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1. Problem Statement 

In the realm of cryptocurrencies, storing private keys for cryptographic primitives in a 

secure manner and preventing fraudulent transactions is critical. This is due to the 

fact that cryptocurrency transactions are irreversible, by definition, and thus stolen 

funds cannot be recovered. This makes them an extremely attractive target to 

cybercriminals. In this white paper, we describe Unbound’s open-source library for 

protecting private keys and authorizing transactions via secure two-party 

computation (MPC). The library can be found at: 

https://github.com/unbound-tech/blockchain-crypto-mpc/ 

 

https://github.com/unbound-tech/blockchain-crypto-mpc/
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2.  Overview of the Solution 

Unbound’s solution is based on no single device holding the private key used to 

generate signatures and transfer funds. Rather, the private key is shared among two 

devices (servers/cell phones/laptops) so that no party has any information about the 

key. Then, in order to generate a signature, the two devices run a secure two-party 

computation protocol that generates the signature without revealing anything about 

the parties’ key shares to each other. We stress that these devices may or may not be 

associated with the same person or organization, and these can be any entity. Thus, 

one could use this to create a wallet, sharing the private key between one’s mobile 

and one’s laptop, between one’s mobile and a VM in the cloud, and so on. From here 

on, we use the term parties to denote the two devices/entities defined to run the 

protocols. 

The basis of our solution is to use MPC two-party signing protocols in order to carry 

out all required operations. All our protocols are secure in the presence of malicious 

adversaries, which means that security is maintained even if one of the devices is 

breached and running malicious code. This claim is backed by mathematical proofs 

of security of the protocols.  

Our solution supports BIP32/BIP44 key derivation. We assume familiarity with these 

standards here, and refer the reader to:  

 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki 

 https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki 

When using BIP key derivation, there is a BIP master seed or key that is used to 

derive all future keys. The BIP key derivation is carried out using MPC between the 

parties and integrated into the MPC signing method, ensuring that the entities only 

receive their respective shares of the key, and whole key material is never revealed. 

Our method for BIP key derivation via MPC validates that the derivation is correct, 

even if some of the parties are corrupted. This is crucial for enabling key recovery of 

all keys from the BIP master key. We stress that doing BIP derivation in the clear and 

then running MPC for the signing is not secure, since key material is in the clear.  

Backup is a crucial element of any cryptocurrency solution, since the loss of the 

private key means that funds can never be retrieved. For the purpose of backup, an 

RSA key pair is generated, and the private RSA key is stored in cold backup. Then, the 

ECDSA/EdDSA private key is encrypted under the RSA cold backup public key. This 

encryption is carried out separately by each party on their share (since no party has 

the entire private key). In addition, each party generates a publicly verifiable zero-

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
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knowledge proof that the correct share of the private key was encrypted. This is 

needed to prevent a malicious party from rendering the cold backup useless. This 

method works also with keys derived using BIP or any other key derivation method. 

However, since the backup is of an actual key, when using BIP derivation, it is carried 

on the root private key and not the master seed. This suffices for recovering all 

derived BIP keys, as required. (We do not provide a method for backing up the BIP 

master seed itself directly, since a more efficient zero-knowledge proof exists for the 

root node private key.)  

Our basic solution consists of MPC protocols running between two parties. However, 

the same protocols can be used to achieve MPC for the setting of 2-out-of-𝑛 parties 

(where there are 𝑛 entities, and any pair of them suffice to sign and carry out all 

other operations). This extension is carried out by having two parties generate the 

key initially, and reshare their shares to all pairs among the 𝑛. We show how to 

achieve this in our code samples. 

Our solution is generic, supporting ECDSA over a secp256k1 curve and supporting 

EdDSA over an ed25519 curve (or Schnorr). For ECDSA, we implement the protocol 

that was published in [5]. For EdDSA, we use the folklore threshold signature 

protocol for Schnorr with additive sharing of the secret key. 

Our open-source library contains elements that do not appear in [5]. In particular, the 

zero-knowledge proofs used in key generation are more efficient, it integrates MPC 

for BIP key derivation with ECDSA key generation, and it contains key-sharing refresh, 

which achieves proactive security. We describe these differences in this document. 
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3. Supported Functionalities 

The open source library supports the following operations: 

1. Generate generic secret: Used to generate an initial secret that is used for BIP 

derivation. 

