDO quantitative analysis consists of two components: a default
analysis and a cash flow analysis.

*This section is extracted from the S&P Structured Finance publication called General Cash
Flow Analytics for CDO Securitizations, by K. Cheng, J.C. Martorell, D. Tescher, P. Inglis, H.
Abulescu, K. Van Acoleyen, and B. Radicopoulos dated 25-08-04.

www.ratingsdirect.com
www.ratingsdirect.com
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Default Analysis

The default analysis uses CDO Evaluator to determine the default rate
expected on a defined portfolio at each rating level. This default rate is
referred to as the scenario default rate (SDR).

The CDO Evaluator uses “Monte Carlo” statistical methodology to
evaluate the credit quality of a portfolio. The basic information required
of each asset is the issuer ID, the par amount, the maturity date, the indus-
try group, and the corporate issuer credit rating or ABS rating. These asset
attributes are superimposed upon the model parameters—sector correla-
tion coefficients, the table of default probabilities for assets, and the table
of default probabilities for CDO classes—to determine a probability dis-
tribution of potential default rates for the portfolio in the aggregate. The
set of SDRs at each rating level is then derived from this distribution.

Our published criteria, Global Cash Flow and Synthetic CDO Criteria,
give a detailed description of CDO Evaluator and how we estimate SDRs.

Cash Flow Analysis

The second component of the CDO quantitative analysis, the cash flow
analysis, evaluates the availability of funds for full payment of interest
and principal in accordance with the terms of each rated class of notes.
For transactions with multiple classes, the cash flow analysis is run for
each class to assess whether the level of credit support provided is con-
sistent with the rating sought on each class. Cash flow modeling is also
used to size liquidity and other reserves.

The analysis is transaction-specific and takes into account the struc-
tural elements of a transaction, including:

♦ The principal and interest priority of payment;
♦ Overcollateralization and interest coverage tests;
♦ Reinvestment of proceeds;
♦ Early amortization, fast pay, or redemption events;
♦ Excess spread accumulation; and
♦ Reserve levels.

In assessing a CDO class’s ability to meet the desired ratings level, the
flow of proceeds from the assets to cover the payments due on the liabil-
ities is subjected to a series of stress scenarios. The severity of these stress



432 CHAPTER 10

scenarios depends on the desired rating as well as transaction-specific fac-
tors like the quality of the portfolio and the liability payment sequence.
The result of this analysis is a series of breakeven default rates (BDRs),
one for each stress scenario.

Each BDR is the default rate the portfolio can withstand and still be
able to generate adequate cash flow to meet contractual payments of
interest and principal on the CDO class when subjected to the particular
stress scenario. The lowest of these BDRs is compared with the SDR gen-
erated by CDO Evaluator for the portfolio at the desired rating level.

Achieving the Desired Rating

The desired rating is achieved when the BDR, i.e., the level of defaults
the portfolio can withstand at the rating level, is the same or higher than
the SDR, i.e., the level of defaults expected for the portfolio at that rating
level. The excess of the BDR above the SDR is commonly referred to as
the “cushion.” It reflects the ability of the portfolio to withstand the com-
bination of additional defaults beyond the SDR and still pay out the
notes.

Approach to Cash Flow Modeling

This article details our analytical guidelines for the cash flow analysis of
CDO transactions. Central to these guidelines are the stress elements that
form the scenarios used to test the ability of the cash flow generated by the
assets to cover payment obligations on the CDO liabilities. Many of these
elements, such as the timing and pattern of defaults, timing and extent of
recovery, and interest-rate movements, are difficult to model because they
are historically variable.

To tackle this problem, we have established a set of basic default
paths for each variable. We pay particular attention to the nature of the
assets eligible for inclusion in the portfolio and the jurisdictions from
which they are issued. Where appropriate, adjustments are made to the
cash flow modeling stresses to account for asset-specific characteristics
and legal requirements.

Accurate cash flow modeling of the transaction, as dictated in the
governing legal documentation, is crucial to our analysis. Proper repre-
sentation of the characteristics of the asset pool in all material aspects is
also critical.



THE MEANING OF THE RATING

The combination of default patterns and timing sequences, interest-rate
paths, and various additional stresses applied in the cash flow modeling
lead to a multitude of scenarios, each of which has a separate BDR. To
achieve the desired rating on a specific class of notes, we compare the
lowest of these BDRs for the class with the corresponding SDR generated
by CDO Evaluator.

For “AAA” to “A” rated CDO classes, we generally rate to the timely
payment of interest and ultimate payment of principal by the legal final
maturity date. The cash flow model at these ratings levels should demon-
strate that interest and principal are paid when due and there is no defer-
ral of interest payments.

At the “A−” rating level, our cash flow model allows for the defer-
ral of interest for no more than three consecutive years. After the interest
deferral period, interest payments should resume as scheduled.

At the “BBB+” rating level and lower, we allow for the deferral of
interest until the legal final maturity date. However, all current and past
interest, along with interest on interest, due must be paid by that date.

If the interest cannot be paid within the required time frame for the
desired rating, it is still possible for the notes to achieve the rating but the
legal name of the notes must specify “deferred interest.” This is also to
avoid any confusion among the investors.

In all cases, interest incurred on all accrued and unpaid interest
should also be incorporated into the cash flow model. The applicable inter-
est rate is typically the same as that on the subject notes.

DEFAULTS

Although CDO Evaluator estimates the magnitude of defaults expected in
the portfolio at each rating level, a lack of empirical loss curves leaves the
pattern or timing of these defaults unclear. This problem is addressed in
our cash flow models by testing the sensitivity of the transaction to a vari-
ety of default patterns. Four standard default patterns—which are each
shifted in accordance with the expected life of the transaction—and a few
other default patterns designed to stress certain cash flow behavior, form
the core of our established default stresses.

Details of these patterns and timings follow. These core default
stresses are conceived to address the risks inherent in most of the
sequential pay senior/subordinated structures common to the CDO
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marketplace. Where appropriate, we modify or request additional pat-
terns or timings to fit the unique circumstances of a transaction.

Standard Default Patterns

The four standard default patterns are shown in Table 10.1.
These patterns are expressed as a percentage of the cumulative port-

folio default rate occurring every year once defaults start. For example,
applying the 40/20/20/10/10 default pattern to a cumulative default rate
of 40 percent, the original par balance of the portfolio experiences defaults
of 16 percent, 8 percent, 8 percent, 4 percent, and 4 percent, respectively,
in the five years covered by the pattern.

The default patterns are applied to the original par balance of the
portfolio. This is the target balance at the effective date for transactions
that have a ramp-up period. Staying with this example, for any original
par balance of $500, the defaulted balance in absolute dollar terms would
be $80, $40, $40, $20, and $20, respectively, in the five years.

Front-loaded default patterns, such as the 40/20/20/10/10 pattern,
tend to stress a transaction’s dependence on excess spread. Defaults in the
early life of the transaction lead to fewer interest-generating assets and
result in less excess spread for credit support. The 20/20/20/20/20 pat-
tern focuses more on the back end of a transaction, when a combination
of amortizing assets and cumulative defaults may make a transaction
more sensitive to late-period defaults.

Timing of the Standard Default Patterns
To capture the sensitivity of the transaction to defaults across the entire
life of the transaction, each of the four standard patterns is started in the

T A B L E  1 0 . 1

Standard & Poor’s Standard Default Patterns

Annual defaults as percentage of cumulative defaults (%)

Year 1 Year 2 Year 3 Year 4 Year 5

Pattern I 15 30 30 15 10

Pattern II 40 20 20 10 10

Pattern III 20 20 20 20 20

Pattern IV 25 25 25 25 —



first year, then started in the second year, and so on. The start times of the
patterns are pushed back to the point where the final default in the pat-
tern occurs in the same year that the balance of the portfolio are expected
to mature. That is, the starting points continue to be shifted as long as ade-
quate assets remain in the portfolio. This is dictated by the length of the
reinvestment period and the weighted-average expected life (WAL) of the
collateral. The maximum WAL at the end of the reinvestment period is
generally the appropriate measure for the WAL because it reflects the
tenor of the portfolio when it becomes static.

If the collateral manager is allowed to buy assets during the amortiza-
tion period, the trading constraints are assessed to gauge the need for addi-
tional timing shifts beyond those dictated by the maximum WAL covenant.
Some transactions have a maximum WAL covenant at the effective date that
does not reduce during the reinvestment period. For these transactions, we
generally use the effective date WAL covenant as the WAL at the end of the
reinvestment period to determine the appropriate timing shifts.

As an example, take a transaction with a five-year reinvestment
period, a maximum WAL covenant of four years at the end of the rein-
vestment period, and trading activities permitted only during the rein-
vestment period. Because the balance of the portfolio does not mature
until the end of year nine (four years after the end of the reinvestment
period), the start of the default patterns can be pushed back to year five,
which spreads defaults across years five through nine. The constraints in
this example dictate the use of the standard default patterns beginning in
years one through five.

If the WAL covenant is two years at the end of the reinvestment
period, rather than four years as in the previous example, there would not
be adequate assets remaining after year seven. We would run the default
patterns from years one through three so that the last default would occur
in year seven.

Modifying the Timing Based on Liability Ratings
The stress elements must reflect the difference between each rating cate-
gory. Different default timing stresses are applied in the cash flow model-
ing according to which rating is sought on the notes. Although each of the
four standard default patterns is run beginning in year one, we delay the
start of these patterns by a longer period to capture the effect of later
defaults at the higher liability ratings.

For example, the reinvestment period and WAL covenant of a transac-
tion might dictate stressing the transaction with default patterns beginning
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as far out as year five at the “AAA” rating level. At the “BBB” rating level,
we might require default patterns to begin only as far out as year three.

Guidelines for the required timing shift of the standard default pat-
terns for ratings below “AA−” are described below. The required timing
shift at the “AA” liability level is identical to that required at the “AAA”
level. The requirements at the lower liability ratings change according to
these shifts.

For “A+” to “A−” rated classes. The standard default patterns start
at the end of year one and last until one year less than the period required
for “AAA” and “AA” rated notes. For example, if the applicable starting
years for the default patterns for the “AAA” and “AA” rated notes are
one through five years, then the starting years for the “A” rated notes are
up to four years.

For “BBB+” to “BBB−” rated classes. The standard default patterns
start at end of year one and last until two years less than the period required
for “AAA” and “AA” rated notes. In the example above, the starting years
for the “BBB” rated notes are up to three years.

For “BB+” to “BB−” rated classes. The standard default patterns start
at end of year one and last until three years less than the period required
for “AAA” and “AA” rated notes. In the example above, the starting
years for the “BB” rated notes are up to two years.

For “B+” and below. The standard default patterns start at end of
year one and last until four years less than the period required for “AAA”
and “AA” rated notes. In the example above, the default patterns are
required to begin only in year one for the “B” rated notes.

The examples provided in Table 10.2 further illustrate the starting
years required. For fractions of years, the determining point is the half-
year mark (see the last two examples in the table).

Additional Core Default Patterns

In addition to the four standard default patterns covered above, “saw-
tooth” default patterns and expected-case default patterns are also required.

Saw-Tooth Patterns
The saw-tooth patterns are used to stress transactions that use principal to
pay deferred interest on subordinate classes before amortizing the senior
class. By deferring interest, then paying it back, deferring interest again,
and paying it back, these patterns test the transaction’s ability to pay out
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T A B L E  1 0 . 2

Example of Starting Years for Standard Default Patterns

WAL covenant
at end of

Reinvestment reinvestment AAA AA A BBB BB B
period period tranche tranche tranche tranche tranche tranche

5 4 1 to 5 1 to 5 1 to 4 1 to 3 1 to 2 1

5 6 1 to 7 1 to 7 1 to 6 1 to 5 1 to 4 1 to 3

4 4 1 to 4 1 to 4 1 to 3 1 to 2 1 1

4 6 1 to 6 1 to 6 1 to 5 1 to 4 1 to 3 1 to 2

5 4.5 1 to 6 1 to 6 1 to 5 1 to 4 1 to 3 1 to 2

5 4.3 1 to 5 1 to 5 1 to 4 1 to 3 1 to 2 1
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all the required principal on the rated notes after principal proceeds are
diverted to pay interest on these liabilities.

For ratings of “BBB−” and above, the saw-tooth patterns are as follows.
Pattern 1. Defaults occur in alternating years, beginning in year 1

and ending in the last year that adequate assets remain in the portfolio.
Defaults are lumped at the end of the year. In a transaction with a five-
year reinvestment period and a minimum WAL covenant of four years at
the end of the reinvestment period, the saw-tooth pattern requires that 20
percent of total defaults are modeled to occur in each of years 1, 3, 5, 7,
and 9.

Pattern 2. Defaults occur every three years, beginning in year one and
ending in the last year that adequate assets remain in the portfolio. Defaults
are lumped at the end of the year. In the example above, this pattern requires
that 25 percent of total defaults are applied in each of years 1, 4, 7, and 10.

For ratings of “BB+” and below, the saw-tooth pattern is as follows.
Pattern 3. Defaults occur in alternating years, beginning in year

one and ending in year seven. Defaults are lumped at the end of the year.
Thus 25 percent of total defaults are modeled to occur in each of years 1,
3, 5, and 7.

Expected Case Patterns
There are two expected-case patterns:

♦ The low pro rata default pattern: Defaults should be distributed
evenly across (n − 2) years, where n is the number of years to
legal final maturity. The annual default rate should be calculated
as the gross default rate/(n − 2). For example, defaults are mod-
eled to occur evenly at the end of years 1 to 10 for a transaction
with a 12-year legal final maturity.

♦ Zero defaults: no defaults are applied in the modeling. Excess
spread flows down the priority of payments for the benefit of
the equity. This tests the ability of the transaction structure to
adequately support the rated notes without trapping excess
spread to pay down principal on the liabilities upon breach of
an overcollateralization test. It also helps make our cash flow
model comparable to that of the transaction arranger.

Smoothing the Patterns

Defaults are more likely to be spread throughout a given year than occur
at one specific time (at year end, for instance). We allow the annual
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defaults on the standard default patterns to be modeled to occur as fre-
quently as quarterly for transactions where at least 80 percent of the assets
pay not less frequently than quarterly, after taking into account any basis
swaps. In this manner, annual defaults are spread evenly across the four
quarters with defaults occurring on the last day of each quarter. Given
that transactions typically have a 5 to 10 percent allowance for less fre-
quent pay assets, most quarterly pay transactions would qualify for the
smoothing of annual defaults. The transaction arranger also has the option
of modeling defaults less frequently. Regardless, in all cases, assets matur-
ing in any period remain subject to defaults in that period.

The entire default amount in the first year, however, should be mod-
eled to occur on the last day of the year. This reflects our opinion that, in
most instances, some time lapses before defaults occur on a recently
assembled portfolio. An exception to this is when the targeted portfolio
consists of an abnormally high concentration of low credit quality assets.
In these cases, we may request that the model begin defaults earlier
during the first year.

Defaults clearly affect the interest received from the defaulted
assets—interest is earned only on the performing pool balance. During
the liability payment period when the asset is assumed to default, credit
is given for the interest earned only if the asset pays interest more fre-
quently than the liabilities. For example, in a transaction paying semi-
annually, an asset that receives quarterly interest payments is modeled to
receive interest for the first, but not the second, quarter of the default
period. In contrast, an asset that receives semi-annual interest payments
is not given credit for interest in the modeling for that default period.

We assume a lag period from the time the asset defaults to the time
recoveries are realized on defaulted assets and the money is available for
reinvestment in substitute collateral. During this period (which is addressed
in the section “Recoveries”), no interest is received on the defaulted assets.
Following the lag period, recovery proceeds are modeled to occur on the
last day of the payment period that recovery is realized. Redeployment of
the proceeds in interest income-generating assets does not occur until the
first day of the subsequent period.

Adjustments to Default Patterns and Timing

The default patterns and timings that form the core of our default stresses
are designed to address the risks common in many of the traditional
sequential pay senior/subordinated CDO transaction structures.
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Variations, such as certain asset characteristics or transactional mecha-
nisms, introduce risks that sometimes necessitate the use of alternative or
additional stresses. Several are now covered.

Low Credit Quality Portfolios
Several CDO transactions backed by portfolios with a high concentration
of very low credit quality assets have already entered the marketplace.
Although the increased default probability of these portfolios is captured
by the ratings on the assets and the default tables embedded within CDO
Evaluator, an adjustment to the established default patterns is warranted
to cover the possibility that the defaults would occur earlier in the trans-
action’s life cycle, and be lumpier. In general, three additional default pat-
tern stresses, all beginning in year one, are required and applied to the
entire portfolio (Table 10.3).

Short Legal Final Maturity Transactions
Most cash flow CDO transactions issue liabilities with legal final maturi-
ties of 10 years or longer. However, a few CDO transactions have been
brought to the market that are a hybrid of synthetic and cash flow struc-
tures. These have relatively short maturities, typically five years.
Applying the standard default patterns and timings on these transactions
is inappropriate. Instead, the following two default patterns are generally
used (Table 10.4).

The first default pattern is applied five times with the 50 percent
shifted to each of the five years (e.g., 50/10/10/10/20, 10/50/10/10/20,
etc.). The second default pattern does not change.

T A B L E  1 0 . 3

Standard & Poor’s Additional Default Patterns 
for Low Quality Pools

Annual defaults as percentage of 
cumulative defaults (%)

Year 1 Year 2 Year 3 Year 4

Pattern I 50 25 25 —

Pattern II 60 20 10 10

Pattern III 70 10 10 10
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Default Bias For Interest Mismatches
Most CDO transactions are modeled based on the general pool character-
istics, with pro rata defaults applied across all assets. However, when
there is a significant mix of fixed- and floating-rate assets, the bias of
defaults makes it more appropriate to stress the shift of portfolio compo-
sition over time. The bias of default that follows is applied at the “AAA”
through “A−” rating levels.

In a high interest-rate environment, obligors paying a floating rate
might be under greater pressure to meet their payment obligations due to
rising interest rates. In this scenario, a larger percentage of floating-rate
obligors might default. Conversely, in a low interest-rate environment,
obligors that pay high fixed-interest rates might be more likely to default.
In this second scenario, a larger proportion of the fixed-rate obligors
might default.

To test for this phenomenon we usually request certain cash flow
runs where defaults are biased toward the fixed-rate assets during low
interest-rate environments and, conversely, towards floating-rate assets
during high interest-rate environments. The goal of this analysis is to test
the rated class’s ability to pay out even if defaults shift within the collat-
eral pool.

For all ratings where the mix is greater than 10 percent, the formula
generally applied for biasing defaults is as follows:

Default Bias = 2x/(1 + x)

where x is the initial percentage of fixed-rate bonds or floating-rate loans
in a pool.

For example, if the collateral portfolio has a mix of 30 percent

T A B L E  1 0 . 4

Standard & Poor’s Default Patterns for Shorter 
Maturity Transactions

Annual defaults as percentage of 
cumulative defaults (%)

Year 1 Year 2 Year 3 Year 4 Year 5

Pattern I 10 10 10 50 20

Pattern II 33 33 34 — —



fixed-rate assets and 70 percent floating-rate assets, the applicable fixed-
rate default bias would be:

Fixed-Rate Default Bias = 2(0.3)/(1 + 0.3) = 0.46

In this case, the cash flow model would be adjusted to default 46
percent of the fixed-rate assets and 54 percent of the floating-rate assets,
instead of the actual 30 percent/70 percent split. This fixed-rate default
bias is generally applied only to the dominant run in the Index Down
interest-rate stresses.

In the same example, the applicable floating-rate default bias
would be:

Floating-Rate Default Bias = 2(0.7)/(1 + 0.7) = 0.82.

In this case, the cash flow model would default 18 percent of the
fixed-rate assets and 82 percent of the floating-rate assets. This floating-
rate default bias is generally applied only to the dominant run in the
Index Up interest-rate stresses.

RECOVERIES

Loss severity and recovery timing assumptions are another intrinsic part
of CDO transaction analyses. These aim to estimate the loss on an asset
upon default and when the recovery is realized.

Recovery Rates

Recoveries specify the amount of money realized on a defaulted obliga-
tion after it has defaulted. Factors such as the breadth and depth of the
secondary market profoundly influence recovery rates realized. These
factors differ across markets, so recovery rates must be assigned by asset
type and domicile.

Within each asset type, additional influences affect recovery rates. In
the case of corporate obligations, recoveries are not dependent on the rat-
ing on the obligor or on the notes in the transaction. Instead, they depend
on the type, seniority, domicile, and security of the obligation. The recovery
rates that are ultimately realized are further influenced by the actions of the
collateral manager. Thus, two collateral managers, following different
workout strategies, may realize significantly different recoveries for the
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same assets under identical market environments. We use an established
range of recovery rates for each classification of corporate asset and assign
transaction-specific recovery rates within these ranges based on a review of
the collateral manager.

The recovery rates applied for assets governed by one jurisdiction
are not necessarily appropriate for other jurisdictions. The recovery
ranges also differ across governing domicile. The Global Cash Flow and
Synthetic CDO Criteria book shows the various recovery ranges for corpo-
rate bonds and loans issued under U.S. and European jurisdictions, and
recovery assumptions for defaulted emerging market assets. These recov-
ery assumptions are generally lower and reflect the relative lack of liq-
uidity in the secondary market for emerging market obligations.

In contrast to corporate obligations, the ratings on structured finance
securities—as a reflection of position in the capital structure—influence
recovery prospects, as does the seniority of an asset. The recovery rates
assigned are also tiered across economic conditions, using the rating on the
CDO notes as the proxy for those conditions. The resultant recovery matri-
ces for structured finance securities under U.S. and European jurisdictions
are shown in the Global Cash Flow and Synthetic CDO Criteria book.

It is critical to note that the recovery ranges and tables are applica-
ble to many, but not all, assets that fall within the collateral classifications
identified in those tables. Recoveries may be adjusted based on character-
istics or mechanisms particular to any asset. Assets not covered by the
existing recovery tables (e.g., project finance bonds, operating company
obligations, and distressed-debt CDOs) are assigned recoveries on a case-
by-case basis.

Although recoveries are assigned to each asset, we use the minimum
weighted-average recovery rate covenant (as defined by the transaction’s
portfolio eligibility criteria) in cash flow modeling for CDO transactions
that allow for reinvestment of proceeds.

The CDO transactions that prohibit reinvestment of proceeds and
are fully ramped up on the closing date have no need to incorporate min-
imum weighted-average recovery rate tests. In these transactions, the
actual weighted-average recovery rate at closing is generally used in the
cash flow modeling. However, a “bar-belled” portfolio might necessitate
the use of a recovery rate lower than the weighted-average or a bias of
defaults toward the lower recovery assets.

In all instances, recovery rates are applied to the par balance of the
asset without accounting for any deferred and capitalized portion of par
outstanding.
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Recovery Timing

Recovery timing specifies the time it takes to achieve recoveries once an
obligation defaults. Time to recovery is influenced by the type of asset, the
form of the obligation, the actions of the collateral manager, the liquidity
of the market, the governing legal jurisdiction, and the requirements of
the transaction with regard to forced sale or settlement. In most cases, two
general assumptions are made for the timing of recoveries on defaulted
assets, as follows:

♦ Recoveries on defaulted sovereign, corporate, and structured
finance securities are assumed to occur one year after default
through secondary market liquidation.

♦ Recoveries on defaulted loans are assumed to occur over a
three-year workout period, with one-half of the recovery
received at the end of the second year and the remaining half at
the end of the third year.

The above assumptions are consistent across many jurisdictions. A longer
recovery horizon is assumed on defaulted loans because loan markets are
not generally as liquid as bond markets. These recovery horizons are con-
sistent with the holding periods that we consider sufficient to allow the man-
ager to maximize recoveries on defaulted securities. The recovery levels in
our recovery rate ranges and tables are reflective of this holding period.

When modeling recoveries, the model should show recoveries real-
ized at the end of the appropriate period. In this manner, recovery pro-
ceeds are not available for reinvestment and, therefore, no interest income
is earned on these proceeds during this period. Earning of interest begins
in the subsequent period.

INTEREST RATE STRESSES

The CDO transactions often have a fixed-to-floating interest-rate mis-
match between the assets and the liabilities. To mitigate this risk, transac-
tions are commonly structured with interest-rate hedges. In the absence of
a balanced guaranteed hedge, mismatches between the notional of the
hedge and the liabilities might develop as the magnitude or bias of
defaults between fixed- and floating-rate assets diverge from projected
levels. Testing of the transaction under several distinct interest-rate paths
is performed to gauge the effectiveness of the hedge structure in a variety
of interest-rate environments.
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Stresses

In general, transactions are stressed under the index scenarios listed in
Table 10.5. In addition, the “At Swap” and “At Cap” rates are typically
run to test the transaction’s ability to perform without depending on the
hedges for additional credit support.

The interest rate curves for each transaction are adjusted to match
the length of the transaction and the index used. They may also vary by
rating level. We provide to the arranger the curves applicable to the trans-
action early in the rating process. General details of our interest-rate
assumptions are provided in the Global Cash Flow and Synthetic CDO
Criteria book.

Adjustments to Interest Rate 
Sensitivity Analysis

These interest rate paths or the manner in which they are applied are
sometimes adjusted to address peculiarities of a transaction. Additional
adjustments to other aspects of the cash flow modeling are sometimes
also necessary to address interest rate related risks. Several are now
covered.

Fixed-Rate/Floating-Rate Asset Mix
Transactions that allow for reinvestment of proceeds typically contain
investment guidelines that allow for a range of asset mix between fixed-
and floating-rate collateral. When the mix is heavily concentrated toward
one or the other of these possibilities (either at least 95 percent fixed or 95
percent floating), the transaction can be modeled in one of two ways at
the discretion of the transaction arranger:

T A B L E  1 0 . 5

Standard & Poor’s Interest Rate Paths

Index Up

Index Down

Index Down/Up

Current Index Forward Curve

At Swap

At Cap



♦ Model either as 100 percent fixed or floating; or
♦ Model at a maximum percentage of fixed or floating.

For transactions that allow for greater flexibility between the mix of fixed-
and floating-rate assets, disparities in the minimum weighted-average
coupon and spread covenants could lead to pronounced differences in the
cash flow performance along the fixed/floating-rate asset mix continuum.
In these circumstances, the mix of fixed/floating-rate assets must be mod-
eled at the maximum and minimum levels to capture the extremes in the
spectrum of possibilities.

When a transaction is stressed to the maximum allowance for
floating-rate assets, it often leads to a high concentration of loans. Since
higher recoveries are generally extended to loans relative to bonds, it is
possible that the weighted-average recovery for the portfolio in this sce-
nario could be higher than the minimum weighted-average recovery rate
covenant typically used in the cash flow modeling exercise. We take this
into consideration when stressing the transaction for the fixed/floating-
rate asset mix.

Loan Basis Risk
The floating-rate liabilities of CDO transactions and the floating-rate
assets in the portfolio typically use the same repricing index. Often, the
index is LIBOR or EURIBOR. Occasionally, there is a mismatch between
these indices due to the payment frequencies. The ability of the assets to
adequately cover the interest due on the liabilities is strained when the
movement of the indices between any two points in time is different.

The additional stress required to capture this risk depends on the
magnitude of the difference between the two indices’ movements. In gen-
eral, we apply a five basis point haircut to the weighted-average spread
above the index when the mismatch is greater than 5 percent and the gap
in rate movements between the pair of indices has historically exhibited
significant variability.

Multiple Liability Indices
The presence of floating-rate liabilities tied to more than one index raises
questions regarding the appropriate interest-rate stresses. In this situation,
we apply the interest-rate curves commensurate with the dominant index.
For example, if 60 percent of floating-rate liabilities are based on EURIBOR
and 40 percent are based on LIBOR, then the EURIBOR interest-rate stress
scenarios generated by our LIBOR/EURIBOR curve dynamic model prevail.
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PORTFOLIO CONSIDERATIONS

Factors such as the composition of a portfolio or specific asset character-
istics introduce risks that might necessitate the use of additional or alter-
native stresses. Several are now covered.

Prepayment Sensitivities

Most structured finance products are collateralized by loans or mortgages
that include provisions, allowing the borrower to make unscheduled pay-
ments without a penalty. These prepayments affect the timing and mag-
nitude of the cash flow available to cover the liabilities on the structured
finance securities. In turn, this affects the cumulative excess spread gen-
erated by the securities. Since excess spread is often used to cover losses,
prepayments affect the ability of the transaction to support losses and
must be considered in the cash flow modeling.

To capture the effect of these prepayment provisions, we impose pre-
payment stress scenarios on those assets that exhibit elastic prepayment
sensitivities to interest-rate movement, including RMBS and home equity
line of credit (HELOC) securities. We should be consulted to help identify
these asset types. The prepayment stresses are applied to those CDO trans-
actions in which these assets make up more than 5 percent of the portfolio
in aggregate par balance. When the permitted concentration exceeds this
threshold, the entire bucket is stressed to test the impact of prepayments.

The three scenarios typically modeled include:

♦ The market (base) prepayment speed;
♦ An accelerated prepayment speed of 150 percent of the market

prepayment speed; and
♦ A decelerated prepayment speed of 50 percent of the market

prepayment speed.

For new issuance, the market prepayment speed is the expected prepay-
ment speed of the transaction. For seasoned issuance, it is the average of
actual market prepayment speeds during the previous six months.

When applying the accelerated and decelerated prepayment speed
stresses, consideration is given to the relationship between prepayment
behavior of the asset and interest-rate movements in determining the
appropriate accompanying interest-rate stresses. For example, prepayment
of fixed-rate mortgages is apt to pick up when interest rates are declining
and likely to slow down when they are increasing. Thus, the accelerated
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prepayment speed stress would be applied in conjunction with the interest-
rate index down stress, and the decelerated prepayment speed stress would
be applied in conjunction with the interest-rate index up stress. Regardless,
we should be consulted to determine the appropriate prepayment
speed/interest-rate stress pairings based on the mix of these assets.

When the mix of prepayment-sensitive assets cuts across national
markets subject to different prepayment behavior (e.g., U.K. vs. Italian
RMBS), we should be consulted for guidance on the appropriate base pre-
payment speed to apply. In general, this is the prepayment speed prevail-
ing in the market where most of the assets are expected to be purchased.

Foreign Currency Risk

Some CDO transactions, particularly those issued out of Europe, allow for
a bucket of assets denominated in a currency different from that of the
notes issued. The currency mismatch introduced is best hedged with a
balance-guaranteed foreign exchange swap, but the cost of entering into
these swaps is often prohibitive. The most common way to address this
risk is to use a natural hedge or asset-specific foreign exchange swaps
based on set notional balances. In both of these cases, the foreign exchange
risk is not fully hedged throughout the life of the transaction, thus neces-
sitating additional cash flow stresses to capture the foreign exchange risk.

A natural foreign exchange hedge exists when both the assets and
liabilities denominated in each currency make up the same proportion of
a given pool. For instance, the collateral pool may have 70 percent euro-
denominated and 30 percent U.S. dollar-denominated assets matched to
70 percent euro-denominated and 30 percent U.S. dollar-denominated
liabilities, thereby creating a natural hedge. However, this natural hedge
often does not immunize the CDO against foreign exchange risk. This
hedge remains perfectly balanced so long as defaults to the assets occur
pro rata across the currency denominations. If defaults do not occur in
proportion (the more likely scenario), the resultant imbalance would
throw the natural hedge askew. The balance of the natural hedge could
also be upset by prepayments on the assets or diversion of principal pro-
ceeds to pay down liabilities in a sequential pay structure triggered by the
breach of a coverage test.

The effectiveness of a natural hedge is also dependent upon its posi-
tion in the capital structure. Segregating the most senior class of notes
across the currencies is more effective than segregating a more junior class.
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The other common strategy for addressing foreign exchange risk is
to use asset-specific foreign exchange swaps. The issuer of the securities
enters into a foreign exchange swap, often for a set notional balance or a
schedule of notional balances. This hedging strategy is likewise suscepti-
ble to hedging imbalances due to the bias of defaults or prepayments on
the asset balance.

In the absence of a strategy that adequately addresses foreign
exchange risk over the life of the transaction, we typically employ a two-
part analysis to test for the potential effect of this risk. First, the cash flow
is subjected to additional stresses that bias defaults toward each of the
currency denominations. The magnitude of the bias is dictated by factors
that include the position of the natural hedge in the capital structure, the
proportion of assets denominated in each currency, and the disparity of
the credit risk profiles between each currency-denominated sub-portfolio.
Currency devaluation factors, calculated using a currency devaluation
model, are then applied to the resultant hedge imbalance to size the extent
of the currency mismatch.

The presence of different indices (e.g., LIBOR and EURIBOR) in trans-
actions with multiple currencies might also necessitate additional analysis to
capture the mismatch of indices. The empirical relative movement of the
indices and the magnitude of the mismatch determine this need.

We should be consulted for the default bias, currency devaluation
stresses, and index mismatch stresses applicable to each particular trans-
action.

In addition to hedging the periodic payments, the foreign exchange
strategy should remain in place to cover the recoveries realized on defaulted
securities. Automatic termination of the foreign exchange swap upon
default of an asset exposes the recoveries to foreign exchange risk. We
typically adjust the recovery rate assigned when the swap is required to
terminate before the base recovery delay assumptions. The magnitude of
this adjustment is determined according to factors such as the length
of time the defaulted asset is exposed to foreign exchange risk and the
particular currencies involved.

Foreign exchange risk also arises when an asset is sold, but the asset-
specific foreign exchange swap is not automatically retired or, conversely,
the foreign exchange swap terminates before the asset matures. In the first
instance, the collateral manager is likely to include the economic effect of
the swap in making its sell decision and, in the latter, the manager might
sell the unhedged asset to eliminate foreign exchange concerns. In both
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cases, noncredit-based considerations are factored into the decision pro-
cess and we consider adjusting the recovery rate assigned.

Coupon on Assets

We base our cash flow analysis on a portfolio that generates interest
income at the minimum coupon/spread dictated by the collateral pool
eligibility criteria. This assumes that market conditions prevent the col-
lateral manager from purchasing collateral at spreads or coupons higher
than the minimum weighted-average spread or coupon.

However, if the portfolio is fully ramped up at closing and trading
is allowed, credit is afforded to the actual weighted-average coupon/
spread of the pool at the start of the transaction. The pool coupon/spread
migrates down to the minimum levels over two years on a straight-line
basis. The form of this migration is dictated by the frequency of payments
on the liabilities. For example, take a transaction that covenants to a min-
imum weighted-average coupon of 6 percent but has an actual weighted-
average coupon of 8 percent, and pays out on its liabilities quarterly. The
appropriate cash flow modeling allows interest to be earned at an 8
percent coupon between closing and the first payment period, with the
coupon reduced by 25 bps each subsequent payment period until it reaches
6 percent after the eighth payment period.

It is important to note that the cash flow should be modeled at the
coupon and not the stated yield rate.

Interest Income on Eligible Investments

Proceeds received from assets in the form of scheduled principal and
interest payments and recovery proceeds are held in eligible investments
before being reinvested in substitute collateral or being used to pay lia-
bilities on a payment date.

In the cash flow model, the analysis should assume that scheduled
principal and interest proceeds are held in eligible investments for one-half
of the payment period of the collection before it is reinvested in substitute
collateral. Also, in the analysis, recoveries should be assumed to occur at the
end of a payment period. Therefore, interest is not earned on recovery pro-
ceeds held as eligible investments during the period in which it is recovered.

Interest earned on the regular payments received from the eligible
investments is modeled at the index referenced minus 100 bps.
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Payment Timing Mismatch

It is common for transactions to include a bucket for assets that pay less
frequently than the payment terms of the liabilities. In many instances, the
transaction uses an interest reserve mechanism or enters into a basis swap
to address this mismatch. In the absence of an adequate mitigant, the
modeling should reflect the mismatches in payment timing, as they actu-
ally occur, to allow for accurate testing of cash flows. There should be no
“smoothing” of asset payments to match liability payments.

Pay in Kind (PIK) Assets

When more than 5 percent of the assets in a portfolio by par balance have
the ability to pay in kind, we apply a PIK stress test to ensure that the liq-
uidity facility can cover interest shortfalls from the assets. The PIK stress
applied is determined after taking into account the transaction structure
and targeted portfolio profile. We typically ask that this is done only for
the most severe stress case to verify if it can pass; BDRs may be set with-
out this stress.

It is important to note that some transactions treat assets that pay in
kind for a defined time period as defaulted assets. The defaulted balance
of the PIK assets should be marked as the original par principal balance,
not its principal plus accrued interest balance.

Long-Dated Corporate Assets

The inclusion of corporate assets that mature on a date beyond the legal
final maturity date of the liabilities requires the CDO transaction to sell
these assets before this date. This exposes the transaction to the noncredit-
related risk of loss of par and is particularly troublesome for corporate
bonds and other types of instruments that return all or substantially all of
the par balance at the asset’s legal final maturity date.

We address this concern by limiting the concentration of assets in
the long-dated bucket to 5 percent. When the allowance for this bucket
exceeds 5 percent, the par credit for each long-dated asset is reduced by
applying a present value of 10 percent per year to each principal payment
due on the asset beyond the legal final maturity date of the transaction.
This adjustment reflects a potential par loss incurred for the forced sale of
the asset under less than ideal market conditions.
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Note that this approach applies only to corporate assets. Long-dated
structured finance assets raise different issues that are beyond the scope
of this chapter.

Corporate Mezzanine Loans

Corporate mezzanine loans are common to many European leveraged
loan CDO transactions. These loans have a junior secured position and
typically have two components to their interest payments: a current-pay
coupon and a PIK coupon. The latter coupon is structured in the loan doc-
uments to pay in kind from day 1 and accrues to principal; in effect, it
behaves like a zero coupon bond.

Although a mezzanine loan typically has a 10-year tenor, it is quite
likely that it will be refinanced within two to three years. The ability of a
CDO manager to reinvest in new mezzanine loans depends upon the
length of the reinvestment period, the ability of the manager to reinvest
unscheduled principal proceeds after the end of the reinvestment period,
and any maturity restriction imposed on each new loan. Given the current
lack of a secondary market for European mezzanine loans, it is unlikely
that a manager will be able to maintain its desired/covenanted mezza-
nine loan balance throughout the transaction.

We give credit to the accrued portion of the PIK coupon component
in the cash flow modeling, subject to the following conditions:

♦ Credit for the accrual of PIK coupon is typically allowed for the
reinvestment period plus an additional 2.5 years. The amount of
credit would have to be reduced if the maturity of the CDO
notes or the WAL test of the assets would prevent reinvestment
of mezzanine loans during the reinvestment period. Conversely,
if the CDO transaction is structured with a long note maturity
and unscheduled proceeds can be reinvested after the reinvest-
ment period, then we consider extending the credit given to the
PIK coupon.

♦ For the purpose of the coverage tests, credit is extended to the
accrued PIK interest in the overcollateralization test so long as
the accrued interest is treated as principal proceeds; credit is not
given in the interest coverage test because it is not interest that
is received in cash during the payment periods.

♦ The asset eligibility guidelines for the transaction should include
covenants for a minimum mezzanine loan bucket and a mini-
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mum PIK interest-rate for the mezzanine loans. This is needed
to size aggregate credit to extend to the accrued PIK interest.

♦ For purposes of default and recovery, the defaulted balance is
calculated as the product of the default probability and the par
balance inclusive of the accrued PIK interest. The recovery bal-
ance is calculated as the product of the recovery rate and the
base par. Accrued PIK balance is excluded.

The recovery range for corporate loans is used in the assignment of recov-
ery rates to mezzanine loans.

Amortizing Assets

The CDO portfolios often include assets that pay back principal accord-
ing to an amortization schedule rather than as a single bullet payment at
maturity. Difficulty in modeling this amortization arises when the full
portfolio has not been identified and “dummy” assets are used or when
the portfolio is actively managed. We scrutinize the reasonable nature of
the assumptions used. As a guideline, the amortization schedule should
generally coincide with the minimum WAL covenant of the transaction.

OTHER STRUCTURAL CONSIDERATIONS

Transactional mechanisms and features also vary across transactions,
often necessitating the use of alternative or additional cash flow stresses
to properly address the risks specific to the transaction. Some of the more
common mechanisms and features are discussed as follows.

Forced Sale of Defaulted Assets

Although we do not require the forced sale of defaulted assets within a
defined period, and often discourage it, this feature is included in some
transactions. When the terms of the transaction require the sale of defaulted
assets more quickly than we would ideally assume, the manager’s ability to
maximize recoveries is potentially inhibited. In these cases, we generally
apply a haircut to the recovery rate assigned to the transaction. The magni-
tude of the haircut is generally the present value at 10 percent per year
based on the differential between the transaction’s required sale time limit
and the idealized recovery timing that we use.
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Static Transactions

Although most CDO transactions to date have been structured as man-
aged CDOs, several transactions backed by static collateral portfolios
have entered the marketplace. These transactions eliminate the manager’s
ability to purchase assets after the closing date (or after the effective date
in some cases) and significantly limit the manager’s ability to sell assets.
Some transactions limit the sale of collateral to defaulted securities and
credit-impaired securities, with all proceeds received used to pay down
the outstanding liabilities. Pure static transactions go even further by
completely eliminating both sales and purchase of assets.

The elimination of the reinvestment period in these transactions
allows for the application of shorter default timing stresses in the cash
flow modeling. While the established default patterns remain the same,
the default pattern starting times are truncated to match the life of assets
in a portfolio without reinvestment. For example, a static transaction
backed by assets with a WAL of eight years is subjected only to the stan-
dard default patterns beginning in years one through three at the “AAA”
rating level (Table 10.6).

Because the “fixed” collateral portfolio is identified at the start of the
transaction, it is possible to scrutinize the expected payment characteris-
tics of the asset pool more closely. Defaults are typically applied pro rata
across asset pools in revolving CDO transactions, but we might bias
defaults toward specific assets in a static portfolio when additional con-
cerns are identified.

For example, concerns might be raised about a portfolio with some
relatively low-rated assets that pay a significantly higher-than-average
coupon. The default of these assets could result in inadequate interest
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Example of Starting Years for Standard Default
Patterns in Static Transactions

WAL of 
actual AAA AA A BBB BB B
portfolio tranche tranche tranche tranche tranche tranche

7 1 to 2 1 to 2 1 to 2 1 1 1

8 1 to 3 1 to 3 1 to 3 1 to 2 1 to 2 1

9 1 to 4 1 to 4 1 to 4 1 to 3 1 to 2 1



cash flow from the remaining assets. This scenario is not tested by the
standard application of pro rata defaults. In this situation, bias of defaults
toward these assets could be warranted.

Senior Collateral Manager Fees

Senior collateral manager fees should be at market levels to provide ade-
quate incentive for a replacement manager to take over the transaction,
should the need arise. In general, these fees are modeled at the higher of
the contractual fee and the minimum fees listed in Table 10.7 to ensure
that the transaction can support such fees.

Factors such as other forms of compensation to the collateral man-
ager, the responsibilities of the manager, and the size of the transaction are
considered when determining the appropriate senior fee. For instance, a
contractual senior fee of 10 bps could be sufficient when the notional bal-
ance of the portfolio of a corporate CLO transaction is $1 billion. Lower
fees might also be adequate in static transactions where the activities of
the collateral manager are limited.

Equity

One challenge confronted in the cash flow analysis for rating equity or
combination notes that include equity as an asset is the sizing of unknown
and uncapped administrative expenses senior in the priority of payments.
For the purposes of cash flow modeling, we assume that these additional
expenses are equal to the capped expenses located near the top part of the
priority of payments (Table 10.8).

In addition, the cash flows are also stressed with the three additional
default patterns employed for low credit quality portfolios. These pat-
terns are applied to the equity analysis even if the credit quality of the
portfolio is not necessarily low.
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Annual Senior Collateral Manager Fees

Corporate CBO/CLO 15 bps

ABS CDO 15 bps

CSOs (collateralized swap obligations) 10 bps
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Standard & Poor’s Additional Default Patterns 
for Equity

Annual defaults as percentage of cumulative 
defaults (%)

Year 1 Year 2 Year 3 Year 4

Pattern I 50 25 25 —

Pattern II 60 20 10 10

Pattern III 70 10 10 10

COVERAGE TEST CONSIDERATIONS

Most transactions contain certain structural features aimed at limiting par
building trades and improving rating stability. These features often go
beyond the stressing of defaults and recoveries that we employ in assign-
ing ratings. Many of these features are tied to the overcollateralization
test. Several are now covered.

Breach of Coverage Tests

Upon breach of an overcollateralization or interest coverage test, most
CDO transactions divert interest, scheduled principal, and/or realized
recoveries to pay down the notes sequentially, beginning with the most
senior outstanding class, until the breached test is brought back into com-
pliance. If the transaction documentation dictates this, then it should be
properly modeled in the cash flow exercise.

However, the documentation for some CDO transactions incorpo-
rates “maintain or improve” language upon breach of a coverage test. In
these cases, cash is not diverted to pay down the notes. Instead, reinvest-
ment of proceeds is allowed within the maintained or improved con-
straint. To properly reflect this in the cash flow modeling, the delevering
mechanism for the coverage tests should be shut off (i.e., breach of test
does not cause diversion of proceeds to pay down the notes).

Furthermore, we subject all recoveries that are reinvested in securi-
ties to additional defaults based on the SDR of the original asset pool. This
increases the total default amount modeled in the transaction.



Haircut for Low-Rated Collateral

While a certain concentration of “CCC” rated assets is not necessarily bad,
especially if factored into the original class sizing of the transaction,
“CCC” rated assets have a tendency to be downgraded more quickly.
Most transactions include a value haircut to “CCC” rated assets to capture
this increased proclivity to default in the overcollateralization test. This
causes it to breach earlier as the “CCC” asset concentration increases,
allowing for faster paydown of the rated debt. We generally look for the
overcollateralization test haircut when the percentage of assets in the pool
with a rating of “CCC” or less exceeds the original amount by 5 percent.
Any amount over the original amount plus the 5 percent threshold is then
carried at either 70 percent of its par value or at the market value of the
asset in the numerator of the test. The collateral manager before the clos-
ing date of the transaction makes the choice between treatment at 70 per-
cent of par or market value. When the market value treatment is chosen,
the rating analyst should be consulted to determine the proper market
value treatment.

Overcollateralization Reinvestment Test

In addition to the “CCC” haircut in the overcollateralization tests, many
transactions also include a reinvestment overcollateralization test with a
“CCC” haircut. This latter test is lower in the priority of payments, and, if
breached, requires the manager to start reinvesting all or part of the excess
interest proceeds. The overcollateralization reinvestment threshold is typ-
ically set higher than the minimum class overcollateralization threshold,
thus allowing for reinvestment of interest proceeds before any delevering
overcollateralization trigger is breached.

As the portfolio starts losing par from credit-impaired sales, the rein-
vestment trigger would be breached before the class overcollateralization
trigger is breached. This would allow the transaction to start purchasing
new collateral to improve the overcollateralization reinvestment test. This
test works best for transactions that incur slow, gradual declines in collat-
eral values. If the transaction experiences large asset defaults in a short
period, the delevering overcollateralization test would likely be tripped
simultaneously. Even under these circumstances, the overcollateralization
reinvestment test is likely to bring some benefits, as it should force addi-
tional reinvestments, once the delevering overcollateralization test is
brought back into compliance.
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Current-Pay Collateral

A “current-pay” security is defined as an obligation that continues to
pay interest or principal payments even though the obligor has
defaulted on other obligations. In general, the collateral manager cannot
purchase current-pay assets into the transaction, because these assets
are credit-impaired obligations that they are typically prohibited from
purchasing.

However, if the transaction holds an asset that then becomes a
current-pay obligation, the collateral value is reduced to reflect the higher
rating volatility. We use a market value test for this, giving full par value
if the security trades at 80 percent or better, and the assigned recovery if
it trades below. This haircut also reduces the numerator of the overcollat-
eralization test, causing faster paydown of the rated debt.

Value of Defaulted Securities

Other than the current-pay securities valuation, all defaulted securities
should be carried at the lower of their assigned recovery rate or current
market value for the purpose of the overcollateralization test. In certain
instances, however, we may assign instrument-specific recoveries. Equity
securities received as part of a workout can be held in the CDO transac-
tion, but are given no value.

REQUIREMENTS FOR RUNNING THE CASH
FLOW MODEL

In order to ensure timely completion of the cash flow analysis, we ask that
the arranger provide:

♦ A summary of all assumptions used in the cash flow modeling;
♦ A summary of the cash flow model results showing BDRs. We

request the BDRs for all classes (rated and unrated) be provided;
♦ Detailed printouts of at least the two most stressful cash flow

model runs for each rating level;
♦ A working, Excel-based cash flow model;
♦ A reliance letter from an accountant for each substantially differ-

ent transaction structure or model; and
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♦ A listing of failed scenarios, if any, including a present value cal-
culation (discounted at the coupon rate of the applicable class).

A P P E N D I X  A

Examples for Default and 
Recovery Modeling

Clarification of the application of the default and recovery modeling
assumptions is provided by way of example (see Table A.1).

Modeling assumptions applied include the following:

♦ Recoveries for defaulted bonds are assumed to have a one-year
lag.

♦ Defaults are caused by nonpayment of interest. As such, no
interest payment is received during and after the period that the
asset defaults.

♦ Reinvestment of recovery proceeds from defaulted assets is
assumed to occur at the end of the period that the recovery is
realized. As such, the reinvested proceeds do not earn interest
during the recovery period.

♦ Coverage tests are not breached—recovery proceeds are rein-
vested and not used to pay down liabilities.

There are two ways to model defaults in this scenario—the defaults can
be modeled to occur at the end of each year or they can be smoothed out
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T A B L E  A . 1

Scenario Analyzed

Default pattern 40/20/20/10/10 beginning in year 1

Cumulative defaults (%) 30

Weighted-average recovery rate (%) 40

Asset type Bonds

Liability payment frequency Semi-annually
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semi-annually. During the first year, defaults are usually modeled to
occur at the end of the year. An initial portfolio with a high concentration
of low-rated assets is one exception where defaults might be modeled to
begin earlier.

First Method

All defaults occur at the end of the year (Table A.2).

Key Observations for First Method
Defaults are lumped together at the end of each year. For assets paying
semi-annually, the defaulting assets earn interest during the first payment
period, but not the second period, of the year. Thus, for the 6 percent of
the portfolio that defaults (20 × 30 percent) in year 2, these assets receive
credit for interest payments in period 3 but none beginning in period 4.
Assets paying annually, however, would not earn interest in either of
these periods.

Recovery of defaulted bonds occurs after a one-year lag. Again tak-
ing the 6 percent of the portfolio that defaults in year 2 (at end of period
4) and applying a 40 percent recovery rate to the defaulted balance, recov-
eries equating to 2.4 percent of the portfolio balance (40 × 20 × 30 percent)
is realized at the end of period 6. If these recoveries occur during the rein-
vestment period, the recovery proceeds are reinvested and begin to earn
interest starting in period 7.

Second Method

Annual defaults are separated into two semi-annual periods, starting
after the first year. During first year, all defaults occur at the end of the
year (Table A.3).

Key Observations for Second Method
Beginning with the second year, defaults are smoothed semi-annually.
Thus, for the 6 percent of the portfolio that defaults (20 × 30 percent) in
year 2, 3 percent occurs in period 3 and the remaining 3 percent occurs in
period 4. For assets paying semi-annually, those defaulting in period 3 do
not earn interest in that period; those defaulting in period 4 earn interest
in period 3, but not in period 4. Assets paying annually do not receive
interest in either of these periods.



T A B L E  A . 2

Default and Recovery Scenario: Annual Defaults Modeled at End of Year

Application of default and recovery patterns (%)

Year and period

Year 1 Year 1 Year 2 Year 2 Year 3 Year 3 Year 4 Year 4 Year 5 Year 5 Year 6 Year 6
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Effective default — 40.0 — 20.0 — 20.0 — 10.0 — 10.0 — —
pattern

Effective recovery — — — 40.0 — 20.0 — 20.0 — 10.0 — 10.0
pattern

Modeled default — 12.0 — 6.0 — 6.0 — 3.0 — 3.0 — —
scenario (assuming 
30% defaults)

Modeled recovery — — — 4.8 — 2.4 — 2.4 — 1.2 — 1.2
scenario (assuming 
30% defaults and 
40% recoveries)



T A B L E  A . 3

Default and Recovery Scenario: Annual Defaults Modeled Semi-Annually

Application of default and recovery patterns (%)

Year and period

Year 1 Year 1 Year 2 Year 2 Year 3 Year 3 Year 4 Year 4 Year 5 Year 5 Year 6 Year 6
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Effective default — 40.0 10.0 10.0 10.0 10.0 5.0 5.0 5.0 5.0 — —
pattern

Effective recovery — — — 40.0 10.0 10.0 10.0 10.0 5.0 5.0 5.0 5.0
pattern

Modeled default — 12.0 3.0 3.0 3.0 3.0 1.5 1.5 1.5 1.5 — —
scenario (assuming 
30% defaults)

Modeled recovery — — — 4.8 1.2 1.2 1.2 1.2 0.6 0.6 0.6 0.6
scenario (assuming 
30% defaults and 
40% recoveries)



Recovery of defaulted bonds occurs after a one-year lag. Recoveries
on the 3 percent balance defaulting in period 3 are realized at the end of
period 5 and begin to earn interest in period 6 (if the reinvestment period
has not lapsed).
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Recent and Not So
Recent Developments
in Synthetic Collateral
Debt Obligations

Norbert Jobst

465

INTRODUCTION

Collateralized debt obligations (CDOs) are designed to transfer the risk
inherent in a portfolio of (credit) risky assets to one or more investors.
Although the first CDOs were “cash”-funded and backed by portfolios of
bonds and loans, in recent years the unfunded “synthetic” CDO market
has grown enormously. Instead of purchasing a debt instrument of a
given entity, the special purpose vehicle (SPV) enters into a credit default
swap (CDS) that references the entity. This use of credit derivatives led to
a European market dominated by “single-tranche” (ST) CDOs, bilateral
contracts between a buyer and seller of default protection on a portfolio
of entities. The U.S. market is currently evolving toward a blend of cash
and synthetic transactions in a more gradual way.

Since 2004, the pace of innovation in structured credit markets, and
particularly in synthetic CDOs, has increased significantly. The rise to
prominence of ST synthetic CDOs stems from ease of execution, providing
the flexibility of expressing various views on (credit) markets, and enabling
the separation of funding and risk (see Chapter 9). In recent years, investor
demands for higher yielding products in a extremely tight spread environ-
ment, combined with (various) market events, have led to financial inno-
vations addressing higher structural complexity and nontraditional
(noncredit) risks. Throughout this chapter, we provide an overview of a

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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number of these developments mainly from a rating agency perspective
where the risk assessment usually involves an estimate of the expected loss
to the investor, or an estimate of the likelihood of principal and interest
being paid in a timely manner.* The genesis of these innovations, as almost
any in the synthetic CDO market, comes from a mixture of different drivers
from the market participants: from investors’ search for new yield in a tight
spread environment to the need to investment diversification, and from
arbitrage exploitation to structures that can be used to express a view on the
systemic credit cycle as well as idiosyncratic credit risk.

We start in the following section by discussing various extensions or
variants of ST CDOs where the main risks (from a rating agency perspec-
tive) are still default events and subsequent losses. We will discuss CDO
squared transactions that were very popular in 2004/2005 with demand
drying up after the downgrade of Ford and General Motors (GM) in May
2005. Forward-starting transactions, long/short structures, and ST CDOs
with time varying attachment points are further examples that will be
briefly introduced. In addition to these “add-ons” to traditional synthetic
CDOs, investors frequently seek to try and take advantage from develop-
ments in noncredit markets.

In section “Beyond Credit Risk: Hybrid Structured Products,” we
focus on the most significant developments in alternative asset classes
that find their way into so-called hybrid transactions. We also focus on
equity risk via so-called equity default swaps (EDSs) and commodity risk
in its subsections.

In section “Structural Innovations: Introducing MtM Risk,” we focus
on some of the latest developments caused by changes in the market partic-
ipants’ trading and hedging behavior, following the May 2005 events. These
new structures aim at placing equity and/or super senior risk to “hedge”
the high demand of mezzanine tranches and go beyond a pure default risk
assessment of the underlying pool of assets by taking into account the risk
of mark-to-market (MtM) changes. We start by discussing leveraged super
senior (LSS) transaction in the first subsection, a product that is very popu-
lar since 2005. In the second subsection, a very recent development, the so-
called credit constant propostional portfolio insurance (CPPI) transaction,
which addresses guaranteed principal and interest payments and involves
automatic portfolio rebalancing depending on portfolio performance,

*The focus lies therefore on a discussion (and modeling overview) of the main risk factors,
rather than on valuation and relative-value considerations. References on the latter will be
provided when available and adequate.



followed by a brief discussion of the latest innovation in rated structured
credit markets: Constant Proportion Debt Obligation (CPDO). The last sec-
tion summarized current trends and future modelling challenges.

VARIANTS OF ST CDOs

ST CDOs: A Ratings Perspective

Before moving to the evolution on ST synthetic CDOs, we start by review-
ing typical risk assessments conducted in a similar way by most rating
agencies (RAs) on the standard, vanilla ST CDO product. RAs, such as
Standard & Poor’s, Moody’s, Fitch, or DBRS, are typically interested in the
risk a CDO investor is facing throughout the life of the transaction and base
their opinions partly on model-based statistics. For example, Moody’s rat-
ing is a so-called “expected loss” rating and, as a result, the expected loss
on a CDO tranche is estimated and benchmarked to various rating specific
targets. Standard & Poor’s, on the other hand, applies a “probability of
default” rating and estimates the probability of the investor to face a “first
dollar of loss” using its CDO Evaluator (see Chapter 10 for further details).

