

www.unboundtech.com

Unbound blockchain-crypto-mpc

Library

White Paper

Prof. Yehuda Lindell, Chief Scientist

Guy Peer, VP R&D

Dr. Samuel Ranellucci, Cryptographer

November 1, 2018

Unbound blockchain-crypto-mpc Library Page 1

White Paper

 Copyright 2018, Unbound Tech Ltd.

Table of Contents

1. Problem Statement .. 2

2. Overview of the Solution ... 3

3. Supported Functionalities ... 5

4. Cryptographic Tools .. 6

4.1. ECDSA Signing ... 6

4.2. EdDSA Signing ... 6

4.3. Paillier Encryption ... 6

4.4. Commitment Schemes ... 7

4.5. Zero-Knowledge Proofs ... 7

4.6. Oblivious Transfer .. 8

4.7. Garbled Circuits ... 8

4.8. Dual Execution ... 9

5. Cryptographic Protocols Overview .. 11

5.1. Distributed Key Generation .. 11

5.2. BIP32/BIP44 Key Derivation .. 12

5.3. Backup .. 13

5.4. ECDSA Signing ... 13

5.5. EdDSA Signing ... 14

5.6. Share Refresh ... 15

6. Security Guarantees ... 16

7. References ... 17

Unbound blockchain-crypto-mpc Library Page 2

White Paper

 Copyright 2018, Unbound Tech Ltd.

1. Problem Statement

In the realm of cryptocurrencies, storing private keys for cryptographic primitives in a

secure manner and preventing fraudulent transactions is critical. This is due to the

fact that cryptocurrency transactions are irreversible, by definition, and thus stolen

funds cannot be recovered. This makes them an extremely attractive target to

cybercriminals. In this white paper, we describe Unbound’s open-source library for

protecting private keys and authorizing transactions via secure two-party

computation (MPC). The library can be found at:

https://github.com/unbound-tech/blockchain-crypto-mpc/

https://github.com/unbound-tech/blockchain-crypto-mpc/

Unbound blockchain-crypto-mpc Library Page 3

White Paper

 Copyright 2018, Unbound Tech Ltd.

2. Overview of the Solution

Unbound’s solution is based on no single device holding the private key used to

generate signatures and transfer funds. Rather, the private key is shared among two

devices (servers/cell phones/laptops) so that no party has any information about the

key. Then, in order to generate a signature, the two devices run a secure two-party

computation protocol that generates the signature without revealing anything about

the parties’ key shares to each other. We stress that these devices may or may not be

associated with the same person or organization, and these can be any entity. Thus,

one could use this to create a wallet, sharing the private key between one’s mobile

and one’s laptop, between one’s mobile and a VM in the cloud, and so on. From here

on, we use the term parties to denote the two devices/entities defined to run the

protocols.

The basis of our solution is to use MPC two-party signing protocols in order to carry

out all required operations. All our protocols are secure in the presence of malicious

adversaries, which means that security is maintained even if one of the devices is

breached and running malicious code. This claim is backed by mathematical proofs

of security of the protocols.

Our solution supports BIP32/BIP44 key derivation. We assume familiarity with these

standards here, and refer the reader to:

 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

 https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

When using BIP key derivation, there is a BIP master seed or key that is used to

derive all future keys. The BIP key derivation is carried out using MPC between the

parties and integrated into the MPC signing method, ensuring that the entities only

receive their respective shares of the key, and whole key material is never revealed.

Our method for BIP key derivation via MPC validates that the derivation is correct,

even if some of the parties are corrupted. This is crucial for enabling key recovery of

all keys from the BIP master key. We stress that doing BIP derivation in the clear and

then running MPC for the signing is not secure, since key material is in the clear.

Backup is a crucial element of any cryptocurrency solution, since the loss of the

private key means that funds can never be retrieved. For the purpose of backup, an

RSA key pair is generated, and the private RSA key is stored in cold backup. Then, the

ECDSA/EdDSA private key is encrypted under the RSA cold backup public key. This

encryption is carried out separately by each party on their share (since no party has

the entire private key). In addition, each party generates a publicly verifiable zero-

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Unbound blockchain-crypto-mpc Library Page 4

White Paper

 Copyright 2018, Unbound Tech Ltd.

knowledge proof that the correct share of the private key was encrypted. This is

needed to prevent a malicious party from rendering the cold backup useless. This

method works also with keys derived using BIP or any other key derivation method.

