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1. Abstract

The Boston Police Department is leading the effort to combat crimes by keeping a
database containing every recorded crime in Boston since 2014. Our project explores avenues for
predicting daily crimes rates using temporal and weather data provided by the National Center
for Environmental Information (NCEI). We employ linear regressions, GAM models, and
decision trees to predict the number of crimes on a given day solely based on temporal as well as
weather variables. We discovered that month, temperature, precipitation, and day of the week are
the most powerful variables for predicting daily crime rates in Boston. Because our models rely
only on such trackable and predictable variables, we believe that our results may provide Boston
administrators with some insight on how to manage their resources more efficiently only by
looking at the date or their weather app, and inspire others to explore further into the relationship

between crime and weather.



2. Introduction

Crime is one of the largest social issues we face: it can influence neighborhoods we
choose to live in, schools we choose to attend, and it can be a deciding factor in our everyday
lives. The easily obtainable weather and time data could potentially help the Boston Police
Department predict daily crimes. We have collected and compiled incident reports from the
Boston Police Department and weather data from the NCEI between August 2015 and February

2020 into a table containing the number of crimes and the weather of each day.
3. Basic Statistical Analysis

Before any analysis, the data that had to be cleaned and compiled into a daily counts data
set. We performed data cleaning and data extraction on the crime and weather data sets, which in
total contain over 1 million data points. After compiling them into a data set of 1,568 rows for
each day only containing the number of crimes on each day and the date, we then combined this
compiled data set with the daily weather data set that provided us with wind speed, temperature,
precipitation etc. We decided to split the date into categorical variables (eg. month, day of the
month, day of the week) and continuous variables (time delta: days since Jan 1st). We removed
outliers, any row with 3 standard deviations from the mean, and high leverage points using

studentized residuals. Below (Table 3.1) are a couple of sample rows and columns of our table.

Table 3.1 Sample rows and columns of cleaned data set

count AWND PRCP SNOW TAVG TMAX TMIN WSF2 WSF5 month_cat weekday time_delta TMIX
250 8.28 0.00 0.0 24 34 18 18.1 23.9 Dec Tuesday 354 612
289 7.61 1.33 0.0 76 B2 69 17.0 19.9 Jul ‘Wednesday 192 5658

The crime rates are highly dependable on human behavior, therefore it is difficult to explain most

of the variance in crime with any predictors. The adjusted R*‘s for our models are below 0.5.



Count

Since our data set is imbalanced in that the days with “normal weather conditions”
outnumber the days with special weather conditions (precipitation, snow, WT09, WT04 and
WTO01) by about four times on average. Therefore we applied the random undersampling method
which eliminates observations from the majority class randomly until the data set gets balanced.
Specifically, we reduced the number of days without special weather conditions to 300, which is
roughly equal to the average number of days with special weather. Figure 3.2 are two sample

plots of regression models using only one variable.

Figures 3.2 - Examples of simple regression models only using one variable
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In Figure 3.2, the first model indicates the crime rises linearly with temperature, and the second
model is a quadratic polynomial with the predictor being time delta. The regressions show that
the number of crimes peaks in summer, around mid June and early July, and drops to around 250
in December and January. Perhaps this is because people tend to stay outside and are more active

on warmer days than colder days.

Figures 3.3 - Crime count per weekday
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can see that Friday has the highest crime count followed by Wednesday and a sharp decline on
Sundays. (For all other basic statistical analysis please see graphs attached in the Appendix. We

didn’t show them here because of space limit. )
4. Methods

This paper explores a number of different supervised learning techniques to achieve our
goal of predicting the number of crimes in a given day based on the weather data. For each
approach, we will analyze the model accuracy (MSE, MAE and adjusted R? etc) and model
interpretability. MAE is the mean absolute error and is used because it is more interpretable. We
will start with linear regression models and GAM, and then move to the more complex decision
tree models including random forest and boosting. Finally, we apply the best subset selection
model to our cleaned data set. Overall, the best subset selection model appears to be the best
model among all the models, given its high test accuracy and interpretability. In the conclusion,
we will discuss the application as well as limitations of these models and any further

improvements on them.
5. Models

5.1 Linear and non-linear models
We start at a preliminary level by training a simple linear regression model on all
variables using a training/test split of 4:1 to test the model accuracy. Our very first model has an
adjusted R? of 0.3792 and an MSE of 929. We felt that we could improve upon this by only
including 8 variables, which have significant p-values at a confidence level of 0.9, to fit another

linear model that may generate better results. The adjusted R* and MSE of the new linear model



are 0.40 and 688, respectively. This is a huge improvement increasing our adjusted R? and
bringing down our MSE.