2. BIP derivation: Derive keys in MPC, using the initial secret, according to the BIP32 

standard. The result of this step is a key that can be used in ECDSA. Thus, both 

parties receive the derived public key and hold random shares of the associated 

private key. Since MPC is used, neither party knows the full private key. 

3. ECDSA/EdDSA key generation: Uses MPC for two parties to directly generate an 

ECDSA or EdDSA key. The result is a public key known to both parties, and a 

random sharing of the associate private key. Since MPC is used, neither party 

knows the full private key. 

4. Backup: The backup method receives an RSA backup public key and generates a 

publicly-verifiable backup of the parties’ shares that is guaranteed to be correct. 

The procedure uses a zero-knowledge proof, guaranteeing that nothing is 

revealed about the private key shares, even though it is possible to validate 

correctness. The backup verification function verifies the zero-knowledge proof 

and can be used by any entity to ensure that the backup is valid (this function 

receives the public ECDSA/EdDSA key and so validates that the backup is of the 

private key of the given public key). Finally, the backup restore method takes the 

backup information and the RSA backup private key and outputs the 

ECDSA/EdDSA private key. 

5. ECDSA/EdDSA signing: This method uses a previously generated key to sign in 

MPC on a message 𝑚 that is approved by both. Since MPC is used, neither party 

can generate such a signature alone, or trick the other into signing on a different 

message than the one it approves.  

6.  Key sharing refresh: This is used by the parties to jointly generate new random 

shares of an existing shared key so that the old shares become useless. If an 

attacker steals a share from one device before a refresh and from the other device 

after a refresh, it learns nothing about the private key. Thus, it must breach and 

be resident on both parties before any refresh takes place. This security property 

is called “proactive” in the academic MPC literature. 
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4. Cryptographic Tools 

4.1. ECDSA Signing 

The ECDSA signing algorithm is defined as follows. Let 𝐺 be an elliptic curve group of 

order 𝑞 with base point (generator) 𝐺. The private key is a random value 𝑥 ∈ 𝑍𝑞 and 

the public key is 𝑄 = 𝑥 ⋅ 𝐺. Signing a message 𝑚 is as follows  

1. We denote 𝑚′ = 𝐻𝑞(𝑚) as the first |𝑞| bits of 𝐻(𝑚) where 

a. |𝑞| is the bitsize of 𝑞 

b. 𝐻 is the hash function SHA-256 

2. Choose a random 𝑘 ∈ 𝑍𝑞
∗ 

3. Compute 𝑅 ← 𝑘 ⋅ 𝐺 and denote 𝑅 = (𝑟𝑥, 𝑟𝑦) 

4. Compute 𝑟 ← 𝑟𝑥 𝑚𝑜𝑑 𝑞,  𝑠 ←  𝑘−1 ⋅ (𝑚′ + 𝑟 ⋅ 𝑥) 𝑚𝑜𝑑 𝑞 

5. Output (𝑟, 𝑠)  

4.2. EdDSA Signing 

The EdDSA signing algorithm is a version of Schnorr’s signature over an Edwards 

curve. For simplicity, we will describe Schnorr’s signatures here. Let 𝐺 be an Elliptic 

curve group of order 𝑞 with base point (generator) 𝐺. The private key is a random 

value 𝑥 ∈ 𝑍𝑞 and the public key is 𝑄 = 𝑥 ⋅ 𝐺. Signing a message 𝑚 is as follows  

1. Choose a random 𝑟 ∈ 𝑍𝑞
∗ (in EdDSA, this is derived from the private key and 

message using a pseudorandom function)  

2. Compute 𝑒 ← 𝐻(𝑅, 𝑄, 𝑚). 

3. Compute 𝑠 ← 𝑟 + 𝑥 ⋅ 𝑒 𝑚𝑜𝑑 𝑞.  

4. Output (𝑅, 𝑠). 

4.3. Paillier Encryption 

The Paillier encryption scheme is a public-key cryptosystem like RSA that relies on the 

difficulty of factoring large numbers. 

1. The public and private keys for Paillier are generated by choosing two random 

primes 𝑝 and 𝑞. For a private key (𝑝, 𝑞), the public key is 𝑁 = 𝑝𝑞.   