However, since the backup is of an actual key, when using BIP derivation, it is carried

on the root private key and not the master seed. This suffices for recovering all

derived BIP keys, as required. (We do not provide a method for backing up the BIP

master seed itself directly, since a more efficient zero-knowledge proof exists for the

root node private key.)

Our basic solution consists of MPC protocols running between two parties. However,

the same protocols can be used to achieve MPC for the setting of 2-out-of-𝑛 parties

(where there are 𝑛 entities, and any pair of them suffice to sign and carry out all

other operations). This extension is carried out by having two parties generate the

key initially, and reshare their shares to all pairs among the 𝑛. We show how to

achieve this in our code samples.

Our solution is generic, supporting ECDSA over a secp256k1 curve and supporting

EdDSA over an ed25519 curve (or Schnorr). For ECDSA, we implement the protocol

that was published in [5]. For EdDSA, we use the folklore threshold signature

protocol for Schnorr with additive sharing of the secret key.

Our open-source library contains elements that do not appear in [5]. In particular, the

zero-knowledge proofs used in key generation are more efficient, it integrates MPC

for BIP key derivation with ECDSA key generation, and it contains key-sharing refresh,

which achieves proactive security. We describe these differences in this document.

Unbound blockchain-crypto-mpc Library Page 5

White Paper

 Copyright 2018, Unbound Tech Ltd.

3. Supported Functionalities

The open source library supports the following operations:

1. Generate generic secret: Used to generate an initial secret that is used for BIP

derivation.

2. BIP derivation: Derive keys in MPC, using the initial secret, according to the BIP32

standard. The result of this step is a key that can be used in ECDSA. Thus, both

parties receive the derived public key and hold random shares of the associated

private key. Since MPC is used, neither party knows the full private key.

3. ECDSA/EdDSA key generation: Uses MPC for two parties to directly generate an

ECDSA or EdDSA key. The result is a public key known to both parties, and a

random sharing of the associate private key. Since MPC is used, neither party

knows the full private key.

4. Backup: The backup method receives an RSA backup public key and generates a

publicly-verifiable backup of the parties’ shares that is guaranteed to be correct.

The procedure uses a zero-knowledge proof, guaranteeing that nothing is

revealed about the private key shares, even though it is possible to validate

correctness. The backup verification function verifies the zero-knowledge proof

and can be used by any entity to ensure that the backup is valid (this function

receives the public ECDSA/EdDSA key and so validates that the backup is of the

private key of the given public key). Finally, the backup restore method takes the

backup information and the RSA backup private key and outputs the

ECDSA/EdDSA private key.

5. ECDSA/EdDSA signing: This method uses a previously generated key to sign in

MPC on a message 𝑚 that is approved by both. Since MPC is used, neither party

can generate such a signature alone, or trick the other into signing on a different

message than the one it approves.

6. Key sharing refresh: This is used by the parties to jointly generate new random

shares of an existing shared key so that the old shares become useless. If an

attacker steals a share from one device before a refresh and from the other device

after a refresh, it learns nothing about the private key. Thus, it must breach and

be resident on both parties before any refresh takes place. This security property

is called “proactive” in the academic MPC literature.

Unbound blockchain-crypto-mpc Library Page 6

White Paper

 Copyright 2018, Unbound Tech Ltd.

4. Cryptographic Tools

4.1. ECDSA Signing

The ECDSA signing algorithm is defined as follows. Let 𝐺 be an elliptic curve group of

order 𝑞 with base point (generator) 𝐺. The private key is a random value 𝑥 ∈ 𝑍𝑞 and

the public key is 𝑄 = 𝑥 ⋅ 𝐺. Signing a message 𝑚 is as follows

1. We denote 𝑚′ = 𝐻𝑞(𝑚) as the first |𝑞| bits of 𝐻(𝑚) where

a. |𝑞| is the bitsize of 𝑞

b. 𝐻 is the hash function SHA-256

2. Choose a random 𝑘 ∈ 𝑍𝑞
∗

3. Compute 𝑅 ← 𝑘 ⋅ 𝐺 and denote 𝑅 = (𝑟𝑥, 𝑟𝑦)

4. Compute 𝑟 ← 𝑟𝑥 𝑚𝑜𝑑 𝑞, 𝑠 ← 𝑘−1 ⋅ (𝑚′ + 𝑟 ⋅ 𝑥) 𝑚𝑜𝑑 𝑞

5. Output (𝑟, 𝑠)

4.2. EdDSA Signing

The EdDSA signing algorithm is a version of Schnorr’s signature over an Edwards

curve. For simplicity, we will describe Schnorr’s signatures here. Let 𝐺 be an Elliptic

curve group of order 𝑞 with base point (generator) 𝐺. The private key is a random

value 𝑥 ∈ 𝑍𝑞 and the public key is 𝑄 = 𝑥 ⋅ 𝐺. Signing a message 𝑚 is as follows

1. Choose a random 𝑟 ∈ 𝑍𝑞
∗ (in EdDSA, this is derived from the private key and

message using a pseudorandom function)