RAs, to date, mostly employ simulation methodologies in order to
estimate the relevant risk measures. For example, Standard & Poor’s
models the dependency between defaults of different assets through the
Gaussian copula approach, as introduced in the Chapters 4 and 6. For this
model, correlated default times can be easily simulated by

1. Generating N standard multivariate normal random variables yi
admitting a correlation matrix Σ,

2. Calculating ui = Φ(yi), and
3. Calculating a default time τi = S−1(ui) for each asset.*

If τi is less than the maturity T of the CDO transaction, the loss Li is deter-
mined as Li = Ni × (1 − δi), where Ni and δ i are the exposure-at-default and
recovery,† respectively, for the ith asset. We can therefore write the portfo-
lio loss up to time t, L(t), as

L t Ni i t
i

i
( ) ( ) ,= × − ×

≤{ }∑ 1 1δ
τ
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*S−1 is used to denote the quasi-inverse of the survival function.
†The recovery can either be assumed to be constant or drawn from a distribution.



where is the default indicator for the ith asset.*

Using this Monte-Carlo simulation framework, the distribution of
portfolio losses can be determined with high accuracy by generating
a sufficient number of default times while maintaining a good level of
flexibility. In practice, of course, this loss distribution can be generated
through a number of different numerical techniques or models, as out-
lined in the Chapters 4, 6, and 7. In any case, each assets’ default proba-
bility and recovery rate as well as the dependency behavior (correlation)
across all asset types are required, and we refer to Chapter 10 for a
detailed discussion of Standard & Poor’s modeling assumptions.

CDO Risk Measures and Rating Assignment
From now onwards, we assume that correlated default times and the
portfolio loss distribution are simulated efficiently, and introduce a few
typical risk measures computed by RAs (see also Chapter 7 for further
details).

Tranche Default Probability (Tranche PD) Given an
attachment point A and detachment point D (i.e., a tranche thickness
equal to D − A), the tranche default probability is the probability that port-
folio losses at maturity T exceeds A.† This is given by

PDTj = P(L(t) ≥ A) = E[1{L(t) ≥ A}],

where L(t) is the cumulative portfolio loss up to time t, 1{} is the indicator
function,‡ and E[] denotes the expectation that is determined by averag-
ing the over all simulation paths. This forms the basis for assigning a rat-
ing to a synthetic CDO tranche for a PD-based rating. For example, in order
to assign a tranche “AAA” rating, the tranche PD needs to be sufficiently
low, and RAs frequently provide detailed tables (Target Probabilities or
“CDO cutpoints”) for different rating classes and maturities.

Expected Tranche Loss Instead of only focusing on the like-
lihood of losses, the actual size of all losses may also be of interest. The
cumulative loss on tranche j at time t, LTj(t), is given by

LTj(t) = (L(t) − A)1{A ≤ L(t) ≤ D} + (D − A)1{L(t) ≥ D}.

1
τ i t≤{ }
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*The default indicator equals 1 if the expression within parentheses is true, and 0 if it is false.
†Note that in order to compute the tranche probability, the detachment point D is not
required in the anlaysis.
‡This equals 1 if the expression within parentheses is true, and 0 if it is false.



The expected tranche loss is therefore given by

E[LT
j (t)] = E[(L(t) − A)1{A ≤ L(t) ≤ D} + (D − A)1{L(t) ≥ D}],

which is computed easily by simulation. An expected loss rating assigned
by RAs, such as Moody’s, is partly based on this measure of tranche risk.

Tranche Loss-Given-Default From the expected tranche
loss and the tranche PD, the tranche loss-given-default is simply given 

by under the assumption of independence
between tranche PD and LGD.

With ST CDOs and several risk measures introduced earlier, we will
now start to discuss evolutions of standard tranche products and assess the
risks prevalent within the framework presented earlier. Unless otherwise
stated, all numerical examples are based on Standard & Poor’s modeling
assumptions, as outlined in Chapter 10.

CDO Squared Transactions: 
Extending Leverage

Synthetic CDO squared transactions have become an established feature
of the global CDO marketplace in 2004/2005. Since May 2005, however,
demand has reduced significantly, as a result of MtM losses caused by
many market participants following the downgrade of Ford and GM by
Standard & Poor’s (see Chapters 8 and 9 for further details). CDO squared
transactions typically reference other “bespoke” CDO tranches, each ref-
erencing a single underlying corporate portfolio. In this way, additional
leverage is created, resulting in a yield pick-up of these structures relative
to similarly rated synthetic CDOs. This leveraging creates an investment
that is less sensitive to small numbers of credit events within the under-
lying portfolio, but is also more likely to suffer large losses once its credit
protection is eroded. Within the framework of the risk measures pre-
sented earlier, this implies very small tranche PDs but high tranche LGDs,
hence, keeping expected tranche losses balanced. While some CDO
squared transactions reference only CDOs, others have referenced portfo-
lios containing a mixture of CDO and asset-backed securities (ABS)
tranches, where the proportion of ABS is typically in the range of 70 to
90 percent by reference notional amount. The basic structure of a typical
CDO squared transaction is shown schematically in Figure 11.1.

LGD [ ( )] /PDj
T T TE L tj j= ( )
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Schematic Diagram of a CDO Squared Transaction.
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A CDO squared typically references between five and 15 different
bespoke CDOs, which may lead to relatively large asset portfolios.
Normally, there is a significant overlap between the reference portfolios of
different bespoke CDOs, ranging from 20 to 30 percent in most cases,
which also stems from the fact that only 600 to 800 CDSs trade liquidly in
the market.

When the loss allocated to a bespoke CDO exceeds the attachment
point of the CDO tranche, the loss is passed through to the CDO squared
tranche. Bespoke CDOs therefore act as “loss filters” between the under-
lying corporate assets and the CDO squared. Of course, if a single CDS is
referenced in multiple CDOs, this “overlap” creates “extra” correlation that
can have a significant impact on CDO squared tranches. Mathematically,
we can write the loss or protection payoff of a CDO squared tranche with
attachment point A

~
and detachment point D

~
as:

where

denotes the total portfolio loss resulting from J underlying “bespoke”
CDO tranches and K additional assets (e.g., ABS or corporates). Aj and Dj
denote the attachment and detachment point of bespoke tranche j, and
Lj(t) the portfolio loss at time t of the portfolio that backs (or is referenced
by) tranche j. From that, tranche PD and expected tranche loss can be
computed easily within the simulation framework.

An example of a typical CDO squared transaction, taken from Gilkes
(2005), and illustrating the impact of overlap is presented next. Consider
a hypothetical CDO squared with the following characteristics:

♦ The portfolio contains eight bespoke CDO tranches and 50
“AAA” ABS tranches, with an average asset correlation of
10 percent.

♦ Each bespoke CDO tranche references a portfolio of approxi-
mately 100 “A” names with 5 percent average asset correlation,
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equal reference notional amounts of m10 million, and assumed
recoveries of 35 percent.

♦ Each bespoke CDO tranche has an attachment point of m40 mil-
lion (consistent with a CDO rating at the “A” level) and a
detachment point of m50 million; i.e., a tranche thickness of
m10 million.

♦ The average overlap between pairs of bespoke CDOs is 33 per-
cent (or 66 percent).

♦ Each ABS tranche has a reference notional amount of m10 mil-
lion and an assumed recovery of 90 percent.

♦ The CDO squared has a maturity of five years.

We consider three different CDO squared tranches. Each tranche is
assumed to reference the same portfolios as the ones described in the pre-
vious section, containing 33 percent and 66 percent CDO overlap. The
tranches are assumed to attach at 0 percent, 3 percent, and 6 percent loss,
and are therefore equivalent to equity, mezzanine, and senior tranches
with ratings in the “BB,” “AA,” and “AAA” range, respectively. Each CDO
squared tranche is assumed to have a thickness of 4 percent of the portfo-
lio, i.e., m23.2 million. The results are shown in Tables 11.1 and 11.2.

In both sets of results (Tables 11.1 and 11.2), the tranche PD decreases
with increasing attachment point as expected. However, changing the
overlap from 33 to 66 percent has different effects, depending on the level
of seniority of the tranche. For example, the equity tranche PD decreases
with increasing overlap, whereas the mezzanine and senior tranche PDs
increase. The same is true of the expected tranche losses. As mentioned
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Tranche Risk Measures for a Hypothetical CDO
Squared with 33 Percent Overlap Between Bespoke
CDO Tranches

AP DP Tranche Tranche Expected tranche 
(%) (%) PD (%) LGD (%) loss (%)

0 4 12.67 11.39 1.44

3 7 0.35 50.89 0.18

6 10 0.11 45.34 0.05

Abbreviations: AP-attachment point; DP-detachment point.
Source: Standard & Poor’s.



previously, this is a result of the increased correlation between CDO
tranches, which makes extreme losses more likely, without changing the
expected loss of the portfolio.

The tranche LGDs can be seen to first increase and then decrease,
with increasing attachment point. The relatively low LGD of the equity
tranche results from the high probabilities of low/zero loss associated
with the ABS tranches. These are the same factors that cause this tranche
to have a much higher PD. In the case of the more senior tranches, the
much lower PDs, combined with the more extreme “tail” losses associated
with the bespoke CDO tranches, result in significantly higher LGDs.

Cross Subordination
Following the growth of the CDO squared market in 2004/2005, a so-
called “cross subordination” feature has been introduced. This mecha-
nism allows different bespoke CDOs to share the total subordination
provided by all bespoke CDOs. For example, eight CDOs with attachment
points and thicknesses of m10 million would create a total cross subordi-
nation of m80 million. During the life of the transaction, if any CDO expe-
riences losses greater than m10 million, these losses are not passed through
to the CDO squared until the total aggregate losses exceed m80 million. In
this way, the CDO squared investor is protected from the risk of a small
number of CDOs experiencing losses, but is exposed to the risk that a large
number of CDOs experience losses.* This can also be extended to cases in
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Tranche Risk Measures for a Hypothetical CDO
Squared with 66 Percent Overlap Between Bespoke
CDO Tranches

AP DP Tranche Tranche Expected tranche 
(%) (%) PD (%) LGD (%) loss (%)

0 4 12.01 10.56 1.27

3 7 0.44 64.72 0.29

6 10 0.22 59.29 0.13

Appreviations: AP-attachment point; DP-detachment point.
Source: Standard & Poor’s.

*Another way of stating this is that cross subordination reduces the idiosyncratic risk spe-
cific to each CDO, but increases the systematic risk common to all CDOs.



which the subordination is only “partially” cross-subordinated (e.g., the
CDO squared tranche is only insulated from 75 percent of the total aggre-
gate subordination of the bespoke CDOs).

The payoff of such a cross subordination feature (assuming only
bespoke CDO tranches and no other assets in the underlying pool of
assets) can be represented as follows.

where

where denotes the total amount of cross subordination available

and With credit spreads at some of their tightest levels in

recent years and the respective vanishing of “rating arbitrage” and a
raised awareness of correlation/overlap risk of CDO squared transac-
tions, demand has dried up subsequently. Further details can be found in
Gilkes (2005), and a discussion of CDO squared valuation and risk man-
agement is given in Metayer (2005).

Forward Starting CDOs

Also in 2005, ST CDOs evolved to incorporate so-called forward starting
features, i.e., the risk horizon of the CDO only starts after time ν. Losses
due to defaults prior to ν are not accounted for in the payoff and portfo-
lio loss calculation:

This feature allows investors to express their specific, short-term default
views into the CDO product, or take advantage of favourable divergences
between the credit curve perceived by RAs (under the real measure) and
that of the market (implied, risk-neutral measure).

Of course, such a forward starting feature essentially impacts all
tranches along the capital structures as the overall default rate reduces,
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but the relative impact can vary across different tranches as illustrated in
Tables 11.3 and 11.4 for an equity and a senior tranche backed by a port-
folio of 100 BBB rated assets in 10 sectors.

Similarly, the relative impact of forward starting features also
depends on the credit quality of the underlying pool and the shape of the
term structure of default probabilities. From a modeling perspective, just
ignoring the forward starting period implicitly assumes that in future
periods, (forward) losses will prevail (in expectation) as given by current
credit curves. In doing so, we essentially ignore the forward dynamics of
portfolio losses, an area that has received some attention recently, see
Schönbucher (2005) and Sidenius et al. (2005). Furthermore, forward start-
ing transactions highlight an interesting question when monitoring it. As
time passes, one can either rerun the analysis by assuming a shorter matu-
rity and forward starting period with default probabilities, as seen at time
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T A B L E  1 1 . 3

Risk Measures for Forward Starting Equity Tranche
(in Percent)

Equity tranche (0–3%)

1y 2y 3y 4y 
Current forward forward forward forward

Expected portfolio loss 1.67 1.48 1.22 0.91 0.55

Expected tranche loss 48.70 44.25 37.73 28.95 17.94

Tranche PD 82.61 79.29 73.68 64.21 48.05

T A B L E  1 1 . 4

Risk Measures for Forward Starting Senior Tranche
(in Percent)

Senior tranche (7–10%)

1y 2y 3y 4y 
Current forward forward forward forward

Exp portfolio loss 1.67 1.48 1.22 0.91 0.55

Exp tranche loss 0.23 0.14 0.06 0.01 0.00

Tranche PD 0.47 0.30 0.14 0.04 0.00



0 on the credit curve. That means, for future time s, we assume default
probabilities Pi(0, T − s), where T denotes the time maturity, and ignore
defaults in the simulation between 0 and ν − s. Alternatively, we can roll
the transaction down the credit curve by assuming forward starting prob-
abilities, i.e., use Pi(s, T) ≈ Pi(0, T) − Pi(0, s). Each approach has got draw-
backs if static credit curves are assumed, and a detailed forward loss
modeling is avoided. For example, in the former approach, we would
essentially assume that noninvestment grade (NIG) companies have
always the same default risk over the next year, despite the common opin-
ion that credit risk is declining if an NIG firm stays in a specific rating for
a significant period of time. The latter approach, on the other hand, is
clearly based on the assumption that the forward expectation will prevail,
and carries the problem that we would need to monitor the duration a
company is/was in a given rating category prior to the risk assessment,
unless a Markov assumption can be empirically justified.* Hence, this
approach would be heavily dependent on the Markov property that has
previously been questioned in empirical studies (see, e.g., Lando and
Skodeberg, 2002).

Long/Short Structures

In a CDS, the protection seller agrees to pay the protection buyer the ref-
erence notional amount of the contract minus a recovery amount, in the
event of default of a given reference entity. In exchange for this contingent
payment, the protection buyer pays the protection seller a premium. When
an entity sells protection in CDS form, it is said to take a “long” position,
whereas buying protection corresponds to entering a “short” position. For
loss computations, we can simply change the sign of the loss (i.e., making
it a gain) in the event of default of the reference name, conditional upon
the survival of the protection seller.†

The impact of shorting assets in the underlying portfolio depends,
amongst other factors, on the credit quality of the long positions, the
credit quality of the short positions, and the target rating that one wants
to achieve (i.e., the level of subordination). We illustrate this on the fol-
lowing examples. First, we consider a portfolio of 100 long “A” rated
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*Here we assume a typical RA approach, where default probabilities are directly linked to
the rating of a company.
†Hence, there is some additional counterparty risk, which requires additional information on
the CDS counterparty when short CDS are included within the portfolio.



assets in 10 sectors. We then gradually add buckets of short positions,
from 10 percent of the long notional amount up to 200 percent of the long
notional amount. We consider “A” and “B” quality assets for the short
buckets. Figure 11.2 shows the impact of adding short positions on the
credit enhancement (CE) required, in order to achieve a “AAA” and
“BBB” rating from Standard & Poor’s. The left exhibit shows the absolute
CE, whereas the right exhibit shows the relative CE as a fraction of the
long only “A” rated portfolio notional (put another way, the right panel
shows the CE with shorts scaled by the CE needed without shorts).

The grey line shows the CE required to achieve an “AAA” rating
when different amounts of “A” shorts are added, whereas the greyline
shows the same statistic when “B” shorts are added instead. The dotted
and dashed line shows the same statistic for a target “BBB” rating. What
is apparent is that the required CE reduces with the introduction of a short
bucket and, as expected, that this reduction depends highly on the credit
quality of the short portfolio. When “B” quality short positions are added,
we see a stark decline in required subordination, resulting from signifi-
cantly higher PDs of NIG assets compared to investment grade, (IG) ones.

Figure 11.3 repeats this exercise, but now for a long portfolio of “BB”
quality, and we consider shorting “BB” and “B” quality assets this time.

Although the observations of Figure 11.2 also hold for this experi-
ment, we can further observe that the relative decline in CE when shorts
of the same credit quality as longs are introduced is higher for low credit
quality portfolios.

In addition to shorting single-name exposures, short positions can
also be taken in synthetic CDO tranches. Going long and short tranches
allows one to execute directional trades where a (speculative) view is taken
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F I G U R E 1 1 . 2

Impact of Short Positions on “A” Quality Portfolio.
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on future credit markets (see Chapters 7, 8, and 9, for further details). From
a (loss) modeling perspective, CDO squared technology can be used to
adequately implement short tranche positions.

Variable (Time-Dependent) Subordination: 
“Step-up” Transactions

In the earlier expression for the tranche default probability, we assumed
that the attachment point A is constant over time. This can easily be gen-
eralized to cases where the attachment point is a function of time t, so that
the earlier expression becomes PDTranche = P(L(t) ≥ A(t)) = E[1{L(t) ≥ A(t)}]. In
this case, we evaluate the loss distribution at all points in time at which
the attachment point changes. As an example, consider a hypothetical
seven-year synthetic CDO transaction. If the attachment point is initially
set at 3 percent of the portfolio notional balance, but then increases to
5 percent after three years and remains at this level until maturity, we
need to evaluate the loss distribution at years 3 and 7. The cumulative
default probability of the tranche is therefore the probability that losses
exceed 3 percent by year 3 plus the probability that losses exceed 5 per-
cent by year 7, conditional upon losses not exceeding 3 percent by year 3.

In the market place, such transactions are often denoted as “step-
up” deals and extensions where the time-dependent attachment point
also depends on certain levels of losses being reached are feasible. For
example, it is possible to model transactions in which the attachment
point “resets” according to the cumulative loss experienced by the portfo-
lio at a certain date. This dynamic behavior is easily modeled by keeping
track of the portfolio loss path during simulation.
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F I G U R E 1 1 . 3

Impact of Short Positions on “BB” Quality Portfolio.
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BEYOND CREDIT RISK: HYBRID
STRUCTURED PRODUCTS

In recent years, structured credit products, and in particular synthetic
CDOs, evolved toward referencing a variety of asset types. Routinely, ST
CDOs reference corporate CDSs, ABS tranches, other CDOs, or loans
given to small and medium enterprises. When included in a CDO, com-
mon to all these assets is the risk of default or credit risk of the underly-
ing reference obligation. More recently, several noncredit derivatives have
been introduced to the synthetic CDO market in a search for higher yield-
ing instruments in a very tight credit environment.

In 2004, an upsurge in interest in so-called EDSs took place. EDSs are
long-dated, deep out-of-the-money equity puts that are similar to CDS, in
which a contingency payment takes place if the equity price of a specific
entity breaches a low barrier (typically 30 percent). The reason for these
developments was the search for higher yield in a tight spread environ-
ment, but also a general trend towards the convergence of credit and
equity markets. Frequently, CDOs of EDS (or CEOs) reference both, CDS
and EDSs. In the next section, we review a number of developments on
EDS, as well as CDOs of EDS.

At the same time, dealers started to consider the introduction of
deep out-of-the-money (European) commodity options into ST CDOs.
The interest in this product has also increased toward the end of 2005, as
a result of steadily rising commodity markets. Again, the incorporation of
credit and commodity (and potentially equity) risk within an ST CDO
comes with a number of modeling challenges. Dependence issues, e.g.,
the link between large oil corporations and oil prices, need to be carefully
addressed. The section “CDOs: Commodity Transactions” reviews some
recent developments by Standard & Poor’s in modeling collateralized
commodity obligations.

In addition to these developments, some general interest on
multiasset-class products has been noted. Such transactions aim to trans-
fer various other risks such as interest rate or FX risk, in addition to com-
modity, equity, and credit risk, via synthetic CDO technology.

When dealing with the problem of modeling ST CDOs backed by
various (noncredit) asset types, one has the choice of staying within (and
extending) the common framework used for ST CDOs or to develop a
new methodology. Throughout this chapter, we focus on developments
within the usual copula framework, offering a brief discussion of alterna-
tives in the last section. For now, when looking at alternative asset types
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and risks, we focus on univariate and multivariate aspects separately,
focusing on the Gaussian copula framework discussed in the “Variants of
ST CDOs” section previously and in various other chapters.

Equity Default Swaps

Over the last two years, there has been some interest in CDOs referencing
portfolios of EDS. These contracts trigger a payment when the underlying
equity price falls below a predetermined level. This price decline is often
referred to as an “equity event” (or interchangeably as “equity default,”
or “EDS default”) analogous to a credit event within a CDS contract. As
the trigger price is set closer to zero, these contracts can be expected
to become more “credit-like,” and EDS/CDS spreads should start to
converge.

In a CDO that references a pool of equities under an EDS contract,
the same basic roles exist as for a typical CDO referencing CDSs. The
seller is paid a premium in exchange for a principal commitment when
losses exceed the threshold amount. In this case, however, losses are
defined as the notional amount of equities whose prices fall to the trigger
level, minus a predetermined recovery rate. Although any combination of
trigger level and recovery rate could be considered, EDS contracts are typ-
ically structured in the market with a trigger level set at 30 percent and a
fixed recovery rate of 50 percent. For some investors, the risk–return char-
acteristics of portfolios of these deep “out-of-the-money,” long-dated dig-
itals offer relative value, especially given the recent tightening of CDS
spreads.

Introducing EDSs into ST CDOs within the current copula frame-
work requires an assessment of the (univariate) likelihood of equity prices
on individual names to breach the barrier (hit the strike), as well as an
assessment of joint equity behavior, and potentially the link between credit
and equity. All analysis conducted herewith are based on Standard and
Poor’s CreditPro® ratings and default database linked to Standard &
Poor’s Compustat® (North America) data. CreditPro contains the ratings
history of approximately 9740 companies from December 31, 1981 to
December 31, 2003 and includes 1170 default events. The Compustat data-
base contains approximately 56,500 corporations trading in the United
States or Canada between 1962 and 2003, of which, up to 12,240 equity
time series or over 128,000 yearly observations are analyzed herewith.
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Equity Events: Empirical Insights 
and Univariate Modeling
In the following, we review three different types of analysis. First, a pure
cohort analysis, second, a direct modeling of equity prices via stochastic
processes; and lastly, a statistical credit scoring approach.

Equity Default Events: Cohort Results Jobst and Gilkes
(2004) present a cohort analysis (see Chapter 2 for further details) that is
commonly used to derive historic average default or rating transition
probabilities. We start by considering all companies at a specific point in
time t (e.g., December 31, 2000). We denote the total number of companies
in the kth cohort at time t by Nk(t), and the total number of observed events
(e.g., default or equity price decline) in period T (i.e., between time t + T − 1
and time t + T) by Dk(t, T). We then obtain an estimate for the (marginal)
probability of default in year T (as seen from time t):*

Repeating this analysis for cohorts created at M different points in
time t allows us to obtain an estimate for the unconditional probability of
default in period T,

These unconditional probabilities are simply weighted averages of
the estimates obtained for cohorts considered in different periods. Typically, 

wk(t) = 1/M (each period is equally weighted) or 

(weighted according to the number of observations in different periods).

Unconditional (weighted average) cumulative probabilities 
capturing defaults over T periods can be calculated from the uncondi-
tional marginal probabilities P–k(T):
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*Some companies will have their rating withdrawn during the course of the year. It is com-
mon to treat these transitions to NR (not rated) as noninformative with respect to the credit
quality. Hence, companies that have their rating withdrawn during the period of interest are
ignored in the subsequent analysis.



Jobst and Gilkes (2004) apply this cohort approach and estimate the
unconditional long-term average probability of an equity price decline to a
level of b percent of the initial price. This probability is referred to as the
equity event probability (EEP), which obviously depends on the value of b.
For each company in a given cohort at a specific point in time t (e.g.,
December 1980), we register the price Pt by comparing the running mini-
mum monthly price between time t + T − 1, P−

t + T − 1, and time T, P−
t + T, to the

EDS barrier Bt = b ⋅ Pt. In practice, we can group companies with similar
financial ratios (such as market capitalization or leverage), companies with
similar equity performance (such as historic return or volatility), or by
credit characteristics (such as credit rating).

The main finding of Jobst and Gilkes (2004) is that the likelihood of
severe equity price declines is strongly linked to the historic equity price
volatility of the equity issue and to the credit quality of the underlying
corporation. This relationship holds across all barrier levels in the range
of [0, 100 percent] and for a wide range of maturities. The relative impor-
tance of each of these factors varies by barrier and maturity. The link
between EEPs and volatility is displayed in Figure 11.4 based on data
from 1963 to 2003. Firms are grouped into different volatility bands by
creating quintiles, i.e., the 20 percent of firms with the highest volatility

P T P T P T P Tk k k k
cum cum cum( ) ( ) ( ) ( ).= − + − −( )1 1 1
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F I G U R E 1 1 . 4

Cumulative EEPs for 30 Percent Barrier by Volatiltiy
(Left Panel) and Five-Year Equity Event Probabilities
by Volatility for Different Barriers (Right Panel).
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are grouped into Quintile 1, whereas the 20 percent of firms with the low-
est volatility result in Quintile 5.

Occasionally, an equity price decline of 70 percent is denoted
as “credit-like” or “default-like” event, which motivates the use of credit-
related variables in empirical studies. We consider therefore a subset of
rated firms over the period 1981 to 2003 and create cohorts by rating class.
The cumulative equity drop probabilities are shown in Figure 11.5.

Although the cohort approach provides a first indication of EDS risk-
iness when the factors/groups are known, a more systematic approach is
presented further next.

Direct Modeling of Equity Price Dynamics An alter-
native to a statistical counting approach is to apply stochastic models
for equity prices. There are several models for equity prices that can be
used in the analysis of EDS. Usually, research on equity returns or
equity risk measurement focuses on horizons much shorter (typically a
few days) than the standard five-year EDS maturity (e.g., a few days).
Hence, it is necessary to gain insight into the performance of these
approaches for extended horizons, an area that has received very little
attention by (academic) researchers so far. An exception* is Kaufmann
and Patie (2004) who discuss quantile risk measures estimated from
lognormal (LN) models, generalized autoregressive conditional
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F I G U R E 1 1 . 5

Equity Event Probabilities by Rating Category (Left
Panel) and “A” Rated Firms by Volatility (Right Panel).
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heteroscedastic (GARCH) models, and heavy-tailed distributions for 
a one-year horizon. Bayliffe and Pauling (2003) also study long-term
equity returns, focusing on the issue of mean reversion in equity mar-
kets, and compare several models, including mean-reverting (MR),
index MR, and regime-switching models.

Jobst and Gilkes (2004) also present some insights into practical
application and performance of two of the most common models—the LN
and GARCH(1,1) models.

Lognormal Model with Constant Drift The standard LN
model with constant volatility is given by dPt = µEPtdt + σEPt dWt, where µE
and σE are constants denoting the drift and volatility. The great advantage
of this model is its analytical tractability, which can lead to closed-form
results for EEPs:

where B = b ⋅ P0 denotes the EDS barrier.
In principle, the model parameters can easily be estimated from his-

toric equity returns. Because the data generating process frequently does
not follow Geometric Brownian Motion (GBM), a straightforward applica-
tion of the model to real life data may need to overcome several difficulties.

Jobst and Gilkes (2004) conduct a back-testing experiment within the
EDS framework on a very large number of companies over the period
1967 to 2003. A LN model with constant drift is calibrated to five years
of historic data for each company in our database. The companies are
grouped into volatility quintiles in the usual way, and we calculate the
average EEP for a 30 percent barrier over maturities of 1 to 10 years by
averaging the relevant probabilities derived for each company. The result-
ing weighted average EEPs derived by the model are compared to the his-
toric average EEPs from the cohort analysis in Figure 11.6.

The outcome of this analysis is quite encouraging, in that the
model estimates (dashed lines) are quite close to the unconditional
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cohort estimates (solid line with markers), in particular for extended
horizons. For short horizons, the models seem to underestimate the risk
consistently.

Unfortunately, these results do not hold when a smaller sample is
considered (e.g., a narrower volatility band). One reason for the instabil-
ity is the model sensitivity to the constant drift, which starts to dominate
the volatility term for extended horizons.* Figure 11.7 shows the EEPs for
varying values of the drift as a function of time to maturity, assuming a
constant 35 percent annualized volatility.

These results indicate that a name-by-name estimation may be trou-
blesome, and that swings in stock markets would lead to rapidly chang-
ing EEPs. In order to dampen these effects, we need to derive adjustments
to the model inputs or outputs similar in nature to the adjustments nec-
essary in the application of structural (Merton-type) models for PD esti-
mation (see, e.g., Sobehart and Keenan, 2004). These amendments should
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Backtest: LN model (5 year calibration) vs Cohort Analysis
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Backtesting Results: Unconditional Cohort Estimates
versus LN Model.

*The same problem needs to be addressed for structural (Merton-type) credit risk models.
There, the impact of the drift is also significant in near default situations and for medium to long
horizons. Because of the estimation difficulties for the asset drift term, the information added is
assumed to be noninformative and frequently ignored (see Lando, 2004 for a discussion).



result in a better agreement between model performance and empirical
evidence.

GARCH(1,1) Model with Constant Drift A simple
extension of the LN model is based on the observation that volatility in
financial markets is usually not constant. Indeed, clustering of volatility
can be frequently observed, where tranquil periods of low returns
are interspersed with volatile periods of high returns. Technically, this is
known as autoregressive conditional heteroscedasticity (ARCH), and
generalized ARCH (GARCH) models—first developed by Bollerslev
(1986)—attempt to capture this behavior. In a simple GARCH(1,1) model
with constant drift, the return of an equity is given by rt = µ + εt, where
εt ∼ Φ(0, σt). The conditional variance σt is modeled as σ2

t = ω + αε2
t − 1 + βσ 2

t − 1,
and the model calibration is usually performed within a maximum like-
lihood framework.

The calibration of the GARCH parameters turns out to be quite sen-
sitive to the chosen time series, in particular when a long time series
(advisable for long-term risk management) are considered. Stărică (2003)
provides a very useful discussion on GARCH parameter estimation and
stability for large amounts of historic data.

Nevertheless, the more realistic specification of the volatility
dynamics makes GARCH models suitable for EDS modeling. Compared
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Equity event probabilities for different drift assumtions
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EEPs for Different Drift Assumptions.



to LN models, EEPs tend to be higher for short horizons (the first few
years) while the estimates converge for longer horizons. As a result, some
of the underestimation of the models compared to empirical evidence
shown in Figure 11.6 would be reduced, and a further improvement may
be achieved by introducing non-normal residuals. Equity time-series data
usually exhibits fatter tails that the normal distribution is able to capture,
and other distributions are employed to capture these tail events more
adequately, see, e.g., McNeil and Frey (2000). The most common exten-
sions of the GARCH(1,1) model involve non-normal residuals, higher
order GARCH models, and extended GARCH models that focus on asym-
metry in observed equity returns (see, Alexander, 2001 for an overview).
The insights of Kaufmann and Patie (2004) on the choice of data frequency
for estimation and on the adequacy of the “square-root-of time” scaling
rules are also very relevant within our context of EDS modeling. Further
details on the application of GARCH models for EDS ratings purposes can
be found in Standard & Poor’s (2004), and Fitch (2004).

A Statistical Credit Scoring Approach Although the first
cohort results illustrate the importance of ratings and volatility when
assessing the performance of EDSs, several other variables could be inform-
ative, too. de Servigny and Jobst (2005) adapt commonly used credit scor-
ing models for EDS. There, up to 23 variables—ranging from market
variables (such as the S&P 500 volatility) and equity performance variables
(e.g., equity specific mean return, volatility, or higher moments), to firm-
specific accounting information (e.g., debt-to-equity ratio)—are considered
in the scoring exercise.

In the credit world, this is one of the most widespread techniques to
assess the risk on a large population, for which discrete information is
available. Among the various scoring techniques, logistical regressions
(logit models) correspond to a standard approach. These scoring tech-
niques deliver point-in-time information in the sense that they enable us
to assess default or event risk at a targeted and explicitly defined horizon.
The results they provide are usually less informative before or beyond
this horizon.

Overview of Methodology de Servigny and Jobst (2005) use
advanced logit techniques described in Cangemi et al. (2003). Let us con-
sider a vector X of risk factors, with X ∈Rd. The probability of a default or
of an equity event (symbolized by a “1”), conditional on the information
X, can be written as the logit transformation of a feature function, F(X),
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maximizing the combined predictive power of the factors. The logit trans-
formation* enables us to obtain a result located in the interval ]0,1[:

The specification of F(X) can be simple, corresponding to the first order
of the Taylor expansion of the “true,” unobservable, underlying feature
function. In this case, we have a linear logit model. The specification can be
more refined, including the quadratic terms too, leading to a quadratic logit.
In order to better account for higher power terms† without having to esti-
mate too many weights, we can include some additional cylindrical kernel
features of the form

where εiθ are weights, aθ the selected centers, and σ a bandwidth term cor-
responding to the decay rate of the kernel.

Practically, the models we run can be described as follows:

♦ A linear logit model

♦ A quadratic logit model

♦ A Full logit model, i.e., a combination of linear + quadratic +
Kernel features

By using different logit specifications, we reduce model risk and can bet-
ter analyze the real predictive power of the data. The calibration of the
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*Other transformations are possible such as the Probit one.
†Another way to present it is to further reduce the residual or error term.
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models by maximum likelihood includes a regularization feature that
helps to reduce overfitting when having to calibrate many weights related
to corresponding terms, see Chapter 2 for further details.

Empirical Results de Servigny and Jobst (2005) show once again
that rating and one-year historic volatility have consistently high factor
loadings, which confirms our initial variable choice (see Figure 11.8, top
panel). The genuine picture we obtain is that the explanatory power of
credit variables decreases with rising barriers, whereas the impact of mar-
ket variables such as volatility increases in barrier level. For example, the
most important factor for barriers above 50 percent is volatility followed
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Relative Contribution of Various Risk Factors (Top Panel)
Aggregated by Credit or Equity Factors (Bottom Panel).
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by credit rating, whereas for barriers below 50 percent the rank ordering
is reversed. For extended horizons, however, the explanatory power of
credit variables still appears most significant (Figure 11.8, bottom panel).

After identifying important factors using simple linear logit models,
de Servigny and Jobst (2005) apply the advanced credit scoring models in
order to improve the already encouraging performance of the scoring
methodology. Using models estimated for 10 percent, 30 percent, and
50 percent barriers and 1-, 3-, and 5-year maturities, a filtering system is
developed that allows us to classify EDSs into risk categories I to V.

The performance of this risk classification is reported through rank
ordering statistics—so-called Gini coefficients (see Appendix A)—in
Table 11.5. Basically, Gini coefficients give an indication whether or not
the risky EDSs predicted by the model are indeed the ones that trigger
EDS events. The same statistic is frequently applied for PD models, where
Gini coefficients vary between 50 percent and 90 percent, depending on
dataset and application. As can be seen from Table 11.5, the performance
of the proposed EDS classification is very encouraging, supporting the
choice of models and classification. For further details, we refer to de
Servigny and Jobst (2005).

Although the section presented several ways of measuring the like-
lihood of equity events, many interesting valuation issues are addressed
in Medova and Smith (2004) and Albanese and Chen (2005).

Dependent Events: Multivariate Aspects 
of EDS Modeling
The interpretation of the Gaussian copula model within the structural—
Merton—framework indicates that all securities are functions of the firms
asset value process. Therefore, all securities will move comonotonically
with that process suggesting the adequacy of using equity or credit spread
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T A B L E  1 1 . 5

Rank Ordering of Categories—Performance 
Measurement (in Percent)

EDS
categories 10% barrier 30% barrier 50% barrier

Horizon 1 year 3 years 5 years 1 year 3 years 5 years 1 year 3 years 5 years

Gini 91.97 83.98 80.88 82.79 75.34 69.86 73.47 63.08 57.53
coefficient



data for calibration. The advantage of correlations from equity prices is
clearly data availability and the ability to estimate issuer specific comove-
ments. Although this is true for corporate assets, the generalization to other
structured finance assets that are frequently contained in CDOs [such as
residential-mortgage backed securities (RMBS), ABS, etc.] and the exposure
of equity prices to trends and market movements independent of the credit
quality changes produce at best very noisy estimates (de Servigny and
Renault, 2003). Similarly, credit spreads are likely to be influenced by mar-
ket trends or liquidity issues. Unlike equity- and spread-based correlations,
an approach that directly employs actual (observed) default events reduces
the possibility of spurious correlation caused by unrelated external factors.
Because event-based correlations usually require large samples spanning at
least 20 years of data, they are frequently seen as long-term estimates that
should dampen the fluctuations due to business cycle and economic effects.
Jobst and de Servigny (2006) focus on empirical event-based correlations,
where both default and equity events are considered (within the same ana-
lytic framework). They employ, once again, methods developed in the
credit risk arena to EDSs. Stability of estimation is addressed by consider-
ing three different correlation estimators, all of which can produce esti-
mates for industry- (or more generally risk-class-) specific correlations that
would need to be used within the Gaussian copula model to reproduce
average historic joint default/equity default behavior. First, joint (pairwise)
event probabilities are estimated and transformed into empirical event and
implied asset correlations, following the approach of de Servigny and
Renault (2003). In order to mitigate bias due to (unknown) properties of cer-
tain estimators, we also consider the Binomial maximum likelihood esti-
mator (MLE) and Asymptotic MLE of Demey et al. (2004) based on a factor
modeling approach and conditional independence. While the first estima-
tor is capable of producing correlations between all industry combinations,
the second estimator produces industry specific correlations only within a
certain industry. Correlations between two industries are constant and,
hence, independent of the specific industries.

Constraint Factor Structure in MLE Approach
Having a very large number of firms to cope with in practice, it is usual
to assume that we have identified a (lower) number of factors and rewrite
the latent random variables/asset values (V1, . . . , VN) as a linear function
of the factors:

V F F i ci c c c i= + − + − ∈ρ ρ ρ ρ ε1
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The resulting restricted correlation dynamics (with constant and
indentical correlation between different groups),

implies efficient numerical optimization of the MLE compared to the
unconstrained model, as default probabilities conditional on the common
factors can be computed in closed form. Then, the distribution of
defaults/events follows a binomial distribution with known parameters,
and the MLE is determined by integrating over the common factor (see
Demey et al., 2004 or Jobst and de Servigny, 2006).

EDS Correlations: Empirical Insights
The Standard 30 Percent Barrier Table 11.6 shows industry specific
correlation estimates obtained form the EDS database for a 30 percent
barrier. Column AvgN contains the average number of firms in each
year in each industry; DefCorr and ImpAssCorr contain the empirical
EDS event and implied asset correlation according to the de Servigny
and Renault (2003) approach; and AsyMLE and BinMLE contains the
Asymptotic MLE and Binomial MLE results of Jobst and de Servigny
(2006). The last row contains the (average) correlation between two
industries, and the average intra-industry correlation is reported in the
row above.

This table (Table 11.6) reveals several interesting insights. First, the
EDS correlations for 30 percent barriers appear to be significantly higher
than the default correlations. The average intra- and inter-industry corre-
lations are approximately 27 percent and 15 to 17 percent, respectively,
which compares to 14 to 18 percent and 5 to 6 percent for (credit) default
data (see Jobst and de Servigny, 2006 for results on credit defaults).

EDS Correlations for Different Barriers In the follow-
ing, we calculate intra- and inter-industry correlations based on all three
estimators for barriers of 10 percent (corresponding to a 90 percent drop)
to 90 percent (corresponding to a 10 percent drop). Figures 11.9A and
11.9B plot the corresponding intra-industry and inter-industry correla-
tions for different barriers, respectively.
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Within a certain industry, the Binomial MLE and implied asset cor-
relation estimators seem to be in good agreement, whereas for barriers
below 50 percent, the small sample bias of the asymptotic estimator
becomes apparent. For inter-industry correlations, the underestimation of
the asymptotic estimator becomes even more apparent. In addition, we
believe that the implied asset correlations are also biased downwards for
barriers below 50 percent.*

The most interesting observation, however, is the behaviour of corre-
lation below and above the 50 percent barrier levels. Although correlations
appear to be almost constant for barriers below 50 percent, we observe a
steep increase for barriers above 50 percent. This means that correlation
appears to be issue-dependent, which highlights a inconsistency between
empirical findings and the general theoretical assumptions made in
Merton-type models.
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*This conclusion is mainly drawn from the good agreement of the Binomial MLE and
implied asset correlation estimators for defaults, where larger samples are available.

T A B L E  1 1 . 6

Empirical Equity Event and Resulting
Asset Correlations

DefCorr ImpAssCorr AsyMLE BinMLE
AvgN (%) (%) (%) (%)

Auto 113 5.8 23.0 15 20.3

Cons 115 3.0 17.0 18 22.5

Ener 58 8.1 28.0 28 36.1

Fin 85 2.5 16.0 13 17.7

Chem 46 4.2 21.0 16 18.0

Health 72 3.6 17.0 16 20.0

HiTech 55 22.1 44.0 28 36.3

Ins 44 2.3 14.0 18 17.7

Leis 60 5.3 19.0 16 18.2

RealEst 27 22.5 47.0 53 40.1

Telecom 22 34.4 61.0 39 52.9

Trans 24 1.5 19.0 23 24.6

Util 55 2.2 27.0 19 24.8

Avg(Ind) = Intra 8.5 27.2 23.2 26.9

Inter-Industry 3.7 14.2 9 17.6
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Case Study: A Hybrid CDO of EDS and CDS
Throughout this section, we employ the classification based on statistical
scoring models, and the correlation findings to analyze several sample
transactions, based on the S&P100 index. In a first case study, we analyze
EDSs written on all S&P rated obligors in the S&P100 at two different
points in time; just before the burst of the bubble in August 2000 and in
November 2004.

For 92 names in the S&P100 in August 2000, S&P rating, industry,
and regional information is available. The EDS analysis uses an advanced
statistical scoring model (Standard & Poor’s EDS Evaluator based on the
methodology outlined in “Equity Events” section) to determine the EDS
categories, an overview of the outcome is shown in Figure 11.10.

As we can see, the high volatility observed in equity markets during
this period results in relative low scores across the index. A subsequent
analysis at the portfolio level using the Gaussian copula model (e.g., CDO
Evaluator), and assuming zero recovery, produces levels of subordination
or scenario default rates (SDRs) shown in Table 11.7.*

By comparing these results to the SDRs for a portfolio of CDSs writ-
ten on the same names, we can observe the overall increase for CDOs

*See Chapter 10 for further details on SDRs.
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T A B L E  1 1 . 7

SDRs for CDOs of CDS (Left Panel) and EDS (Right Panel) in August 2000

CDS portfolio EDS portfolio

Desired Rating quantile Scenario default Monetary Desired Rating default Scenario default Monetary
rating (%) rate (%) loss rating probability (%) rate (%) loss

AAA 0.114 7.61 7 AAA 0.114 59.78 55

AA+ 0.170 7.61 7 AA+ 0.170 57.61 53

AA 0.354 6.52 6 AA 0.354 53.26 49

AA− 0.445 6.52 6 AA− 0.445 52.17 48

A+ 0.584 6.52 6 A+ 0.584 50.00 46

A 0.727 6.52 6 A 0.727 48.91 45

A− 1.036 5.43 5 A− 1.036 46.74 43

BBB+ 1.731 5.43 5 BBB+ 1.731 43.48 40

BBB 2.805 4.35 4 BBB 2.805 39.13 36

BBB− 6.059 3.26 3 BBB− 6.059 33.70 31

BB+ 7.915 3.26 3 BB+ 7.915 31.52 29

BB 11.571 3.26 3 BB 11.571 28.26 26

BB− 16.567 2.17 2 BB− 16.567 25.00 23

B+ 22.035 2.17 2 B+ 22.035 21.74 20

B 31.986 1.09 1 B 31.986 18.48 17

B− 42.293 1.09 1 B− 42.293 15.22 14

CCC+ 57.946 1.09 1 CCC+ 57.946 11.96 11

CCC 68.885 0.00 0 CCC 68.885 8.70 8

CCC− 84.129 0.00 0 CCC− 84.129 5.43 5
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of EDS due to the higher probability of events and higher correlation
assumptions. Assuming no recovery allows the identification of the num-
ber of defaults or trigger events in, say, an “AAA” environment. According
to our analysis, more than half of the pool (55 names) would trigger the
30 percent barrier in such an environment, and this compares to 21 empir-
ically observed events between August 2000 and November 2004. Out of
the 21 equities dropping by 70 percent, 12 were classified as category 5,
eight as category 4, and only 1 as category 3, which indicates that the
proposed classification system is valuable.

In a next experiment, we repeat the analysis for November 2004. The
new EDS score distribution is shown in Figure 11.11 followed by updated
SDRs (Table 11.8).

The figures (Table 11.8) reveal a significant improvement in EDS
scores, which translates into significantly lower levels of subordination.
Overall, however, we can still see that there is a significant number of
EDSs falling in categories 4 or 5 leading to higher SDRs, compared to a
comparative CDO of CDS.

In a final experiment, we assume that a CDO, referencing CDS and
EDS, are structured in a way that only includes EDSs belonging to cate-
gories 1 or 2. All other EDSs are replaced by their CDS counterparts,
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which leaves in total 31 EDSs and 64 CDSs. Table 11.9 shows a significant
reduction is subordination levels.

COOs: Commodity Transactions*

Recently, commodity linked CDO structures have also been introduced,
motivated by steeply rising commodity prices (see Figure 11.12), and the
historically low correlation to other asset classes.

The opportunity of higher yields and good diversification appear
attractive to some investors. Commodity risk is introduced into CDOs in
a similar form as equity risk is introduced via EDSs. Essentially, out of
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*The author would like to thank Kimon Gkomozias from Standard & Poor’s for insightful
discussions and computational support.

T A B L E  1 1 . 8

SDRs for CDO of EDS in November 2004

EDS portfolio: November 2004

Desired Rating default Scenario default Monetary 
rating probability (%) rate (%) loss

AAA 0.114 47.37 45

AA+ 0.170 45.26 43

AA 0.354 42.11 40

AA− 0.445 41.05 39

A+ 0.584 38.95 37

A 0.727 37.89 36

A− 1.036 35.79 34

BBB+ 1.731 32.63 31

BBB 2.805 30.53 29

BBB− 6.059 25.26 24

BB+ 7.915 24.21 23

BB 11.571 21.05 20

BB− 16.567 18.95 18

B+ 22.035 16.84 16

B 31.986 13.68 13

B− 42.293 11.58 11

CCC+ 57.946 8.42 8

CCC 68.885 6.32 6

CCC− 84.129 4.21 4



the money European options on the spot (or futures) price of the com-
modity with a strike price set at a predetermined “trigger level” are ref-
erenced. In contrast to CDOs of EDS where typically only one strike
(barrier level) per name is referenced, when considering a CDO of com-
modity options, typically several options on a single commodity struck
at different trigger levels (20 to 60 percent of the initial price) are consid-
ered in the underlying portfolios. Of course, there are many more equi-
ties to choose from than commodities, when attempting to construct a
sizeable portfolio. Another difference is that EDS have usually American
option features.

These differences have important modeling implications. Although
statistical cohort and credit scoring approaches are performing well for
EDSs, the adequacy of such techniques for commodity modeling purposes
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SDRs for Hybrid CDO of CDS/EDS in November 2004

Hybrid CDS/EDS portfolio: November 2004

Desired Rating quantile Scenario default Monetary 
rating (%) rate (%) loss (%)

AAA 0.114 17.89 17

AA+ 0.170 16.84 16

AA 0.354 14.74 14

AA− 0.445 14.74 14

A+ 0.584 13.68 13

A 0.727 13.68 13

A− 1.036 12.63 12

BBB+ 1.731 11.58 11

BBB 2.805 10.53 10

BBB− 6.059 8.42 8

BB+ 7.915 7.37 7

BB 11.571 7.37 7

BB− 16.567 6.32 6

B+ 22.035 5.26 5

B 31.986 4.21 4

B− 42.293 3.16 3

CCC+ 57.946 3.16 3

CCC 68.885 2.11 2

CCC− 84.129 1.05 1
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Historic Commodity Prices.
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is questionable. The number of commodities considered, and the number
of commodities with similar characteristics in general, is typically not large
(usually, between 10 and 15 different commodities are referenced in a
CDO). As a result, one needs to assess whether or not commodities could
be grouped into meaningful categories (e.g., energy, metals, etc.) and/or if
a sufficient number of commodities is available in order to conduct an
analysis based on discrete events (e.g., historic strike hits). Similarly, for a
correlation or dependence analysis, the number of commodity events is
significantly smaller compared to thousands of events observed for a large
number of equities, resulting in difficulties when attempting to apply esti-
mation techniques based on discrete events as outlined in “Equity Default
Swaps” section.

Modeling Individual Commodity Prices
Frequently, the commodity price dynamics are modeled through stochas-
tic models (processes), see, e.g., Eydeland and Wolyniec (2003) or Geman
(2005). For example, we recently considered the modeling of commodity
spot prices using an arithmetic MR process based on the logarithm of
prices. The model is discussed in detail in Schwartz (1997) and Geman
(2005) and has the following form:

Here, the spot price, S, mean reverts to the long-term level of eξ at a
speed β. Introducing the new variable x = ln(S), leads to

dx = β(θ − x)dt + σdW (1)

where θ = ξ − (σ 2/2β) and the long-term spot price is given by S–=
exp(θ + (σ 2/2β)).

The solution to the stochastic process in Equation (1) is given by:

and the discrete form solution
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is very useful for simulation purposes when Zi’s are sampled from the
standard normal distribution.

Of course, various other stochastic processes can be considered. For
example, a generalization of Equation (1) is given by

dx = (a + bx)dt + σxγ dW (2)

where the MR level is given by θ = −(a/b) and the MR speed is given by
β = − b, and γ is a scalar. Prigent et al. (2001) apply the model to credit
spread data. Depending on the parameter γ (which measures the level of
nonlinearity between the level and volatility), several commonly known
models can be derived. For example, γ = 0 leads to the Vasicek (1977) pro-
cess, whereas γ = 1

2 results in the Cox, Ingersoll, and Ross (1985) (CIR) pro-
cess. Prigent et al. (2001) also discuss a specific jump-diffusion model, and
the adequacy of introducing jump terms for modeling commodity prices
needs to be investigated further.

Empirical Results and Model Calibration Before esti-
mating a parametric model for various commodities, it is useful to apply
nonparametric techniques to gain some insight into the possible specifi-
cation of the drift and diffusion terms. Appendix B outlines first-order
approximations for the drift µ and diffusion term σ, where the stochastic
process follows a general diffusion of type

dSt = µ(St)dt + σ (St)dWt.

Figures 11.13 and 11.14 display the drift term as a function of prices, for
silver and crude oil, respectively, estimated on daily data from 1991 to 2004.

It is apparent from both figures that the drift is not constant in the
level of the price of the relevant commodity, especially when commodity
prices are high. This gives a strong indication of an MR behavior, and
therefore helps in the choice of a appropriate parametric model.

Similarly, the diffusion term can be estimated as outlined in
Appendix B. For silver and crude oil, we obtain the following Figures
11.15 and 11.16, respectively.

For both commodities, the diffusion is almost linear in the price
level; i.e., when prices are low, volatility is low, and when prices are high,
volatility is high. Given these findings on drift and volatility, the choice of
process presented earlier seems reasonable, at least for these commodi-
ties. For further results, we refer to Standard and Poor’s (2006).
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Drift as a Function of Price for Crude Oil.

Appendix C outlines the parametric estimation of stochastic process
[Equation (2)], and we present some of the estimation results on a set of
five commodities next.

The results of an unconstrained estimation are shown in Table 11.10,
while we constrain the model to the Brennan and Schwartz (1980) model
(γ = 1) in Table 11.11.
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The parametric estimation (Table 11.10) also shows the high nonlin-
ear relationship between prices and volatilities and confirms the MR
behavior of the chosen commodities as a > 0 and b < 0 in all cases. The esti-
mation of γ also indicates that very popular short-rate models, such as
Vasicek or CIR, are less suitable for commodity prices. By constraining the
model to γ = 1, we observe only minor changes in mean reversion level and
speed, however, the volatility changes significantly. For the commodities
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exhibited, the parametric (model) volatility is very much in line with the
empirical volatility for γ = 1.

After choosing an adequate model and calibrating it to historic data,
Monte-Carto simulation allows us to estimate the probability of the com-
modities prices hitting the predetermined barrier (strike).

Dependence in a Portfolio of Commodities
Considering a portfolio of commodity options referenced within a CDO also
requires the specification of the joint dynamics. As previously discussed, an
approach based on discrete (default) events may be less suitable, and one
can proceed, e.g., with the estimation of the linear correlation between dif-
ferent commodities from the price time-series information. We essentially
estimate the correlation ρij between the Brownian motions Wi and Wj that are
specified in the dynamics of commodities i and j, respectively:
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T A B L E  1 1 . 1 1

Constrained Parametric Estimation of Commodity
Prices (1991–2004)

Alpha Beta Gamma Sigma Volatility (%)

Nat gas 0.28 −0.0035 1.00 0.0282 45

Crude 0.09 −0.0004 1.00 0.0203 32

Aluminium 0.12 −0.0022 1.00 0.0104 16

Nickel 0.06 −0.0006 1.00 0.0182 29

Copper 0.08 −0.0005 1.00 0.0138 22

T A B L E  1 1 . 1 0

Parametric Estimation of Commodity Prices
(1991–2004)

Alpha Beta Gamma Sigma Volatility (%)

Nat gas 0.28 −0.0035 1.08 0.0196 31

Crude 0.10 −0.0004 1.18 0.0086 14

Aluminium 0.12 −0.0021 1.32 0.0028 4

Nickel 0.06 −0.0007 1.16 0.0090 14

Copper 0.10 −0.0008 1.47 0.0016 3



dSt
i = µi(St

i)dt + σ i(St
i)dWt

i,

for all i = 1, . . . , C. C denotes the number of commodities (not options)
considered.

Table 11.12 shows the resulting correlation matrix for the five com-
modities outlined earlier.

Whether or not such linear correlation estimates derived from com-
modity prices are adequately reflecting dependence in the context of sharp
price declines (extreme events) awaits further research. Results for EDSs
have shown that discrete event-based correlations are quite different to
correlation estimates derived from price time-series at industry level gran-
ularity (see Jobst, 2004). As for commodities, the former estimates are not
available; a more detailed inspection of the dependence structure during
periods of high volatility and extreme commodity returns may provide
interesting insights. Longin and Solnik (1999), e.g., study the dependence
structure of international equity returns during extremely volatile bear
and bull markets, using extreme value theory. They show that correlation
of large positive returns is not inconsistent with multivariate normality,
whereas correlation of large negative returns is much greater than expected.
Although the existence of a “correlation breakdown” or changes in corre-
lation through time has been frequently noted, Boyer et al. (1999) and
Loretan and English (2000) argue that conditional correlation changes can
be (theoretically) justified by time-varying sample volatility, rather than
significant changes in the dependence behaviour itself. Although most
discussions on extreme correlation focus on equity data, the relevant sta-
tistical techniques can provide valuable insights for commodities. The
impact of such dependence effects on portfolios of deep out-of-the-money
options obviously needs to be assessed in more detail.
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T A B L E  1 1 . 1 2

Correlation Between Commodity Spot Prices 
(in Percent)

Nat gas Crude Aluminium Nickel Copper

Nat gas 100 65 −3 −2 4

Crude 65 100 6 8 8

Aluminium −3 6 100 32 39

Nickel −2 8 32 100 18

Copper 4 8 39 18 100



Given some indication of the dynamics of individual commodities,
and the correlation across commodities, a portfolio can be simulated and
the number of times the price breaches the barrier can be estimated. For a
given tranche referencing commodity options, tranche PD and expected
loss can then be easily estimated. For further details, outlining Standard
& Poor’s approach to employ the standard copula model for commodity
portfolios, see Standard & Poor’s (2006).

Of course, the models and developments outlined earlier can also be
extended to portfolios of out-of-the-money interest rate and FX products,
introducing new challenges for single-asset level, as well as dependence,
modeling.

STRUCTURAL INNOVATIONS: INTRODUCING
MtM RISK*

In May 2005, the synthetic CDO market experienced difficult times follow-
ing the downgrade of Ford and GM by Standard & Poor’s. The large
demand for mezzanine tranches in recent years left dealers exposed to large
short mezzanine positions that were hit hard during May 2005 (see
Chapters 8 and 9 for further details). As a result of this experience, dealers
are now trying to place full capital structure CDOs or employ (approximate)
index hedges to reduce the prevalent risk. In order to place super senior
risk, LSS transactions, one of the most successful products of 2005, have
been introduced. We will discuss such transactions in the next section, high-
lighting the MtM component new to rated CDO tranches. Toward the end
of 2005, and in early 2006, CPPI entered the structured credit market in an
attempt to reduce MtM risk by guaranteeing principal while offering poten-
tial upside to investors. We will provide a brief overview of credit CPPI, as
well as CPDOs-the latest innovation in the structured credit market.

Leverage Super Senior Transactions

LSS structures are relatively new products offered in the synthetic CDO
market.† Their development in 2005 has resulted from a desire by protection
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*The author would like to thank Sriram Rajan, Derek Ding, Benoit Metayer, Lapo Guadagnuolo,
and Cian Chandler from Standard & Poor’s for many interesting discussions and numerical
support.
†LSS could be cash funded, too, in which case a detailed modeling of excess spreads and
IC/OC tests would be required.



buyers in the credit market to transfer super senior risk more efficiently,
accompanied by tightening spreads for super senior risk.

Unlike a typical super senior CDS, LSS notes contain both credit and
market value risk. The latter in the form of triggers are based on the mar-
ket value of the underlying reference assets. These triggers therefore
expose the note holder to decreases in the market value of the LSS tranche.
Three basic trigger types have been seen in the market, each of which
offers a different aspect of market risk. Triggers can be based on losses,
portfolio spreads, and MtM values and, if breached, may cause the trans-
action to unwind. Most transactions to date are based on spread triggers.