2. To encrypt a message 𝑚, sample a random value 𝑟 and compute 𝐸𝑛𝑐𝑝𝑘(𝑚; 𝑟) ≔

(1 + 𝑛)𝑥 ⋅ 𝑟𝑛 𝑚𝑜𝑑 𝑁2.   

An important property of Paillier encryption is that it is additively homomorphic. 

Given ciphertexts 𝑐1, 𝑐2 that are encryptions of plaintexts 𝑚1, 𝑚2, respectively, we 

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Schnorr_signature
https://en.wikipedia.org/wiki/Paillier_cryptosystem
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have that (𝑐1)𝑣 𝑚𝑜𝑑 𝑁2 is an encryption of 𝑚 ⋅ 𝑣 𝑚𝑜𝑑 𝑁, and 𝑐1 ⋅ 𝑐2 𝑚𝑜𝑑 𝑁2 is an 

encryption of the value 𝑚1 + 𝑚2 𝑚𝑜𝑑 𝑁. Thus, encrypted values can be summed, and 

multiplied by known scalars, without decrypting. 

4.4. Commitment Schemes 

A commitment scheme is a cryptographic protocol run between a sender and a 

receiver that can best be described using a safe. In the commitment phase, the 

prover puts a message in the safe, locks the safe using a secure combination and 

gives the safe to the receiver. After this phase, the message is hidden from the 

receiver (called hiding property), and yet the sender can no longer change what is 

inside the safe (called the binding property). In the opening or reveal phase, the 

sender reveals the combination of the safe to the receiver, who can then open it and 

learn the message. A commitment scheme can be implemented using cryptographic 

hash functions. In this case, the sender can commit to a message 𝑚 by choosing a 

string 𝑟 (of length say 128 bits) and sending 𝐻(𝑚||𝑟) to the receiver. The 

commitment is then opened by the sender just sending (𝑚, 𝑟) and the receiver 

verifies that the hash of the two values is indeed what was previously sent. This is 

binding by the collision-resistant property of the hash function, and is hiding under 

assumptions about the properties of the hash function. In particular, in the random 

oracle model, where the hash function is modeled as a random function, the value 

𝐻(𝑚||𝑟) reveals nothing about 𝑚. 

4.5. Zero-Knowledge Proofs 

A zero-knowledge proof is a protocol between a prover and a verifier, in which the 

prover proves to the verifier that a statement is true without revealing any 

information. A zero-knowledge proof must fulfill three properties: (soundness) if the 

statement is false then the prover cannot convince the verifier that the statement is 

true, (completeness) if the statement is true then the prover can convince the verifier 

that the statement is true, and (zero-knowledge) the prover should not be able to 

learn any information from the proof beyond the fact that the statement is indeed 

true. A zero-knowledge proof of knowledge is a zero-knowledge proof that allows 

the prover to prove a statement only if it knows an actual NP witness for the given 

statement. In our protocols, we employ zero-knowledge proofs for the following 

statements. 

1. Proof that a committed value and an encrypted value are the same. 

2. Proof that a committed value is in some range of values. 

https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/Zero-knowledge_proof
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3. Proof of knowledge that a player knows the discrete log of an elliptic-curve point 

(ZK-DL). 

4. Proof that a Paillier public-key was generated correctly (ZK-PPK). 

5. Proof that the decryption of a given Paillier ciphertext is the discrete log of a 

given elliptic curve point (ZK-PDL). 

6. Proof that an RSA ciphertext 𝑐𝑖 encrypts a value 𝑥𝑖 such that 𝑄𝑖 = 𝑥𝑖 ⋅ 𝐺, where 𝑄𝑖 

is known. This is used for cold backup. 

When the zero-knowledge proof is non-interactive, it has the property of being 

publicly verifiable (anyone can read the proof and validate that the statement is 

indeed correct). This can be used to verify that the backup is valid before transferring 

funds to an address. 

4.6. Oblivious Transfer 

Oblivious transfer (typically referred to as OT) is a protocol between two parties, a 

sender and a receiver. The sender has a pair of inputs 𝑥0, 𝑥1 and the receiver has a 

choice bit 𝑐. The result of the protocol is that the receiver learns 𝑥𝑐 (but nothing 

about the other value 𝑥1−𝑐), and the sender learns nothing about 𝑐. OT requires the 

use of public-key primitives, and OT extensions can be used to run a fixed number of 

OTs based on public-key primitives and then obtain many more actual OTs using 

hashing only. We use the OT protocol of [7] together with the OT extension of [8]. 