2. Compute 𝑒 ← 𝐻(𝑅, 𝑄, 𝑚).

3. Compute 𝑠 ← 𝑟 + 𝑥 ⋅ 𝑒 𝑚𝑜𝑑 𝑞.

4. Output (𝑅, 𝑠).

4.3. Paillier Encryption

The Paillier encryption scheme is a public-key cryptosystem like RSA that relies on the

difficulty of factoring large numbers.

1. The public and private keys for Paillier are generated by choosing two random

primes 𝑝 and 𝑞. For a private key (𝑝, 𝑞), the public key is 𝑁 = 𝑝𝑞.

2. To encrypt a message 𝑚, sample a random value 𝑟 and compute 𝐸𝑛𝑐𝑝𝑘(𝑚; 𝑟) ≔

(1 + 𝑛)𝑥 ⋅ 𝑟𝑛 𝑚𝑜𝑑 𝑁2.

An important property of Paillier encryption is that it is additively homomorphic.

Given ciphertexts 𝑐1, 𝑐2 that are encryptions of plaintexts 𝑚1, 𝑚2, respectively, we

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Schnorr_signature
https://en.wikipedia.org/wiki/Paillier_cryptosystem

Unbound blockchain-crypto-mpc Library Page 7

White Paper

 Copyright 2018, Unbound Tech Ltd.

have that (𝑐1)𝑣 𝑚𝑜𝑑 𝑁2 is an encryption of 𝑚 ⋅ 𝑣 𝑚𝑜𝑑 𝑁, and 𝑐1 ⋅ 𝑐2 𝑚𝑜𝑑 𝑁2 is an

encryption of the value 𝑚1 + 𝑚2 𝑚𝑜𝑑 𝑁. Thus, encrypted values can be summed, and

multiplied by known scalars, without decrypting.

4.4. Commitment Schemes

A commitment scheme is a cryptographic protocol run between a sender and a

receiver that can best be described using a safe. In the commitment phase, the

prover puts a message in the safe, locks the safe using a secure combination and

gives the safe to the receiver. After this phase, the message is hidden from the

receiver (called hiding property), and yet the sender can no longer change what is

inside the safe (called the binding property). In the opening or reveal phase, the

sender reveals the combination of the safe to the receiver, who can then open it and

learn the message. A commitment scheme can be implemented using cryptographic

hash functions. In this case, the sender can commit to a message 𝑚 by choosing a

string 𝑟 (of length say 128 bits) and sending 𝐻(𝑚||𝑟) to the receiver. The

commitment is then opened by the sender just sending (𝑚, 𝑟) and the receiver

verifies that the hash of the two values is indeed what was previously sent. This is

binding by the collision-resistant property of the hash function, and is hiding under

assumptions about the properties of the hash function. In particular, in the random

oracle model, where the hash function is modeled as a random function, the value

𝐻(𝑚||𝑟) reveals nothing about 𝑚.

4.5. Zero-Knowledge Proofs

A zero-knowledge proof is a protocol between a prover and a verifier, in which the

prover proves to the verifier that a statement is true without revealing any

information. A zero-knowledge proof must fulfill three properties: (soundness) if the

statement is false then the prover cannot convince the verifier that the statement is

true, (completeness) if the statement is true then the prover can convince the verifier

that the statement is true, and (zero-knowledge) the prover should not be able to

learn any information from the proof beyond the fact that the statement is indeed

true. A zero-knowledge proof of knowledge is a zero-knowledge proof that allows

the prover to prove a statement only if it knows an actual NP witness for the given

statement. In our protocols, we employ zero-knowledge proofs for the following

statements.

1. Proof that a committed value and an encrypted value are the same.

2. Proof that a committed value is in some range of values.

https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/Zero-knowledge_proof

Unbound blockchain-crypto-mpc Library Page 8

White Paper

 Copyright 2018, Unbound Tech Ltd.

3. Proof of knowledge that a player knows the discrete log of an elliptic-curve point

(ZK-DL).