Basic Structure
A leverage super senior note is a credit-linked note in a synthetic CDO
transaction. Its attachment point (subordination) is usually higher than
that required for an “AAA” rated mezzanine notes. As in a typical super
senior swap, LSS swaps usually cover all or most of the senior exposure.
The difference, though, is that in a LSS structure only a fraction of the
exposure is directly hedged—through funding—whereas in a super senior
swap structure the entire notional value is funded. The funded amount is
the lower portion of the senior exposure, which is also the riskiest portion
of the super senior tranche (see Figure 11.17).
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Hedging the entire super senior portion of the reference portfolio
by funding only a fraction of it creates a “leverage,” which is a distin-
guishing feature of this product. The number of times that the senior
exposure is leveraged is equal to the senior exposure divided by the
funded notional. Initially, most transactions had tenors of between five
and seven years and were leveraged between 10 and 15 times, with
portfolios typically referencing between 100 and 200 corporate and finan-
cial entities. More recently, LSS transactions reference ABS, including port-
folios of RMBS and commercial mortgage backed securitization tranches.

Perspective of Protection Buyers and Sellers In a
LSS structure, the protection seller earns the risk premium associated with
selling protection on the entire senior exposure when the protection it
provides is limited to only the principal amount that is funded, which is
just a fraction of the entire exposure. For example, take a senior exposure
(10 to 100 percent) of a portfolio with a notional equal to m100 million that
pays 5 bp. If the funded portion of the resultant m90 million exposure is
m6 million, the tranche is 15 times leveraged earning a spread of 75 bps
per year on the funded notional.

The protection buyer on the other hand does not only protect oneself
from the credit risk, but also from market value risk in the structure in form
of MtM losses in excess of the principal amount funded by the protection
seller. The combination of these risks justifies the return that the seller
earns. From a protection buyer’s point of view, the unwind event and the
subsequent MtM payment means that it is effectively hedging the full se-
nior portion of the portfolio even though only a fraction of the exposure has
been funded. On a trigger being breached and the transaction terminating,
the buyer has the MtM amount that it needs to purchase protection on the
rest of the structure.

From a protection buyer’s perspective, the most attractive structure
would be the MtM trigger on the tranche value, because this would pro-
vide it with exact protection on the tranche (i.e., perfect hedge). However,
the subjectivity associated with valuing bespoke tranches makes this less
attractive to the protection seller. Both, the loss and spread triggers are
“only” proxies for the market value of the tranche, and we will mostly
focus on the spread trigger for the remainder of this chapter.

LSS with Spread Triggers
The rationale behind the spread trigger is that the market value of the LSS
tranche is heavily dependent on the spread level of the portfolio. While
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the market value of the issued tranche is dependent on more than just the
underlying asset values, spread triggers that provide a good (conserva-
tive) proxy to MtM movements can be constructed. This is normally done
by the arranging bank that employs typical tranche pricing methodolo-
gies with conservative valuation assumptions to determine various aver-
age portfolio spreads that would cause specific MtM losses.

These trigger spreads are given in the transaction documents in the
form of a trigger matrix, an example of which is shown in the extract in
Table 11.13. This matrix tells us the level that the average portfolio spread
would have to widen to for a trigger event to be caused. For example, pre-
suming a closing date of December 20, 2004, if the transaction is three
months into its life and 1 percent portfolio losses have occurred, spreads
would need to widen to 262 bps to breach the spread trigger.

Modeling LSS Notes with Spread Triggers
RAs, such as Standard & Poor’s, Moody’s, and Fitch have developed
methodologies to assess the risk in LSS transactions, see, e.g., Standard &
Poor’s (2005). We will provide a brief overview of the approach developed
by Standard & Poor’s, and provide a discussion of possible extensions. The
methodology used in rating LSS transactions with a spread trigger
involves an evaluation of both the credit risk on the reference portfolio and
the risk that a spread trigger is breached.

Standard & Poor’s LSS Model The matrix in Table 11.13
shows that we need to address two (inter-linked) risks in our analysis:
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T A B L E  1 1 . 1 3

Example of a Typical Spread Trigger Matrix as
of December 20, 2004 (in bp)

Time to maturity (years)

Losses (%) 5.00 4.92 4.83 4.75 4.67

0.0 267 271 275 279 283

0.5 258 262 267 271 275

1.0 250 254 258 262 266

1.5 247 251 254 258 262

2.0 238 242 246 250 253

2.5 232 236 240 244 248

3.0 226 230 234 237 241
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first, the default risk of the LSS note due to portfolio defaults, and second,
the risk of spread widening to a level that would cause an unwind event.
We address these risks by modeling the evolution of portfolio losses until
maturity, and combining these loss scenarios with an assessment of
whether portfolio spreads are likely to widen sufficiently to breach the
maturity- and loss-dependent barrier.

Portfolio loss paths are determined from the default time simulation
as outlined in “ST CDOs: A Ratings Perspective” section. For each simu-
lation, after determining the percentage losses along each path, the barrier
is calculated from the trigger matrix at fixed time-steps (usually one
month) until maturity. End-of-month cumulative losses are used to deter-
mine the barrier for the beginning-of-month to end-of-month period, or
linear interpolation is applied occasionally.

Modeling the Average Portfolio Spread Standard &
Poor’s models the average portfolio spread directly by focusing on sys-
tematic spread risk and considers idiosyncratic spread risk of secondary
importance. As for commodities, there is a vast number of models to be
considered, and the techniques outlined in Appendices B and C can be
applied to gain some insight into drift and diffusion restrictions.

Prigent et al. (2001), e.g., show that both “AAA” and “BBB” corpo-
rate bond yield spreads show MR behavior. However, only the “BBB”
volatility appears to scale linearly with the level of spreads while it oscil-
lates around a constant mean for “AAA” data. S&P has chosen to estimate
the diffusion model outlined in Appendix C and restricted the diffusion
scalar γ ≤ 1 for daily time series data on IG (“AAA,” “AA,” “A,” and
“BBB”) option adjusted spreads (OAS) over the period 1997 to 2004.
The resulting parameters shown in Table 11.14 confirm the MR behavior
for all ratings (as a > 0 and b < 0 in each case).*

The diffusion estimates also confirm Prigent et al. (2001), indicating that
the relationship between the spreads and volatility is stronger for lower rat-
ings and weaker for higher ones. This indicated that a Brennan and Schwartz
model (γ = 1) may be adequate for “AA” and “BBB” spreads, and a CIR or
Vasicek process may be more suitable for “A” and “AAA” spreads, respec-
tively. Of course, one can always estimate the same model for all IG spreads.
For example, for γ = 1, we obtain the parameters shown in Table 11.15.

The results reveal a very systematic behaviour of IG credit spreads.
Volatility appears to be decreasing in ratings, long-term MR levels
increasing, and the MR speed also increases with decreasing ratings.

*Thanks to Astrid van Landschoot for empirical support.



512 CHAPTER 11

It is apparent that the models presented earlier try to capture the
most important time-series properties, without gaining further insight
into the factors driving various spread level and volatility. Incorporating
more explanatory power into the spread modeling exercise may prove a
valuable extension. For further details, see Collin-Dufresne et al. (1999),
Delianedis and Geske (2001), or Hull et al. (2004).

Standard & Poor’s LSS Spread Model Looking at the
results presented earlier, Standard & Poor’s choice of an MR model,
where the log of the average portfolio spread follows an Ornstein-
Uhlenbeck process—Equation (1)—appears justified, given that the aver-
age portfolio quality is usually around “BBB” for most transactions.

Figure 11.18 shows the average simulated portfolio spread and the 95th
and 99th percentiles using a typical parameterization (mean reversion speed
of 40 percent, LT spread of 100 bp, and volatility of 35 percent) of the model,
assuming a starting spread of 39 bps. The maximum spread simulated after
one, three, and five years is 150 bps, 250 bps, and 390 bps, respectively.

T A B L E  1 1 . 1 4

Parametric Estimation Results for IG OAS
(1997–2004)

a b Gamma Sigma Volatility (%)

AAA 0.0048 −0.0067 0.29 0.0194 31

AA 0.0024 −0.0031 0.84 0.0223 36

A 0.0026 −0.0024 0.61 0.0187 30

BBB 0.0038 −0.0021 1.00 0.0151 24

T A B L E  1 1 . 1 5

Parameters of Restricted Model (γ =1) for IG OAS
(1997–2004)

a b Gamma Sigma Volatility (%)

AAA 0.0083 −0.0115 1.00 0.0273 44

AA 0.0026 −0.0033 1.00 0.0235 38

A 0.0032 −0.0030 1.00 0.0190 31

BBB 0.0038 −0.0021 1.00 0.0151 24



Although in this approach, no ratings migrations are explicitly taken
into consideration, the portfolio spread is modeled on a constant maturity
basis which means that “rolling down the curve” effects (the term-structure
of spreads) are not explicitly modeled. While Standard & Poor’s (2005)
argues that the effects of decreasing maturities has a greater impact than
a stressful ratings environment, Fitch, e.g., takes ratings migrations into
consideration. There, spread processes for different rating classes are per-
fectly correlated, and ratings migrations are explicitly modeled leading to
a jump in spreads at the time of a ratings migration. This is in the spirit of
the model presented in Chapter 3, where more elaborate implementations
are discussed. Such extensions should evolve toward capturing the corre-
lation between credit spreads more adequately (than considering perfect
correlation). For example, considering yield spread data for 1988 to 2005,
we observe pretty strong (but not perfect) correlation between IG spreads,
see Table 11.16.

Determining a PD-Rating on a LSS Note Assessing
the risk of LSS notes requires the determination of the likelihood of
breaching the attachment point, as well as the probability of breaching a
specific spread barrier.
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In mathematical terms, we observe/simulate a loss path 
~
l = lτ, τ ∈[0, T],

where T denotes the transaction’s maturity. We then need to estimate the
probability of breaching the corresponding barrier s(lτ) for the first time
(“first passage time”), conditional on the loss path 

~
l:

P(min[0, T] St > s(lt)�
~
l ).

By simulating N loss paths 
~
l and subsequently simulating the port-

folio spread, the required probability can be easily derived as:

where A denotes the attachment point for this transaction.

Model Extension: Correlating the Default and
Spread Process Incorporating ratings migrations and credit
spreads as outlined earlier essentially presents one way to capture
dependence between the credit spread and default process. Although
intuitive, detailed empirical evidence is still outstanding (see, e.g., Hull
et al., 2004 for initial results). Another way to quantify the effect of nega-
tive correlation is to extend the Black and Cox (1976) structural model to
a large number of obligors. In Black and Cox, the firm’s asset value fol-
lows a standard lognormal process

dVi = µiVi dt + σiVi dZi.

P
N T t t TS s l l l A

l

N

(LSS default) ,
{min ( )|̃ } or{ }

˜ [ , ]
 =

1
1

0
1

> >
=

∑
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T A B L E  1 1 . 1 6

Correlation Between the Residuals of the Brennan &
Schwartz Model Calibrated to IG Yield Spreads
(1988–2005)

AAA AA A BBB

AAA 1 0.6924 0.7664 0.7266

AA 0.6924 1 0.7853 0.6996

A 0.7664 0.7853 1 0.8074

BBB 0.7266 0.6996 0.8074 1



Hence, Vi(t) = Vi(0) exp((µi − 0.5σ i
2)t + σiZi(t)), and default occurs when

the firm value, V, hits the default barrier Hi for the first time (first passage
time). The parameters of this stochastic process and/or the default barrier
H can be calibrated to a given term structure of default probabilities (or
hazard rates), see Hull et al. (2005) for further details.

When a portfolio of entities is considered, a factor model correlating
the Wiener terms, such as

where F can be interpreted as a global factor and Fc can be interpreted as
an industry or risk-class factor, can be applied. The actual correlation
structure corresponds to a correlation of ρc between two entities in the
same industry or risk-class c, and ρ between two firms in different indus-
tries or risk-classes. In practice, of course, any other (multi) factor model
can be applied.

Defaults in this framework are determined by simulating the factors
and idiosyncratic random terms through time, calculating the correspon-
ding asset values Vi(t), and comparing it to the default barriers Hi(t).

The advantage of this structural factor model for LSS is that the fac-
tors driving the firms value can be correlated to the Brownian motion,
driving the average portfolio spread process. This can be either done by
setting up the Brownian motion W(t) driving the spread process as a func-
tion of F(t) and Fc(t), or by simply imposing a linear correlation between
the Wiener terms and simulating the factors and spread term from a mul-
tivariate normal distribution. Although the estimation and calibration of
such a correlated default and spread model needs to be conducted care-
fully and the assumption of linear dependence is rather restrictive, the
impact of simulating correlated asset values (default processes) and credit
spreads can be assessed.

Table 11.17 shows the impact of increasing negative correlation
between portfolio spreads and asset values by assuming some level of
correlation between the average portfolio spread process and the global
and industry specific factors, driving the firm’s asset values (and there-
fore defaults).

In Table 11.17, we determine factor weights that are consistent with
an assumption of 30 percent correlation between two obligors in the
same industry, and 0 percent between obligors in different industries.
The first row shows the results if we assume, in addition, a 30 percent

d ( ) d ( ) d ( ) ( ) ,Z t F t F t t i ci c c c i= + − + − ∈ρ ρ ρ ρ ε  1
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correlation between the spread process and the global factor, and a 10 per-
cent correlation between the spread process and the industry specific factor.
In this typical case, the LSS note is expected to default with a probability
of 11 bps.

The table (Table 11.7) reveals overall that imposing negative correla-
tion increases the risk to LSS investors. This makes intuitive sense as nega-
tive correlation implies that decreasing asset values (or nonfavorable factor
outcomes) lead to increasing spread levels; however, the impact of this cor-
relation appears to be moderate, which becomes even more apparent when
we are looking at Table 11.18.
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T A B L E  1 1 . 17

LSS Default Probability as a Function
of Spread/Default Correlation

Correlation of spread process to the
global and industry factors (%)

Global factor Industry factor

30 10 11

10 0 14

0 0 15

(20) 0 16

(30) 0 17

(20) (7) 19

(30) (7) 20

Probability of LSS tranche
default (bps)

T A B L E  1 1 . 1 8

LSS Default Probability as a Function
of Spread Volatility

Correlation of spread process to

Spread
Probability ofthe global and industry factors (%)

volatility (%)
LSS tranche

Global factor Industry factor default (bps)

0 0 25 0.16

0 0 30 2.70

0 0 35 15.00

0 0 40 47.00



Here, we are assuming no correlation between the spread process
and the factors but vary the volatility in the underlying spread model.
As we can see, the probability of the LSS note defaulting reduces to
0.16 bps from 15 bps when considering a volatility of 25 percent instead of
35 percent, whereas it is more than triples when volatility is increased by
5 percent. Hence, the sensitivity to volatility seems to be higher than the
effect of correlation between losses and spreads can have, but further
work is needed on such dependence issues.

Although it is apparent that the risk in LSS transactions stems to a
large extent from spread widening, the quality and concentration in the
underlying asset pool is also very important. For example, imposing a
higher asset correlation of 30 percent between all obligors leads to a steep
increase in tranche default probabilities (see Table 11.19). Again, the sen-
sitivity to changes in spread-to-factor correlation seems quite modest.
Similarly, the impact of more “aggressive” spread triggers may have to be
assessed.

Of course, the approach outlined here only provides first insights
into dependence issues and is still quite restrictive in that spread dis-
persion, a possible jumps in asset values and/or credit spreads, the
impact of defaults on spreads, and a more elaborate dependence struc-
ture still need to be explored. Despite some of these outstanding model-
ing challenges, LSS transactions have become an important part of
synthetic CDO markets to date, by offering a vehicle to place the top end
of the capital structure, which was previously dominated by (a limited
number of ) monoline insurers, to real-money investors (in leveraged
form).
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Correlation of spread process to the

Probability of LSS tranche
global and industry factors (%)

default (bps)Global factor Industry factor

30 10 295

10 0 301

0 0 305

(20) 0 313

(30) 0 318

(20) (15) 316

(30) (15) 320



Credit Constant Proportional 
Portfolio Insurance*

Following the development of the CDO squared market in 2004, LSS in
2005, the early part of 2006 was driven by a large interest in so-called credit
CPPI. CPPI is a rules-based portfolio management framework where the
portfolio allocation changes dynamically between a risky subportfolio and
a risk-free subportfolio. The aim of this rebalancing exercise is to maximize
return while guaranteeing (partial) principal protection. This is in stark
contrast to typical ST CDOs where a fixed upside (premium) is countered
by unlimited downside and a turn away from aggressive structures that
focus on maximizing yield toward more defensive structures. CPPI is not
new to capital markets; the concept of CPPI goes back to Black and Jones
(1986), who consider this Portfolio Insurance mechanism in the context of
equities. Perold (1986) and Perold and Sharpe (1988) apply the concept to
fixed income instruments (see also Black and Rouhani, 1989; Rouman
et al., 1989). Similarly to LSS, the rise in prominence of CPPI stems partially
from the events of May 2005. Although higher leverage was achieved at
the cost of significantly higher correlation sensitivity (e.g., CDO squared
transactions) before May 2005, most CPPI transactions to date introduce
leverage (or higher sensitivity) to an overall credit portfolio (or index), and
hence, eliminates the direct exposure to (base) correlation risk.

A Typical Credit CPPI Structure
The basic idea of CPPI is that at any time, the investors principal invest-
ment can be repaid at maturity. In order to do so, the portfolio value P(t)
needs to be maintained above a minimum value, denoted as the floor or
cost of guarantee F(t, T). Hence, the floor if invested at the current risk-free
rate will allow repayment of the guaranteed principal. More formally, the
following condition needs to be satisfied for all t ≥ T: P(t) ≥ F(t, T),

where denotes the present value of the final 

principal at time T, P
–

T, discounted at the current risk-free rate r.
The difference between the portfolio value (the sum of the initial

investment plus the MtM of the risky exposure) and the floor is usually
denoted as the reserve or cushion, C(t). This cushion is invested in risky
assets, which within the framework of credit CPPI usually comprises of
single-name CDS or CDS indices. Usually, at this part of the structure,

F t T P E r s sT t

T
( , ) exp ( )d= −



∫
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*Thanks to Benoit Metayer and Sriram Rajan for their contribution to this topic.



leverage is introduced. Practically, a “gearing factor” or “multiplier” m is
applied to the reserve that determines the proportion of assets allocated
to the risky portfolio, denoted as “risky exposure,” RE. The multiplier is
generally applied in some variation of the following basic formula:

RE = mC(t) = m(P(t) − F(t)).

Assuming a fixed multiplier, as the portfolio value increases, the
reserve and RE increase (buying high), whereas a decrease leads to reduc-
tion in the RE (selling low). In practice, the maximum size of the RE (or
leverage) is usually restricted. For example, the risky portfolio cannot
exceed a fraction l of the current total portfolio value (RE and risk-free
investment), i.e., RE = min[max(mC(t), 0), l P(t)].* Figure 11.19 shows the
typical structure of a CPPI transaction.

The higher the multiplier, the higher is the risk that the portfolio
value may fall below the bond floor. This risk is usually denoted by “gap
risk” and is illustrated in the following idealized examples.

A Simplified CPPI Case Study
Consider a initial investment of P(0) = 100, a time horizon of t = 10 years,
and a muliplier of m = 5. Current market conditions assume a risk-free
yield of 2 percent throughout the life of the transaction, and the risky
investment is assumed to be a credit risky portfolio, which pays a protec-
tion premium of 5 percent per annum. We start by calculating the bond
floor as the value of the risk-free zero-coupon bond (ZCB) that matures at
the end of the investment horizon. Table 11.20 shows a detailed example
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*Alternatively, leverage may be dynamically adjusted, e.g., by the ratio of the current RE to
the size of a possible overnight MtM loss, see Whetten and Jin (2005) for further details.
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A Typical Dynamic CPPI Example

Losses Risky Total Purchase/
Bond from portfolio portfolio Maximum sale of Risk-free 

Time floor Defaults value value Reserve RE credit risk asset

0 81.87 — — 100.00 18.13 90.63 90.63 9.37

1 83.53 0.00 95.17 106.62 23.10 106.62 11.46 0.00

2 85.21 20% 90.63 92.44 7.23 36.14 −54.49 56.31

3 86.94 0.00 37.94 96.13 9.20 45.99 8.04 50.15

4 88.69 0.00 48.29 100.40 11.71 58.55 10.26 41.85

5 90.48 0.00 61.47 105.40 14.91 74.56 13.08 30.84

6 92.31 0.00 78.29 111.31 18.99 94.97 16.68 16.34

7 94.18 0.00 99.72 118.38 24.20 118.38 18.66 0.00

8 96.08 0.00 124.29 126.78 30.70 126.78 2.49 0.00

9 98.02 0.00 133.12 135.78 37.76 135.78 2.66 0.00

10 100.00 0.00 142.57 145.42 45.42 145.42 2.85 0.00
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of the CPPI dynamics, when RE is restricted to the current portfolio value
(l = 1), and the spreads received from the risky portfolio are reinvested.*

In this illustrative example, we also assume that the portfolio value is
readjusted by (annual) spread payments and losses from defaults, only,
rather than by “true” MtM changes of the portfolio value. Changes in
spreads (and other relevant pricing variables) typically causes MtM gains
and losses that need to be addressed. Despite this simplification, the general
mechanics illustrated here is still reflective of CPPI. This means that a port-
folio rebalancing takes place when the MtM value of the portfolio changes
significantly as a result of changes in credit spreads and/or dependence
behaviour, in addition to credit events/defaults.

At trade initiation, the bond floor is 81.87 resulting in a reserve of 18.13
and an RE of 5 times that value (90.63). Hence, 9.37 is invested in the risk-
free portfolio,† whereas 90.63 is invested in the risky portfolio. After one
year, the ZCB value increased, leading to an increased bond floor. Since the
risky portfolio earned 5 percent spread, the total portfolio value increased to
106.62 [= (90.63 + 9.37) * (1 + 0.05 + 0.02)]. This results in a higher reserve of
23.1 and a subsequent purchase of 11.46 of the risky portfolio and a reduced
risk-free investment. Repeating these calculations until maturity reveals that
the overall portfolio value far exceeds the bond floor at any point in time,
despite 20 percent losses in the risky portfolio in year 2. These losses lead to
a significant reduction in the risky investment and a shift towards the risk-
free portfolio, as shown in the Table 11.20.‡ It is also worth noting that the
overall RE in this example is restricted to be at most the total portfolio value.
In the example, this constraint is hit in year 2 and from year 7 onwards.

Sensitivity to Defaults and Default Timing
Table 11.21 shows the performance of the CPPI transaction introduced ear-
lier for various loss scenarios. In loss scenario 1, 30 percent and 20 percent
losses are assumed in the risky portfolio in years 5 and 8, respectively.
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*Alternatively, spreads could be passed to investors, which would lead to very different
transaction dynamics and performance (Internal rate of return IRR).
†Note that in real transactions, specific investment rules may require a minimum holding in
the risk-free investment to further ensure market volatility. For example, in “static hedge”
CPPI structures, a portion of the initial investment is allocated to a risk-free asset that
accrues to return full-rated principal at maturity.
‡As indicated earlier, investment guidelines in real-world transactions would result in port-
folio rebalancing subject to MtM changes. These MtM changes are often less severe than
indicated here in the case of default. Hence, the situation where the portfolio composition
changes as a result of defaults, only, as outlined in this case study, is highly illustrative and
should not be misinterpreted.
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Sensitivity of CPPI Transaction to Defaults and Default Timing

Loss scenario 1 Loss scenario 2 Loss scenario 3

Losses Total Losses Total Losses Total
Bond from portfolio from portfolio from portfolio

Time floor defaults Value defaults value defaults value

0 81.87 100 100 100

1 83.53 0 106.62 0 106.6224 10% 97.38

2 85.21 0% 114.19 0% 114.19 10% 95.79

3 86.94 0% 122.30 0% 122.30 10% 95.01

4 88.69 0% 130.98 20% 106.03 10% 94.85

5 90.48 30% 100.20 30% 86.04 10% 95.18

6 92.31 0% 104.68 0% 10% 95.88

7 94.18 0% 109.93 0% 10% 96.89

8 96.08 20% 100.08 0% 10% 98.14

9 98.02 0% 103.10 0 10% 99.57

10 100.00 0 106.46 0 10% 101.17
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Despite these losses, the CPPI investor receives full principal at maturity,
which essentially means that the return generated in the initial years was
sufficient to repay full principal. In loss scenario 2, the same amount of
default occurs (in percent terms), however, losses occur in two successive
years and in reverse order. We can observe that in year 5, the overall port-
folio value falls below the bond floor—the “gap risk” scenario occurred.
This highlights that the timing and clustering, and therefore correlation, of
defaults can impact CPPI transactions significantly.

In loss scenario 3, 10 percent losses are observed in every year of the
transaction. Although this results in absolute losses higher than in the pre-
vious two scenarios, the full principal investment can still be repaid. This
results from the fact that the RE is steadily reduced and shifted toward the
risk-free investment. In doing so, the total amount in the risky portfolio
is not very high after a few years running, leading to a lower impact of
defaults/losses.

Sensitivity to Gearing/Leverage
Changing the constant multiplier has a significant impact on the perfor-
mance of the dynamic CPPI transaction, as shown in Table 11.22. Loss sce-
narios 2 is considered once again illustrating that a leverage of m = 3 leads
to a full repayment of principal, compared to m = 4 and m = 5, respectively.

We also consider loss scenario 3 with significantly higher leverage of
m = 15. The higher RE due to higher gearing leads to large year on year
losses, resulting in a gapping out of the transaction in year 7. Although
the sign of the impact of leverage depends on may factors, these simple
examples show that CPPI transactions are very sensitive to the multiplier.

Sensitivity to Interest Rates and Credit Spreads
Apart from losses and leverage, two other factors—interest rates and
credit spreads—are very important for Credit CPPI.* Assuming a multi-
plier of m = 4 and loss scenario 2, Table 11.23 reveals the impact of increas-
ing interest rates systematically until a maximum of 6 percent over the
first four years of the transactions life. Higher interest rates imply a lower
cost of guarantee, but also higher returns from the risk-free investment.
Although for a constant 2 percent interest rate environment the transac-
tion “gapped out” (Table 11.21) under loss scenario 2, the full principal
can now be repaid at any point in time.

The table (Table 11.23) also reveals that a tightening in credit spreads
has a massive impact on the transaction, leading to the portfolio value
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Sensitivity of CPPI Transaction to Gearing Factor

Loss scenario 1 Loss scenario 2 Loss scenario 3
(Leverage = 3) (Leverage = 4) (Leverage = 15)

Losses Total Losses Total Losses Total
Bond from portfolio from portfolio from portfolio

Time floor Defaults value Defaults value defaults value

0 81.87 100 100 100

1 83.53 0 104.77 0 105.70 10% 96.90

2 85.21 0% 110.12 0% 112.33 10% 93.90

3 86.94 0% 116.13 0% 120.11 10% 90.99

4 88.69 20% 105.05 20% 104.14 10% 89.71

5 90.48 30% 94.64 30% 90.47 10% 90.72

6 92.31 0% 97.17 0% 10% 92.35

7 94.18 0% 99.85 0% 10% 94.17

8 96.08 0% 102.72 0% 10%

9 98.02 0 105.79 0 10%

10 100.00 0 109.09 0 10%
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Sensitivity of Dynamic Credit CPPI to Interest Rates and Credit Spreads

Loss Scenario 2 Loss Scenario 2
(Leverage =4) (Leverage =4)

Rising Short Rate Spread tightening

Losses  Total  Losses  Total  
Short Bond from portfolio from Short Bond portfolio

Time rate floor defaults value defaults rate floor Spreads value

0 0.02 81.87 100 0.02 81.87 0.05 100

1 0.03 76.34 0 105.70 0 0.02 83.53 0.04 104.96

2 0.04 72.61 0 114.31 0 0.02 85.21 0.03 109.68

3 0.05 70.47 0 124.83 0 0.02 86.94 0.02 113.87

4 0.06 69.77 0.2 111.41 0 0.02 88.69 0.02 96.37

5 0.06 74.08 0.3 88.57 0 0.02 90.48 0.02 89.53

6 0.06 78.66 0% 96.96 30% 0.02 92.31 0.02

7 0.06 83.53 0% 106.65 35% 0.02 94.18 0.02

8 0.06 88.69 0% 117.95 0% 0.02 96.08 0.02

9 0.06 94.18 0 131.24 0 0.02 98.02 0.02

10 0.06 100.00 0 146.06 0 0.02 100.00 0.02
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falling significantly below the bond floor in year 5. In this example, the
spread income from the risky investment reduced from 5 percent per
annum initially to 2 percent in year 3 and stays at 2 percent until maturity.

Overall, these illustrative examples reveal the sensitivity of CPPI
transactions to various risk factors, which are summarized herewith.

Risks in CPPI Transactions

♦ Structural factors such as investment guidelines and rebalanc-
ing rules (e.g., maximum RE restrictions).

♦ Leverage introduced via a multiplier. In practice, upper or
lower limits on leverage, or dynamic multipliers that react to
market conditions are feasible.

♦ Credit risk in form of the likelihood and timing of defaults
and/or the erosion in credit quality.

♦ Market risk in form of MtM changes on the risky portfolio and
market value triggers that may drive the asset allocation and
limit the ability to “ride out” temporary swings in prices. For
simple credit indices, MtM is mostly a result of changes in
credit spreads, and the term structure of credit spreads more
generally.

♦ Interest rate risk in form of sensitivity of the risk-free invest-
ment return and the change in bond floor.

Expected Performance
The nature of dynamically shifting the portfolio between the risky and
risk-free investment depending on the performance of the credit risky
portfolio, aims toward achieving a stable MtM profile, whereas guarantee-
ing principal investment and taking advantage of potential upside. When
the credit market performs well, the pure credit portfolio can be expected
to outperform the CPPI strategy, as the latter is only partially exposed to
high yield. However, the impact of a sudden downturn in credit markets
on the CPPI trade is somewhat reduced. When the credit portfolio per-
forms badly (high losses and wide spreads), the CPPI strategy shifts expo-
sure toward risk-free assets and, hence, significantly reduces downside
risk for CPPI.

More generally, CPPI strategies are known to perform poorly when
markets are very volatile. Under high volatility, gains and losses may
quickly follow each other, resulting in exactly the “wrong” rebalancing
actions guided by the CPPI trading rules. For further details, see Whetten
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and Jin (2005). As previously mentioned, CPPI has been an integral part
of hedge fund activities for equity and fixed-income markets. Although
credit CPPI introduces some new idiosyncracies (e.g., sudden severe MtM
losses due to defaults), the CPPI framework can be applied to portfolios
of complex credit exposures (e.g., portfolios of ST CDOs) or alternative
asset classes (hybrids). Particularly, if credit CPPI could be referencing
(synthetic) CDO equity tranches, and efficient framework for transfer-
ring CDO equity risk and, hence, another efficient hedging tool could be
developed.

Modeling CPPI Transactions
Assessing the risk in credit CPPI transactions requires a comprehensive
modeling of the risk factors outlined earlier. Such models are required by
traders and risk managers for assessing the gap risk and for forming rel-
ative value views. RAs are getting involved in providing an assessment
of a minimum coupon (or minimum IRR) that can be guaranteed with a
desired (rating specific) certainty, in addition to a typical gap risk analy-
sis. In order to compute such statistics, one needs to develop a probabilis-
tic description of all underlying risk factors and address their interaction
or joint behaviour adequately.

Although we are not describing a detailed approach to CPPIs due to
the bespoke nature of transactions (and rules) and the high level of com-
plexity it becomes apparent that many of the modeling approaches and
challenges discussed throughout this chapter apply to credit CPPI.

Of course, the complexity of assessing MtM changes on a portfolio
of (credit) exposures depends highly on the nature of the underlying port-
folio. For a relatively homogeneous portfolio of CDS, a straightforward
model for portfolio losses and spreads may be sufficient to gain some
interesting insights, whereas high spread dispersion or low quality credits
may require a more refined approach to modeling the interaction between
spread and default risk. Similarly, when CDO tranches are also consid-
ered in reference portfolio, the quantitative complexity increases signifi-
cantly as the sensitivity to base or compound correlation changes also
needs to be assessed (see Chapter 7 for further details) in MtM computa-
tions. At the same time, there is scope for credit CPPI to move toward
“hybrid CPPI,” where equity, real estate, FX, or commodity risk may also
be repackaged. For such problems, the approaches outlined in “Beyond
Credit Risk: Hybrid Structured Products” section may provide some
guidelines, however, the integration of all risks in a common modeling
platform presents a big challenge.
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In summary, although, in some instances, a (independent) modeling
of portfolio defaults, average portfolio spreads (and interest rates) may
provide some viable results—more complex structures need a fully inte-
grated, dynamic, multiasset class framework in place. Ideally, such an envi-
ronment does not only combine different asset classes, but also addresses
the risks under the risk-neutral (pricing) measure and real (historical)
measure consistently.

Constant Proportion Debt 
Obligations (CPDO)

Constant Proportion Debt Obligations (CPDOs) are the latest innovation
in the rated structured credit market and we only intend to give a short
summary of the risks and mechanics following Gilkes et al. (2006) from
which parts of the presentation is taken.

CPDOs are similar to Credit CPPI in that it involves a leveraged
exposure to a credit-risky portfolio to provide increased returns to
investors. The mechanics of CPDOs are very different, however, and in
some ways the exact reverse of credit CPPI. For example, CPDOs typically
do not provide any principal protection, and a fall in the value of the strat-
egy tends to lead to increases in leverage, whereas the opposite is true for
credit CPPI structures.

Figure 11.20 below shows the main features of a typical CPDO.
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At trade inception, CPDO issuance proceeds are held in a deposit
account that earns interest at the risk free rate. The SPV (Special Purpose
Vehicle) enters into a total return swap with the arranging bank, which
simultaneously sells protection on a certain (leveraged) notional amount
of a risky reference portfolio (typically a combination of the main credit
indices, CDX and iTraxx, but as for CPPI, bespoke portfolios, hybrid
assets or more complex credit products my be also referenced). Over
time, credit default swap (CDS) premium payments and mark-to-market
(MtM) gains are paid into the deposit account, while MtM losses and
default payments are taken out of the cash deposit. Principal and coupon
payments are made to CPDO note holders subject to sufficient funds
being available in the deposit account. In contrast to Credit CPPI, at
inception the arranging bank does not enter a ZCB that guarantees prin-
cipal investment, and hence, investors relay—amongst other things—on
CPDO credit ratings to assess the likelihood of full principal and interest
payments.

CPDOs provide returns to note holders through leverage, namely
the selling of protection on a much larger notional amount than the note
proceeds. The leverage factor is essentially a multiple of the difference—
or shortfall—between the net asset value (NAV) of the CPDO strategy (the
sum of the value of the cash deposit and the mark-to-market (MtM) value
of the risky portfolio) and the present value of all future payments (Target
Value) to be made by the SPV, including fees.* The portfolio is “rebal-
anced” when the calculated or required leverage differs from the current
leverage by a certain preset amount.

A so called “Cash-in” event takes place when the shortfall decreases
to zero, in which case the strategy is unwound completely, and the pro-
ceeds are held in the deposit account in order to make all future payments
promised by the SPV. On the contrary, if the NAV falls below a certain
threshold (typically 10% of the notional of the reference portfolio) the
strategy is unwound, and the proceeds are distributed to CPDO note
holders.

The first CPDOs referenced “on-the-run” IG (investment grade)
credit indices, which means that on or close to each roll date (March 20
and September 20) the arranging bank must buy protection on the “off-
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*Leverage is therefore purely formulaic (as opposed to discretionary), but will clearly vary
over time depending on the performance of the strategy. Leverage is typically capped at
around 15 to prevent unacceptably high leverage in periods of poor strategy performance.



the-run” indices (up to the full leveraged notional amount) and sell pro-
tection on the new “on-the-run” indices. Hence, index dynamics around
roll periods and roll mechanics (e.g., replacement of NIG (non-IG) assets
through IG ones) are very important.

Similarly to CPPI, the NAV of the CPDO strategy depends on the MtM
of the risky portfolio, which evolves based on changes in index spreads and
the term structure of the index credit curves. For example, spread widen-
ing/tightening between roll dates result in MtM losses/gains. Similarly, an
adjustment of leverage (rebalancing) leads to MtM gains/losses that will
affect level of the cash deposit. On roll dates, the CPDO buys back protec-
tion on the off-the-run index and contracts at the new on-the-run index
spread. The difference in off-the-run index spread compared to the contrac-
tual spread entered at the previous roll date determines the MtM gain or
loss experienced by the strategy. Contracting at a new (on-the-run) index
spread also has an impact on CPDO performance due to the new CDS pre-
mium the SPV earns over the next roll period. This impact may be positive
if is the new spread is high enough to offset unwind costs.

Key Risks in CPDOs

♦ Leverage mechanics and structural features
♦ Credit/default risk: see section on Credit CPPI
♦ Market Risk/Spread risk.: The MtM of the risky portfolio (and

hence the NAV) is very sensitive to changes in index spreads.
Although credit spreads depend on many factors such as
expected default losses as well as default risk and liquidity
premiums, it is also crucial how much benefit the strategy
receives from “rolling down” the credit curve as the maturity of
the contract shortens. Hence changes in constant maturity spreads
and the slope of the term structure of credit curves are very critical.
Again, as for Credit CPPI, more complex credit products or non-
credit risky assets (e.g., equities or commodities) in the underlying
risky portfolio leads to more complex market-risk assessments.

♦ Interest rate risk: Compared to Credit CPPI, interest rate sensi-
tivity is lower (although not fully eliminated). This stems from
the fact that there is no ZCB investment whose value depends
significantly on interest rate moves. For CPDOs, interest rates
influence on the one hand the interest earned on the cash
deposit, and on the other hand, MtM calculations.
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An Illustrative CPDO Case Study

The following example illustrates the evolution of the strategy NAV, Target
Value, and Leverage for different credit spread and default scenarios
throughout the live of the transaction. We consider a notional investment
of $100 whereby the (leveraged) proceeds are invested a simple credit port-
folio comprising of 250 assets with a initial weighted average spread of
30 bp, and a initial average maturity of 5.25 years. The maturity of the
CPDO notes is 10 years, no fees, a bid-offer spread of 1 bp, and a initial as
well as maximum leverage of 15 are assumed. The initial investment in the
risky portfolio is therefore $1500. The CPDO note holder (investor) wants
to be paid a coupon of 150 bp over the risk free rate which is assumed to
be flat 2% throughout the live of the transaction. We consider three credit
spread (term structure) and default scenarios outlined in Table 11.24.

Scenario A illustrates the CPDO performance in an environment
where spreads will widen by 3 bp pa over the next five years and a single
default occurs pa in the reference portfolio. Figure 11.21 reveals that the
transaction cashes in after eight years guaranteeing the investor full repay-
ment of principal and interest. The figure also reveals that the strategy
runs on full leverage from years 1 to 7, as a result an increase in shortfall
stemming from defaults and MtM losses caused by spread widening.

Scenario B considers the opposite credit environment, that is, five more
years of tight spread environment (at constant 30 bp) followed by five years
of annual spread widening combined with one default pa. Figure 11.22
reveals that the investor would not receive full principal at the end of the
10 year holding period. Again, the leverage mechanism is clearly visible.
During the first five years without defaults and MtM losses (as spreads
are not widening), the NAV increases. This clearly reduces the shortfall
leading to a reduction in leverage. When spreads start to widen (casing
MtM losses) and defaults occur, higher leverage is imposed. As defaults
continue to occur and spreads continue to widen, the effect of higher
leverage leads to further reductions in the NAV.

Scenario C illustrates the sensitivity of the CPDO performance to the
slope of the credit spread term-structure (time-decay). We are reducing
the assumed difference between the 5.25 year maturity spread and the
4.75 year maturity spread of 4% (relative) down to 1% when spreads (con-
stant maturity) and defaults prevail as in scenario A. While the transac-
tion cashed in under scenario A, the flatter term-structure of credit
spreads assumed in scenario C leads to a very small loss in principal to
the CPDO investor at maturity.
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Spread and Default Scenarios Considered in Illustrative CPDO Analysis. Time-
Decay=x% Corresponds to the “Roll-Down” Component in Credit Spreads as We Move
Forward in Time Within a Roll-Period (i.e., the Difference Between a 5.25 Year Spread
and a 4.75 Year Spread).

Scenario A: Time-decay =4% Scenario B: Time-decay =4% Scenario C: Time-decay =1%

Year Spread Defaults Spread Defaults Spread Defaults

0 30 30 30

0.5 33 1.00 30 0.00 33 1.00

1 36 1.00 30 0.00 36 1.00

1.5 39 1.00 30 0.00 39 1.00

2 42 1.00 30 0.00 42 1.00

2.5 45 1.00 30 0.00 45 1.00

3 48 1.00 30 0.00 48 1.00

3.5 51 1.00 30 0.00 51 1.00

4 54 1.00 30 0.00 54 1.00

4.5 57 1.00 30 0.00 57 1.00

5 60 1.00 33 1.00 60 1.00

5.5 57 0.00 36 1.00 57 0.00

6 54 0.00 39 1.00 54 0.00

6.5 51 0.00 42 1.00 51 0.00

7 48 0.00 45 1.00 48 0.00

7.5 45 0.00 48 1.00 45 0.00

8 42 0.00 51 1.00 42 0.00

8.5 39 0.00 54 1.00 39 0.00

9 36 0.00 57 1.00 36 0.00

9.5 33 0.00 60 1.00 33 0.00

10 30 0.00 63 1.00 30 0.00
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In order to model the time evolution of spreads, a mean-reverting
stochastic spread process is typically assumed for a constant maturity
credit index, which requires the estimation of spread volatility, speed of
mean reversion and long-term mean level of spreads. Given the lack of a
long time series of index spread data, reliable estimation of these param-
eters is difficult. Bond indices provide a richer data set, but create other
challenges, such as establishing a reliable methodology for implying CDS
spreads from bond spreads.

Modeling the evolution of the CDS index term-structure presents
further challenges, as recent trends have been observed in a very low
spread environment, and it is difficult to estimate how the slope of the
credit curve will change as spreads revert to levels significantly above
those currently observed. In addition, the impact of CPDO issuance and
other structured credit market innovations on the “local” slope of the
term structure around the roll date may be significant.

Modeling CPDO Transactions

Overall, the modeling requirement are similar as outlined for Credit CPPI
transactions above. In the example transaction considered above, a
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default, credit spread, and interest rate modeling paradigm needs to be
implemented. In order to model the time evolution of spreads, a mean-
reverting stochastic spread process is typically assumed for a constant
maturity credit index as outlined, for example, in the section on LSS trans-
actions. Given the lack of a long time series of CDS index spread data,
reliable estimation of these processes is difficult. Modeling the evolution
of the CDS index term-structure presents further challenges, as recent
trends have been observed in a very low spread environment, and it is dif-
ficult to estimate how the slope of the credit curve will change as spreads
revert to levels significantly above those currently observed. Bond prices
may provide a richer data set, but create other challenges, such as estab-
lishing a reliable methodology for implying CDS spreads from bond
spreads (see, e.g., O’Kane and Sen, 2004 for further details).

Overall, a detailed, fully integrated modeling of various credit and
market risks in a consistent framework, combined with a robust statistical
analysis and parameter estimation are necessary, in order to gain a good
understanding of risk/return opportunities offered by CPDO transac-
tions. In the future, structural innovations and a move towards bespoke
portfolios or more complex risk portfolios can be expected.

SUMMARY AND MODELING CHALLENGES

Since its inception, the synthetic CDO market has experienced an enor-
mous growth, fuelled by ease of execution/structuring and the ability
to implement specific credit market views via tailor made solutions.
The strong growth in bespoke ST CDOs was supported by the develop-
ment of liquid credit indices and index-linked tranches. Accompanied
with a growth in volume of typical ST synthetic CDOs was an enor-
mous drive in innovation in underlying asset classes and new products
(structures).

Typical synthetic CDOs reference a pool of CDS written on corpora-
tions and financial institutions, and sometimes are combined with cash-
funded assets such as corporate bonds or loans, or ABS. The recent tight
spread environment, and the events of May 2005 that highlighted concerns
of correlation risk and overlap (see South, 2005) given that a limited num-
ber of liquidly trading CDSs, resulted in a search for diversification oppor-
tunities and higher yields by introducing new risks and asset classes to ST
CDO investors. Since 2004, EDSs have been considered as investment
alternatives from time to time, leading to a need to integrate credit and
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equity risk in a consistent yet practical manner. More recently, ST CDOs
have been suggested as vehicles to transfer commodity risk requiring yet
another need to adequately model and integrate such products. In general,
we expect these developments towards hybrid transactions to continue
and, linked with further growth in noncorporate synthestic indices (e.g.,
ABSX), expect further growth in synthetic CDO markets.

Events like May 2005 have lead to changes in market participants
trading behaviour, and fuelled the desire and need to place whole capital
structure CDOs, as well as the need to develop structures aiming to reduce
MtM volatility, too. LSS transactions allowed to sell super senior risk to
real-money investors in leveraged form where in addition to credit risk,
MtM risk is explicitly taken into consideration. While 2005 was the year of
LSS, 2006 and 2007 are expected to be interesting due to further develop-
ments of credit CPPI and CPDO transactions. Such defensive trades are
based on dynamic asset allocation to protect principal investment yet pro-
viding potential for substantial upside. We expect these developments to
continue to evolve toward more complex credit and hybrid portfolios and
toward their application as new, innovative structures for efficient risk
transfer.

Hand in hand with these developments is the need for quantitative
models that are capable of capturing univariate risks and dependence
aspects inherent in such structures. Although the standard copula frame-
work has the advantage of separating the marginal risk factors from port-
folio aspects, further research on viable alternatives is required. For
example, the recently renewed interest in structural—Merton type—
models for consistent pricing of single-name credit and equity products
(see Chapter 3) could lead to extensions where portfolios of equities, debt
instruments and, hence, credit spread sensitive and default sensitive prod-
ucts are consistently integrated. Alternatively, practical development of
stochastic intensity/hazard models appears to provide room for further
research and application toward multiple asset classes. Both of these
developments require further research, bearing in mind that consistency
to current methodologies is frequently required.

In summary, we believe that developments in synthetic CDOs pro-
vide exciting opportunities for the convergence of various financial risks
and markets, as well as further opportunities for innovative risk transfer.
This is accompanied by a number of quantitative challenges and should
provide room for further growth in coming years.
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A P P E N D I X  A

Gini Coefficient (Gini)

The Gini/Lorenz curve measures the quality of the rank ordering of a
model. A very good model should identify all defaults or events with the
higher PDs/EEPs.

In Figure 11.24, the X-axis corresponds to the PDs/EEPs or rat-
ings/categories ranked from highest percentages to lowest. The Y-axis
reports the cumulative observed default/event rate corresponding to the
observations ranked from highest score to lowest on the x-axis.

The Gini coefficient represents two times the grayshaded surface
under the Gini/Lorenz curve. Gini coefficients are sample dependent. In
general, in the credit universe, Gini coefficients are positioned in the 50 to
90 percent interval. Results are usually measured out-of-sample. When
the size of the dataset is sufficiently large, which is the case in this paper,
out-of-sample and in-sample performance results converge. Gini coeffi-
cients are sample dependent.
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A P P E N D I X  B

Nonparametric Estimation

Before estimating a parametric model for a general diffusion process of
type dSt = µ (St)dt + σ (St)dWt, it is useful to apply nonparametric tech-
niques to gain some insight into the possible specification of the drift µ
and diffusion term σ. Here, S could denote the price of a specific com-
modity, the level of interest rates, or the level of credit spreads. Stanton
(1997) proposes first- and higher-order approximations to the drift and
diffusion term, and the first-order approximations are outlined next.

DENSITY ESTIMATION

The first step is to estimate the density of the data generating process,
through a Gaussian kernel estimator. That is,

where φ denotes the standard normal density, n is the number of obser-
vations, and the window or band width is given by h = cσ∼n−1/5, where c is
a constant and σ∼ the empirical standard deviation from the data. The level
of smoothness of the density depends significantly on the choice of c.
Prigent et al. (2001) and Stanton (1997) propose a value close to 3.

DRIFT AND VOLATILITY/DIFFUSION 
ESTIMATION

The drift term at a level of x can be estimated to first order, using

and the corresponding first-order approximation for the diffusion is
given by
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For higher-order estimators, we refer the reader to Stanton (1997).

A P P E N D I X  C

Parametric Estimation by Chan et al.
(1992)

Chan et al. (1992) propose to estimate the discrete time version of equa-
tion (2) that is given by:

St+1−St = a + bSt + σ �St �γεt+1,

where εt + 1 are assumed to be i.i.d. normal variables. The Markovian prop-
erty of the process and the assumption of normality enable the derivation
of the log-likelihood function that can be maximized thereafter:

As an assymptotically unbiased estimator with minimum variance, MLE
is often preferred to alternative approaches such as method of moments,
see Broze, Scaillet, and Zakoian (1995) for a discussion.
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Residential Mortgage-
Backed Securities

Varqa Khadem and Francis Parisi

INTRODUCTION

In this chapter, we start with a detailed presentation of the approach, fol-
lowed by a rating agency. This approach looks simple, but is important to
understand the more recent developments in the residential mortgage-
backed securities (RMBS) sector. In a second stage, we focus on the more
advanced modeling techniques that have emerged among the most active
market participants.

From an historical perspective, the structured finance market began
with the issuance of the first mortgage-backed security in the U.S. by the
Government National Mortgage Association (Ginnie Mae) in 1968. Soon
after, the Federal Home Loan Mortgage Corporation (Freddie Mac) intro-
duced its mortgage participation certificates in 1970, and, by 1977, the
Federal National Mortgage Association (Fannie Mae) was in the game.
Loans eligible for sale to one of these agencies must satisfy specific crite-
ria; such loans are conforming mortgages. Loans not eligible for sale to the
agencies, or nonconforming mortgages, needed another way to the capital
markets. Around that time, Standard & Poor’s rated the first U.S. private
issue mortgage-backed bond. This was the beginning of one of the fastest
growing and most innovative sectors of the global capital markets. Today,
Standard & Poor’s rates transactions are backed by a wide variety of
assets, including residential and commercial mortgages, credit cards, auto
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loans, and small business loans, to name a few. While historically the
RMBS sector has dominated with respect to overall issuance volume, the
collateral debt obligation (CDO) market currently is the fastest growing
sector.

Standard & Poor’s global criteria for rating structured finance trans-
actions have their basis in the U.S. criteria developed for RMBS in the
mid-1970s. The U.S. RMBS criteria also served as the starting point for
developing criteria for other asset classes. All structured finance securities
are either cash flow or synthetic securitizations. Simply put, in a cash flow
structured finance transaction, an issuer conveys ownership of the assets
to a special-purpose entity (SPE), which then issues the rated debt. Principal
and interest related to those assets are conveyed along with the risks. In
synthetic securities, only the risk is transferred. Standard & Poor’s role
is to evaluate the risk, assess the likelihood of repayment according to the
terms of the transaction, and assign a rating to reflect the level of risk.
Within this structural framework it is apparent that structured finance
securities are generally the same so as the market evolved into other assets
and then other regions of the world, this common ground was the start-
ing point. The legal aspect of these transactions is also a key component
and the criteria evolved to accommodate the local laws.

The U.S. RMBS sector has evolved quite a bit from those early days
from the typical nonconforming prime mortgage pool to over a dozen dif-
ferent types of underlying assets. One of the fastest growing RMBS sec-
tors is the sub-prime market. Sub-prime RMBS represent about a third to
a half of the volume of Standard & Poor’s-rated RMBS, and prime is about
20 percent. The remaining securities include home-equity, Alt-A, hi-LTV,
scratch-n-dent, and net interest margin securities (NIMs). Interestingly,
the European RMBS market has grown rapidly over the recent years and
represents a non-negligeable proportion of the U.S. structured finance
market.

Lastly, the banking industry has considerably developed the model-
ing techniques applicable to the RMBS sector and more generally to the
asset-backed securities (ABS) sector. Talking about mortgage risk without
describing the modeling of the broad prepayment and credit risks of
underlying assets backing structured finance bonds is not possible any
more. Cash flow statistical modeling is another area of focus for market
participants.

The remainder of this chapter is as follows. In Part 1, we describe
Standard & Poor’s analytical methods for rating U.S. RMBS. Part 2 presents
the analytical approach for European RMBS. Finally, Part 3 provides an



overview of the quantitative methods used in structured finance with a par-
ticular focus on European transactions.

PART 1: ANALYTICAL TECHNIQUES 
TO RATE RMBS TRANCHES 
IN THE UNITED STATES

The rating process for RMBS begins when a banker or issuer contacts
Standard & Poor’s to discuss a proposal. This beginning phase usually
takes place through a conference call or brief meeting, where an overview
of the transaction is presented. The purpose of this discussion is to iden-
tify any unusual or complicated structural, credit, or legal issues that may
need to be ironed out before a formal rating process can begin. If no such
complication exists, the rating process proceeds according to an agreed-
upon time schedule.

When the issuer decides to proceed, a complete analysis of the trans-
action begins. Rating analysts meet on-site with management of the orig-
inator or seller of the receivables. This exercise enables analysts to expand
their understanding of the issuer’s strategic and operational objectives. It
also provides a more defined level of familiarity with underwriting poli-
cies, contractual breach procedures, and operational controls. In addition,
a detailed discussion of the characteristics of the originator’s collateral,
the repayment pattern of the obligors, and the performance history of the
assets, as well as an examination of prior transactions, is typically under-
taken. These discussions are often complemented by walk-through tours
of the originator and servicer. It is important to note that the review does
not include an audit. Instead, the rating is based on the representations of
the various parties to the transaction, including the issuer and its counsel,
the investment banker and its counsel, and the issuer’s accountants.

Overview: Collateral, Legal, and 
Structural Analysis

As with any structured finance rating, the analysis focuses primarily on the
credit, structural, and legal characteristics of the transaction. The legal cri-
teria for U.S. structured finance ratings were developed in the mid-1970s
for RMBS and served as a launching point for criteria development in other
asset classes and in other countries. The fundamental tenet of these criteria
is to isolate the assets from the credit risk of the seller or originator.
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The collateral analysis involves an in-depth review of historical asset
performance. Analysts collect and examine years of data on the perfor-
mance variables that affect transaction credit risk. In the United States,
credit risk in RMBS pools is sized using Standard & Poor’s LEVELS™,
a loan-level model that evaluates the foreclosure frequency (FF) (risk
of default) and loss severity (LS) (loss given default) for each loan in
the pool. LEVELS is used internally by Standard & Poor’s analysts and
licensed externally to mortgage originators, issuers, and investors. In the
United Kingdom, analysts use a similar model that is not yet commer-
cially available.

The structural review involves an examination of the disclosure and
contractually binding documents for the transaction. The criteria cover
many aspects of the structure, from the method of conveyance of mort-
gage loans to the trust, to the method of security payment and termina-
tion. The analysis also considers the payment allocation and what is being
promised to security holders.

After a rating is assigned, it is monitored and maintained by Standard
& Poor’s surveillance analysts. The purpose of surveillance is to ensure
that the rating continues to reflect the performance and structure of the
transaction, as it was analyzed at transaction closing. Performance infor-
mation is disclosed in a report prepared monthly by the servicer of the
transaction. Before a transaction’s closing date, analysts review the data
itemized in the servicing report to ensure that all necessary information is
included.

Credit Analysis

Quantifying the amount of loss that a mortgage pool will experience in all
economic scenarios is the key to modeling credit risk for ratings. To
achieve this, analysts use varying stress assumptions to gauge mortgage
pool performance in all types of economic environments. The basis for the
stress scenario applied to each rating category can be found in the histor-
ical loss experience of the mortgage market. Based on studies of historical
data, Standard & Poor’s developed the criteria embedded in LEVELS.

The great depression of the 1930s provided what many consider the
most catastrophic environment for mortgages in the United States in this
century. While no one expects a repeat of a 1930s depression, it is an excel-
lent case study of how unemployment and falling property values can
impact mortgage losses. Loss data on individual loans vary from one to
another, depending on the characteristics of the mortgages. A combination

546 CHAPTER 12



Residential Mortgage-Backed Securities 547

of historical evidence along with strong analytical judgment is used in
determining loss criteria. The individual risk characteristics usually have
an affect on one of the two factors that determine the overall risk of loss on
a loan, although some characteristics affect both factors. These factors are:

♦ FF, which is the probability that a loan will default; and
♦ LS, which is the amount of loss that will be realized on a

defaulted loan.

Foreclosure Frequency
Standard & Poor’s LEVELS™ model determines the risk associated with a
mortgage loan or a portfolio of mortgage loans. LEVELS uses standard
mortgage and credit file data to compute credit enhancement require-
ments for residential mortgage loans based on the rating criteria. These
individual loan analyses are then aggregated to provide credit enhance-
ment levels needed to assign the appropriate ratings to a portfolio of
mortgage loans. The FF reflects the borrower’s ability and willingness to
repay the mortgage according to the terms of the loan.

In 1996, the use of credit scores became commonplace in the residen-
tial mortgage industry. Used for many years in unsecured consumer lend-
ing, the credit score assesses the default risk based on a borrower’s credit
history. A credit score is a numerical summary of the relative likelihood
that an individual will pay back a loan. As an index, the score reflects the
relative risk of serious delinquency, foreclosure, or bankruptcy associated
with a borrower. Although widely used in the U.S. consumer credit mar-
ket, credit scores are still emerging in Europe. Based on research done,
Standard & Poor’s found that the use of consumer credit scores enhances
the ratings process. Therefore, when loan level information regarding the
mortgage loans is sent in for analysis, the consumer credit score should be
included. Credit scores, in addition to other loan characteristics, are used
to derive loan-level FF. The base FF assumptions for each rating category
are affected by loan characteristics such as:

♦ Borrower credit quality (credit score)
♦ Loan-to-value (LTV) ratio
♦ Property type
♦ Loan purpose
♦ Occupancy status
♦ Mortgage seasoning
♦ Pool size



♦ Loan size
♦ Loan maturity
♦ Loan documentation
♦ Adjustable-rate mortgages (ARMs)
♦ Balloon mortgages
♦ Lien status.