Overall, this requires 3 rounds of interaction to setup, and 2 rounds for actually 

carrying out OT executions (although the first round of the actual OT can be sent 

together with the third round of the setup, and so this requires 4 rounds overall). 

4.7. Garbled Circuits 

A garbled circuit is a cryptographic primitive that is used in secure two-party 

computation protocols. At a high level, a garbled circuit is an encrypted version of a 

function. When the evaluator is given access to the garbled circuit, with an 

encryption of an input, it learns the output of the function on the given input without 

learning anything else. Garbled circuits are used for secure two-party computation by 

having one of the parties create a garbled circuit that is later evaluated by the other 

party. This result has been known since the late 80’s, but many optimizations and 

improvements from the last few years have made this very efficient in practice. 

https://en.wikipedia.org/wiki/Garbled_circuit
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4.8. Dual Execution 

If two players are semi-honest (meaning that it is guaranteed that they run the 

specified protocol), then they can run secure computation by only using a single 

garbled circuit. However, if the garbler is malicious, then it can generate an incorrect 

garbled circuit that can leak information via the output (e.g., it can generate a circuit 

that gives the key as the output rather than the ciphertext). Achieving security when 

the parties are malicious is a significant challenge and comes at a cost. One of the 

methods used to prevent the parties from cheating is called “dual execution”. This 

works by having each party run the computation once as the garbler of the circuit 

and once as the evaluator of the circuit. After both evaluations, the parties compare 

the results (without revealing it yet). If both circuits generate the same output, then 

each one knows that it is correct. This is because each party generates one of the 

circuits and so, if it is honest, it knows that the circuit and thus the computation is 

correct. In dual execution, the only information leaked to the attacker is due to there 

being an abort. That is, if the comparison of the results is “not equal” then this can 

leak a single bit. For example, a corrupted party could generate a garbled circuit that 

computes garbage if the first bit of the key is 0 and otherwise computes the correct 

output. Since the circuit is garbled, this would not be detected. Then, the mere fact of 

whether or not there was an abort leaks this bit. However, in the usage here for key 

derivation, one can show that since the attack is detected when the results are not 

equal the leakage due to such an attack is small (revealing on average 2 bits of the 

key). As such, if an attack is detected, it is crucial to remove the attacker and then 

prudent to transfer the funds to a new address. The dual execution methodology was 

introduced in [6]; the specific version that we use is similar to that of Section 4 of [4] 

(in particular, the equality test is run on the encoded outputs and not the actual 

output). 

We constructed a new equality test with 3 rounds of communication that is based on 

the equality test in [9] (using ElGamal in-the-exponent additively homomorphic 

encryption), but is enhanced to enable a proof of security under the ideal/real model 

simulation paradigm of secure computation, and to provide (verified) output to both 

parties.1 

                                              

1 In order to prove our protocol secure, we defined an ideal functionality for equality that receives either the actual value 

or the value times the generator point of the group, and compares equality based on this. It is clear that this is equivalent 
for our purposes. In addition, the adversary can cause the honest party to think that the result was not-equal even if it was 
equal; this is fine since it only causes the honest party to abort. We stress that the reverse is not possible; if the result was 
not-equal then the adversary cannot cause the honest party to think that the result was equal. 
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Using the two-rounds of OT required based on the extension, the entire dual execution 

has five rounds of communication, including the equality test. 

As we have described, our dual execution protocol has the property that if a party 

cheats, then it can learn a single bit, but at the cost of being caught with probability 

½ (informally speaking). Thus, if an attack is detected, use of the key must be stopped. 

Now, one possible strategy of an adversary is to try to cheat, but to not provide the 

output of the equality test to the honest party (when it receives this output first), and 

claim that there was a “crash” or network failure. If this is not dealt with, then the 

adversary can learn all bits of the secret key. Thus, either executions must always 

conclude (by storing on disk the messages needed to complete, and continueing after 

a crash or failure), or some cheating attempt must be assumed. We also note that 

many executions on the same input key cannot be run in parallel since an attacker can 

learn a bit from each parallel execution. If this is desired, then it is possible to change 

the code so that a single equality test is run for all executions, and this will be secure. 
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5. Cryptographic Protocols Overview 

Having described all the cryptographic primitives and tools used in our solution, we 

now describe the general flow of the protocols. Full details can be found in [5], and 

we refer the reader to that paper for more information. 