4. Proof that a Paillier public-key was generated correctly (ZK-PPK).

5. Proof that the decryption of a given Paillier ciphertext is the discrete log of a

given elliptic curve point (ZK-PDL).

6. Proof that an RSA ciphertext 𝑐𝑖 encrypts a value 𝑥𝑖 such that 𝑄𝑖 = 𝑥𝑖 ⋅ 𝐺, where 𝑄𝑖

is known. This is used for cold backup.

When the zero-knowledge proof is non-interactive, it has the property of being

publicly verifiable (anyone can read the proof and validate that the statement is

indeed correct). This can be used to verify that the backup is valid before transferring

funds to an address.

4.6. Oblivious Transfer

Oblivious transfer (typically referred to as OT) is a protocol between two parties, a

sender and a receiver. The sender has a pair of inputs 𝑥0, 𝑥1 and the receiver has a

choice bit 𝑐. The result of the protocol is that the receiver learns 𝑥𝑐 (but nothing

about the other value 𝑥1−𝑐), and the sender learns nothing about 𝑐. OT requires the

use of public-key primitives, and OT extensions can be used to run a fixed number of

OTs based on public-key primitives and then obtain many more actual OTs using

hashing only. We use the OT protocol of [7] together with the OT extension of [8].

Overall, this requires 3 rounds of interaction to setup, and 2 rounds for actually

carrying out OT executions (although the first round of the actual OT can be sent

together with the third round of the setup, and so this requires 4 rounds overall).

4.7. Garbled Circuits

A garbled circuit is a cryptographic primitive that is used in secure two-party

computation protocols. At a high level, a garbled circuit is an encrypted version of a

function. When the evaluator is given access to the garbled circuit, with an

encryption of an input, it learns the output of the function on the given input without

learning anything else. Garbled circuits are used for secure two-party computation by

having one of the parties create a garbled circuit that is later evaluated by the other

party. This result has been known since the late 80’s, but many optimizations and

improvements from the last few years have made this very efficient in practice.

https://en.wikipedia.org/wiki/Garbled_circuit

Unbound blockchain-crypto-mpc Library Page 9

White Paper

 Copyright 2018, Unbound Tech Ltd.

4.8. Dual Execution

If two players are semi-honest (meaning that it is guaranteed that they run the

specified protocol), then they can run secure computation by only using a single

garbled circuit. However, if the garbler is malicious, then it can generate an incorrect

garbled circuit that can leak information via the output (e.g., it can generate a circuit

that gives the key as the output rather than the ciphertext). Achieving security when

the parties are malicious is a significant challenge and comes at a cost. One of the

methods used to prevent the parties from cheating is called “dual execution”. This

works by having each party run the computation once as the garbler of the circuit

and once as the evaluator of the circuit. After both evaluations, the parties compare

the results (without revealing it yet). If both circuits generate the same output, then

each one knows that it is correct. This is because each party generates one of the

circuits and so, if it is honest, it knows that the circuit and thus the computation is

correct. In dual execution, the only information leaked to the attacker is due to there

being an abort. That is, if the comparison of the results is “not equal” then this can

leak a single bit. For example, a corrupted party could generate a garbled circuit that

computes garbage if the first bit of the key is 0 and otherwise computes the correct

output. Since the circuit is garbled, this would not be detected. Then, the mere fact of

whether or not there was an abort leaks this bit. However, in the usage here for key

derivation, one can show that since the attack is detected when the results are not

equal the leakage due to such an attack is small (revealing on average 2 bits of the

key). As such, if an attack is detected, it is crucial to remove the attacker and then

prudent to transfer the funds to a new address. The dual execution methodology was

introduced in [6]; the specific version that we use is similar to that of Section 4 of [4]

(in particular, the equality test is run on the encoded outputs and not the actual

output).

We constructed a new equality test with 3 rounds of communication that is based on

the equality test in [9] (using ElGamal in-the-exponent additively homomorphic

encryption), but is enhanced to enable a proof of security under the ideal/real model

simulation paradigm of secure computation, and to provide (verified) output to both

parties.1

1 In order to prove our protocol secure, we defined an ideal functionality for equality that receives either the actual value

or the value times the generator point of the group, and compares equality based on this. It is clear that this is equivalent
for our purposes. In addition, the adversary can cause the honest party to think that the result was not-equal even if it was
equal; this is fine since it only causes the honest party to abort. We stress that the reverse is not possible; if the result was
not-equal then the adversary cannot cause the honest party to think that the result was equal.