The default and loss models embedded in LEVELS were estimated based
on these variables. From these models, we can estimate the effect each vari-
able has on the likelihood of borrower default, and the LS on a defaulted
loan. For example, LTVs historically have proven to be key predictors of
the likelihood of foreclosure. The LTV of a loan is defined as the mortgage
loan balance divided by the lower of the home’s purchase price or appraised
value, expressed as a percentage. The higher the LTV ratio, the greater the
risk of mortgage foreclosure, and the greater the expected loss after fore-
closure; thus, these loans require more loss coverage than lower LTV loans.

Similarly, the type of property pledged to secure a mortgage loan
also affects the borrower’s likelihood of default. A loan secured by a
single-family home generally has a lower risk of default than say a three-
to-four family home. In the latter, the mortgagor most likely will rely on
rental income to meet monthly obligations. This same phenomenon is
observed with mortgages on non-owner-occupied homes. Here too, the
mortgagor is relying on rental income in the case of an investment prop-
erty. And, a homeowner is more likely to forfeit a second home or an
investment property than their primary residence.

With the extremely low interest rates observed since 2001, the U.S.
RMBS market witnesses record breaking origination volume. Borrowers
refinancing their homes fueled a large portion of that volume. The purpose
of any mortgage loan impacts the risk of default. A “purchase mortgage”
is the term used to describe the typical mortgage transaction where a
buyer is funding a portion of the acquisition price for a new home. The col-
lateral value pledged to the lender is strongly supported by both the pur-
chase price and an appraisal. In a rate/term refinancing, the mortgagor
replaces an existing loan with a new, shorter maturity or lower interest rate
loan, thereby decreasing the term or lowering the monthly payments.
Cash-out refinance loans have a higher risk profile because of the difficulty
in measuring actual market value without a sales price. LEVELS adjusts
the expected loss on a cash-out loan to reflect this added risk.

Generally, default risk is diminished as a loan seasons. Thus, for sea-
soned pools, Standard & Poor’s will make adjustments to the default and
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loss assumptions, reducing the credit enhancement needed for a similar
but unseasoned pool of loans. The rationale is that as loans season and the
borrower makes payments, the outstanding loan balance is amortizing;
thus reducing the principal at risk. Additionally, in the past decade, home
prices in the United States have grown at a steady rate, in some areas at
double-digit rates, further reducing the exposure relative to the home’s
value. While we cannot guaranty house price appreciation, loan amorti-
zation is a sure bet (except, of course, in some ARMs where the balance
negatively amortizes). Also dependent on the idea of building equity
reduces risk is the relationship between mortgage term and default risk.
By their very nature, mortgages with 15-year terms are less risky than
comparable 30-year mortgages. The “shorter term” means that the 15-
year mortgage amortizes faster, allowing for a quicker build-up of owner-
equity. Industry data show that 15-year mortgages default less frequently
than 30-year mortgages, as this equity build-up increases the borrower’s
incentive to keep the loan current.

As in any statistical sample, the number of loans in a pool is impor-
tant in determining risk. The reason for this is that LEVELS was devel-
oped based on data on millions of loans, and the criteria represent law of
large numbers properties. Any given pool under review for a rating is a
subset of this larger universe. Based on research, Standard & Poor’s found
that pools with at least 250 loans are of sufficient size to ensure diversity
and the accuracy of loss assumptions. Pools with fewer than 250 loans are
ratable and an adjustment is made in pool credit quality analysis. The
analysis focused on the observed variability in the default rate for thou-
sands of samples of loans drawn randomly from a larger population. The
distribution of the sampled default rates was compared and were not
found to have a statistically significant difference until the sample sizes
fell below 250. Estimating the coefficient of variation for each sample size
and fitting a robust (M-estimate) regression, Standard & Poor’s derived a
relationship of the form

where n is the number of loans in the pool.
Another factor relating to concentration of risk is loan size. Higher

balance loans are considered higher risk. In an economic downturn,
“jumbo loans” are more likely to suffer greater market value decline
(MVD) as a result of a limited market for the underlying properties. This

f n
n

( )
ˆ

log( )
,∝ β
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would increase the LS on the mortgage. LEVELS default equation reflects
this risk and adjusts accordingly. An important point to note in develop-
ing criteria for loan size is that in the United States, mortgage purchase
entities Fannie Mae and Freddie Mac publish annually their guidelines
for conforming loan balances to reflect the change in home prices across
the country. What would have been a jumbo loan five years ago is most
likely conforming today.

Besides establishing loan balance criteria, the agencies have stan-
dards for loan documentation requirements. In its research, Standard &
Poor’s found that reduced loan documentation may introduce additional
risk, and an assessment must be made whether total credit risk has
increased. Many accelerated underwriting programs aim to offset poten-
tially higher credit risk by increasing the required size of the mortgagor’s
down payment. Intuitively, there is a point at which a certain level of risk
is offset by an increased down payment. Therefore, a loan having a low
LTV with limited documentation may have the same loss coverage
requirement as a higher LTV loan with full documentation.

In analyzing ARM credit risk, the rating analysis focuses on the fol-
lowing additional factors to determine the level of credit enhancement
needed for the various ratings: the frequency of interest rate changes; the
amount of the potential rate increase per period; the interest rate life-cap,
or the amount of rate increase over the life of the mortgage; the amount of
negative amortization, if any; and the volatility of the underlying interest
rate index. Similar in risk is the balloon mortgage. A balloon mortgage is
a loan with principal payments that do not fully amortize the loan balance
by the stated maturity. One common form of balloon mortgage offered in
the U.S. residential market is a fixed-rate loan with level principal and
interest payments calculated on the basis of a 30-year amortization sched-
ule. After a specified term (usually 5, 7, 10, or 15 years), the remaining
unpaid principal balance is due in one large payment. In light of this
added credit risk, Standard & Poor’s looks for higher levels of loss
protection for rated transactions involving balloons.

Loss Severity
Standard & Poor’s has LS assumptions for residential mortgages based on
studies of historical data. The LS is made up of several components. Upon
a mortgage foreclosure, the lender often takes title to the property and re-
sells the property at auction to recover the loan amount. Quite often, prop-
erties sold after foreclosure sell for less than the loan balance outstanding.
For rating purposes, Standard & Poor’s assumes larger losses on sale,
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known as MVD, for higher ratings. So at “BBB,” the MVD may be on the
order of 22 percent, whereas at “AAA,” the MVD is about 34 percent,
resulting in a greater loss on sale for the higher rating. Besides the loss in
market value, there is unpaid interest on the loan that has accrued since the
loan became delinquent, and finally there are costs associated with the
foreclosure. These costs include legal fees and costs to maintain the prop-
erty until sold at auction. The sum of the lost principal and interest, and
related costs as a percent of the original loan balance is the LS.

Loss Severity Calculation Example

Property value $100,000

Loan amount (80% LTV) $80,000

MVD 35% −35,000

Net recovery 65,000

Principal loss (loan amount- net recovery) 15,000

Lost interest and costs 20,000

Total loss 35,000

LS (total loss/loan amount) 44%

The base LS assumptions for each rating category are affected by factors
such as the following:

♦ LTV ratios
♦ Mortgage insurance
♦ Lien status
♦ Loan balance
♦ Loan maturity
♦ Loan type
♦ Loan purpose
♦ Property type and occupancy
♦ Geographic dispersion
♦ Mortgage seasoning.

Many of these loan characteristics are also factors affecting the FF and are
discussed earlier. Generally, a loan with a higher LTV will experience a
higher LS because by definition there is less equity in the property.
However, mortgages with LTVs greater than 80 percent may experience
lower LSs because these loans may have primary mortgage insurance.
Mortgage insurance guarantees a certain percentage of the mortgage loan
balance, so the net effect is to reduce the exposure to the lender in the event
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of a default. In this simplified example, 25 percent of the loan is insured,
reducing the lender’s exposure. Although the loan has a higher LTV, the
insurance results in a lower LS. This is not to encourage the origination of
high-LTV loans because the risk of default is much higher than lower LTV
loans. The net effect is that there is overall greater risk, and the credit
enhancement for these loans is generally higher without offsetting charac-
teristics.

Loss Severity Calculation with 25 percent 
Mortgage Insurance Example

Property value $100,000

Loan amount (90% LTV) $90,000

Uninsured amount 67,500

MVD 35% −35,000

Net recovery 65,000

Principal loss (loan amount- net recovery) 2,500

Lost interest and costs 20,000

Total loss 22,500

LS 25%

Standard & Poor’s LS assumptions are higher for second lien mort-
gage loans than for first lien mortgage loans because of the inherent risk
in a subordinate lien position. The effect of lien status on LS is related to
the size of the second mortgage loan relative to the first mortgage loan.
The potential LS of a second mortgage loan increases as its LTV decreases
relative to that of the first mortgage loan. Other data indicate that mort-
gage loans with larger loan balances take longer to foreclose and it takes
longer to resell the property. The current criteria increase the assumed liq-
uidation time frame for larger balanced loans, resulting in higher carrying
costs and larger losses.

The LS, and the required loss coverage, is adjusted for any pool of
loans that is more vulnerable to changing economic environments based
upon its geographic dispersion. The analysis for this type of risk is based
on whether there is any excessive geographic concentration of the under-
lying properties in any region represented in the pool. In the United
States, Standard & Poor’s developed the Housing Volatility Index that
ranks local housing markets according to their risk of price decline. Loss
assumptions are adjusted accordingly for those loans secured by proper-
ties in high-risk markets.
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Structural Considerations for RMBS

There are different structural forms that RMBS issuers can use. They can be
senior/subordinated structures where the lower rated or unrated tranches
provide the credit support for the more highly rated tranches, and they
can be senior/subordinated/over-collateralized structures where part of
the credit support is in the form of over-collateralization usually derived
from the value of excess interest, or the spread between the underlying
mortgage coupons and the coupon on the rated securities.

The issuer’s decision as to which type of credit enhancement struc-
ture to use takes into consideration many factors but is primarily investor
driven, based upon which structure yields the best economic value. The
credit analysis for these structures is the same, regardless of type. Most
importantly, it is the use of the shifting interest structure that allows credit
support to grow over time, at least until the transaction is through the
majority of Standard & Poor’s assumed default curve. This occurs through
criteria that mandate that the majority of principal cash flow be allocated
to the most senior classes, or by requiring that the over-collateralization
target be pegged to the initial pool balance during the early stages of a
transaction’s life.

Only after determining that the mortgage pool is performing well
will credit support be allowed to step down. The delinquency and loss
levels experienced by the mortgage pool is critical to the determination
of how much credit support will be needed over the life of the deal.
Adequate credit support or loss coverage will enable all rated classes to
receive their promised monthly interest payment and to ultimately
receive back their entire principal amount. Accordingly, if the pool is per-
forming well (relative to the initial expectation of delinquency, loss, and
the level of credit support), the release or stepping down of credit support
is permitted.

Senior/Subordinate Structures
A senior/subordinate structure for RMBS is characterized by the sub-
ordination of junior certificates that serve as credit support for the more
senior certificates. Generally, in U.S. RMBS, all interest shortfalls and
principal losses are allocated to the most junior bond first, resulting in a
write-down of its principal balance. In contrast, in the United Kingdom,
market bonds are not written down, as losses are experienced on the
assets. Instead, principal losses experienced on the mortgage pool are
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recorded in a principal deficiency ledger (PDL), which tracks the extent
to which the liabilities’ principal balance exceeds that of the assets’ prin-
cipal balance. At each rating level, Standard & Poor’s requires that prin-
cipal deficiencies do not exceed the existing subordination. For example,
in a transaction with £100 million “AAA” senior notes, £9 million “A”
subordinate notes, and £1 million unrated notes, the principal deficiency
at any point in time should not exceed £10 million in the “AAA” cash
flow runs and £1 million in the “A” cash flow runs. If there is insufficient
income to fund the principal deficiency, however, Standard & Poor’s con-
siders the risk to a transaction to be low if the principal deficiency is
remedied within a short period of time using excess spread. In contrast
to a structure that uses excess interest, in this structure, the subordinate
bonds solely provide credit support. The result is larger subordinate
bonds than would have been needed, if excess interest was also used to
cover losses.

Allocation of Cash Flow Most RMBS are structured as pass-
through transactions. All principal and interest (including liquidation and
insurance proceeds, seller repurchase and substitution proceeds, servicer
advances, and other unscheduled collections) generated by the underlying
mortgage pool are allocated in a priority order to bondholders. Interest is
generally paid to all outstanding bonds, beginning with the most senior,
and then in priority order to the remaining junior bonds. After all classes
have received in full their promised interest payment, principal will be
allocated based upon the terms of the governing documents. According to
the rating criteria, since the subordinate bonds provide the only source
of credit support in this type of structure, their receipt of principal must
be delayed until a majority of borrower defaults have occurred. Amongst
the senior classes, principal will be allocated sequentially or pro rata, based
upon the average life preferences of investors.

When a loss is realized on a defaulted loan, issuers have two options
in allocating cash flow. The most senior bonds can be promised the full,
unpaid principal balance of the defaulted loan, or more simply the pro-
ceeds generated from the loan’s final disposition.

If the full, unpaid principal balance of the defaulted loan is paid to
senior classes, all rated classes must receive interest before any payments
of principal are made. This is necessary because the payment to senior
classes of more cash flow than the defaulted loan generates will result
in the temporary shortfall of interest to subordinate bondholders. This
violates Standard & Poor’s timely receipt of interest criteria.
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There is the possibility that the credit composition of a mortgage
pool will diminish over time, as the level of defaults increases. This can
occur as a result of stronger borrowers refinancing out of the pool, as time
goes on. This shift in pool makeup is commonly known as “adverse selec-
tion.” Accordingly, the rating criteria require that all principal collections
be paid first to the most senior class, lowering its percentage interest in
the pool and, therefore, increasing the percentage interest represented
by the subordinate classes. The resulting “shifting interest” increases the
level of credit protection to the most senior bondholders over time.

Typically, the senior bondholders will receive all principal payments
for at least three years and until the level of credit support has increased
to two times its initial level. After that time, and provided that additional
performance-based tests are met, holders of the subordinate bonds may
receive a portion of principal collections.

Allocation of Losses In the case of the senior/subordinate
structure, the right of the junior class certificate-holders to receive a share
of the cash flow are subordinated to the rights of the senior certificate-
holders. In addition, losses cause the certificate balance of lower-rated
certificates to be written down (in the United States) prior to the more
senior bonds. Whenever the mortgage pool suffers a loss that threatens
the amount due to the senior certificate-holders, cash flow that would
otherwise be due to the subordinated certificate-holders must be
diverted to cover the shortfall. Therefore, all interest shortfalls and prin-
cipal loss will be allocated to the most junior class outstanding. Servicer
advances that must ultimately be backed by a highly rated party, usually
the trustee, generally cover shortfalls that result from delinquencies.

Stepping Down of Loss Protection As stated earlier, all
rated transactions must preserve credit support until the mortgage pool
has experienced a majority of its defaults and the remaining borrowers
have proven their ability to perform well, as judged by delinquency and
loss tests. However, after that point, the decline of credit enhancement
over time has traditionally been a feature of Standard & Poor’s-rated
mortgage-backed securities. This stepping down of credit enhancement
is contingent upon collateral performance, measured by loss and delin-
quency numbers as well as the time elapsed since securitization.

In the senior/subordinate structure, the stepping down of loss pro-
tection occurs when principal is allocated to the subordinate bonds.
Historical data show that the majority of all defaults occur in the first five
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years after mortgage loan origination. Accordingly, to protect against
severe losses during this stressful time period, a five-year lockout period
applies. During this time period, no reduction in credit enhancement is
expected. This lockout is also intended to protect certificate holders against
deterioration in the collateral pool’s credit profile due to adverse selection.
Once the determination has been made that principal may be allocated to
the subordinate bonds, principal may be allocated to each subordinate
bond that has maintained at least two times its original credit support as a
percentage of the current outstanding pool balance. Delinquency and loss
tests should also continue to be met.

Principal may also be paid to the senior and mezzanine classes pro-
rata. To attain pro rata allocation between the senior and the mezzanine
classes before the end of the standard lockout period, the mezzanine class
must be oversized to compensate for the early receipt of principal.

Excess Interest Valuation and Cash Flow Analysis
The senior/subordinate with over-collateralization structure is a hybrid
structure that combines the use of excess interest to cover losses and cre-
ate over-collateralization. The capital structure for these securities and
based on the value of excess interest determined through cash flow analy-
sis. Excess interest is the difference between the net mortgage rates paid
by the borrowers in the underlying mortgage pool and the interest rate
paid to bondholders. Cash flow analysis is necessary to determine how
much excess interest will be available to cover losses over the life of the
transaction. The analysis must consider the following variables:

♦ Mortgage interest rates
♦ Weighted average coupon (WAC) deterioration
♦ Fees
♦ Rate and timing of default and prepayment speeds
♦ Length of time for loss realization
♦ Bond pass-through rates
♦ Structural features such as the prioritization of principal cash flow.

An analysis of cash flows is done to determine the amount of over-
collateralization and the size of the subordinate bonds necessary at each
rating category. Cash flows should demonstrate that each rated class
receives timely interest and ultimate repayment of principal. Default and
LS projections are made at each rating category, regardless of structure or
type of credit support.

556 CHAPTER 12



For cash flow allocation, interest is generally paid to all senior
classes of certificates concurrently based upon their pro rata percentage
interest in the mortgage pool. Interest is then allocated sequentially, in pri-
ority order, to the subordinate bonds. Excess interest is then used to cover
current losses, paid to the most senior bonds to build towards the over-
collateralization target, and lastly will be “released” from the deal through
payments to a residual certificate holder. The targeted level of over-
collateralization is usually set as a percentage of the original pool balance.
Principal is then allocated sequentially, pro rata, or in some combination
among the senior classes, in order to accommodate investor’s varying
average-life requirements. Remaining principal is then paid sequentially,
in priority order, to the subordinate bonds.

In this hybrid structure, the credit enhancement to each rated class is
provided first by the monthly-generated excess interest, second through
the decrease in any over-collateralization, and third will be allocated to the
subordinate bonds. After all excess interest and over-collateralization has
been depleted, subordinate bonds, on a priority basis, are shorted interest
or written down for principal loss.

Defaults play a major role in the amount of excess interest available
in a given transaction. The frequency of defaults and the timing of those
defaults will influence the amount of excess interest that may be on hand
to cover potential losses. If the cash flows show that payment of current
interest can be maintained and the losses adequately absorbed while ulti-
mately paying the rated class, the transaction will meet the stress test. In
addition, the balance of the loan at the time of default is calculated by
assuming that only scheduled principal payments have occurred on the
loan, and that no prepayments on that loan have taken place.

Typically, a 12-month lag is assumed from the time a loan defaults
until the loan is liquidated for U.S. RMBS; the assumption is 18 months
for the U.K. market. In other words, 12 (or 18) months after the default
occurs, a percentage of the balance (equal to the LS at the rating level
being analyzed) will be lost, and the remainder of the balance will be
recovered as net proceeds.

The availability of excess interest is also impacted by whether or not
advances are being made on delinquent and defaulted loans. Typically,
transactions require the servicer to make advances on delinquent and
defaulted loans until such time the loan is liquidated. However, the servicer
does not have to make an advance on a specific loan if it determines that
the amount advanced will not be recoverable from liquidation proceeds.
If advances are required, then the excess interest from these loans may be

Residential Mortgage-Backed Securities 557



available to offset potential losses. Transactions without an advancing
mechanism will not have any interest flowing into the transaction from
delinquent or defaulted loans. Therefore, this is assumed in the cash flow
analysis. In this case, an added stress is placed on the cash flows. Because
no advancing is occurring, analysts will assume in the cash flow modeling
that a certain percentage of loans are delinquent at any point in time, in
addition to the amount of loans in default at that time. Six months prior to
each bullet default, beginning with the default balance in month 12, a like
percentage of loans will be delinquent in interest as is in default. Recovery
of this delinquent interest occurs six months later; that is, the first delin-
quent period begins in month 6 with recovery in month 12. This delin-
quency stress continues for all bullets throughout the default curve.

The prepayment rate significantly impacts the amount of excess
interest that is available in a transaction. The greater the amount of loans
prepaying, the less excess interest will be available. The prepayment rate
that is assumed is based on the historical experience of the industry or the
specific issuer. The pricing speed may be used as a proxy for this speed
and is typically reported as a constant prepayment rate (CPR). This indi-
cates the “all in” speed at which loans are removed from the pool. That is,
the speed at which loans voluntarily prepay combined with the rate at
which defaults occur.

However, Standard & Poor’s uses this pricing speed to indicate vol-
untary prepayments only. The rating analysis assumes that poorer credit
quality borrowers will not be able to prepay, and that therefore only
includes voluntary prepayments. Default assumptions are layered over
the prepayment assumptions. In this regard, it is believed that voluntary
prepayments are inversely related to the economic scenario as we go up
the rating scale to a more stressful economic scenario. However, because
defaults increase at a greater pace as the more severe economic downturn
occurs, the overall speed at which loans are removed from the pool will
increase.

It should be again noted that Standard & Poor’s will analyze the
speed at which the deal is priced versus the issuer’s historical experience,
and if it is determined that the pricing speed does not adequately reflect
the actual prepayment history for the issuer and the collateral type, the
prepayment assumptions will be adjusted accordingly.

Mortgage prepayment history has shown that the WAC of a pool,
and therefore the available excess spread, decreases over time in mort-
gage pools. That is, loans having higher interest rates and greater margins
are more likely to prepay if the borrower’s credit improves, and more
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likely to default if it does not. Therefore, the ratings analysis stresses the
cash flows in order to reflect this situation.

When a transaction contains mortgage loans with an interest rate
index that is different from that of the certificates, basis risk occurs. The
changing spread between the two rates may cause shortfalls in the cash
flow needed to pay the bonds. To address this issue, Standard & Poor’s
uses its stressed interest rate scenarios in the cash flow modeling. Several
years ago, Standard & Poor’s revised its interest modeling approach for
U.S. RMBS. The research began with the estimation of a Cox-Ingersoll-
Ross (CIR) model for the one-month LIBOR. The estimated CIR model
was used in the simulation of hundreds of thousands of interest rate
paths. Simulations were repeated for various ranges of starting rates, up
to 2.25 percent, 2.25 to 2.75 percent, 2.75 to 3.25 percent, and so on up to
20 percent. For each starting range, the simulation results were selected
based on a point-wise quantile, that is, from the month one results the val-
ues corresponding to specific quantiles were chosen, from the month two
results, from the month three results, and so on. These points were “con-
nected” to create the base curves. Additionally, to reflect the natural
movement of rates up and down, a sinusoidal component was added. To
ensure consistency, all other indices were modeled against the one-month
LIBOR.

Each month the RMBS vectors for about a dozen indices and all rat-
ing categories are published. These vectors are used in the U.S. RMBS
cash flow model, SPIRE. In the United Kingdom, the interest rate scenar-
ios are more straightforward and perhaps more stressful. LIBOR is
assumed to increase at 2 percent per month until a ceiling of 18 percent
(12 percent for EURIBOR) is reached. The rate is assumed to remain at the
ceiling for the life of the transaction. For falling rate environments, rates
are assumed to fall 2 percent per month until a 2 percent floor is reached,
where rates remain for life.

Legal Issues in RMBS

Banks or other financial institutions, insurance companies, or nonbanking
corporations transfer residential mortgage loans into a securitization
structure. Some of the legal issues raised by these transactions differ
depending on whether the entity transferring the loans is a nonbanking
corporation that is eligible to become a debtor under the U.S. Bankruptcy
Code, a bank, other financial institution. Also relevant is whether the
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entity is an insurance company that is not eligible to become a debtor
under the Bankruptcy Code, or an entity subject to the Bankruptcy Code
(such as a municipality or public-purpose entity), but which is deemed by
Standard & Poor’s to be bankruptcy-remote in that the bankruptcy or dis-
solution of such entity for reasons unrelated to the transaction structure is
deemed unlikely to occur (a “special-purpose entity transferor”). Unless
otherwise indicated, an entity either selling, contributing, depositing, or
pledging assets for purposes of securitization, including the originator of
the assets and any intermediary entity participating at any level in a struc-
ture transaction as a transferor of assets, is referred to as a transferor.

Structured financings are rated based primarily on the creditworthi-
ness of isolated assets or asset pools, whether sold, contributed, or
pledged into a securitization structure, without regard to the creditwor-
thiness of the seller, contributor, or borrower. The structured financing
seeks to insulate transactions from entities that are either unrated and for
whom Standard & Poor’s is unable to quantify the likelihood of a poten-
tial bankruptcy, or that are rated investment grade but wish a higher rat-
ing for the transaction. Standard & Poor’s worst-case scenario assumes
the bankruptcy of each transaction participant deemed not to be
bankruptcy-remote or that is rated lower than the transaction. Standard &
Poor’s resolves most legal concerns by analyzing the legal documents,
and where appropriate, receiving opinions of counsel that address insol-
vency, as well as security interest and other issues. Understanding the
implications of the assumptions and its criteria enables an issuer to antic-
ipate and resolve most legal concerns early in the rating process.

Special-Purpose Entities Standard & Poor’s legal criteria for
securitization transactions are designed to ensure that the entity owning
the assets required to make payments on the rated securities is bankruptcy
remote, that is, is unlikely to be subject to voluntary or involuntary insol-
vency proceedings. In this regard, both the incentives of this entity, known
as an SPE, or its equity holders to resort to voluntary insolvency proceed-
ings and the incentives for other creditors of the SPE to resort to involun-
tary proceedings are considered. The analysis also examines whether
third-party creditors of the SPE’s parent would have an incentive to reach
the assets of the SPE (e.g., if the SPE is a trust, whether creditors of the
beneficial holder would have an incentive to cause the dissolution of the
trust to reach the assets of the trust). In this regard, Standard & Poor’s has
developed “SPE criteria,” which an entity should satisfy to be deemed
bankruptcy remote.
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Trustee, Servicer, and Eligible Accounts The indenture
trustee/custodian in a structured transaction is primarily responsible for
receiving payments from servicers, guarantors, and other third parties and
remitting these receipts to investors in the rated securities in accordance
with the terms of the indenture, in addition to its monitoring, custodial, and
administrative functions. In a structured transaction, the servicer agrees to
service and administer assets in accordance with its customary practices
and guidelines and has full power and authority to make payments to and
withdrawals from deposit accounts that are governed by the documents.

The servicer’s fee should cover its servicing and collection expenses
and be in line with industry norms for securities of similar quality. If the
fee is considered below industry averages, an increase may be built into
the transaction. The increase might be needed to entice a substitute ser-
vicer to step in and service the portfolio. If the servicing fee is calculated
based on a certain dollar amount per contract, the fee will increase as a
percentage of assets due to amortization of the pool. This is an important
consideration when assessing available excess spread to cover losses and
fund any reserve account.

The filing of a bankruptcy petition would place a stay on all funds
held in a servicer’s own accounts. As a result, funds held to make pay-
ments on the rated securities would be delayed. In addition, funds com-
mingled with those of the servicer would be unavailable to the structured
transaction. As a general matter, Standard & Poor’s addresses this com-
mingling risk by looking both to the rating of the servicer and the amount
of funds likely to be held in a servicer account at any given time.

A structured financing provides for different accounts to be estab-
lished at closing to serve as collection accounts in which revenues gener-
ated by the securitized assets are deposited and to establish reserves
funds. Often, the accounts in which the reserves are held contain signifi-
cant sums held over a substantial period of time. Standard & Poor’s has
criteria regarding these accounts. The criteria are intended to immunize
and isolate a transaction’s payments, cash proceeds, and distributions
from the insolvency of each entity that is a party to the transaction. An
insolvency of the servicer (sub or master), trustee, or other party to the
transaction should not cause a delay or loss to the investor’s scheduled
payments on the rated securities. As a general matter, Standard & Poor’s
relies on credit, structural, and legal criteria to ensure that a structured
transaction’s cash flows are protected at every link in the cash flow chain.

Unless collections on assets are concentrated at certain times of the
month, for a period of up to two-business days after receipt, any servicer,
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whether or not rated, may keep collections on the assets in any account of
the servicer’s choice, commingled with other money of the servicer or of
any other entity. Before the end of the two-business day period, the collec-
tions on the assets should be deposited into an eligible deposit account. As a
general matter, all servicers, including unrated servicers, may keep/com-
mingle collections for up to two business days, based on Standard &
Poor’s credit assumption, made in connection with all structured transac-
tions, that two days’ worth of collections on assets will be lost.

If, however, collections on the assets are concentrated at certain
times within a month (e.g., the first, 15th, or 30th of a month), a servicer
rated below “A-1” should not be able to keep/commingle collections
on the assets even for the two-business day period, as described above.
Rather, to prevent a potentially significant loss on assets, Standard &
Poor’s generally requires that, in transactions involving concentrated col-
lections in which the servicer is rated below “A-1,” either additional credit
support be provided to cover commingling risk or obligors be instructed
to make payments to lockbox accounts, which, in turn, are swept daily to
an eligible deposit account. The servicer, unless rated the same as the rat-
ing sought on the structured transaction, should be prevented from
accessing either the lockbox or sweep accounts. If a servicer is rated below
“A-1” or is unrated, or if an “A-1” rated servicer’s obligation to remit col-
lections is not unconditional, the servicer should deposit all collections
into an eligible deposit account within two business days of receipt. All
other accounts maintained by the master servicer, special servicer, or
trustee in a structured transaction (e.g., reserve accounts) should qualify
as eligible deposit accounts.

PART 2: ANALYTICAL TECHNIQUES TO 
RATE RMBS TRANCHES IN EUROPE

In this part, we review the main modeling features used by Standard &
Poor’s to come with rated tranches on the European market.

Portfolio Credit Analysis

The credit analysis performed by Standard & Poor’s estimates the expected
principal loss (EL) that a mortgage portfolio might exhibit under different
economic scenarios. At the primary rating level, loan level data is almost
invariably available to complete this analysis. The loan level data includes
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information on the borrower (e.g., income, repeat buyer, and past credit
events), loan (e.g., repayment type and interest rate), and property (e.g.,
valuation, valuation technique, and occupancy status). Two variables are
calculated for each loan from this data: the FF and the LS. The FF is the
likelihood that the borrower will default on their mortgage payments.
Although this is commonly known as FF within the mortgage market, it is
simply a default probability estimate (the PD). The LS refers to the amount
of loss upon the subsequent sale of the property, once the borrower has
defaulted (expressed as a percentage of the outstanding loan balance).

Calculating FF
As described earlier, FF is calculated for each loan in the portfolio. This
calculation starts from a base case FF, which is then altered according
to the characteristics of the loan. Certain loan or borrower features are
assumed to increase (e.g., past credit difficulties) or decrease (e.g., sea-
soning) the probably of default. There are a few key variables that tend to
have the most impact on loan performance. These are widely believed to
be the LTV (the loan’s balance divided by the value of the property, which
can be used to represent the amount of borrower equity within the prop-
erty), borrower past credit performance, and current indebtedness,
although there are many other loan features that will contribute (e.g.,
potential for payment shock).

e.g., FF Loan(i) = 4 percent (base FF) × 2 (penalty for high LTV)
× 2 (penalty for poor past credit performance)

= 16 percent probability of default.

In order to calculate estimates that represent loan behavior under harsher
economic environments (and hence cover higher rating levels), the base
FF is adjusted upwards. For example, Standard and Poor’s assumes a
base of 4 percent at the BBB level, increasing to a maximum of 12 percent
at the AAA level.

The FF calculations above result in default estimates for each loan in
the portfolio. The FF estimates for each loan are then combined to pro-
duce the total mortgage balance of the portfolio assumed to default.
A weighted FF is used to achieve this, where the FF for each loan is
weighted by the percentage of principal that loan contributes to the port-
folio as a whole. The weighted FFs are then summed to produce the
weighted average FF (WAFF). A simple and arithmetic average of the FF
will not estimate the portfolio default rate accurately. Take the example
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shown in Table 12.1. When the FF calculated for each loan is applied to
each loan’s balance, this estimates the principal at risk that this loan con-
tributes to the portfolio as a whole (e.g., calculated at 10,000 for Loan A,
C, and E, despite markedly different initial principal balances). The total
principal at risk is 50,000, or 10 percent of the total outstanding. An arith-
metic average of the FFs would give a value of 16 percent, which is clearly
well in excess of 10 percent, and as such, inaccurately represents the con-
tributions of each loan. Instead, a weighted average takes into account the
initial principal balance a loan contributes to the balance of the portfolio
as a whole.

Calculating LS
The LS is the amount of loss that is expected to occur on a loan once it has
defaulted (or simply the LGD). Most loans in Europe (with significant
exceptions in the Netherlands) are originated with LTVs less than 100 per-
cent. Hence, it appears initially that even if the borrower was to default,
the property could be sold to re-coup the full outstanding principal loan
balance (excluding any accumulated interest payments). There are two
factors, however, that can erode the amount of sale proceeds that is avail-
able to repay the loan. First, costs need to be included, as it is assumed
that the originator bears the cost of selling the property. Secondly, a down-
turn in the housing market may mean that the property is sold for less
than it was valued at the time of origination. This potential downturn is
represented in the LS calculation with the assumption of a MVD. A clear
example of a MVD was demonstrated in the UK housing market in the
early 1990s, as indicated in Figure 12.1.

T A B L E  1 2 . 1

Computation of the WAFF

Total principal Pool FF weighted by 
Loan Balance FF (%) at risk percent (%) pool percent (%)

A 100,000 10 10,000 20 2

B 100,000 5 5,000 20 1

C 200,000 5 10,000 40 2

D 75,000 20 15,000 15 3

E 25,000 40 10,000 5 2

Total 500,000 50,000 WAFF = 10
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The LS is the amount of shortfall in sale proceeds to cover the out-
standing loan (plus costs), expressed as a percentage of the outstanding
loan balance, e.g.,

where costs are calculated as a percentage of the outstanding loan bal-
ance, and the sale price is equal to the initial valuation minus the MVD.
Take the example in Table 12.2.

In order to calculate estimates that represent LS under harsher eco-
nomic environments (and hence cover higher rating levels), the MVDs are
adjusted upwards. Standard and Poor’s also adjust MVDs based on prop-
erty location. For example, in the United Kingdom, MVDs are assumed to
be larger in southern areas where the most aggressive house prices
increases have been evidenced.

The LS calculations earlier result in LS estimates for each loan in the
portfolio. Note that 1− LS is equal to the recovery on the loan in question.
The LS estimates for each loan are then combined to produce the percent-
age of the defaulted balance of the portfolio assumed to be lost. A weighted
LS is used to achieve this, where the LS for each loan is weighted by the

LS
(loan balanc e costs) sale price

loan balance
,=

−+

F I G U R E 1 2 . 1

An Example of a MVD, as Demonstrated in the UK
Housing Market in the Early 1990s.
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percentage of principal that loan contributes to the portfolio as a whole. The
weighted LSs are then summed to produce the weighted average LS
(WALS).

As described at the beginning of this section, the credit analysis
attempts to estimate the expected loss that a mortgage portfolio might
exhibit under different economic scenarios. The WAFF (the defaulted prin-
cipal balance) multiplied by the WALS (the percentage of the defaulted
principal balance assumed to be lost) gives one measure of the EL. A more
accurate way of calculating the principal loss on the portfolio as a whole is
to take the product of the FF and LS for each individual loan, and then cal-
culate the weighted average overall loss percentage. This approach, how-
ever, results in a single variable that measures the loss as a percentage of
the initial portfolio. This presents a modeling problem for any transaction
that requires a cash flow analysis, as separate estimates of the default and
LS measures are required. These estimates are needed in order to test the
structure’s ability to withstand the appropriate foreclosure period. The
foreclosure period is the time between default and the sale of the property,
and is therefore the time it takes until the crystallization of losses and
recoveries. Hence, separate estimates of both these variables are required.

The WAFF and WALS estimates increase as the required rating
level increases, because the higher the rating required on the bond, the
higher the level of mortgage default and LS it should be capable of with-
standing. Given the variability in mortgage lending and borrower
behavior across countries, country-specific criteria are applied in WAFF

T A B L E  1 2 . 2

Computing Loss Severity

Loan balance (£) 85,000

Costs (%) 4

Costs (£) 3,400

Loan balance + costs (£) 88,400

Initial valuation (£) 100,000

MVD (%) 35

Sale price (£) 100,000 × 35% = 65,000

(Loan balance + costs) − sale price

(loss in £ amount) 23,400

LS (loss in £ amount expressed as a 
percentage of outstanding loan balance) 23,400/85,000 = 27.5%
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and WALS assessments. As a consequence, the assumed percentage of
defaults and subsequent losses can differ substantially across jurisdic-
tions. It is worth mentioning that WAFF/WALS are measures that work
only for large pools, as for smaller pools, idiosyncrasies may not vanish.

Cashflow Analysis

Many RMBS transactions are cash flow based, where the revenue stream
generated by the mortgages is used to service rated note obligations. A key
feature of the primary rating process for these types of transactions is to
assess the adequacy of the cash flow from the mortgage loans to satisfy
the terms of the rated debt. Economic stress scenarios are applied to the
cash flows, and then the rated note interest payments and principal
repayments are assessed for their adequacy in a given rating scenario.
Standard and Poor’s ensures under any given stress scenario, principal
payments will be made in full and interest payments on a timely basis.

A typical RMBS cash flow transaction consists of a number of rated
notes that differ in seniority with respect to interest and principal payments
from the underlying mortgage portfolio, in so-called senior/subordinated
structures. There is usually a first-loss fund provided by the originator of
the assets underneath the rated notes, often called the reserve fund. This
is used to cover both interest shortfalls and principal losses arising in the
transaction. A liquidity facility might also be incorporated, which is used
to bridge timing mismatches that can occur between the asset cash flows
and the required liability payments. The transaction might also include
specific structural features designed to minimize the issuer’s exposure to
external economic factors (e.g., interest rate hedges).

There are many variants to the generalized case described above.
Structures tend to vary depending on the underlying collateral (e.g.,
prime RMBS transactions tend to differ structurally from nonconforming
RMBS transactions), and across different countries (e.g., UK prime RMBS
transactions differ structurally from Spanish or Italian prime RMBS trans-
actions). This is generally for practical reasons. For example, UK prime
mortgage originators tend to have very large portfolios, and have used
“master trust” type structures primarily as a tool to reduce the costs of
multiple securitizations over time. In contrast, Spanish and Italian trans-
actions typically swap the entire asset cash flows to receive principal plus
a fixed spread, primarily because the underlying mortgage loans tend to
have quite variable interest rates, reset dates, and fixed periods.



Standard & Poor’s stresses the transaction cash flows to test both the
credit and liquidity support provided by the assets, subordinated tranches,
cash reserve, and any external sources (such as a liquidity facility). Stresses
to the cash flows are implemented at all relevant rating levels.

For example, a transaction that incorporates “AAA,” “A,” and “BBB”
tranches of notes will be subjected to three separate sets of cash flow
stresses. In the “AAA” stresses, all “AAA” notes must pay full and timely
principal and interest, but this will not necessarily be the case for the “A”
or “BBB” tranches, as they are subordinated in the priority of payments. In
the “A” case, all “AAA” and “A” notes must receive full and timely prin-
cipal and interest, but not necessarily so for the “BBB” tranche, as it is sub-
ordinated to both “AAA” and “A.”

Defaults and Losses
Default, recovery, and loss rates are all estimates calculated in the initial
credit analysis of the portfolio. The WAFF at each rating level specifies the
total balance of the mortgage loans assumed to default over the life of the
transaction. In general, defaults are assumed to occur over a period of time.
In Standard and Poor’s case, a three-year recession is assumed. Standard &
Poor’s will assess the impact of the timing of this recession on the ability to
repay the liabilities, and chooses the recession start period based on this
assessment. Although the recession normally starts in the first month of
the transaction, the “AAA” recession is usually delayed by 12 months. The
WAFF is applied to the principal balance outstanding at the start of the
recession (e.g., in a “AAA” scenario, the WAFF is applied to the balance at
the beginning of month 13). Defaults are assumed to occur periodically in
amounts calculated as a percentage of the WAFF. The timing of defaults gen-
erally follows two paths, referred to here as “fast” and “slow” defaults.

Default Timings for Fast and Slow Default Curves

Fast default Slow default 
Recession (percentage (percentage 
month of WAFF) of WAFF)

1 30 0

6 30 5

12 20 5

18 10 10

24 5 20

30 5 30

36 0 30
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Standard & Poor’s assumes that the recovery of proceeds from the
foreclosure and sale of repossessed properties occurs 18 months after a
payment default in UK transactions (i.e., if a default occurs in month one,
then recovery proceeds are received in month 19). The value of recoveries
will be equal to the defaulted amount less the WALS. The time taken to
repossess and sell a property can vary widely across the European coun-
tries, primarily because the legal procedures required before a lender can
repossess and sell a property differ across jurisdictions (see Table 12.3).
Standard & Poor’s will therefore adjust the foreclosure period for each
country to account for this.

Note that the WALS used in a cash flow model will always be based
on principal loss, including costs. Standard & Poor’s assumes no recovery
of any interest accrued on the mortgage loans during the foreclosure
period. In addition, after the WAFF is applied to the balance of the mort-
gages, the asset balance is likely to be lower than that on the liabilities
(a notable exception is when a transaction relies on over-collateralization).
The interest reduction created by the defaulted mortgages during the fore-
closure period will need to be covered by other structural mechanisms in
the transaction (e.g., excess spread).
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T A B L E  1 2 . 3

Foreclosure Periods in Different 
European Jurisdictions

Foreclosure period (time from default 
Country to recovery in months)

Belgium 18

France 36

Germany 24

Greece 72

Ireland 18

Italy 60 (on average, but can be vary 
depending on location of property)

The Netherlands 18

Portugal 36

Spain 30

Sweden 18

Switzerland 18

United Kingdom 18



Delinquencies
The liquidity stress that results from short-term delinquencies, i.e., those
mortgages that cease to pay for a period of time but then recover and
become current with respect to both interest and principal is also mod-
eled. To simulate the effect of delinquencies, a proportion of interest
receipts equal to one-third of the WAFF is assumed to be delayed. This
applies for the first 18 months of the recession, and full recovery of delin-
quent interest is assumed to occur after a period of 18 months. Thus, if in
month five of the recession the total collateral interest expected to be
received is £1 million and the WAFF is 30 percent, £100,000 of interest
(one-third of the WAFF) will be delayed until month 23.

Interest and Prepayment Rates
Three different interest rate scenarios—rising, falling, and stable—are
modeled using both high and low prepayment assumptions. Interest rates
always start from the rate experienced at the time of modeling. For exam-
ple, in the rising interest rate scenario, LIBOR (or EURIBOR) rises by 2 per-
cent per month to a ceiling of 18 percent (12 percent), where it remains for
the rest of the transaction’s life. Where there is a longer-than-average fore-
closure period (e.g., Italy or Greece), the effect of high interest rates over
the life of the transaction is unduly stressful, and the interest rate is
allowed to ramp down after three to four years. For falling interest rates,
interest rates fall by 2 percent per month to a floor of 2 percent, where they
remain for the rest of the transaction’s life. For stable interest rates, the
interest rate is held at the current level throughout the life of the transac-
tion. Note that in the “AAA” scenario the interest rate increase will not
begin until month 13. Also note that interest rate scenarios will be revised
if there is sufficient evidence to warrant it.

Transactions are stressed according to two prepayment assump-
tions: high and low. These rates of prepayment are differentiated by coun-
try of origin, as shown in Table 12.4. Prepayment rates are assumed to be

570 CHAPTER 12

T A B L E  1 2 . 4

Prepayment Assumptions for European RMBS

United Kingdom European countries other than 
Prepayment level (%) the United Kingdom (%)

High 30.0 24.0

Low 0.5 0.5
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static throughout the life of the transaction and are applied monthly to the
decreasing mortgage balance.

In combination, the default timings, interest rates, and prepayment
rates described earlier give rise to 12 different scenarios, as summarized
in Table 12.5.

Reinvestment Rates
Unless the transaction has the benefit of a guaranteed investment contract
(GIC) with an appropriately rated entity, Standard & Poor’s assumes that
the transaction will suffer from a lower margin on reinvested redemption
proceeds and other cash held in the vehicle than the margin being received
on the underlying assets. If proceeds are received and reinvested through-
out the quarter, and the long-term rating of the GIC provider is lower than
that of the rated notes being subjected to the stress, then the reinvestment
rate is assumed to be LIBOR less a rating-dependent margin, with a floor
of 2 percent. The rating-dependent margin is a multiple of the contractual
margin. The multiple used for this calculation varies from one at the “A”
level to five at the “AAA” level.

Originator Insolvency
Mortgage payments from borrowers are typically paid by direct debit into
a collection account, transferred to a transaction account in the name of
the issuer, and finally credited to the GIC account. The degree to which

T A B L E  1 2 . 5

Stress Scenarios for European RMBS

Scenario Prepayment rate Interest rate Default timing

1 High Rising Fast

2 High Rising Slow

3 High Stable Fast

4 High Stable Slow

5 High Falling Fast

6 High Falling Slow

7 Low Rising Fast

8 Low Rising Slow

9 Low Stable Fast

10 Low Stable Slow

11 Low Falling Fast

12 Low Falling Slow



insolvency of the originator will affect the cash flow from the assets there-
fore depends on the collection account characteristics. The amount at risk
depends on the timing of payments from borrowers and the frequency
with which these funds are transferred to the transaction account. If all
borrowers pay on the same day of the month, then even with daily sweep-
ing of the collection account, up to one month’s cash flow from the assets
is potentially at risk.

The collection account is often not in the name of the issuer, as most
originators do not want to ask borrowers to change their direct debit
instructions as a result of securitization. Under English law, if the issuer
has been granted the benefit of a properly executed declaration of trust
over the collection account, then insolvency of the originator should not
result in a loss of funds, but should only involve a simple delay. This risk
will need to be modeled appropriately for each transaction, but normally
results in a delay of one month’s cash flow for three months over an inter-
est payment date. In other European countries, insolvency of the origina-
tor is more likely to result in a loss of funds, the amount of which depends
on the frequency of the transfer of money from the collection to the trans-
action account. This amount is generally modeled as a loss of interest and
principal in the first month of the recession.

Expenses
All the issuer’s foreseeable expenses should be modeled (e.g., mortgage
administration fees, trustee fees, standby servicer fees, cash/bond admin-
istration fees, etc.). These expenses should also include any tax liability the
issuer may have. These fees are either a fixed amount per annum, or are
sized as a percentage of the outstanding mortgage loans (or a combination
of both). Standard & Poor’s normally requires a schedule of these expenses
to be provided. In addition to foreseeable expenses, the model should
contain amounts sized for contingent expenses, such as the need for the
trustee to register legal title to the mortgages in the event of insolvency of
the originator. This amount can vary from £150,000 to £300,000, depend-
ing on the size of the transaction, and can be modeled either as a separate
contingency reserve or as a haircut to the reserve fund.

Principal Deficiencies
In general, bonds are not written down, as losses are experienced on the
assets. Instead, principal losses experienced on the mortgage pool are
recorded in a PDL, which tracks the extent to which the principal balance
of liabilities exceeds that of the assets. At each rating level, Standard &
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Poor’s requires that principal deficiencies do not exceed the existing sub-
ordination. For example, in a transaction with £100 million “AAA” senior
notes, £9 million “A” junior notes, and a £1 million reserve fund, the prin-
cipal deficiency at any point in time should not exceed £10 million in the
“AAA” runs and £1 million in the “A” runs. If there is insufficient income
to fund the principal deficiency, however, Standard & Poor’s considers
the risk to a transaction to be low if the principal deficiency is remedied
within a short period of time using excess spread.

Basis Risk
Basis risk occurs when the value of the interest rate index used to deter-
mine the interest payments received from the assets differs from that of
the liabilities. This can occur when assets and liabilities are linked to dif-
ferent indices (e.g., mortgages are linked to three-month Libor, liabilities
to three-month Euribor), or both are linked to the same index, but it is set
on a different date (mortgage interest rate set on 1st of the month and lia-
bility interest rate on the 20th). Here, there is the risk that the index for the
assets falls below that of the liabilities, such that asset interest payments
are insufficient to make the required payments to the liabilities. In situa-
tions where this risk is not hedged, Standard & Poor’s typically assesses
the historical performance of the indices in question, and calculates the
difference over a certain time horizon (e.g., 20 days in the above example)
that has been experienced historically. The average difference between the
indices is then calculated, assuming that in periods where the index for
the mortgages has been higher than that of the liabilities, the difference
between the two is assumed to be zero. This average is then subtracted
every month from the asset margin. In addition, two spikes in the liabil-
ity interest rate index are also modeled. The height of each spike is deter-
mined as the maximum difference between the two indices and occurs at
the beginning of the first two years of the transaction.

PART 3: A REVIEW OF THE GENERIC 
QUANTITATIVE TECHNIQUES USED BY 
MARKET PARTICIPANTS FOR ASSET 
BACK SECURITIES IN EUROPE

The ABS or structured finance constitutes one of the fastest growing and
most innovative sectors of the European bond market. Banks, specialist
finance companies, credit card companies, governments, mortgage
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companies and a whole host of other entities use ABS to raise financing
and as a tool for risk transfer. The ABS repay interest and principal from
the stable and predictable cash flows associated with underlying assets,
such as credit card receivables, residential mortgage loans and leases.
Figure 12.2 shows the dramatic growth in issuance of European ABS over
the past five years. Investors now have access to a regular and diversified
supply of asset-backed bonds coming to market from different sectors and
jurisdictions. The proportion of asset-backed debt in overall European
bond issuance has also increased dramatically over the past few years (see
Figure 12.3). While corporate issuance has remained relatively stable over
the past years, the proportion of asset-backed issuance has grown signifi-
cantly in 2005 to 64 percent of corporate issuance.

The U.S. structured finance market is significantly larger than the
European market and has a much longer history. The U.S. market dates
back to the 1970s when the U.S. government first stimulated the growth
of mortgage-backed securities by encouraging government sponsored
entities to fund prime mortgages through the capital markets. Annual
issuance of U.S. mortgage and asset-backed bonds in 2005 stood at $3,300
billion (source: Lehman Brothers, Securitized Products Research).

The ABS can be broken down into two broad types of transaction:
cash flow and synthetic securitizations. In the former, the interest and
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principal associated with the assets as well as their risks are passed on to
investors. In the latter, only the risk is transferred.

The RMBSs dominate the structured finance landscape in almost all
jurisdictions (see Figure 12.2). In view of the dominating influence of
mortgage-type assets on the structured finance market and the growing
interest in these sectors, the rest of this chapter will focus on quantitative
analysis of mortgage specific deals. Moreover, since there is a lot more
commonality across residential mortgage securitisations (RMBS) than
commercial mortgage-backed securities (CMBS), which are more bespoke
in nature, the focus of this chapter is slanted towards the former asset
class, where these methods have wider applicability.

The structure of this part is as follows. In the section “ABS Credit
and Prepayment Risks,” the broad prepayment and credit risks of
underlying assets backing structured finance bonds are described. The
section “ABS Credit and Prepayment Modeling” provides a brief
overview of statistical models used to project prepayment and default
performance. The section “ABS Valuation” then discusses the impact
of predicted mortgage cash flows, using the statistical models from
previous section, on the liability (bond) side of European structured
finance deals. The section “ABS Default Correlation and Tail Risk
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Annual Issuance of European Structured Products and
Corporates. (Lehman Brothers, European Structured
Finance Research)
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Scenarios” presents a methodology for assessing tail credit risk in ABS
and the valuation impact this has on ABS bonds. The last section is the
“Conclusion.”

ABS Credit and Prepayment Risks

The fundamental value of ABS is intimately related to the interest and
principal cash-flows due on the bonds and the likelihood and timing of
those being made in part or full. There are a number of key risks impact-
ing the likelihood of these payments being made: defaults, delinquencies,
losses, and prepayments. The former three of these constitute the credit
risk in a collateral pool, whereas the last relates intimately to investment
risk. The first three risks interact with each other to reduce the total
amount of principal and interest available to bondholders. Note holders
are also subject to prepayment risk, as they may receive their proceeds
more quickly than originally anticipated, forcing them to re-invest the
notional amount at sub-optimal levels. This is a problem when the secu-
rity they are holding is priced at a premium to par, which has been a fairly
common scenario in the European ABS market over the past few years.
Conversely, for securities priced at a discount to par, early redemption is
beneficial and allows bondholders to find a more efficient vehicle for
investing their proceeds.

Figure 12.4 presents a fairly generic overview of the pricing of ABS.
Statistical models provide projections of prepayments, and credit risk on
the asset side of the transaction. These models often take loan level vari-
ables, such as a mortgage’s LTV ratio, loan size or term and may com-
bine this with macro-economic information, on, e.g., interest rates.
These projections are then used to adjust contractual mortgage cash
flows and these are passed through a bespoke cash flow model, which
specifies the order and priority of all these payments. By applying a sto-
chastic interest rate model over all months and running many interest
rate scenarios, a value for the ABS may be generated as an expectation
over the interest rates. Alternatively, a value may be desired that leads
to an option-adjusted spread (OAS) to account for the stochastic nature
of rates. This approach clearly has the advantage of factoring in the
volatility of interest rates.

The current practice in the European ABS market falls some way short
of the description above, as historical performance data is quite limited.
Since the availability and quantity of such data is intimately linked with the
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feasibility of creating prepayment and default models, the prevalence of
such models in European ABS is quite rare. In practice, many market par-
ticipants examine historic prepayment curves to infer future prepayment
behavior.

The first manifestation of credit risk in any pool of securitized assets
is nonpayment of interest and/or principal. In the case of mortgages, this
is termed “arrears” or “delinquencies.” After a mortgage loan misses a
payment in a month from a clean state, it progressively moves through
successive delinquency states: 30 days down, 60 days down, and so on.
Some originators specify this as the number of days an asset is down in
its payments and others as the number of months down. The asset ser-
vicer’s role is to ensure timely payment from the assets in the pool and
to take appropriate action in the event of nonpayment. Thus, many ser-
vicers have well-articulated policies for dealing with collections and, ulti-
mately, litigation. Servicing policies typically involve a series of letters
and calls encouraging payment and culminate with foreclosure proce-
dures. Up until foreclosure takes place, the originator’s main credit risk is
delinquency risk associated with nonpayment of interest and principal, as
well as the possibility of foreclosure taking place. Foreclosure normally
follows a sustained period over which delinquencies are rising and is an
absorbing irreversible state. Once the property is in the originator’s pos-
session, or REO (real estate owned) the borrower has no recourse to the
asset securing the loan.

From the time the property is in possession of the originator, there is
a time lag before a suitable sale price can be obtained and the loan balance
and costs of foreclosure and delinquencies can be recovered. The foreclo-
sure risk on a loan manifests itself in any losses that are incurred on the
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Quantitative Modeling of Securitizations.

Asset Model Liability Model

Default Model

Loss Model

Arrears Model

Prepayment Model

Class A Bonds

Class B Bonds

Class C Bonds

Class D Bonds

Risk-adjusted
Mortgage
Asset Cash
Flows

Mortgage Term and
Amortization Schedule

Reserve Fund

Class B

Bond

NPV



578 CHAPTER 12

loan. Typically, the priority of payments to different claimants is specified
according to a schedule. Fees (administrative and legal for foreclosure)
are normally senior, followed by arrears interest payments. The most
junior payment tends to be the principal balance outstanding on the loan.
Depending on the priority of claims, mortgage originators can lose a sub-
stantial part of the principal balance outstanding at the time of property
sale. This situation is exacerbated if the loan itself is a second or third lien,
in which case all cash received is first used to pay off claims on the more
senior mortgage loans.

When asset originators generate new loans for securitization, a key
risk they bear is that obligors may decide to prepay the obligation earlier
to take advantage of more attractive rates or other opportunities in the
market. Since assets are priced at a premium to par by originators, in
order to maintain the profitability of their business franchise, prepay-
ments tend to limit the interest payments available to them and hence the
value of the asset. Effectively, the originator of the asset must re-invest the
loan amount lent to the obligor in the event of a prepayment at possibly
less attractive rates.

ABS Credit and Prepayment Modeling

Normally, prepayments are expressed as a conditional prepayment rate
(conditional on a loan’s nonprepayment and nondefault up to a certain
point in time) or CPR. This measure is calculated over a specific time hori-
zon and is expressed as an annualized measure. If the asset balance in an
asset-backed transaction is expressed at two successive points in time, t,
and t + d as B(t) and B(t + d), with scheduled principal payments on the
assets of S(t, t + d) over the period and unscheduled principal payments of
U(t, t + d), the prepayment rate may then be expressed as:

where d is the number of days in the time increment.
The default rate can be calculated in a similar way as the proportion

of balance going into repossession over a given time period. The constant
default rate (CDR) is an annualized default rate. Denoting DF(t, t + d) as
the actual total balance of loans in the asset pool going into foreclosure
over the time period, we have:
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Since both the CDR and CPR are conditional rates (on survival up to
a certain point in an asset’s life), they can be regarded as hazard rates and,
thus, be applied to all the contractual cash flows from an asset portfolio.

The third component in determining performance projections and,
hence, cash flows in asset pools, is the recovery rate, expressed as a per-
centage of principal balance outstanding that has gone into default/repos-
session. Denoting the principal LS as LS(t), one can compute all the
expected cash flows, and consequently put them through a typical securi-
tization structure to analyse different bonds’ expected performance and
valuation.