5.1. Distributed Key Generation 

Parties generate shares of an ECDSA key that can be used for signing. We denote the 

parties in the protocol by Alice and Bob. We denote the elliptic curve generator by 𝐺, 

and its order by 𝑞. 

1. The parties generate shares 𝑥1, 𝑥2 of the private key (i.e., the ECDSA private key is 

𝑥 = 𝑥1 + 𝑥2 𝑚𝑜𝑑 𝑞). In addition, the parties obtain 𝑄, 𝑄1, 𝑄2 where 𝑄1 = 𝑥1 ⋅ 𝐺, 

𝑄2 = 𝑥2 ⋅ 𝐺 and 𝑄 = 𝑄1 + 𝑄2. The value 𝑄 is the ECDSA public key.  

2. Alice generates a Paillier key and proves to Bob that it was correctly constructed 

in zero-knowledge. The proof required here is that 𝑁 is relatively prime to 𝜙(𝑁); 

this is sufficient since it guarantees that the homomorphic properties of Paillier 

are correct. We use the zero-knowledge proof from [3]. Note that the proof in 

that paper proves that 𝑁 is square free and that 𝑔𝑐𝑑(𝑒, 𝜙(𝑁)) = 1. Since we are 

only interested in 𝑔𝑐𝑑(𝑁, 𝜙(𝑁)) = 1, we run their proof with 𝑒 = 𝑁 (and we only 

run the second part with 𝑚2). 

3. Alice encrypts 𝑥1 under Paillier and proves to Bob in zero-knowledge that this 

encrypted value is in the correct range and is the same value that was used for 

generating 𝑄1. Denoting the ciphertext by 𝑐𝑘𝑒𝑦, Alice sends 𝑐𝑘𝑒𝑦 to Bob. 

4. Alice outputs the private key of Paillier as well as (𝑥1, 𝑄2, 𝑄). 

5. Bob outputs public key of Paillier as well as (𝑥2, 𝑄1, 𝑄, 𝑐𝑘𝑒𝑦). 

The zero-knowledge proof that we use in step 3 is different to that appearing in [5]. 

First, we use a non-interactive version of the range proof appearing in [5]; this 

requires more repetitions of the proof (namely, 128) and thus is more 

computationally expensive. However, we wished to minimize the number of rounds 

as much as possible. Second, the actual PDL proof of [5] that we use is essentially the 

same as the one in the original version of the paper appearing at CRYPTO 2017, and 

not the one appearing in [5] which is computationally cheaper. Again, we do this 

since this proof can be non-interactive, and enables us to reduce the number of 

rounds. Another difference is that instead of requiring Alice to generate 𝑥1 to be less 

than 𝑞/3, we simply adjust the values appropriately in the beginning of the proof (by 

Alice sending how many multiples of 𝑞/3 should be subtracted; this reveals at most 2 

bits of information and so is fine). 
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We remark that it is possible to use the far more efficient CFT range proof described 

in Section 1.2.3 of [1]. However, this requires using Pedersen commitments over a 

group of unknown order, and generation of such parameters in a validated way is 

very expensive (among other things, it requires generating safe primes which is 

expensive); see Section 1.2 of [2]. 

5.2. BIP32/BIP44 Key Derivation 

BIP32/BIP44 key derivation is carried out by computing HMAC-SHA512 with the 

private key in the appropriate node in the BIP hierarchy and a string describing the 

path to the new node in the tree. We carry out this computation using dual execution 

(with garbled circuits), with the result being that Alice receives 𝑥1 and Bob receives 

𝑥2. The parties then use these results in the key generation described above (i.e., 

instead of choosing random 𝑥1, 𝑥2, they use the results of the derivation). The BIP 

derivation run in MPC in our implementation is fully compliant with the standard 

BIP32/BIP44 standards. 