Next, we extend the standard linear model by implementing GAM models. Using GAMs,
we are able to fit different models to individual predictors, therefore modeling non-linear
relationships automatically while still examining the impact of each predictor on the outcome
individually. In the simple linear regression, the p-values for WT01, WT04 and WT09 (WTO01 =
Fog, ice fog, or freezing fog; WT04 = Ice pellets, sleet, snow pellets; WT09 = Blowing or
drifting snow) are relatively large compare to the p-values of the other predictors, therefore we
employ GAM and analysis of variance (ANOVA, using an F-test) to further quantify the extent
to which the more complicated models are superior to the simpler linear models.

With the balanced data set, we analyze a few nested models using ANOVA function and
sequentially compare the simpler model to the more complex model. The ANOVA table shows
that the most complex model, the one that contains all WT01, WT04 and WTO09, seems to be far
superior to the other models given its p-value is virtually zero. Its MSE by using the validation
set approach is 843.24, and the model’s training error and test error are similar and show no sign
of overfitting. Further, the residual plot of the linear model shows no fitted discernible pattern
(Figure 5.1), which means linear relationship is an appropriate assumption.

Figure 5.1 Residual plot of linear regression
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5.2 Random Forest and Boosting

We consider the random forest technique to be another appropriate method here because
it tends to overfit less and can further reduce the correlation among individual trees. Initially, we
trained a random forest model based on all predictors. We randomly sampled 4 predictors out of
8 based on the lowest MSE and found the best split based on them. Compared to the previous
result, the MSE of random forest technique decreased to 836 and MAE (Mean absolute error)
decreased to 20.94 . In order to further reduce the test error, we select 8 variables with the lowest
p-values in the linear regression, while m is still equal to 4, to construct an even better random
forest model. The result contained an MSE and MAE of 810 and 20.90, respectively. Figure 5.2
and 5.3 in Appendix show the percent increase in MSE for the two Random Forest models we
built. Practically, our random forest model complimented our preliminary assumptions that crime
is with weekday, temperature and time of the year. For instance, the crime rates would be higher
on a warm Friday summer night as compared to a cold snowy Sunday evening.

In addition to random forest, we also tried the boosting technique. To begin, we added a
new column to our data that enhanced our boosting trees accuracy significantly. This column,
called TMIX, is TMAX*TMIN. Our boosting model used 1000 subtrees. We iterated over a set
of learning rates ranging from 2 to 2%, and chose the lambda that resulted in the lowest test
error. We then looked at the influence plot and removed the bottom half of the variables that had
little influence in the tree model, and then refitted the mode with a subset of the original
predictors.

The table below (Table 5.4) shows the relative influence of the variables that were used
in the final model. It is clear that the model relies heavily on weekday and all temperature

variables. Interestingly, the boosting model, unlike other models discussed in this paper, does not



rely very Table 5.4-Boosting relative influence heavily on the month and time_delta_sq. This model

var rel.inf

weekday weekday 40.1585916 USES a validation set of 25% of the data and has an MSE of
TMIX TMIX 17.8910935

TMAX TMAX 14.1681033 .

e T B acgucoR 588, an MAE of 18.78, the learning parameter of 0.01457,
PRCP PRCP  5.8549201

TMIN TMIN 5.7389738 and an adjusted R? of 0.452. We calculated this model's
time_delta time_delta 4.4304201

month_cat  month_cat 3.3664476 . L

SNOW SNOW ©.9777965 accuracy using Accuracy = 1 - mean(abs(prediction -
AWND AWND ©.7823191

WSF2 WSF2 ©.1594326 L

WSFS WSF5 @ 1116441 actual)/actual), which is 93.21%.