Figure 12.5 provides a depiction of the three main outcomes that one
may observe for a live mortgage loan over the course of a month: a
default, prepayment, or mortgage continuation. The likelihood of defaults
and prepayments are given by λD(t) and λP(t), respectively. The probabil-
ity of mortgage continuation sums up with these to 100 percent, or all the
possible states. These states repeat themselves at each month over the
course of the life of live mortgages in a pool. If the beginning loan balance
is denoted B(t), there are cash flows from four main sources: principal
(scheduled principal payments), interest, recoveries, and prepayments
(unscheduled principal payments). The total cash flows for repayment
loans based on the beginning month balance at time t is then, TCF(t) with
monthly rate, m(t):

CDR
DF( , )

( )
.

( / )

= − −
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Prepayment and Default Hazards Over a Monthly
Time Horizon.



TCF(t) = ICF(t) + PCF(t) + RCF(t) + PP(t)

where

RCF(t) = λD(t − ∆)(1 − LS(t − ∆))B(t − ∆),

PP(t) = λP(t)B(t),

where ∆ is the lag (in number of months) between the time properties are
repossessed and sold. ICF(t) is the interest cash flow, PCF(t) is the sched-
uled principal cash flows, RCF(t) is the recovery cash flow associated with
defaulted mortgages, and PP(t) is the unscheduled principal cash flow
from full prepayments. The hazard rates are applied to all of the cash
flows in the equations above in a multiplicative way. Thus, the expected
unscheduled principal payment in month, t, is equal to the beginning
monthly mortgage balance, B(t), multiplied by the hazard of prepayments
taking place in that month. To determine the cash flows in the next month
(t + 1), one must determine the next month’s expected beginning asset bal-
ance as the previous month’s expected balance minus the expected pre-
payments in the period, principal cash flow, and default balance:

E[B(t + 1)] = B(t) − PP(t) − PCF(t) − λD(t)B(t)

In this successive way, future expected cash flows can be generated
for all future months. The cash flows arising from the asset pool are then
dependent on the deterministic and fixed nature of contractual mortgage
loan characteristics (e.g., fixed rate period, interest-only or repayment,
and prepayment penalties and rates), as well as the stochastic nature of
actual prepayments, defaults and losses, denoted by the hazards λD(t) and
λP(t) and LS(t). These stochastic rates lend themselves well to economet-
ric modeling.

Given a large enough performance data set, prepayments can be mod-
eled as the conditional hazard of prepayment given survival at a particular
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month in time following origination. In markets where full prepayments far
outweigh partial prepayments (e.g., the UK nonconforming mortgage
market), this can be modeled as a binary event.

Suppose that the probability of full prepayment for loan i ∈{1, . . . , N},
conditional on survival up till month, t − 1, is denoted by λPi(t), in month t
after completion, and that this is modeled using the logistic function:

The likelihood function for a single loan can be computed as:

where T is the last possible monthly observation. It is fairly straightfor-
ward to extend this to all loans in a sample to determine the log-likelihood
function of the data set. Such a model can easily be estimated using a sta-
tistical package such as SAS or S-Plus. The academic literature on such
econometric models is vast, largely in the context of U.S. mortgages [see,
e.g., Deng et al. (2000) among others as well as references therein]. Less
effort has been devoted to econometric modeling of defaults and prepay-
ments of European mortgages. The most statistically significant variables
in such models vary by European ABS market.

The covariates themselves fall into a number of broad categories:

♦ Seasoning variables: In most prepayment models, mortgagors
are less inclined to prepay in the first few months than later in
the life of the mortgage loan. There may be other dependencies
over time and these may relate to structural features of the loan.

♦ Obligor-specific: This includes whether the borrower is single/
married/widowed as well as the mortgagor’s past payment
behavior. Bespoke credit scores may also play an important role
in predicting prepayments.

♦ Loan-specific: This can include the LTV ratio, which effectively
determines the loan’s leverage, as well as the term and the
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presence of any prepayment penalties. These latter features are
often found to play a profound role in determining prepayments
because of the economic incentives that may exist. The loan
purpose may often play a significant role in predicting prepay-
ments, whether the loan is used to finance an investment prop-
erty or for a mortgagor to be the owner-occupier. The rate on the
loan also plays an important role in determining rate incentives
for prepaying.

♦ Macroeconomic variables: This includes house prices, unemploy-
ment rates, inflation rates, and, crucially, market interest rates.
The dependence on these rates varies significantly by jurisdic-
tion. For fixed rate mortgages, the rate incentive is important in
predicting prepayment behavior. If rates rally following origina-
tion of a fixed rate mortgage loan, borrowers have a higher
propensity to prepay, all things equal. Conversely, in a sell-off,
mortgagors are less incentivized to re-finance their mortgage.

The first three categories are usually fixed for the life of the mortgage
loan, or vary in some deterministic way (e.g., loan term or remaining bal-
ance). The last category of variables, however, evolve in a stochastic man-
ner and lend themselves well to this type of modeling. Alternatively, by
making specific assumptions on each of these variables, the resultant cash
expected flows can be computed under that particular scenario. There is
a vast literature on pricing LIBOR market models (see, e.g., Brace et al.,
1997) and by running many simulations with such an interest rate model,
prepayments on a pool of mortgages can be generated for many possible
states of the world.

The covariates themselves may assume quite complex functional
forms, such as polynomial functions or nonparametric kernel functions.
Another popular approach is the use of cubic splines, which produce a
smooth dependence of prepayments on the underlying covariate, while
capturing the nuances of this dependence. As in all other univariate mod-
eling, the danger of over-fitting is always a concern and these more com-
plex functional forms must be tempered with an awareness of this
potential problem.

As in the case of prepayments, one can create loan level models of
defaults, provided there is sufficient performance data, including a suffi-
cient number of defaults. If there are insufficient defaults in a mortgage
data set, one may have to resort to using a more conservative default def-
inition and adjust the model for loss severities to account for the higher



default rate. One possibility, e.g., is to model the probability of a loan
being 90 or 180 days or more down at a particular month after origina-
tion. This definition of default fits well with the regulatory framework in
most countries, as the Basel II Accord specifies this default definition. The
problem with this definition, however, is that 90 or 180 days past due may
not technically or historically be a fully absorbing irreversible state. Thus,
the modeling of loss severities will need to take this into account by being
conditioned on loans being 90 days down. This will introduce a large
cohort of cured mortgage loans, which have zero loss. Analysis of mort-
gage transition matrices is indispensable in informing such modeling
decisions. Low transition probabilities from high delinquency states to
lower delinquency states suggest that using a more conservative default
definition is less likely to be problematic. In other words, credit curing is
not very common and so 90 days past due is generally a robust measure
of default.

As in the case of prepayment modeling, statistical models of default
may depend on macroeconomic variables, such as house prices and rates.
By simulating these variables through separate stochastic models, credit
risk volatility can be introduced and evaluated in the context of portfolios
of mortgage loans.

The above paragraphs have discussed modeling mortgage prepay-
ments and defaults as competing hazards. In other words, there are only
two events that can lead to mortgage termination with the former being
the decision of the borrower, and the latter the decision of the originator.
Another broad modeling approach for mortgage is to model the full tran-
sition behavior of mortgages through finer arrears states. This involves
modeling the probabilities of transitions one typically sees in a monthly
mortgage transition matrix. The disadvantage with this approach, how-
ever, is that estimation can be tricky if the performance data is limited and
the implementation is more cumbersome. With 300 months for a 25-year
mortgage loan one would have to calculate 300 transitions per mortgage
loan to generate cash flows, as described earlier. Fortunately, mortgage
arrears transition matrices are more sparse than other matrices, such as
credit rating transition matrices, as barring prepayments and defaults; the
maximum downward migration in any monthly period can only be 30
days of more arrears.

Figure 12.6 shows a typical mortgage transition matrix. In this matrix,
each row corresponds to the initial state of a mortgage loan. These states
include: {clean, 30 days past due, 60 days past due, 90 days past due, . . . ,
default, prepayment}. The columns correspond to the final mortgage state
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over the course of a month. The last two columns and rows correspond,
respectively, to defaults and prepayments. Since prepayments and
defaults are fully absorbing states, the rows corresponding to these have
100 percent probability of remaining in those states.

The leading diagonal, pii, is the probability of a mortgage loan start-
ing the month off in a state and remaining in that state. The upper diago-
nal corresponds to the probability of migrating to a worse credit state
over the course of a month. Thus, p23 corresponds to the probability that
a mortgage loan goes from being 60 days down to 90 days down over
a monthly period. The final two columns are the monthly hazards of
the default and prepayment, respectively, starting the month at each of
the initial states.

ABS Valuation

Since every deal is uniquely structured based on the underlying asset
pool, there is no commonality across structures. However, certain features
are similar across many deals. In view of the bespoke nature of the struc-
tures, the next part of this chapter is dedicated to analyzing a particular
Dutch residential mortgage-backed transaction. This analysis will high-
light some of the most common structural features, as well as their impact
on valuation. It should be stressed that the liability side of ABS transac-
tions are for the most part deterministic and pre-determined at the time of
structuring. Thus, the main source of uncertainty in terms of the perfor-
mance of bonds has to do with the asset risks that were discussed earlier.
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Mortgage Monthly Arrears Transition Matrix.



The BS structures usually have a combination of the following
sources of credit enhancement:

♦ Senior/subordinate bonds: credit enhancement is provided by
more junior tranches in the transaction by structurally forcing
them to take earlier losses from the asset pool.

♦ Over-collateralization: the notional amount of assets may be
larger than the notional of bonds issued. In stressed loss scenar-
ios, there are more assets which can be drawn upon to repay
interest and principal.

♦ Monoline wraps: large monoline insurers may guarantee the
interest and principal payments of senior tranches in transac-
tions, thereby giving extra strength to the deal.

♦ Excess spread: this is the remaining interest after all tranches
have been paid off and losses incurred and provides the first
line of defense in most transactions.

♦ Reserve funds: these typically correspond to a percentage of
the total deal size of the transaction. They may be funded in
full at origination, or be built-up through excess spread over
the life of the transaction. In many cases, this fund amortizes
over time.

Many European residential mortgage securitizations have a sequential
principal structure which reverts to a pro-rata structure. In this arrange-
ment, all principal from the asset side is first used to pay down the prin-
cipal on the most senior tranche. When a certain pro-rata trigger is met
(e.g., the remaining bond balance on the most senior note reaches a frac-
tion of the original amount), the entire deal reverts to a pro-rata pay down
of the notes. Principal is paid down on a pro-rata basis across all notes.
Interest is first used to pay the AAA class and then the AA class, and so
on. If there is a shortfall in any note, the shortfall is registered in that
class’s PDL. This then becomes senior in the waterfall and is paid off by
successive interest payments.

The Bloomberg screen shot (source: Bloomberg L. P.) in Figure 12.7 sets
out the transaction structure of the Dutch MBS X transaction (deal priced
on March 27, 2003), which has quite a few features discussed earlier. The
deal included five tranches: a AAA bond (the A class), a longer-life AA
bond (the B class), a A bond (the C class), a BBB bond (the D class), and,
finally, a BB bond (the E class). The transaction first pays down principal
on the A class up to a pro-rata trigger.
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An interesting way of analyzing the tranches in this deal is by pric-
ing the bonds at different conditional default rates (CDRs) with prevailing
market discount margins. Figure 12.8 shows a table of each bond priced
at a CPR of 15 percent, a recovery rate of 85 percent, and a recovery lag
of 12 months, with variable default rates. Starting with a CDR of 75 bps,
the bonds increase in value going down the capital structure. Since sub-
ordinate bonds have larger coupons and the scenario in the first column
is quite mild, the most subordinate bonds receive almost all of their
principal and interest. As the default scenarios become more adverse,
each of the bonds are eventually affected, with the exception of the AAA
bond, which is still quite resilient even in the 25 percent CDR scenario.
Going down the capital structure, the bonds break at lower CDRs, as
one would expect given the decreasing rating levels. Even at very low
default levels of 0.75 percent CDR, the E floater bond breaks.

The default rate also has a second-order impact on the weighted
average life (WAL) of the bonds. As defaults rise, a larger amount of the
mortgage balance amortizes away through the effect of prepayments and

F I G U R E 1 2 . 7

Bloomberg Deal Summary of Dutch X Transaction.
(Bloomberg L. P.)



defaults. Thus, as default rates increase, the weighted-average life of the
bonds decreases.

A shortcoming of this approach to valuation is that each scenario
is merely a point projection of performance. In reality, there is scope for
substantial volatility in realized default rates, losses, delinquencies, and
prepayments.

ABS Default Correlation and Tail 
Risk Scenarios

An important feature of the rating process is to set rating levels based on
highly stressed scenarios. The AAA rating on ABS bonds is an indication
of the bond’s resilience to the most extreme scenarios. Thus, the AAA rat-
ing corresponds implicitly to the ability of the bond to withstand losses
up to a certain confidence level among all possible states of the world.
There may be some states of the world (with extremely low probability)
where even a AAA bond could take a loss. The field of credit portfolio
modeling and default correlations allows such extreme tail risks to be
quantified. It is only natural that prices of cash ABS bonds should reflect
to some degree the tail risk inherent in ABS structures.

A useful starting point for portfolio credit risk in ABS is the popular
1-factor Gaussian copula model by Vasicek (1997). This model provides a
good description of portfolio credit risk when the underlying pool of
assets is very large with relatively small loan sizes. The Vasicek model
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Bonds Rating
(Fitch/Moody’s)

Pricing Spread
(bps)

CDR 0.75% CDR 2.5% CDR 5% CDR 10% CDR 25%

A floater AAA/Aaa 11.5 100.5 100.5 100.5 100.4 97.3

B floater A/A2 26 101.6 101.6 101.6 59.0 12.7

C floater BBB/Baa2 52 102.8 102.8 38.0 15.4 8.6

D floater BB/Ba2 325 101.5 41.6 22.8 14.4 8.4

E floater B/B1 750 91.6 36.8 26.3 14.7 11.7

(3m   + 28 bps)

(3m   + 70 bps)

(3m   + 130 bps)

(3m   + 370 bps)

(3m   + 875 bps)

F I G U R E 1 2 . 8

Dutch X Transaction Bond Pricing at 15 Percent CPR
and with Recoveries of 85 Percent and a 12-Month
Lag between Default and Property Sale. (Lehman
Brothers, European Structured Finance Research)



corresponds to the limit where the pool of assets becomes infinite in num-
ber and the asset size becomes infinitesimally small. The probability den-
sity function of the Vasicek formula is as follows:

where x is the actual proportion of losses, p is the unconditional default
rate, and ρ is the asset correlation. This distribution is skewed and fat-
tailed, as can be seen in Figure 12.9, for a typical parameterization with
mean default rate of 2 percent (i.e., p = 2 percent ) and an asset correlation
of 15 percent (i.e., ρ = 15 percent). The loss profile of a thin tranche
with enhancement levels of 5 percent and 7 percent is also included for
reference.

The asset correlation represents the degree to which individual
returns are correlated with a single systematic factor. The parameter, p,
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Vasicek Loss Distribution
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Vasicek Distribution and Loss Profile for a Tranche,
with a Default Rate of 2 Percent and an Asset
Correlation of 15 Percent.



effectively sets the mean for the distribution of defaults, whereas the asset
correlation sets the amount of volatility in the distribution.

The density distribution above leads to a closed-form solution for
the cumulative distribution function:

And, this may be inverted to give actual losses for different quantile
levels:

where x is the proportion of portfolio losses and α is the quantile level. If,
e.g., α is set to 99.9 percent, then the portfolio losses are equal to the
amount in this formula, with the twin parameters set to typical levels.

The Vasicek model can be used in the context of European mortgage
securitizations to identify the likelihood of certain stressed scenarios. By
setting the mean of the distribution of the Vasicek distribution to the
expected loss from an econometric model and by making some assump-
tions about asset correlations, one can obtain stressed default rates based
on an objective opinion about the state of the world.

One way of determining such stressed scenarios for defaults and
losses is as follows. Suppose one is interested in looking at the 90 percent
quantile level of worst possible credit risk scenarios. One can then take
the mean projected CDR and LS from an econometric model for these two
risks and take their product. This yields a projected curve of annualized
expected losses (even though this does not take into account the effect of
lags between default and property sale, where the loss is finally booked
in the transaction):

EL(t) = CDR(t) × LS(t)

One can then compute the upper quantile annualized loss at each
point in time using the Vasicek formula above. This then leads to the fol-
lowing formula for the adjusted expected loss:
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Keeping the LS at the same original level, the adjusted CDR is then:

Figure 12.10 illustrates an example of this approach using a typical
projected CDR curve for a pool of mortgage loans. Using this methodol-
ogy, one can determine what the valuation is in the worst 75 percent of
states and repeat the valuation of the previous section.

A natural question which arises, however, when using the Vasicek
formula is how one can best estimate the asset correlation. Fortunately,
the analytical form of the Vasicek distribution function lends itself well to
manipulation through maximum likelihood methods. Given a series of
realized actual losses, xi, where i ∈ {1, . . . , M}, one can construct the log-
likelihood of these observations being drawn from the Vasicek distribu-
tion:
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Scenario Based Implied Default Rates
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It can be shown that this log-likelihood function leads to the following
maximum likelihood estimators for the mean default rate, p̂, and asset
correlation, ρ̂, (see Khadem and Hofstetter, 2006 for details):

An attractive feature of these estimators is the fact that they are avail-
able in closed-form and rely only on actual default data. Other approaches
of estimating asset correlations based on actual loss data include Gordy
and Heitfield (2000). The estimation involves estimating the asset correla-
tion in the Vasicek model before the distribution is taken to the asymptotic
limit. This estimation necessitates maximizing the likelihood of a fairly
complex function.

The first expression above allows the specification of bespoke asset
correlations based on historical performance, and this can easily be
manipulated to obtain default correlations:

where the estimators are as included in the previous formulae.
Given a sufficient amount of data from individual quarterly asset-

backed investor reports or other loan data, one may be able to derive
estimates of the asset correlation from the formula above. This, then, gives
an indication of the tail risk in that particular asset class.

Conclusion

This brief part has presented a broad approach used for modeling cash
ABS transactions. Some attention has been devoted to considering credit
volatility and default correlations in ABS. Credit portfolio modeling-

ˆ
( ˆ), ( ˆ), ˆ ˆ

ˆ( ˆ)
,ρ

ρ
D

N N p p p

p p
=

( ) −
−

− −
2

1 1 2

1

N

ˆ
ˆ

( ) .p N
M

N xii

M
=

−







−

=∑1 1
1

ρ

ˆ
( / ) ( ) ( / ) ( )

( / ) ( ) ( / ) ( )
,ρ =

− 





− 



 +

− −
==

−
=

−
=

∑∑
∑ ∑

1 1

1 1 1

1 2 1
1

2

1

1
1

2 1
1

2

M N x M N x

M N x M N x

i ii

M

i

M

i

M

i ii

M

Residential Mortgage-Backed Securities 591Residential Mortgage-Backed Securities 591



techniques are relatively less developed in ABS than in structured credit,
and this represents an interesting area of future research in ABS modeling.
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INTRODUCTION

The concept of covered bonds has existed for about 200 years. This instru-
ment was initiated by Frederick the Great of Prussia (Germany), with the
creation of “Pfandbriefe.” The underlying idea was to help project financ-
ing. Typically, a bank issuing pfandbriefe bonds would be able to collater-
alize the bonds with some underlying assets already on its balance sheet.

In simple terms, a covered bond is a financial product whose creditors
are benefiting from a pledge. This pledge usually corresponds to mortgage
or public sector loans that are on the balance sheet of the issuing bank.

This product has remained a pure German instrument until recently,
with mostly German investors purchasing local pfandbriefe issuance.
Due to the globalization of the Western European economies as well as to
the rising appetite of non-German investors for this kind of very secured
product, other countries have enacted laws to replicate the concept, among
which the French with “Obligations Foncières” or the Spanish with
“Cédulas.” New jurisdictions continue to expand the universe of covered
bonds, with legal and regulatory frameworks being amended to facilitate
this development.

*We would like to thank Karlo Fuchs and Jean-Baptiste Michau for their support and
contribution.
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Apart from Germany, the fastest growing markets at the moment are
the United Kingdom, with its Structured covered bonds, the Netherlands
and, more recently, Italy. In the Nordic countries, regulation has even
widened the scope of the product. Covered Bonds may, for instance, be
collateralized by shipping loans.

PRODUCT CONSIDERATIONS

Structural Aspects

Let us clarify first the distinction between Pfandbriefe-like Covered Bonds
and Structured Covered Bonds:

♦ Pfandbriefe-like Covered Bonds are bonds backed by mortgage or
public sector assets in a well-defined regulatory environment.
Practically, the local Financial Code/Act clearly sets the rules
applicable to the product.

♦ Structured Covered Bonds are issued in jurisdictions where there
is no specifically adjusted regulatory framework. The robustness
underlying this more recent type of product, such as the bonds
issued in the United Kingdom, relies on a pure contractual basis
and on legal opinions related to the case of insolvency of the
issuing bank.

In both cases, the principle is that, upon insolvency of the issuing bank, a
trustee (or administrator) would be appointed to service the registered
cover pool* and that such a pool would be segregated from the other
assets on the balance sheet of the bankrupt bank. One key point to note
here is that all covered bonds issued by a bank benefit from the same
registered cover pool and are ranked pari passu.

Structured Covered Bonds can typically be compared to on-balance
sheet replenishing residential mortgage backed securities (RMBS) and
reference a portfolio of mortgage assets.

Pfandbriefe-like covered bonds can be split into two main segments:
“mortgage-backed” Covered Bonds, which represent about 1/3 of the
global market, and “public-sector backed” Covered Bonds, which repre-
sent the remaining and historically correspond to a large proportion of the
German market (Offentliche Pfandbriefe). However, some jurisdictions
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like France allow for a mix of these two types of assets, such as in the case
of “Compagnie de Financement Foncier.”

The structure and the strength of covered bonds depend on the
jurisdiction of the product. Its guarantee of robustness is usually trans-
lated as the minimum level of overcollateralization required by a given
jurisdiction. In order to support their “AAA” rating, rating agencies also
require that the Covered Bond issuer commits to a minimal level of over-
collateralization and to a reasonable proportion of liquid assets in the
cover pool to face stressful market situations.

Basel II Regulatory Treatment

As this asset class is a purely European one, its capital treatment is dealt with
at the European level in the capital requirement directive (CRD). Terms
employed by the ECB (European Central Bank) 2005 paper (p. 42).

“The covered bonds that meet the CRD requirement are treated as
exposures to banks. The risk weighting is based on the credit standing of
the issuing bank, while at the same time recognizing the effects of the col-
lateral. The collateral is recognized in the form of reduced risk weights
under the standardized approach or in the form of reduced loss given
defaults (LGDs) under the IRB approaches.

Under the standardized approach, covered bonds receive reduced
risk weights based on the weights of senior exposures to the issuer in the
manner described in Table 13.0.”

T A B L E  1 3 . 0

Risk weight of senior exposure to issuer 20 50 100 150

Covered bond risk weight 10 20 50 100

“As regards treatment under the IRB approaches, the EU rules are
fully consistent with Basel II, since a bank’s internal rating system needs
to comprise both a borrower and a facility dimension. Based on the bor-
rower dimension, probability of defaults (PDs) are assigned to exposures,
while the facility dimension underlies the assignment of LGDs. The col-
lateral to which the bondholders have a preferential claim affects the facil-
ity dimension. While Basel II does not encompass any specific rules for
covered bonds, the collateral of the bond would lead to a reduced LGD if
the bank was able to get supervisory approval for an estimate of this col-
lateral effect under the advanced IRB. Under the foundation IRB, such
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covered bonds may receive a reduced supervisory LGD of 12.5 percent.
The advanced IRB would require the investing bank to use its own LGD
estimates for covered bonds. Under both the foundation and advanced
IRB, the risk weights continue to depend also on the PD of the issuer.”

Market Considerations

As of today, there are about m2 trillions covered bonds outstanding
(including Structured covered bonds), with a yearly issuance of about
m200 billions (see Table 13.1). This makes it the second largest and homo-
geneous bond market after sovereigns. These ever-growing volumes
demonstrate investors’ appetite for this high credit quality product.

The market should continue to grow in the foreseeable future, as
more and more mortgage or public sector lenders are looking for cheap
financing, in a competitive environment where spreads on the loans they
grant tend to shrink and with an increasing number of investors looking
for highly secured instruments with low capital charge requirement. The
growth of the market is fuelled, in addition, by the use of these assets,
paying a coupon of roughly flat Euribor, as a funding collateral in struc-
tured finance transactions such as CDOs.
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T A B L E  1 3 . 1

European Covered Bond Issuance in 2005

Issuance (2005 approx.) 
Country Type* (mbillion)

Germany R 138

Spain R 35

France R 17

United Kingdom NR 7

Luxembourg R 6

Italy R 4

Switzerland R 2

Netherlands R 2

Other (Austria, Belgium, Czech Rep.,
Hungary, Ireland, Portugal) R/NR 1

Total 212

*R = Regulated (Pfandbriefe-like), NR = Nonregulated (Structured)
Source: European Securitization Forum, Rating Agencies



Almost all European countries have now set up a covered bond reg-
ulation, with the noticeable exception of the United Kingdom. The latest
country to have adopted such a regulatory framework is Italy with state-
owned Cassa di Depositi e Prestiti having set up a m20 billion program in
March 2005.

Market Momentum
The current market trend is around Jumbo issuances, i.e., issuances with a size
typically exceeding m1 billion, and where the issuing bank and the arranger
commit to market making in order to ensure liquidity. This corresponds to a
change as until a recent past most of the issuances where small private deals.

Spanish issuers are the most active in this area of public, high-volume,
issues tapping a wide range of investors. According to the European secu-
ritization forum, Spain has been overwhelming Germany recently, with
about m55 billion new Jumbo issuances, compared to a mere m50 billion for
Germany.

The size and liquidity of the covered bond market is now such that
some investment banks like J.P. Morgan-Chase have started offering
Pfandriefe CDSs.

As already mentioned, the CDO market directly benefits from the
growth of the covered bond market, with the increasing use of the prod-
uct as a funding collateral to guaranty the payment of contingent claims
arising from defaults in the underlying CDO portfolio.

MODELING RISK IN COVERED BONDS*

In this section, we review the quantitative methodology that underpins
the rating process at Standard & Poor’s (S&P).

As already mentioned, a covered bond is a debt instrument typically
issued by a bank and overcollateralized by sound assets such as residential
mortgage loans or loans to the public sector. If the issuing bank is publicly
committed to maintaining the overcollateralization levels commensurate
with target rating specific stress scenarios, S&P is usually able to assign a
rating to the transaction. This rating can be significantly higher than, and
delinked from the counterparty issuer credit rating, further enhancing the
appeal of the market.†
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S&P has used proprietary models to analyze the quality of pools of
assets and the adequacy of cash flow structures for several years. The
improved transparency, which the products such as CDO Evaluator and
CDS Accelerator have provided to participants in the CDO market, has
led S&P to offer the issuer a product Covered Bond Monitor (CBM)—a
core analytical tool used in the analysis of covered bonds.

Currently, CBM is used to perform the quantitative analysis of cov-
ered bond programs in Germany, Denmark, France, Ireland, and
Luxembourg. It will also be used for upcoming Scandinavian covered
bonds.

The quantitative piece of the analysis of a covered bond can be
broadly split into two parts:

♦ A credit quality analysis performed by S&P analysts, which
results in the determination of the default and recovery
assumptions applicable to the pool of the assets of the covered
bond transaction.

♦ An analysis of the strength of the structure under these default
and recovery assumptions as well as under interest and foreign
exchange rate stresses. This analysis leads to the assessment of
whether the covered bond is strong enough to withstand these
stresses, and may obtain the target rating.

This technical section deals with the latter part of the analysis and pro-
vides interested parties with further information on the advanced details
of CBM. CBM aims to offer maximum transparency to the market. It con-
sists of three parts. Firstly, an explanation of how the model simulates
interest and foreign exchange rates. Secondly, details of how the default
risk on the asset side is factored in. Finally, the quantitative rating
eligibility test itself.

Interest Rate and Foreign Exchange 
Rate Simulation

Covered bonds are typically issued by banks whose main activity is mort-
gage lending or public sector financing. In contrast to securitization trans-
actions like RMBS, covered bonds programs are “on-balance sheet”
instruments, collateralized by mortgages and/or public sector assets. Based
on its experience, S&P has observed that despite the regulatory and legal
frameworks in place, covered bonds can be exposed to significant liquidity,
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currency, interest rate (fixed–floating) as well as to duration mismatches. It
is important to understand how robust structures would be under these
stresses. This is the focus of S&P quantitative analysis during the rating pro-
cess. In this context, interest and foreign exchange rates scenario modeling
is an important constituent of the CBM.

Simulation Methodology*
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Technical specification

Interest rates and foreign exchange rates are treated jointly, in
a similar way. The vector of their logarithms follows a mean-
reverting model of the form:

d ln(it) = (a − b ⋅ ln(it))dt + σ dWt, (1)

where σT σ = Ω is the instantaneous, stable over time (homoscedas-
tic), covariance matrix.

The rates are constantly pulled towards a pivotal value of ea/b.
The Monte Carlo simulation is based on a simplified version:

(2)

where Nt is the vector of disturbances.

˜ ˜ exp ( ˆ ˆ ln(˜ )) ,i i a b i t N tt t t t t t= − +[ ]− −∆ ∆ ∆ ∆

Figure 13.1 gives an illustration of a possible path generated under
the modeling for interest rates.

(i0 = 2.11 percent, b = 0.001, a = b ln(i0), and Ω = 0.002213)

Interest and foreign exchange rates clearly exhibit a lower boundary
at zero due to the logarithmic specification in Equation (1). However there
is no upper boundary embedded in the model. Consequently, S&P intro-
duces criteria-based upper boundaries corresponding to those used in
other areas of structured finance† at S&P, shown in Table 13.2.

*Because the objective is to model the behavior of rates over a very long horizon, up to the
next 50 years, the choice has been made on purpose to prioritise robustness over complexity.
In particular we neglected the sigma square term coming from the Ito lemma.
†Especially regarding RMBS transactions criteria.



Model Calibration
This mean-reverting model corresponds to a simple parametric set up.
Once this model is selected, the second step is the estimation of the
parameters.*

In order to find the most robust calibration results, two well-
established methods (described in Appendix B) are simultaneously
used:—maximum likelihood (ML) and the method of moments.

600 CHAPTER 13

F I G U R E 1 3 . 1

Simulation of the Euro Interest Rate over 200
Quarters (50 Years).

X axis: number of
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level
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*In order to improve the characteristics of the data with respect to the specification of mean
reverting models, a polynomial smoothing of the past time series of interest rates and for-
eign exchange rates is being performed. This fit increases stability in the rating process over
time.

T A B L E  1 3 . 2

Country/Region Upper Interest Rate Boundary (%)

Eurozone 12

United States 18

Japan 8

Switzerland 12

Other countries 18



Following extensive econometric work, the following conclusions
were reached:

♦ The results suggest that the pivotal interest rate, i
−
, should be

estimated by the method of moments.
♦ The simplest way is to use the ML technique to estimate b.
♦ The instantaneous variance (Ω) is estimated by ML, which pro-

vides accurate estimations. It is easy to compute the variance
with ML once i

−
and b have been estimated.

Definition of the Deterministic Default 
Rate Patterns

The asset side of any covered bond program is based on securities that are
subject to credit risk; typically mortgage loans and/or loans to public enti-
ties. In CBM a stress, corresponding to a recession period, is applied to the
asset pool in the form of defaults occurring in the first years of the trans-
action. The level of default is defined as a result of an analytical process
performed by S&P analysts.* The timing of default is hard-coded in the
CBM in a way that gives maximum consistency with other transactions
rated by S&P with similar asset classes.

♦ If the assets underlying the covered bonds are mortgages, the
standard default patterns for RMBS are used. The length of
recession is typically three years, and there are two scenarios, as
shown in Table 13.3.

♦ If the underlying assets are public loans, cash CDO-like default
patterns are used. The length of recession is five years, and there
are four scenarios, as shown in Table 13.4.
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*For any targeted rating, a required asset default rate d is specified; it is determined using
Standard & Poor’s proprietary models like CDO evaluator or RMBS analyzer.

T A B L E  1 3 . 3

Default Patterns for Mortgage Assets

Recession month 1 6 12 18 24 30 36

Fast default (%) 30 30 20 10 5 5 0

Slow default (%) 0 5 5 10 20 30 30



This structure allows CBM to communicate under which pattern an over-
collateralization breach* would be observed. From a user perspective this
solution increases the visibility on the cover pool of sensitivities to vari-
ous default scenarios.

The quantitative rating eligibility test is performed based on a
“pass” result on all scenarios and/or patterns.

The Quantitative Rating Component 
of the Model

(Terms used in this section are explained in a detailed glossary—see
Appendix A.)

Description of the Architecture

The Quantitative Rating Eligibility Test S&P approach
assumes that the covered bond is independent from the credit strength of
the issuer,† and that in order to obtain a given level of rating it must, in
particular, pass a proper quantitative rating eligibility test. The principle
behind the test is that regardless of the environment, the level of assets
should be sufficient to cover liabilities. This means that the probability of
a loss event should impact bondholders only beyond the confidence level
corresponding to the related rating level.
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T A B L E  1 3 . 4

Default Patterns for Public Loans

Recession year 1 2 3 4 5

Pattern I (%) 15 30 30 15 10

Pattern II (%) 40 20 20 10 10

Pattern III (%) 20 20 20 20 20

Pattern IV (%) 25 25 25 25 0

*Over-collateralization breach, see Appendix A for a definition.
†Provided that the issuer servicing capabilities are sufficiently robust to avoid operational
and moral hazard risk becoming a major rating driver.



In order to determine the rating of a covered bond program, the
model focuses on the effects of interest, foreign exchange rates, and
default rates on the cash flows generated by the default table assets, net
of the cash outflows scheduled for the liabilities. The drivers for cash flow
generation are amortization of the principal (both on the asset and liabil-
ity sides), fixed coupon payments, and floating coupon payments (split
between a risk-free and a spread component).

The quantitative rating eligibility test can be summarized as follows:
a target rating, e.g., “AAA,” is defined by the issuer. Given the average
maturity* of the transaction, e.g., five years, a corresponding cumulative
default rate is deducted from S&P default tables, in this case is 0.28 per-
cent. A rank ordering of the final net cash balance scenarios generated,
conditional on the realization of interest and foreign exchange rates is per-
formed. A specific focus is set on that 0.284 percent worst scenario. If the
corresponding final net cash balance is positive, the deal will be likely to
receive an “AAA” rating. If the net cash balance is negative, this means
that the covered bond transaction does not meet the required target rating
eligibility level, from a quantitative view. To remedy this situation, issuers
have the option of providing more collateral on the asset side. If the final
net cash balance is positive, the rating process can move ahead to the
more qualitative aspects.

Impact of the Specification of the Asset Default Rate At each
period,† the cash flows generated by the assets are triggered by the default
patterns defined in the section “Definition of the Deterministic Default
Rate Patterns” and decreased by the cumulative default rate, which
increases through time up to the target value (during the length of
recession period). Liabilities are not affected by defaults.‡

Default leads to two opposite effects:

♦ It reduces the security cushion of the transaction. If, for instance,
the default rate at the period under consideration is 10 percent,
the cash flows on the asset side will be equal to 90 percent of
what they were planned to be.
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†In the model, a period corresponds to a quarter.
‡See specific presentation on the impact of default on assets.



♦ In contrast, recovery is subsequently inflating asset cash flows
with a time lag driven by a “time to recovery.” The level of
recovery equals a defined proportion of the amount that has
defaulted. Different recovery rates are specified for the principal
and the coupons. For example, if in a given period t, there is a
10 percent default on a principal amount of m1500 million, a
fixed coupon of m400 million, and a floating coupon (based on
initial interest rate, i0, i.e., EURIBOR) of m75 million; then with a
“time to recovery” of two years and with a respective recovery
rate of 75 percent, 50 percent, and 50 percent, the amount of
recovery that will take place two years later is:

where i
~

t is the simulated interest rate at t.

The Impact of Interest Rates Unlike default rates, interest rates have
an impact on both the assets and the liabilities. They are modeled using the
technique described in the section “Interest Rate and Foreign Exchange
Rate Simulation.”

The input data reported by issuers typically assumes that the float-
ing component of the cash flows corresponds to a constant risk-free inter-
est rate index level over the life of the bond (e.g., EURIBOR = 2 percent).*
The model adjusts to each of these quarterly floating contribution to the
cash flows, on both the asset and liability sides, by using the Monte Carlo
simulated interest rate rather than the initial “frozen” value. For example,
if in the cash flow schedule reported by the issuer, the risk-free index com-
ponent of the floating interest amounted to m100 and the initial interest
rate was 2 percent, then with a simulated interest rate of say 3 percent the
floating interest that has to be repaid would become m150.

The risk-free interest rate is also a component in the liquidity risk
adjustment mechanism. It is used in order to determine the reinvestment

R = * * + * *

+ * * *

t+( 2)

0
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˜
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i
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t

604 CHAPTER 13

*An accounting approach is considered here, which contrasts to a forward approach that
would have based the planned repayments on forward interest rates.



rate of the cash balance. In the model, there is a reinvestment margin over
the simulated risk-free interest rate if the cash balance is positive and a
borrowing margin if it is negative. The margins embedded in the model
are −50 bps and 100 bps, respectively.

The Impact of Foreign Exchange Rates Foreign exchange rates
are simulated in a similar way, and in conjunction with interest rates.
They are only used to convert the cash balances into the pool’s working
currency, typically euros. When there are periodic non-euro deposits,
then cash balances are transformed into euros at the end of each
quarterly period, using the simulated foreign exchange rate for that
period.

The Quantitative Rating Eligibility Test Once all the
simulated cash flows generated by assets and liabilities have been com-
puted, the model generates the final net cash balance corresponding to
each realization of the foreign exchange/risk-free interest rates. If it is
negative, the covered bond is considered to be in default. In order to get
to this final net cash balance, the model computes for each simulation the
evolution over time of the cumulative cash balance. It then counts the pro-
portion of iterations that end up with a negative final cash balance. If this
proportion is smaller than the default rate tolerated for the targeted rating
level, then the covered bond passes the quantitative rating eligibility test.
In the example given in Figure 13.2, the final cash balance at the required
percentile is positive, therefore the covered bond passes the test. Clearly,
the percentile is lower for higher ratings and accordingly, the tolerance in
the number of failing runs is lower.

Additional Features

Treatment of Recoveries

♦ Mortgage assets

As soon as a default occurs, recovery impacts the entire value of
the mortgage loan (on the asset side) that was affected by the
default.

To illustrate this point, let At, Pt, and ct denote the out-
standing asset, the principal repayment and the cumulative
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default rate at time t, respectively. Let r be the recovery on prin-
cipal. S&P assume that the time to recovery and the length of
recession are two years and four years, respectively. Table 13.5
summarizes the treatment of default and recovery in the cov-
ered bond model.
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F I G U R E 1 3 . 2

Total Cash Balance Through Time in Euros.
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Quarter
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Cash, in Euro

Mean

Rating Percentile

Unstressed Total Cash Position Through Time (in Euro)

−6,000,000,000

T A B L E  1 3 . 5

Treatment of Defaults in the Covered Bond Model 
for Mortgage Assets

Period Outstanding Asset Principal Repayment Recovery

1 A1 (1 − c1) P1 (1 − c1) 0

2 A2 (1 − c2) P2 (1 − c2) 0

3 A3 (1 − c3) P3 (1 − c3) rA1c1

4 A4 (1 − c–) P4 (1 − c–) rA2 (c2 − c1)

5 A5 (1 − c–) P5 (1 − c–) rA3 (c3 − c2)

6 A6 (1 − c–) P6 (1 − c–) rA4 (c–− c3)

7 A7 (1 − c–) P7 (1 − c–) 0

8 A8 (1 − c–) P8 (1 − c–) 0

9 A9 (1 − c–) P9 (1 − c–) 0

10 0 0 0

11 0 0 0



♦ Public sector assets

Public sector issuers often rely on some support from other
government levels and ultimately on the tax base in the con-
cerned country. S&P therefore considers that a default would
not usually result in an ultimate loss of principal, but that pay-
ments, including arrears, would be resumed after a certain
period of time. For public sector issuers S&P assumes that
recovery rates would be close to 100 percent, although interest
rate conditions may be renegotiated after default. An example
is shown in Table 13.6, with a two-year time to recovery and a
four-year recession.

As a result, S&P focus on the redemption cash flows,
rather than on outstanding assets and liabilities for mortgage
pools. However, the net effect for both is largely similar. In ear-
lier periods of the remaining life of the pool, cash inflows are
lower than planned, owing to payment delays occurring. Later
on, most of these amounts are recovered so that in particular for
public sector assets simulated cash inflows could even be higher
than planned.
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T A B L E  1 3 . 6

Treatment of Defaults in the Covered Bond Model
for Public Sector Assets

Outstanding Principal Current 
Period Asset Repayment Recovery

1 A1 (1 − c1) P1 (1 − c1) 0

2 A2 (1 − c2) P2 (1 − c2) 0

3 A3 (1 − c3) P3 (1 − c3) rP1c1

4 A4 (1 − c–) P4 (1 − c–) rP2c2

5 A5 (1 − c–) P5 (1 − c–) rP3c3

6 A6 (1 − c–) P6 (1 − c–) rP4c
–

7 A7 (1 − c–) P7 (1 − c–) rP5c
–

8 A8 (1 − c–) P8 (1 − c–) rP6c
–

9 A9 (1 − c–) P9 (1 − c–) rP7c
–

10 0 0 rP8c
–

11 0 0 rP9c
–



Early Repayments on the Asset Side

♦ Repayments on mortgages

Borrowers often choose to repay their debts ahead of the sched-
ule specified in their contract. Stressed early repayments are
usually specified as a fixed proportion of the nominal outstand-
ing assets. For instance, if this rate is set at 20%, then 20% of the
current nominal outstanding assets will be added to the planned
repayments each year until the debts on the asset side are fully
refunded. More formally, let At and Pt be the reported nominal
outstanding asset and principal repayment at time t, respec-
tively. Let A

~
t and P

~
t be their corresponding values after the

stresses have been applied. Finally, r denotes the early repay-
ment rate. Practically:

With initially A
~

1 = A1. The minimum function is used to
ensure that the amount repaid cannot be larger than the out-
standing debt. Consequently, we also have:

As can be seen from Figure 13.3, repayments initially
increase because of prepayments; however, as the refunding of
the outstanding assets occurs earlier, repayments eventually
decrease.

Early repayments tend to reduce the duration of the
assets, and could compress yields. As it is dependent on the
liability structure, the effect of the inclusion of this extra fea-
ture may, or may not, prove more stressful. The quantitative
rating analysis is indeed based on a realistic worst-case
approach between the scenarios with and without early repay-
ments. Note that S&P has published criteria that define differ-
ent early repayment rates. They tend to be jurisdiction specific.
The objective with the CBM is to keep the approach simple; as
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a consequence, the value retained in the model corresponds to
a weighted-average of the appropriate prepayment rates.

♦ Prepayments on public finance

Public finance assets are typically not exposed to prepayment
risk; so early repayment is usually not factored into the analysis.

Servicing Fees The liquidity stress included in the model implic-
itly assumes that the parent bank can go out of business and that the rat-
ing is performed on an extinguishing cash flow profile. It is therefore
reasonable to include servicing fees that represents the management cost
of the structure issuing the covered bonds. These fees typically correspond
to a fixed proportion of the nominal outstanding assets that should be sub-
tracted each period from the cash balance. If s denotes the servicing fee per
year expressed as a percentage, and At the outstanding assets at time t,
then the servicing fee that has to be paid at quarter t equals (s/4)* At.

MacroSwaps Issuers often buy swaps to hedge interest rate and
currency risk, e.g., by converting a flow of fixed interests into floating
interests. In the case of macroswaps, i.e., where the notional of the swaps
is expected to follow, albeit imperfectly, the dynamics of the asset, two
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Principal Repayment of Assets.
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T A B L E  1 3 . 7

Example of Pre Swap and Post Swap Reporting on the Asset Side

Preswap reporting Postswap reporting Difference

Fixed

Floating

Fixed

Floating

Fixed

Floating

interest

interest

interest

interest

interest

interest

Quarter Index Spread Index Spread Index Spread

1 225 110 2 110 198 3 −115 88 1

2 200 98 1.9 90 182 2.9 −110 84 1
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types of risks can arise:

♦ On the positive side, the swaps modify and usually reduce the
exposure of the bank to interest rate risk; and

♦ On the negative side, because of defaults on the asset side, the
notional of the swap will turn out to only match the underlying
exposure approximately and will accordingly put the covered
bond transaction at risk.

The input data received by S&P from covered bond issuers does not typ-
ically include the detail of the swap contracts in which the issuers are
involved with respect to their covered bond programs. Issuers generally
provide a pre swap ALM (Asset Liability Management) report (before the
effect of swaps is included) and a postswap ALM report (after the effect
of swaps is included). Assuming these swaps are in compliance with S&P
criteria, the difference between the two reports gives the net series of
exposures that has been swapped, including fees. This series is sensitive
to interest rate fluctuations, however, it is not sensitive to the occurrence
of defaults, as swap contracts are not subject to the realization of events
affecting the covered bond asset pool. The easiest way to model the effect
of these macroswaps is therefore to add the difference between the
postswap and the pre swap reports to the existing liabilities.

Table 13.7 gives an example of pre swap and postswap reports on
the asset side. In the first quarter, the bank has swapped m115 of fixed
interests into m89 of floating interests [split between m88 risk-free (index)
and m1 spread]. As can be seen in the table, the net effect of the swap can
easily be identified by observing the difference between the two reports.*
Obviously, the value of the risk-free floating component, and therefore the
cost of the swap, will be affected by interest rate changes. This explains
why each column should be treated separately.

After the realization, i
~

i, of the simulated interest rate has been
applied to the risk-free rate component, the impact of the swap can be
computed.

For example, in quarter 1, this cost is:

− + +115 88 11

0

˜
.

i

i
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Similarly in quarter 2, the cost of the swap is:

This cost should be added to the preswap net cash flow of the cor-
responding period. Denoting Kt the cash balance and cft the net cash flow
(preswap) at time t, we have for quarter 1:

An easy way to take the cost of swaps into account is to add it (see
Table 13.7, column 3) to the preswap liabilities. The reason why the cost
of macroswaps is included to the preswap liabilities rather than to the
assets, is a practical one. It is to ring-fence it from the occurrence of
defaults. By including it in liabilities, it will be affected by interest rate
changes, but not by the default rate patterns.

Communication of Results
CBM focuses on the value and sign of the final cash balance based on the
assets and liabilities after the different stresses have been applied in order
to help S&P analysts be able to assign a rating.

In order to improve transparency and communication, Standard and
Poor’s is careful to articulate results according to the terminology used by
covered bond issuers.

Issuers typically target an “AAA” rating for their covered bond pro-
grams. They are usually interested to know what collateral margin is
needed to secure this rating or to know the quantity of extra assets they
need to add or remove as collateral during the life of the transaction in
order to maintain the initial rating level (see definition of the break-even
portfolio in Appendix A).

Issuers also communicate on their unstressed schedule of assets and
liabilities. S&P therefore provides relevant reporting in this respect.
Market participants typically focus on two key parameters, one regarding
their level of current overcollateralization and another one regarding the
duration gap between assets and liabilities.

♦ Overcollateralization: Issuers are increasingly communicating
with the market and the rating agencies in terms of collateral
surpluses defined as overcollateralization. Communication can
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either be provided in terms of a nominal overcollateralization or
in terms of a net present value (NPV) overcollateralization (see
glossary in Appendix A for the definition of terms).

♦ Duration: Duration is an important communication element as
there is increasing focus from customers and regulators on the
duration gap.

Identifying the Break-even Portfolio with an
Overcollateralization Focus From a S&P perspective a crit-
ical point is to evaluate how far, from a quantitative point of view, the
structure is from the break-even portfolio corresponding to the rating
level in consideration. Given the initial reporting provided by the bank,
there are two simple ways of getting to (and communicating on) the
break-even portfolio. One can either initially add or subtract cash, or alter-
natively, increase or decrease proportionally the amount of assets owned
by the bank.

♦ Initial cash

There are several ways of communicating the break-even pool.
First the model gives the initial amount of cash that could be
withdrawn (or that needs to be added) such that the rating is
just secured. Let Kt, it, and cft be the cash balance, the interest
rate (risk-free interest rate plus bid/ask margins*) and the net
cash flow (flow of assets minus flow of liabilities) at time t,
respectively.
We have:

Kt = (1 + it)Kt − 1 + cft

As the interest rate it comprises borrowing and reinvest-
ment margins that depend on the sign of Kt − 1, it requires some
calculation effort to obtain the initial amount of cash that could
be withdrawn from the final cash balance, KT .

♦ Proportional increase or decrease of assets

The other way to communicate on the break-even pool is to give
the proportion by which the nominal outstanding assets and the
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~

t + 1% ⋅ I{Kt − 1 < 0} − 0.5% ⋅ I{Kt − 1 ≥ 0} where i
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simulated risk-free interest rate and I is an indicator. Recall that the indicator is such that
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cash flow they generate can be reduced (or increased), so that the
final cash balance at the quantile level corresponding to the rating
target is zero. However, it is not possible to compute the exact
value of this proportion without resorting to an iterative process.

Adjustment of the Portfolio with a Duration Focus
CBM tries to help communication with market participants in a way that
enables covered bond issuers to adjust their portfolio within the con-
straints of their commitments and such that they obtain the desired rat-
ing. This section explains how CBM adjusts the portfolio, with a focus on
the duration gap, while also maintaining the targeted rating.

Throughout the proposed procedure it is assumed that the duration
of assets does not change. In order to change the duration gap, the CBM
user can only change the duration of liabilities by adding or repurchasing
covered bonds with a given bullet maturity τ. The interest rate, ît, paid on
these bonds is reported by the user. As illustrated in the calculation below,
this allows us to determine the quantity of covered bonds, Cτ , that needs
to be issued in order to reach the desired duration for liabilities. Let Bt be
the cash flow generated by the newly issued bonds, then:

If lt denote the flow of liabilities and Γ the targeted duration for lia-
bilities, then Cτ must be found such that:

This gives:
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Once these new bullet single maturity covered bonds have been
issued, we can apply the described procedure to discover the quantity of
assets, or how much initial cash needs to be added in order to obtain a
break-even portfolio.

CONCLUSION

This model has been designed to be as simple as possible in order to pro-
vide strong visibility to investors and issuers. It is in addition meant to be
robust in the sense that it allows for seriously stressed conditions and that
its conclusions do not rely on the support of the issuing bank. It is ulti-
mately as consistent as possible with the other rating tools developed by
S&P. Note that the quantitative analysis performed with CBM is only part
of the rating process for S&P. Potential users shall be aware that S&P
reserve the right to assign the suggested rating or not, based, among other
things, on qualitative and legal analysis.

A P P E N D I X  A

Glossary of Terms

DEFINITIONS

Break-Even Pool

A pool that just passes the quantitative rating eligibility test, i.e., a pool
with final cash balance of zero.

Cash Balance

The cash balance at time t represents the total amount of cash available to
the bank at time t. (Note it is a stock rather than a flow.)

Cash Flow

The (net) cash flow at time t is the difference between the cash generated
by assets and by liabilities over the tth period.
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Duration

The duration of assets and liabilities is the discounted weighted average
time at which their respective cash flows occur. Let {ct}

T
t = 1 denote a cash

flow series, then its duration is defined as:

where it is the interest used for discounting, typically the forward rate.

Duration Gap

The duration gap between assets and liabilities is one of the key parame-
ters on which banks focus; it gives information on the mismatch in the
timing of cash flows. Market practice in the covered bond area is to com-
pute the duration gap as the difference between the duration of the assets
and that of the liabilities is,

Duration gap = duration of assets − duration of liabilities

where at and lt denote the asset and liability flows at time t. It is clear
from the equation that the duration of assets is computed indepen-
dently from duration of liabilities. It can also be noted that the duration
gap is different from the duration of the net cash flow as usually
expressed:

Duration of assets − duration of liabilities ≠ duration of (assets −
liabilities).

Final Cash Balance

The cash balance observed at the last period, after the different stresses
(defaults, interest rates, . . . ) have been applied. The pool under con-
sideration passes the rating test if and only if the final cash balance is
positive.
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Net Present Value

The NPV of a cash flow {ct}
T
t = 1 is given by:*

The interest rate, it, used for discounting in the computation of the
NPVO/C is given by the prevailing market yield curve, considered as the
forward value of three-month interest rates (e.g., Euribor).

Nominal Overcollateralization

Amount by which the outstanding assets initially exceed the outstanding
liabilities. If A1 and L1 denote the initial nominal outstanding assets and
liabilities, then:

NPV Overcollateralization

Amount by which the initial net present value of assets (i.e., the sum of all
discounted flows starting from the first period) exceeds that of the liabil-
ities. If NPVA and NPVL denote the initial net present value of those
flows, then:

Overcollateralization

Overcollateralization, amount by which assets exceed liabilities. The two
most important measures of overcollateralization are the nominal over-
collateralization and the NPV overcollateralization.

NPVO/C
NPVA NPVL

NPVL
.= −

Nominal O/C .=
−A L

L
1 1

1

NPV
( )

.=
+

=
= ∏∑ c

i
t

ss

t
t

T

1
1

1

Covered Bonds 617

*The net present value is sometimes computed as:

∑
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t=1
ct/(1 + it)

t.

However, the formula reported in the text is more accurate.



Main Relations

Cash Balance and Cash Flows
Let Kt, it, and cft be respectively the cash balance, the interest rate, and the
net cash flow (flow of assets minus flow of liabilities) at time t. We have:

Kt = (1 + it)Kt − 1 + cft. (1)

Note: if several currencies are involved, the net cash flows generated
in foreign currencies should be converted into euros and added to the
domestic cash flows.

Discounted Final Cash Balance and Net Present
Value of the Cash Flows
By iterating Equation 1, we obtain:

In the special case where it is the forward interest rate, then we have:

There is therefore a link between the final cash balance and the
NPVO/C (expressed in euros rather than as a percentage).

NPV Overcollateralization and Nominal
Overcollateralization
It turns out that the two measures of O/C are closely related. Let At’ and
At” denote the nominal outstanding fixed and floating assets at time t,
respectively; similarly for Lt’ and Lt”. Let it be the forward risk-free interest
rate used for discounting and used as index in the computation of the
floating interest that has to be paid. Let i

−
A, t be the fixed interest rate cor-

responding to received coupons on fixed assets;* similarly i
−

L,t corresponds
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*The fixed interest rate is time dependent because the aggregate asset is made of different
assets having different maturities and paying different fixed interest rates.



to coupons due on fixed liabilities. Finally, SA, t and SL, t denote the spread com-
ponent in currency units (e.g., in euros) of the floating interest of assets and
liabilities, respectively. We have:

and it could be checked that:

It can easily be seen that the difference between the nominal O/C
and the NPV_O/C is entirely due to the difference between the effective
fixed or floating interest rates and the risk-free interest rate.

A P P E N D I X  B

MAXIMUM LIKELIHOOD

The simplified discretized version of the model can also be written as:

(3)

The discretized model (3) turns out to be a linear regression model.
As ML and Ordinary Least Squares give the same estimates for a and b,
we can use this latter technique that is much simple to implement.

METHOD OF MOMENTS

Starting from the discretized version of the model, for a given interest, we
have:

ln(it) = a + (1 − b)ln(it − 1) + εt
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where εt ~ normal (0, Ω). This is a standard AR(1) process, and we can
compute the first two terms of its autocorrelation function:

We also have:

This leaves us with three equations in three unknowns, thus:
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C H A P T E R  1 4

An Overview of Structured
Investment Vehicles and
Other Special Purpose
Companies

Cristina Polizu

621

In the recent years, new structures have been developed. Special purpose
companies or quasi-operating vehicles are designed to be operating in
primarily one type of business: interest rate and FX derivatives or credit
derivatives or repo markets or as a traditional asset manager. They are
bankruptcy remote entities, nonconsolidated with any other financial
institution with which they may interact. They are managed using rigor-
ous tests for capital adequacy, collateral and liquidity adequacy and do
not rely on third party capital injection. They own and hold their capital
required by the adequacy tests in eligible investments. In this chapter, the
most frequent quasi-operating companies will be presented with a more
detailed focus on structured investment vehicles (SIVs). The quantitative
techniques that build the capital and liquidity adequacy of the company
are presented and examples of models are illustrated without trying to be
prescriptive in any way.

STRUCTURED INVESTMENT VEHICLES

Definition of What an SIV is

SIVs have been operating in the U.S. and European debt markets for more
than a decade. They are designed to be limited-purpose companies that take
arbitrage opportunities by purchasing mostly highly rated medium- and

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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long-term assets and funding themselves with cheaper short-term commer-
cial paper and medium term notes (Figure 14.1).

In a nutshell, the SIV issues short-term and long-term liabilities and
purchases assets with the proceeds. These assets will pay a coupon that is
higher than the interest that the SIV needs to pay on issued liabilities. This
price differential is one of the advantages an SIV undertakes to become
profitable. If the assets mature and do not default, there would be no
other need for resources to cover defaults in the structure. Also, if the
commercial paper market were always there, there would never be a risk
of having to liquidate assets to repay par on the liabilities, because every
time a liability would mature, the vehicle would just roll it. However, the
company needs to be equipped with enough resources to repay debt in a
scenario where liabilities could not be rolled and assets would need to be
liquidated or when assets default.

Similar to a finance company, the SIV’s main goal is to generate
returns for its shareholders by taking exposure to long-term securities and
by funding these assets with shorter-term debt. The SIV manager man-
ages to optimize the mismatch between asset returns and cost of funding
while providing stable returns to its capital noteholders.