Unbound blockchain-crypto-mpc Library Page 10

White Paper

 Copyright 2018, Unbound Tech Ltd.

Using the two-rounds of OT required based on the extension, the entire dual execution

has five rounds of communication, including the equality test.

As we have described, our dual execution protocol has the property that if a party

cheats, then it can learn a single bit, but at the cost of being caught with probability

½ (informally speaking). Thus, if an attack is detected, use of the key must be stopped.

Now, one possible strategy of an adversary is to try to cheat, but to not provide the

output of the equality test to the honest party (when it receives this output first), and

claim that there was a “crash” or network failure. If this is not dealt with, then the

adversary can learn all bits of the secret key. Thus, either executions must always

conclude (by storing on disk the messages needed to complete, and continueing after

a crash or failure), or some cheating attempt must be assumed. We also note that

many executions on the same input key cannot be run in parallel since an attacker can

learn a bit from each parallel execution. If this is desired, then it is possible to change

the code so that a single equality test is run for all executions, and this will be secure.

Unbound blockchain-crypto-mpc Library Page 11

White Paper

 Copyright 2018, Unbound Tech Ltd.

5. Cryptographic Protocols Overview

Having described all the cryptographic primitives and tools used in our solution, we

now describe the general flow of the protocols. Full details can be found in [5], and

we refer the reader to that paper for more information.

5.1. Distributed Key Generation

Parties generate shares of an ECDSA key that can be used for signing. We denote the

parties in the protocol by Alice and Bob. We denote the elliptic curve generator by 𝐺,

and its order by 𝑞.

1. The parties generate shares 𝑥1, 𝑥2 of the private key (i.e., the ECDSA private key is

𝑥 = 𝑥1 + 𝑥2 𝑚𝑜𝑑 𝑞). In addition, the parties obtain 𝑄, 𝑄1, 𝑄2 where 𝑄1 = 𝑥1 ⋅ 𝐺,

𝑄2 = 𝑥2 ⋅ 𝐺 and 𝑄 = 𝑄1 + 𝑄2. The value 𝑄 is the ECDSA public key.

2. Alice generates a Paillier key and proves to Bob that it was correctly constructed

in zero-knowledge. The proof required here is that 𝑁 is relatively prime to 𝜙(𝑁);

this is sufficient since it guarantees that the homomorphic properties of Paillier

are correct. We use the zero-knowledge proof from [3]. Note that the proof in

that paper proves that 𝑁 is square free and that 𝑔𝑐𝑑(𝑒, 𝜙(𝑁)) = 1. Since we are

only interested in 𝑔𝑐𝑑(𝑁, 𝜙(𝑁)) = 1, we run their proof with 𝑒 = 𝑁 (and we only

run the second part with 𝑚2).

3. Alice encrypts 𝑥1 under Paillier and proves to Bob in zero-knowledge that this

encrypted value is in the correct range and is the same value that was used for

generating 𝑄1. Denoting the ciphertext by 𝑐𝑘𝑒𝑦, Alice sends 𝑐𝑘𝑒𝑦 to Bob.

4. Alice outputs the private key of Paillier as well as (𝑥1, 𝑄2, 𝑄).

5. Bob outputs public key of Paillier as well as (𝑥2, 𝑄1, 𝑄, 𝑐𝑘𝑒𝑦).

The zero-knowledge proof that we use in step 3 is different to that appearing in [5].

First, we use a non-interactive version of the range proof appearing in [5]; this

requires more repetitions of the proof (namely, 128) and thus is more

computationally expensive. However, we wished to minimize the number of rounds

as much as possible. Second, the actual PDL proof of [5] that we use is essentially the

same as the one in the original version of the paper appearing at CRYPTO 2017, and

not the one appearing in [5] which is computationally cheaper. Again, we do this

since this proof can be non-interactive, and enables us to reduce the number of

rounds. Another difference is that instead of requiring Alice to generate 𝑥1 to be less

than 𝑞/3, we simply adjust the values appropriately in the beginning of the proof (by

Alice sending how many multiples of 𝑞/3 should be subtracted; this reveals at most 2

bits of information and so is fine).

Unbound blockchain-crypto-mpc Library Page 12

White Paper

 Copyright 2018, Unbound Tech Ltd.

We remark that it is possible to use the far more efficient CFT range proof described

in Section 1.2.3 of [1]. However, this requires using Pedersen commitments over a

group of unknown order, and generation of such parameters in a validated way is

very expensive (among other things, it requires generating safe primes which is

expensive); see Section 1.2 of [2].