The above description is overly naïve, since it does not prevent parties from cheating 

and using different values than prescribed. This is important since if we backup only 

the BIP master key, then if parties use different inputs to the key derivation, keys will 

be generated that cannot be recovered from the BIP master key. Thus, the MPC 

protocol includes steps to detect such modifications. This includes additional 

randomized information in the dual execution, followed by a “BIP verification phase” 

to detect any cheating. This randomized information is such that many shares of a 

key are output; some are shares of zero (i.e., both have the same value), some are 

shares of the previous private key, and some are shares of the new private key. The 

parties then each compute shares of the public keys, by locally multiplying the 

generator by each share, and then securely exchange the values. Observe that if they 

have shares of 0 then they will exchange the same elliptic curve point, if they have 

shares of the previous private key then they will exchange shares of the previous 

public key (known to them), and if they have shares of the new private key then they 

will exchange shares of the new public key. This prevents cheating since if a party 

input an incorrect value for key derivation, then it must change the shares of the 

previous public key in order to match the real previous public key. However, it will 

then be caught since it will be detected if it changes a value based on a share of 0. 

Thus, if a party changes its input shares, it will be detected with very high probability. 

This verification step has 3 messages, and is run after the dual execution.  

When working with BIP derivation, ECDSA key generation requires first running BIP 

derivation via dual execution (5 rounds), then verifying the BIP results (3 rounds), and 
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then running ECDSA key generation on the received shares (3 rounds). In order to 

reduce the amount of communication, some of these messages can be piggybacked 

and we have 9 rounds overall. This overall flow is depicted below (note that the 

AgreeRandom is a secure coin tossing protocol which is used to ensure a fresh 

session identifier in the actual ECDSA key generation phase), and is helpful to follow 

the implementation of this more complex protocol combination.  

 

5.3. Backup 

Each party holds a share of the private ECDSA key (regular key or BIP derived master 

key). They can backup this key by simply encrypting each share locally with an 

externally received RSA public key. We stress that this is a very sensitive operation 

since if a malicious actor can convince both parties to back up the shares using its 

own public key, it can obtain the private key. Thus, any deployment must ensure that 

this cannot be done (e.g., allowing backup to be called only from a local call). As with 

BIP derivation, we must also ensure that each party really encrypts its share of the 

private key; otherwise the backup can be useless. However, note that if Alice’s share 

of the private key is 𝑥1 then Bob holds 𝑄1 = 𝑥1 ⋅ 𝐺 and vice versa. Thus, Alice can 

prove in zero-knowledge that the RSA-encrypted value it provides is indeed that 

which defines 𝑄1, and Bob can prove in zero-knowledge that the RSA-encrypted 

value it provides is indeed that which defines 𝑄2. These proofs are non-interactive 

and so can be verified externally by anyone. In addition, by verifying that 𝑄 = 𝑄1 + 𝑄2 

is the public key, anyone can verify that the backup is a valid encryption of shares of 

the private key associated with 𝑄.  

5.4. ECDSA Signing 

Given a message 𝑚 that both parties agree to sign, they can generate a signature on 

that message as follows: 

1. Alice and Bob generate a random sharing 𝑘1 and 𝑘2 of 𝑘, and both learn the value 

𝑅 = 𝑘1 ⋅ 𝑘2 ⋅ 𝐺. This generation uses commitments and zero-knowledge proofs in 

order to ensure that 𝑅 is (essentially) uniformly distributed in the group. 
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2. Denote 𝑅 = (𝑟𝑥, 𝑟𝑦); each party locally computes 𝑟 ← 𝑟𝑥 𝑚𝑜𝑑 𝑞.  

3. Bob uses the homomorphic properties of Paillier to compute an encryption of a 

partial signature on 𝑚, using its share of 𝑘. Specifically, it generates an encryption 

of the value 𝑘2
−1 ⋅ (𝑚′ + 𝑟 ⋅ 𝑥); it can do this since it has an encryption of 𝑥1 and 

knows all other values. Observe that this is “almost” a signature, in that all that is 

needed is to multiply it by 𝑘1
−1. We remark that Bob also adds a random multiple 

of 𝑞; this is needed in order to hide any difference from the fact that inside Paillier 

encryption the operations are not computed modulo 𝑞. Bob sends the result to 

Alice. 

4. Alice computes the signature on 𝑚 by decrypting the ciphertext, multiplying the 

plaintext by 𝑘1
−1, and reducing the result modulo 𝑞. Alice then checks that the 

signature is valid. If yes, then she outputs the signature. Otherwise, she aborts. 