Perhaps a better way to define what an SIV is, would be to describe
what an SIV is not. They are not unrated trading vehicles like hedge
funds, neither bank-sponsored ABCP conduits, typically supported by
100 percent liquidity, nor collateral debt obligations (CDOs) which are
match funded up front and invest mostly in high-yield assets. SIVs fea-
ture a dynamic treasury function that can expand or contract depending
on the manager’s strategic plans. They are supported by partial liquidity
that is sized using a daily dynamic model. All SIVs are rated AAA by
Standard and Poor’s and are designed to exist and operate in the market

F I G U R E 1 4 . 1
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as AAA corporations. They can be funding vehicles, swap counterparties,
and repo counterparties in other structured finance transactions.

SIVs and CDOs
The SIVs are not purely credit arbitrage vehicles. This is partially true
because their portfolio may exhibit defaults, which constitute a loss to the
portfolio in the same way a CDO does. However, having a high-grade
portfolio, mainly AA, the default rate is small. Their role is more on man-
aging the mismatch between assets and liabilities and the consequences of
a liquidity shortfall. A CDO’s main focus is credit risk, as BB portfolio is
purchased with AAA debt that is usually longer in tenor than the asset
portfolio.

Assets in SIVs and CDOs SIVs purchase usually AAA to A
range assets, have limited BBB exposure. There is a subinvestment bucket
allowed to pick up the downgrade of an investment-grade security.

Some SIVS have synthetic credit derivative exposure. The assets are
diversified per type, geography, tenor, and size and all rated by the rating
agencies in a proportion of 95 percent.

In a CDO, the range of assets is wider. It can go from high-grade to
high-yield bonds and loans. CDOs can take cash or synthetic exposure. As
for SIVs, approved sets of concentration guidelines are applied. For both,
concentrated pools or assets are further penalized in the model for quan-
tifying appropriate capital adequacy.

Liabilities in SIVs and CDOs In an SIV, there is no maturity
matching. The gap between assets and liabilities is about three to four
years. More than 50 percent of the debt is CP (U.S. and EURO). Capital
structure is evolving, depending on market conditions. Typically, in an
SIV, we see two tranches. Senior liabilities are rated AAA and issued in
several classes. Capital notes are the mezz piece and are usually one
tranche. In the past couple of years, SIVs have seeked a rating (private or
public) on their capital notes. Sometimes, the capital notes are tranched in
a rated piece and an unrated first loss position. SIVs roll their debt and
issue new debt as they deem appropriate. They could use alternative
funding instruments like repurchase agreements and credit-linked notes.

CDOs are more focused on maturity matching than SIVs. Capital
structure is multitranched from AAA to BB and usually CDOs have an
unrated first loss position. The tenor, rating, and size are determined on
day one. The intention is to keep the capital structure fixed during the life
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of a CDO. Management is allowed on the asset side within certain param-
eters. The rating on the debt has to remain unaltered during the active
management of the portfolio.

It is important to understand that because an SIV carries a corporate
rating of AAA, it has to satisfy all its obligation with AAA certainty. In a
CDO, given the multiple layers of subordination, some liabilities of the
CDO (e.g., swap termination payments) could be subordinated in the
waterfall and not addressed in the model.

Liquidity in SIVs and CDOs Management of liquidity is one
of the most challenging elements in the SIVs. Due to a considerable gap
between assets and liabilities, the SIV needs to rely on external/internal
liquidity in the form of bank lines, breakable deposits, committed repos,
put options, and liquid assets. It is monitored through specially designed
tests, commonly known as net cumulative outflow (NCO), that monitor
the peak liquidity need over the coming year. It is run daily and quanti-
fies what amount of resources has to be in liquid assets. In a CDO, liq-
uidity is managed through internal reserve accounts. Because they do not
run a refinancing risk, outside liquidity is not necessary. Cash flow mis-
matches are mitigated by cash diversion if certain tests do not pass. Some
tranches could also have their interest deferrable.

SIVs and CP Conduits
A CP conduit is primarily driven by off-balance sheet regulatory capital
relief. An SIV is motivated by profit for its shareholders. The number of
CP conduits to date exceeds the number of SIVs.

Assets in SIVs and CP Conduits Both invest in asset
backed and corporates. While an SIV has to have all of its assets rated, a
CP conduit can have unrated illiquid assets like trade receivables. CP con-
duits are not subject to the diversification criteria that an SIV is. For exam-
ple, there can be CP conduits 100 percent concentrated in one asset class.

Liabilities in SIVs and CP Conduits CP conduit accesses
the commercial paper market primarily. The SIVs have access to both
short- and long-term funding. In an SIV, there is a floor on the weighted
average life of the liabilities of three-months. This is to mitigate a forced
one-day sale, should the commercial paper market be disrupted. In a CP
conduit, there is no such limit. The liabilities can be 100 percent one day or

624 CHAPTER 14



very short term. This is mitigated by the credit and liquidity enhancement
programs in a CP conduit, which are most onerous than those of an SIV.

Liquidity in SIVs and CP Conduits Due to the range of
liabilities, through the NCO test, an SIV does not have to keep 100 percent
liquidity as a CP conduit does. The model in the SIV quantifies what the
one-year liquidity need is and reserves bank lines for that amount, which
is lower than 100 percent (could range from 25 to 40 percent).

SIVs and Hedge Funds
The hedge funds attempt to make profit on their bets on market direc-
tionality for interest rates, currency, and stocks. An SIV is designed to not
take such bets. For example, when a fixed rate asset is purchased, the
manager attaches a swap, which converts the fixed rate asset into a
floater. The asset stays in such an asset swap package till its maturity or
till the counterparty defaults, case in which it has to be immediately
replaced. In an SIV, the profit is made from prudent management of the
credit spread of the assets versus liabilities.

It is true that both operate at a leverage to increase profits. But,
whereas all the positions of SIVs have to be reported to rating agencies
and are subject to stringent compliance tests, a hedge fund does not
require full transparency on its positions.

Due to their high-rating and high-management standards, the SIVs
can access the commercial paper and medium term notes market for
funding purposes, whereas the hedge funds do not.

SIVs are closer to be labeled as buy and hold vehicles with static
hedges, whereas hedge funds have active trading and rely on dynamic
hedging of their risk.

What Does the Rating of AAA for an SIV Mean?

If a series of trigger events occur that impact the normal operations of the
SIV, a wind down event will start and the manager or a third party (i.e.,
security trustee) will step in and liquidate gradually the portfolio. No debt
will be further rolled or issued, and the cash obtained from liquidating the
portfolio will be used to repay the senior liabilities. Capital will be used to
make up the shortfalls on the asset liquidation. Practically, in a finite time,
the SIV will cease to exist. The SIVs wind down when their resources are

An Overview of Structured Investment Vehicles 625



626 CHAPTER 14

on the verge of being insufficient to repay senior debt. The wind down is
called defeasance. The attempt is to repay in full all senior debt or at least
with AAA certainty before becoming extinct. Most important is that an SIV
does not default on its debt. It is equipped with structural tests to allow an
exit strategy prior to downgrade or default. This feature is essential in dif-
ferentiating an SIV from a regular corporate and understand that an SIV
has multiple layers of support, including capital and liquidity tests and
various defeasance mechanism that preclude the SIV to default on its debt.
The sequence of steps described above can be seen in Figure 14.2.

Portfolio Diversification Guidelines in an SIV

Each SIV has approved diversification guidelines. The main critéria for
diversification are asset types, geography, ratings, and tenor. The SIV has to
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comply with these guidelines. Beside the model that quantifies losses, the
diversification requirements are an important feature for the credit
enhancement of the SIV. Breach of the guidelines has to be cured either by
selling collateral or by capital charging the excess dollar for dollar. For
example, in February 2001, when Hollywood Funding was downgraded
from AAA to CCC− (default status), Asset Backed Capital Ltd. (ABC)
owned approximately $100 million of these notes at the time of downgrade.
The asset became ineligible for the SIV and, at that time, ABC had five days
to cure. ABC sold massively liquid assets to reduce its leverage and returned
into compliance. The rating was reaffirmed by all rating agencies.

Sponsorship, Managers, and Investors

An SIV sponsor is usually a major commercial bank, asset manager, insur-
ance company, or a combination of thereof. It plays an important role, as
investors differentiate SIVs by their perception of the sponsor. The spon-
sor usually is setting up the SIV, may or may not provide liquidity sup-
port, may or may not invest its own money in a portion of the capital
structure (capital notes).

The asset manager is responsible for daily management of credit
and liquidity. Their management style reflects in the asset composition of
the portfolio. Some are focused on asset-backed security (ABS) assets,
some invest more in bank subdebt, some focus more on certain rating
categories.

As for the range of investors, it varies depending on the portion of
the capital structure that they are targeting. Commercial paper is attrac-
tive to money market funds, banks, and conduits. Banks and corporates
are buyers of medium term notes. Banks, insurance companies, as well as
private individuals may invest in rated or unrated capital notes.

Table 14.1 presents a snapshot of the market as of December 2005
(as shown by an S&P’s update: SIV Outlook Report/Assets Top $200
Million in SIV Market; Continued Growth Expected in 2006—January
2006).

In Figure 14.3, outstanding senior debt is displayed as of
December 2005. The asset classes in SIV portfolios cover mostly floating
rate USD bullet or soft-bullet ABS and bank debt. However, they are
able and some do invest in nonbank corporates and sovereign paper.
Assets held by the SIV sector exceeded $200 billion at the end of 2005,
and stand at almost $204 billion, a rise of almost 40 percent over the
previous year.

An Overview of Structured Investment Vehicles 627



T A B L E  1 4 . 1

SIV Market (as of December 2005)

SIV Manager/adviser Date rated Senior debt (Million $)

Beta Finance Corp. Citibank International PLC September 8, 1989 16,455.64

Sigma Finance Corp. Gordian Knot Ltd. February 2, 1995 41,089.99

Orion Finance Corp. Eiger Capital Management May 31, 1996 2,080.97

Centauri Corp. Citibank International PLC September 9, 1996 15,999.33

Dorada Corp. Citibank International PLC September 17, 1998 9,677.63

K2 Corp. Dresdner Kleinwort Wasserstein February 1, 1999 17,842.94

Links Finance Corp. Bank of Montreal June 18, 1999 16,296.81

Five Finance Corp. Citibank International PLC November 15, 1999 4,401.66

Abacas Investments Ltd. III Offshore Advisors December 8, 1999 972.89

Parkland Finance Corp. Bank of Montreal September 7, 2001 1,561.01

Harrier Finance Funding Ltd. West LB January 11, 2002 9,301.41

White Pine Corp. Ltd. Standard Chartered Bank February 4, 2002 7,858.29

Stanfield Victoria Finance Ltd. Stanfield Global Strategies LLC July 10, 2002 8,276.98

Premier Asset Collateralized Société Générale July 10, 2002 2,780.55
Entity Ltd.

Whistlejacket Capital Ltd. Standard Chartered Bank July 24, 2002 6,327.25

Tango Finance Corp. Rabobank International November 26, 2002 7,759.37

Sedna Finance Corp. Citibank International PLC June 22, 2004 4,111.99

Cullinan Finance Ltd. HSBC Bank PLC July 18, 2005 7,292.00

Cheyne Finance PLC Cheyne Capital Management August 3, 2005 5,063.46
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Figure 14.4 gives an indication on the concentration in different types
of assets that current SIVs hold. Figure 14.5 shows a further breakdown of
the structured finance bucket. Figure 14.6 shows a composition by rating
across SIV sector.

One of the primary features of the SIV is the dynamic nature of cap-
ital allocation and leverage. SIVs can increase or decrease leverage, can
grow or shrink if they comply with certain capital and liquidity require-
ments. The capital adequacy focuses on the event that will require the SIV
liquidate its assets to repay the outstanding debt. The capital adequacy
tests are applied to the market value of the assets.

Generally speaking, the assets may depreciate over time. When the
SIV needs to sell them in the market, take the cash and repay the debt, the
cash that it has sold the asset for, may be lower than the liability that
needs to be repaid. That is why, an SIV needs to be equipped with addi-
tional resources in the form of equity to make sure it can cover credit
losses and market value depreciation, should it rely only on its current
portfolio to repay the debt.

To do that, the SIV issues equity in the form of capital notes. These
notes will act as a first-loss position and the return or coupon will be
commensurate with the risk. The capital notes are meant to capture the
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potential depreciation in value of the assets and to make up for the insuf-
ficient cash realized when the asset is sold. The capital notes are sized so
that, when used in conjunction with the realized market value of the asset,
they will be sufficient to repay the debt.

Holding capital in cash is not efficient. Cash would normally accrue
at a sub-Libor rate. Any sub-Libor rate is commonly referred to as a neg-
ative carry. Cash or cash equivalents have the advantage that they are
very liquid resources and hence can be readily used and deployed for
payments. However, if the timing of the liabilities is known, cash can
be further invested in a positive spread yielding asset. To minimize the
negative carry, the capital notes are, themselves, invested in assets.

Cost of Funds

The coupon that the SIV needs to pay on its issued debt is referred to as
cost of funding. Usually, CP and MTNs (medium-term note programs)
price at Libor rates, perhaps within a range of a few basis points up and/or
down.

The SIVs raise funds to acquire their portfolios by accessing the
commercial paper market. At a later stage, with the growth of the port-
folio, MTNs start playing a bigger role in the portfolio funding. MTNs
allow for portfolio match funding, which eliminates partially the risk of
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liquidation, leaving only the default risk in. However, MTNs are more
expensive than short-term debt.

Any disruption in the normal mode of an SIV would be immediately
reflected in the cost of funds for its rolled commercial paper. Cost of funds
for capital notes includes a stated coupon (25 to 50 above Libor) that is, or
not, rated as well as profit or performance coupon. Profit depends on the
excess spread of the SIV and ultimately on the excess capital that an SIV
has. Capital notes are rated in most cases BBB.

In a CDO, the AAA tranche prices somewhere in the range of Libor
+25 and +45. The short tenor of the debt in an SIV (typically senior MTN
are 18 to 24 months) is reflected in the spread above Libor which is
lower than the CDO AAA spread. Same comparison can be made to
European covered bonds where the stated maturity is typically 20 to 30
years.

The BBB CDO tranche prices in the range of Libor +200 to +350 with
a five-year average of approximately 250 above Libor. The floating
RMBS/CMBS pay a coupon which on average over last five years is Libor
+190. Spread raged within 170 to 230. SIVs may pay similar coupon or
even higher to their capital noteholders but most of the spread is profit
and their stated coupon is much lower.

Leverage

In its simplest definition, leverage is the ratio between senior debt and
equity. Other equivalent definitions involve net asset value. Irrespective of
the capital model outcome, SIVs have to comply with leverage constraints.
Typically, SIV leverage is within the range of 12 to 14. At 18 or 19 leverage
level, they enter restricted operations, and, at a leverage of 20, they need to
wind down.

Quantitative analysis on an SIV focuses mainly on capital adequacy,
market neutrality, and adequate liquidity.

Capital Adequacy

Example 1
SIV XYZ issues $100 million one-year note at Libor + 10 bps. It buys

a five-year asset of 10 million MTM. The asset pays Libor +30 bps, so the
spread differential is 20 bps.



If at the end of one year the SIV cannot roll the liability (e.g., market
disruption), it needs to sell the asset (which has four more years to matu-
rity). The SIV will sell it and may get only 9.8 million.

It means that the SIV is 0.2 million short of its debt obligation, so it
should have raised 0.2 million in equity. See a simplified example of a
SIVs balance sheet:

Sample SIV Balance Sheet
Assets Liabilities

$10 million $ 9.8 million

Capital

$ 0.2 million

$10 million $10 million

This example leads naturally to the kind of questions we need to
answer in sizing the capital adequacy of such an entity: how much resources
should the SIV have so that if the SIV is short on assets due to defaults or
market value deterioration, it can still pay in full its debt holders?

In sizing the capital adequacy of an SIV, a series of assumptions are
being made: the SIV winds down today with current portfolio, the debt is
no longer rolled, and there are no further reinvestments. The analysis is
an analysis of a static portfolio that winds down and repays liabilities as
they come due.

The winddown timeline is presented subsequently:
Time step 0, day of trigger event or starting day for the simulation

♦ Input in the model the current portfolio of assets with type, rat-
ings, notional, market price, and domicile.

♦ Input debt information with tenor, size, and coupon frequency.

Time step 1

♦ Evolve the ratings of assets, derivative counterparties, and mar-
ket price of the assets.

♦ Inflows are asset coupons, par on the maturing assets, recovery
on defaulted assets, hedging counterparty-related inflows.

♦ Outflows are senior expenses and fees, any derivative-related
outflows, coupon or principal which are due in that time step.

♦ Sell assets, if needed, to repay liabilities.
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Time step 2 onward

♦ Repeat time step 1 till all liabilities are paid back. If there is a
shortfall in assets and they are insufficient to repay the debt, the
SIV has inadequate AAA capital.

In evolving the portfolio through its winddown period, key risk factors are:

♦ Credit migration including defaults
♦ Recovery
♦ Asset spreads
♦ Interest rates and
♦ Foreign exchange rates.

The market price of the portfolio changes as a consequence of a change in
the rating of the asset but also as a consequence of the fluctuation in the
spread.

Some vehicles take the asset-by-asset approach and capital charge
each asset for its potential loss in value due to credit and market envi-
ronment. In these companies, when debt is issued and proceeds are
used to buy an asset, depending on its rating and tenor, a capital charge
is attached to it. The daily capital adequacy test will check whether
current market value of the assets adjusted for the capital charges
are enough to cover par on the liabilities. These SIVs are referred to as
“matrix” SIVs.

Other vehicles take a portfolio simulation approach where credit
and market risk variables are stochastically modeled and integrated
with a cash flow model in which the waterfall of payments is input. This
means that market paths and credit paths are simulated for each asset
in the portfolio. The asset cash flows and their market value are then
used to pay the liabilities as they become due. If assets are insuffi-
cient to pay liabilities, losses will occur. These SIVs are referred to as
modeled SIVs.

Final output is a distribution of losses. The latter can be a distribution
of the first dollar of loss on the liabilities. Or, it can be an expected loss
metric on each of the vehicle’s liabilities. Both are relevant in sizing appro-
priate resources in the vehicle. Figure 14.7 shows a hypothetical loss dis-
tribution.

Figure 14.7 is helpful in sizing the capital requirement in a first dol-
lar of loss framework as well as to quantify other loss metrics.
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The Two Modeling Approaches: Matrix SIVs 
versus Modeled SIVs
The purpose of any model proposed by an SIV manager is to measure
with AAA certainty the level of capital required to repay all senior liabil-
ities during the enforcement phase. The aim is to ensure that the capital
levels calculated and held by the SIV reflect the enforcement operation
mode and adequately capture the risks associated with credit loss and
market value decline during the winddown. To date, SIV managers have
undertaken one of two forms of capital appraisal:

1. Fully modeled simulation of asset and hedge counter-party
credit and market value risk for the life of the vehicle’s longest
liability maturity or

2. Fixed capital charges based upon stressed historical market
value declines and credit impaired theoretical worst-case asset
portfolios (matrix).

A matrix SIV has an easier daily capital adequacy to test, as each asset has
its own capital attached to it. The adequacy test checks whether assets
minus liability is always greater than capital.

For a modeled SIV, the adequacy test is the output of a probabilis-
tic model which is run on a portfolio basis without any specific capital
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allocation to each asset. The model evolves the portfolio through wind-
down and checks whether assets are sufficient to repay liabilities.
Simulation models, being more accurate, could allow a higher leverage as
opposed to matrix SIVs, where the matrix is developed using simple his-
torical spread and transition considerations. However, matrix or modeled,
SIVs have to comply with structural leverage constraints that are very close.

Matrix SIVs

♦ Matrix is easy to calibrate.
♦ Matrix is easy to measure the attractiveness to different assets

using a return on capital.
♦ Capital charges are fixed using a matrix, but will require regular

updates.
♦ Matrix allows easy and quick identification of the amount of

capital than any asset consumes.
♦ Matrix capital charges are inflexible as not all assets can be accom-

modated within the one capital charge number concept and there
is often a need for several matrices for a SIV’s different assets.

♦ A Matrix calculation does not take into account the actual liabil-
ity structure that a SIV might have at any particular point in
time but determines capital based on a number of set and stan-
dard liability structures.

♦ Substantial work on historical spread volatility is required for a
matrix calculation.

Example Matrix* indicating range of capital charges for one asset type.

Tenor
Rating 1 year 3 years 5 years …N years

AAA 2% 3% 5% …

AA 3% 4% 7% …

A 6% 9% 12% …

BBB 10% 15% 18% …

BB 15% 22% 30%

…

NRating
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* The numbers in this example are for illustrative purposes only.
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Without being prescriptive, a methodology of how the matrix is
built is presented subsequently. The charge for an asset, let us say AAA
five years, is tested to withstand the loss that would occur if it were sold
in any month prior to its maturity.

If the charge were, e.g., 5 percent, different liquidation horizons are
being tested starting with one month and ending with five year minus
one month. The drivers for the decline in value are credit migration which
is commensurate with the liquidation horizon, and a spread widening
that in the absence of any parametric model could be assumed to be the
worst historical widening observed for that asset class and ratings or a
multiple of standard deviations (this multiple would cover up to a tail
quantile the distribution of absolute changes).

Credit migration is usually described as a homogeneous Markov
Chain with a constant transition matrix. An example of such a monthly
matrix is given subsequently.

from/
to AAA AA A BBB BB B CCC D

AAA 99.184% 0.755% 0.044% 0.001% 0.012% 0.000% 0.000% 0.004%

AA 0.099% 99.216% 0.615% 0.045% 0.004% 0.011% 0.001% 0.009%

A 0.008% 0.215% 99.141% 0.547% 0.049% 0.023% 0.004% 0.012%

BBB 0.005% 0.025% 0.546% 98.711% 0.579% 0.108% 0.013% 0.013%

BB 0.003% 0.010% 0.066% 0.883% 98.086% 0.683% 0.090% 0.179%

B 0.000% 0.006% 0.027% 0.053% 0.484% 98.422% 0.713% 0.295%

CCC 0.016% 0.000% 0.056% 0.125% 0.198% 1.261% 97.331% 1.013%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

For example, 99.184 percent is the likelihood that a AAA credit stays
AAA over a certain period, in this case a month.

Repricing the asset in a different credit and market environment will
result in a decline in price, which should be smaller than the associated
capital charge. As most noninvestment data is sparse, one can proxy rat-
ings lower than BB with default (with or without recovery).

As pricing tools one can use either a duration proxy or a more for-
mal pricing tool (discounting the remaining cash flow of the asset in the
shocked spread environment).

In the following table, the algorithm given earlier is formalized with
a duration proxy for pricing.
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Spread Prob from 
move Loss TM Wghtd loss

∆SAAA → AAA ∆SAAA → AAA × Drem PAAA → AAA ∆SAAA → AAA × Drem × PAAA → AAA

∆SAAA → AA ∆SAAA → AA × Drem PAAA → AA ∆SAAA → AA × Drem × PAAA → AA

∆SAAA → A ∆SAAA → A × Drem PAAA → A ∆SAAA → A × Drem × PAAA → A

∆SAAA → BBB ∆SAAA → BBB × Drem PAAA → BBB ∆SAAA → BBB × Drem × PAAA → BBB

∆SAAA → BB ∆SAAA → BB × Drem PAAA → BB ∆SAAA → BB × Drem × PAAA → BB

100% PAAA → ≤ B 100% × PAAA → ≤ B

Assuming that sA refers to spread for rating A and sAAA refers to spread for
rating AAA:

∆sAAA → A = max(sA) − min(sAAA)

Drem is the remaining duration of the asset and PAAA→A represents
the transition probability from a AAA rating to a A rating commensurate
with the liquidation horizon.

Adding the last column gives the loss in value due to transition and
spread widening. This loss in value can be further stressed by factors that
take into account data imperfections. Most data represent index data. As
such data might miss certain bid/offer differentials that can further con-
tribute to the loss in value of the asset. Moreover, if portfolio is not suffi-
ciently diversified to mimic the index data, a correction factor greater than 1
has to be applied to the loss in value. In this way, a decline in price com-
mensurate with the liquidation horizon that is being tested is finally derived.

The above methodology is testing whether the matrix is conservative
enough to cover forced sales should the portfolio be 100 percent invested
in that asset. This methodology attempts to cover certain stressed scenar-
ios like tail risk, when the portfolio lacks diversity and needs to be liqui-
dated to repay debt.

Further, a cash flow model complements the capital adequacy exer-
cise for matrix SIVs, where different portfolios and liability structures are
tested. The goal here is to prove that the derived matrix provides enough
resources to repay in full the senior debt.

Simulation SIVs A stochastic model attempts to model all key
risk factors for an SIV. They are credit migration, including default and
recovery, asset spreads, interest rate, and FX rates.

Credit migration measures the new credit profile of the portfolio.
A downgrade is causing a decline in the market value of the portfolio.
Default results in a loss net of recovery for the portfolio.



Asset spreads indicate the evolution in the market price of the port-
folio. Both are essential in evaluating the value of the assets that need to be
deployed to repay liabilities and hence in measuring any shortfall that
might occur. A decline in price can occur because of a downgrade in con-
junction with spread widening. Interest rates and FX rates project the mark
to market of the derivative contracts. A default of a derivative counter-
party could mean a loss for the vehicle and replacement comes at a cost.

Correlation is a key component in the model for each of the above
risk factors. There is correlation for pairwise transition. Transition, as well
as default correlation, captures joint movements in credit. It helps simu-
late clusters of default or transition. In projecting spreads, the correlation
between intra-and inter-asset classes has to be incorporated. And, finally,
there is correlation among interest rates and FX rates. When projecting
market rates, correlation between different interest rate curves and
foreign exchange curves has to be incorporated.

Calibration of the above-mentioned risk factors is a historical cali-
bration as opposed to risk-neutral. Stability of capital requirement is one
of the key components in the risk management of an SIV. Major swings in
parameters generated by implied parameters that could cause volatility in
the capital requirements are not reflective for the buy and hold business
in which an SIV is. Without being prescriptive, examples of such models
are being presented subsequently.

A Correlated transitions
There are a few approaches for modeling correlated transition. Below,
three of them are presented:

A1 Historical
The most direct way to estimate joint rating change likelihoods is to exam-
ine credit ratings time series across many firms, which are synchronized in
time with each other. This method has the advantage that it does not make
assumptions as to the underlying process, the joint distribution shape, but
has the limitation that it needs extensive data in a pairwise format per
region, country, and industry. A factor model can be fit to this data set,
hence correlated transition could be modeled using a series of standard
normal variates, which will translate via Merton approach into ratings.

A2 Corporate bond prices
A second way to estimate credit correlations using historical data is to
examine price histories of corporate bonds. It is intuitive to link bond
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prices with changes in credit quality, so a robust history for bond prices
may allow estimations of correlated transitions. This approach requires
adequate data on bond prices and a model that links bond prices to credit
events on a pairwise basis. The main drawback here is historical data.
There are a couple of models that attempt to use bond spreads for model-
ing credit migration.

A3 Asset correlation
There is a third way to model joint transition using as underlying asset
correlation.
A3.1. Asset correlation could be derived from observable firm specific
equity returns. This model uses the Merton approach for default simula-
tion, extended to transition. A firm defaults if its asset values go below lia-
bilities. This approach may be extended to derive certain real number
thresholds that are linked to a certain rating of the firm. Crossing a thresh-
old is equated to transiting from a rating to another. So a joint migration
in the assets’ value will be translated in a joint move in credit.

This method has the drawback of overlooking the differences between
equity and asset correlations. However, one could make the argument that
it is more accurate than using a fixed correlation, is based on more data
which is daily available, and is sensitive to countries and industries. Equity
variations address market movements as well as credit migration, which is
our sole interest in this exercise. In Credit Metrics, Chapter 8, this approach
is described in great detail. The reader is referred to Credit Metrics (1997) for
a detailed analysis on correlation.

Essentially, a correlation matrix is built that captures joint move-
ments for asset values. Then, each time step (e.g., each month) a multi-
normal draw with this correlation matrix is performed and its numeric
outcome is used to determine the new credit ratings.

The correlation matrix is derived using the obligor’s participation to
a country and industry and uses as underlying equity returns.

Looking at equity for a obligor’s transition is a well-accepted frame-
work in the Merton/MKMV approach and is one of the few available
proxies for defining and simulating performance. What gives comfort is
that data for this method is observable, is available daily. Datametrics is a
web based product that gives access to such correlation information. The
data covers a wide range of countries and industries in those countries.
Currently, there is a lot of research done to strip out of the equity returns
the credit information and use that to find asset correlation because the
aim is to find credit migration and not market movements.



A3.2. The above model can be used with constant historical asset
correlations as well. These correlation levels can be derived from the joint
transition information. The problem that needs to be solved is the following.
Assume for simplicity two states: default and nondefault. Assuming same
Merton framework for the asset’s value, the question is to find the asset cor-
relation that best matches the theoretical variance of the number of defaults
with the observed variance of the number of defaults. The number of
unknowns is defined by the number of pairwise correlations one is looking
for. Asset correlation can be pairwise constant for an industry and the same
for all industries. A second asset correlation can be searched for interindus-
try. The problem can be further refined to incorporate countries and regions.
Extension of the problem to incorporate transition can be easily done, using
same Merton assumption for transitions, namely that credit worthiness
underlying ratings transition could be modeled with a normal variate.

Finally, a simple example of correlated transition simulation with
two obligors is given for illustration purposes only.

First, one needs to use a transition matrix to determine the probabil-
ity of moving to each rating. These probabilities are further used to set
thresholds in a normal distribution. Each threshold is corresponding to a
possible rating outcome. Then draw a set of correlated normal deviates
equal in number to the number of obligors in the portfolio. Finally, use
these numbers, combined with the thresholds, to determine the forward
credit rating of each obligor.

A convenient way to think about the thresholds is in terms of
Figure 14.8. Underlying ratings transition, there exists a “credit perfor-
mance” random variable that is normally distributed. Change in letter rat-
ing is merely a reflection of the realization of “credit performance.” A
credit A is migrating with different probabilities to the other ratings and
has the highest likelihood to stay A.

A bell-shaped curve representing the asset value as a standard nor-
mal density function is sliced in such a way that the areas underneath
equate the transition probabilities to other ratings.

Note that the probabilities of moving to AAA, CCC, and D are too
small to be seen in the figure. In the bell-shaped figure, the area beneath
the curve is divided into smaller areas, each of which is in a one-to-one
correspondence with a certain credit worthiness of the asset. The reader
can see that the middle area below the curve corresponds to the high
probability of the obligor staying in its current state.

To use an example, consider two obligors, A and B, and suppose that
obligor A is an A-rated entity, whereas obligor B is an B-rated entity.
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Furthermore, suppose that we have determined that the migration between
these two obligors has a correlation of 0.3. Assume that A-rated and B-rated
entities have the one-year transition probabilities given subsequently:

Final rating Obligor A Obligor B

AAA 0.0007 0.0001

AA 0.0227 0.0010

A 0.9069 0.0028

BBB 0.0611 0.0046

BB 0.0056 0.0895

B 0.0025 0.8080

CCC 0.0004 0.044

D 0.0001 0.05

These probabilities are used to determine the thresholds of a normal dis-
tribution.

For example, considering obligor A, we need to determine the
threshold such that 0.01 percent of the draws from a normal distribution

F I G U R E 1 4 . 8
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will be less than this threshold. That is, if we denote by x the asset value,
we want to choose y such that

P(x ≤ y) = 0.0001, where x ∼ N(0, 1)

Thus, y will be determined from the inverse normal cumulative dis-
tribution function and is given by the value −3.719. Similarly, in order to
assure a 0.04 percent probability that obligor A migrates to a CCC rating,
we must choose y such that

P(−3.719 ≤ x ≤ y) = 0.0004 ⇒ P(x ≤ y) = 0.0001 + 0.0004 when x ∼ N(0, 1)

This gives a value for y of −3.29. Applying this algorithm iteratively,
we may derive the following thresholds (see also Figure 14.8):

Final rating Obligor A Obligor B

AAA na na

AA 3.195 3.719

A 1.988 3.062

BBB −1.478 2.661

BB −2.382 2.387

B −2.748 1.293

CCC −3.290 −1.316

D −3.719 −1.645

There is no threshold for the AAA rating, since everything greater
than the AA threshold is by definition AAA. Having determined the
thresholds, to conclude our example, we now need to draw two normally
distributed random numbers that have a correlation of 0.3. To do this, we
draw two normally distributed numbers, say 1.5961 and −2.5299, and
multiply by the square root of the correlation matrix (obtained using sin-
gular value decomposition or Cholesky decomposition) to obtain the two
correlated numbers 1.5961 and −1.9345. The threshold look-up table
shows that 1.5961 indicates that obligor A has maintained its A rating,
whereas −1.9345 indicates that obligor B has defaulted.

B Recovery analysis
Each time an obligor defaults in the simulation, a recovery cashflow for
bond obligations of that obligor will be posted at a later time step.
Depending on the time to settlement and settlement mechanism, this
recovery time may be further reduced. This cashflow is calculated from
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the total exposure to that obligor (taking into account investments and
derivative exposure and the appropriate netting rules) as follows: 

Recovery amount = Obligor exposure × Recovery %

B1 Beta distribution
A Beta distribution is now commonly accepted method for modeling the
recovery percentage that has now been adopted for use in a variety of
modeling applications.

The constant pdf (the flat line) shows that the standard uniform dis-
tribution is a special case of the beta distribution.

This distribution has the following attractive properties for the pur-
pose of modeling recoveries (see Figure 14.9):

1. Bell curve distribution
2. Bounded at 0 percent and 100 percent
3. Ability to derive distribution parameters to fit mean and stan-

dard deviation
4. Can be sampled relatively quickly within a simulation

The probability density function for a Beta distribution with parameters a
and b is shown as follows:

for x ∈ [0, 1] else fa, b(x) = 0,

where the gamma function is defined as Γ( ) e da xa
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This distribution has analytic mean and standard deviation formu-
lae, allowing easy calibration:

B2 Findings
For corporate bonds, studies show that the seniority of the bond is the
key driver in estimating the recovery. The curves in Figure 14.10 have
been obtained by matching the mean and variance of the beta distribu-
tion with the mean and variance reported in Carty and Lieberman for
each seniority.

Structured Finance Issuers The rating agencies have
recently published analyses using industry and rating at origination as
the primary drivers for recovery.

S&P’s study suggests “a fairly significant relationship exists
between the original credit rating and the repayment rates and principal
loss rates” and have produced Table 14.2:

This study suggests that the principal drivers for recovery for struc-
tured finance issuers are asset sector and rating at origination.

µ σ=
+

=
+ + +
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C Asset spread simulation
In an SIV, fixed rate assets are swapped to floaters using swap derivatives.
As such the pure interest rate risk is hedged and the remaining risk for the
fluctuation in price comes from the credit spread of the asset. This is the
spread over Libor of the floating rate asset swap package. The spread
modeling is done for each asset type, rating category and tenor. For miss-
ing ratings or tenors, different interpolation methods or other proxies
could be considered.

An example of credit spread model is a mixed Brownian and jump
diffusion, that would capture fat tails of credit spreads. In the example
that follows, obligors in same asset class rating and tenor behave the
same. One can refine a model to add a pure idiosyncratic risk.

The process below used for credit spreads guarantees positive spreads
while capturing jumps and mean reversion. The jumps are modeled assum-
ing that jump times follow an exponential distribution with jumps equally
likely to be up or down.

The spread processes is described by the following equation:

dYt = α(θ − Yt)dt + σdWt + dNt where Yt is the logarithm of the credit
spread,

where Wt is a standard Brownian motion, Nt is a jump of magnitude a
with the probability of a jump up and down equal and where the jump
times follow an exponential distribution with parameter λ, α is the speed
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Estimated Ultimate Recovery Rates for U.S. Structured
Finance Defaults (%)

Original ABS CMBS RMBS

AAA 78.00 99.00 98.00

AA 52.99 73.00 72.00

A 40.00 62.00 60.00

BBB 33.00 54.00 53.00

BB 25.00 46.00 45.00

B 22.00 43.00 42.00

Source: Standard & Poor’s Research—Principal Repayment and Loss Behaviour of Defaulted U.S. Structured
Finance Securities, published 10 Jan 2005 by Erkan Erturk and Thomas Gillis.
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of mean reversion as in the Ornstein–Uhlenbeck specification, θ is the
long-term mean of the credit spread, and σ is the volatility parameter.

In summary, the log of the credit spread will mean revert back to the
long term mean θ with mean reversion speed α. The process will experi-
ence a stochastic movement with volatility σ and it will also experience
jumps of size a where the jump times are exponentially distributed.

C1 Estimating the parameters for the jump diffusion process
The credit-spread process is conditionally normal, i.e., given that there is an
up-jump, a down-jump or no jump, the distribution is normal with a corre-
sponding mean. We can decompose the likelihood function into a product
of normal distributions weighted by the probability of having a jump or no
jump at all.*

Let xi denote the change in log returns over the period (i − 1)∆ to i∆.
We have

µi = E(i − 1)∆[xi] = (θ − Y(i − 1)∆)(1 − exp(−α∆))

and the log-likelihood function is:

where φ(h, k, σ2) is the normal density at point h with mean k and variance
σ 2, Γ = (α, θ, σ, λ, a) and x is the vector of n log credit spread changes.

For practical purposes one should truncate the infinite sum at j = 15
or less.

The same model can be used for spread levels as well. Calibration
can be done at the univariate level but should be tested at the multivari-
ate level, namely for all ratings and tenors in one asset class. This is
important because simulated spreads should not cross each other. This
type of constraint should be imposed in any goodness-of-fit exercise.
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2000.



A convenient and robust goodness-of-fit exercise is to check whether the
mean of the simulated path statistics match the historical statistics. That
means that one needs to compute the average of the statistics (e.g., max-
ima, tail quantiles, median, minima, standard deviation, kurtosis, etc.) for
the simulated paths and compare them with the statistics of the realized
historical path. The simulated paths would be simulated for all ratings
and tenors in an asset class incorporating correlation of the historical
noise and imposing noncrossing constraints. Path analysis is important
for simulating portfolio behavior as each Monte Carlo path is a potential
realization of a spread evolution. This goodness-of-fit test can be comple-
mented by an analysis of the errors of the fitting exercise as well as by a
point in time analysis of the simulated distribution.

Recalibration is done periodically, semiannually, or annually.

D Interest rate risk
Although not directly exposed to interest rate risk, if a counterparty
defaults, there is a cost of replacement. All assets have the interest rate
portion of their coupon microhedged with a third party counterparty.
Derivative contracts need to be valued and losses covered by capital. A
projection of interest rates allows also to capture any basis mismatch
between assets and liabilities.

An example of mean reverting interest rate model is the CIR (Cox,
Ingersoll, and Ross) (SIV outlook report, 2006) model for interest rate
evolution:

(1)

where r is the spot interest rate (1/time), η/γ is the steady state mean rate
(1/time), 1/γ is the mean reversion time-scale (time), α is the interest rate
volatility parameter (1/time2), and Zr is the Wiener process to simulate
interest rates it should be scaled to the appropriate time step by multiply-
ing with dt = 1/0.833 for a monthly granularity for example.

The three parameters in this model can be chosen to best reproduce
the empirical long-term mean, standard deviation, and mean reversion
time-scale and/or can also be chosen to impose desired probabilities of
exceeding specified thresholds of interest rates. The goal below is to illus-
trate, as an example, the usage of the CIR model for the short rate by cal-
ibrating to historical observations of that rate.

Predicting or reproducing the interest rate term structure by invok-
ing arbitrage-free pricing often involves multifactor models that are more

d ( )d d ,r r t r Zr= − +η γ α
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complex that the single factor CIR model used here. Interest rates are
assumed uncorrelated to credit spreads. See Appendix A for the calibra-
tion of the CIR model.

E FX rates
FX Evolution may be required by the need of valuing assets in a different
currency or cross currency swaps for defaulting counterparties.

Evolution of an exchange rate could be modeled using a lognormal
process as in:

de(t) = e(t)(rD(t) − rF(t))dt + e(t)σ(t)dw(t),

where rD(t) is the domestic short rate process, rF(t) is the foreign short rate
process, and σ (t) is the volatility parameter determined from historical
time series.

SIV Tests

Market Risk
One important feature of the SIVs is that they are market risk neutral.
They are not taking position on where interest rates or FX might move. As
opposed to most hedge funds, they are not betting on market directional-
ity. The SIV microhedges its positions on an asset-by-asset basis. If the
hedge provider defaults, the SIV manager has to find a replacement for
the hedging counterparty. When an asset is sold, it is sold as a package
with its associated hedge, such that the SIV does not enter into open IR or
FX positions.

Each asset is hedged to floating rate USD exposure using interest
rate or cross currency swaps. That is why, often, SIVs are referred to as
credit arbitrage vehicles.

The hedging counterparties are introducing additional credit risk.
As such, they are treated as any other asset and capital is allocated against
such counterparties.

An SIV is equipped with IR and FX sensitivity test to provide the
verification of its necessary representation of market neutrality. These
tests basically measure the change in NAV due to a sudden IR shock of
each point of the yield curve or of the entire yield curve. Tolerance limits
are set for each structure. These tolerance limits usually allow for a resid-
ual basis mismatch. An uncured breach of an IR/FX sensitivity test trig-
gers wind down for the SIV.



In the following figure, the reader can see a simplified example on
how a SIV manages its IR/FX exposure by putting on hedges for both
assets and liabilities to convert both into floating USD.

To monitor their exposure to interest rates and FX rates, SIV man-
agers use a simple deterministic test. The test helps identify the absence
of a hedge or a significant mismatch between assets and liabilities. They
are based on shocking current interest rate curve and revaluing assets and
liabilities in the new environment. If there is perfect hedging, there is no
sensitivity to the yield curve movement. The change on the asset side is
counterbalanced by the change on the liability side. A few such tests are
presented subsequently. The tolerance level is positive indicating that
there is room for a residual mismatch. Breach of this tolerance level sends
the vehicle in a cure period. If the test is not cured within five business
days, the vehicle goes into irreversible winddown.

Parallel Yield Curve Shift
All the inflows are discounted with the respective zero coupon LIBOR
yield curve for each currency. This test involves a parallel shift in yield
curve for each currency by increasing and decreasing every point on the
curve by one basis point (see Figure 14.11). The aggregate impact on the
present value (PV) of the SIV net asset value of all currencies must not be
more than a low tolerance, for example, 0.20 bps.
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The methodology works as follows:

1. Calculate the PV for each currency portfolio with each respec-
tive yield curve using the following minimum monthly points:
1 3 6 9 12 24 36 48 60 84 120

and such other independent points on the curve as will ensure
that this test is applied to the maturity of the longest dated asset
or rated liability and also reflects the asset composition of the
SIV at the time of the test.

2. Aggregate all PV of all currency portfolios by converting first
the non-$ denominated portfolio by the spot rate;

3. Calculate the PV of all senior liabilities, using the same method-
ology as in steps 1 and 2;

4. Subtract the PV of all currency portfolios from the PV of all
senior liabilities. This gives the base NAV or NAV0;

5. Replicate steps 1 to 4 but move each yield curve up by one basis
point and then calculate the new net asset value aggregating the
worst case absolute values regardless of positive or negative
results (NAVUp);

6. Replicate step 5 but move each yield curve down by one basis
point and calculate the new net asset value aggregating the
worst case absolute values regardless of positive or negative
results (NAVDown);
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Parallel Yield Curve Shift.
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7. Compare the results of NAV0 minus NAVUp, and NAV0 minus
NAVDown. The highest absolute value of these two calculations
is called NAV1.

Example
Assume that an SIV has two bonds, one denominated in US$, and another
in Euro and the $/m spot rate = 0.90. Also assume that outstanding senior
liabilities are $180.

The US asset pays: $LIBOR + 50 basis points has a three-year matu-
rity and a PV of $100.

The Euro asset pays: three-month EURIBOR + 30 basis points also
matures in year 3 and has a m PV value of 100. PV of asset = $90.

PV of the portfolio is therefore = $190.
Senior liabilities pay three-month LIBOR + 20 basis points and con-

sist of a principal bullet in year 2 with a PV = $180.
Net asset value0 (NAV0) = $190 − $180 = $10.
The parallel shift calculations are followed, resulting in NAV1 = $9.999.
Thus, the test will be passed if (NAV0 − NAV1)/NAV0 < 0.2 bps.
In our example, ($10 − $9.999)/$10 = 0.01% or 0.1 basis point, there-

fore the test is passed.
The test is then repeated assuming a 100 bps parallel shift.

Point-by-Point Yield Curve Shift
This test involves an instantaneous one basis point shift (up and down) of
the zero coupon LIBOR yield curves for each currency at each specified
point along the respective curve. The manager will, therefore, be running
NAV tests as described before assuming a yield curve shift of +1 bps at the
one-month point only for all yield curves. It will then rerun the tests using
a −1 bps shift at the one-month point only. The test will be repeated assess-
ing the same shifts at the three-month point only, etc. The largest NAV
change result from all of these runs is compared to NAV0 in the same way
as the parallel shift test (Figure 14.12). 

This test assumes that yield curve do not necessary move in a paral-
lel fashion. The test particularly stresses cash flows that might be concen-
trated in a specific part of the curve.

Spot Foreign Exchange
This test involves individually changing the value of each currency rela-
tive to the U.S. dollar by 1 percent (up and down). The aggregate impact
for all eligible currencies may not result in more than a preset level of
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tolerance, for example, 2.0 bps movement (up or down) of the SIV net
asset value. Again, the new net asset value is calculated by aggregating
the worst-case absolute values regardless of the positive or negative
result.

Liquidity Risk
Liquidity risk in an SIV arises in two ways:

1. Rollover of current outstanding debt or
2. Sale of assets to meet senior liabilities.

Because the assets mature in four years on average but the liabilities fall
due between one month and 18 months, cash from maturing assets can-
not be relied upon to pay liabilities. The SIV relies on refinancing exist-
ing debt and repaying outstanding debt with new issued debt. When
market conditions are not favorable to roll current debt, the SIV faces a
liquidity problem. Not being able to roll debt can cause the winddown of
the SIV if it needs to liquidate the portfolio to repay the debt. So liquid-
ity management is a very important task for the manager and that is why
in addition to the capital adequacy model, an SIV is equipped with spe-
cial models to cover for liquidity shortages for limited periods of time.

The liquidity model is a tool to provide information about the vehi-
cle’s internal liquidity relative to its liability. This is very important in the
context of funding longer term assets with the issuance of commercial
paper. The liquidity model usually looks at daily inflow and outflow in
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rolling five business days intervals to determine the peak cumulative poten-
tial cash need over one year. The requirements for liquidity are covered by
credit lines, or by assets that are deemed to be “liquid,” meaning readily
available for sale at a price close to their current market price.

Daily cash inflows and outflows from the vehicle drive the liquidity
requirement. Unlike other areas of structured finance, 100 percent liquidity
facilities are not required as the SIV is subject to many stringent tests and
constraints and benefit can be given to the liquidity of the assets that it holds.

The SIV has to have an appropriate mix of liquidity lines and inter-
nal liquidity to be able to repay some level of its short maturing liabilities
when they fall due. This risk takes on great importance in an SIV because
most vehicles fund the purchase of longer-term assets with the issuance
of commercial paper that may be rolling every few days. Medium-term
notes can also be issued and as these are not normally maturity-matched
to specific assets liquidity risk arises here as well.

Given the dynamic feature of the SIV, it is appropriate to measure
the liquidity levels in the SIV on a dynamic basis referred to as the NCO
tests. Some SIV managers may actually refer to this test as the MCO (max-
imum cumulative outflow). This test measures on a deterministic basis
the projected one-year net payments for the vehicle. In this way, the man-
ager can reserve liquid resources to cover his short-term need and avoid
selling longer-dated assets for these payments which would then make
him exposed to market risk unnecessarily.

NCO Tests
NCO tests are normally calculated for each rolling 1, 5, 10, and 15 busi-
ness day period commencing on the next day of calculation through and
including the day which is one year from the day of such calculation (i.e.,
the vehicle needs to determine on a daily basis its 1, 5, 10, and 15 day peak
NCO requirements over the next year). SIV managers may decide to have
other NCO tests beside these standards depending on the specifics of the
individual vehicle.

The NCO tests are produced by subtracting daily Outflows (i.e.,
interest and principal on senior and junior debt, all admin and operating
expenses, and all net payments on derivatives contracts) from daily
Inflows (i.e., all interest and principal received from the SIV’s assets) and
cumulating the results of these individual calculations over the relevant
period. The SIV will need to ensure that the cumulative peak amount from
the NCO tests is covered by eligible liquidity. Eligible liquidity is provided
through a mixture of bank liquidity lines and liquid assets held by the SIV.



The table that follows shows an example of the NCO5 test for the
next six business days. The same “rolling first day” method will be used
in calculating the 10-day and 15-day periods.

Such calculation must be done for all NCOs up to one year, i.e.,
approximately 240 business days.

NCO5 NCO5 NCO5 NCO5 NCO5 NCO5 NCO5
Time I O I − O T T + 1 T + 2 T + 3 T + 4 T + 5 T + 6

T

T + 1 5 25 −20 −20

T + 2 4 20 −16 −36 −16

T + 3 2 0 2 −34 −14 2

T + 4 3 4 −1 −35 −15 1 −1

T + 5 4 3 1 −34 −14 −2 0 1

T + 6 2 2 0 −14 2 0 1 0

T + 7 4 3 1 3 1 2 1 1

For example, for each five-day period, there will be five different
cumulative values, except for the last 4, 3, 2, and 1 five business days of
the year. The NCO will be the largest of the five different values, calcu-
lated as follows:

Day 1 cumulative sum = Daily NCO for day 1
Day 2 cumulative sum = Sum of daily NCOs for days 1 and 2
Day 3 cumulative sum = Sum of daily NCOs for days 1, 2 and 3
Day 4 cumulative sum = Sum of daily NCOs for days 1, 2, 3 and 4
Day 5 cumulative sum = Sum of daily NCOs for days 1, 2, 3, 4 and 5

In the previous example, the largest five business days NCO is −36,
which is the two-day cumulative sum of the daily NCO for days T + 1, and
T + 2. In this example if the NCO5 test was run for the rest of the year (i.e.,
out to T + 364) and no higher NCO5 amount was encountered, then the
vehicle will need to have eligible liquidity at least equivalent to $36 millions.
The vehicle will run the other NCO tests (e.g., NCO1, NCO10, and NCO15)
and if any produces a higher NCO requirement than the NCO5 peak dis-
cussed, that higher amount will become the eligible liquidity requirement.

Eligible liquidity can be provided through a mixture of external
liquidity facilities from A-1+ rated banks and highly liquid assets held
by the SIV. The expectation is that the SIV will cover the peak NCO5
Eligible liquidity requirement with external liquidity lines only (on the
basis that a five-day liquidity period for even highly liquidity assets is
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not an appropriate assumption at AAA). So, in the above example, if say
the NCO1 test resulted in a peak of $30, the NCO 10 test resulted in a peak
of $80 and the NCO15 test resulted in a requirement of $60, the actual liq-
uidity amount held by the vehicle, based on the calculations on that day,
would be $80 with $36 provided by bank liquidity lines (i.e., the peak
NCO5 requirement) and the remaining $44 coming from liquid assets.

Recent Developments in SIV Land

Most recent SIVs have increased their exposure to non-USD assets and
non-USD capital by creating ring fenced subportfolios in non-USD cur-
rencies. SIVs have expressed interest in alternative types of funding, via
credit linked notes or repurchase agreements. In the past few years, SIVs
have attempted to rate their capital notes. This is driven by risk manage-
ment motivations, in an effort to quantify all exposures for internal pur-
poses or for the benefit of the purchasers of the note. To date more than
11 billion of capital notes has been privately or publicly rated not higher
than A. To rate the capital notes A or BBB, one needs to show that the like-
lihood of losing a first dollar on the capital notes is A or BBB remote. Once
the vehicle enters winddown, capital will be used to repay the debt, and
hence capital notes will suffer a loss. So, the focus of the analysis is to
quantify the likelihood of the vehicle to not enter irreversible winddown.
If one makes the assumption that the manager is diligent enough to not
force the vehicle into winddown, the only drivers remain to be a massive
rating deterioration and a spread widening that would consume all the
excess capital and hit the capital adequacy test. So basically, the excess
capital will have to cover all the bad credit cycles as well as market spread
widening. The excess capital would cover for defaults and any loss in
market value of the portfolio. Once it is used, and the minimum level of
capital attained, the vehicle is very likely to fall short of the AAA ade-
quacy test and go into winddown, when most likely the capital notes
would suffer a positive loss.

Older and newer SIVs have expressed interest in entering other
types of markets like credit derivative markets, where they act as protec-
tion sellers.

It is also worth mentioning that other types of operating companies
have borrowed from SIV technology to a greater or lesser degree (mostly
to manage market and liquidity risk), like repurchase agreement vehicles
as well as credit derivative companies.



OTHER TYPES OF QUASI-OPERATING 
COMPANIES

In addition to the SIVs, other operating companies have been designed to
serve a special purpose. Derivative product companies are intermediaries
between financial institutions (known as their parent or sponsor) and
their third party counterparties. Derivative product companies (DPCs)
intermediate swaps between the sponsor and third parties under
approved ISDA master agreement. Enhanced subsidiaries differ from
other derivative-product subsidiaries, as their credit ratings do not rely on
their parent’s guarantee. A DPC may engage in over-the-counter interest
rate, currency and equity swaps, and options as well as certain exchange-
traded futures and options depending on its individual structure. A DPC
is capitalized at a level appropriate for the scope of its business activities
and desired rating. DPCs have been set up in most cases to overcome
credit sensitivity in the derivative product markets. There are two types
of DPCs: continuation or termination structures. The continuation struc-
tures are designed to honor their contracts to full maturity even when a
winddown event occurs, whereas the termination structures are designed
to honor their contracts to full maturity, or should certain events occur, to
terminate and cash settle all their contracts prior to their final maturity.
The chart presented subsequently illustrates a DPCs role as an intermedi-
ary with offsetting trades.

The DPCs have AAA rating and are often projected as the AAA face
of the sponsor. They are market risk neutral by mirroring their trades with
third parties with the parent or sponsor. They are exposed to credit risk of
third parties. As with the SIVs, the structure is equipped with exit strate-
gies and resources that ensure that even in a winddown scenario, the
vehicle meets with AAA certainty its derivative obligations.

The market for derivative product companies started in early 1990.
Every bank that wanted to be eligible as an AAA counterparty in deriva-
tive contracts, sponsored its own derivative product company. Currently
there are 15 active DPCs.

♦ Bank of America Financial Products, Inc.
♦ Bear Stearns Financial Products, Inc.
♦ BT CreditPlus (closed)

Sponsor
(e.g.“A”) DPC CTPY
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♦ Credit Lyonnais Derivative Program
♦ GS Financial Products International L.P. (closing)
♦ Lehman Brothers Derivative Products, Inc.
♦ Lehman Brothers Financial Products, Inc.
♦ Merrill Lynch Derivatives Products AG
♦ Morgan Stanley Derivative Products, Inc.
♦ Nomura Derivative Products Inc.
♦ Paribas Derives Guarantis
♦ Sakura Prime (closed)
♦ Salomon Swapco, Inc.
♦ SMBC Derivative Products, Ltd
♦ JP Morgan Enhanced ISDA Program

Once a trigger event occurs, the DPC freezes its operations and active
management. The termination DPCs accelerate all their contracts and exit
the market in a short termination window, typically 15 days. Hence, the
termination payments that the counterparties owe to the DPC will be
passed through to the parent to close out the mirror contracts. If the coun-
terparties default, capital will be used for those payments.

If the DPC owes money to the counterparty, the parent is delivering
that termination payment to the DPC from the mirror trade, in which par-
ent owes money to the DPC. That amount is quantified and held as col-
lateral posted by the parent on behalf of the DPC.

Practically, two models are being developed for a DPC: a credit
model in which capital is quantified to cover for third party defaults, a
VaR type of model in which the amount that the parent owes to the DPC
on all its trades is quantified over a 15-day horizon.

Quantitative techniques in sizing capital adequacy for a DPC rely on
a market rate generator in which new market environment is projected for
the lifetime of the portfolio. This means that interest rates in each currency
and foreign exchange rates are projected in a correlated fashion up to the
longest tenor of the swap book.

The forward rates require models for the entire yield curve. The
financial literature provides a wide range of models from one to multiple
factor models.

Principal component analysis (PCA) involves a mathematical proce-
dure that transforms a number of (possibly) correlated variables into a
(smaller) number of uncorrelated variables called principal components. The
first principal component accounts for as much of the variability in the data
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as possible, and each succeeding component accounts for as much of the
remaining variability as possible.

The mathematical technique used in PCA is called eigen analysis: it
solves for the eigenvalues and eigenvectors of a square symmetric matrix,
the covariance matrix of key points on the yield curve. The eigenvector
associated with the largest eigenvalue has the same direction as the first
principal component. The eigenvector associated with the second largest
eigenvalue determines the direction of the second principal component.
The sum of the eigenvalues equals the trace of the square matrix and the
maximum number of eigenvectors equals the number of rows (or columns)
of this matrix.

In most cases, two or three PCAs are enough to explain more than
90 percent of the variance covariance matrix.

Once the market environment is simulated, valuation modules
will be used to project the mark-to-market of each swap contract. By
combining market paths with credit paths (in which the credit worthi-
ness of the counterparty is simulated), one can see where capital is
being deployed to cover for losses. The potential losses corresponding
to each market path can be obtained by combining the results of default
simulations and the counterparty exposures. A consideration of losses
across all market paths permits the construction of a distribution of
potential credit losses. The necessary credit enhancement to protect
against losses at a given level of confidence may be obtained. This risk
model can also quantify the potential change in the portfolio’s value
over a period of time.