5.2. BIP32/BIP44 Key Derivation

BIP32/BIP44 key derivation is carried out by computing HMAC-SHA512 with the

private key in the appropriate node in the BIP hierarchy and a string describing the

path to the new node in the tree. We carry out this computation using dual execution

(with garbled circuits), with the result being that Alice receives 𝑥1 and Bob receives

𝑥2. The parties then use these results in the key generation described above (i.e.,

instead of choosing random 𝑥1, 𝑥2, they use the results of the derivation). The BIP

derivation run in MPC in our implementation is fully compliant with the standard

BIP32/BIP44 standards.

The above description is overly naïve, since it does not prevent parties from cheating

and using different values than prescribed. This is important since if we backup only

the BIP master key, then if parties use different inputs to the key derivation, keys will

be generated that cannot be recovered from the BIP master key. Thus, the MPC

protocol includes steps to detect such modifications. This includes additional

randomized information in the dual execution, followed by a “BIP verification phase”

to detect any cheating. This randomized information is such that many shares of a

key are output; some are shares of zero (i.e., both have the same value), some are

shares of the previous private key, and some are shares of the new private key. The

parties then each compute shares of the public keys, by locally multiplying the

generator by each share, and then securely exchange the values. Observe that if they

have shares of 0 then they will exchange the same elliptic curve point, if they have

shares of the previous private key then they will exchange shares of the previous

public key (known to them), and if they have shares of the new private key then they

will exchange shares of the new public key. This prevents cheating since if a party

input an incorrect value for key derivation, then it must change the shares of the

previous public key in order to match the real previous public key. However, it will

then be caught since it will be detected if it changes a value based on a share of 0.

Thus, if a party changes its input shares, it will be detected with very high probability.

This verification step has 3 messages, and is run after the dual execution.

When working with BIP derivation, ECDSA key generation requires first running BIP

derivation via dual execution (5 rounds), then verifying the BIP results (3 rounds), and

Unbound blockchain-crypto-mpc Library Page 13

White Paper

 Copyright 2018, Unbound Tech Ltd.

then running ECDSA key generation on the received shares (3 rounds). In order to

reduce the amount of communication, some of these messages can be piggybacked

and we have 9 rounds overall. This overall flow is depicted below (note that the

AgreeRandom is a secure coin tossing protocol which is used to ensure a fresh

session identifier in the actual ECDSA key generation phase), and is helpful to follow

the implementation of this more complex protocol combination.

5.3. Backup

Each party holds a share of the private ECDSA key (regular key or BIP derived master

key). They can backup this key by simply encrypting each share locally with an

externally received RSA public key. We stress that this is a very sensitive operation

since if a malicious actor can convince both parties to back up the shares using its

own public key, it can obtain the private key. Thus, any deployment must ensure that

this cannot be done (e.g., allowing backup to be called only from a local call). As with

BIP derivation, we must also ensure that each party really encrypts its share of the

private key; otherwise the backup can be useless. However, note that if Alice’s share

of the private key is 𝑥1 then Bob holds 𝑄1 = 𝑥1 ⋅ 𝐺 and vice versa. Thus, Alice can

prove in zero-knowledge that the RSA-encrypted value it provides is indeed that

which defines 𝑄1, and Bob can prove in zero-knowledge that the RSA-encrypted

value it provides is indeed that which defines 𝑄2. These proofs are non-interactive

and so can be verified externally by anyone. In addition, by verifying that 𝑄 = 𝑄1 + 𝑄2

is the public key, anyone can verify that the backup is a valid encryption of shares of

the private key associated with 𝑄.

5.4. ECDSA Signing

Given a message 𝑚 that both parties agree to sign, they can generate a signature on

that message as follows:

1. Alice and Bob generate a random sharing 𝑘1 and 𝑘2 of 𝑘, and both learn the value

𝑅 = 𝑘1 ⋅ 𝑘2 ⋅ 𝐺. This generation uses commitments and zero-knowledge proofs in

order to ensure that 𝑅 is (essentially) uniformly distributed in the group.

Unbound blockchain-crypto-mpc Library Page 14

White Paper

 Copyright 2018, Unbound Tech Ltd.