5.3 Best Subset Selection

Although boosting produced the lowest test error compared to other models we analyzed

so far, its low interpretability could limit the model’s application in real life. Therefore, we try a

presumably more interpretable model —the best subset selection approach —to predict the number

of crimes, which consists of testing all possible combinations of the predictor variables, and then

selecting the best model according to adjusted R?. The best subset selection approach chooses the

model with 16 variables (Table 5.3), which produces an MSE of 617 and an adjusted R? of 0.428.

The accuracy of the best subset model was 92.6%. Overall, this model has relatively high

accuracy and also sufficiently high interpretability.

Table 5.3 Regression Analysis of Best Subset Selection

(Intercept) PRCP SNOW TAVG WT011 WT041 day month_catAug
252.46 -7.76 -2.66 0.93 -3.31 -16.43 -1.31 -5.41

month_catlul month_catMay kdayMonday kdaySaturday kdaySunday kdayThursday kdayTuesday weekdayWednesday
-11.36 5.74 -17.12 -21.67 -49.33 -10.90 -13.22 -11.42

day_sq
0.03

For example, in Table 5.3 we can see that temperature has a positive relationship with crime

count, and precipitation and snow are negatively correlated with the crimes. Sunday displays the

lowest number of crimes throughout the week and it has the most negative coefficient in

comparison to all the other days of the week.



6. Conclusion

In summary, the best subset selection model using 16 predictors proved to be the most
superior model because it produces a relatively low test error, shows no sign of overfitting, and is
highly interpretable. Although we did get a lower MSE using Boosting, the complex interactions
between the independent variables are difficult to understand. Therefore the Boosting method
lacks interpretability and is not user-friendly.

Our findings surprised and amazed us; we can use only weather and time to explain just
under half of the variance of crime, predict it with about 93% accuracy. We can conclude that
month, temperature, precipitation, and day of the week are the most important variables in our
models. Crime is generally lower with bad weather and during winter, possibly because people
are less active. Crime peaks on Fridays possibly because people are active and partying, and is
low on Sundays.

This project by no means is a good way to reduce crime by itself or prove causation, but
we hope that this opens up doors for others to explore and extend our ideas. We can truly put our
models to the test by comparing our predictions with future weather reports and crime counts
that are added to the database everyday. If given more time, we could look into weather and
crime relationships for specific types of crimes, or specific districts. In addition, we could
improve our models by including more predictors such as a binary variable that indicates a
holiday, or synergy variables such as snow and precipitation. We can also try other models like
time series models or other functions that have memory. We hope that more powerful and
specific models will be developed in the future and will be paired with police department

policies to mitigate crime more effectively.
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Data Dictionary

WSF2:
WSFS:

Fastest 2-min wind speed
Fastest 5-second wind speed

SNOW: Snowfall
AWND: Average wind speed
PGTM: Peak gust time

WTO01: Fog, ice fog, or freezing fog (may include
heavy fog)
WTO02: Heavy fog or heaving freezing fog (not

always distinguished from fog)

WTO03:

WT04

Thunder

: Ice pellets, sleet, snow pellets, or small hail
PRCP:
WTO05:
WTO06:
WTO08:
WT09:

Precipitation

Hail (may include small hail)
Glaze or rime

Smoke or haze

Blowing or drifting snow

TAVG: Average Temperature

TMIN: Minimum temperature

TMAX: Max temp

Count: Number of Crimes per day
month_num: Numerical value for Month
day: Day of the month

month_cat: Text value for month
weekday: Day of Week

time_delta: 0-364. Number of days after Jan 1st
time_delta_sq: Time_delta"2

day_sq: Days into the month squared
date: [M/DD/YY 12:30] format for date
year: Numerical, year

month: Month of year

day_of week: Day of week
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Appendix

Figure 1 - Crime types vs Count Figure 3 - Crime count vs. district
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Figure 3.3 - Crime count vs. weekday
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Figure 2 - Crime count vs. hour of the day
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Figure 5.2 - Random forest with all variables
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Figure 5.2 - Random forest with 8 variables
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