A DPC with a continuation structure generally receives collateral
from the parent to cover its exposure to the parent resulting from the
back-to-back trades. This collateral amount, after appropriate discount
factors are applied, is equivalent to the net mark-to-market value of the
DPC’s portfolio of contracts with its parent. Upon the occurrence of cer-
tain events, however, the management of the DPC’s portfolio will be
passed on to a contingent manager.

In the short period prior to the transfer of portfolio management to
the contingent manager, the value of the DPC’s contracts with its parent
could rise. Using the capabilities of the risk model, the potential increase
in the DPC’s credit exposure to the parent may be quantified.

In a termination structure, the value of the DPC’s portfolio can change
over the period beginning with the last regular valuation date and ending
at the early termination valuation date upon occurrence of a termination
trigger event. Again, the potential change in the portfolio’s value may
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be determined at the desired level of confidence by using the same risk
model.

The DPC’s liquidity needs also require evaluation. The DPC must be
able to meet its obligations on a timely basis. These include its payables to
its counterparties under its derivative contracts, and to its parent result-
ing from the back-to-back transactions and, in certain cases, obligation to
meet margin calls on the exchange-traded futures contracts used as
hedges. The risk model may be used in determining the liquidity needs of
the DPC by using simulated market evolution and evaluating the current
portfolio of derivative contracts and the likely portfolio of offsetting
hedges. Using the model, a distribution of daily portfolio positions can be
simulated, thus establishing, at an appropriate level of confidence, the
potential liquidity need of the DPC on a daily basis and over a specific
time horizon.

CREDIT DERIVATIVE PRODUCT 
COMPANIES

Since credit default swaps made their debut in 1991, their marketplace has
grown exponentially. This has created a new asset type for derivative
product companies, called credit derivative product companies (CDPCs).

Generally, a CDPC is a special-purpose entity that sells credit pro-
tection under credit default swaps or certain approved forms of insurance
policies. Sometimes, they can also buy credit protection. A CDPC is orga-
nized to invest in credit risk exposure in certain segments of the markets
through the use of credit derivatives or insurance policies.

The following chart illustrates the typical structure of a CDPC that
sells credit protection under a credit default swap.

The AAA counterparty rating assigned to a CDPC ensures that all
obligations of the company are met with AAA certainty, should a trigger
event occur and send the vehicle into winddown.

The CDPCs rated to date are listed:

1- Primus AAA ICR—focused on single name primarily
Notional approximately $13 billion
Launch: 2001
2- Athilon AAA ICR—focused on tranche business primarily
senior and super senior tranches
Notional approximately $10 billion
Launch: 2005
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3- Theta AAA operating program—focused on single name
primarily
Notional approximately $2 billion
Launch: 2005

CDPCs and CDOs

The two structures are indeed in the same type of business: selling pro-
tection on a portfolio of reference entities. These reference entities can be
single name corporates, single name ABS, baskets of names or structured
credit, namely indices or CDO tranches. The tranches can be anywhere in
the capital structure of the CDO ranging from the first loss position to
super senior.

CDPCs are evergreen vehicles, whereas CDOs have a finite life. In
addition, the risk model of a CDPC has to account for all obligations of
the CDPC including termination payments on credit default swap con-
tracts. In a CDO, such obligations are subordinated in the waterfall and
the risk model does not address the likelihood of such obligations to be
paid.

When a credit default swap counterparty defaults, a termination
payment may need to be calculated. The termination payment is the
potential future mark-to-market of the credit derivative contract. This ter-
mination payment on the swap contract is the expected risky discounted
value of the remaining cash flows of the swap. The key variables in com-
puting the forward value of the swap are the then-current rating of the
entity of which protection is sold or bought and the potential future credit
swap premium. For each counterparty, the termination payments on the
underlying contracts are computed and aggregated at the counterparty
level if netting is applicable. For each out-of-the-money position with
each counterparty, capital is reserved. The termination payments on swap
contracts of a CDPC are AAA obligations pari passu with payments on
credit events and other AAA obligations.

The future rating of single names can be explicitly modeled using a
multiperiod transition matrix, or a distribution of ratings could be inferred
from the timing of defaults of the underlying obligors (in case a time to
default model was chosen). Given the current liquidity in the market of cer-
tain tenors on the credit default swap curve, it is likely that a model for a
full-term structure for the credit default swap premium would be hard to
calibrate. As a simple method of implementing proxy, a flat-term structure
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may be assumed at the most liquid point on the curve (e.g., five years). That
point could be projected forward using a model that takes into considera-
tion serial correlation, fat tails, and correlation across different industries
and ratings. Further, the simulated premium is used to derive the risky dis-
count factors, which, when applied to the remaining premium payment,
would compute the fair market value at the then-current time step. The
credit derivative market is expected to become more liquid, and, in the
future, term structure models for the entire credit default swap curve are
expected to be developed. This would allow further enhancements of the
valuation modules currently used by the market.

The fair market value of a credit default swap on a structured credit
depends on the behavior of the underlying portfolio of reference entities.
As opposed to a single name, where the default is a binary event, a struc-
tured credit is approached based on expected loss of the tranche. For
example, for a first-loss position, losses due to defaults have a direct
impact on the size of the tranche. For a mezzanine tranche, defaults will
impact the position in the capital structure of that tranche and, poten-
tially, the size of the tranche. At each time step, the distribution of losses
to the tranche can be calculated based on aggregating losses in the
underlying portfolio. Then, the incremental expected losses in each
period can be derived and discounted to size the net PV of aggregate loss
on the tranche. Pricing of the tranche is affected by the defaults in the
underlying pool and by the movement of rating/credit spreads of the
nondefaulting entities. Correlation among the credits in the portfolio is
another key input in the pricing module of a tranche. Reader is referred
to recent research papers on correlation term structure and impact on
tranche pricing.

CDPCs and SIVs

As with an SIV, the CDPC has a dedicated management team that decides
to increase or decrease leverage as they see appropriate. Although the two
have different businesses and, perhaps, motivations, in the recent years
the two have borrowed from each other important structural features. As
such, we have seen SIVs trying to enter the credit derivative market and
sell and buy protection. So their risk model had to be adjusted for default
of the underlying and swap termination payments.

Also CDPCs, which traditionally held their capital in highly rated
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investments expressed interest in investing and holding higher yielding
assets. If the eligible investments include riskier assets, like corporates
and/or ABS, their market value and credit risk needs to be explicitly
incorporated by modeling their key risk factors: asset spreads and credit
migration. In this way, the model can size appropriately the impact of
the investments on the cash flows of the company. It can address, in an
accurately and timely fashion, the cash inflows for the coupons and the
liquidation risk for the assets that need to be sold to meet the timely
“AAA” obligations of the company. The potential future credit rating
of the asset that needs to be liquidated, as well as its market value, is
modeled.

Hybrid vehicles have attracted the interest of the market and we see
this interest growing.

There are currently special purpose companies that combine struc-
tural features of a CDPC with SIVs (e.g., Theta) and vice versa.

The CDO technology and tiered capital structures start to attract
interest for a more efficient funding strategy. We expect the three types pre-
sented earlier to overlap and to lead to the creation of new innovative
structures.

REPO COMPANIES

Repo companies are AAA vehicles that engage in repurchase agreements.
They provide financing to institutional investors through reverse repur-
chase transactions and total return swaps. To achieve that, these vehicles
finance themselves through repurchase agreements or commercial paper
and medium term notes.

A repurchase agreement (or repo) is an agreement between two par-
ties whereby one party sells the other a security at a specified price with a
commitment to buy the security back at a later date for another specified
price. Most repos are overnight transactions, with the sale taking place
one day and being reversed the next day. Long-term repos—called term
repos—can extend for a month or more. Usually, repos are for a fixed
period of time, but open-ended deals are also possible. Reverse repo is a
term used to describe the opposite side of a repo transaction. The party
who sells and later repurchases a security is said to perform a repo.
The other party—who purchases and later resells the security—is said to
perform a reverse repo.
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Although a repo is legally the sale and subsequent repurchase of a
security, its economic effect is that of a secured loan. Economically, the
party purchasing the security makes funds available to the seller and
holds the security as collateral. If the repo-ed security pays a dividend,
coupon, or partial redemptions during the repo, this is returned to the
original owner. The difference between the sale and repurchase prices paid
for the security represent interest on the loan. Indeed, repos are quoted as
interest rates. Figure 14.13 shows how a typical repo company works with
both assets and funding sides.

The assets that are repo-ed range from U.S. Treasuries/agencies,
leveraged loans, Investment grade or noninvestment grade Bonds, ABS,
CDOs. credit risk, market risk, liquidity risk are the key drivers for capi-
tal in the risk model.

Credit Risk occurs when counterparty fails to postmargin or return
asset (repo) or $ amount (reverse repo) at maturity. Because most posi-
tions are matched, if a counterparty defaults, the risk model has to absorb
the open market risk that the vehicles are left with unless they contractu-
ally agree to close out the trade.

Market Risk fluctuations in MtM may result in margin calls Loss
severity upon termination depends on MtM of collateral. If the asset
loses value during the liquidation horizon, this becomes a direct hit to
capital.
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Liquidity Risk

SPV may be required to post additional margin/return excess margin.
That is why a spread model is needed to accurately evolve through time
the market value of the assets.

In a repo, SPV would post more assets or return cash to counterparty
if MtM of original assets falls below maintenance margin.

In a reverse repo, SPV would return assets or send additional cash
to counterparty if MtM of asset rises above maintenance margin.

All three risks can be modeled according to the terms of the repo con-
tracts. One could use modules similar with the ones presented as examples
given earlier.

LIQUIDITY FACILITIES

Another type of special purpose company is a vehicle that is set up to
provide multilateral and bilateral commitment facilities extended to cor-
porate borrowers. It is a limited purpose company that seeks to provide
back-up liquidity to its corporate clients.

A structural diagram, like the one presented subsequently, shows the
SPV has to raise capital from its capital investors to cover for the potential
peak drawdown over the life of the commitments. Funding for such vehi-
cles rely on the fact that not all borrowers draw up to to their limit in the
same time.

The corporate borrowers usually have a two-year or a five-year com-
mitment line with the SPV. They can borrow any amount up to their com-
mitment size and have the obligation to repay it within the tenor of the
facility. A borrower that cannot pay back the amount borrowed is deemed
to have defaulted on its obligation. The SPV has to have resources to cover
less than the total notional of the commitments, as not all borrowers will
draw in the same time. The quantitative exercise here is to size an amount

SPV

Capital investors

Corporate

borrower



that covers the borrowers who will default and not pay back and, more
important, cover the potential maximum drawdown amount over the life-
time of these commitments.

The key risk factors for such an exercise are frequency of drawdown,
magnitude of drawdown, and persistence of drawdowns. They are dif-
ferent per rating and certain industries. Credit worthiness is modeled
using the technologies presented before, applying a rating transition
approach. The other factors are modeled from data collected on them.
Each of the factors is a source of randomness and noise in the simulation.
By combining credit paths with paths for drawdowns and persistence, a
stochastic model is built.

Typically, this Monte Carlo exercise results in a percentage less than
100 percent (the size of the commitments extended), in capital require-
ment. As mentioned earlier, tranching using CDO technology can provide
a more efficient source of funding for the operating company.

A P P E N D I X  A

CIR Model Calibration

The steady state probability and cumulative density functions

fr(r)dr ≡ Prob{r < r ≤ r + dr}; Fr(r) ≡ Prob{r ≤ r} (2)

of the interest rates following the CIR process is given by

(3)

(4)

(5)

A way to infer the three parameters of the CIR model is by calculat-
ing statistical moments of quantities involving the interest rates and fitting
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the parameters to best reproduce the moments. The steady state first sta-
tistical moment of the interest rate is given by

(6)

The steady state second statistical moment is given by

(7)

It follows directly from Equation (1) that the second statistical
moment of the interest rate change ∆r over small time intervals ∆t is
given by

(8)

Substituting Equation (6) in (8) gives

(9)

Equations (6), (7), and (9) along with empirical inferences of rr�, σr
2,

and provide a method for calibrating η, γ, and α. Hence,
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The fitted parameters are

η = 0.018205493(1/yr2); γ = 0.25468 (1/yr);
α = 0.00813991(1/yr2) 1/γ = 3.926 yr.

In Cox et al. (1985), it is shown that zero-coupon bond prices, with
term (T − t) and issued at time t, when the short rate is r(t), have the fol-
lowing general form:

P(t, T) = A(t, T)e−B(t, T)r(t),

where

and

The continuously compounded rate for a zero-coupon bond is then;

The CIR model allows us to price any bond regardless of maturity,
simply by modeling the short rate. For any given term, L = (T − t), both A
and B are constants and the earlier equation becomes

Hence, the long rate is a linear function of the short rate. In this way,
a full discounting curve can be built for each currency and used to derive
the market value of the assets and the mark-to-market on derivative
contracts.
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A P P E N D I X  B

Analyzing Capital Notes for a SIV

The rating on the capital notes of an SIV can be assigned either confiden-
tially or publicly—the methodology does not differ—and addresses the
SIV’s ability to make ultimately payment of the principal amount of the
capital notes, plus the minimum interest amount. These interest payments
can be addressed in the rating definition as being timely or ultimately. This
will depend on whether the capital note (or junior) model is able to pro-
duce results that suggest that the minimum coupon can be paid timely, or
the transaction documents specify that coupons can be deferred.

We assume that in defeasance, the capital note investors lose at least
one dollar of their investment, hence P(first dollar of loss conditional
upon defeasance) = 1.

However, capital note investors could suffer losses outside defea-
sance as well, hence it may be the case that P(first dollar of loss condi-
tional upon no defeasance) > 0.

Therefore, the rating analysis must address three main areas,
namely:

♦ Analysis of defeasance events
♦ Probability of defeasance and
♦ Likelihood of first dollar of loss to capital note investors outside

defeasance.

For the capital notes, the evaluations that one would make in order to
reach comfort to look only at a parametric model are more heavily based
on qualitative than quantitative assumptions. They relate to the man-
ager’s ability to perform in the future and to avoid noncredit/noncapital
related winddown/defeasance events. However, the likelihood or remote-
ness of triggering defeasance is not an assumption in the rating method-
ology for the senior debt of a SIV, where defeasance is supposed to occur
on day 1, regardless of what caused it.

In practice, the SIV manager requests a desired rating on the capital
notes. The majority of managers have requested a rating in the “BBB”
range.

It must be noted that the methodology that follows is neither spe-
cific to any vehicle S&P currently rates, nor it is prescriptive to any
vehicle seeking a rating on the capital notes. Indeed, other issues could
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arise on a case-by-case and the implementation of a rating methodol-
ogy will be specific to each SIV and will take into account its idiosyn-
crasies.

The analysis addresses the likelihood of the first dollar of loss in the
capital notes. During the lifetime of the vehicle, the most disrupting event
is the defeasance event. This event stops the normal operations of the
vehicle and, in essence, the portfolio is wound down gradually and the
SIV ceases to exist after the last liability is paid.

It then makes sense to divide the rating analysis into two mutually
exclusive events, namely defeasance and nondefeasance, and analyze the
effect on the first dollar of loss in both events.

Formalizing the rationale above, this translates into an analysis of
the conditional first dollar of loss in defeasance and in nondefeasance
mode respectively, in the formula shown in Figure 14.14.

USE OF A MONTE CARLO APPROACH IN
RATING THE CAPITAL NOTES

The likelihood of first dollar of loss on the interest and/or principal could
be estimated using a “Monte Carlo” approach. Although the Monte Carlo
exercise is computationally intensive, it provides an excellent tool to accu-
rately model the risk factors. It also provides a framework for accurately
inputting into the model the waterfall, including the timely payment of
coupon on capital notes and its ranking in the waterfall.

This approach simulates implicitly the steps in the defeasance and
nondefeasance scenarios.

As described in the paper, the main risk factors are credit variables
(transition/default migration) and market variables (credit spreads, credit
swap premiums, interest rates, and exchanges rates).

Following the methodology of our rating analysis, one needs to deter-
mine P(first dollar of loss on the capital notes) and benchmark it with the
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default probability of a corporate bond with a similar rating and tenor. The
tenor may depend on certain structural features of the capital notes, typi-
cally with expected maturities of seven to 10 years, although this expected
maturity can be shorter if puts are exercised by capital note investors.

To do the exercise using a Monte Carlo tool, one needs to evolve the
portfolio through time and analyze if timely payment of coupon and prin-
cipal on the capital notes can be achieved. In each “time step,” one would
stochastically evolve the credit and market variables and analyze the new
profile of the portfolio. This means that in each time step, the creditwor-
thiness and market value of the portfolio are computed and then checked
whether the portfolio meets the guidelines and passes the capital ade-
quacy tests (in each time step, the simulated market value of the asset
portfolio should be greater than par of all senior debt issued).

Therefore, in each time step, a random process would define the
then-current market and credit environment. Assets have a stochastic
market value that reflects their new rating, new market spreads, and new
tenor. Breaching portfolio guidelines (e.g., rating limits) should be cured
to get back into compliance by selling assets or 100 percent capital charg-
ing the assets.

In each time step, the waterfall is implemented starting with the
“AAA” senior fees and expenses, then the senior debt, and finally incor-
porating the minimum coupon on capital notes. The remaining funds
could be distributed as profit according to the guidelines (with or without
a cap). Thereafter, any remaining funds are cash trapped for the subse-
quent time steps and reinvested at the original ratings and at spread lev-
els simulated stochastically.

In evolving credit spread curves for reinvestment purposes, focus is
on stressing the spread tightening as opposed to the same exercise for
asset pricing purposes, where focus is on stressing the spread widening.
Debt is rolled at a cost of funds that itself is a stochastic variable that
needs to be simulated.

In each time step, as long as the adequacy tests (portfolio guidelines,
capital, and capital gearing) are met, the model makes assumptions of sto-
chastically reinvesting the cash amount from maturing assets or recover-
ies, recontracting derivative contracts, and rolling debt (cost of funds may
vary as well).

If the capital test is breached during a time step and defeasance is trig-
gered, the vehicle stops issuing debt and sells assets to repay liabilities. It is
almost certain that in the defeasance mode, capital would be deployed to
repay senior debt. That path should be deemed a failed path for the purpose
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of rating the capital notes. Let us say there is a total of D paths that trigger
defeasance out of the total of N paths simulated. In this way, the Monte Carlo
exercise sized the probability of defeasance to be D/N.

The paths in which all the tests are met do not trigger defeasance.
Those paths are re-run each time step until the maturity of the capital
notes. The challenge is to see whether the minimum coupon and the full
notional value of the notes can be paid.

Intuitively, this translates into having enough spread to make up for
the defaulted assets, which would be the main consumer of capital.

There may be paths in which, although defeasance is not triggered,
there is not enough cash to repay in full the capital notes. These are also
considered to be failed paths. Let us say there are E paths in which the
notes are not paid in full out of the total of N paths simulated. In this way,
the Monte Carlo exercise sized the probability of first dollar of loss if no
defeasance occurs to be E/N.

The number of failed paths for the capital notes is therefore
(D + E)/N, where

♦ D = Defeasance paths
♦ E = Non-defeasance paths but notes not paid in full and
♦ N = Total number of paths.

This has to be commensurate with a default probability of a corporate
bond with the desired rating and tenor.

In a Monte Carlo stochastic model, if there is a similar model for the
senior notes, parameters are kept the same if they were already calibrated.
The level of confidence lower than “AAA” is incorporated in the cut-off
point or the tolerance for failed paths.

It is worth reminding readers that this methodology is not prescrip-
tive; in fact, one could use this Monte Carlo tool to simulate defeasance
and see how much capital was deployed. There may be paths in which
not all the capital is used (e.g., if assets recover in price) and the capital
note investors may get a portion of their notes back.

THE NON-MONTE CARLO APPROACH

Given the formula for calculating the probability of the first dollar of loss
(see chart 4), one needs to estimate only P(defeasance) and P(first dollar
of loss given no defeasance). Besides the Monte Carlo approach, these two
probabilities could be quantified with other methods.
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For example: P(defeasance) can be quantified by assuming that defea-
sance occurs due to a drastic downgrade of asset ratings and spread widen-
ing over a short horizon, say, one month or three months. Intuitively, this
downgrade and spread widening would consume all excess capital and
make the “AAA” capital adequacy test trip and hence trigger defeasance.

Performing the earlier exercise amounts to quantifying the probabil-
ity of a spread widening occurring over a short horizon and compound-
ing it to the tenor of the capital notes (e.g., 10 years).

This requires a probabilistic model to be fitted to the spreads.
Furthermore, the analysis has to reflect the composition of the portfolio,
hence the asset mix. The spreads usually have “fat” tails and may vary
from one asset type to another.

P(loss given no defeasance) can be quantified using a profit and loss
approach in which conservatively assessed incomes are counted against
stressed defaults, senior fees and other expenses, senior debt, and the
minimum coupon on the capital notes.

The methodologies given earlier are only examples of alternative
approaches to a Monte Carlo approach. They could be adapted to each
SIV’s model or technology. For nonstochastic models, parameter stresses
may need to be lowered to reflect the increase in tolerance in the exercise
of rating the capital notes as opposed to senior debt. For portfolios that
are not ramped up, a variety of assumptions on initial asset spreads and
cost of funds is tested.

In rating capital notes, to address rating volatility several portfolios
should be tested, with low, medium, and high leverage or, respectively,
with high, average, and low credit quality. Ultimately, the excess spread
(beyond the “AAA” model) is the main contributor to the payment of
coupon and principal on the capital notes. Refining the capital structure
of the capital notes into a mezzanine and first-loss piece may help absorb
the losses and achieve a higher rating.
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C H A P T E R  1 5

Securitizations in Basel II

William Perraudin*

675

INTRODUCTION

In this chapter we consider the rules governing regulatory capital for
structured products† in the new Basel II proposals.‡ We look at the
motives that have influenced regulators in designing the rules, review the
different approaches banks will be required to follow, discuss the finan-
cial engineering that underpins the main approaches, and consider the
likely effects of the new Basel II system on the structured product market.
To ensure that the discussion is self contained, we briefly review some
relevant features of the market in this introduction.

Growth in structured products began in the 1980s with the emer-
gence of the residential mortgaged-backed security (RMBS) market in the
United States. In the 1990s, substantial asset-backed security (ABS) mar-
kets emerged in auto loans and credit card receivables. Since the late 1990s,
there has been major growth in different types of collateralized debt obli-
gations (CDOs) in which the special purpose vehicle (SPV) pool is made
up of illiquid bonds or loans by banks to large corporate borrowers.
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Recently, the range of collateral types included in structured prod-
uct pools has widened further, as issuers have created securitizations
based on trade receivables of different kinds, equities, commercial prop-
erty, utility receivables, and even energy derivatives. Issuers have realized
that, in principle, any assets that represent claims to future cash flows can
be securitized.

As well as classic securitizations in which assets are transferred to an
SPV, banks have made extensive use of structures in which off balance
sheet conduits issue commercial paper and use the proceeds to purchase
revolving pools of assets. Such Asset-Backed Commercial Paper (ABCP)
conduits are particularly important in the United States.

Also common are synthetic securitizations. In these, the SPV pro-
vides a bank with credit protection on its loans [often, in the form of credit
default swaps (CDS)]. At the same time, it issues notes to the market and
invests the proceeds in high credit standing bonds such as Treasuries. The
premiums the SPV receives from the bank on the CDSs plus the coupons
on the Treasuries provide it with income it uses to pay coupons on the
notes. Such structures are often cheaper to create than traditional struc-
tured products, since the legal complication of transferring ownership of
the underlying assets is avoided.

The impact of structured products has been substantial for issuers
and investors alike. Structured products have provided investors with a
broader and more liquid range of debt instruments in which they can
invest, permitted issuers to manage better their balance sheets risks, and
opened up new sources of funding for banks. As early as 1998, one esti-
mate suggested that 40 percent of the nonmortgage loan books of the 10
largest U.S. bank holding companies had been securitized.

THE REGULATORS’ OBJECTIVES

This section reviews the broad objectives regulators have had in framing
the Basel II rules for structured products. The treatment of securitizations
is a key part of Basel II. This is not just because of the sheer volume of
securitization exposures in bank portfolios, but also because banks have
made widespread use of securitization to circumvent regulatory capital
requirements through the so-called capital arbitrage. Indeed, the preva-
lence of such capital arbitrage has been one of the major reasons that reg-
ulators have felt obliged to replace the simple rules of the 1988 Basel
Accord with the more complex, risk-sensitive regulatory capital require-
ments of Basel II.
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Examples of how securitizations may be used for capital arbitrage
are provided by Jones (2000). Consider the following example. Suppose a
bank possesses a loan pool worth $100. The chance of losses exceeding $5
might be negligibly small. In this case, the bank could create a securitiza-
tion and retain a junior tranche with par value of $5. It thereby retains all
credit risk in the transaction.

The maximum capital charge that the regulatory authorities can
charge is 100 percent. Hence, the bank which would have had to hold cap-
ital of $8 under Basel I if the exposures were held on balance sheet now
has to hold no more than $5 in capital even though its risk position has
not changed.

Under Basel I, even lower regulatory capital charges may be achieved
if the pool exposures are actually originated by the SPV. In this case, the
bank may provide the SPV with a credit enhancement like a subordinated
loan so that it effectively bears the credit risk associated with the pool of
assets. Under Basel I, the subordinated loan in this case just attracts an 8
percent capital charge.

In the light of these examples, one may understand how important
it has been for bank regulators designing the Basel II system to come up
with rules likely to reduce the incentives banks face to engage in capital
arbitrage.

To achieve this, regulators have tried, first, to design regulatory cap-
ital charges for loans that are aligned with the capital that banks would
themselves wish to hold. Second, they have aimed to create a system of
capital charges that preserves on and off balance sheet neutrality, i.e., the
capital banks must hold should be the same whether they hold a pool of
loans on balance sheet or if they securitize it and retain all the tranches.
Third, they have sought to ensure that the individual capital charges
attracted by the different tranches in a structure are consistent with the
relative distribution of risks between the tranches.

The new system of capital charges will inevitably have an impact on
the securitization market. One of the major objectives of Basel II after all
is to reduce the volume of transactions motivated by capital arbitrage con-
siderations. Nevertheless, an important objective has been not to impede
activity unreasonably in particular segments of the market, especially
where the transactions are clearly aimed at effecting genuine transfer of
risk off the issuer’s balance sheet.

As we shall see, in certain key areas, regulators have felt obliged to
include additional flexibility to prevent the new regulations having a prej-
udicial effect upon market segments. In particular, the impact of Basel II
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on suppliers of liquidity and credit enhancement facilities in the ABCP
market has been of great concern to the U.S. regulators because of the
importance of this market to U.S. companies.

Given these general objectives, regulators have provided a menu of
different approaches that should permit banks to calculate capital for the
very diverse range of securitization exposures in their books in a risk-
sensitive fashion.

The different approaches permitted in the menu is heavily influ-
enced by the question of how much information one may expect banks to
have about the securitization exposure they hold. For example, as arms-
length investors, a bank may hold substantial securitization exposures
about which they have only hazy information. Typically, they will only
have a broad notion of the composition and credit quality of the underly-
ing asset pool. On the other hand, if a bank has originated and continues
to manage the securitized assets, it will have very detailed information
about the securitization.

An intermediate case occurs when a bank acts as the sponsor of a
commercial paper programme. The sponsoring bank may supply credit
enhancements and liquidity facilities to the programme that will then rep-
resent exposures subject to the Basel II securitization framework. The
underlying assets will in most cases have been bought in from other orig-
inators, and so the sponsor will only have limited information about
them.

The two possible ways in which securitization capital charges
might be calculated are either (1) to base charges on the ratings attributed
to securitization tranches by external credit rating agencies, or (2) to base
charges on a formula supplied by supervisors into which the regulated
bank can substitute parameters describing features of the tranche in
question.

A ratings-based approach is attractive for its simplicity and the fact
that it recognizes the key role that rating agencies play in the securitization
market. Agencies are relied on heavily by investors evaluating the credit
quality of securitization tranches after issue and strongly influenced by
their assessments the form that many deals take at issuance. (In the run-up
to an issue, issuers often effectively have to negotiate with the rating agen-
cies on such features as the degree of credit enhancement a tranches must
enjoy if it is to obtain a particular target rating, for example.)

Also, the principle of basing capital charges on ratings has been
widely applied in the Basel II rules for conventional credit exposures like
bonds on ratings. (In some cases, the ratings employed are internal and in

678 CHAPTER 15



Securitizations in Basel II 679

others are agency ratings.) One might be concerned, however, that the
relationship between capital and ratings is more complex in the case of
structured products than in the case of traditional credit exposures such
as bonds or loans. In which case, a bottom-up approach to capital calcu-
lation based on a stylized model may be an attractive option.

CAPITAL CALCULATION BY BANKS 
UNDER BASEL II

These objectives and considerations have led regulators to devise a sys-
tem comprising the following menu of different approaches.

1. The Standardized Approach. This approach consists of a look-
up table of capital charges for different rating categories for
exposures with long- or short-term ratings. The ratings in ques-
tion come from designated ratings agencies and are not inter-
nally generated by the banks. Banks are required to employ this
approach for a particular structured exposure if and only if they
use the corresponding “standardized approach” in their Basel II
calculations of capital for the predominant assets in the struc-
tured exposure pool.

The standardized approach look-up tables are shown in
Tables 15.1 and 15.2. The numbers in the table are expressed in
terms of “risk weights.” To convert these into percentage capital
charges, one must multiply by 0.08, i.e., the standard Basel I
capital charge.* For example, the 50 percent risk weight for a
BBB-rated exposure translates into a 4 percent capital charge. 

T A B L E  1 5 . 1

Standardized Approach with Long-Term Ratings

AAA to A+ to BBB+ to BB+ to B+ and
AA (%) A− (%) BBB− (%) BB− (%) below (%)

Risk weight 20 50 100 350 1250

*Under Basel, a bank must maintain capital at a level no less than 0.08 times its risk-
weighted assets (RWA). The RWA is obtained by summing the bank’s notional exposures
weighted by risk weights like those in Table 15.1.
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A risk weight of 1,250 percent translates into a 100 percent capi-
tal charge, i.e., in effect deduction of the exposure from capital.
The risk weights are highly conservative in the standardized
approach. A long-term AAA-rated tranche attracts a risk weight
of 20 percent and so a capital charge of 1.6 percent. The default
probability of such an exposure may be very close to zero, so
this is very conservative.

2. The ratings base approach (RBA). The RBA consists of a
slightly more elaborate pair of look-up tables for long-term and
short-term rated tranches (see Tables 15.3 and 15.4). The risk
weights for tranches of a given rating vary according to:

T A B L E  1 5 . 3

RBA for Long-Term Ratings

Risk weights Risk weights for
External for senior Base risk tranches backed by
rating positions (%) weights (%) nongranular pools (%)

AAA 7 12 20

AA 8 15 25

A+ 10 18 35

BBB+ 12 20 35

BBB 20 35 35

BBB+ 35 50 50

BBB 60 75 75

BBB− 100 100 100

BB+ 250 250 250

BB 425 425 425

BB− 650 650 650

Other rated 1,250 1,250 1,250

Unrated 1,250 1,250 1,250

T A B L E  1 5 . 2

Standardized Approach with Short-Term Ratings

A-1/P-1 (%) A-2/P-2 (%) A-3/P-3 (%) Other (%)

Risk weight 20 50 100 1250
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a Granularity. A pool is said to be highly granular if it contains
a large number of exposures none of which contributes a large
part of the total risk. A measure of granularity is the statistic

(1)

where EADi denotes the exposure at default of the ith expo-
sure in the pool. In the RBA, tranches rated above BBB+
attract risk weights higher than the base weights if N < 6
(see the fourth column of Table 15.3).

b Seniority. If a tranche is the most senior in its structure and
is rated BBB or above, it attracts a lower risk weight than the
base case so long as N > 6 (see the second column of Table
15.3). Lastly, as a late amendment to the RBA, a risk weight
of 6 percent has recently been introduced for super senior
tranches. Such tranches are defined as tranches that have
tranches junior to them that would attract a weight of 7 
percent, if they were the most senior.

3. The supervisory formula approach (SFA). This consists of
a bottom-up approach to calculating capital in which a set of
parameters reflecting the pool credit quality and features of
the cash flow waterfall of the structured product are plugged 
into a formula to yield the capital for a particular tranche.
The formula in question depends on five bank-supplied inputs:

N
ii

ii

=
( )∑
∑

EAD

EAD

2

2

T A B L E  1 5 . 4

RBA for Short-Term Ratings

Risk weights Risk weights for
External for senior Base risk tranches backed by
rating positions (%) weights (%) nongranular pools (%)

A-1/P-1 7 12 20

A-2/P-2 12 20 35

A-3/P-3 60 75 75

Other rated 1,250 1,250 1,250

Unrated 1,250 1,250 1,250
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a KIRB. The capital charge the bank would have had to hold
against the pool exposures if they had been retained on bal-
ance sheet and the bank was using the internal-ratings based
(IRB) approach, as specified under Basel II.

b L. The attachment point or credit enhancement level of 
the tranche, i.e., the sum of the par values of more junior
tranches.

c T. The tranche thickness.
d N. The effective number of exposures in the pool.
e LGD. The exposure-weighted loss given default of the pool

defined as:

(2)

The SFA capital charge for the tranche is:

max {0.0056 T, S(L + T ) − S(L)} (3)

where the supervisory formula S(L) is defined as:

(4)

where

h = (1 − KIRB/LGD)N (5)

c = KIRB/(1 − h) (6)
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(9)

a = gc (10)

b = g(1 − c) (11)

d = 1 − (1 − h)(1 − Beta(KIRB; a, b)) (12)

K(L) = (1 − h) ((1 − Beta(L ; a, b))L + Beta(L ; a + 1, b)c). (13)

Here, Beta(x; p, q) denotes the cumulative beta distribution
evaluated at x and with parameters p and q. The parameters
τ and ω are set at τ = 1000 and ω = 20. The underpinnings of
this approach are explained at greater length next.

The practical use of these different approaches is best explained by
reviewing the flow chart shown in Figure 15.1. This flow chart shows the
sequence of questions that a bank must answer in deciding what capital
to hold against a given securitization exposure.

1. Is it a securitization? The definition of a securitization in the
EU’s draft Capital Requirements Directive (Article 4, 36) is: “A
transaction or scheme, whereby the credit risk associated with
an exposure or pool of exposures is tranched, having the fol-
lowing characteristics: (1) payments in the transaction are
dependent upon the performance of the exposure or pool of
exposures; (2) the subordination of tranches determines the dis-
tribution of losses during the life of the transaction or scheme.”*

2. Supposing that the exposure is a securitization, the bank must
decide whether it is held as part of the trading or the banking
book. In the former case, the capital charge will be based on the
usual trading book rules.

3. For the bank to apply the above securitization capital approaches,
it must satisfy two sets of conditions: (1) risk transfer require-
ments if the bank is an originator of the securitized assets, and 
(2) implicit support requirements if it is either an Originator 

g
c c

f
= − −( )1

1

*This definition encompasses both traditional and synthetic securitizations and is simpler
than the definition in Basel Committee on Banking Supervision (2005).
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Flow Chart for Structured Product Capital.
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or a Sponsor* of the securitization. If either of these sets of condi-
tions is not satisfied, then the bank must calculate capital for the
pool exposures as though they are held on balance sheet.

4. If it satisfies these conditions, the bank must use the standard-
ized approach as described earlier if it uses the standardized
approach for on balance sheet assets of the same type as those
that predominantly make up the securitization pool.

5. If the bank uses the IRB approach for the assets that predomi-
nantly comprise the pool, then it must employ either the RBA or
the SFA. If the exposure is rated by an external agency recog-
nized by the bank’s national supervisor, the bank must employ
the RBA. This is also true if the exposure is unrated, but the
bank may infer a rating for the exposure by taking the rating of
a more junior tranche with an equal or longer maturity.

6. If an external rating is not directly available and cannot be
inferred, then the bank must decide whether the internal assess-
ment approach (IAA) is applicable. This approach applies only
to eligible liquidity and credit enhancement exposures to ABCP
facilities. In effect, banks are able for this narrow set of expo-
sures to calculate their own internal ratings. In so doing, they
must devise a rating process that broadly mimics the approach
followed in rating exposures to similar deals by a recognized
rating agency.

7. If the IAA is applicable, the bank may choose to employ this
approach or it may decide to use the SFA instead. If it imple-
ments the IAA, the bank determines its capital charges from the
RBA look-up tables based on the the IAA-generated ratings. In
general, the bank must adopt a consistent principle in choosing
whether to use the SFA or the IAA/RBA.

8. If the IAA is not applicable or if the bank opts not to implement
it, it must either use the SFA if that is feasible or otherwise

*An Originator is either of the following: An entity which, either itself or through related
entities, directly or indirectly, was involved in the original agreement that created the obli-
gations or potential obligations of the debtor or potential debtor giving rise to exposure
being securitized; an entity which purchases a third partys exposures onto its balance sheet
and then securitizes them. A Sponsor is a firm other than an Originator that establishes and
manages an asset-backed commercial paper programme or other securitization scheme that
purchases exposures from third parties.



deduct the exposure from its capital, i.e., apply a 1250 percent
risk weight.

The sticking point for implementing the SFA in many cases is likely to be
the bank’s ability to calculate the inputs to the formula. These include
most notably KIRB, the capital that the bank would have to hold against the
pool of assets backing the securitization if it held the pool on balance
sheet. Basel II places rather tight restrictions on the information and data
that banks must possess if they are to calculate KIRB. A concession was
made in the informational requirements for calculating KIRB for portfolios
of purchased receivables at quite a late stage in the Basel II process specif-
ically because it was felt that otherwise many securitization exposures in
bank portfolios that embodied relatively little risk would otherwise have
to be deducted, disrupting reasonable market activity in several areas.

The IAA requires a substantial investment in procedures and sys-
tems by a bank. The idea is that banks will be able to rate tranches them-
selves in one quite circumscribed area of the securitization market, ABCP,
but it must adopt an approach that resembles an approach employed by
a recognized rating agency. The bank’s procedures have to be audited
thoroughly and authorized by the regulators. Banks are allowed to choose
which of the SFA or the IAA combined with RBA look-up tables they wish
to employ for nonrated ABCP liquidity and credit enhancement facilities.
But they must adopt a consistent policy of using one approach or the
other and not hop and change between different deals.

The implicit support and risk transfer requirements are an impor-
tant part of the rules. The former are intended to ensure that originators
maintain a clean break with their securitized assets. (Originators are able
to support their past securitizations but only if this support is formally
implemented, as an exposure against which capital can be levied.) The
risk transfer requirements contain potential for some ambiguity.

THE FINANCIAL ENGINEERING 
OF THE RBA AND SFA

Regulators have been very keen to ensure that the Basel II rules will
reduce banks’ incentives to engage in capital arbitrage. The only way to
achieve this is to maintain a reasonable level of neutrality between the on
and off balance sheet treatment of exposures and to make sure that capi-
tal charges are similar in absolute level to what a bank would wish to hold
as economic capital.
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Decisions about the levels of structured product capital charges
in Basel II was informed and influenced by financial engineering stud-
ies performed by analysts at the Federal Reserve Board and the Bank of
England. This section provides a brief summary of these studies. Key
contributions are (1) Peretyatkin and Perraudin (2004) on the RBA and
(2) Gordy and Jones (2003) and Gordy (2004) on the SFA.

On the RBA, devising a set of capital charges for structured products
based on ratings can be viewed as a significant challenge. Indeed, at an
early stage in the Basel II process, some regulators disputed whether it
could be achieved at all. To understand the issues, one needs some back-
ground about the capital treatment of other exposures like bonds and
loans in Basel II.

The IRB charges for traditional, on balance sheet credit exposures in
Basel II are based on measures of marginal Value at Risk (MVaR) for expo-
sures with given probabilities of default over a one-year horizon. The
default probabilities may be mapped into ratings by associating with each
rating the historically observed one-year default probability. Hence, the
approach may be thought of as one of basing capital charges on ratings.
(The standardized approach to on-balance-sheet credit exposures is explic-
itly framed in terms of ratings rather than default probabilities in any case.)

A justification for linking capital to ratings is that analysis using sim-
ple industry standard models suggests that when there is a single com-
mon risk factor driving a portfolio of loans, the MVaRs for individual
exposures within a large portfolio are a function of the default probabil-
ity.* Other influences on the MVaR for a given exposure are the expected
LGD, the degree of correlation between the claim in question and the sin-
gle common risk factor and the maturity of the claim. If regulators are pre-
pared to specify reasonable correlation values for each different market
segment, suitable capital curves may be deduced.†

Turning to capital charges for structured products, one may be con-
cerned that the mapping from default probability/rating to capital will be
more complex, dependent, e.g., on tranche thickness, correlation of the
factor risk in the pool and the factor risk in the bank’s wider portfolio and
the maturities both of the pool and of the structure.
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*See Gordy (2003).
†This has been the approach followed under Basel II, so there are a set of capital curves or
functions for five different credit exposure asset classes (C%I loans, SME loans, revolving
retail exposures, and other retail and residential mortgages.) See Basel Committee on
Banking Supervision (2005).



T A B L E  1 5 . 5

Pykhtin–Dev Model Capital Charges

ρ AAA AA+ AA AA− A+ A A− BBB+ BBB BBB− BB+ BB BB− B+ B B− CCC

0.6 0.59 0.98 1.30 1.50 1.70 1.90 3.58 4.96 7.06 7.71 10.07 17.11 23.15 32.88 54.28 60.28 77.05

0.7 0.87 1.47 1.98 2.29 2.61 2.92 5.60 7.76 11.02 12.02 15.61 25.81 34.03 46.34 69.47 75.03 88.29

0.8 1.12 1.99 2.75 3.22 3.70 4.18 8.41 11.84 16.97 18.51 23.97 38.62 49.37 63.72 84.77 88.68 95.95

0.9 1.08 2.12 3.16 3.85 4.54 5.24 12.06 17.85 26.48 29.01 37.80 58.72 71.35 84.49 96.03 97.23 98.72

RBA 0.96 1.20 1.20 1.20 1.60 1.60 1.60 4.00 6.00 8.00 20.00 34.00 52.00 100.00 100.00 100.00 100.00

Note: charges are in percent.
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Peretyatkin and Perraudin (2004) examine how MVaRs for tranches
in a large set of stylized transactions are related to default probabilities and
expected losses. (Moody’s base their structured product ratings on target
expected losses. Standard and Poor’s and Fitch use target default proba-
bilities when they attribute ratings to structured product tranches.) They
conduct their analysis by calculating capital (i.e., MVaRs) within the sim-
ple analytical models proposed by Pykhtin and Dev (2002a), Pykhtin and
Dev (2002b), and surveyed by Pykhtin (2004), and then examining the
mapping from tranche default probability and expected loss to this MVaR.

The Pykhtin-Dev model yields MVaRs for tranches within structures
that have the same maturity as the holding period of the VaR calculation.
Peretyatkin and Perraudin (2004) also devise and employ a Monte Carlo
model within which one may calculate portfolio VaRs and MVaRs on
tranches in structures when the VaR holding period is less than the matu-
rity of the structure. This is clearly the more realistic case, as CDO matu-
rities are often 10 years or more, while the VaR horizon used by almost all
banks is one year.

An example of the calculations performed by Peretyatkin and
Perraudin (2004) is shown in Table 15.5. The table shows percentage cap-
ital charges based on MVaRs for tranches with different ratings and for
different values of ρ, the correlation coefficient between the single com-
mon risk factor assumed to drive the credit quality of the bank’s wider
portfolio and the risk factor driving the exposures in the structured expo-
sure pool. The calculations are performed assuming a highly granular
pool of BB-rated underlying exposures. The holding period and confi-
dence level of the VaR are one year and 0.1 percent, and the maturity of
the underlying pool exposures is also taken to be one year.

As one may see from Table 15.5, the results depend significantly on
the value of the correlation parameter ρ, the correlation between the pool
and the wider bank portfolio risk factors. When ρ = 0.6, the capital
charges are broadly similar to those required under the RBA, as shown in
the bottom row of Table 15.5.

The importance of the correlation parameter shows that capital
charges for structured product exposures should be distinctly higher if
the exposure has underlying pool assets similar to exposures that pre-
dominantly make up the bank’s wider portfolio. It is perhaps obvious that
a bank that invests in a credit card ABS tranche needs to hold more capi-
tal against it if much of its on balance sheet risk is associated with down-
turns in the retail credit market that if it is primarily exposed to large
corporate lending. But the differences in the rows shown in Table 15.5
underline the point.



T A B L E  1 5 . 6

Monte Carlo-Based Capital Charges

AAA AA+ AA AA− A+ A A− BBB+ BBB BBB− BB+ BB BB− B+ B B− CCC

1 year 0.54 0.99 1.36 1.58 1.77 1.96 3.50 4.63 6.25 6.75 8.75 14.78 19.87 28.30 49.53 56.21 76.26

2 years 0.17 0.86 1.72 1.89 2.27 2.70 4.99 6.98 9.30 11.83 14.65 20.50 26.31 35.74 55.72 62.58 78.81

3 years 0.67 1.55 2.68 2.80 3.31 3.93 6.29 8.55 10.91 14.59 18.66 24.57 30.93 40.79 58.84 65.15 77.46

4 years 1.41 2.53 3.86 3.99 4.62 5.45 7.88 10.38 12.86 17.32 20.97 26.49 32.83 42.27 56.79 61.28 67.66

5 years 1.29 2.49 3.82 3.96 4.67 5.62 7.96 10.51 13.03 17.83 23.05 29.14 35.98 45.27 57.17 60.41 64.02

Note: Simulations assume a portfolio of 264 BB-rated exposures, 50 percent LGD, a correlation of 60 percent between single factors driving the pool and wider bank portfolio, and a correlation between indi-
vidual exposure latent variables of 80 percent.
Capital charges (MVaRs) are in percent.
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Peretyatkin and Perraudin conclude that some other aspects of the
structured product have only a second-order effect on the appropriate
capital charges. For example, the degree to which the underlying pool
exposures are correlated with each other or are nongranular leads to rela-
tively small changes in capital. The reason is that when the riskiness of the
pool is increased, the rating agencies tend to downgrade the more senior
tranches, so capital increases even without a direct rise in the capital
charge for tranches with a given rating.

On the other hand, Peretyatkin and Perraudin find that maturity
again has a first-order effect on the capital charges for particular rating cat-
egories. Using a novel Monte Carlo technique, they are able to calculate
MVaRs and hence capital for structured products of different maturities.
The results are shown in Table 15.6. The capital more than doubles when
one considers relatively senior tranches with the same rating, but a matu-
rity of four years rather than one year.

As described above, the RBA in Basel II provides simple look-up
tables for risk weights (and hence implicitly capital charges) by rating cat-
egory. No distinction is made between tranches (1) backed by different
underlying assets (e.g., credit cards versus large corporate loans), (2) of
different maturities, or (3) backed by assets similar or dissimilar to expo-
sures predominant in the bank’s wider portfolio. While there are reasons
for believing that that (1) is not a serious drawback, as factors that affect
the riskiness of the securitization pool may have second-order effects on
capital, (2) and (3) may be more serious. These might have been dealt with
through Pillar II requirements, but Basel II did not take that approach.

Lastly, one may be critical of the RBA on the grounds that agencies
assign ratings to securitization exposures taking into account complex sets
of factors that they perceive to drive the risk of the transactions. These fac-
tors include the probability that the issuer will be able to meet principal
and interest payments, the structure of the cash flow waterfall, the type
of assets in the pool, other risks, such as market, legal and counter-party
risks, and credit and liquidity enhancements of various sorts. The different
rating agencies also employ significantly different procedures in assigning
ratings. Expecting all of this to be satisfactorily summarized in a stylized
calculation of expected losses on tranches as was performed in the param-
eterization of the RBA is somewhat ambitious.

The counter-argument to the above criticism is that the different
rating agencies seem over time to be converging in the approaches they
take to rating structured products in that they are increasingly using
comparable Monte Carlo methods to simulate pool performance and
payoffs to tranches. The RMA parameterization may be viewed as



employing a stylized version of these simulations for representative
transactions.

The financial engineering background to the SFA is set out in Gordy
and Jones (2003) and Gordy (2004). To calculate a bottom-up formula for
capital on a structured product tranche, the most obvious approach might
be to employ the single asymptotic risk factor model used elsewhere in
Basel II as the basis for capital curves linking default probabilities to cap-
ital for on balance sheet assets. This model is described in Gordy (2003).

The problem with this approach in the context of securitization
tranches is that when the pool is perfectly granular, the implied capital
charges turn out to equal 100 percent for junior tranches. For thin tranches,
at a certain level of protection,* the capital charge drops abruptly from 100
to 0 percent. This implication of the model makes the model unappealing
as a basis for capital calculations, as it implies that a bank might have a
portfolio of mezzanine tranches against which it was not required to hold
any capital but which would obviously be subject to credit risk.

Therefore, Gordy and Jones devised a model that effectively smooths
out the step function for capital charges. In principle, various different
approaches could be followed, as the basic aim was just to incorporate
some smoothing of capital charges as the level of protection varies. The
Gordy–Jones approach consists of assuming that the protection level for a
given tranche is uncertain. They argue that in practise, the complexity of
typical cash-flow waterfalls means that one cannot be sure of the exact
level of protection enjoyed by a given tranche. Assuming a Wishart dis-
tribution, they derive a formula.

Figure 15.2 shows the capital for marginally thin tranches implied by
the single asymptotic risk factor model plotted against protection as a step
function. (Note that the protection level at which the capital jumps to 0 per-
cent equals KIRB, i.e., the capital that the bank would be obliged to hold
against the asset pool if it retained it on balance sheet.) The Gordy–Jones
smoothing approach yields a reverse S-shaped curve. Their model contains
a parameter ω that reflects the degree of uncertainty about the level of pro-
tection. The figure shows capital plotted for different levels of ω. The Basel
II supervisory formula is based on an ω value of 1000.

The SFA is not based solely on the supervisory formula just described,
however, as it includes additional overrides that build in greater conser-
vatism. In particular:
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1. Capital charges are constrained to equal 100 percent for any
protection level up to KIRB.

2. For protection levels greater than KIRB, the capital curve for thin
tranches is then allowed to approach the Supervisory Formula
smoothly based on an exponential smoothing.

3. Capital is constrained to be no less than 0.56 percent (correspon-
ding to a risk weighting factor of 7 percent) even for high levels
of protection.

These additional overrides yield the SFA formula that appears in Figure
15.2. The overrides may, in some cases, significantly increase the capital
charges. Table 15.7 shows capital implied by the SFA for all the tranches
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in a structure as a fraction of KIRB. When there are 100 underlying expo-
sures, the total capital for all the tranches is just 8 percent higher than KIRB.
However, when the effective number of exposures is small such as 10 or
2, total SFA capital is 19 percent or 42 percent higher than the on balance
sheet capital, KIRB. To understand what drives this result, one may exam-
ine Figure 15.3, which shows the SFA calculated for different effective
numbers of exposure, N. As N decreases, the SFA curve becomes flatter;
thus, the effect of overriding the basic inverted S-shaped supervisory for-
mula by imposing that capital be 100 percent for protection levels less that
KIRB has a sizeable impact.

LIKELY CONSEQUENCES OF THE 
NEW FRAMEWORK

Discussions with banks suggest that the IRB institutions will employ the
RBA where possible and, in a limited number of cases, the SFA. Widespread
use of the RBA is likely to put originators under greater pressure to obtain
agency ratings for more tranches. In some markets, e.g., Japan, one might
expect there to be a significant reduction in the currently large number
of unrated securitization exposures. In the past, there was considerable
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concern that large numbers of exposures would not fit into any of the
approaches permitted. The less restrictive informational requirements for
calculating KIRB with purchased receivables and the introduction of the IAA
has calmed these concerns.

Initially, many in the industry were anxious that the securitization
market would be impaired by the reduction in capital arbitrage-related
deals that the Basel II regulations would bring. However, the scope for
securitization is likely to be significantly increased when banks have
developed the systematic approaches to measuring and managing portfo-
lio credit risk required by Basel. The nature of the market is likely to shift,
therefore, with more transactions being motivated by genuine risk transfer
and funding considerations and fewer by regulatory capital arbitrage.

In any case, if regulatory capital on individual securitization expo-
sures is high, capital arbitrage between the banking and trading books
may provide a safety valve. The boundary between the trading and bank-
ing books has been reconsidered by regulators, following the 2005 review
of the trading book completed by the Basel Committee and the International
Organization of Securities Commissions (IOSCO). Exposures can be classi-
fied as trading book exposures if they “arise out of a financial instrument
or commodity” and “are held with trading intent or to hedge elements of
the trading book.” An increasing number of securitization exposures are
sufficiently actively traded to be eligible for such treatment.

The capital charges that securitization exposures attract in a trading
book context will depend on the volatility and correlations of market-
wide factors driving spread and on specific risk charges. Perraudin and
Van Landschoot (2004) show that the volatility of ABS exposures may be
low, but that sudden and dramatic increases in risk may occur if shifts
occur in the credit quality of particular market segments. To the extent
that internal risk models employ relatively short return and spread
change data series, the possibility of regime shifts in volatility may not be
fully allowed for and capital may be too low.

Under the new rules, securitizations that would attract a 1250 percent
risk-weight under the securitization framework or would be deducted will
face equivalent charges in the trading book. This will reduce the scope for
capital arbitrage between banking and trading books for equity tranches.
However, it may remain for mezzanine tranches.

This chapter has focussed on the Pillar 1 part of Basel II, i.e., the rules
governing minimum regulatory capital requirements. But other parts of
Basel II will affect the securitization market. In particular, Pillar 3 covers
rules on disclosure that banks will have to follow. For example, banks will
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have to reveal to the market qualitative information, such as the aims of
their securitizations, the regulatory capital treatment adopted, and which
rating agencies they employ to rate their securitizations.

They will also have to supply quantitative information about the
bank’s total outstanding volume of securitized exposures with a break-
down by type, and by whether the securitizations are traditional or syn-
thetic,* and with information on the volume of impaired assets that have
been securitized. They will also have to publish information about their
aggregate holdings of securitization exposures. These substantial disclo-
sures will reveal a lot about what directions are being taken in securitiza-
tions by individual banks and the market as a whole.
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INTRODUCTION

In this chapter, we review the impact of Basel II treatment of securitiza-
tion on two asset classes: credit cards and residential-mortgage backed
securities (RMBS). We focus in particular on the discrepancies between
the regulatory approach and S&P approach. One important point to recall
is that S&P considers its models as one of the constituents leading to the
tranching of a transaction. It is not the only one.

In the first part, we concentrate on credit cards and consider three
types of transactions.

In the second part, we analyze four types of RMBS transactions.

PART 1: ANALYSIS OF THE IMPACT 
OF BASEL II ON THE CREDIT CARD 
ASSET CLASS†

The main finding in this part is related to the importance of excess spread
in the analysis of the credit card asset class. Basel II(*) option to ignore

*The author would like to thank Alain Carron, Bernard de Longevialle, Wai To Wong, and
Prashant Dwivedi for contribution.
†A definition of terms can be found in Appendix A.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



excess spread for assets on balance sheet and to grant credit for it in rated
securitized transactions, could generate significant regulatory arbitrage
among banks.

The Internal Rating Based (IRB) Approach.
Assets are on Balance Sheet and there 

is No Securitization*

We do not focus on the standardized approach that requires a uniform
75 percent risk weight (RW) for all credit cards transactions.

Regarding the IRB approach for credit cards, there is no distinction
in Basel II between the foundation and the advanced approaches. Banks
are required to provide an estimation of the probability of default (PD),
the loss given default (LGD), and the exposure at default (EAD).

Credit card transactions are categorized in the revolving retail expo-
sures sector:†

The Capital Risk Charge Formula‡

Within this sector, the pillar I equations are defined as below:

♦ Correlation (R) = 0.04
♦ Capital requirement (K) =

(1)

♦ Risk-weighted assets = K × 12.5 × EAD
♦ Risk-weight = K × 12.5

In the Equation (1), N(x) denotes the cumulative distribution function for
a standard normal random variable. G(z) denotes the inverse c.d.f. for a
standard normal random variable.

Considering Three Transactions
In this section, we present empirical results, based on three credit card
transactions:

LGD ( ) (PD)
( )
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♦ Transaction 1 corresponds to a typical transaction in the United
Kingdom or in the United States. It is characterized by a high
yield, a medium/high level of charge-off.

♦ Transaction 2 is typical of a transaction in continental Europe. It
corresponds to a low yield, low charge-off pattern.

♦ Transaction 3 is a subprime US transaction.

Extracting the Average Probability of Default in
Each Pool In the remainder of this section, we consider two
cases. All cardholders are assumed to have a similar average level of
risk (PD) that corresponds either to the mean or to a stressed default
rate experienced by the bank on this asset class. This dual approach
enables us to assess the impact of the conservatism of banks on their
capital requirements, with respect to their internal risk monitoring
systems.

A time-series of gross losses data typically represents the historical
behavior experienced by a bank on its portfolio of credit card transactions.
The ratio of the gross loss to the amount outstanding corresponds to the
charge-off. This ratio is however different from a Basel II PD, in the sense
that a common practice in the credit card industry is not to consider a 90-day
past-due trigger for default, but rather a 180-day one. Empirical tests that
we have performed show that multiplying the charge-off ratio by 1.35 gives
a good proxy for the Basel II PD.

Transaction 1* In transaction 1, we consider Basel II one-year PDs,
rolling on a monthly basis from December 1999 to September 2005. We
plot the corresponding c.d.f. on which we fit a Gaussian c.d.f. We consider
two cases, taking the PD at alternatively the 50 percent and the 95 percent
confidence levels. This leads to a PD value of respectively 6.05 percent
and 7.77 percent for transaction 1, as shown in Figure 16.1.