2. Denote 𝑅 = (𝑟𝑥, 𝑟𝑦); each party locally computes 𝑟 ← 𝑟𝑥 𝑚𝑜𝑑 𝑞.

3. Bob uses the homomorphic properties of Paillier to compute an encryption of a

partial signature on 𝑚, using its share of 𝑘. Specifically, it generates an encryption

of the value 𝑘2
−1 ⋅ (𝑚′ + 𝑟 ⋅ 𝑥); it can do this since it has an encryption of 𝑥1 and

knows all other values. Observe that this is “almost” a signature, in that all that is

needed is to multiply it by 𝑘1
−1. We remark that Bob also adds a random multiple

of 𝑞; this is needed in order to hide any difference from the fact that inside Paillier

encryption the operations are not computed modulo 𝑞. Bob sends the result to

Alice.

4. Alice computes the signature on 𝑚 by decrypting the ciphertext, multiplying the

plaintext by 𝑘1
−1, and reducing the result modulo 𝑞. Alice then checks that the

signature is valid. If yes, then she outputs the signature. Otherwise, she aborts.

5.5. EdDSA Signing

Given a message 𝑚 that both parties agree to sign, they can generate a signature on

that message as follows:

1. Alice and Bob run two oblivious pseudorandom function evaluations, in order for

them to derive pseudo-random shares 𝑟1 and 𝑟2 of 𝑟 from the message. Both

parties also learn the value 𝑅 = 𝑟1 ⋅ 𝐺 + 𝑟2 ⋅ 𝐺. This generation uses commitments

in order to ensure that 𝑅 is (essentially) uniformly distributed in the group, in the

case that one of the parties is corrupted.

2. Each party locally computes 𝑒 = 𝐻(𝑅, 𝑄, 𝑚).

3. Bob computes 𝑠2 = 𝑟2 + 𝑥2 ⋅ 𝑒 mod 𝑞 and sends 𝑠2 to Alice.

4. Alice computes 𝑠1 = 𝑟1 + 𝑥1 ⋅ 𝑒 mod 𝑞 and 𝑠 = 𝑠1 + 𝑠2 mod 𝑞, and outputs (𝑅, 𝑠).

Observe that 𝑠 = 𝑠1 + 𝑠2 = (𝑟1 + 𝑟2) + (𝑥1 + 𝑥2) ⋅ 𝑒 = 𝑟 + 𝑥 ⋅ 𝑒 mod 𝑞, as required.

We remark that the pseudo-random function derivation of 𝑟 from the message and

private key is different to the actual EdDSA standard. Cryptographically, any such

method is equivalent, and EdDSA specifies one concrete method. However, the

EdDSA method is not “MPC friendly” and would require an expensive circuit

evaluation. We could achieve this via dual execution. However, we think that it is not

necessary. We stress that by the security of the pseudo-random function used here

and in the EdDSA specification, it is not possible to distinguish the use of the method

here and the one of the actual EdDSA specification. Thus, this difference can only be

detected when running known-input tests.

Unbound blockchain-crypto-mpc Library Page 15

White Paper

 Copyright 2018, Unbound Tech Ltd.

5.6. Share Refresh

The parties run a secure coin tossing protocol in order to generate a random value 𝑟

that neither can bias. Then, Alice modifies her share of the private key to be 𝑥1
′ =

𝑥1 + 𝑟 𝑚𝑜𝑑 𝑞, and Bob modifies his share of the private key to be 𝑥2
′ = 𝑥2 − 𝑟 𝑚𝑜𝑑 𝑞.

Alice then generates a new Paillier key to encrypt 𝑥1
′ and proves in zero-knowledge

that this is the correct value. This proof involves proving that the same value is

encrypted under two different Paillier keys, and is very efficient. (This suffices since

Bob can generate an encryption of 𝑥1
′ by adding the scalar 𝑟 to the existing

encryption of 𝑥1 with the old Paillier key, and then verifying the proof.)

As a result, after the refresh the parties hold a fresh sharing of 𝑥, with a new Paillier

key. This achieves the property that if an attacker obtains Alice’s secret information

before a refresh and Bob’s secret information after a refresh (or vice versa), it cannot

learn anything about the private key 𝑥. (The Paillier key must be changed as well as

the sharing, since otherwise once the Paillier private key is stolen from Alice, it can

corrupt Bob at any later time and decrypt 𝑐𝑘𝑒𝑦; this value together with 𝑥2 (both held

by Bob) yields the private key 𝑥. This level of security is called proactive in the

academic literature.

Unbound blockchain-crypto-mpc Library Page 16

White Paper

 Copyright 2018, Unbound Tech Ltd.

6. Security Guarantees

All of our protocols are secure in the presence of malicious adversaries. This means

that if one of the entities/parties is corrupted (e.g., breached by malware), then it

cannot cheat even if it runs specially crafted malicious code. In particular, it cannot

obtain a signature on any message that the other (honest) party does not approve.