5.5. EdDSA Signing 

Given a message 𝑚 that both parties agree to sign, they can generate a signature on 

that message as follows: 

1. Alice and Bob run two oblivious pseudorandom function evaluations, in order for 

them to derive pseudo-random shares 𝑟1 and 𝑟2 of 𝑟 from the message. Both 

parties also learn the value 𝑅 = 𝑟1 ⋅ 𝐺 + 𝑟2 ⋅ 𝐺. This generation uses commitments 

in order to ensure that 𝑅 is (essentially) uniformly distributed in the group, in the 

case that one of the parties is corrupted. 

2. Each party locally computes 𝑒 = 𝐻(𝑅, 𝑄, 𝑚). 

3. Bob computes 𝑠2 = 𝑟2 + 𝑥2 ⋅ 𝑒 mod 𝑞 and sends 𝑠2 to Alice. 

4. Alice computes 𝑠1 = 𝑟1 + 𝑥1 ⋅ 𝑒 mod 𝑞 and 𝑠 = 𝑠1 + 𝑠2 mod 𝑞, and outputs (𝑅, 𝑠). 

Observe that 𝑠 = 𝑠1 + 𝑠2 = (𝑟1 + 𝑟2) + (𝑥1 + 𝑥2) ⋅ 𝑒 = 𝑟 + 𝑥 ⋅ 𝑒 mod 𝑞, as required. 

We remark that the pseudo-random function derivation of 𝑟 from the message and 

private key is different to the actual EdDSA standard. Cryptographically, any such 

method is equivalent, and EdDSA specifies one concrete method. However, the 

EdDSA method is not “MPC friendly” and would require an expensive circuit 

evaluation. We could achieve this via dual execution. However, we think that it is not 

necessary. We stress that by the security of the pseudo-random function used here 

and in the EdDSA specification, it is not possible to distinguish the use of the method 

here and the one of the actual EdDSA specification. Thus, this difference can only be 

detected when running known-input tests.  
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5.6. Share Refresh 

The parties run a secure coin tossing protocol in order to generate a random value 𝑟 

that neither can bias. Then, Alice modifies her share of the private key to be 𝑥1
′ =

𝑥1 + 𝑟 𝑚𝑜𝑑 𝑞, and Bob modifies his share of the private key to be 𝑥2
′ = 𝑥2 − 𝑟 𝑚𝑜𝑑 𝑞. 

Alice then generates a new Paillier key to encrypt 𝑥1
′  and proves in zero-knowledge 

that this is the correct value. This proof involves proving that the same value is 

encrypted under two different Paillier keys, and is very efficient. (This suffices since 

Bob can generate an encryption of 𝑥1
′  by adding the scalar 𝑟 to the existing 

encryption of 𝑥1 with the old Paillier key, and then verifying the proof.) 

As a result, after the refresh the parties hold a fresh sharing of 𝑥, with a new Paillier 

key. This achieves the property that if an attacker obtains Alice’s secret information 

before a refresh and Bob’s secret information after a refresh (or vice versa), it cannot 

learn anything about the private key 𝑥. (The Paillier key must be changed as well as 

the sharing, since otherwise once the Paillier private key is stolen from Alice, it can 

corrupt Bob at any later time and decrypt 𝑐𝑘𝑒𝑦; this value together with 𝑥2 (both held 

by Bob) yields the private key 𝑥. This level of security is called proactive in the 

academic literature. 
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6. Security Guarantees 

All of our protocols are secure in the presence of malicious adversaries. This means 

that if one of the entities/parties is corrupted (e.g., breached by malware), then it 

cannot cheat even if it runs specially crafted malicious code. In particular, it cannot 

obtain a signature on any message that the other (honest) party does not approve. 

These guarantees are mathematically proven, according to formal cryptographic 

definitions of security. In addition, by using key-share refresh, as described above, an 

attacker must reside on both parties within a single refresh period. A strong level of 

security can be achieved in this way by ensuring strong separation between the 

devices/parties, making it hard to breach both. We summarize this in the following 

bullets: 

1. The key is protected even when one of the parties has been hacked, even if the 

attacker can run malicious code. 

2. A transaction is only signed if both parties consent to it. If the “two parties” are 

separate devices of the same person, then the system should be set up for the 

person to validate the transaction information on both devices. 

3. Periodic refreshing of the shares makes it significantly harder for the attacker to 

break the system. 

 

We remind the reader than any application using this code must take care to treat 

cheating that takes place in the dual execution, including the case that the last 

equality message is “dropped”. This is crucial for secure usage of the library. 
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