The normal distribution for PD of transaction 1 has the following
properties: N(µ = 6.05 percent; σ = 1 percent).
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Transaction 2* In transaction 2, we consider Basel II one-year PDs,
rolling on a monthly basis from December 2000 to September 2005. We
plot the corresponding c.d.f. on which we fit a Gaussian c.d.f. We
consider two cases, taking the PD at alternatively the 50 percent and
the 95 percent confidence levels. This leads to a PD value of respectively
1.76 percent and 3 percent for transaction 2, as shown in Figure 16.2.
In addition, we can observe that the Gaussian fit is less good than in
transaction 1, probably given the lower number of cardholders in the
pool.

The normal distribution for PD of transaction 2 has the following
properties: N(µ = 1.76 percent; σ = 0.769 percent).
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Transaction 3* In transaction 3, we consider Basel II one-year PDs,
rolling on a monthly basis from December 1996 to July 2005. We plot the
corresponding c.d.f. on which we fit a Gaussian c.d.f. We consider 2 cases,
taking the PD as alternatively the 50 percent and the 95 percent
confidence levels. This leads to a PD value of respectively 19.8 percent
and 27.7 percent for transaction 3, as shown in Figure 16.3. In addition, we
can observe that the assumption of a Gaussian distribution of loss is less
accurate than in transaction 1.

The normal distribution for PD of transaction 3 has the following
properties: N(µ = 19.8 percent; σ = 4.8 percent).
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Historical Distribution of Default Rates in Transaction 2.
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Extracting Loss Given Default
Non-Discounted LGD The Net charge-off = (Gross charge-off) −
(Recoveries). The LGD rate can be found by dividing the Net charge-off
by the Gross charge-off. As mentioned previously, a common practice in
the credit card industry is not to consider a 90-day trigger for default but
rather a 180-day one. The 90-day LGD has to be adjusted from the 180-day
LGD. It is extracted from the equation below:

(2)

Transaction 1

As earlier, we consider two cases, taking the LGD at alternatively the
50 percent and the 95 percent confidence levels. This leads to an

LGD
.
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undiscounted LGD value of respectively 56.7 percent and 64.3 percent, as
shown in Figure 16.4.

The normal distribution for LGD in transaction 1 has the following
properties: (µ = 56.7 percent; σ = 4.6 percent).

Transaction 2

As earlier, we consider two cases, taking the LGD at alternatively the
50 percent and the 95 percent confidence levels. This leads to an undis-
counted LGD value of respectively 63.3 percent and 75 percent, as shown
in Figure 16.5.

The normal distribution for LGD in transaction 2 has the following
properties: N(µ = 63.3 percent; σ = 7.13 percent).

Transaction 3

As earlier, we consider two cases, taking the LGD at alternatively the
50 percent and the 95 percent confidence levels. This leads to an
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LGD Historical Distribution (Transaction 2).
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LGD Historical Distribution (Transaction 3).
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undiscounted LGD value of respectively 69.8 percent and 74.15 percent,
as shown in Figure 16.6.

The normal distribution for LGD in transaction 3 has the following
properties: N(µ = 69.8 percent; σ = 2.67 percent).

Obtaining Discounted LGD from the Previous Observations
In this analysis, we consider two rates to discount LGD—the market risk-
free rate and the average prepetition rate. Again this will help to gain
some understanding of the sensitivity of capital requirements to the
degree of conservatism in the measurement of LGD. The discounted LGD
is extracted from the formula shown below:

(3)

Recovery (%) = (1 − LGD) at the 50 percent and 95 percent confi-
dence levels.

Market interest (R) = Averaged libor interest rate for transaction 1, in UK
= Averaged euribor interest rate for transaction 2, on

continental Europe
= Average U.S. libor rate for transaction 3.

Prepetition rate (R) = Average Yield to Maturity (YTM) for transaction 1, 2,
and 3.

Time to recovery (T ):Since we consider a 90-day trigger for default
instead of a 180-day one, we assume a 0.5-year
recovery period for transactions that defaulted on a
90-day basis but paid before 180 days. In addition,
based on empirical analysis, we consider that it usu-
ally takes 1.5 years (t) to recover for transaction 1
and 3, and 2.5 years for transaction 2. We can calcu-
late the recovery time as:

(4)

= 1.24 years for transaction 1 and 3
= 2 years for transaction 2
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Results are listed below:

Discounted LGD in Transaction 1

Transaction 1

Confidence level (%) 50 95

LGD (%) 56.7 64.3

Average time to recovery (T ) (years) 1.24 1.24

Libor interest rate (R ) (%) 4.6 4.6

YTM (%) 18.9 18.9

Discounted LGD (using risk-free rate) (%) 59.05 66.24

Discounted LGD (using YTM) (%) 65.06 71.2

Discounted LGD in Transaction 2

Transaction 2

Confidence level 50 95

LGD 63.3 75

Average time to recovery (T ) (years) 2 2

Euribor interest rate (R ) 1.86 1.86

YTM (%) 15.9 15.9

Discounted LGD (using risk free rate) (%) 64.63 75.9

Discounted LGD (using YTM) (%) 72.68 81.39

Discounted LGD in Transaction 3

Transaction 3

Confidence level 50 95

LGD 69.8 74.15

Average time to recovery (T ) (years) 1.24 1.24

US libor interest rate (R ) 4.85 4.85

YTM 26.85 26.85

Discounted LGD (using risk-free rate) 71.52 75.62

Discounted LGD (using YTM) 77.51 80.75

On Balance Sheet IRB Results We can now compute the
RWs obtained when the pool remains on balance sheet, depending on the
assumptions on PD and LGD:
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Transaction 1

Risk-free discount rate

Transaction 1 (using risk-free rate LGD)

Confidence level (%) 50 95

PD (%) 6.05 7.77

Discounted LGD (%) 59.05 66.24

Minimum capital requirement (K) (%) 6.5 8.52

RW (%) 81.27 106.51

YTM discount rate

Transaction 1 (using YTM LGD)

Confidence level 50 95

PD 6.05 7.77

Discounted LGD (%) 65.06 71.2

Minimum capital requirement (K) (%) 7.16 9.16

RW (%) 89.54 114.48

Transaction 2

Risk-free rate

Transaction 2 (using risk-free rate LGD)

Confidence level (%) 50 95

PD (%) 1.76 3

Discounted LGD (%) 64.63 75.9

Minimum capital requirement (K) (%) 3.03 5.22

RW (%) 37.83 65.21
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Yield to maturity

Transaction 2 (using YTM LGD)

Confidence level (%) 50 95

PD (%) 72 3

Discounted LGD (%) 1.76 81.39

Minimum capital requirement (K) (%) 3.4 5.59

RW (%) 42.54 69.93

Transaction 3

Risk-free rate

Transaction 3 (using risk-free rate LGD)

Confidence level (%) 50 95

PD (%) 19.8 27.7

Discounted LGD (%) 71.52 75.62

Minimum capital requirement (K) (%) 14.94 17.67

RW (%) 186.77 220.9

Yield to maturity

Transaction 3 (using YTM LGD)

Confidence Level (%) 50 95

PD (%) 19.8 27.7

Discounted LGD (%) 77.51 80.75

Minimum capital requirement (K) (%) 16.19 18.87

RW (%) 202.41 235.89

Securitization

We consider the same three pools and analyze the capital requirement
corresponding to their securitization (assuming that the deals are kept on
balance sheet).
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The Rating-Based Approach*
Under the rating based approach (RBA) the RW assets are determined by
multiplying the exposure by the appropriate RWs provided in the table
below:

RWs for senior 
positions RWs for tranches 

External and eligible backed by 
rating senior IAA nongranular
(Illustrative) exposures (%) Base RWs (%) pools (%)

AAA 7 12 20

AA 8 15 25

A+ 10 18

A 12 20 35

A− 20 35

BBB+ 35 50

BBB 60 75

BBB− 100

BB+ 250

BB 425

BB− 650

Below BB−
Deduction

and unrated

In this case, capital requirements are independent from the confidence
level at which PD and LGD are considered. As a result, we obtain only
one set of results per transaction. We have added to the calculation the
impact of the seller interest (defined in the section “Seller’s interest
buffer.”) with a constant level of 7 percent.

♦ Transaction 1:

In transaction 1, the amount outstanding in the pool is £9 bil-
lion. It consists of 88 percent “AAA,” 6 percent “A,” and 6 per-
cent “BBB.”
Equivalent RW = 93% × (7% × 88% + 20% × 6% + 75% × 6%)

+ (7% × 89.54%) = 17.3%
Equivalent K = 17.3% × 8% = 1.38%
Risk weigh appropriate (RWA) = 17.3% × £9 billion = £1.6 billion
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♦ Transaction 2:

In Transaction 2, the amount of outstanding in the pool is
Euros 200 million. It consists of 90 percent “AAA,” 4 percent
“A,” 5 percent “BBB,” and 1 percent “unrated.”
Equivalent RW = 93% × (7% × 90% + 20% × 4% + 75% × 5%

+ 1250% × 1%) + (7% × 42.54%) = 24.7%
Equivalent K = 24.7% × 8% = 1.98%
RWA = 24.7% × Euros 200 million = Euros 49 million

♦ Transaction 3:

In Transaction 3, the amount outstanding in the pool is $6 bil-
lion. It consists of 50 percent “AAA,” 20 percent “A,” 15 percent
“BBB,” and 15 percent “BB.”
Equivalent RW = 93% × (7% × 50% + 20% × 20% + 75% × 15%

+ 425% × 15%) + (7% × 202.41%) = 90.9%
Equivalent K = 90.9% × 8% = 7.27%
RWA = 90.9% × $6 billion = $5.5 billion

The S&P Approach to Rate Credit 
Card Tranches
The S&P model is summarized in Appendix B.

In a credit card securitization transaction, the four drivers of credit
enhancement analyzed S&P are

1. The payment rate, or the proportion of principal repaid on
a monthly basis

2. The asset yield
3. The charge-off rate
4. The repurchase rate, or the proportion of new drawings in

a given month to total outstanding in the previous month.

Two of these variables, i.e., yield and charge-off, are intrinsically com-
menting on the absolute level of risk in the portfolio and the prominence
of the other two is more a consequence of the structural features of these
transactions: Payment rate and repurchase rate are not necessarily per se
major drivers of risk, they have yet a direct impact on how long note-
holders are exposed to losses arising from the portfolio once the amorti-
zation period has started.

It follows from this that the latter two variables would have much
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less bearing in a going concern analysis of the type undertaken by S&P
analysts when assessing a financial institution’s issuer rating. However, it
is notable that in both cases the yield, or in other words the excess spread,
is a key factor. This is a major difference with Basel II pillar 1, where
excess spread or future margin income is given no explicit credit for, and
we will see later that there are ensuing consequences.

The Supervisory Formula Approach*
Under the Supervisory formula (SF) approach, the capital charge for a
securitized tranche depends on five key inputs: The IRB capital charge
had the underlying exposures not been securitized (KIRB); the tranche’s
credit enhancement level (L); thickness (T); the pool’s effective number of
exposures (N); and the pool’s exposure-weighted average loss-given-
default (LGD).

The capital charge is calculated as follows:
Tranche’s IRB capital charge = the amount of exposures that have

been securitized time the greater of (1) 0.0056 × T, or (2) (S [ L + T] − S[L]),
where S[L] is the SF, which is given by the following expression:

For more details on the formula, we revert readers to Basel II docu-
ment on paragraph 624 or to Chapter 15.

Definition of Inputs:

1. KIRB
♦ The ratio of (1) the IRB capital requirement including the 

EL portion for the underlying exposures in the pool to 
(2) the exposure amount of the pool.

♦ The formula is:
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Transaction 1 Transaction 2 Transaction 3 
(%) (%) (%)

Confidence level 50 95 50 95 50 95

KIRB (using Risk-free 10.07 13.67 4.16 7.49 29.1 38.62
rate)

KIRB (using YTM) 11.1 14.69 4.68 8.03 31.54 41.24

2. Credit enhancement level (L)

The ratio of (a) the amount of all tranche exposures subordinate
to the tranche in question to (b) the size of the pool.

Transaction 1 (%)

AAA 12
A 6
BBB 0
AAA 10

Transaction 2 (%)
A 6
BBB 1
Unrated 0
AAA 50

Transaction 3 (%)

A 30
BBB 15
BB 0

3. Thickness of exposure (T)

The ratio of a) the size of the tranche of interest to b) the size of
the pool.

Transaction 1 (%)

AAA 88
A 6
BBB 6

Transaction 2 (%)

AAA 90
A 4
BBB 5
Unrated 1

Transaction 3 (%)

AAA 50
A 20
BBB 15
BB 15
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4. Effective number of exposures (N)

5. Exposure-weighted average LGD

The value of LGD is the same as in the IRB approach, as we
assume equal weighting for all credit card transactions.

Transaction 1 Transaction 2 Transaction 3
(%) (%) (%)

Confidence level 50 95 50 95 50 95

LGD (using Risk- 59.05 66.24 64.63 75.9 71.52 75.62
free rate)

LGD (using YTM) 65.06 71.2 72.68 81.39 77.51 80.75

Detailed Results
Transaction 1

Transaction 1 (using risk-free rate LGD)

Confidence level (%) 50 95

KIRB (%) 10.07 13.67

Discounted LGD (%) 59.05 66.24

Equivalent K (%)
AAA 0.785 4.95
A 100 100
BBB 100 100

RW (%)
AAA 9.818 61.82
A 1250 1250
BBB 1250 1250

Overall RW (%) 133.84 180.64

Overall equivalent K value 10.7 14.45

LGD
LGD EAD

EAD
=

⋅∑
∑
i i i

i i

N
i i

i i

=
( )∑
∑

EAD

EAD

2

2
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Transaction 1 (using YTM LGD)

Confidence level (%) 50 95

KIRB (%) 11.1 14.69

Discounted LGD (%) 65.06 71.2

Equivalent K (%)
AAA 1.98 6.12
A 100 100
BBB 100 100

RW (%)
AAA 24.72 76.53
A 1250 1250
BBB 1250 1250

Overall RW (%) 147.24 193.88

Overall equivalent K value (%) 11.78 15.51

Transaction 2

Transaction 2 (using Risk-free rate LGD)

Confidence level (%) 50 95

KIRB (%) 4.16 7.49

Discounted LGD (%) 64.63 75.9

Equivalent K (%)
AAA 0.56 0.739
A 2.83 100
BBB 93.51 100
Unrated 100 100

RW (%)
AAA 7 9.23
A 35.35 1250
BBB 1168.84 1250
Unrated 1250 1250

Overall RW (%) 62.98 100.18

Overall equivalent K value (%) 5.04 8.01
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Transaction 2 (using YTM LGD)

Confidence level (%) 50 95

KIRB (%) 4.68 8.03

Discounted LGD (%) 72.68 81.39

Equivalent K (%)

AAA 0.56 1.35
A 12.55 100
BBB 99.86 100
Unrated 100 100

RW (%)

AAA 7 16.85
A 156.92 1250
BBB 1248.29 1250
Unrated 1250 1250

Overall RW 69.83 107.24

Overall equivalent K value 5.59 8.58

Transaction 3

Transaction 3 (using Risk-free Rate LGD)

Confidence level (%) 50 95

KIRB (%) 29.1 38.62

Discounted LGD (%) 71.52 75.62

Equivalent K (%)
AAA 0.56 0.56
A 0.56 16.835
BBB 66.12 100
BB 100 100

RW (%)

AAA 7 7
A 7 210.44
BBB 826.51 1250
BB 1250 1250

Overall RW 384.47 505.45

Overall equivalent K value 30.76 40.44
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Transaction 3 (using YTM LGD)

Confidence level (%) 50 95

KIRB (%) 31.54 41.24

Discounted LGD (%) 77.51 80.75

Equivalent K (%)
AAA 0.56 0.56
A 0.56 29.07
BBB 79.92 100
BB 100 100

RW (%)
AAA 7 7
A 7 363.36
BBB 999 1250
BB 1250 1250

Overall RW (%) 415.52 539.09

Overall equivalent K value (%) 33.24 43.13

“Seller’s Interest” Buffer
In credit card transactions, it is customary to transfer an additional 7 per-
cent of the pool value to the structure. This portion is not rated as it cor-
responds to a buffer meant to absorb fraud and dilution risks. In this
analysis, when we show comparisons, we add to the securitized RWs
these 7 percent, considered with the KIRB rate.

The following graph (Figure 16.7) the sensitivity of RW to the per-
centage of seller’s interest when it increases.
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Basel II Drawn and Undrawn Lines 
and Early Amortization
According to paragraph 595 of Basel II, credit card lines, whether they are
drawn or undrawn are considered to be uncommitted.

In a credit card securitization transaction, during the life of the
transaction and before the scheduled amortization process starts, all
receivables associated with a debtor are relocated in the securitization
vehicle, whether they are drawn or undrawn. There is no risk that
some of the undrawn exposures get back on the balance sheet of the
issuer, unless the issuer keeps some tranches of the transaction on its
balance sheet or unless an early amortization process is triggered. There
are two categories of early amortization: controlled and noncontrolled
ones.

When considering a securitized exposure, paragraph 590 of Basel II
refers to “the Investors’ interest,” i.e., both the drawn and undrawn expo-
sures related to the transaction.

Basel II focuses on early amortization in paragraphs 590 to 605
and 643.

The Issuer Perspective—Early Amortization of the
Drawn Portion Let us define the credit conversion factor (CCF) as
a weighting coefficient commensurate with the level of risk that the orig-
inator may be facing due to early amortization.

The required extra level of capital is C = I * CCF * RWA. Where I
stands for the “investor’s interest” in this case the drawn balances related
to the securitized exposure, and RWA for the risk weight appropriate to
the underlying exposures, had they not been securitized.

♦ Controlled early amortization (599): for uncommitted but drawn
cases, the level of CCF is increasing gradually from 0 to 40 per-
cent while the excess spread is diminishing and becoming
negative.

♦ Uncontrolled early amortization (602–604): for uncommitted 
but drawn cases, the level of CCF is increasing gradually from 0
to 100 percent while the excess spread is diminishing and
becoming negative.

If we assumed that the controlled case would be applicable, we would note
that in all the “prime” cases, the reserve account put in place in the S&P
framework (comparable to capital) would look more conservative than the
above formula for controlled early amortization. In the “subprime” cases



the Basel II formula would look more conservative, but it is the case where
a zero or negative excess spread is the most unlikely. Based on a careful
reading of paragraph 548, S&P however believes that almost all currently
rated credit card transactions should be considered as part of the uncon-
trolled early amortization situation, as none of them fulfils all required
four conditions detailed in that paragraph. In this case, Basel II always
looks more conservative than the S&P model.

One additional difference worth mentioning is that in the S&P
model triggering some levels above the trapping point opens the reserve
account that will be filled gradually, whereas in the Basel II setup addi-
tional capital requirement becomes immediate.

The Issuer Perspective—Early Amortization of the
Undrawn Portion Uncommitted and undrawn cases:

♦ For transaction 1, the uncommitted undrawn exposure typically
represents three times the drawn amount.

♦ For transaction 2, the uncommitted undrawn exposure typically
represents one time the drawn amount.

♦ For transaction 3, the uncommitted undrawn exposure typically
represents one-fifth of the drawn amount.

Practically, this means that the required extra level of capital is C = I * CCF*
RWA. Where I stands for the “investor’s interest” in this case, the
undrawn balances related to the securitized exposure, had they not been
securitized. For uncommitted and undrawn cases, the level of CCF is
increasing gradually while the excess spread is diminishing and becom-
ing negative. The RWA corresponds to the appropriate risk weight, had
the assets not been securitized. The RWA will depend on the assessment
of the EAD.

We therefore need to detail the on balance sheet treatment. It can be
found in paragraph 83, as well as in paragraphs 334 to 338. We have read
that in the case no securitization was taking place, the uncommitted
undrawn part would typically receive a 0 percent CCF under the
standardized approach and a bespoke low EAD increase under IRB
approach, based on the historical track record of the bank.

The S&P methodology does not consider any specific treatment for
undrawn exposures in case of early amortization.
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Comparisons*

Transaction 1 (Yield to Maturity LGD)
Figure 16.8 shows a comparison of RWs between the standardized, IRB,
SF, and RBA approaches in transaction 1 at a 50 percent confidence level.

Figure 16.9 shows a comparison of RWs between the standardized,
IRB, SF, and RBA approaches in transaction 1 at a 95 percent confidence
level.

Transaction 2 (Yield to Maturity LGD)
Figure 16.10 shows a comparison of RWs between the standardized, IRB,
SF, and RBA approaches in transaction 2 at a 50 percent confidence level.

Figure 16.11 shows a comparison of RWs between the standardized,
IRB, SF, and RBA approaches in transaction 2 at a 95 percent confidence level.

Transaction 3 (Yield to Maturity LGD)
Figure 16.12 shows a comparison of RWs between the standardized, IRB,
SF, and RBA approaches in transaction 3 at a 50 percent confidence level.
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*We do not integrate the indirect effect of Early amortization when the PD gets sufficiently
high so that the excess spread of the transaction gets close to the trapping point.

Figure 16.13 shows a comparison of RWs between the standardized,
IRB, SF, and RBA approaches in transaction 3 at a 95 percent confidence level.

The main results of this comparative analysis are:

♦ The IRB approach favors the continental pool with a lower PD
(pool 2).

♦ Counter intuitively, the standardized approach produces lower
results than IRB for two of the three pools.

♦ There are strong disincentives to use the SF approach versus the
RBA approach for all three transactions.

♦ The RBA requirements are similar for pools 1 and 2.
♦ The RBA approach looks generally very attractive as compared

to owning the assets under IRB.

Sensitivity of the Different Models

Sensitivity to PD*
In this paragraph, we review the sensitivity of the RBA and the SF
approaches to a change in PD level in each of the transactions, everything



else being kept equal. Regarding both the S&P model related to the RBA
approach and the SF approach, we change the tranching accordingly to
the output of the S&P model (we assume that banks who decide not to get
a rating have been able to replicate the S&P model and tranche their trans-
action accordingly).

50 percent confidence level risk-free rated LGD is used in all calcu-
lations. For the SF approach, probabilities of default in each graph are
adjusted to correspond to the 90-day past-due Basel II definition (Figures
16.14, 16.15, and 16.16).

Sensitivity to Yield
In this paragraph, we review the sensitivity to a change in yield level in
each of the transactions, everything else being kept equal. For both the
S&P model and the IRB approach, we change the tranching accordingly to
the output of the S&P model.

In this section, we include the impact of the uncontrolled early
amortization mechanism on Basel II results.

Fifty percent confidence level risk-free rated LGD and KIRB are used
in all calculations (Figures 16.17, 16.18, and 16.19).
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Comparison between K SF and K RBA 
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Comparison between K SF and K RBA 
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Sensitivity to Payment Rate
In this paragraph, we review the sensitivity to a change in payment rate
level in transactions 1, everything else being kept equal. For both the S&P
model and the IRB approach, we change the tranching accordingly to the
output of the S&P model.
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Comparison between K SF and K RBA 
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Comparison between K SF and K RBA 
Sensitivity to Yield (Transaction 3).
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Comparison between K SF and K RBA 
Sensitivity to Payment Rate (Transaction 2).
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Fifty percent confidence level risk-free rated LGD and KIRB are used
in all calculations. Once the payment rate drops below a certain level, we
have to introduce an unrated tranche in the S&P model (Figures 16.20,
16.21, and 16.22).
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Conclusion of Part 1

Securitization versus Keeping Assets on Balance
Sheet: The Impact of Excess Spread
As discussed in the introduction, the level of excess spread in a securiti-
zation transaction has a direct effect on the capital structure. This is why
in the credit card field, it is not uncommon, even if counterintuitive at first
sight, for subprime portfolios to have a AAA tranche as large as or even
larger than a prime pool. On the other hand, excess spread or future mar-
gin income is not a factor in Basel II’s pillar 1. Pillar 1 is meant to measure
unexpected loss only.

The credit card sector is probably the one where this discrepancy has
the widest consequences, as reinforced by the fact the most junior notes in
a capital structure for UK or US assets can often be rated BBB on the basis
of the strength of the excess spread alone.

Securitization: Discussion on the Use 
of the Supervisory Formula
From the three examples we have considered above, it seems clear that
the SF has been calibrated to dissuade regulated investors from keeping
unrated securitization tranches on their balance sheet. Such capital treat-
ment should represent an incentive for originators to have a systematic
recourse to more transparent external rating assessment on their securi-
tization transactions. We can identify two elements that make the SF
approach way more conservative than the RBA approach:

♦ The size of the tranches below BBB seems to be most of the time
much smaller than the KIRB level. As a result, some of the mezza-
nine and even the senior tranches get penalized as if they were
junior (with a one for one capital treatment).

♦ The capital charge related to the most senior tranches in the
pool are negatively impacted in the SF framework by the
almost exclusive focus on a typically high KIRB level and the
absence of credit granted to a high level of excess spread.

PART 2: ANALYSIS OF THE IMPACT OF
BASEL II ON THE RMBS ASSET CLASS

The main finding in this part is that apart for subprime deals, regulatory
arbitrage will probably not be a key driver for securitization.
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The IRB Approach. Assets are on Balance Sheet
and there is No Securitization*

We do not focus on the standardized approach that requires a uniform 35
percent RW for all residential mortgage transactions.

Regarding the IRB approach for residential mortgages, there is no
distinction in Basel II between the foundation and the advanced
approaches. Banks are required to provide an estimation of the PD, the
LGD, and the EAD.

RMBS transactions are related to residential mortgage expo-
sures:†

The Capital Risk Charge Formula‡

Within this sector, the pillar I equations are defined as below:

♦ Correlation (R) = 0.15
♦ Capital Requirement (K) =

(7)

♦ Risk-weighted assets = K × 12.5 × EAD
♦ Risk-weight = K × 12.5

In the Equation (7) above, N(x) denotes the cumulative distribution func-
tion for a standard normal random variable. G(z) denotes the inverse c.d.f.
for a standard normal random variable.

Considering Four Transactions
In this section, we present some empirical results, based on four trans-
actions.

♦ Transaction 1—A prime transaction in the UK.
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♦ Transaction 2—A subprime transaction in the UK.
♦ Transaction 3—A prime transaction in continental 

Europe–Germany.
♦ Transaction 4—A prime transaction in continental 

Europe–Spain.

Extracting the Average Probability of Default in
Each Pool In the remainder of this section, we consider two cases.
All mortgages are assumed to have a similar average level of risk (PD)
that corresponds either to the mean or to a stressed default rate experi-
enced by the bank on this asset class.

A time-series of default rates (90 days) is typically available from
which we can extract the average PD.

Transaction 1 In transaction 1, we use rolling one-year PDs on a
monthly basis from July 2001 to February 2006. We plot the c.d.f.
corresponding to the monthly default rate on which we fit a Gaussian
c.d.f. We consider two cases, taking the PD at alternatively the 50
percent and the 95 percent confidence levels. This leads to PD values of
respectively 0.53% and 0.73% for transaction 1, as shown in Figure
16.23.

The normal distribution for PD in transaction 1 has the following
properties: N(µ = 0.53%; σ = 0.12%).

Transaction 2 In transaction 2, we plot the c.d.f. corresponding to the
monthly default rate on which we fit a Gaussian c.d.f. We consider two
cases, taking the PD at alternatively the 50 percent and the 95 percent
confidence levels. This leads to PD values of respectively 15.08% and
17.37% for transaction 2, as shown in Figure 16.24.

The normal distribution for PD in transaction 2 has the following
properties: N(µ = 15.08%; σ = 1.39%).

Transaction 3 In transaction 3, we consider rolling one-year PDs on a
monthly basis from April 2002 to January 2006. We plot the c.d.f.
corresponding to the monthly default rate on which we fit a Gaussian
c.d.f. We consider two cases, taking the PD at alternatively the 50% and
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Default Rate Distribution in Transaction 1.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
x 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Default Rates

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

PD data
Best Fit

F I G U R E 1 6 . 2 4

Default Rate Distribution in Transaction 2.

12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Default Rates

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

PD data
Best Fit



the 95% confidence levels. This leads to PD values of respectively 1.57%
and 2.31 % for transaction 3, as shown in Figure 16.25.

The normal distribution for PD in transaction 3 has the following
properties: N(µ = 2.74%; σ = 0.45%).

Transaction 4 In transaction 4, we consider rolling one-year PDs on
a monthly basis from April 2002 to October 2005. We plot the c.d.f.
corresponding to the monthly default rate on which we fit a Gaussian
c.d.f. We consider two cases, taking the PD at alternatively the 50% and
the 95% confidence levels. This leads to a PD value of respectively 0.164%
and 0.23% for transaction 4, as shown in Figure 16.26.

The normal distribution for PD in transaction 4 has the following
properties: N(µ = 2.74%; σ = 0.04%).
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Default Rate Distribution in Transaction 3.
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Extracting Lost Given Default
Non Discounted LGD In RMBS terms, the LGD for each loan is
called loss severity (LS), as detailed in the glossary in Appendix 3. LS is
defined as:

Where foreclosure cost (FC) = 4 to 6 percent of the loan
residual value of property (RV) = [100 percent − market value

decline (MVD)]
loan-to-value (LTV) = loan/valuation of the property

By considering that the LGD of the pool corresponds to the
weighted average of LSs, we can extract the LGD from the data.

LS %
RV

LTV
FC= − +100
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Default Rate Distribution in Transaction 4.
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As previously, we consider two cases, taking the LGD alternatively
as the average LGD and as a stressed LGD. The difference between the
average LGD and the stressed LGD is based on the MVD that is used.
These values are defined by S&P based on the region and country where
the property is located.

Transaction 1

In the average LGD case, the MVD is assumed to be 26 percent for the
South of UK and 12 percent for the North of UK.

In the stressed LGD case, the MVD is assumed to be 47 percent for
the South of UK and 25 percent for the North of UK.

Results

Average LGD 5.4%

Stressed LGD 17.2%

Transaction 2

For the average and stressed LGD cases, see transaction 1.

Result

Average LGD 6.7%

Stressed LGD 21.8%

Transaction 3

In the average LGD case, the MVD is assumed to be 28 percent.
In the stressed LGD case, the MVD is assumed to be 45 percent.

Result

Average LGD 2%

Stressed LGD 8.1%

Transaction 4

In the average LGD case, the MVD is assumed to be 22 percent.
In the stressed LGD case, the MVD is assumed to be 37 percent.

Result

Average LGD 7.2%

Stressed LGD 15.6%
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Discounted LGD In this analysis, we consider one scenario where the
LGD is discounted based on the risk-free rate. The discounted LGD can be
derived from the formula shown below:

Recovery (%) = (1 − LGD)

Market Interest (R) = Averaged libor interest rate for transaction 1 and 
2 in UK

= Averaged euribor interest rate for transaction 3 and 4
on continental Europe

Time to recovery (T) = 1.5 years

LGD Results are detailed below:

Transaction 1

Case Average Stressed

LGD (%) 5.4 17.2

Average time to recovery (T ) 1.5 years 1.5 years

Libor interest rate (R ) (%) 4.6 4.6

Discounted LGD (using risk-free rate) (%) 11.57 22.6

Transaction 2

Case Average Stressed

LGD (%) 6.7 21.8

Average time to recovery (T ) 1.5 years 1.5 years

Libor interest rate (R ) (%) 4.6 4.6

Discounted LGD (%) 12.79 30.59

Transaction 3

Case Average Stressed

LGD (%) 2 8.1

Average time to recovery (T ) 1.5 years 1.5 years

Euribor interest rate (R ) (%) 1.86 1.86

Discounted LGD 4.67 10.61

Discounted LGD
Recov ry
( )

= −
+

1
1

e
R T
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Transaction 4

Case Average Stressed

LGD (%) 7.2 15.6

Average time to recovery (T ) 1.5 years 1.5 years

Euribor interest rate (R ) (%) 1.86 1.86

Discounted LGD (%) 9.73 25.33

On Balance sheet IRB Results

We can now compute the RW obtained when the pool remains on balance
sheet, depending on the assumptions on PD and LGD:

Case Average Stressed

Transaction 1

PD (%) 0.53 0.73

Discounted LGD (%) 11.57 22.6

Minimum capital requirement (K ) (%) 0.75 1.83

Risk-Weight 9.4 22.9

Transaction 2

PD 15.08 17.37

Discounted LGD 12.79 30.59

Minimum Capital Requirement (K) 5.37 13.34

Risk-Weight 67.1 166.78

Transaction 3

PD (%) 2.74 3.46

Discounted LGD (%) 4.67 10.61

Minimum capital requirement (K ) (%) 0.88 2.29

Risk-Weight (%) 11 33.23

Transaction 4

PD (%) 0.164 0.23

Discounted LGD 9.73 25.33

Minimum capital requirement (K ) 0.269 0.902

Risk-Weight 3.37 11.27

Securitization

We consider the same four pools and analyze the capital requirement cor-
responding to their securitization.
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Standardized Approach for 
Securitization Exposures*
Under the Standardized approach, the RW assets are determined by mul-
tiplying the amount of the exposure by the appropriate RWs, provided in
the tables as shown:

Long-term rating category†

External credit AAA to AA− A+ to A− BBB+ to BBB− BB+ to BB− B+ and
assessment below or 

unrated

RW 20% 50% 100% 350% Deduction

Results:

Transaction 1:

Total risk weight = 47.09 percent
Equivalent K = 3.77 percent

Transaction 2:

Equivalent risk weight = 44.78 percent
Equivalent K = 44.78 % × 8 = 3.58

Transaction 3:

Equivalent risk weight = 28.79 percent
Equivalent K = 28.79% × 8% = 2.3%

Transaction 4:

Equivalent risk weight = 40.21 percent
Equivalent K = 40.21% × 8% = 3.22%

Rating-Based Approach (RBA) for Securitized 
Exposures‡ Under the RBA approach, the risk-weighted assets are
determined by multiplying the tranche exposures by the appropriate
RWs. Results are provided in the table presented in the section: “The
Rating-Based Approach (RBA).”
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Transaction 1:

Equivalent risk weight = 38.58%
Equivalent K = 38.61% ×8% = 3.09%

Transaction 2:

Equivalent risk weight = 36.92%
Equivalent K = 36.92% × 8% = 2.95%

Transaction 3:

Equivalent risk weight = 16.1%
Equivalent K = 16.1% × 8% = 1.29%

Transaction 4:

Equivalent risk weight = 26.86%
Equivalent K = 26.86% × 8% = 2.15%

The Supervisory Formula Approach*
See this section in Part 1 regarding the methodology. We present here the
results.

Transaction 1

Case Average (%) Stressed (%)

KIRB 0.81 2

Discounted LGD 11.57 22.6

Equivalent K

AAA 0.56 0.56
AA 0.56 0.56
A 0.56 0.56
BBB 0.56 7.75
Unrated 48.16 100

Risk-Weight

AAA 7 7
AA 7 7
A 7 7
BBB 7 96.87
Unrated 602.03 1250

Overall risk weight 18.69 34.51

Overall equivalent K value 1.49 2.76
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Transaction 2

Case Average (%) Stressed (%)

KIRB 7.3 18.85

Discounted LGD 12.79 30.59

Equivalent K

AAA 0.56 5.53
AA 0.56 100
A 47.85 100
BBB 100 100
BB 100 100
Unrated 100 100

Risk-Weight

AAA 7 69.14
AA 7 1250
A 598.07 1250
BBB 1250 1250
BB 1250 1250
Unrated 1250 1250

Overall risk weight 104.08 247.92

Overall equivalent K value 8.33 19.83

Transaction 3

Case Average (%) Stressed (%)

KIRB 1.01 2.66

Discounted LGD 4.67 10.61

Equivalent K

AAA 0.56 0.56
AA 3.33 100
A 69.94 100
Unrated 100 100

Risk weight

AAA 7 7
AA 41.67 1250
A 874.31 1250
Unrated 1250 1250

Overall risk weight 21.37 36.96

Overall equivalent K value 1.71 2.96
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Transaction 4

Case Average (%) Stressed (%)

KIRB 0.285 0.96

Discounted LGD 9.73 25.33

Equivalent K

AAA 0.56 0.56
A 0.56 0.56
BBB 0.56 0.68
Unrated 24.28 74.19

Risk weight

AAA 7 7
A 7 7
BBB 7 8.52
Unrated 303.51 927.34

Overall risk weight 11.39 20.65

Overall equivalent K value 0.911 1.65

Comparisons

Transaction 1

Figure 16.27 shows a comparison of RW between Standardized, IRB,
RBA, and SF approach in the average case.

Figure 16.28 shows a comparison of RW between Standardized, IRB,
RBA, and SF approach in the stressed case.

Transaction 2

Figure 16.29 shows a comparison of RW between Standardized, IRB,
RBA, and SF approach in the average case.

Figure 16.30 shows a comparison of RW between standardized, IRB,
RBA, and SF approach in the stressed case.

Transaction 3

Figure 16.31 shows a comparison of RW between standardized, IRB,
RBA, and SF approach in the average case.

Figure 16.32 shows a comparison of RW between standardized, IRB,
RBA, and SF approach in the stressed case.
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Comparison of RW (Percent) in Transaction 1 
(Average Case).
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Comparison of RW (Percent) in Transaction 2 
(Average Case).

F I G U R E 1 6 . 3 0

Comparison of RW (Percent) in Transaction 2
(Stressed Case).

35.00%

67.10%

44.78%
36.92%

104.08%

0%

20%

40%

60%

80%

100%

120%

On Balance Sheet 
(Standardised Approach)

On Balance Sheet (IRB)

On Balance Sheet but Securitization 
Rating (Standardised Approach)

On Balance Sheet but 
Securitization Rating (RBA)

On Balance Sheet but 
Securitization Rating (SF)

R
W

 (
%

)

35.00%

166.78%

44.78%
36.92%

247.92%

0%

50%

100%

150%

200%

250%

300%

On Balance Sheet 
(Standardised Approach)

On Balance Sheet (IRB)

On Balance Sheet but Securitization 
Rating (Standardised Approach)

On Balance Sheet but 
Securitization Rating (RBA)

On Balance Sheet but 
Securitization Rating (SF)

R
W

 (
%

)



Securitization in the Context of Basel II: Case Studies 743

F I G U R E 1 6 . 3 1

Comparison of RW (Percent) in Transaction 3 
(Average Case).
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Comparison of RW (Percent) in Transaction 3 
(Stressed Case).
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Comparison of RW (Percent) in Transaction 4 
(Stressed Case).
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Comparison of RW (Percent) in Transaction 4 
(Average Case).
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Transaction 4

Figure 16.33 shows a comparison of RW between standardized, IRB,
RBA, and SF approach in the average case.

Figure 16.34 shows a comparison of RW between standardized, IRB,
RBA, and SF approach in the stressed case.

Conclusion of Part 2

The first conclusion is that the type of arbitrage, we could observe sys-
tematically, in the credit card asset class does not occur anymore for the
RMBS sector. A point could however mitigate this statement slightly as
when no securitization is taking place, the bank needs to provision an
amount that should be reasonably close to the expected loss level (see
paragraphs 380 to 386).

Another point to mention is that the way banks will measure PDs
and LGDs will very much impact the existence of an opportunity of arbi-
trage linked to securitization transactions.

Lastly, securitization seems to make more sense for subprime pools
than for prime ones.

Securitization in the Context of Basel II: Case Studies 745



Payment The credit card payment rate can be defined as:
Rate Principal Repayment this month as a percentage 

of outstanding receivables in the previous month.

Yield The yield represents the total revenue collected  
by the issuer, as a percentage of the outstanding.
The numerator of the Yield consists of three items:
♦ Finance charges, i.e., primarily interest paid
♦ Fees (late fee and over-limit fee)
♦ Interchange (It is the fee paid to originators by  
♦ VISA or MasterCard for absorbing risk and funding
receivables during grace periods) [S&P does not  
take interchange into account in its cash flow 
model.].

Gross losses Losses on the principal of receivables on the 
(charge off ) basis of a 180 days past due definition.

Default rate The default rate corresponds to the 90-day past
due Basel II definition.

Gross Losses on the principal of receivables due in 180
charge-off days divided by outstanding in corresponding 
(%) month, annualized.

Recovery Realization on receivables that are charged off.
Recovery figures provided by originators are not
discounted when received.

Tranching (initial The initial class size is the relative weight of 
class size) each tranche in a transaction.

Certificate rate The Certificate rate is the ratio of certificate
(coupon rate) interest paid to investors divided by outstanding

invested amount annualized.

Beginning S&P assumes that the certificate rate is a 
coupon (beg. floating rate rather than a fixed rate. The cer-
coup)/Max tificate rate is assumed to increase over time 
coupon rate from a beginning coupon rate. In floating-
(max. coup) rate deals in which interest rate caps are pro-

vided, interest rates are increased to the level of
the cap (max coupon rate). It is in ratio, since it
is the coupon payment to the total notes out-
standing.

Beginning loss The beginning loss corresponds to the initial
level of loss assumed in the transaction under
stress. It is usually calculated as the maximum
of 0 or yield—servicing charge—beg. coup—
excess spread.

Step-up It is the rate of increase of the coupon rate. S&P
assumes 1% step up. If the beginning coupon
rate is 10% and the max coupon rate is 15%, it
will go up from 10%, 11%, 12%, so on, and so
far till it reaches 15%.

Asset side Liability side

A P P E N D I X  A

Definitions and General Terminology—Credit Cards
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LGD (%) LGD is 1 minus the recovery rate. S&P credit card
model assumes the LGD to be 100%, i.e., no
recovery.

Net losses Gross losses minus recovery.

Exposure This is the credit exposure in the portfolio 
at default at the time of default.

Purchase Purchases keep the amount of principal receiv- 
rate ables in the trust from declining. The purchase 

rate is the ratio of the amount of purchases that
cardholders have made this month divided by
the total outstanding last month.

Servicing Servicing is the service fee, salary, etc. required 
charge to manage the transaction. In S&P model, serv-

(servicing) icing is assumed to be fixed at 2% of the total 
notes outstanding.

Interest shortfall Interest shortfall occurs when the SPV does not
have sufficient cash to pay the interest due to
investors. In S&P model, this information is
reported as the ratio of the interest shortfall
amount to the total notes outstanding initially.

Servicing Servicing shortfall occurs when the SPV 
shortfall does not have enough cash to pay the servicing

charge. In S&P model, the information is
reported as the ratio of the servicing shortfall to
the total notes outstanding initially.

Principal Principal shortfall occurs when the SPV does
shortfall not have enough cash to pay the principal to

investors. In S&P model, the information is
reported as the ratio of principal payment to the
total notes outstanding initially.

CIA A credit enhancement to the more senior
classes, class A and class B, is a subordinated
interest known as CIA.

Excess spread Excess spread can be described as the differ-
ence between the returns of both assets and
liabilities in the structure. In other words, excess
spread is the difference between the yield and
the certificate rate, the servicing charge, and
the losses. In the stress tests associated with
S&P models, all factors mentioned earlier are
stressed to the worst case; hence, the excess
spread will be negative in most stressed cases.
Excess spread = yield − coupon − servicing −
losses

Base rate Base amortization occurs when the yield is 
amortization not sufficient to cover the coupon interest.

Abbreviations: LGD = loss given default; CIA = collateral invested amount.
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A P P E N D I X  B

Credit Card Model, the S&P
Methodology

After assessing the seller and servicer’s (SPV) operations and analyzing
the performance of the issuer’s (Originator) receivables, S&P runs cash
flow scenarios that stress five key performance variables:

♦ Payment rate
♦ Purchase rate
♦ Losses
♦ Portfolio yield
♦ Certificate rate

If the average three months portfolio yield is insufficient to cover the cer-
tificate interest and servicing fees averaged for the same period, a base
rate amortization will occur. Different issuers will have different rules for
the amortization; In this model, S&P assumes that as an issuer enters in
the amortization, it will pay out the principal and the interest to the more
senior tranche holder first. For some other transactions, it may be paying
back the principal to all investors first and then the payment of interest as
per the waterfall.

TRAPPING POINT

All credit card structures incorporate a series of amortization events that,
if triggered, cause principal collections allocated to investors to be passed
through immediately and before the maturity date. Amortization events
include insolvency of the originator of the receivables, breaches of repre-
sentations or warranties, a servicer default, failure to add receivables as
required, and asset performance-related events. Additionally, amortiza-
tion happens if the three-month average excess spread falls below zero.

In a typical credit card structure, credit enhancement for the Class A
and Class B are fully funded at closing. For example, the Class A certifi-
cate relies on the credit enhancement provided by the subordination of
Class B and Class C notes. In constant, the enhancement for the Class C
notes is dynamic. Generally, if excess spread falls below specified levels,
excess finance charge collections are trapped in a spread account for the
CIA’s benefit.
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An example of spread account structure and the required trigger
levels is shown in Table B.1.

In this example, if the three-month average excess spread is above
4.5 percent, no deposit is required. Should excess spread falls between 4
to 4.5 percent, it will be trapped in the spread account until the spread
account balance is equal to 1.5 percent of the initial invested amount.
As excess spread falls, the targeted reserve fund balance increases. At
less than 3 percent excess spread, the targeted reserve account will be 4
percent. In an adverse scenario, this structural credit enhancement is
designed to build the reserve account before the excess spread falls below
zero.

VARIABLES

Among the five variables, S&P focuses primarily on three of them—losses
(charge-off rate), payment rate, and portfolio yield—for the base case
assumption. These three variables are extracted from historical data (S&P
averages monthly data from the most recent calendar year for these three
variables).

REQUIRED TRANCHES

The initial tranching (class size) suggested by the seller is an input
to the model. An example of Transaction 1’s class sizes is shown on
Table B.2.
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T A B L E  B . 1

Sample Spread Account Trapping Mechanism

Three-month average Reserve fund target % of initial 
excess spread (%) series invested amount

4.5 0.0

4.0–4.5 1.5

3.5–4.0 2.0

3.0–3.5 3.0

3.0 4.0



STRESS FACTORS

After entering the data related to the class sizes and the base case assump-
tions based on the latest historical data, stress factors have to be chosen
for each variable in accordance to a range of stress factors defined glob-
ally. Table B.3 shows the range for every factors.

The stressed scenario assumptions are obtained by applying a stress
factor within the range listed in Table B.3 to the base case assumptions.

Stressed default rate = base case default rate × default rate stress 
factor = “Max loss”

Stressed payment rate = base case payment rate × payment rate
haircut = “Payment rate”

Stressed yield rate = base case yield rate × yield haircut = “Yield”

KEY INPUTS PER RATING CATEGORY

In Table B.4, the values shown in bold correspond to the stressed assump-
tions; all the other fields are computed from them or are inputs.

An example of an “AAA” stress case for a transaction is shown in
Table B.3.

♦ The excess spread happens to be −5 percent for “AAA” case, −3
percent for “A” case. The excess spread is negative because in a
stress scenario, the loss variable is under a much bigger stress.
For example, excess spread = yield − beg. coup − servicing − beg.
loss, (where in a stressed case, excess spread = 9.75 percent − 2
percent − 7 percent − 5.75 percent).

♦ The excess spread for the “BBB” case is based upon the trapping
point. In Transaction 1, it is 4.5 percent.
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T A B L E  B . 2

Initial Class Sizes

Class A (%) 90.00

Class B (%) 5.00

Class C (%) 5.00

Total size (%) 100.00



♦ The servicing is assumed to be 2 percent for all cases.
♦ The beginning coupon rate and the max coupon rate are

assumed to be, respectively,—7 percent and 15 percent for
“AAA” tranche; 7.3 percent and 14 percent for “A” tranche;
and 7 percent to 15 percent Fixed coupon rate for “BBB”
tranche.

♦ Step-up rate is always 1 percent for “AAA” tranche and 0.8 per-
cent for “A” tranche.

♦ The purchase rate is extracted from the historical data.
♦ The loss rate is increasing gradually from the beginning loss to

the max loss.
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T A B L E  B . 3

Ranger for Stress Factors

Default rate Payment rate Yield (% of 
(X coefficient) (% of base case) base case)

AAA 4–5 50–55 65–70

A 2.5–3 60–65 70–75

BBB 1.5–2 70–75 75–80

T A B L E  B . 4

Assumptions (AAA)

Excess spread (%) −5.00

Yield (%) 9.75

Purchase rate (%) 3.00

Payment rate (%) 10.00

Servicing (%) 2.00

Beg. coup (%) 7.00

Max coup (%) 15.00

Step-up (%) 1.00

Beg. loss (%) 5.75

Max loss (%) 30.00



THE ENGINE

The model will determine four outcomes—the interest shortfall, the prin-
cipal shortfall, the service shortfall, and the duration of paying back the
principal to investors. The underlying calculations are in a waterfall for-
mat on a monthly basis.

Step 1: Determine the cash flow (CF = yield rate × beginning month’s
balance)
Step 2: Determine the interest for the “AAA” tranche (IAAA = coupon
rate × tranche amount)
Step 3: Check the remaining amount/shortfall (CF2 = CF − IAAA)
Step 4: Determine the interest for the “A” tranche (IA = coupon
rate × tranche amount)
Step 5: Check the remaining amount/shortfall (CF3 = CF2 − IA)
Step 6: Determine the servicing fee (SF = servicing × transaction princi-
pal exposure)
Step 7: Check the remaining amount/shortfall (CF4 = CF3 − SF)
Step 8: Determine the interest for the “BBB” tranche (IBB> B = coupon
rate × tranche amount)
Step 9: Check the remaining amount/shortfall (CF5 = CF4 − IBBB)
Step 10: Determine the loss amount (L = loss rate × transaction princi-
pal exposure)
Step 11: Compute the final balance (CB = CF5 − L)
Step 12: The final balance becomes the new beginning month balance
Step 13: Go back to step 1
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T A B L E  B . 5

Rating Category Scenarios (AAA)

Month 1 2 3 4 5 6

Beginning Balance 100,000 93,333 86,940 80,824 74,990 69,440

Purchases 3,000 2,800 2,608 2,425 2,250 2,083

Payments 10,000 9,333 8,694 8,082 7,499 6,944

Yield 813 758 706 657 609 564

Losses 479 619 736 833 910 971

Principal Payments 9,188 8,575 7,988 7,426 6,890 6,380

End Balance 93,333 86,940 80,824 74,990 69,440 64,173



Table B.5 shows the results from the model. The table (Table B.5) shows
the beginning balance of each month, the purchases rate, the principal
payment rate, the yield, the losses, and the end balance of each month.

ADJUSTMENT OF STRESS FACTORS

The interest shortfalls, the principal shortfalls, and the service shortfalls of
each scenario are determined in the model as shown in Table B.6. The
tranching requirements are accepted if interest shortfall, service shortfall,
and the principal shortfall (values in bold) are all below 0.05 percent.

Since all assumptions are determined for each stress case, the prin-
cipal payment for each stress scenario is obtained as: payment due this
month − yield of this month. Hence, the end balance of each month is cal-
culated by: beginning balance + purchase − loss − principal payment. The
outcome of this number will be the next month’s beginning balance. This
process is repeated until principal is paid back to investors, consequently
the duration can be found.
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T A B L E  B . 6

Credit/Liquidy (AAA)

A sub. size (%) 9.91

A Interest shortfall (%) 0.000

Servicing shortfall (%) 0.05

A write-down (%) 0.000

B interest shortfall (%) 3.104

LOC draw (%) 12.50
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Buy-to-let Buy-to-let corresponds to borrowers who pur-
properties chase properties for rental purposes. Since

these borrowers rely on the rental income to
pay their mortgage installments, the buy-to-let
mortgages are considered to carry greater risk.

CCJs or CCJs and discharged bankruptcy relate to the
discharged credit history of a borrower. If a borrower has
bankruptcy CCJs or has been bankrupt in the past, an 

increased likelihood of a mortgage loan might 
default in the future.

Default rate Losses on principal of receivables (expressed
as a percentage of the outstanding loan).

Exposure Exposure at default is the credit exposure 
at default vis-a-vis an obligor at the time of default.

Foreclosure A situation in which a homeowner is unable to
make principal and/or interest payments on
his/her mortgage. The lender, be it a bank or
building society, can seize and sell the prop-
erty as stipulated in the terms of the mortgage
contract. So, Foreclosure frequency = default
rate.

GIC account GIC account will guarantee a certain level of
return on amounts outstanding.

Servicing  Servicing charge is the service fee, salary, etc.
charge required to manage the transaction. In the 

(Servicing) RMBS world, servicing fees vary from jurisdic-
tion to jurisdiction. For UK prime deals, S&P
assumes that the servicing fees are in the
area of 35 basis points of the total notes out-
standing; whereas for the subprime deals,
S&P assumes the servicing fees to be around
50 basis points (the lower the credit quality of
the underlying borrowers, the greater the
effort of the servicer in order to collect the
payments). However, in other jurisdictions,
e.g., Greece, S&P assumes that the servicing
fees are around 70 basis points.

Tranching (initial In the RMBS world, we see various kinds of 
class size) capital structure that cover the entire rating

spectrum, from AAA moving all the way down
the capital structure to BB. It is depending 
on the jurisdiction and the underlying mort-
gages (prime versus subprime).

Asset side Liability side

A P P E N D I X  C

Definitions and General Terminology—Residential-
Mortgage Backed Securities
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Income Income multiples is the ratio of the annual
multiples income of the borrower to the loan.

Interest rate The interest rate that the underlying borrowers
payable under pay on, e.g., monthly basis.
the mortgages

Jumbo loans A jumbo loan is defined as a loan exceeding
certain amount according to different area we
are interested in (e.g., A loan in Germany
which exceeds Euros 400,00 is a jumbo loan).

LGD (%) LGD is 1 minus the recovery rate.

LS Loss given default for individual transaction
within the pool (a loan to loan LGD). For both
prime and subprime pools, SL is defined as:
LS = 100% − residual value of property/LTV +
foreclosure costs of the property.

Loan repay- Methods through which borrowers repay their
ment type loan.

♦ IO—the borrower makes monthly interest
payments, with the total principal due at final
maturity. The interest only loans with matu-
rity between 5 and 10 years are assumed to
carry greater risk, as the borrower might
have been unable to build up his capital dur-
ing such a short period.

♦ REP—The principal amortizes over the life
of the loan; i.e., the borrower repays princi-
pal and pays interest at each mortgage pay-
ment date.

♦ PP—Part of the mortgage is based on
repayment and the rest is on an IO basis.

Certificate rate The coupon interest rate.

(coupon rate)

Beginning S&P assumes the certificate rate is a floating
coupon (beg. rate rather than a fixed rate. Therefore, the 
coup)/ max certificate rate is assumed to increase/
coupon rate decrease over time from a beginning coupon 
(ceiling level)/ rate with respect to the Libor interest rate. In 
floor level floating-rate deals in which interest rate caps 
coupon rate and floor level are provided, interest rates are

increased/decreased to the level of the cap 
(max coupon rate)/floor level. It is in ratio 
since it is the coupon payment to the 
total notes outstanding.

Step-up/ It is the rate of increase/decrease for the 
step-down coupon rate from the beginning coupon rate
margin according to the trend of the market.

Interest Interest shortfall occurs when the SPV does 
shortfall not have sufficient cash to pay the interest 

due to investors. In S&P model, this infor-
mation is reported as the ratio of the interest 
shortfall amount to the total notes outstanding
initially.

Servicing Servicing shortfall occurs when the SPV does
shortfall not have enough cash to pay the servicing

charge. In S&P model, the information is
reported as the ratio of the servicing shortfall
to the total notes outstanding initially.

Principal Principal shortfall occurs when the SPV does 
shortfall not have enough cash to pay the principal to

investors. In S&P model, the information is 

(continued)
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LTV The LTV is defined as the ratio of aggregate
mortgage debt divided by the value of the
property.

MVD The MVD corresponds to the loss in value of a
property backing a mortgage loan.

SVR SVR is a standard rate, e.g., floating rate, which
is a sum of the current market’s rate (e.g., Libor,
Euribor, etc.) plus an additional interest rate
set by a particular bank (the Margin).

Non-SVR The Non-SVR corresponds to loans with inter-
Loans est payments that are not linked to the SVR of 

the lender (such as fixed, discounted, or 
capped rate loans).

Self-certified Self-certified income loans are loans made in 
income cases where borrowers cannot supply adequate

income documentation, or the underwriting of 
the loan has not included income documenta-
tion requirements (For the self-certified loans, 
there is no objective measurement of the 
income of the borrower; consequently, these 
loans are considered to carry greater risk.).

WAFF Based on the S&P assumptions, the average 
default rate in the pool under stressed scenarios.

reported as the ratio of principal payment to
the total notes outstanding initially.

Excess spread Excess spread can be described as the dif-
ference between the returns of both assets
and liabilities in the structure. In other words,
excess spread is the difference between the
yield and the aggregated amount of the cer-
tificate rate, the servicing charge, and the 
losses. In the stress tests associated with
S&P models, all factors mentioned earlier are
stressed to the worst case; hence, the
excess spread will be an negative percent-
age in most stressed cases.

Excess spread = yield − beg. coup − servicing −
beg. loss

PDL The amount by which the principal balance of
liabilities exceeds that of the assets (e.g.,
due to payment).

Asset side Liability side

Appendix C (continued)



757

Timing of The WAFF at each rating level specifies the 
defaults total balance of the mortgage loans assumed 

to default over the life of the transaction. S&P 
assumes that these defaults occur over a three-
year recession. S&P analyzes the impact of 
the timing of this recession on the ability to 
repay the liabilities, and defines the recession 
starting period specific to each rating level.
Although the recession normally starts the first 
month of the transaction, the “AAA” recession 
is usually delayed by 12 months. The WAFF is 
applied to the principal balance outstanding at 
the start of the recession (e.g., in a “AAA”
scenario the WAFF is applied to the balance at
the beginning of month 13).

WALS The loss severity in the entire pool under
stressed scenarios. WALS is 1 minus the recov-
ery rate. Calculations are based on S&P
assumptions.

Abbreviations: CCIs = county court judgment; LGD = loss given default; LS = loss severity; LTV = Loan-to-value ratio; IO = interest only; REP = repayment; PP = part by part; MVD = market value
decline; SVR = standard variable rate; WAFF = weighted-average foreclosure frequency; WALS = weighted-average loss severity; GIC = Guaranteed investment contract; PDL = principal
balance of deficiency ledger.
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