These guarantees are mathematically proven, according to formal cryptographic

definitions of security. In addition, by using key-share refresh, as described above, an

attacker must reside on both parties within a single refresh period. A strong level of

security can be achieved in this way by ensuring strong separation between the

devices/parties, making it hard to breach both. We summarize this in the following

bullets:

1. The key is protected even when one of the parties has been hacked, even if the

attacker can run malicious code.

2. A transaction is only signed if both parties consent to it. If the “two parties” are

separate devices of the same person, then the system should be set up for the

person to validate the transaction information on both devices.

3. Periodic refreshing of the shares makes it significantly harder for the attacker to

break the system.

We remind the reader than any application using this code must take care to treat

cheating that takes place in the dual execution, including the case that the last

equality message is “dropped”. This is crucial for secure usage of the library.

Unbound blockchain-crypto-mpc Library Page 17

White Paper

 Copyright 2018, Unbound Tech Ltd.

7. References

[1] Fabrice Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In

EUROCRYPT 2000, Springer (LNCS 1807), pages 431-444, 2000.

[2] Jan Camenisch, Rafik Chaabouni and abhi shelat. Efficient Protocols for Set

Membership and Range Proofs. In ASIACRYPT 2008, Springer (LNCS 5350),

pages 234-252, 2008.

[3] Sharon Goldberg, Leonid Reyzin, Omar Sagga and Foteini Baldimtsi. Certifying

RSA Public Keys with an Efficient NIZK. Cryptology ePrint Archive: Report

2018/057.

[4] Vladimir Kolesnikov and Payman Mohassel and Ben Riva and Mike Rosulek.

Richer Efficiency/Security Trade-offs in 2PC. In TCC 2015, Springer (LNCS

9014), pages 229-259, 2015.

[5] Yehuda Lindell. Fast Secure Two-Party ECDSA Signing. In CRYPTO 2017,

Springer (LNCS 10402), pages 613-644, 2017. (Original version from CRYPTO

2017 here.)

[6] Payman Mohassel and Matthew K. Franklin. Efficiency Tradeoffs for Malicious

Two-Party Computation. In Public Key Cryptography 2006, Springer (LNCS

3958), pages 458-473, 2006.

[7] Tung Chou and Claudio Orlandi. The Simplest Protocol for Oblivious Transfer.

In LATINCRYPT 2015.

 [8] Marcel Keller, Emmanuela Orsini, Peter Scholl. Actively Secure OT Extension

with Optimal Overhead. In CRYPTO 2015, Springer (LNCS 9215), pages 724-

741, 2015.

[9] Yan Huang, Jonathan Katz and David Evans. Quid-Pro-Quo-tocols:

Strengthening Semi-honest Protocols with Dual Execution. In IEEE Symposium

on Security and Privacy, pages 272-284, 2012.

https://link.springer.com/content/pdf/10.1007%2F3-540-45539-6_31.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-89255-7_15.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-89255-7_15.pdf
https://eprint.iacr.org/2018/057.pdf
https://eprint.iacr.org/2018/057.pdf
https://eprint.iacr.org/2015/055.pdf
https://eprint.iacr.org/2017/552.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/552&version=20170608:194335&file=552.pdf
https://iacr.org/archive/pkc2006/39580468/39580468.pdf
https://iacr.org/archive/pkc2006/39580468/39580468.pdf
https://eprint.iacr.org/2015/267.pdf
https://eprint.iacr.org/2015/546.pdf
https://eprint.iacr.org/2015/546.pdf
https://www.cs.virginia.edu/~evans/pubs/oakland2012/quidproquotocols.pdf
https://www.cs.virginia.edu/~evans/pubs/oakland2012/quidproquotocols.pdf

	1. Problem Statement
	2. Overview of the Solution
	3. Supported Functionalities
	4. Cryptographic Tools
	4.1. ECDSA Signing
	4.2. EdDSA Signing
	4.3. Paillier Encryption
	4.4. Commitment Schemes
	4.5. Zero-Knowledge Proofs
	4.6. Oblivious Transfer
	4.7. Garbled Circuits
	4.8. Dual Execution

	5. Cryptographic Protocols Overview
	5.1. Distributed Key Generation
	5.2. BIP32/BIP44 Key Derivation
	5.3. Backup
	5.4. ECDSA Signing
	5.5. EdDSA Signing
	5.6. Share Refresh

	6. Security Guarantees
	7. References

